Turbine blade forced response prediction using FREPS
NASA Technical Reports Server (NTRS)
Murthy, Durbha, V.; Morel, Michael R.
1993-01-01
This paper describes a software system called FREPS (Forced REsponse Prediction System) that integrates structural dynamic, steady and unsteady aerodynamic analyses to efficiently predict the forced response dynamic stresses in axial flow turbomachinery blades due to aerodynamic and mechanical excitations. A flutter analysis capability is also incorporated into the system. The FREPS system performs aeroelastic analysis by modeling the motion of the blade in terms of its normal modes. The structural dynamic analysis is performed by a finite element code such as MSC/NASTRAN. The steady aerodynamic analysis is based on nonlinear potential theory and the unsteady aerodynamic analyses is based on the linearization of the non-uniform potential flow mean. The program description and presentation of the capabilities are reported herein. The effectiveness of the FREPS package is demonstrated on the High Pressure Oxygen Turbopump turbine of the Space Shuttle Main Engine. Both flutter and forced response analyses are performed and typical results are illustrated.
Flutter and Forced Response Analyses of Cascades using a Two-Dimensional Linearized Euler Solver
NASA Technical Reports Server (NTRS)
Reddy, T. S. R.; Srivastava, R.; Mehmed, O.
1999-01-01
Flutter and forced response analyses for a cascade of blades in subsonic and transonic flow is presented. The structural model for each blade is a typical section with bending and torsion degrees of freedom. The unsteady aerodynamic forces due to bending and torsion motions. and due to a vortical gust disturbance are obtained by solving unsteady linearized Euler equations. The unsteady linearized equations are obtained by linearizing the unsteady nonlinear equations about the steady flow. The predicted unsteady aerodynamic forces include the effect of steady aerodynamic loading due to airfoil shape, thickness and angle of attack. The aeroelastic equations are solved in the frequency domain by coupling the un- steady aerodynamic forces to the aeroelastic solver MISER. The present unsteady aerodynamic solver showed good correlation with published results for both flutter and forced response predictions. Further improvements are required to use the unsteady aerodynamic solver in a design cycle.
Forced Response Analysis of a Fan with Boundary Layer Inlet Distortion
NASA Technical Reports Server (NTRS)
Bakhle, Milind A.; Reddy, T. S. R.; Coroneos, Rula M.
2014-01-01
Boundary layer ingesting propulsion systems have the potential to significantly reduce fuel burn for future generations of commercial aircraft, but these systems must be designed to overcome the challenge of high dynamic stresses in fan blades due to forced response. High dynamic stresses can lead to high cycle fatigue failures. High-fidelity computational analysis of the fan aeromechanics is integral to an ongoing effort to design a boundary layer ingesting inlet and fan for a wind-tunnel test. An unsteady flow solution from a Reynoldsaveraged Navier Stokes analysis of a coupled inlet-fan system is used to calculate blade unsteady loading and assess forced response of the fan to distorted inflow. Conducted prior to the mechanical design of a fan, the initial forced response analyses performed in this study provide an early look at the levels of dynamic stresses that are likely to be encountered. For the boundary layer ingesting inlet, the distortion contains strong engine order excitations that act simultaneously. The combined effect of these harmonics was considered in the calculation of the forced response stresses. Together, static and dynamic stresses can provide the information necessary to evaluate whether the blades are likely to fail due to high cycle fatigue. Based on the analyses done, the overspeed condition is likely to result in the smallest stress margin in terms of the mean and alternating stresses. Additional work is ongoing to expand the analyses to off-design conditions, on-resonance conditions, and to include more detailed modeling of the blade structure.
Inhomogeneous Forcing and Transient Climate Sensitivity
NASA Technical Reports Server (NTRS)
Shindell, Drew T.
2014-01-01
Understanding climate sensitivity is critical to projecting climate change in response to a given forcing scenario. Recent analyses have suggested that transient climate sensitivity is at the low end of the present model range taking into account the reduced warming rates during the past 10-15 years during which forcing has increased markedly. In contrast, comparisons of modelled feedback processes with observations indicate that the most realistic models have higher sensitivities. Here I analyse results from recent climate modelling intercomparison projects to demonstrate that transient climate sensitivity to historical aerosols and ozone is substantially greater than the transient climate sensitivity to CO2. This enhanced sensitivity is primarily caused by more of the forcing being located at Northern Hemisphere middle to high latitudes where it triggers more rapid land responses and stronger feedbacks. I find that accounting for this enhancement largely reconciles the two sets of results, and I conclude that the lowest end of the range of transient climate response to CO2 in present models and assessments (less than 1.3 C) is very unlikely.
Static and dynamic deflection studies of the SRM aft case-nozzle joint
NASA Technical Reports Server (NTRS)
Christian, David C.; Kos, Lawrence D.; Torres, Isaias
1989-01-01
The redesign of the joints on the solid rocket motor (SRM) has prompted the need for analyzing the behavior of the joints using several different types of analyses. The types of analyses performed include modal analysis, static analysis, transient response analysis, and base driving response analysis. The forces used in these analyses to drive the mathematical model include SRM internal chamber pressure, nozzle blowout and side forces, shuttle vehicle lift-off dynamics, SRM pressure transient rise curve, gimbal forces and moments, actuator gimbal loads, and vertical and radial bolt preloads. The math model represented the SRM from the aft base tangent point (1,823.95 in) all the way back to the nozzle, where a simplified, tuned nozzle model was attached. The new design used the radial bolts as an additional feature to reduce the gap opening at the aft dome/nozzle fixed housing interface.
NASA Technical Reports Server (NTRS)
Elrod, David; Christensen, Eric; Brown, Andrew
2011-01-01
The temporal frequency content of the dynamic pressure predicted by a 360 degree computational fluid dynamics (CFD) analysis of a turbine flow field provides indicators of forcing function excitation frequencies (e.g., multiples of blade pass frequency) for turbine components. For the Pratt and Whitney Rocketdyne J-2X engine turbopumps, Campbell diagrams generated using these forcing function frequencies and the results of NASTRAN modal analyses show a number of components with modes in the engine operating range. As a consequence, forced response and static analyses are required for the prediction of combined stress, high cycle fatigue safety factors (HCFSF). Cyclically symmetric structural models have been used to analyze turbine vane and blade rows, not only in modal analyses, but also in forced response and static analyses. Due to the tortuous flow pattern in the turbine, dynamic pressure loading is not cyclically symmetric. Furthermore, CFD analyses predict dynamic pressure waves caused by adjacent and non-adjacent blade/vane rows upstream and downstream of the row analyzed. A MATLAB script has been written to calculate displacements due to the complex cyclically asymmetric dynamic pressure components predicted by CFD analysis, for all grids in a blade/vane row, at a chosen turbopump running speed. The MATLAB displacements are then read into NASTRAN, and dynamic stresses are calculated, including an adjustment for possible mistuning. In a cyclically symmetric NASTRAN static analysis, static stresses due to centrifugal, thermal, and pressure loading at the mode running speed are calculated. MATLAB is used to generate the HCFSF at each grid in the blade/vane row. When compared to an approach assuming cyclic symmetry in the dynamic flow field, the current approach provides better assurance that the worst case safety factor has been identified. An extended example for a J-2X turbopump component is provided.
Data Assimilation with the Extended Cmam: Nudging to Re-Analyses of the Lower Atmosphere
NASA Astrophysics Data System (ADS)
Fomichev, V. I.; Beagley, S. R.; Shepherd, M. G.; Semeniuk, K.; Mclandress, C. W.; Scinocca, J.; McConnell, J. C.
2012-12-01
The extended CMAM is currently being run in a forecast mode allowing the use of the model to simulate specific events. The current analysis period covers 1990-2010. The model is forced using ERA-Interim re-analyses via a nudging technique for the troposphere/stratosphere in combination with the GCM evolution in the lower atmosphere. Thus a transient forced model state is created in the lower atmosphere. The upper atmosphere is allowed to evolve in response to the observed conditions occurring in the lower atmosphere and in response to other transient forcing's such as SSTs, solar flux, and CO2 and CFC boundary changes. This methodology allows specific events and observations to be more successfully compared with the model. The model results compared to TOMS and ACE observations show a good agreement.
ERIC Educational Resources Information Center
Higginbotham, David L.
2013-01-01
This study leveraged the complementary nature of confirmatory factor (CFA), item response theory (IRT), and latent class (LCA) analyses to strengthen the rigor and sophistication of evaluation of two new measures of the Air Force Academy's "leader of character" definition--the Character Mosaic Virtues (CMV) and the Leadership Mosaic…
Blade row interaction effects on flutter and forced response
NASA Technical Reports Server (NTRS)
Buffum, Daniel H.
1993-01-01
In the flutter or forced response analysis of a turbomachine blade row, the blade row in question is commonly treated as if it is isolated from the neigboring blade rows. Disturbances created by vibrating blades are then free to propagate away from this blade row without being disturbed. In reality, neighboring blade rows will reflect some portion of this wave energy back toward the vibrating blades, causing additional unsteady forces on them. It is of fundamental importance to determine whether or not these reflected waves can have a significant effect on the aeroelastic stability or forced response of a blade row. Therefore, a procedure to calculate intra-blade-row unsteady aerodynamic interactions was developed which relies upon results available from isolated blade row unsteady aerodynamic analyses. In addition, an unsteady aerodynamic influence coefficient technique is used to obtain a model for the vibratory response in which the neighboring blade rows are also flexible. The flutter analysis shows that interaction effects can be destabilizing, and the forced response analysis shows that interaction effects can result in a significant increase in the resonant response of a blade row.
Influence of impeller shroud forces on turbopump rotor dynamics
NASA Technical Reports Server (NTRS)
Williams, J. P.; Childs, Dara W.
1993-01-01
The shrouded-impeller leakage path forces calculated by Childs have been analyzed to answer two questions. First, because of certain characteristics or the results of Childs, the forces could not be modeled with traditional approaches. Therefore, an approach has been devised to include the forces in conventional rotordynamic analyses. The forces were found to be well-modeled with this approach. Finally, the effect these forces had on a simple rotor-bearing system was analyzed, and, therefore, they, in addition to seal forces, were applied to a Jeffcott rotor. The traditional methods of dynamic system analysis were modified to incorporate the impeller forces and yielded results for the eigenproblem, frequency response, critical speed, transient response, and an iterative technique for finding the frequency of free vibration as well as system stability. All results lead to the conclusion that the forces have little influence on natural frequency but can have appreciable effects on system stability. Specifically, at higher values of fluid swirl at the leakage path entrance, relative stability is reduced. The only unexpected response characteristics that occurred are attributed to the nonlinearity of the model.
Bipedal distribution of human vestibular-evoked postural responses during asymmetrical standing
Marsden, J F; Castellote, J; Day, B L
2002-01-01
Galvanic vestibular stimulation (GVS) evokes responses in muscles of both legs when bilateral stimuli are applied during normal stance. We have used this technique to assess whether asymmetrical standing alters the distribution of responses in the two legs. Subjects stood either asymmetrically with 75 % of their body weight on one leg or symmetrically with each leg taking 50 % of their body weight. The net response in each leg was taken from changes in ground reaction force measured from separate force plates under each foot. The net force profile consisted of a small initial force change that peaked at ∼200 ms followed by an oppositely directed larger component that peaked at ∼450 ms. We analysed the second force component since it was responsible for the kinematic response of lateral body sway and tilt towards the anode. In the horizontal plane, both legs produced lateral force responses that were in the same direction but larger in the leg ipsilateral to the cathodal ear. There were also vertical force responses that were of equal size in both legs but acted in opposite directions. When subjects stood asymmetrically the directions of the force responses remained the same but their magnitudes changed. The lateral force response became 2-3 times larger for the more loaded leg and the vertical forces increased 1.5 times on average for both legs. Control experiments showed that these changes could not be explained by either the consistent (< 5 deg) head tilt towards the side of the loaded leg or the changes in background muscle activity associated with the asymmetrical posture. We conclude that the redistribution of force responses in the two legs arises from a load-sensing mechanism. We suggest there is a central interaction between load-related afferent input from the periphery and descending motor signals from balance centres. PMID:12096073
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maslenikov, O.R.; Mraz, M.J.; Johnson, J.J.
1986-03-01
This report documents the seismic analyses performed by SMA for the MFTF-B Axicell vacuum vessel. In the course of this study we performed response spectrum analyses, CLASSI fixed-base analyses, and SSI analyses that included interaction effects between the vessel and vault. The response spectrum analysis served to benchmark certain modeling differences between the LLNL and SMA versions of the vessel model. The fixed-base analysis benchmarked the differences between analysis techniques. The SSI analyses provided our best estimate of vessel response to the postulated seismic excitation for the MFTF-B facility, and included consideration of uncertainties in soil properties by calculating responsemore » for a range of soil shear moduli. Our results are presented in this report as tables of comparisons of specific member forces from our analyses and the analyses performed by LLNL. Also presented are tables of maximum accelerations and relative displacements and plots of response spectra at various selected locations.« less
Three-dimensional cellular deformation analysis with a two-photon magnetic manipulator workstation.
Huang, Hayden; Dong, Chen Y; Kwon, Hyuk-Sang; Sutin, Jason D; Kamm, Roger D; So, Peter T C
2002-04-01
The ability to apply quantifiable mechanical stresses at the microscopic scale is critical for studying cellular responses to mechanical forces. This necessitates the use of force transducers that can apply precisely controlled forces to cells while monitoring the responses noninvasively. This paper describes the development of a micromanipulation workstation integrating two-photon, three-dimensional imaging with a high-force, uniform-gradient magnetic manipulator. The uniform-gradient magnetic field applies nearly uniform forces to a large cell population, permitting statistical quantification of select molecular responses to mechanical stresses. The magnetic transducer design is capable of exerting over 200 pN of force on 4.5-microm-diameter paramagnetic particles and over 800 pN on 5.0-microm ferromagnetic particles. These forces vary within +/-10% over an area 500 x 500 microm2. The compatibility with the use of high numerical aperture (approximately 1.0) objectives is an integral part of the workstation design allowing submicron-resolution, three-dimensional, two-photon imaging. Three-dimensional analyses of cellular deformation under localized mechanical strain are reported. These measurements indicate that the response of cells to large focal stresses may contain three-dimensional global deformations and show the suitability of this workstation to further studying cellular response to mechanical stresses.
Experimental research on anchoring force in intestine for the motion of capsule robot.
Chen, Wenwen; Ke, Quan; He, Shu; Luo, Weijie; Ji, Xing Chun; Yan, Guozheng
2013-07-01
Multiple research groups are currently attempting to develop less-invasive robotic capsule endoscopes (RCEs) with better outcomes for enteroscopic procedures. Understanding the biomechanical response of the bowel to RCE is crucial for optimizing the design of these devices. For this reason, this study aims to develop an analytical model to predict the anchoring force of the model when travelling through the intestine. Previous work has developed, characterized and tested the frictional characteristics of the intestine with microgroove structures that had different surface contours. This work tested basic anchoring force characteristics with custom-built testers and clamping mechanism dummies to analyse the robot clamping movement (which is vital to improving movement efficiency). Balloon-shaped and leg-based clamping mechanisms were developed, which were found to have variable anchoring forces from 0.01 N to 1.2 N. After analysing the experimental results it was found that: (a) robot weight does not play a major role in anchoring force; (b) an increase in anchoring force corresponded to an increase in diameter of the clamping mechanism; and (c) textured contact surfaces effectively increased friction. These results could be explained by the biomechanical response of the intestine, friction and mucoadhesion characteristics of the small intestine material. With these factors considered, a model was developed for determining anchoring force in the small intestine.
Aeroelastic Stability and Response of Rotating Structures
NASA Technical Reports Server (NTRS)
Keith, Theo G., Jr.; Reddy, T. S. R.
1998-01-01
A summary of the work performed from 1996 to 1997 is presented. More details can be found in the cited references. This grant led to the development of aeroelastic analyses methods for predicting flutter and forced response in fans, compressors, and turbines using computational
Ackerman, Robert A; Donnellan, M Brent; Roberts, Brent W; Fraley, R Chris
2016-04-01
The Narcissistic Personality Inventory (NPI) is currently the most widely used measure of narcissism in social/personality psychology. It is also relatively unique because it uses a forced-choice response format. We investigate the consequences of changing the NPI's response format for item meaning and factor structure. Participants were randomly assigned to one of three conditions: 40 forced-choice items (n = 2,754), 80 single-stimulus dichotomous items (i.e., separate true/false responses for each item; n = 2,275), or 80 single-stimulus rating scale items (i.e., 5-point Likert-type response scales for each item; n = 2,156). Analyses suggested that the "narcissistic" and "nonnarcissistic" response options from the Entitlement and Superiority subscales refer to independent personality dimensions rather than high and low levels of the same attribute. In addition, factor analyses revealed that although the Leadership dimension was evident across formats, dimensions with entitlement and superiority were not as robust. Implications for continued use of the NPI are discussed. © The Author(s) 2015.
Efficient forced vibration reanalysis method for rotating electric machines
NASA Astrophysics Data System (ADS)
Saito, Akira; Suzuki, Hiromitsu; Kuroishi, Masakatsu; Nakai, Hideo
2015-01-01
Rotating electric machines are subject to forced vibration by magnetic force excitation with wide-band frequency spectrum that are dependent on the operating conditions. Therefore, when designing the electric machines, it is inevitable to compute the vibration response of the machines at various operating conditions efficiently and accurately. This paper presents an efficient frequency-domain vibration analysis method for the electric machines. The method enables the efficient re-analysis of the vibration response of electric machines at various operating conditions without the necessity to re-compute the harmonic response by finite element analyses. Theoretical background of the proposed method is provided, which is based on the modal reduction of the magnetic force excitation by a set of amplitude-modulated standing-waves. The method is applied to the forced response vibration of the interior permanent magnet motor at a fixed operating condition. The results computed by the proposed method agree very well with those computed by the conventional harmonic response analysis by the FEA. The proposed method is then applied to the spin-up test condition to demonstrate its applicability to various operating conditions. It is observed that the proposed method can successfully be applied to the spin-up test conditions, and the measured dominant frequency peaks in the frequency response can be well captured by the proposed approach.
Gender differences in head-neck segment dynamic stabilization during head acceleration.
Tierney, Ryan T; Sitler, Michael R; Swanik, C Buz; Swanik, Kathleen A; Higgins, Michael; Torg, Joseph
2005-02-01
Recent epidemiological research has revealed that gender differences exist in concussion incidence but no study has investigated why females may be at greater risk of concussion. Our purpose was to determine whether gender differences existed in head-neck segment kinematic and neuromuscular control variables responses to an external force application with and without neck muscle preactivation. Forty (20 females and 20 males) physically active volunteers participated in the study. The independent variables were gender, force application (known vs unknown), and force direction (forced flexion vs forced extension). The dependent variables were kinematic and EMG variables, head-neck segment stiffness, and head-neck segment flexor and extensor isometric strength. Statistical analyses consisted of multiple multivariate and univariate analyses of variance, follow-up univariate analyses of variance, and t-tests (P < or = 0.05). Gender differences existed in head-neck segment dynamic stabilization during head angular acceleration. Females exhibited significantly greater head-neck segment peak angular acceleration (50%) and displacement (39%) than males despite initiating muscle activity significantly earlier (SCM only) and using a greater percentage of their maximum head-neck segment muscle activity (79% peak activity and 117% muscle activity area). The head-neck segment angular acceleration differences may be because females exhibited significantly less isometric strength (49%), neck girth (30%), and head mass (43%), resulting in lower levels of head-neck segment stiffness (29%). For our subject demographic, the results revealed gender differences in head-neck segment dynamic stabilization during head acceleration in response to an external force application. Females exhibited significantly greater head-neck segment peak angular acceleration and displacement than males despite initiating muscle activity earlier (SCM only) and using a greater percentage of their maximum head-neck segment muscle activity.
Effects of thread interruptions on tool pins in friction stir welding of AA6061
Reza-E-Rabby, Md.; Tang, Wei; Reynolds, Anthony P.
2017-06-21
In this paper, effects of pin thread and thread interruptions (flats) on weld quality and process response parameters during friction stir welding (FSW) of 6061 aluminium alloy were quantified. Otherwise, identical smooth and threaded pins with zero to four flats were adopted for FSW. Weldability and process response variables were examined. Results showed that threads with flats significantly improved weld quality and reduced in-plane forces. A three-flat threaded pin led to production of defect-free welds under all examined welding conditions. Spectral analyses of in-plane forces and weld cross-sectional analysis were performed to establish correlation among pin flats, force dynamics andmore » defect formation. Finally, the lowest in-plane force spectra amplitudes were consistently observed for defect-free welds.« less
Effects of thread interruptions on tool pins in friction stir welding of AA6061
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reza-E-Rabby, Md.; Tang, Wei; Reynolds, Anthony P.
In this paper, effects of pin thread and thread interruptions (flats) on weld quality and process response parameters during friction stir welding (FSW) of 6061 aluminium alloy were quantified. Otherwise, identical smooth and threaded pins with zero to four flats were adopted for FSW. Weldability and process response variables were examined. Results showed that threads with flats significantly improved weld quality and reduced in-plane forces. A three-flat threaded pin led to production of defect-free welds under all examined welding conditions. Spectral analyses of in-plane forces and weld cross-sectional analysis were performed to establish correlation among pin flats, force dynamics andmore » defect formation. Finally, the lowest in-plane force spectra amplitudes were consistently observed for defect-free welds.« less
Aeroelastic Stability & Response of Rotating Structures
NASA Technical Reports Server (NTRS)
Keith, Theo G., Jr.; Reddy, T. S. R.
2001-01-01
A summary of the work performed under NASA grant NCC3-605 is presented. More details can be found in the cited references. This grant led to the development of relatively faster aeroelastic analyses methods for predicting flutter and forced response in fans, compressors, and turbines using computational fluid dynamic (CFD) methods.
Aeromechanics Analysis of a Boundary Layer Ingesting Fan
NASA Technical Reports Server (NTRS)
Bakhle, Milind A.; Reddy, T. S. R.; Herrick, Gregory P.; Shabbir, Aamir; Florea, Razvan V.
2013-01-01
Boundary layer ingesting propulsion systems have the potential to significantly reduce fuel burn but these systems must overcome the challe nges related to aeromechanics-fan flutter stability and forced response dynamic stresses. High-fidelity computational analysis of the fan a eromechanics is integral to the ongoing effort to design a boundary layer ingesting inlet and fan for fabrication and wind-tunnel test. A t hree-dimensional, time-accurate, Reynolds-averaged Navier Stokes computational fluid dynamics code is used to study aerothermodynamic and a eromechanical behavior of the fan in response to both clean and distorted inflows. The computational aeromechanics analyses performed in th is study show an intermediate design iteration of the fan to be flutter-free at the design conditions analyzed with both clean and distorte d in-flows. Dynamic stresses from forced response have been calculated for the design rotational speed. Additional work is ongoing to expan d the analyses to off-design conditions, and for on-resonance conditions.
NASA Astrophysics Data System (ADS)
Mead, Denys J.
2009-01-01
A general theory for the forced vibration of multi-coupled one-dimensional periodic structures is presented as a sequel to a much earlier general theory for free vibration. Starting from the dynamic stiffness matrix of a single multi-coupled periodic element, it derives matrix equations for the magnitudes of the characteristic free waves excited in the whole structure by prescribed harmonic forces and/or displacements acting at a single periodic junction. The semi-infinite periodic system excited at its end is first analysed to provide the basis for analysing doubly infinite and finite periodic systems. In each case, total responses are found by considering just one periodic element. An already-known method of reducing the size of the computational problem is reexamined, expanded and extended in detail, involving reduction of the dynamic stiffness matrix of the periodic element through a wave-coordinate transformation. Use of the theory is illustrated in a combined periodic structure+finite element analysis of the forced harmonic in-plane motion of a uniform flat plate. Excellent agreement between the computed low-frequency responses and those predicted by simple engineering theories validates the detailed formulations of the paper. The primary purpose of the paper is not towards a specific application but to present a systematic and coherent forced vibration theory, carefully linked with the existing free-wave theory.
NASA Astrophysics Data System (ADS)
Rypdal, Kristoffer; Rypdal, Martin
2016-07-01
Lovejoy and Varotsos (2016) (L&V) analyse the temperature response to solar, volcanic, and solar plus volcanic forcing in the Zebiak-Cane (ZC) model, and to solar and solar plus volcanic forcing in the Goddard Institute for Space Studies (GISS) E2-R model. By using a simple wavelet filtering technique they conclude that the responses in the ZC model combine subadditively on timescales from 50 to 1000 years. Nonlinear response on shorter timescales is claimed by analysis of intermittencies in the forcing and the temperature signal for both models. The analysis of additivity in the ZC model suffers from a confusing presentation of results based on an invalid approximation, and from ignoring the effect of internal variability. We present tests without this approximation which are not able to detect nonlinearity in the response, even without accounting for internal variability. We also demonstrate that internal variability will appear as subadditivity if it is not accounted for. L&V's analysis of intermittencies is based on a mathematical result stating that the intermittencies of forcing and response are the same if the response is linear. We argue that there are at least three different factors that may invalidate the application of this result for these data. It is valid only for a power-law response function; it assumes power-law scaling of structure functions of forcing as well as temperature signal; and the internal variability, which is strong at least on the short timescales, will exert an influence on temperature intermittence which is independent of the forcing. We demonstrate by a synthetic example that the differences in intermittencies observed by L&V easily can be accounted for by these effects under the assumption of a linear response. Our conclusion is that the analysis performed by L&V does not present valid evidence for a detectable nonlinear response in the global temperature in these climate models.
Probabilistic Aeroelastic Analysis Developed for Turbomachinery Components
NASA Technical Reports Server (NTRS)
Reddy, T. S. R.; Mital, Subodh K.; Stefko, George L.; Pai, Shantaram S.
2003-01-01
Aeroelastic analyses for advanced turbomachines are being developed for use at the NASA Glenn Research Center and industry. However, these analyses at present are used for turbomachinery design with uncertainties accounted for by using safety factors. This approach may lead to overly conservative designs, thereby reducing the potential of designing higher efficiency engines. An integration of the deterministic aeroelastic analysis methods with probabilistic analysis methods offers the potential to design efficient engines with fewer aeroelastic problems and to make a quantum leap toward designing safe reliable engines. In this research, probabilistic analysis is integrated with aeroelastic analysis: (1) to determine the parameters that most affect the aeroelastic characteristics (forced response and stability) of a turbomachine component such as a fan, compressor, or turbine and (2) to give the acceptable standard deviation on the design parameters for an aeroelastically stable system. The approach taken is to combine the aeroelastic analysis of the MISER (MIStuned Engine Response) code with the FPI (fast probability integration) code. The role of MISER is to provide the functional relationships that tie the structural and aerodynamic parameters (the primitive variables) to the forced response amplitudes and stability eigenvalues (the response properties). The role of FPI is to perform probabilistic analyses by utilizing the response properties generated by MISER. The results are a probability density function for the response properties. The probabilistic sensitivities of the response variables to uncertainty in primitive variables are obtained as a byproduct of the FPI technique. The combined analysis of aeroelastic and probabilistic analysis is applied to a 12-bladed cascade vibrating in bending and torsion. Out of the total 11 design parameters, 6 are considered as having probabilistic variation. The six parameters are space-to-chord ratio (SBYC), stagger angle (GAMA), elastic axis (ELAXS), Mach number (MACH), mass ratio (MASSR), and frequency ratio (WHWB). The cascade is considered to be in subsonic flow with Mach 0.7. The results of the probabilistic aeroelastic analysis are the probability density function of predicted aerodynamic damping and frequency for flutter and the response amplitudes for forced response.
Seismic Design of a Single Bored Tunnel: Longitudinal Deformations and Seismic Joints
NASA Astrophysics Data System (ADS)
Oh, J.; Moon, T.
2018-03-01
The large diameter bored tunnel passing through rock and alluvial deposits subjected to seismic loading is analyzed for estimating longitudinal deformations and member forces on the segmental tunnel liners. The project site has challenges including high hydrostatic pressure, variable ground profile and high seismic loading. To ensure the safety of segmental tunnel liner from the seismic demands, the performance-based two-level design earthquake approach, Functional Evaluation Earthquake and Safety Evaluation Earthquake, has been adopted. The longitudinal tunnel and ground response seismic analyses are performed using a three-dimensional quasi-static linear elastic and nonlinear elastic discrete beam-spring elements to represent segmental liner and ground spring, respectively. Three components (longitudinal, transverse and vertical) of free-field ground displacement-time histories evaluated from site response analyses considering wave passage effects have been applied at the end support of the strain-compatible ground springs. The result of the longitudinal seismic analyses suggests that seismic joint for the mitigation measure requiring the design deflection capacity of 5-7.5 cm is to be furnished at the transition zone between hard and soft ground condition where the maximum member forces on the segmental liner (i.e., axial, shear forces and bending moments) are induced. The paper illustrates how detailed numerical analyses can be practically applied to evaluate the axial and curvature deformations along the tunnel alignment under difficult ground conditions and to provide the seismic joints at proper locations to effectively reduce the seismic demands below the allowable levels.
Dobashi, Kosuke; Nagamine, Masanori; Shigemura, Jun; Tsunoda, Tomoya; Shimizu, Kunio; Yoshino, Aihide; Nomura, Soichiro
2014-01-01
Disaster relief workers are potentially exposed to severe stressors on the job, resulting in a variety of psychological responses. This study aims to clarify the psychological effects of disaster relief activities on Japan Ground Self-Defense Force (JGSDF) personnel following the 2011 Great East Japan Earthquake. A self-report questionnaire was administered to 606 JGSDF personnel one month after completing the disaster relief mission. Posttraumatic stress responses and general psychological distress were assessed using the Impact of Event Scale-Revised (IES-R) and the K10 scales. Associations between outcome variables and independent variables (age, gender, military rank, length of deployment, and exposure to dead bodies) were measured with univariate analyses and subsequent multiple logistic regression analyses. The mean (± SD) IES-R score was 6.2 (± 8.1), and the mean K10 score was 12.8 (± 4.4). In the univariate analyses, exposure to dead bodies and age were identified as significant factors for IES-R and K10 scores, (p < 0.01). However, the multiple logistic regression analyses did not reveal any significant factors although body handlers' exposure approached significance for IES-R. The subjects reported very low psychological responses despite the severe nature of their disaster relief activities. Several factors may account for the low levels of psychological distress and posttraumatic symptoms observed in this study.
Stiffness map of the grasping contact areas of the human hand.
Pérez-González, Antonio; Vergara, Margarita; Sancho-Bru, Joaquin L
2013-10-18
The elasticity and damping of the soft tissues of the hand contribute to dexterity while grasping and also help to stabilise the objects in manipulation tasks. Although some previous works have studied the force-displacement response of the fingertips, the responses in all other regions of the hand that usually participate in grasping have not been analysed to date. In this work we performed experimental measurements in 20 subjects to obtain a stiffness map of the different grasping contact areas of the human hand. A force-displacement apparatus was used to simultaneously measure force and displacement at 39 different points on the hand at six levels of force ranging from 1N to 6N. A non-linear force-displacement response was found for all points, with stiffness increasing with the amount of force applied. Mean stiffness for the different points and force levels was within the range from 0.2N/mm to 7.7N/mm. However, the stiffness range and variation with level of force were found to be different from point to point. A total of 13 regions with similar stiffness behaviours were identified. The stiffness in the fingertips increased linearly with the amount of force applied, while in the palm it remained more constant for the range of forces considered. It is hypothesised that the differences in the stiffness behaviour from one region to another allow these regions to play different roles during grasping. © 2013 Elsevier Ltd. All rights reserved.
Unsteady aerodynamic analyses for turbomachinery aeroelastic predictions
NASA Technical Reports Server (NTRS)
Verdon, Joseph M.; Barnett, M.; Ayer, T. C.
1994-01-01
Applications for unsteady aerodynamics analysis in this report are: (1) aeroelastic: blade flutter and forced vibration; (2) aeroacoustic: noise generation; (3) vibration and noise control; and (4) effects of unsteadiness on performance. This requires that the numerical simulations and analytical modeling be accurate and efficient and contain realistic operating conditions and arbitrary modes of unsteady excitation. The assumptions of this application contend that: (1) turbulence and transition can be modeled with the Reynolds averaged and using Navier-Stokes equations; (2) 'attached' flow with high Reynolds number will require thin-layer Navier-Stokes equations, or inviscid/viscid interaction analyses; (3) small-amplitude unsteady excitations will need nonlinear steady and linearized unsteady analyses; and (4) Re to infinity will concern inviscid flow. Several computer programs (LINFLO, CLT, UNSVIS, AND SFLOW-IVI) are utilized for these analyses. Results and computerized grid examples are shown. This report was given during NASA LeRC Workshop on Forced Response in Turbomachinery in August of 1993.
Regional Differences in Rat Vaginal Smooth Muscle Contractility and Morphology
Skoczylas, Laura C.; Jallah, Zegbeh; Sugino, Yoshio; Stein, Suzan E.; Feola, Andrew; Yoshimura, Naoki
2013-01-01
The objective of this study was to define the regional differences in rat vaginal smooth muscle contractility and morphology. We evaluated circumferential segments from the proximal, middle, and distal rat vagina (n = 21) in vitro. Contractile responses to carbachol, phenylephrine, potassium chloride, and electrical field stimulation (EFS) were measured. Immunohistochemical analyses were also performed. The dose–response curves for carbachol- and phenylephrine-dependent contractions were different in the distal (P = .05, P = .04) compared to the proximal/middle regions. Adjusted for region-dependent changes in contractility, the distal vagina generated lower force in response to carbachol and higher force in response to phenylephrine. There was less force with increasing EFS frequency in the distal (P = .03), compared to the proximal/middle regions. Cholinergic versus adrenergic nerves were more frequent in the proximal region (P = .03). In summary, the results indicate that functional and morphological differences in smooth muscle and nerve fibers of the distal versus proximal/middle regions of the vagina exist. PMID:23298869
van Asseldonk, Edwin H F; Carpenter, Mark G; van der Helm, Frans C T; van der Kooij, Herman
2007-12-01
Due to the mechanical coupling between the body segments, it is impossible to see with the naked eye the causes of body movements and understand the interaction between movements of different body parts. The goal of this paper is to investigate the use of induced acceleration analysis to reveal the causes of body movements. We derive the analytical equations to calculate induced accelerations and evaluate its potential to study human postural responses to support-surface translations. We measured the kinematic and kinetic responses of a subject to sudden forward and backward translations of a moving platform. The kinematic and kinetics served as input to the induced acceleration analyses. The induced accelerations showed explicitly that the platform acceleration and deceleration contributed to the destabilization and restabilization of standing balance, respectively. Furthermore, the joint torques, coriolis and centrifugal forces caused by swinging of the arms, contributed positively to stabilization of the Center of Mass. It is concluded that induced acceleration analyses is a valuable tool in understanding balance responses to different kinds of perturbations and may help to identify the causes of movement in different pathologies.
Reassessment of Occupational Health Among U.S. Air Force Remotely Piloted Aircraft (Drone) Operators
2017-04-05
As a result, the U.S. Air Force (USAF) School of Aerospace Medicine was requested to conduct a field survey to assess for general areas of health...services; and reasons for increased prescription and over-the-counter medication usage ). The purpose of this study was to reevaluate for changes in...major commands within the continental United States completed the web-based survey , resulting in an estimated 40% response rate. Statistical analyses
Hillery, S C; Wallace, E S; McIlhagger, R; Watson, P
1997-08-01
The aim of this study was to assess, by means of gait analysis, the effect on the gait of a trans-tibial amputee of altering the mass and the moment of inertia of a dynamic elastic response prosthesis. One male amputee was analysed for four to five walking trials at normal and fast cadences, using the VICON system of motion analysis and an AMTI force plate. The kinematic variables of cadence, swing time, single support time and joint angles for the knee and hip on the affected and intact sides were analysed. The ground reaction force was also analysed. The sample size was limited to one as an example to indicate the changes which are possible through simply changing the inertial characteristics. Descriptive statistics are used to demonstrate these changes. Three mass conditions for the prosthesis were analysed m1: 1080g; m2: 1080 + 530g; m3: 1080 + 1460g. The m1 condition is the mass of the prosthesis with no added weight while m2 and m3 were attachments of the same geometrical shape but were made from different materials. It was felt that the large mass range would highlight biomechanical adjustments as a result of its alteration. The effect on selected temporal characteristics were that as the speed increased the cadence changed and the affected side single support times as a percentage of the gait cycle were altered. The effect on the joint angles was also apparent at the hip and knee of both sides. The ground reaction force patterns were similar for all three mass conditions, though the impact peak which was evident in the intact limb was missing, indicating a shock absorbing property in the prosthesis. Clearly, changing the mass and moment of inertia has an effect on the kinematic variables of gait and should be considered when designing a prosthesis.
Effects of anthropogenic activity emerging as intensified extreme precipitation over China
NASA Astrophysics Data System (ADS)
Li, Huixin; Chen, Huopo; Wang, Huijun
2017-07-01
This study aims to provide an assessment of the effects of anthropogenic (ANT) forcings and other external factors on observed increases in extreme precipitation over China from 1961 to 2005. Extreme precipitation is represented by the annual maximum 1 day precipitation (RX1D) and the annual maximum 5 day consecutive precipitation (RX5D), and these variables are investigated using observations and simulations from the Coupled Model Intercomparison Project phase 5. The analyses mainly focus on the probability-based index (PI), which is derived from RX1D and RX5D by fitting generalized extreme value distributions. The results indicate that the simulations that include the ANT forcings provide the best representation of the spatial and temporal characteristics of extreme precipitation over China. We use the optimal fingerprint method to obtain the univariate and multivariate fingerprints of the responses to external forcings. The results show that only the ANT forcings are detectable at a 90% confidence level, both individually and when natural forcings are considered simultaneously. The impact of the forcing associated with greenhouse gases (GHGs) is also detectable in RX1D, but its effects cannot be separated from those of combinations of forcings that exclude the GHG forcings in the two-signal analyses. Besides, the estimated changes of PI, extreme precipitation, and events with a 20 year return period under nonstationary climate states are potentially attributable to ANT or GHG forcings, and the relationships between extreme precipitation and temperature from ANT forcings show agreement with observations.
NASA Astrophysics Data System (ADS)
Josse, P.; Caniaux, G.; Giordani, H.; Planton, S.
1999-04-01
A mesoscale non-hydrostatic atmospheric model has been coupled with a mesoscale oceanic model. The case study is a four-day simulation of a strong storm event observed during the SEMAPHORE experiment over a 500 × 500 km2 domain. This domain encompasses a thermohaline front associated with the Azores current. In order to analyze the effect of mesoscale coupling, three simulations are compared: the first one with the atmospheric model forced by realistic sea surface temperature analyses; the second one with the ocean model forced by atmospheric fields, derived from weather forecast re-analyses; the third one with the models being coupled. For these three simulations the surface fluxes were computed with the same bulk parametrization. All three simulations succeed well in representing the main oceanic or atmospheric features observed during the storm. Comparison of surface fields with in situ observations reveals that the winds of the fine mesh atmospheric model are more realistic than those of the weather forecast re-analyses. The low-level winds simulated with the atmospheric model in the forced and coupled simulations are appreciably stronger than the re-analyzed winds. They also generate stronger fluxes. The coupled simulation has the strongest surface heat fluxes: the difference in the net heat budget with the oceanic forced simulation reaches on average 50 Wm-2 over the simulation period. Sea surface-temperature cooling is too weak in both simulations, but is improved in the coupled run and matches better the cooling observed with drifters. The spatial distributions of sea surface-temperature cooling and surface fluxes are strongly inhomogeneous over the simulation domain. The amplitude of the flux variation is maximum in the coupled run. Moreover the weak correlation between the cooling and heat flux patterns indicates that the surface fluxes are not responsible for the whole cooling and suggests that the response of the ocean mixed layer to the atmosphere is highly non-local and enhanced in the coupled simulation.
NASA Astrophysics Data System (ADS)
Stronge, W. J.
2004-03-01
Impact mechanics is concerned with the reaction forces that develop during a collision and the dynamic response of structures to these reaction forces. The subject has a wide range of engineering applications, from designing sports equipment to improving the crashworthiness of automobiles. This book develops several different methodologies for analysing collisions between structures. These range from rigid body theory for structures that are stiff and compact, to vibration and wave analyses for flexible structures. The emphasis is on low-speed impact where damage is local to the small region of contact between the colliding bodies. The analytical methods presented give results that are more robust or less sensitive to initial conditions than have been achieved hitherto. As a text, Impact Mechanics builds upon foundation courses in dynamics and strength of materials. It includes numerous industrially relevant examples and end-of-chapter homework problems drawn from industry and sports. Practising engineers will also find the methods presented in this book useful in calculating the response of a mechanical system to impact.
Ozone Sensitivity to Varying Greenhouse Gases and Ozone-Depleting Substances in CCMI-1 Simulations
NASA Technical Reports Server (NTRS)
Morgenstern, Olaf; Stone, Kane A.; Schofield, Robyn; Akiyoshi, Hideharu; Yamashita, Yousuke; Kinnison, Douglas E.; Garcia, Rolando R.; Sudo, Kengo; Plummer, David A.; Scinocca, John;
2018-01-01
Ozone fields simulated for the first phase of the Chemistry-Climate Model Initiative (CCMI-1) will be used as forcing data in the 6th Coupled Model Intercomparison Project. Here we assess, using reference and sensitivity simulations produced for CCMI-1, the suitability of CCMI-1 model results for this process, investigating the degree of consistency amongst models regarding their responses to variations in individual forcings. We consider the influences of methane, nitrous oxide, a combination of chlorinated or brominated ozone-depleting substances, and a combination of carbon dioxide and other greenhouse gases. We find varying degrees of consistency in the models' responses in ozone to these individual forcings, including some considerable disagreement. In particular, the response of total-column ozone to these forcings is less consistent across the multi-model ensemble than profile comparisons. We analyse how stratospheric age of air, a commonly used diagnostic of stratospheric transport, responds to the forcings. For this diagnostic we find some salient differences in model behaviour, which may explain some of the findings for ozone. The findings imply that the ozone fields derived from CCMI-1 are subject to considerable uncertainties regarding the impacts of these anthropogenic forcings. We offer some thoughts on how to best approach the problem of generating a consensus ozone database from a multi-model ensemble such as CCMI-1.
Ozone sensitivity to varying greenhouse gases and ozone-depleting substances in CCMI-1 simulations
NASA Astrophysics Data System (ADS)
Morgenstern, Olaf; Stone, Kane A.; Schofield, Robyn; Akiyoshi, Hideharu; Yamashita, Yousuke; Kinnison, Douglas E.; Garcia, Rolando R.; Sudo, Kengo; Plummer, David A.; Scinocca, John; Oman, Luke D.; Manyin, Michael E.; Zeng, Guang; Rozanov, Eugene; Stenke, Andrea; Revell, Laura E.; Pitari, Giovanni; Mancini, Eva; Di Genova, Glauco; Visioni, Daniele; Dhomse, Sandip S.; Chipperfield, Martyn P.
2018-01-01
Ozone fields simulated for the first phase of the Chemistry-Climate Model Initiative (CCMI-1) will be used as forcing data in the 6th Coupled Model Intercomparison Project. Here we assess, using reference and sensitivity simulations produced for CCMI-1, the suitability of CCMI-1 model results for this process, investigating the degree of consistency amongst models regarding their responses to variations in individual forcings. We consider the influences of methane, nitrous oxide, a combination of chlorinated or brominated ozone-depleting substances, and a combination of carbon dioxide and other greenhouse gases. We find varying degrees of consistency in the models' responses in ozone to these individual forcings, including some considerable disagreement. In particular, the response of total-column ozone to these forcings is less consistent across the multi-model ensemble than profile comparisons. We analyse how stratospheric age of air, a commonly used diagnostic of stratospheric transport, responds to the forcings. For this diagnostic we find some salient differences in model behaviour, which may explain some of the findings for ozone. The findings imply that the ozone fields derived from CCMI-1 are subject to considerable uncertainties regarding the impacts of these anthropogenic forcings. We offer some thoughts on how to best approach the problem of generating a consensus ozone database from a multi-model ensemble such as CCMI-1.
Drivers of precipitation change: An energetic understanding
NASA Astrophysics Data System (ADS)
Richardson, T.; Forster, P.; Andrews, T.
2016-12-01
Future precipitation changes are highly uncertain. Different drivers of anthropogenic climate change can cause very different hydrological responses, which could have significant societal implications. Changes in precipitation are tightly linked to the atmospheric energy budget due to the latent heat released through condensation. Through analysis of the atmospheric energy budget we make significant steps forward in understanding and predicting the precipitation response to different forcings. Here we analyse the response to five targeted forcing scenarios (perturbed CO2, CH4, black carbon, sulphate and solar insolation) across eight climate models participating in the Precipitation Driver and Response Model Intercomparison Project (PDRMIP). The resulting changes are split into a rapid adjustment component, due to the near-instantaneous changes in the atmospheric energy budget, and a feedback component which scales with surface temperature change. Globally, CO2 and black carbon produce large negative adjustments in precipitation due to the increase in atmospheric absorption. However, over land it is sulphate and solar forcing which produce the largest precipitation adjustments due to changes in horizontal energy transport associated with rapid circulation changes. Globally, the precipitation feedback response is very consistent between forcing scenarios, driven mainly by increased longwave cooling. The feedback response differs significantly over land and sea, with a larger feedback over the oceans. We use the PDRMIP results to construct a simple model for precipitation change over land and sea based on surface temperature change and top of the atmosphere forcing. The simple model matches well with CMIP5 ensemble mean precipitation change for RCP8.5. Simulated changes in land mean precipitation can be estimated well using the rapid adjustment and feedback framework, and understood through simple energy budget arguments. Up until present day the effects of temperature change on land mean precipitation have been entirely masked by sulphate forcing. However, as projected sulphate forcing decreases, and warming continues, the temperature driven increase in land mean precipitation soon dominates.
Farhoudi, Hamidreza; Fallahnezhad, Khosro; Oskouei, Reza H; Taylor, Mark
2017-11-01
This paper investigates the mechanical response of a modular head-neck interface of hip joint implants under realistic loads of level walking. The realistic loads of the walking activity consist of three dimensional gait forces and the associated frictional moments. These forces and moments were extracted for a 32mm metal-on-metal bearing couple. A previously reported geometry of a modular CoCr/CoCr head-neck interface with a proximal contact was used for this investigation. An explicit finite element analysis was performed to investigate the interface mechanical responses. To study the level of contribution and also the effect of superposition of the load components, three different scenarios of loading were studied: gait forces only, frictional moments only, and combined gait forces and frictional moments. Stress field, micro-motions, shear stresses and fretting work at the contacting nodes of the interface were analysed. Gait forces only were found to significantly influence the mechanical environment of the head-neck interface by temporarily extending the contacting area (8.43% of initially non-contacting surface nodes temporarily came into contact), and therefore changing the stress field and resultant micro-motions during the gait cycle. The frictional moments only did not cause considerable changes in the mechanical response of the interface (only 0.27% of the non-contacting surface nodes temporarily came into contact). However, when superposed with the gait forces, the mechanical response of the interface, particularly micro-motions and fretting work, changed compared to the forces only case. The normal contact stresses and micro-motions obtained from this realistic load-controlled study were typically in the range of 0-275MPa and 0-38µm, respectively. These ranges were found comparable to previous experimental displacement-controlled pin/cylinder-on-disk fretting corrosion studies. Copyright © 2017 Elsevier Ltd. All rights reserved.
The use of impact force as a scale parameter for the impact response of composite laminates
NASA Technical Reports Server (NTRS)
Jackson, Wade C.; Poe, C. C., Jr.
1992-01-01
The building block approach is currently used to design composite structures. With this approach, the data from coupon tests is scaled up to determine the design of a structure. Current standard impact tests and methods of relating test data to other structures are not generally understood and are often used improperly. A methodology is outlined for using impact force as a scale parameter for delamination damage for impacts of simple plates. Dynamic analyses were used to define ranges of plate parameters and impact parameters where quasi-static analyses are valid. These ranges include most low velocity impacts where the mass of the impacter is large and the size of the specimen is small. For large mass impacts of moderately thick (0.35 to 0.70 cm) laminates, the maximum extent of delamination damage increased with increasing impact force and decreasing specimen thickness. For large mass impact tests at a given kinetic energy, impact force and hence delamination size depends on specimen size, specimen thickness, boundary conditions, and indenter size and shape. If damage is reported in terms of impact force instead of kinetic energy, large mass test results can be applied directly to other plates of the same size.
The use of impact force as a scale parameter for the impact response of composite laminates
NASA Technical Reports Server (NTRS)
Jackson, Wade C.; Poe, C. C., Jr.
1992-01-01
The building block approach is currently used to design composite structures. With this approach, the data from coupon tests are scaled up to determine the design of a structure. Current standard impact tests and methods of relating test data to other structures are not generally understood and are often used improperly. A methodology is outlined for using impact force as a scale parameter for delamination damage for impacts of simple plates. Dynamic analyses were used to define ranges of plate parameters and impact parameters where quasi-static analyses are valid. These ranges include most low-velocity impacts where the mass of the impacter is large, and the size of the specimen is small. For large-mass impacts of moderately thick (0.35-0.70 cm) laminates, the maximum extent of delamination damage increased with increasing impact force and decreasing specimen thickness. For large-mass impact tests at a given kinetic energy, impact force and hence delamination size depends on specimen size, specimen thickness, boundary conditions, and indenter size and shape. If damage is reported in terms of impact force instead of kinetic energy, large-mass test results can be applied directly to other plates of the same thickness.
The response of an airplane to random atmospheric disturbances
NASA Technical Reports Server (NTRS)
Diederich, Franklin W
1957-01-01
The statistical approach to the gust-load problem which consists in considering flight through turbulent air to be a stationary random process is extended by including the effect of lateral variation of the instantaneous gust intensity on the aerodynamic forces. The forces obtained in this manner are used in dynamic analyses of rigid and flexible airplanes free to move vertically, in pitch, and in roll. The effect of the interaction of longitudinal, vertical, and lateral gusts on the wing stresses is also considered.
Dynamic Response of a Planetary Gear System Using a Finite Element/Contact Mechanics Model
NASA Technical Reports Server (NTRS)
Parker, Robert G.; Agashe, Vinayak; Vijayakar, Sandeep M.
2000-01-01
The dynamic response of a helicopter planetary gear system is examined over a wide range of operating speeds and torques. The analysis tool is a unique, semianalytical finite element formulation that admits precise representation of the tooth geometry and contact forces that are crucial in gear dynamics. Importantly, no a priori specification of static transmission error excitation or mesh frequency variation is required; the dynamic contact forces are evaluated internally at each time step. The calculated response shows classical resonances when a harmonic of mesh frequency coincides with a natural frequency. However, peculiar behavior occurs where resonances expected to be excited at a given speed are absent. This absence of particular modes is explained by analytical relationships that depend on the planetary configuration and mesh frequency harmonic. The torque sensitivity of the dynamic response is examined and compared to static analyses. Rotation mode response is shown to be more sensitive to input torque than translational mode response.
Fourth and eighth grade students' conceptions of energy flow through ecosystems
NASA Astrophysics Data System (ADS)
Arkwright, Ashlie Beals
This mixed methods status study examined 32 fourth grade students' conceptual understandings of energy flow through ecosystems prior to instruction and 40 eighth grade students' conceptual understandings of the same topic after five years of daily standards-based instruction in science. Specific ecological concepts assessed related to: 1) roles of organisms; 2) the sun as the original energy source for most ecosystems; and 3) interdependency of organisms. Fourth and eighth grade students were assessed using the same three-tiered forced-choice instrument, with accompanying tasks for students to defend their forced-choice selections and rate their level of confidence in making the selections. The instrument was developed for the study by a team of researchers and was based on similar tasks presented in the research literature. Distractor options were embedded in each assessment task using common non-scientific ideas also reported in the research literature. Cronbach's alpha values at or greater than .992 for each task indicated interrater consistency of task answers, and Rasch analysis was employed to establish the reliability of the instrument. Qualitative and quantitative analyses were employed to assess the data. Constant comparative methods were employed to analyze students' written responses, which were coded and grouped into emerging themes. These themes were further developed to characterize students' conceptual understandings. Student open responses also were scored and coded by a team of researchers using a rubric to identify level of scientific understanding. Quantitative analyses included Rasch analysis used to normalize survey data. Independent samples t-tests were then employed to compare students' forced-choice responses to their written responses and to the confidence ratings, as well as to compare fourth and eighth grade students' responses. Findings indicated that eighth grade students generally outperformed the fourth grade on both the forced-choice and written responses, but both groups demonstrated conceptual difficulties in all three topics assessed. Thus, results from the current study support the assertion that students' understanding of concepts related to energy flow in ecosystems is not at the expected level according to national science education standards and frameworks. Conceptual difficulties identified in the study are discussed along with implications and curricular recommendations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Bingbin; Karr, Dale G.; Song, Huimin
It is a fact that developing offshore wind energy has become more and more serious worldwide in recent years. Many of the promising offshore wind farm locations are in cold regions that may have ice cover during wintertime. The challenge of possible ice loads on offshore wind turbines raises the demand of modeling capacity of dynamic wind turbine response under the joint action of ice, wind, wave, and current. The simulation software FAST is an open source computer-aided engineering (CAE) package maintained by the National Renewable Energy Laboratory. In this paper, a new module of FAST for assessing the dynamicmore » response of offshore wind turbines subjected to ice forcing is presented. In the ice module, several models are presented which involve both prescribed forcing and coupled response. For conditions in which the ice forcing is essentially decoupled from the structural response, ice forces are established from existing models for brittle and ductile ice failure. For conditions in which the ice failure and the structural response are coupled, such as lock-in conditions, a rate-dependent ice model is described, which is developed in conjunction with a new modularization framework for FAST. In this paper, analytical ice mechanics models are presented that incorporate ice floe forcing, deformation, and failure. For lower speeds, forces slowly build until the ice strength is reached and ice fails resulting in a quasi-static condition. For intermediate speeds, the ice failure can be coupled with the structural response and resulting in coinciding periods of the ice failure and the structural response. A third regime occurs at high speeds of encounter in which brittle fracturing of the ice feature occurs in a random pattern, which results in a random vibration excitation of the structure. An example wind turbine response is simulated under ice loading of each of the presented models. This module adds to FAST the capabilities for analyzing the response of wind turbines subjected to forces resulting from ice impact on the turbine support structure. The conditions considered in this module are specifically addressed in the International Organization for Standardization (ISO) standard 19906:2010 for arctic offshore structures design consideration. Special consideration of lock-in vibrations is required due to the detrimental effects of such response with regard to fatigue and foundation/soil response. Finally, the use of FAST for transient, time domain simulation with the new ice module is well suited for such analyses.« less
NASA Astrophysics Data System (ADS)
Chiang, C. K.; Xue, David Y.; Mei, Chuh
1993-04-01
A finite element formulation is presented for determining the large-amplitude free and steady-state forced vibration response of arbitrarily laminated anisotropic composite thin plates using the Discrete Kirchhoff Theory (DKT) triangular elements. The nonlinear stiffness and harmonic force matrices of an arbitrarily laminated composite triangular plate element are developed for nonlinear free and forced vibration analyses. The linearized updated-mode method with nonlinear time function approximation is employed for the solution of the system nonlinear eigenvalue equations. The amplitude-frequency relations for convergence with gridwork refinement, triangular plates, different boundary conditions, lamination angles, number of plies, and uniform versus concentrated loads are presented.
NASA Technical Reports Server (NTRS)
Chiang, C. K.; Xue, David Y.; Mei, Chuh
1993-01-01
A finite element formulation is presented for determining the large-amplitude free and steady-state forced vibration response of arbitrarily laminated anisotropic composite thin plates using the Discrete Kirchhoff Theory (DKT) triangular elements. The nonlinear stiffness and harmonic force matrices of an arbitrarily laminated composite triangular plate element are developed for nonlinear free and forced vibration analyses. The linearized updated-mode method with nonlinear time function approximation is employed for the solution of the system nonlinear eigenvalue equations. The amplitude-frequency relations for convergence with gridwork refinement, triangular plates, different boundary conditions, lamination angles, number of plies, and uniform versus concentrated loads are presented.
Family, Work, and Women: The Labor Supply of Hispanic Immigrant Wives.
ERIC Educational Resources Information Center
Stier, Haya; Tienda, Marta
1992-01-01
Results from analyses of census data for 997 immigrant Mexican wives, 347 Puerto Ricans, and 405 other Hispanics in comparison with 1,210 native-born counterparts and 8,766 white wives indicate that the labor force behavior of Hispanic wives is highly responsive to their earning potential. (SLD)
Determinants of Successful Internationalisation Processes in Business Schools
ERIC Educational Resources Information Center
Bradford, Henry; Guzmán, Alexander; Trujillo, María-Andrea
2017-01-01
We analyse the internationalisation process in business schools as a response to the globalisation phenomena and argue that environmental pressures, isomorphic forces, the pool of internal resources and the alignment of the process with the institution's general strategic plan are the main determinants of a successful internationalisation process.…
NASA Astrophysics Data System (ADS)
Wang, G.; Mayes, M. A.
2017-12-01
Microbially-explicit soil organic matter (SOM) decomposition models are thought to be more biologically realistic than conventional models. Current testing or evaluation of microbial models majorly uses steady-state analysis with time-invariant forces (i.e., soil temperature, moisture and litter input). The findings from such simplified analyses are assumed to be capable of representing the model responses in field soil conditions with seasonal driving forces. Here we show that the steady-state modeling results with seasonal forces may result in distinct findings from the simulations with time-invariant forcing data. We evaluate the response of soil organic C (SOC) to litter addition (L+) in a subtropical pine forest using the calibrated Microbial-ENzyme Decomposition (MEND) model. We implemented two sets of modeling analyses, with each set including two scenarios, i.e., control (CR) vs. litter-addition (L+). The first set (Set1) uses fixed soil temperature and moisture, and constant litter input under Scenario CR vs. increased constant litter input under Scenario L+. The second set (Set2) employs hourly soil temperature and moisture and monthly litter input under Scenario CR. Under Scenario L+ of Set2, A logistic function with an upper plateau represents the increasing trend of litter input to SOM. We conduct long-term simulations to ensure that the models reach steady-states for Set1 or dynamic equilibrium for Set2. Litter addition of Set2 causes an increase of SOC by 29%. However, the steady-state SOC pool sizes of Set1 would not respond to L+ as long as the chemical composition of litter remained the same. Our results indicate the necessity to implement dynamic model simulations with seasonal forcing data, which could lead to modeling results qualitatively different from the steady-state analysis with time-invariant forcing data.
Determining the response of sea level to atmospheric pressure forcing using TOPEX/POSEIDON data
NASA Technical Reports Server (NTRS)
Fu, Lee-Lueng; Pihos, Greg
1994-01-01
The static response of sea level to the forcing of atmospheric pressure, the so-called inverted barometer (IB) effect, is investigated using TOPEX/POSEIDON data. This response, characterized by the rise and fall of sea level to compensate for the change of atmospheric pressure at a rate of -1 cm/mbar, is not associated with any ocean currents and hence is normally treated as an error to be removed from sea level observation. Linear regression and spectral transfer function analyses are applied to sea level and pressure to examine the validity of the IB effect. In regions outside the tropics, the regression coefficient is found to be consistently close to the theoretical value except for the regions of western boundary currents, where the mesoscale variability interferes with the IB effect. The spectral transfer function shows near IB response at periods of 30 degrees is -0.84 +/- 0.29 cm/mbar (1 standard deviation). The deviation from = 1 cm /mbar is shown to be caused primarily by the effect of wind forcing on sea level, based on multivariate linear regression model involving both pressure and wind forcing. The regression coefficient for pressure resulting from the multivariate analysis is -0.96 +/- 0.32 cm/mbar. In the tropics the multivariate analysis fails because sea level in the tropics is primarily responding to remote wind forcing. However, after removing from the data the wind-forced sea level estimated by a dynamic model of the tropical Pacific, the pressure regression coefficient improves from -1.22 +/- 0.69 cm/mbar to -0.99 +/- 0.46 cm/mbar, clearly revealing an IB response. The result of the study suggests that with a proper removal of the effect of wind forcing the IB effect is valid in most of the open ocean at periods longer than 20 days and spatial scales larger than 500 km.
Fast-Running Aeroelastic Code Based on Unsteady Linearized Aerodynamic Solver Developed
NASA Technical Reports Server (NTRS)
Reddy, T. S. R.; Bakhle, Milind A.; Keith, T., Jr.
2003-01-01
The NASA Glenn Research Center has been developing aeroelastic analyses for turbomachines for use by NASA and industry. An aeroelastic analysis consists of a structural dynamic model, an unsteady aerodynamic model, and a procedure to couple the two models. The structural models are well developed. Hence, most of the development for the aeroelastic analysis of turbomachines has involved adapting and using unsteady aerodynamic models. Two methods are used in developing unsteady aerodynamic analysis procedures for the flutter and forced response of turbomachines: (1) the time domain method and (2) the frequency domain method. Codes based on time domain methods require considerable computational time and, hence, cannot be used during the design process. Frequency domain methods eliminate the time dependence by assuming harmonic motion and, hence, require less computational time. Early frequency domain analyses methods neglected the important physics of steady loading on the analyses for simplicity. A fast-running unsteady aerodynamic code, LINFLUX, which includes steady loading and is based on the frequency domain method, has been modified for flutter and response calculations. LINFLUX, solves unsteady linearized Euler equations for calculating the unsteady aerodynamic forces on the blades, starting from a steady nonlinear aerodynamic solution. First, we obtained a steady aerodynamic solution for a given flow condition using the nonlinear unsteady aerodynamic code TURBO. A blade vibration analysis was done to determine the frequencies and mode shapes of the vibrating blades, and an interface code was used to convert the steady aerodynamic solution to a form required by LINFLUX. A preprocessor was used to interpolate the mode shapes from the structural dynamic mesh onto the computational dynamics mesh. Then, we used LINFLUX to calculate the unsteady aerodynamic forces for a given mode, frequency, and phase angle. A postprocessor read these unsteady pressures and calculated the generalized aerodynamic forces, eigenvalues, and response amplitudes. The eigenvalues determine the flutter frequency and damping. As a test case, the flutter of a helical fan was calculated with LINFLUX and compared with calculations from TURBO-AE, a nonlinear time domain code, and from ASTROP2, a code based on linear unsteady aerodynamics.
Coherence resonance and stochastic resonance in directionally coupled rings
NASA Astrophysics Data System (ADS)
Werner, Johannes Peter; Benner, Hartmut; Florio, Brendan James; Stemler, Thomas
2011-11-01
In coupled systems, symmetry plays an important role for the collective dynamics. We investigate the dynamical response to noise with and without weak periodic modulation for two classes of ring systems. Each ring system consists of unidirectionally coupled bistable elements but in one class, the number of elements is even while in the other class the number is odd. Consequently, the rings without forcing show at a certain coupling strength, either ordering (similar to anti-ferromagnetic chains) or auto-oscillations. Analysing the bifurcations and fixed points of the two ring classes enables us to explain the dynamical response measured to noise and weak modulation. Moreover, by analysing a simplified model, we demonstrate that the response is universal for systems having a directional component in their stochastic dynamics in phase space around the origin.
Helical wire stress analysis of unbonded flexible riser under irregular response
NASA Astrophysics Data System (ADS)
Wang, Kunpeng; Ji, Chunyan
2017-06-01
A helical wire is a critical component of an unbonded flexible riser prone to fatigue failure. The helical wire has been the focus of much research work in recent years because of the complex multilayer construction of the flexible riser. The present study establishes an analytical model for the axisymmetric and bending analyses of an unbonded flexible riser. The interlayer contact under axisymmetric loads in this model is modeled by setting radial dummy springs between adjacent layers. The contact pressure is constant during the bending response and applied to determine the slipping friction force per unit helical wire. The model tracks the axial stress around the angular position at each time step to calculate the axial force gradient, then compares the axial force gradient with the slipping friction force to judge the helical wire slipping region, which would be applied to determine the bending stiffness for the next time step. The proposed model is verified against the experimental data in the literature. The bending moment-curvature relationship under irregular response is also qualitatively discussed. The stress at the critical point of the helical wire is investigated based on the model by considering the local flexure. The results indicate that the present model can well simulate the bending stiffness variation during irregular response, which has significant effect on the stress of helical wire.
NASA Astrophysics Data System (ADS)
Rahmaniar, Andinisa; Rusnayati, Heni; Sutiadi, Asep
2017-05-01
While solving physics problem particularly in force matter, it is needed to have the ability of constructing free body diagrams which can help students to analyse every force which acts on an object, the length of its vector and the naming of its force. Mix method was used to explain the result without any special treatment to participants. The participants were high school students in first grade totals 35 students. The purpose of this study is to identify students' ability level of constructing free body diagrams in solving restricted and structured response items. Considering of two types of test, every student would be classified into four levels ability of constructing free body diagrams which is every level has different characteristic and some students were interviewed while solving test in order to know how students solve the problem. The result showed students' ability of constructing free body diagrams on restricted response items about 34.86% included in no evidence of level, 24.11% inadequate level, 29.14% needs improvement level and 4.0% adequate level. On structured response items is about 16.59% included no evidence of level, 23.99% inadequate level, 36% needs improvement level, and 13.71% adequate level. Researcher found that students who constructed free body diagrams first and constructed free body diagrams correctly were more successful in solving restricted and structured response items.
Electric contributions to magnetic force microscopy response from graphene and MoS{sub 2} nanosheets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Lu Hua, E-mail: luhua.li@deakin.edu.au; Chen, Ying
Magnetic force microscopy (MFM) signals have recently been detected from whole pieces of mechanically exfoliated graphene and molybdenum disulfide (MoS{sub 2}) nanosheets, and magnetism of the two nanomaterials was claimed based on these observations. However, non-magnetic interactions or artefacts are commonly associated with MFM signals, which make the interpretation of MFM signals not straightforward. A systematic investigation has been done to examine possible sources of the MFM signals from graphene and MoS{sub 2} nanosheets and whether the MFM signals can be correlated with magnetism. It is found that the MFM signals have significant non-magnetic contributions due to capacitive and electrostaticmore » interactions between the nanosheets and conductive cantilever tip, as demonstrated by electric force microscopy and scanning Kevin probe microscopy analyses. In addition, the MFM signals of graphene and MoS{sub 2} nanosheets are not responsive to reversed magnetic field of the magnetic cantilever tip. Therefore, the observed MFM response is mainly from electric artefacts and not compelling enough to correlate with magnetism of graphene and MoS{sub 2} nanosheets.« less
Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere-ocean climate models
Andrews, Timothy; Gregory, Jonathan M.; Webb, Mark J.; ...
2012-05-15
We quantify forcing and feedbacks across available CMIP5 coupled atmosphere-ocean general circulation models (AOGCMs) by analysing simulations forced by an abrupt quadrupling of atmospheric carbon dioxide concentration. This is the first application of the linear forcing-feedback regression analysis of Gregory et al. (2004) to an ensemble of AOGCMs. The range of equilibrium climate sensitivity is 2.1–4.7 K. Differences in cloud feedbacks continue to be important contributors to this range. Some models show small deviations from a linear dependence of top-of-atmosphere radiative fluxes on global surface temperature change. We show that this phenomenon largely arises from shortwave cloud radiative effects overmore » the ocean and is consistent with independent estimates of forcing using fixed sea-surface temperature methods. Moreover, we suggest that future research should focus more on understanding transient climate change, including any time-scale dependence of the forcing and/or feedback, rather than on the equilibrium response to large instantaneous forcing.« less
A surface ice module for wind turbine dynamic response simulation using FAST
Yu, Bingbin; Karr, Dale G.; Song, Huimin; ...
2016-06-03
It is a fact that developing offshore wind energy has become more and more serious worldwide in recent years. Many of the promising offshore wind farm locations are in cold regions that may have ice cover during wintertime. The challenge of possible ice loads on offshore wind turbines raises the demand of modeling capacity of dynamic wind turbine response under the joint action of ice, wind, wave, and current. The simulation software FAST is an open source computer-aided engineering (CAE) package maintained by the National Renewable Energy Laboratory. In this paper, a new module of FAST for assessing the dynamicmore » response of offshore wind turbines subjected to ice forcing is presented. In the ice module, several models are presented which involve both prescribed forcing and coupled response. For conditions in which the ice forcing is essentially decoupled from the structural response, ice forces are established from existing models for brittle and ductile ice failure. For conditions in which the ice failure and the structural response are coupled, such as lock-in conditions, a rate-dependent ice model is described, which is developed in conjunction with a new modularization framework for FAST. In this paper, analytical ice mechanics models are presented that incorporate ice floe forcing, deformation, and failure. For lower speeds, forces slowly build until the ice strength is reached and ice fails resulting in a quasi-static condition. For intermediate speeds, the ice failure can be coupled with the structural response and resulting in coinciding periods of the ice failure and the structural response. A third regime occurs at high speeds of encounter in which brittle fracturing of the ice feature occurs in a random pattern, which results in a random vibration excitation of the structure. An example wind turbine response is simulated under ice loading of each of the presented models. This module adds to FAST the capabilities for analyzing the response of wind turbines subjected to forces resulting from ice impact on the turbine support structure. The conditions considered in this module are specifically addressed in the International Organization for Standardization (ISO) standard 19906:2010 for arctic offshore structures design consideration. Special consideration of lock-in vibrations is required due to the detrimental effects of such response with regard to fatigue and foundation/soil response. Finally, the use of FAST for transient, time domain simulation with the new ice module is well suited for such analyses.« less
Dissociations of spatial congruence effects across response measures: an examination of delta plots.
Miller, Jeff; Roüast, Nora M
2016-09-01
Spatial congruence ("Simon") effects on reaction time (RT) and response force (RF) were studied in two experiments requiring speeded choice responses to the color of a stimulus located irrelevantly to the left or right of fixation. In Experiment 1 with unimanual responses, both RT and incorrect-hand RF were sensitive to spatial congruence, and both showed larger Simon effects following a congruent trial than following an incongruent one. RT and incorrect-hand RF were dissociated in distributional (i.e., delta plot) analyses, however. As in previous studies, the Simon effect on RT was largest for the fastest responses and diminished as RT increased (i.e., decreasing delta plot). In contrast, Simon effects on RF did not decrease for slower responses; if anything, they increased slightly. In Experiment 2 participants made bimanual responses, allowing measurement of the spatial congruence effect for each trial. Responses were both faster and more forceful with the spatially congruent hand than with the spatially incongruent one, but neither of these effects decreased for slower responses. Overall, the results demonstrate that at least some motor-level effects of irrelevant spatial location persist for slower responses.
Aldien, Yasser; Marcotte, Pierre; Rakheja, Subhash; Boileau, Paul-Emile
2005-07-01
The biodynamic responses of the hand-arm system under x(h)-axis vibration are investigated in terms of the driving point mechanical impedance (DPMI) and absorbed power in a laboratory study. For this purpose, seven healthy male subjects are exposed to two levels of random vibration in the 8-1,000 Hz frequency range, using three instrumented cylindrical handles of different diameters (30, 40 and 50 mm), and different combinations of grip (10, 30 and 50 N) and push (0, 25 and 50 N) forces. The experiments involve grasping the handle while adopting two different postures, involving elbow flexion of 90 degrees and 180 degrees, with wrist in the neutral position for both postures. The analyses of the results revealed peak DPMI magnitude and absorbed power responses near 25 Hz and 150 Hz, for majority of the test conditions considered. The frequency corresponding to the peak response increased with increasing hand forces. Unlike the absorbed power, the DPMI response was mostly observed to be insensitive to variations in the excitation magnitude. The handle diameter revealed obvious effects on the DPMI magnitude, specifically at frequencies above 250 Hz, which was not evident in the absorbed power due to relatively low velocity at higher frequencies. The influence of hand forces was also evident on the DPMI magnitude response particularly at frequencies. above 100 Hz, while the effect of hand-arm posture on the DPMI magnitude was nearly negligible. The magnitude of power absorbed within the hand and arm was observed to be strongly dependent upon the excitation level over the entire frequency range, while the influence of hand-arm posture on the total absorbed power was observed to be important. The effect of variations in the hand forces on the absorbed power was relatively small for the bent elbow posture, while an increase in either the grip or the push force coupled with the extended arm posture resulted in considerably higher energy absorption. The results suggested that the handle size, hand-arm posture and hand forces, produce coupled effect on the biodynamic response of the hand-arm system.
Helmholtz and Gibbs ensembles, thermodynamic limit and bistability in polymer lattice models
NASA Astrophysics Data System (ADS)
Giordano, Stefano
2017-12-01
Representing polymers by random walks on a lattice is a fruitful approach largely exploited to study configurational statistics of polymer chains and to develop efficient Monte Carlo algorithms. Nevertheless, the stretching and the folding/unfolding of polymer chains within the Gibbs (isotensional) and the Helmholtz (isometric) ensembles of the statistical mechanics have not been yet thoroughly analysed by means of the lattice methodology. This topic, motivated by the recent introduction of several single-molecule force spectroscopy techniques, is investigated in the present paper. In particular, we analyse the force-extension curves under the Gibbs and Helmholtz conditions and we give a proof of the ensembles equivalence in the thermodynamic limit for polymers represented by a standard random walk on a lattice. Then, we generalize these concepts for lattice polymers that can undergo conformational transitions or, equivalently, for chains composed of bistable or two-state elements (that can be either folded or unfolded). In this case, the isotensional condition leads to a plateau-like force-extension response, whereas the isometric condition causes a sawtooth-like force-extension curve, as predicted by numerous experiments. The equivalence of the ensembles is finally proved also for lattice polymer systems exhibiting conformational transitions.
Force Limited Vibration Testing
NASA Technical Reports Server (NTRS)
Scharton, Terry; Chang, Kurng Y.
2005-01-01
This slide presentation reviews the concept and applications of Force Limited Vibration Testing. The goal of vibration testing of aerospace hardware is to identify problems that would result in flight failures. The commonly used aerospace vibration tests uses artificially high shaker forces and responses at the resonance frequencies of the test item. It has become common to limit the acceleration responses in the test to those predicted for the flight. This requires an analysis of the acceleration response, and requires placing accelerometers on the test item. With the advent of piezoelectric gages it has become possible to improve vibration testing. The basic equations have are reviewed. Force limits are analogous and complementary to the acceleration specifications used in conventional vibration testing. Just as the acceleration specification is the frequency spectrum envelope of the in-flight acceleration at the interface between the test item and flight mounting structure, the force limit is the envelope of the in-flight force at the interface . In force limited vibration tests, both the acceleration and force specifications are needed, and the force specification is generally based on and proportional to the acceleration specification. Therefore, force limiting does not compensate for errors in the development of the acceleration specification, e.g., too much conservatism or the lack thereof. These errors will carry over into the force specification. Since in-flight vibratory force data are scarce, force limits are often derived from coupled system analyses and impedance information obtained from measurements or finite element models (FEM). Fortunately, data on the interface forces between systems and components are now available from system acoustic and vibration tests of development test models and from a few flight experiments. Semi-empirical methods of predicting force limits are currently being developed on the basis of the limited flight and system test data. A simple two degree of freedom system is shown and the governing equations for basic force limiting results for this system are reviewed. The design and results of the shuttle vibration forces (SVF) experiments are reviewed. The Advanced Composition Explorer (ACE) also was used to validate force limiting. Test instrumentation and supporting equipment are reviewed including piezo-electric force transducers, signal processing and conditioning systems, test fixtures, and vibration controller systems. Several examples of force limited vibration testing are presented with some results.
Single-cell force spectroscopy of pili-mediated adhesion
NASA Astrophysics Data System (ADS)
Sullan, Ruby May A.; Beaussart, Audrey; Tripathi, Prachi; Derclaye, Sylvie; El-Kirat-Chatel, Sofiane; Li, James K.; Schneider, Yves-Jacques; Vanderleyden, Jos; Lebeer, Sarah; Dufrêne, Yves F.
2013-12-01
Although bacterial pili are known to mediate cell adhesion to a variety of substrates, the molecular interactions behind this process are poorly understood. We report the direct measurement of the forces guiding pili-mediated adhesion, focusing on the medically important probiotic bacterium Lactobacillus rhamnosus GG (LGG). Using non-invasive single-cell force spectroscopy (SCFS), we quantify the adhesion forces between individual bacteria and biotic (mucin, intestinal cells) or abiotic (hydrophobic monolayers) surfaces. On hydrophobic surfaces, bacterial pili strengthen adhesion through remarkable nanospring properties, which - presumably - enable the bacteria to resist high shear forces under physiological conditions. On mucin, nanosprings are more frequent and adhesion forces larger, reflecting the influence of specific pili-mucin bonds. Interestingly, these mechanical responses are no longer observed on human intestinal Caco-2 cells. Rather, force curves exhibit constant force plateaus with extended ruptures reflecting the extraction of membrane nanotethers. These single-cell analyses provide novel insights into the molecular mechanisms by which piliated bacteria colonize surfaces (nanosprings, nanotethers), and offer exciting avenues in nanomedicine for understanding and controlling the adhesion of microbial cells (probiotics, pathogens).
ERIC Educational Resources Information Center
Jessop, Bob
2017-01-01
This article begins with a brief review of research on the development of ideas about the knowledge-based economy (analysed here as "economic imaginaries") and their influence on how social forces within and beyond the academy have attempted to reorganize higher education and research in response to real and perceived challenges and…
Market Competition, Public Good and Institutional Governance: Analyses of Portugal's Experience
ERIC Educational Resources Information Center
Amaral, Alberto; Magalhaes, Antonio
2007-01-01
The emergence of the market as a regulatory tool for the public sector and the promotion of competition among institutions are based upon the idea that they promote institutions' responsiveness to society and a more efficient use of public funds. However, autonomous institutions forced to compete under market-like conditions may follow strategies…
Analyses of Multishaft Rotor-Bearing Response
NASA Technical Reports Server (NTRS)
Nelson, H. D.; Meacham, W. L.
1985-01-01
Method works for linear and nonlinear systems. Finite-element-based computer program developed to analyze free and forced response of multishaft rotor-bearing systems. Acronym, ARDS, denotes Analysis of Rotor Dynamic Systems. Systems with nonlinear interconnection or support bearings or both analyzed by numerically integrating reduced set of coupledsystem equations. Linear systems analyzed in closed form for steady excitations and treated as equivalent to nonlinear systems for transient excitation. ARDS is FORTRAN program developed on an Amdahl 470 (similar to IBM 370).
Effect of olympic weight category on performance in the roundhouse kick to the head in taekwondo.
Estevan, Isaac; Falco, Coral; Alvarez, Octavio; Molina-García, Javier
2012-03-01
In taekwondo, kick performance is generally measured using impact force and time. This study aimed to analyse performance in the roundhouse kick to the head according to execution distance between and within Olympic weight categories. The participants were 36 male athletes divided into three categories: featherweight (n = 10), welterweight (n = 15) and heavyweight (n = 11). Our results show that taekwondo athletes in all weight categories generate a similar relative impact force. However, the results indicate that weight has a large impact on kick performance, particularly in relation to total response time.
Effect of Olympic Weight Category on Performance in the Roundhouse Kick to the Head in Taekwondo
Estevan, Isaac; Falco, Coral; Álvarez, Octavio; Molina-García, Javier
2012-01-01
In taekwondo, kick performance is generally measured using impact force and time. This study aimed to analyse performance in the roundhouse kick to the head according to execution distance between and within Olympic weight categories. The participants were 36 male athletes divided into three categories: featherweight (n = 10), welterweight (n = 15) and heavyweight (n = 11). Our results show that taekwondo athletes in all weight categories generate a similar relative impact force. However, the results indicate that weight has a large impact on kick performance, particularly in relation to total response time. PMID:23486074
Wind Stress Forcing of the North Sea "Pole Tide"
NASA Technical Reports Server (NTRS)
OConnor, William P.; Chao, Benjamin Fong; Zheng, Dawei; Au, Andrew Y.
1998-01-01
We conducted numerical simulations of the wind-forcing of the sea level variations in the North Sea using a barotropic ocean model with realistic geography, bathymetry, and boundary conditions, to examine the forcing of the 14-month "pole tide" which is known to be strong along the Denmark- Netherlands coast. The simulation input is the monthly-mean surface wind stress field from the National Centers for Environmental Prediction (NCEP) reanalysis for the 40-year period 1958-1997. The output sea level response was then compared with 10 coastal tide gauge records from the Permanent Service for Mean Sea Level (PSMSL). Besides the strong seasonal variations, several prominent quasi-periodicities exist at around 7 years, 3 years, 14 months, 9 months, and 6.5 months. Correlation and spectral analyses show remarkable agreement between the model output and the observations, particularly in the 14-month, or Chandler period band. The latter indicates that the enhanced pole tide found in the North Sea along the Denmark-Netherlands coast is actually the coastal setup response to wind stress forcing with a periodicity of 14 months. We find no need to invoke a geophysical explanation involving resonance-enhancement of pole tide in the North Sea to explain the observations.
Time- & Load-Dependence of Triboelectric Effect.
Pan, Shuaihang; Yin, Nian; Zhang, Zhinan
2018-02-06
Time- and load-dependent friction behavior is considered as important for a long time, due to its time-evolution and force-driving characteristics. However, its electronic behavior, mainly considered in triboelectric effect, has almost never been given the full attention and analyses from the above point of view. In this paper, by experimenting with fcc-latticed aluminum and copper friction pairs, the mechanical and electronic behaviors of friction contacts are correlated by time and load analyses, and the behind physical understanding is provided. Most importantly, the difference of "response lag" in force and electricity is discussed, the extreme points of coefficient of friction with the increasing normal loads are observed and explained with the surface properties and dynamical behaviors (i.e. wear), and the micro and macro theories linking tribo-electricity to normal load and wear (i.e. the physical explanation between coupled electrical and mechanical phenomena) are successfully developed and tested.
NASA Technical Reports Server (NTRS)
Malloy, Kelsey; Folmer, Michael J.; Phillips, Joseph; Sienkiewicz, Joseph M.; Berndt, Emily
2017-01-01
Motivation: Ocean data is sparse: reliance on satellite imagery for marine forecasting; Ocean Prediction Center (OPC) –“mariner’s weather lifeline”. Responsible for: Pacific, Atlantic, Pacific Alaska surface analyses –24, 48, 96 hrs.; Wind & wave analyses –24, 48, 96 hrs.; Issue warnings, make decisions, Geostationary Operational Environmental Satellite –R Series (now GOES-16), Compared to the old GOES: 3 times spectral resolution, 4 times spatial resolution, 5 times faster coverage; Comparable to Japanese Meteorological Agency’s Himawari-8, used a lot throughout this research. Research Question: How can integrating satellite data imagery and derived products help forecasters improve prognosis of rapid cyclogenesis and hurricane-force wind events? Phase I –Identifying stratospheric air intrusions: Water Vapor –6.2, 6.9, 7.3 micron channels; Airmass RGB Product; AIRS, IASI, NUCAPS total column ozone and ozone anomaly; ASCAT (A/B) and AMSR-2 wind data.
Health status of Air Force veterans occupationally exposed to herbicides in Vietnam: II. Mortality
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michalek, J.E.; Wolfe, W.H.; Miner, J.C.
1990-10-10
The Air Force Health Study is a 20-year comprehensive assessment of the current health of Air Force veterans of Operation Ranch Hand, the unit responsible for aerial spraying of herbicides in Vietnam. This report compares the noncombat mortality of 1261 Ranch Hand veterans to that of a comparison population of 19,101 other Air Force veterans primarily involved in cargo missions in Southeast Asia but who were not exposed to herbicides. The indirectly standardized all-cause death rate among Ranch Hands is 2.5 deaths per 1,000 person-years, the same as that among comparison subjects. After adjustment for age, rank, and occupation, themore » all-cause standardized mortality ratio was 1.0. In adjusted cause-specific analyses, the authors found no significant group differences regarding accidental, malignant neoplasm, and circulatory deaths. These data are not supportive to a hypothesis of increases mortality among Ranch Hands.« less
ERIC Educational Resources Information Center
Kandiko, C. B.
2008-01-01
To compare college and university student engagement in two countries with different responses to global forces, Canada and the United States (US), a series of hierarchical linear regression (HLM) models were developed to analyse data from the 2006 administration of the National Survey of Student Engagement (NSSE). Overall, students in the U.S.…
Turan, Janet M; Hatcher, Abigail M; Romito, Patrizia; Mangone, Emily; Durojaiye, Modupeoluwa; Odero, Merab; Camlin, Carol S
2016-01-01
Little is known about migration during pregnancy related to intimate partner violence (IPV). In this paper, we examine issues of agency in relation to pregnant women's migrations in a high HIV prevalence area of Kenya. We qualitatively explored forced migration among pregnant women, using data from in-depth interviews, focus groups and IPV screening forms. To quantitatively examine migration during pregnancy, we analysed data from a prospective study of 614 pregnant women. The qualitative data revealed that women had varied responses to violence in pregnancy, with some being able to leave the marital home voluntarily as a strategy to escape violence. Others were 'sent packing' from their marital homes when they dared to exercise autonomy, in some cases related to HIV status. Quantitative analyses revealed that pregnant women who migrated were more educated, less likely to be living with a partner and had fewer children than other women. Migration among pregnant women in Kenya illustrates the complexity of understanding women's agency in the context of IPV. The findings indicate that there is not a dichotomy between 'victim' and 'agent', but rather a complex dynamic between and within pregnant women, who may sequentially or simultaneously experience aspects of victimhood and/or agentic response.
NASA Technical Reports Server (NTRS)
Elrod, David; Christensen, Eric; Brown, Andrew
2011-01-01
At NASA/MSFC, Structural Dynamics personnel continue to perform advanced analysis for the turbomachinery in the J2X Rocket Engine, which is under consideration for the new Space Launch System. One of the most challenging analyses in the program is predicting turbine blade structural capability. Resonance was predicted by modal analysis, so comprehensive forced response analyses using high fidelity cyclic symmetric finite element models were initiated as required. Analysis methodologies up to this point have assumed the flow field could be fully described by a sector, so the loading on every blade would be identical as it travelled through it. However, in the J2X the CFD flow field varied over the 360 deg of a revolution because of the flow speeds and tortuous axial path. MSFC therefore developed a complex procedure using Nastran Dmap's and Matlab scripts to apply this circumferentially varying loading onto the cyclically symmetric structural models to produce accurate dynamic stresses for every blade on the disk. This procedure is coupled with static, spin, and thermal loading to produce high cycle fatigue safety factors resulting in much more accurate analytical assessments of the blades.
NASA Astrophysics Data System (ADS)
Bartmański, Cezary; Bochenek, Wojciech; Passia, Henryk; Szade, Adam
2006-06-01
The methods of direct measurement and analysis of the dynamic response of a building structure through real-time recording of the amplitude of low-frequency vibration (tilt) have been presented. Subject to analyses was the reaction induced either by kinematic excitation (road traffic and mining-induced vibration) or controlled action of solid-fuel rocket micro-engines installed on the building. The forces were analysed by means of a set of transducers installed both in the ground and on the structure. After the action of excitation forces has been stopped, the system (structure) makes damped vibration around the static equilibrium position. It has been shown that the type of excitation affects the accuracy of evaluation of principal dynamic parameters of the structure. In the authors opinion these are the decrement of damping and natural vibration frequency. Positive results of tests with the use of excitation by means of short-action (0.6 second) rocket micro-engines give a chance to develop a reliable method for periodical assessment of acceptable loss of usability characteristics of building structures heavily influenced by environmental effects.
Hydrostatic Stress Effects in Metal Plasticity
NASA Technical Reports Server (NTRS)
Wilson, Christopher D.
1999-01-01
Since the 1940s, the theory of plasticity has assumed that hydrostatic stress does not affect the yield or postyield behavior of metals. This assumption is based on the early work of Bridgman. Bridgman found that hydrostatic pressure (compressive stress) does not affect yield behavior until a substantial amount of pressure (greater than 100 ksi) is present. The objective of this study was to determine the effect of hydrostatic tension on yield behavior. Two different specimen geometries were examined: an equal-arm bend specimen and a double edge notch specimen. The presence of a notch is sufficient to develop high enough hydrostatic tensile stresses to affect yield. The von Mises yield function, which does not have a hydrostatic component, and the Drucker-Prager yield function, which includes a hydrostatic component, were used in finite element analyses of the two specimen geometries. The analyses were compared to test data from IN 100 specimens. For both geometries, the analyses using the Drucker-Prager yield function more closely simulated the test data. The von Mises yield function lead to 5-10% overprediction of the force-displacement or force-strain response of the test specimens.
NASA Astrophysics Data System (ADS)
Leahy, Lauren N.; Haslach, Henry W.
2018-02-01
During normal extracellular fluid (ECF) flow in the brain glymphatic system or during pathological flow induced by trauma resulting from impacts and blast waves, ECF-solid matter interactions result from sinusoidal shear waves in the brain and cranial arterial tissue, both heterogeneous biological tissues with high fluid content. The flow in the glymphatic system is known to be forced by pulsations of the cranial arteries at about 1 Hz. The experimental shear stress response to sinusoidal translational shear deformation at 1 Hz and 25% strain amplitude and either 0% or 33% compression is compared for rat cerebrum and bovine aortic tissue. Time-frequency analyses aim to correlate the shear stress signal frequency components over time with the behavior of brain tissue constituents to identify the physical source of the shear nonlinear viscoelastic response. Discrete fast Fourier transformation analysis and the novel application to the shear stress signal of harmonic wavelet decomposition both show significant 1 Hz and 3 Hz components. The 3 Hz component in brain tissue, whose magnitude is much larger than in aortic tissue, may result from interstitial fluid induced drag forces. The harmonic wavelet decomposition locates 3 Hz harmonics whose magnitudes decrease on subsequent cycles perhaps because of bond breaking that results in easier fluid movement. Both tissues exhibit transient shear stress softening similar to the Mullins effect in rubber. The form of a new mathematical model for the drag force produced by ECF-solid matter interactions captures the third harmonic seen experimentally.
NASA Astrophysics Data System (ADS)
Gough, M.; Reniers, A.; MacMahan, J. H.; Howden, S. D.
2014-12-01
The continental shelf along the northeastern Gulf of Mexico is transected by the critical latitude (30°N) for inertial motions. At this latitude the inertial period is 24 hours and diurnal surface current oscillations can amplify due to resonance with diurnal wind and tidal forcing. Tidal amplitudes are relatively small in this region although K1 tidal currents can be strong over the shelf west of the DeSoto Canyon where the K1 tide propagates onshore as a Sverdrup wave. Other sources of diurnal motions include internal tidal currents, Poincaré waves, and basin resonance. It is therefore very difficult to separate inertial wind-driven motions from other diurnal motions. Spatiotemporal surface currents were measured using hourly 6 km resolution HF radar data collected in June 2010 during the Deepwater Horizon oil spill and July 2012 during the Grand Lagrangian Deployment (GLAD). Surface currents were also measured using GLAD GPS-tracked drifters. NDBC buoy wind data were used to determine wind-forcing, and OSU Tidal Inversion Software (OTIS) were used to predict tidal currents. The relative spatiotemporal influence of diurnal wind and tidal forcing on diurnal surface current oscillations is determined through a series of comparative analyses: phase and amplitude of bandpassed timeseries, wavelet analyses, wind-driven inertial oscillation calculations, and tidal current predictions. The wind-driven inertial ocean response is calculated by applying a simple "slab" model where wind-forcing is allowed to excite a layer of low-density water riding over high density water. The spatial variance of diurnal motions are found to be correlated with satellite turbidity imagery indicating that stratification influences the sea surface inertial response to wind-forcing. Surface dispersion is found to be minimized in regions of high diurnal variance suggesting that mean surface transport is restricted in regions of inertial motions associated with stratification.
Skin cooling on contact with cold materials: the effect of blood flow during short-term exposures.
Jay, Ollie; Havenith, George
2004-03-01
This study investigates the effect of blood flow upon the short-term (<180 s) skin contact cooling response in order to ascertain whether sufferers of circulatory disorders, such as the vasospastic disorder Raynaud's disease, are at a greater risk of cold injury than people with a normal rate of blood flow. Eight female volunteers participated, touching blocks of stainless steel and nylon with a finger contact force of 2.9 N at a surface temperature of -5 degrees C under occluded and vasodilated conditions. Contact temperature (Tc) of the finger pad was measured over time using a T-type thermocouple. Forearm blood flow was measured using strain gauge plethysmography. Contact cooling responses were analysed by fitting a modified Newtonian cooling curve. A significant difference was found between the starting skin temperatures for the two blood flow conditions (P<0.001). However, no effect of blood flow was found upon any of the derived cooling curve parameters characterizing the skin cooling response (P>0.05). It is hypothesized that the finger contact force used (2.9 N) and the resultant pressure upon the tissue of the contact finger pad restricted the blood supply to the contact area under both blood flow conditions; therefore, no effect of blood flow was found upon the parameters describing the contact cooling response. Whilst the findings of this study are sufficient to draw a conclusion for those in a working environment, i.e. contact forces below 2.9 N will seldom be encountered, a further study will be required to ascertain conclusively whether blood flow does affect the contact cooling response at a finger contact force low enough to allow unrestricted blood flow to the finger pad. Further protocol improvements are also recommended.
NASA Astrophysics Data System (ADS)
Huynh, Thanh-Canh; Kim, Jeong-Tae
2017-12-01
In this study, the quantification of temperature effect on impedance monitoring via a PZT interface for prestressed tendon-anchorage is presented. Firstly, a PZT interface-based impedance monitoring technique is selected to monitor impedance signatures by predetermining sensitive frequency bands. An analytical model is designed to represent coupled dynamic responses of the PZT interface-tendon anchorage system. Secondly, experiments on a lab-scaled tendon anchorage are described. Impedance signatures are measured via the PZT interface for a series of temperature and prestress-force changes. Thirdly, temperature effects on measured impedance responses of the tendon anchorage are estimated by quantifying relative changes in impedance features (such as RMSD and CCD indices) induced by temperature variation and prestress-force change. Finally, finite element analyses are conducted to investigate the mechanism of temperature variation and prestress-loss effects on the impedance responses of prestressed tendon anchorage. Temperature effects on impedance monitoring are filtered by effective frequency shift-based algorithm for distinguishing prestress-loss effects on impedance signatures.
The free-flight response of Drosophila to motion of the visual environment.
Mronz, Markus; Lehmann, Fritz-Olaf
2008-07-01
In the present study we investigated the behavioural strategies with which freely flying fruit flies (Drosophila) control their flight trajectories during active optomotor stimulation in a free-flight arena. We measured forward, turning and climbing velocities of single flies using high-speed video analysis and estimated the output of a 'Hassenstein-Reichardt' elementary motion detector (EMD) array and the fly's gaze to evaluate flight behaviour in response to a rotating visual panorama. In a stationary visual environment, flight is characterized by flight saccades during which the animals turn on average 120 degrees within 130 ms. In a rotating environment, the fly's behaviour typically changes towards distinct, concentric circular flight paths where the radius of the paths increases with increasing arena velocity. The EMD simulation suggests that this behaviour is driven by a rotation-sensitive EMD detector system that minimizes retinal slip on each compound eye, whereas an expansion-sensitive EMD system with a laterally centred visual focus potentially helps to achieve centring response on the circular flight path. We developed a numerical model based on force balance between horizontal, vertical and lateral forces that allows predictions of flight path curvature at a given locomotor capacity of the fly. The model suggests that turning flight in Drosophila is constrained by the production of centripetal forces needed to avoid side-slip movements. At maximum horizontal velocity this force may account for up to 70% of the fly's body weight during yaw turning. Altogether, our analyses are widely consistent with previous studies on Drosophila free flight and those on the optomotor response under tethered flight conditions.
An actuated force feedback-enabled laparoscopic instrument for robotic-assisted surgery.
Moradi Dalvand, Mohsen; Shirinzadeh, Bijan; Shamdani, Amir Hossein; Smith, Julian; Zhong, Yongmin
2014-03-01
Robotic-assisted minimally invasive surgery systems not only have the advantages of traditional laparoscopic instruments but also have other important advantages, including restoring the surgeon's hand-eye coordination and improving the surgeon's precision by filtering hand tremors. Unfortunately, these benefits have come at the expense of the surgeon's ability to feel. Various solutions for restoring this feature have been proposed. An actuated modular force feedback-enabled laparoscopic instrument was proposed that is able to measure tip-tissue lateral interaction forces as well as normal grasping forces. The instrument has also the capability to adjust the grasping direction inside the patient body. In order to measure the interaction forces, strain gauges were employed. A series of finite element analyses were performed to gain an understanding of the actual magnitude of surface strains where gauges are applied. The strain gauge bridge configurations were calibrated. A series of experiments was conducted and the results were analysed. The modularity feature of the proposed instrument makes it interchangeable between various tip types of different functionalities (e.g. cutter, grasper, dissector). Calibration results of the strain gauges incorporated into the tube and at the base of the instrument presented the monotonic responses for these strain gauge configurations. Experimental results from tissue probing and tissue characterization experiments verified the capability of the proposed instrument in measuring lateral probing forces and characterizing artificial tissue samples of varying stiffness. The proposed instrument can improve the quality of palpation and characterization of soft tissues of varying stiffness by restoring sense of touch in robotic assisted minimally invasive surgery operations. Copyright © 2013 John Wiley & Sons, Ltd.
ISAC: A tool for aeroservoelastic modeling and analysis
NASA Technical Reports Server (NTRS)
Adams, William M., Jr.; Hoadley, Sherwood Tiffany
1993-01-01
The capabilities of the Interaction of Structures, Aerodynamics, and Controls (ISAC) system of program modules is discussed. The major modeling, analysis, and data management components of ISAC are identified. Equations of motion are displayed for a Laplace-domain representation of the unsteady aerodynamic forces. Options for approximating a frequency-domain representation of unsteady aerodynamic forces with rational functions of the Laplace variable are shown. Linear time invariant state-space equations of motion that result are discussed. Model generation and analyses of stability and dynamic response characteristics are shown for an aeroelastic vehicle which illustrates some of the capabilities of ISAC as a modeling and analysis tool for aeroelastic applications.
Climatic consequences of observed ozone loss in the 1980s: Relevance to the greenhouse problem
NASA Technical Reports Server (NTRS)
Molnar, G. I.; Ko, M. K. W.; Zhou, S.; Sze, N. D.
1994-01-01
Recently published findings using satellite and ground-based observations indicate a large winter and summertime decrease in the column abundance of ozone at high and middle latitudes during the last decade. Using a simple ozone depletion profile reflecting the observed decrease in ozone column abundance, Ramaswamy et al. (1992) showed that the negative radiative forcing that results from the ozone decrease between 1979 and 1990 approximately balanced the greenhouse climate forcing due to the chlorofluorocarbons emitted during the same period. Here, we extend the forcing analyses by calculating the equilibrium surface temperature response explicitly, using an updated version of the Atmospheric and Environmental Research two-dimensional radiative-dynamical seasonal model. The calculated steady state responses suggest that the surface cooling due to the ozone depletion in the lower stratosphere offsets about 30% of the surface warming due to greenhouse gases emitted during the same decade. The temperature offset is roughly a factor of 2 larger than the corresponding offset obtained from forcing intercomparisons. This result appears to be related to the climate feedback mechanisms operating in the model troposphere, most notably that associated with atmospheric meridional heat transport. Thus a comprehensive assessment of ozone change effects on the predicted greenhouse warming cannot be accomplished based on forcing evaluations alone. Our results also show that calculations adopting a seasonally and latitudinally dependent ozone depletion profile produce a negative forcing about 50% smaller than that calculated for the depletion profile used by Ramaswamy et al. (1992).
An Early Pleistocene 190 kyr pollen record from the ODP Site 976, Western Mediterranean region
NASA Astrophysics Data System (ADS)
Joannin, Sebastien; Combourieu Nebout, Nathalie
2010-05-01
The Mid-Pleistocene Transition (1.200 to 0.500 Ma) corresponded to a period of increased cooling and the shift from "41 kyr world" to "100 kyr world". Climate cycles were 41 kyr long as a response of the climate system to the obliquity orbital parameter forcing, then the climate system responded to a combination of eccentricity and precession resulting in 100 kyr long cycles. The Mediterranean region offers the opportunity to study climate response to orbital forcing at this particular period. It is usually done on marine proxies that are preserved in continuous sediments with good age attributions but may be affected by calorific inertia of marine environments. We investigate continental palaeoenvironment changes inferred from pollen analyses through time on a short interval of the ODP Site 976 (259.50 to 230.42 mcd). In order to search for short climate oscillations, the chronology has been refined according to the comparison between the pollen ratio "mesothermic vs. Caryophyllaceae, Amaranthaceae-Chenopodiaceae and steppe elements" curve and Mediterranean and LR04 oxygen isotope curves. The time slice runs from ~1.090 Ma (MIS 31) to ~0.900 Ma (MIS 23). Pollen analyses provide a new record of the south western Mediterranean vegetation and climate changes at the beginning of the Mid-Pleistocene Transition. Vegetation successions are evidenced in pollen diagram with replacement of mesothermic elements by mid- and high-altitude trees, ended by strengthening of Caryophyllaceae, Amaranthaceae-Chenopodiaceae, and steppe vegetation. These vegetation successions reveal two overlapping rhythms that may be related to climate responses to both obliquity and precession orbital parameters, while wavelet analyses on pollen ratio only indicate the shift from precession to obliquity dominance. The comparison of these two approaches raised the question of their own limit.
A composite CBRN surveillance and testing service
NASA Astrophysics Data System (ADS)
Niemeyer, Debra M.
2004-08-01
The terrorist threat coupled with a global military mission necessitates quick and accurate identification of environmental hazards, and CBRN early warning. The Air Force Institute for Operational Health (AFIOH) provides fundamental support to protect personnel from and mitigate the effects of untoward hazards exposures. Sustaining healthy communities since 1955, the organizational charter is to enhance warfighter mission effectiveness, protect health, improve readiness and reduce costs, assess and manage risks to human heath and safety, operational performance and the environment. The AFIOH Surveillance Directorate provides forward deployed and reach-back surveillance, agent identification, and environ-mental regulatory compliance testing. Three unique laboratories process and analyze over two million environmental samples and clinical specimens per year, providing analytical chemistry, radiological assessment, and infectious disease testing, in addition to supporting Air Force and Department of Defense (DoD) clinical reference laboratory and force health protection testing. Each laboratory has an applied or investigational testing section where new technologies and techniques are evaluated, and expert consultative support to assist in technology assessments and test analyses. The Epidemiology Surveillance Laboratory and Analytical Chemistry Laboratory are critical assets of the Centers for Disease Control and Prevention (CDC) National Laboratory Response Network. Deployable assets provide direct support to the Combatant Commander and include the Air Force Radiological Assessment Team, and the Biological Augmentation Team. A diverse directorate, the synergistic CBRN response capabilities are a commander"s force protection tool, critical to maintaining combat power.
NASA Astrophysics Data System (ADS)
Farrington, E. J.; Lane, C.; Hawkes, A.; Donnelly, J. P.; van Hengstum, P. J.; Woodruff, J. D.; Maio, C. V.; Grochocki, K. K.; Taylor, A. K.
2017-12-01
Paleoclimate studies in equatorial regions are essential to decipher the forcing mechanisms controlling tropical precipitation dynamics. Caribbean paleoclimate records are particularly sensitive to changes in tropical convection, as they reside on the edge of the annual migrational range of the Intertropical Convergence Zone and record perturbations to many Pacific and Atlantic climate forcings. Significant sub-regional variability exists in the modern Caribbean climate and responsible forcing mechanisms on centennial to millennial timescales are largely unresolved, as reliable paleohydrological records are geographically sparse. In this study we aim to determine regional paleoenvironmental change with a specific interest in an abrupt dry period between 3200 and 2400 14C yr BP inferred from an oxygen isotope record from the nearby Lake Miragoâne, Haiti. Chronologically synchronous results from a Barbados stalagmite indicate wet conditions, which imply contrasting sub-regional hydrological responses between the northern and southern Caribbean basin. The development of multiple proximal paleoenvironmental records allows for better assessment of sub-regional Caribbean climate dynamics and the verification of existing proxy trends. We are conducting multi-proxy analyses on a 6360 14C yr, 9-meter sediment core extracted from Baradères Bay, Haiti, including loss on ignition (LOI), bulk sediment carbon (δ13C) and nitrogen (δ15N) isotope geochemistry, n-alkane hydrogen (δD) isotope geochemistry, x-ray fluorescence (XRF), and fossil pollen counts. Preliminary LOI data reveal that between 6400 and 3000 14C yr B.P. inorganic carbon ranged from 15 to 30% and organic carbon from 8 to 20%. From 3000 14C yr B.P. to present organic content decreased (9 - 13%) and inorganic carbon content increased (28 - 30%). Preliminary pollen analyses show a decrease in Rhizophora (red mangrove) pollen abundances between 3000 and 4000 14C yr BP, possibly indicating a change in estuary salinity. Additionally, XRF data show low concentrations of titanium and zircon between 5600 and 6200 14C yr BP, which may indicate a reduction in terrestrial material input. Forthcoming δD analyses of terrestrially-derived n-alkanes should help to elucidate potential paleohydrologic mechanisms responsible for the apparent changes.
NASA Astrophysics Data System (ADS)
Wanna, S. B. C.; Basaruddin, K. S.; Mat Som, M. H.; Mohamad Hashim, M. S.; Daud, R.; Majid, M. S. Abdul; Sulaiman, A. R.
2017-10-01
Osteogenesis imperfecta (OI) is a genetic disease which affecting the bone geometry. In a severe case, this disease can cause death to patients. The main issue of this disease is the prediction on bone fracture by the orthopaedic surgeons. The resistance of the bone to withstand the force before the bones fracture often become the main concern. Therefore, the objective of the present preliminary study was to investigate the fracture risk associated with OI bone, particularly in femur, when subjected to the self-weight. Finite element (FEA) was employed to reconstruct the OI bone model and analyse the mechanical stress response of femur before it fractures. Ten deformed models with different severity of OI bones were developed and the force that represents patient self-weight was applied to the reconstructed models in static analysis. Stress and fracture risk were observed and analysed throughout the simulation. None of the deformed model were observed experienced fracture. The fracture risk increased with increased severity of the deformed bone. The results showed that all deformed femur models were able to bear the force without experienced fracture when subjected to only the self-weight.
Examining the response programming function of the Quiet Eye: Do tougher shots need a quieter eye?
Walters-Symons, Rosanna; Wilson, Mark; Klostermann, Andre; Vine, Samuel
2018-02-01
Support for the proposition that the Quiet Eye (QE) duration reflects a period of response programming (including task parameterisation) has come from research showing that an increase in task difficulty is associated with increases in QE duration. Here, we build on previous research by manipulating three elements of task difficulty that correspond with different parameters of golf-putting performance; force production, impact quality and target line. Longer QE durations were found for more complex iterations of the task and furthermore, more sensitive analyses of the QE duration suggest that the early QE proportion (prior to movement initiation) is closely related to force production and impact quality. However, these increases in QE do not seem functional in terms of supporting improved performance. Further research is needed to explore QE's relationship with performance under conditions of increased difficulty.
The Rey Auditory Verbal Learning Test forced-choice recognition task: Base-rate data and norms.
Poreh, Amir; Bezdicek, Ondrej; Korobkova, Irina; Levin, Jennifer B; Dines, Philipp
2016-01-01
The present study describes a novel Forced-Choice Response (FCR) index for detecting poor effort on the Rey Auditory Verbal Learning Test (RAVLT). This retrospective study analyzes the performance of 4 groups on the new index: clinically referred patients with suspected dementia, forensic patients identified as not exhibiting adequate effort on other measures of response bias, students who simulated poor effort, and a large normative sample collected in the Gulf State of Oman. Using sensitivity and specificity analyses, the study shows that much like the California Verbal Learning Test-Second Edition FCR index, the RAVLT FCR index misses a proportion of individuals with inadequate effort (low sensitivity), but those who fail this measure are highly likely to be exhibiting poor effort (high specificity). The limitations and benefits of utilizing the RAVLT FCR index in clinical practice are discussed.
Brain-Stimulation Induced Blindsight: Unconscious Vision or Response Bias?
Lloyd, David A.; Abrahamyan, Arman; Harris, Justin A.
2013-01-01
A dissociation between visual awareness and visual discrimination is referred to as “blindsight”. Blindsight results from loss of function of the primary visual cortex (V1) which can occur due to cerebrovascular accidents (i.e. stroke-related lesions). There are also numerous reports of similar, though reversible, effects on vision induced by transcranial Magnetic Stimulation (TMS) to early visual cortex. These effects point to V1 as the “gate” of visual awareness and have strong implications for understanding the neurological underpinnings of consciousness. It has been argued that evidence for the dissociation between awareness of, and responses to, visual stimuli can be a measurement artifact of the use of a high response criterion under yes-no measures of visual awareness when compared with the criterion free forced-choice responses. This difference between yes-no and forced-choice measures suggests that evidence for a dissociation may actually be normal near-threshold conscious vision. Here we describe three experiments that tested visual performance in normal subjects when their visual awareness was suppressed by applying TMS to the occipital pole. The nature of subjects’ performance whilst undergoing occipital TMS was then verified by use of a psychophysical measure (d') that is independent of response criteria. This showed that there was no genuine dissociation in visual sensitivity measured by yes-no and forced-choice responses. These results highlight that evidence for visual sensitivity in the absence of awareness must be analysed using a bias-free psychophysical measure, such as d', In order to confirm whether or not visual performance is truly unconscious. PMID:24324837
Brain-stimulation induced blindsight: unconscious vision or response bias?
Lloyd, David A; Abrahamyan, Arman; Harris, Justin A
2013-01-01
A dissociation between visual awareness and visual discrimination is referred to as "blindsight". Blindsight results from loss of function of the primary visual cortex (V1) which can occur due to cerebrovascular accidents (i.e. stroke-related lesions). There are also numerous reports of similar, though reversible, effects on vision induced by transcranial Magnetic Stimulation (TMS) to early visual cortex. These effects point to V1 as the "gate" of visual awareness and have strong implications for understanding the neurological underpinnings of consciousness. It has been argued that evidence for the dissociation between awareness of, and responses to, visual stimuli can be a measurement artifact of the use of a high response criterion under yes-no measures of visual awareness when compared with the criterion free forced-choice responses. This difference between yes-no and forced-choice measures suggests that evidence for a dissociation may actually be normal near-threshold conscious vision. Here we describe three experiments that tested visual performance in normal subjects when their visual awareness was suppressed by applying TMS to the occipital pole. The nature of subjects' performance whilst undergoing occipital TMS was then verified by use of a psychophysical measure (d') that is independent of response criteria. This showed that there was no genuine dissociation in visual sensitivity measured by yes-no and forced-choice responses. These results highlight that evidence for visual sensitivity in the absence of awareness must be analysed using a bias-free psychophysical measure, such as d', In order to confirm whether or not visual performance is truly unconscious.
NASA Astrophysics Data System (ADS)
Schlegel, N.-J.; Larour, E.; Seroussi, H.; Morlighem, M.; Box, J. E.
2013-06-01
The behavior of the Greenland Ice Sheet, which is considered a major contributor to sea level changes, is best understood on century and longer time scales. However, on decadal time scales, its response is less predictable due to the difficulty of modeling surface climate, as well as incomplete understanding of the dynamic processes responsible for ice flow. Therefore, it is imperative to understand how modeling advancements, such as increased spatial resolution or more comprehensive ice flow equations, might improve projections of ice sheet response to climatic trends. Here we examine how a finely resolved climate forcing influences a high-resolution ice stream model that considers longitudinal stresses. We simulate ice flow using a two-dimensional Shelfy-Stream Approximation implemented within the Ice Sheet System Model (ISSM) and use uncertainty quantification tools embedded within the model to calculate the sensitivity of ice flow within the Northeast Greenland Ice Stream to errors in surface mass balance (SMB) forcing. Our results suggest that the model tends to smooth ice velocities even when forced with extreme errors in SMB. Indeed, errors propagate linearly through the model, resulting in discharge uncertainty of 16% or 1.9 Gt/yr. We find that mass flux is most sensitive to local errors but is also affected by errors hundreds of kilometers away; thus, an accurate SMB map of the entire basin is critical for realistic simulation. Furthermore, sensitivity analyses indicate that SMB forcing needs to be provided at a resolution of at least 40 km.
NASA Astrophysics Data System (ADS)
Vishwakarma, Vinod
Modified Modal Domain Analysis (MMDA) is a novel method for the development of a reduced-order model (ROM) of a bladed rotor. This method utilizes proper orthogonal decomposition (POD) of Coordinate Measurement Machine (CMM) data of blades' geometries and sector analyses using ANSYS. For the first time ROM of a geometrically mistuned industrial scale rotor (Transonic rotor) with large size of Finite Element (FE) model is generated using MMDA. Two methods for estimating mass and stiffness mistuning matrices are used a) exact computation from sector FE analysis, b) estimates based on POD mistuning parameters. Modal characteristics such as mistuned natural frequencies, mode shapes and forced harmonic response are obtained from ROM for various cases, and results are compared with full rotor ANSYS analysis and other ROM methods such as Subset of Nominal Modes (SNM) and Fundamental Model of Mistuning (FMM). Accuracy of MMDA ROM is demonstrated with variations in number of POD features and geometric mistuning parameters. It is shown for the aforementioned case b) that the high accuracy of ROM studied in previous work with Academic rotor does not directly translate to the Transonic rotor. Reasons for such mismatch in results are investigated and attributed to higher mistuning in Transonic rotor. Alternate solutions such as estimation of sensitivities via least squares, and interpolation of mass and stiffness matrices on manifolds are developed, and their results are discussed. Statistics such as mean and standard deviations of forced harmonic response peak amplitude are obtained from random permutations, and are shown to have similar results as those of Monte Carlo simulations. These statistics are obtained and compared for 3 degree of freedom (DOF) lumped parameter model (LPM) of rotor, Academic rotor and Transonic rotor. A state -- estimator based on MMDA ROM and Kalman filter is also developed for offline or online estimation of harmonic forcing function from measurements of forced response. Forcing function is estimated for synchronous excitation of 3DOF rotor model, Academic rotor and Transonic rotor from measurement of response at few nodes. For asynchronous excitation forcing function is estimated only for 3DOF rotor model and Academic rotor from measurement of response. The impact of number of measurement locations and accuracy of ROM on the estimation of forcing function is discussed. iv.
Aeromechanics Analysis of a Distortion-Tolerant Fan with Boundary Layer Ingestion
NASA Technical Reports Server (NTRS)
Bakhle, Milind A.; Reddy, T. S. R.; Coroneos, Rula M.; Min, James B.; Provenza, Andrew J.; Duffy, Kirsten P.; Stefko, George L.; Heinlein, Gregory S.
2018-01-01
A propulsion system with Boundary Layer Ingestion (BLI) has the potential to significantly reduce aircraft engine fuel burn. But a critical challenge is to design a fan that can operate continuously with a persistent BLI distortion without aeromechanical failure -- flutter or high cycle fatigue due to forced response. High-fidelity computational aeromechanics analysis can be very valuable to support the design of a fan that has satisfactory aeromechanic characteristics and good aerodynamic performance and operability. Detailed aeromechanics analyses together with careful monitoring of the test article is necessary to avoid unexpected problems or failures during testing. In the present work, an aeromechanics analysis based on a three-dimensional, time-accurate, Reynolds-averaged Navier-Stokes computational fluid dynamics code is used to study the performance and aeromechanical characteristics of the fan in both circumferentially-uniform and circumferentially-varying distorted flows. Pre-test aeromechanics analyses are used to prepare for the wind tunnel test and comparisons are made with measured blade vibration data after the test. The analysis shows that the fan has low levels of aerodynamic damping at various operating conditions examined. In the test, the fan remained free of flutter except at one near-stall operating condition. Analysis could not be performed at this low mass flow rate operating condition since it fell beyond the limit of numerical stability of the analysis code. The measured resonant forced response at a specific low-response crossing indicated that the analysis under-predicted this response and work is in progress to understand possible sources of differences and to analyze other larger resonant responses. Follow-on work is also planned with a coupled inlet-fan aeromechanics analysis that will more accurately represent the interactions between the fan and BLI distortion.
Hay, Dale F; Nash, Alison; Caplan, Marlene; Swartzentruber, Jan; Ishikawa, Fumiko; Vespo, Jo Ellen
2011-06-01
It is well known that a gender difference in physical aggression emerges by the preschool years. We tested the hypothesis that the gender difference is partly due to changing tactics in peer interaction. Observations of girls' and boys' social initiatives and reactions to opportunities for conflict were made, using the Peer Interaction Coding System (PICS) in four independent samples of children between 9 and 36 months of age, which were aggregated to form a summary data set (N= 323), divided into two age bands (below or above 24 months of age). Linear mixed-model analyses revealed significant age by gender interactions in the use of bodily force in response to peers' initiatives and in the tendency to use bodily force at later stages of conflicts with peers. The gender difference in use of force was not explained by differences in the use of verbal tactics. These cross-sectional findings suggest that girls are initially more likely than boys to use reactive aggression, but then desist, whereas boys increase their use of force to defend their territory and possessions. The difference between older and younger girls likely reflects girls' abilities to regulate their behaviour in response to social challenges and the fact that girls are explicitly socialized to yield to peers' demands.
Changing response of the North Atlantic/European winter climate to the 11 year solar cycle
NASA Astrophysics Data System (ADS)
Ma, Hedi; Chen, Haishan; Gray, Lesley; Zhou, Liming; Li, Xing; Wang, Ruili; Zhu, Siguang
2018-03-01
Recent studies have presented conflicting results regarding the 11 year solar cycle (SC) influences on winter climate over the North Atlantic/European region. Analyses of only the most recent decades suggest a synchronized North Atlantic Oscillation (NAO)-like response pattern to the SC. Analyses of long-term climate data sets dating back to the late 19th century, however, suggest a mean sea level pressure (mslp) response that lags the SC by 2-4 years in the southern node of the NAO (i.e. Azores region). To understand the conflicting nature and cause of these time dependencies in the SC surface response, the present study employs a lead/lag multi-linear regression technique with a sliding window of 44 years over the period 1751-2016. Results confirm previous analyses, in which the average response for the whole time period features a statistically significant 2-4 year lagged mslp response centered over the Azores region. Overall, the lagged nature of Azores mslp response is generally consistent in time. Stronger and statistically significant SC signals tend to appear in the periods when the SC forcing amplitudes are relatively larger. Individual month analysis indicates the consistent lagged response in December-January-February average arises primarily from early winter months (i.e. December and January), which has been associated with ocean feedback processes that involve reinforcement by anomalies from the previous winter. Additional analysis suggests that the synchronous NAO-like response in recent decades arises primarily from late winter (February), possibly reflecting a result of strong internal noise.
Vibration analyses of an inclined flat plate subjected to moving loads
NASA Astrophysics Data System (ADS)
Wu, Jia-Jang
2007-01-01
The object of this paper is to present a moving mass element so that one may easily perform the dynamic analysis of an inclined plate subjected to moving loads with the effects of inertia force, Coriolis force and centrifugal force considered. To this end, the mass, damping and stiffness matrices of the moving mass element, with respect to the local coordinate system, are derived first by using the principle of superposition and the definition of shape functions. Next, the last property matrices of the moving mass element are transformed into the global coordinate system and combined with the property matrices of the inclined plate itself to determine the effective overall property matrices and the instantaneous equations of motion of the entire vibrating system. Because the property matrices of the moving mass element have something to do with the instantaneous position of the moving load, both the property matrices of the moving mass element and the effective overall ones of the entire vibrating system are time-dependent. At any instant of time, solving the instantaneous equations of motion yields the instantaneous dynamic responses of the inclined plate. For validation, the presented technique is used to determine the dynamic responses of a horizontal pinned-pinned plate subjected to a moving load and a satisfactory agreement with the existing literature is achieved. Furthermore, extensive studies on the inclined plate subjected to moving loads reveal that the influences of moving-load speed, inclined angle of the plate and total number of the moving loads on the dynamic responses of the inclined plate are significant in most cases, and the effects of Coriolis force and centrifugal force are perceptible only in the case of higher moving-load speed.
NASA Technical Reports Server (NTRS)
Brown, Andrew M.; Schmauch, Preston
2012-01-01
Turbine blades in rocket and jet engine turbomachinery experience enormous harmonic loading conditions. These loads result from the integer number of upstream and downstream stator vanes as well as the other turbine stages. Assessing the blade structural integrity is a complex task requiring an initial characterization of whether resonance is possible and then performing a forced response analysis if that condition is met. The standard technique for forced response analysis in rocket engine turbines is to decompose a computational fluid dynamics (CFD).generated flow field into its harmonic components, and to then perform a frequency response analysis at the problematic natural frequencies using cyclically symmetric structural dynamic models. Recent CFD analysis and water-flow testing at NASA/MSFC, though, indicates that this technique may miss substantial harmonic and non ]harmonic excitation sources that become present in complex flows. This complex content can only be captured by a CFD flow field encompassing at least an entire revolution. A substantial development effort to create a series of software programs to enable application of the 360 degree forcing function in a frequency response analysis on cyclic symmetric models has been completed (to be described in a future paper), but the question still remains whether the frequency response analysis itself is capable of capturing the excitation content sufficiently. Two studies comparing frequency response analysis with transient response analysis, therefore, of bladed-disks undergoing this complex flow environment have been performed. The first is of a bladed disk with each blade modeled by simple beam elements and the disk modeled with plates (using the finite element code MSC/NASTRAN). The focus of this model is to be representative of response of realistic bladed disks, and so the dimensions are roughly equivalent to the new J2X rocket engine 1st stage fuel pump turbine. The simplicity of the model allows the CFD load to be able to be readily applied, along with analytical and experimental variations in both the temporal and spatial fourier components of the excitation. In addition, this model is a first step in identifying response differences between transient and frequency forced response analysis techniques. The second phase assesses this difference for a much more realistic solid model of a bladed-disk in order to evaluate the effect of the spatial variation in loading on blade dominated modes. Neither research on the accuracy of the frequency response method when used in this context or a comprehensive study of the effect of test-observed variation on blade forced response have been found in the literature, so this research is a new contribution to practical structural dynamic analysis of gas turbines. The primary excitation of the upstream nozzles interacts with the blades on fuel pump of the J2X causes the 5th Nodal diameter modes to be excited, as explained by Tyler and Sofrin1, so a modal analysis was first performed on the beam/plate model and the 5ND bladed-disk mode at 40167 hz was identified and chosen to be the one excited at resonance (see figure 1). The first forced response analysis with this model focuses on identifying differences between frequency and transient response analyses. A hypothesis going into the analysis was that perhaps the frequency response was enforcing a temporal periodicity that did not really exist, and so therefore it would overestimate the response. As high dynamic response was a considerable source of stress in the J2X, examining this concept could potentially be beneficial for the program.
Rotor-generated unsteady aerodynamic interactions in a 1½ stage compressor
NASA Astrophysics Data System (ADS)
Papalia, John J.
Because High Cycle Fatigue (HCF) remains the predominant surprise failure mode in gas turbine engines, HCF avoidance design systems are utilized to identify possible failures early in the engine development process. A key requirement of these analyses is accurate determination of the aerodynamic forcing function and corresponding airfoil unsteady response. The current study expands the limited experimental database of blade row interactions necessary for calibration of predictive HCF analyses, with transonic axial-flow compressors of particular interest due to the presence of rotor leading edge shocks. The majority of HCF failures in aircraft engines occur at off-design operating conditions. Therefore, experiments focused on rotor-IGV interactions at off-design are conducted in the Purdue Transonic Research Compressor. The rotor-generated IGV unsteady aerodynamics are quantified when the IGV reset angle causes the vane trailing edge to be nearly aligned with the rotor leading edge shocks. A significant vane response to the impulsive static pressure perturbation associated with a shock is evident in the point measurements at 90% span, with details of this complex interaction revealed in the corresponding time-variant vane-to-vane flow field data. Industry wide implementation of Controlled Diffusion Airfoils (CDA) in modern compressors motivated an investigation of upstream propagating CDA rotor-generated forcing functions. Whole field velocity measurements in the reconfigured Purdue Transonic Research Compressor along the design speedline reveal steady loading had a considerable effect on the rotor shock structure. A detached rotor leading edge shock exists at low loading, with an attached leading edge and mid-chord suction surface normal shock present at nominal loading. These CDA forcing functions are 3--4 times smaller than those generated by the baseline NACA 65 rotor at their respective operating points. However, the IGV unsteady aerodynamic response to the CDA forcing functions remains significant. The intra-vane transport of NACA 65 and CDA rotor wakes is also observed within the time-variant passage velocity data. In general, the wake width and decay rate increase with rotor speed and compressor steady loading respectively.
The influence of track modelling options on the simulation of rail vehicle dynamics
NASA Astrophysics Data System (ADS)
Di Gialleonardo, Egidio; Braghin, Francesco; Bruni, Stefano
2012-09-01
This paper investigates the effect of different models for track flexibility on the simulation of railway vehicle running dynamics on tangent and curved track. To this end, a multi-body model of the rail vehicle is defined including track flexibility effects on three levels of detail: a perfectly rigid pair of rails, a sectional track model and a three-dimensional finite element track model. The influence of the track model on the calculation of the nonlinear critical speed is pointed out and it is shown that neglecting the effect of track flexibility results in an overestimation of the critical speed by more than 10%. Vehicle response to stochastic excitation from track irregularity is also investigated, analysing the effect of track flexibility models on the vertical and lateral wheel-rail contact forces. Finally, the effect of the track model on the calculation of dynamic forces produced by wheel out-of-roundness is analysed, showing that peak dynamic loads are very sensitive to the track model used in the simulation.
Tatham, Peter; Oloruntoba, Richard; Spens, Karen
2012-01-01
The United Kingdom uses the Defence Lines of Development (DLOD) framework to analyse and understand the key components and costs of a military capability. Rooted in the Resource Based View (RBV) of a firm, an adapted DLOD approach is employed to explore, analyse and discuss the preparedness, planning and response strategies of two markedly different countries (Australia and Bangladesh) when faced with a major cyclone event of a comparable size. Given the numerous similarities in the challenges facing military forces in a complex emergency and humanitarian agencies in a natural disaster, the paper demonstrates the applicability of the DLOD framework as an analysis and planning tool in the cyclone preparedness planning and response phases, and more broadly within the disaster management area. In addition, the paper highlights the benefit to disaster managers, policymakers and researchers of exploiting comparative cross-learning opportunities from disaster events, drawn from different sectors and countries. © 2012 The Author(s). Disasters © Overseas Development Institute, 2012.
Predation risk modifies behaviour by shaping the response of identified brain neurons.
Magani, Fiorella; Luppi, Tomas; Nuñez, Jesus; Tomsic, Daniel
2016-04-15
Interpopulation comparisons in species that show behavioural variations associated with particular ecological disparities offer good opportunities for assessing how environmental factors may foster specific functional adaptations in the brain. Yet, studies on the neural substrate that can account for interpopulation behavioural adaptations are scarce. Predation is one of the strongest driving forces for behavioural evolvability and, consequently, for shaping structural and functional brain adaptations. We analysed the escape response of crabs ITALIC! Neohelice granulatafrom two isolated populations exposed to different risks of avian predation. Individuals from the high-risk area proved to be more reactive to visual danger stimuli (VDS) than those from an area where predators are rare. Control experiments indicate that the response difference was specific for impending visual threats. Subsequently, we analysed the response to VDS of a group of giant brain neurons that are thought to play a main role in the visually guided escape response of the crab. Neurons from animals of the population with the stronger escape response were more responsive to VDS than neurons from animals of the less reactive population. Our results suggest a robust linkage between the pressure imposed by the predation risk, the response of identified neurons and the behavioural outcome. © 2016. Published by The Company of Biologists Ltd.
NASA Technical Reports Server (NTRS)
Adams, William M., Jr.; Hoadley, Sherwood T.
1993-01-01
This paper discusses the capabilities of the Interaction of Structures, Aerodynamics, and Controls (ISAC) system of program modules. The major modeling, analysis, and data management components of ISAC are identified. Equations of motion are displayed for a Laplace-domain representation of the unsteady aerodynamic forces. Options for approximating a frequency-domain representation of unsteady aerodynamic forces with rational functions of the Laplace variable are shown. Linear time invariant state-space equations of motion that result are discussed. Model generation and analyses of stability and dynamic response characteristics are shown for an aeroelastic vehicle which illustrate some of the capabilities of ISAC as a modeling and analysis tool for aeroelastic applications.
NASA Astrophysics Data System (ADS)
Giasin, Khaled; Ayvar-Soberanis, Sabino; French, Toby; Phadnis, Vaibhav
2017-02-01
Machining Glass fibre aluminium reinforced epoxy (GLARE) is cumbersome due to distinctively different mechanical and thermal properties of its constituents, which makes it challenging to achieve damage-free holes with the acceptable surface quality. The proposed work focuses on the study of the machinability of thin ( 2.5 mm) GLARE laminate. Drilling trials were conducted to analyse the effect of feed rate and spindle speed on the cutting forces and hole quality. The resulting hole quality metrics (surface roughness, hole size, circularity error, burr formation and delamination) were assessed using surface profilometry and optical scanning techniques. A three dimensional (3D) finite-element (FE) model of drilling GLARE laminate was also developed using ABAQUS/Explicit to help understand the mechanism of drilling GLARE. The homogenised ply-level response of GLARE laminate was considered in the FE model to predict cutting forces in the drilling process.
Seasonal Sea-Level Variations in San Francisco Bay in Response to Atmospheric Forcing, 1980
Wang, Jingyuan; Cheng, R.T.; Smith, P.C.
1997-01-01
The seasonal response of sea level in San Francisco Bay (SFB) to atmospheric forcing during 1980 is investigated. The relations between sea-level data from the Northern Reach, Central Bay and South Bay, and forcing by local wind stresses, sea level pressure (SLP), runoff and the large scale sea level pressure field are examined in detail. The analyses show that the sea-level elevations and slopes respond to the along-shore wind stress T(V) at most times of the year, and to the cross-shore wind stress T(N) during two transition periods in spring and autumn. River runoff raises the sea-level elevation during winter. It is shown that winter precipitation in the SFB area is mainly attributed to the atmospheric circulation associated with the Alcutian Low, which transports the warm, moist air into the Bay area. A multiple linear regression model is employed to estimate the independent contributions of barometric pressure and wind stress to adjusted sea level. These calculations have a simple dynamical interpretation which confirms the importance of along-shore wind to both sea level and north-south slope within the Bay.
Monitoring the change of coastal zones from space
NASA Astrophysics Data System (ADS)
Cazenave, A. A.; Le Cozannet, G.; Benveniste, J.; Woodworth, P. L.
2017-12-01
The world's coastal zones, where an important fraction of the world population is currently living, are under serious threat because of coastal erosion, cyclones, storms, and salinization of estuaries and coastal aquifers. In the future, these hazards are expected to increase due to the combined effects of sea level rise, climate change, human activities and population increase. The response of coastal environments to natural and anthropogenic forcing factors (including climate change) depends on the characteristics of the forcing agents, as well as on the internal properties of the coastal systems, that remain poorly known and mostly un-surveyed at global scale. To better understand changes affecting coastal zones and to provide useful information to decision makers, various types of observations with global coverage need to be collected and analysed. Observations from space appear as an important complement to existing in situ observing systems (e.g., regional tide gauge networks). In this presentation, we discuss the benefit of systematic coastal monitoring from space, addressing both observations of forcing agents and of the coastal response. We highlight the need for a global coastal sea level data set based on retracked nadir altimetry missions and new SAR technology.
The dynamics of climate-induced deglacial ice stream acceleration
NASA Astrophysics Data System (ADS)
Robel, A.; Tziperman, E.
2015-12-01
Geological observations indicate that ice streams were a significant contributor to ice flow in the Laurentide Ice Sheet during the Last Glacial Maximum. Conceptual and simple model studies have also argued that the gradual development of ice streams increases the sensitivity of large ice sheets to weak climate forcing. In this study, we use an idealized configuration of the Parallel Ice Sheet Model to explore the role of ice streams in rapid deglaciation. In a growing ice sheet, ice streams develop gradually as the bed warms and the margin expands outward onto the continental shelf. Then, a weak change in equilibrium line altitude commensurate with Milankovitch forcing results in a rapid deglacial response, as ice stream acceleration leads to enhanced calving and surface melting at low elevations. We explain the dynamical mechanism that drives this ice stream acceleration and its broader applicability as a feedback for enhancing ice sheet decay in response to climate forcing. We show how our idealized ice sheet simulations match geomorphological observations of deglacial ice stream variability and previous model-data analyses. We conclude with observations on the potential for interaction between ice streams and other feedback mechanisms within the earth system.
On-Location Public Affairs Reach-Back System
2017-03-01
benefit of this study was to provide a required capability to Commander Naval Air Forces Atlantic (CNAL) Public Affairs Office (PAO). The required...of research are possible, including, but not limited to • Feasibility studies and cost - benefit analyses of upgrading a given ship to MEO from GEO...identified by Stephens and Adams (2016). • A cost - benefit analysis of providing MEO SATCOM to a geographical area (e.g., CENTCOM area of responsibility
Contracting of Samples for Chemical Analyses. What You Should Know about It
1990-08-01
Laboratory (AFSC) Human Systems Division Brooks Air Force Base , Texas 78235-5501 o O NOTICES When Government drawings, specifications, or other data...Assurance Efforts 3 Analyses Costs 3 Certifications 4 How To Protect Your Base And The Air Force 4 References 6 Appendix A - IG Writeup Of A Laboratory...their agency certifications showing the period of certitication and for what analyses. HOW TO PROTECT YOUR BASE AND THE AIR FORCE What I am wondering on
Structural frequency functions for an impulsive, distributed forcing function
NASA Technical Reports Server (NTRS)
Bateman, Vesta I.
1987-01-01
The response of a penetrator structure to a spatially distributed mechanical impulse with a magnitude approaching field test force levels (1-2 Mlb) were measured. The frequency response function calculated from the response to this unique forcing function is compared to frequency response functions calculated from response to point forces of about 2000 pounds. The results show that the strain gages installed on the penetrator case respond similiarly to a point, axial force and to a spatially distributed, axial force. This result suggests that the distributed axial force generated in a penetration event may be reconstructed as a point axial force when the penetrator behaves in linear manner.
Effect of coriolis force on forced response magnification of intentionally mistuned bladed disk
NASA Astrophysics Data System (ADS)
Kan, Xuanen; Xu, Zili; Zhao, Bo; Zhong, Jize
2017-07-01
Blade manufacturing tolerance and wear in operation may induce mistuning, and mistuning will lead to vibration localization which will result in destruction of bladed disk. Generally, intentional mistuning has been widely investigated to control the maximum forced response. On the other hand, it should be noted that the bladed disk with high rotational speed is obviously subjected to the Coriolis force. However, the Coriolis force is not included in intentionally mistuned bladed disk in previous studies. Therefore, this paper is to study the effect of the Coriolis force on forced response magnification of intentionally mistuned bladed disk. Finite element method is used to calculate the harmonic response of the intentionally mistuned bladed disk with and without the Coriolis force. The effects of intentional mistuning strength and different integer harmonic order on the response magnification factor with the Coriolis force are discussed. It should be pointed out that, when the integer harmonic order is 1, 3 and 5, the response magnification factor with the effect of the Coriolis force increase by 3.9%, 3.53% and 3.76% respectively compared to the system of non-Coriolis force. In addition, forced response magnification factor of intentionally mistuned bladed disk with and without the Coriolis force under different rotational speed is researched in contrast. It shows that, when the rotational speed is 3000 rpm, the response magnification factor with the Coriolis force increases by 0.65% compared to the system of non-Coriolis force, while the response magnification factor with the Coriolis force decreases by 6.28% compared to the system of non-Coriolis force when the rotational speed is 12000 rpm.
NASA Astrophysics Data System (ADS)
Modgil, Girish A.
Gas turbine engines for aerospace applications have evolved dramatically over the last 50 years through the constant pursuit for better specific fuel consumption, higher thrust-to-weight ratio, lower noise and emissions all while maintaining reliability and affordability. An important step in enabling these improvements is a forced response aeromechanics analysis involving structural dynamics and aerodynamics of the turbine. It is well documented that forced response vibration is a very critical problem in aircraft engine design, causing High Cycle Fatigue (HCF). Pushing the envelope on engine design has led to increased forced response problems and subsequently an increased risk of HCF failure. Forced response analysis is used to assess design feasibility of turbine blades for HCF using a material limit boundary set by the Goodman Diagram envelope that combines the effects of steady and vibratory stresses. Forced response analysis is computationally expensive, time consuming and requires multi-domain experts to finalize a result. As a consequence, high-fidelity aeromechanics analysis is performed deterministically and is usually done at the end of the blade design process when it is very costly to make significant changes to geometry or aerodynamic design. To address uncertainties in the system (engine operating point, temperature distribution, mistuning, etc.) and variability in material properties, designers apply conservative safety factors in the traditional deterministic approach, which leads to bulky designs. Moreover, using a deterministic approach does not provide a calculated risk of HCF failure. This thesis describes a process that begins with the optimal aerodynamic design of a turbomachinery blade developed using surrogate models of high-fidelity analyses. The resulting optimal blade undergoes probabilistic evaluation to generate aeromechanics results that provide a calculated likelihood of failure from HCF. An existing Rolls-Royce High Work Single Stage (HWSS) turbine blisk provides a baseline to demonstrate the process. The generalized polynomial chaos (gPC) toolbox which was developed includes sampling methods and constructs polynomial approximations. The toolbox provides not only the means for uncertainty quantification of the final blade design, but also facilitates construction of the surrogate models used for the blade optimization. This paper shows that gPC , with a small number of samples, achieves very fast rates of convergence and high accuracy in describing probability distributions without loss of detail in the tails . First, an optimization problem maximizes stage efficiency using turbine aerodynamic design rules as constraints; the function evaluations for this optimization are surrogate models from detailed 3D steady Computational Fluid Dynamics (CFD) analyses. The resulting optimal shape provides a starting point for the 3D high-fidelity aeromechanics (unsteady CFD and 3D Finite Element Analysis (FEA)) UQ study assuming three uncertain input parameters. This investigation seeks to find the steady and vibratory stresses associated with the first torsion mode for the HWSS turbine blisk near maximum operating speed of the engine. Using gPC to provide uncertainty estimates of the steady and vibratory stresses enables the creation of a Probabilistic Goodman Diagram, which - to the authors' best knowledge - is the first of its kind using high fidelity aeromechanics for turbomachinery blades. The Probabilistic Goodman Diagram enables turbine blade designers to make more informed design decisions and it allows the aeromechanics expert to assess quantitatively the risk associated with HCF for any mode crossing based on high fidelity simulations.
Influence of tyre-road contact model on vehicle vibration response
NASA Astrophysics Data System (ADS)
Múčka, Peter; Gagnon, Louis
2015-09-01
The influence of the tyre-road contact model on the simulated vertical vibration response was analysed. Three contact models were compared: tyre-road point contact model, moving averaged profile and tyre-enveloping model. In total, 1600 real asphalt concrete and Portland cement concrete longitudinal road profiles were processed. The linear planar model of automobile with 12 degrees of freedom (DOF) was used. Five vibration responses as the measures of ride comfort, ride safety and dynamic load of cargo were investigated. The results were calculated as a function of vibration response, vehicle velocity, road quality and road surface type. The marked differences in the dynamic tyre forces and the negligible differences in the ride comfort quantities were observed among the tyre-road contact models. The seat acceleration response for three contact models and 331 DOF multibody model of the truck semi-trailer was compared with the measured response for a known profile of test section.
Structural Tailoring of Advanced Turboprops (STAT). Theoretical manual
NASA Technical Reports Server (NTRS)
Brown, K. W.
1992-01-01
This manual describes the theories in the Structural Tailoring of Advanced Turboprops (STAT) computer program, which was developed to perform numerical optimizations on highly swept propfan blades. The optimization procedure seeks to minimize an objective function, defined as either direct operating cost or aeroelastic differences between a blade and its scaled model, by tuning internal and external geometry variables that must satisfy realistic blade design constraints. The STAT analyses include an aerodynamic efficiency evaluation, a finite element stress and vibration analysis, an acoustic analysis, a flutter analysis, and a once-per-revolution (1-p) forced response life prediction capability. The STAT constraints include blade stresses, blade resonances, flutter, tip displacements, and a 1-P forced response life fraction. The STAT variables include all blade internal and external geometry parameters needed to define a composite material blade. The STAT objective function is dependent upon a blade baseline definition which the user supplies to describe a current blade design for cost optimization or for the tailoring of an aeroelastic scale model.
Structural Tailoring of Advanced Turboprops (STAT). Theoretical manual
NASA Astrophysics Data System (ADS)
Brown, K. W.
1992-10-01
This manual describes the theories in the Structural Tailoring of Advanced Turboprops (STAT) computer program, which was developed to perform numerical optimizations on highly swept propfan blades. The optimization procedure seeks to minimize an objective function, defined as either direct operating cost or aeroelastic differences between a blade and its scaled model, by tuning internal and external geometry variables that must satisfy realistic blade design constraints. The STAT analyses include an aerodynamic efficiency evaluation, a finite element stress and vibration analysis, an acoustic analysis, a flutter analysis, and a once-per-revolution (1-p) forced response life prediction capability. The STAT constraints include blade stresses, blade resonances, flutter, tip displacements, and a 1-P forced response life fraction. The STAT variables include all blade internal and external geometry parameters needed to define a composite material blade. The STAT objective function is dependent upon a blade baseline definition which the user supplies to describe a current blade design for cost optimization or for the tailoring of an aeroelastic scale model.
Structural and optical investigation on the wings of Idea malabarica (Moore, 1877).
Sackey, Juliet; Nuru, Zebib Y; Sone, Bertrand Tumbain; Maaza, Malik
2017-02-01
The nanostructures on the wings of Idea malabarica (Moore, 1877) were analysed using scanning electron microscopy, energy dispersive X-ray spectroscopy, atomic force microscopy, Fourier transform-infrared spectroscopy, and reflectance measurements. The chemical and morphological analyses revealed the chitin-based intricate nanostructures. The influence of the nanostructures on the wetting characteristics of the wing was investigated using optical imaging. Applying the Maxwell-Garnet approximation to the porosities within the nanostructures, the refractive indices, which relate the reflectance response, were estimated. It was concluded that the colour seen on the wings of the Idea malabarica originate from the nanostructural configurations of the chitin-based structures and the embedded pigment.
NASA Technical Reports Server (NTRS)
Bert, C. W.; Clary, R. R.
1974-01-01
Various methods potentially usable for determining dynamic stiffness and damping of composite materials are reviewed. Of these, the following most widely used techniques are singled out for more detailed discussion: free vibration, pulse propagation, and forced vibration response. To illustrate the usefulness and validity of dynamic property data, their application in dynamic analyses and comparison with measured structural response are described for the following composite-material structures: free-free sandwich beam with glass-epoxy facings, clamped-edge sandwich plate with similar facings, free-end sandwich conical shell with similar facings, and boron-epoxy free plate with layers arranged at various orientations.
Statistical analysis of sperm sorting
NASA Astrophysics Data System (ADS)
Koh, James; Marcos, Marcos
2017-11-01
The success rate of assisted reproduction depends on the proportion of morphologically normal sperm. It is possible to use an external field for manipulation and sorting. Depending on their morphology, the extent of response varies. Due to the wide distribution in sperm morphology even among individuals, the resulting distribution of kinematic behaviour, and consequently the feasibility of sorting, should be analysed statistically. In this theoretical work, Resistive Force Theory and Slender Body Theory will be applied and compared. Full name is Marcos.
Comparative analysis of methods for determining bite force in the spiny dogfish Squalus acanthias.
Huber, Daniel Robert; Motta, Philip Jay
2004-01-01
Many studies have identified relationships between the forces generated by the cranial musculature during feeding and cranial design. Particularly important to understanding the diversity of cranial form amongst vertebrates is knowledge of the generated magnitudes of bite force because of its use as a measure of ecological performance. In order to determine an accurate morphological proxy for bite force in elasmobranchs, theoretical force generation by the quadratomandibularis muscle of the spiny dogfish Squalus acanthias was modeled using a variety of morphological techniques, and lever-ratio analyses were used to determine resultant bite forces. These measures were compared to in vivo bite force measurements obtained with a pressure transducer during tetanic stimulation experiments of the quadratomandibularis. Although no differences were found between the theoretical and in vivo bite forces measured, modeling analyses indicate that the quadratomandibularis muscle should be divided into its constituent divisions and digital images of the cross-sections of these divisions should be used to estimate cross-sectional area when calculating theoretical force production. From all analyses the maximum bite force measured was 19.57 N. This relatively low magnitude of bite force is discussed with respect to the ecomorphology of the feeding mechanism of S. acanthias to demonstrate the interdependence of morphology, ecology, and behavior in organismal design. Copyright 2004 Wiley-Liss, Inc.
Precipitation Response to Regional Radiative Forcing
NASA Technical Reports Server (NTRS)
Shindell, D. T.; Voulgarakis, A.; Faluvegi, G.; Milly, G.
2012-01-01
Precipitation shifts can have large impacts on human society and ecosystems. Many aspects of how inhomogeneous radiative forcings influence precipitation remain unclear, however. Here we investigate regional precipitation responses to various forcings imposed in different latitude bands in a climate model. We find that several regions show strong, significant responses to most forcings, but that the magnitude and even the sign depends upon the forcing location and type. Aerosol and ozone forcings typically induce larger responses than equivalent carbon dioxide (CO2) forcing, and the influence of remote forcings often outweighs that of local forcings. Consistent with this, ozone and especially aerosols contribute greatly to precipitation changes over the Sahel and South and East Asia in historical simulations, and inclusion of aerosols greatly increases the agreement with observed trends in these areas, which cannot be attributed to either greenhouse gases or natural forcings. Estimates of precipitation responses derived from multiplying our Regional Precipitation Potentials (RPP; the response per unit forcing relationships) by historical forcings typically capture the actual response in full transient climate simulations fairly well, suggesting that these relationships may provide useful metrics. The strong sensitivity to aerosol and ozone forcing suggests that although some air quality improvements may unmask greenhouse gas-induced warming, they have large benefits for reducing regional disruption of the hydrologic cycle.
Determination of Radiative Forcing of Saharan Dust using Combined TOMS and ERBE Data
NASA Technical Reports Server (NTRS)
Hsu, N. Christina; Herman, Jay R.; Weaver, Clark
1999-01-01
The direct radiative forcing of Saharan dust aerosols has been determined by combining aerosol information derived from Nimbus-7 TOMS with radiation measurements observed at the top of atmosphere (TOA) by NOAA-9 ERBE made during February-July 1985. Cloud parameters and precipitable water derived from the NOAA-9 HIRS2 instrument were used to aid in screening for clouds and water vapor in the analyses. Our results indicate that under "cloud-free" and "dry" conditions there is a good correlation between the ERBE TOA outgoing longwave fluxes and the TOMS aerosol index measurements over both land and ocean in areas under the influence of airborne Saharan dust. The ERBE TOA outgoing shortwave fluxes were also found to correlate well with the dust loading derived from TOMS over ocean. However, the calculated shortwave forcing of Saharan dust aerosols is very weak and noisy over land for the range of solar zenith angle viewed by the NOAA-9 ERBE in 1985. Sensitivity factors of the TOA outgoing fluxes to changes in aerosol index were estimated using a linear regression fit to the ERBE and TOMS measurements. The ratio of the shortwave-to-longwave response to changes in dust loading over the ocean is found to be roughly 2 to 3, but opposite in sign. The monthly averaged "clear-sky" TOA direct forcing of airborne Saharan dust was also calculated by multiplying these sensitivity factors by the TOMS monthly averaged "clear-sky" aerosol index. Both the observational and theoretical analyses indicate that the dust layer height, ambient moisture content as well as the presence of cloud all play an important role in determining the TOA direct radiative forcing due to mineral aerosols.
Meyer, Antje S; Alday, Phillip M; Decuyper, Caitlin; Knudsen, Birgit
2018-01-01
As conversation is the most important way of using language, linguists and psychologists should combine forces to investigate how interlocutors deal with the cognitive demands arising during conversation. Linguistic analyses of corpora of conversation are needed to understand the structure of conversations, and experimental work is indispensable for understanding the underlying cognitive processes. We argue that joint consideration of corpus and experimental data is most informative when the utterances elicited in a lab experiment match those extracted from a corpus in relevant ways. This requirement to compare like with like seems obvious but is not trivial to achieve. To illustrate this approach, we report two experiments where responses to polar (yes/no) questions were elicited in the lab and the response latencies were compared to gaps between polar questions and answers in a corpus of conversational speech. We found, as expected, that responses were given faster when they were easy to plan and planning could be initiated earlier than when they were harder to plan and planning was initiated later. Overall, in all but one condition, the latencies were longer than one would expect based on the analyses of corpus data. We discuss the implication of this partial match between the data sets and more generally how corpus and experimental data can best be combined in studies of conversation.
Kaminsky, David A; Daud, Anees; Chapman, David G
2014-10-01
Ventilation heterogeneity (VH) has been linked to airway responsiveness (AR) based on various measures of VH involving inert gas washout, forced oscillation and lung imaging. We explore whether VH at baseline, as measured by the simple ratio of single breath alveolar volume to plethysmographically determined total lung capacity (VA/TLC), would correlate with AR as measured by methacholine challenge testing. We analysed data from spirometry, lung volumes, diffusing capacity and methacholine challenge to derive the VA/TLC and the dose-response slope (DRS) of forced expiratory volume in 1 s (DRS-FEV1) during methacholine challenge from 136 patients. We separated out airway closure versus narrowing by examining the DRS for forced vital capacity (DRS-FVC) and the DRS for FEV1/FVC (DRS-FEV1/FVC), respectively. Similarly, we calculated the DRS for sGaw (DRS-sGaw) as another measure of airway narrowing. We performed statistical analysis using Spearman rank correlation and multifactor linear regression using a backward stepwise modelling procedure. We found that the DRS-FEV1 correlated with baseline VA/TLC (rho = -0.26, P < 0.01), and VA/TLC and FEV1 were independently associated with DRS-FEV1 (R(2) = 0.14, P = 0.01). In addition, VA/TLC was associated with both airway narrowing and closure in response to methacholine. These results confirm that baseline VA/TLC is associated with AR, and reflects both airway closure and airway narrowing following methacholine challenge. © 2014 Asian Pacific Society of Respirology.
Wiesing, M; de Los Arcos, T; Gebhard, M; Devi, A; Grundmeier, G
2017-12-20
The structural and electronic origins of the interactions between polycarbonate and sputter deposited TiAlN were analysed using a combined electron and force spectroscopic approach. Interaction forces were measured by means of dynamic force spectroscopy and the surface polarizability was analysed by X-ray photoelectron valence band spectroscopy. It could be shown that the adhesive interactions between polycarbonate and TiAlN are governed by van der Waals forces. Different surface cleansing and oxidizing treatments were investigated and the effect of the surface chemistry on the force interactions was analysed. Intense surface oxidation resulted in a decreased adhesion force by a factor of two due to the formation of a 2 nm thick Ti 0.21 Al 0.45 O surface oxide layer. The origin of the residual adhesion forces caused by the mixed Ti 0.21 Al 0.45 O surface oxide was clarified by considering the non-retarded Hamaker coefficients as calculated by Lifshitz theory, based on optical data from Reflection Electron Energy Loss Spectroscopy. This disclosed increased dispersion forces of Ti 0.21 Al 0.45 O due to the presence of Ti(iv) ions and related Ti 3d band optical transitions.
Influence of boundary conditions on the hydrodynamic forces of an oscillating sphere
NASA Astrophysics Data System (ADS)
Mirauda, Domenica; Negri, Marco; Martinelli, Luca; Malavasi, Stefano
2018-06-01
The design of submerged structures in sea currents presents certain problems that are not only connected to the shape of the obstacle but also to the number of acting forces as well as the correct modelling of the structures dynamic response. Currently, the common approach is that of integrated numerical modelling, which considers the contribution of both current and structure. The reliability of such an approach is better verified with experimental tests performed on models of simple geometry. On the basis of these considerations, the present work analyses the hydrodynamic forces acting on a sphere, which is characterised by a low mass ratio and damping. The sphere is immersed in a free surface flow and can oscillate along the streamwise and transverse flow direction. It is located at three different positions inside the current: close to the channel bottom, near the free surface and in the middle, and equally distant from both the bottom and free surface. The obtained results for different boundaries and flow kinematic conditions show a relevant influence of the free surface on the hydrodynamic forces along both the streamwise and transverse flow directions.
Adya, Ashok K; Canetta, Elisabetta; Walker, Graeme M
2006-01-01
Morphological changes in the cell surfaces of the budding yeast Saccharomyces cerevisiae (strain NCYC 1681), and the fission yeast Schizosaccharomyces pombe (strain DVPB 1354), in response to thermal and osmotic stresses, were investigated using an atomic force microscope. With this microscope imaging, together with measurements of culture viability and cell size, it was possible to relate topological changes of the cell surface at nanoscale with cellular stress physiology. As expected, when the yeasts were exposed to thermostress or osmostress, their viability together with the mean cell volume decreased in conjunction with the increase in thermal or osmotic shock. Nevertheless, the viability of cells stressed for up to 1 h remained relatively high. For example, viabilities were >50% and >90% for the thermostressed, and >60% and >70% for the osmostressed S. cerevisiae and Schiz. pombe, respectively. Mean cell volume measurements, and bearing and roughness analyses of atomic force microscope images of stressed yeasts indicate that Schiz. pombe may be more resistant to physical stresses than S. cerevisiae. Overall, this study has highlighted the usefulness of atomic force microscope in studies of yeast stress physiology.
Spectral responses of gravel beaches to tidal signals
NASA Astrophysics Data System (ADS)
Geng, Xiaolong; Boufadel, Michel C.
2017-01-01
Tides have been recognized as a major driving forcing affecting coastal aquifer system, and deterministic modeling has been very effective in elucidating mechanisms caused by tides. However, such modeling does not lend itself to capture embedded information in the signal, and rather focuses on the primary processes. Here, using yearlong data sets measured at beaches in Alaska Prince William Sound, we performed spectral and correlation analyses to identify temporal behavior of pore-water pressure, temperature and salinity. We found that the response of the beach system was characterized by fluctuations of embedded diurnal, semidiurnal, terdiurnal and quarterdiurnal tidal components. Hydrodynamic dispersion of salinity and temperature, and the thermal conductivity greatly affected pore water signals. Spectral analyses revealed a faster dissipation of the semi-diurnal component with respect to the diurnal components. Correlation functions showed that salinity had a relatively short memory of the tidal signal when inland freshwater recharge was large. In contrast, the signature of the tidal signal on pore-water temperature persisted for longer times, up to a week. We also found that heterogeneity greatly affected beach response. The response varied from a simple linear mapping in the frequency domain to complete modulation and masking of the input frequencies.
Conception of the system for traffic measurements based on piezoelectric foils
NASA Astrophysics Data System (ADS)
Płaczek, M.
2016-08-01
A concept of mechatronic system for traffic measurements based on the piezoelectric transducers used as sensors is presented. The aim of the work project is to theoretically and experimentally analyse the dynamic response of road infrastructure forced by vehicles motion. The subject of the project is therefore on the borderline of civil engineering and mechanical and covers a wide range of issues in both these areas. To measure the dynamic response of the tested pieces of road infrastructure application of piezoelectric, in particular piezoelectric transducers in the form of piezoelectric films (MFC - Macro Fiber Composite) is proposed. The purpose is to verify the possibility to use composite piezoelectric transducers as sensors used in traffic surveillance systems - innovative methods of controlling the road infrastructure and traffic. Presented paper reports works that were done in order to receive the basic information about analysed systems and their behaviour under excitation by passing vehicles. It is very important to verify if such kind of systems can be controlled by the analysis of the dynamic response of road infrastructure measured using piezoelectric transducers. Obtained results show that it could be possible.
SCM Forcing Data Derived from NWP Analyses
Jakob, Christian
2008-01-15
Forcing data, suitable for use with single column models (SCMs) and cloud resolving models (CRMs), have been derived from NWP analyses for the ARM (Atmospheric Radiation Measurement) Tropical Western Pacific (TWP) sites of Manus Island and Nauru.
Observed Responses of Mesospheric Water Vapor to Solar Cycle and Dynamical Forcings
NASA Astrophysics Data System (ADS)
Remsberg, Ellis; Damadeo, Robert; Natarajan, Murali; Bhatt, Praful
2018-04-01
This study focuses on responses of mesospheric water vapor (H2O) to the solar cycle flux at Lyman-α wavelength and to dynamical forcings according to the multivariate El-Nino/Southern Oscillation (ENSO) index. The zonal-averaged responses are for latitudes from 60°S to 60°N and pressure-altitudes from 0.01 to 1.0 hPa, as obtained from multiple linear regression analyses of time series of H2O from the Halogen Occultation Experiment for July 1992 to November 2005. The results compare very well with those from a separate simultaneous temporal and spatial (STS) method that also confirms that there are no significant sampling biases affecting both sets of results. Distributions of the seasonal amplitudes for temperature and H2O are in accord with the seasonal net circulation. In general, the responses of H2O to ENSO are anticorrelated with those of temperature. H2O responses to multivariate ENSO index are negative in the upper mesosphere and largest in the Northern Hemisphere; responses in the lower mesosphere are more symmetric with latitude. H2O responses to the Lyman-α flux (Lya) vary from strong negative values in the uppermost mesosphere to very weak, positive values in the tropical lowermost mesosphere. However, the effects of those H2O responses to the solar activity extend to the rest of the mesosphere via dynamical processes. Profiles of the responses to ENSO and Lya also agree reasonably with published results for H2O at the low latitudes from the Microwave Limb Sounder.
NASA Technical Reports Server (NTRS)
Lee-Rausch, Elizabeth M.; Batina, John T.
1993-01-01
A conical Euler code was developed to study unsteady vortex-dominated flows about rolling, highly swept delta wings undergoing either forced motions or free-to-roll motions that include active roll suppression. The flow solver of the code involves a multistage, Runge-Kutta time-stepping scheme that uses a cell-centered, finite-volume, spatial discretization of the Euler equations on an unstructured grid of triangles. The code allows for the additional analysis of the free to-roll case by simultaneously integrating in time the rigid-body equation of motion with the governing flow equations. Results are presented for a delta wing with a 75 deg swept, sharp leading edge at a free-stream Mach number of 1.2 and at 10 deg, 20 deg, and 30 deg angle of attack alpha. At the lower angles of attack (10 and 20 deg), forced-harmonic analyses indicate that the rolling-moment coefficients provide a positive damping, which is verified by free-to-roll calculations. In contrast, at the higher angle of attack (30 deg), a forced-harmonic analysis indicates that the rolling-moment coefficient provides negative damping at the small roll amplitudes. A free-to-roll calculation for this case produces an initially divergent response, but as the amplitude of motion grows with time, the response transitions to a wing-rock type of limit cycle oscillation, which is characteristic of highly swept delta wings. This limit cycle oscillation may be actively suppressed through the use of a rate-feedback control law and antisymmetrically deflected leading-edge flaps. Descriptions of the conical Euler flow solver and the free-to roll analysis are included in this report. Results are presented that demonstrate how the systematic analysis of the forced response of the delta wing can be used to predict the stable, neutrally stable, and unstable free response of the delta wing. These results also give insight into the flow physics associated with unsteady vortical flows about delta wings undergoing forced motions and free-to-roll motions, including the active suppression of the wing-rock type phenomenon. The conical Euler methodology developed is directly extend able to three-dimensional calculations.
Variable Stiffness Panel Structural Analyses With Material Nonlinearity and Correlation With Tests
NASA Technical Reports Server (NTRS)
Wu, K. Chauncey; Gurdal, Zafer
2006-01-01
Results from structural analyses of three tow-placed AS4/977-3 composite panels with both geometric and material nonlinearities are presented. Two of the panels have variable stiffness layups where the fiber orientation angle varies as a continuous function of location on the panel planform. One variable stiffness panel has overlapping tow bands of varying thickness, while the other has a theoretically uniform thickness. The third panel has a conventional uniform-thickness [plus or minus 45](sub 5s) layup with straight fibers, providing a baseline for comparing the performance of the variable stiffness panels. Parametric finite element analyses including nonlinear material shear are first compared with material characterization test results for two orthotropic layups. This nonlinear material model is incorporated into structural analysis models of the variable stiffness and baseline panels with applied end shortenings. Measured geometric imperfections and mechanical prestresses, generated by forcing the variable stiffness panels from their cured anticlastic shapes into their flatter test configurations, are also modeled. Results of these structural analyses are then compared to the measured panel structural response. Good correlation is observed between the analysis results and displacement test data throughout deep postbuckling up to global failure, suggesting that nonlinear material behavior is an important component of the actual panel structural response.
Steady potential solver for unsteady aerodynamic analyses
NASA Technical Reports Server (NTRS)
Hoyniak, Dan
1994-01-01
Development of a steady flow solver for use with LINFLO was the objective of this report. The solver must be compatible with LINFLO, be composed of composite mesh, and have transonic capability. The approaches used were: (1) steady flow potential equations written in nonconservative form; (2) Newton's Method; (3) implicit, least-squares, interpolation method to obtain finite difference equations; and (4) matrix inversion routines from LINFLO. This report was given during the NASA LeRC Workshop on Forced Response in Turbomachinery in August of 1993.
Development of monofilar rotor hub vibration absorber
NASA Technical Reports Server (NTRS)
Duh, J.; Miao, W.
1983-01-01
A design and ground test program was conducted to study the performance of the monofilar absorber for vibration reduction on a four-bladed helicopter. A monofilar is a centrifugal tuned two degree-of-freedom rotor hub absorber that provides force attenuation at two frequencies using the same dynamic mass. Linear and non-linear analyses of the coupled monofilar/airframe system were developed to study tuning and attenuation characteristics. Based on the analysis, a design was fabricated and impact bench tests verified the calculated non-rotating natural frequencies and mode shapes. Performance characteristics were measured using a rotating absorber test facility. These tests showed significant attenuation of fixed-system 4P hub motions due to 3P inplane rotating-system hub forces. In addition, detuning effects of the 3P monofilar modal response were small due to the nonlinearities and tuning pin slippage. However, attenuation of 4P hub motions due to 5P inplane hub forces was poor. The performance of the 5P monofilar modal response was degraded by torsional motion of the dynamic mass relative to the support arm which resulted in binding of the dynamic components. Analytical design studies were performed to evaluate this torsional motion problem. An alternative design is proposed which may alleviate the torsional motion of the dynamic mass.
Do Responses to Different Anthropogenic Forcings Add Linearly in Climate Models?
NASA Technical Reports Server (NTRS)
Marvel, Kate; Schmidt, Gavin A.; Shindell, Drew; Bonfils, Celine; LeGrande, Allegra N.; Nazarenko, Larissa; Tsigaridis, Kostas
2015-01-01
Many detection and attribution and pattern scaling studies assume that the global climate response to multiple forcings is additive: that the response over the historical period is statistically indistinguishable from the sum of the responses to individual forcings. Here, we use the NASA Goddard Institute for Space Studies (GISS) and National Center for Atmospheric Research Community Climate System Model (CCSM) simulations from the CMIP5 archive to test this assumption for multi-year trends in global-average, annual-average temperature and precipitation at multiple timescales. We find that responses in models forced by pre-computed aerosol and ozone concentrations are generally additive across forcings; however, we demonstrate that there are significant nonlinearities in precipitation responses to di?erent forcings in a configuration of the GISS model that interactively computes these concentrations from precursor emissions. We attribute these to di?erences in ozone forcing arising from interactions between forcing agents. Our results suggest that attribution to specific forcings may be complicated in a model with fully interactive chemistry and may provide motivation for other modeling groups to conduct further single-forcing experiments.
Do responses to different anthropogenic forcings add linearly in climate models?
Marvel, Kate; Schmidt, Gavin A.; Shindell, Drew; ...
2015-10-14
Many detection and attribution and pattern scaling studies assume that the global climate response to multiple forcings is additive: that the response over the historical period is statistically indistinguishable from the sum of the responses to individual forcings. Here, we use the NASA Goddard Institute for Space Studies (GISS) and National Center for Atmospheric Research Community Climate System Model (CCSM4) simulations from the CMIP5 archive to test this assumption for multi-year trends in global-average, annual-average temperature and precipitation at multiple timescales. We find that responses in models forced by pre-computed aerosol and ozone concentrations are generally additive across forcings. However,more » we demonstrate that there are significant nonlinearities in precipitation responses to different forcings in a configuration of the GISS model that interactively computes these concentrations from precursor emissions. We attribute these to differences in ozone forcing arising from interactions between forcing agents. Lastly, our results suggest that attribution to specific forcings may be complicated in a model with fully interactive chemistry and may provide motivation for other modeling groups to conduct further single-forcing experiments.« less
The effects of differing response-force requirements on fixed-ratio responding of rats.
Alling, K; Poling, A
1995-01-01
Rats were exposed to two-component multiple schedules of food delivery. In the first experiment, 15 responses were required to produce food in both components. A downward force of 0.25 N (25 g) was always required to operate the response lever in one component. In the other, the required force was 0.25, 0.50, 1.00, or 2.00 N (25, 50, 100, or 200 g). In the second experiment, 0.25 N of force operated the lever in one component, but in the other, the force requirement for five consecutive responses at the beginning, middle, or end of each ratio was increased from 0.25 to 2.00 N. In the third experiment, the number of responses required to produce food was reduced from 15 to 5, and then to 1. Again, the effects of altering response force from 0.25 to 2.00 N were examined. In general, as response force increased in all experiments, mean response rates decreased and mean interresponse times increased. PMID:7751836
Rotational Augmentation on a 2.3 MW Rotor Blade with Thick Flatback Airfoil Cross-Sections: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schreck, S.; Fingersh, L.; Siegel, K.
2013-01-01
Rotational augmentation was analyzed for a 2.3 MW wind turbine, which was equipped with thick flatback airfoils at inboard radial locations and extensively instrumented for acquisition of time varying surface pressures. Mean aerodynamic force and surface pressure data were extracted from an extensive field test database, subject to stringent criteria for wind inflow and turbine operating conditions. Analyses of these data showed pronounced amplification of aerodynamic forces and significant enhancements to surface pressures in response to rotational influences, relative to two-dimensional, stationary conditions. Rotational augmentation occurrence and intensity in the current effort was found to be consistent with that observedmore » in previous research. Notably, elevated airfoil thickness and flatback design did not impede rotational augmentation.« less
Random mechanics: Nonlinear vibrations, turbulences, seisms, swells, fatigue
NASA Astrophysics Data System (ADS)
Kree, P.; Soize, C.
The random modeling of physical phenomena, together with probabilistic methods for the numerical calculation of random mechanical forces, are analytically explored. Attention is given to theoretical examinations such as probabilistic concepts, linear filtering techniques, and trajectory statistics. Applications of the methods to structures experiencing atmospheric turbulence, the quantification of turbulence, and the dynamic responses of the structures are considered. A probabilistic approach is taken to study the effects of earthquakes on structures and to the forces exerted by ocean waves on marine structures. Theoretical analyses by means of vector spaces and stochastic modeling are reviewed, as are Markovian formulations of Gaussian processes and the definition of stochastic differential equations. Finally, random vibrations with a variable number of links and linear oscillators undergoing the square of Gaussian processes are investigated.
Theoretical modeling of the catch-slip bond transition in biological adhesion
NASA Astrophysics Data System (ADS)
Gunnerson, Kim; Pereverzev, Yuriy; Prezhdo, Oleg
2006-05-01
The mechanism by which leukocytes leave the blood stream and enter inflamed tissue is called extravasation. This process is facilitated by the ability of selectin proteins, produced by the endothelial cells of blood vessels, to form transient bonds with the leukocytes. In the case of P-selectin, the protein bonds with P-selectin glycoprotein ligands (PSGL-1) produced by the leukocyte. Recent atomic force microscopy and flow chamber analyses of the binding of P-selectin to PSGL-1 provide evidence for an unusual biphasic catch-bond/slip-bond behavior in response to the strength of exerted force. This biphasic process is not well-understood. There are several theoretical models for describing this phenomenon. These models use different profiles for potential energy landscapes and how they change under forces. We are exploring these changes using molecular dynamics. We will present a simple theoretical model as well as share some of our early MD results for describing this phenomenon.
Climate forcing and desert malaria: the effect of irrigation.
Baeza, Andres; Bouma, Menno J; Dobson, Andy P; Dhiman, Ramesh; Srivastava, Harish C; Pascual, Mercedes
2011-07-14
Rainfall variability and associated remote sensing indices for vegetation are central to the development of early warning systems for epidemic malaria in arid regions. The considerable change in land-use practices resulting from increasing irrigation in recent decades raises important questions on concomitant change in malaria dynamics and its coupling to climate forcing. Here, the consequences of irrigation level for malaria epidemics are addressed with extensive time series data for confirmed Plasmodium falciparum monthly cases, spanning over two decades for five districts in north-west India. The work specifically focuses on the response of malaria epidemics to rainfall forcing and how this response is affected by increasing irrigation. Remote sensing data for the Normalized Difference Vegetation Index (NDVI) are used as an integrated measure of rainfall to examine correlation maps within the districts and at regional scales. The analyses specifically address whether irrigation has decreased the coupling between malaria incidence and climate variability, and whether this reflects (1) a breakdown of NDVI as a useful indicator of risk, (2) a weakening of rainfall forcing and a concomitant decrease in epidemic risk, or (3) an increase in the control of malaria transmission. The predictive power of NDVI is compared against that of rainfall, using simple linear models and wavelet analysis to study the association of NDVI and malaria variability in the time and in the frequency domain respectively. The results show that irrigation dampens the influence of climate forcing on the magnitude and frequency of malaria epidemics and, therefore, reduces their predictability. At low irrigation levels, this decoupling reflects a breakdown of local but not regional NDVI as an indicator of rainfall forcing. At higher levels of irrigation, the weakened role of climate variability may be compounded by increased levels of control; nevertheless this leads to no significant decrease in the actual risk of disease. This implies that irrigation can lead to more endemic conditions for malaria, creating the potential for unexpectedly large epidemics in response to excess rainfall if these climatic events coincide with a relaxation of control over time. The implications of our findings for control policies of epidemic malaria in arid regions are discussed.
Effects of Differing Response-Force Requirements on Food-Maintained Responding in C57BL/6J Mice
ERIC Educational Resources Information Center
Zarcone, Troy J.; Chen, Rong; Fowler, Stephen C.
2009-01-01
The effect of force requirements on response effort was examined using inbred C57BL/6J mice trained to press a disk with their snout. Lateral peak forces greater than 2 g were defined as responses (i.e., all responses above the measurement threshold). Different, higher force requirements were used to define criterion responses (a subclass of all…
The role of response force on the persistence and structure of behavior during extinction.
Pinkston, Jonathan W; Foss, Erica K
2018-01-01
Behavior Momentum Theory has emerged as a prominent account of resistance to change in both basic and applied research. Although laboratory studies often define precise, repeatable responses, application research often deals with response classes that may vary widely along a number of dimensions. In general, Behavior Momentum Theory has not addressed how response dimensions impact resistance to change, providing an opportunity to expand the model in new directions. Four rats pressed a force transducer under a multiple variable interval (VI) 60-s VI 60-s schedule of reinforcement. In one component, responses satisfied the schedule only if the response force fell within a "low" force band requirement; responses in the other schedule were required to satisfy a "high" force band. Once responding stabilized, extinction was programmed for three sessions. Then, the procedures were replicated. The results showed that response force came under discriminative control, but force requirements had no impact on resistance to extinction. In a follow-up condition, the schedule was changed to a multiple VI 30-s VI 120-s schedule and the low-force band operated in both components. The results showed that behavior maintained by the VI 30-s schedule was generally more resistant to extinction. A secondary analysis showed that force distributions created under baseline maintained during extinction. Overall, the results suggest that differential response force requirements prevailing in steady state do not affect the course of extinction. © 2018 Society for the Experimental Analysis of Behavior.
NASA Astrophysics Data System (ADS)
Wen, Guoyong; Cahalan, Robert F.; Rind, David; Jonas, Jeffrey; Pilewskie, Peter; Wu, Dong L.; Krivova, Natalie A.
2017-03-01
We apply two reconstructed spectral solar forcing scenarios, one SIM (Spectral Irradiance Monitor) based, the other the SATIRE (Spectral And Total Irradiance REconstruction) modeled, as inputs to the GISS (Goddard Institute for Space Studies) GCMAM (Global Climate Middle Atmosphere Model) to examine climate responses on decadal to centennial time scales, focusing on quantifying the difference of climate response between the two solar forcing scenarios. We run the GCMAM for about 400 years with present day trace gas and aerosol for the two solar forcing inputs. We find that the SIM-based solar forcing induces much larger long-term response and 11-year variation in global averaged stratospheric temperature and column ozone. We find significant decreasing trends of planetary albedo for both forcing scenarios in the 400-year model runs. However the mechanisms for the decrease are very different. For SATIRE solar forcing, the decreasing trend of planetary albedo is associated with changes in cloud cover. For SIM-based solar forcing, without significant change in cloud cover on centennial and longer time scales, the apparent decreasing trend of planetary albedo is mainly due to out-of-phase variation in shortwave radiative forcing proxy (downwelling flux for wavelength >330 nm) and total solar irradiance (TSI). From the Maunder Minimum to present, global averaged annual mean surface air temperature has a response of 0.1 °C to SATIRE solar forcing compared to 0.04 °C to SIM-based solar forcing. For 11-year solar cycle, the global surface air temperature response has 3-year lagged response to either forcing scenario. The global surface air 11-year temperature response to SATIRE forcing is about 0.12 °C, similar to recent multi-model estimates, and comparable to the observational-based evidence. However, the global surface air temperature response to 11-year SIM-based solar forcing is insignificant and inconsistent with observation-based evidence.
Melzer, I; Krasovsky, T; Oddsson, L I E; Liebermann, D G
2010-12-01
This study investigated the force-time relationship during the push-off stage of a rapid voluntary step in young and older healthy adults, to study the assumption that when balance is lost a quick step may preserve stability. The ability to achieve peak propulsive force within a short time is critical for the performance of such a quick powerful step. We hypothesized that older adults would achieve peak force and power in significantly longer times compared to young people, particularly during the push-off preparatory phase. Fifteen young and 15 older volunteers performed rapid forward steps while standing on a force platform. Absolute anteroposterior and body weight normalized vertical forces during the push-off in the preparation and swing phases were used to determine time to peak and peak force, and step power. Two-way analyses of variance ('Group' [young-older] by 'Phase' [preparation-swing]) were used to assess our hypothesis (P ≤ 0.05). Older people exerted lower peak forces (anteroposterior and vertical) than young adults, but not necessarily lower peak power. More significantly, they showed a longer time to peak force, particularly in the vertical direction during the preparation phase. Older adults generate propulsive forces slowly and reach lower magnitudes, mainly during step preparation. The time to achieve a peak force and power, rather than its actual magnitude, may account for failures in quickly performing a preventive action. Such delay may be associated with the inability to react and recruit muscles quickly. Thus, training elderly to step fast in response to relevant cues may be beneficial in the prevention of falls. Copyright © 2010 Elsevier Ltd. All rights reserved.
Infante, Peter F
2013-01-01
The cohort study of Pliofilm workers exposed to benzene has been used as a primary data source to estimate quantitative dose response for benzene-leukemia. Little attention has focused on the undercounting of leukemia deaths used in the analyses, nor on the behavior of the company toward the Pliofilm workers who contracted leukemia. An historical review of documents related to the Akron portion of the cohort indicates that between two and five workers diagnosed with acute myelogenous leukemia (AML) could be added to the cohort for alternate dose response analyses. In the late 1950s and early 1960s, the company did not inform Pliofilm workers with AML that they had the disease, concealed from the workers, including those diagnosed with AML, and the treating hematologist that benzene was the solvent being used, and denied compensation for AML cases exposed to benzene until forced to do so by the State of Ohio in 1968.
Causing Factors for Extreme Precipitation in the Western Saudi-Arabian Peninsula
NASA Astrophysics Data System (ADS)
Alharbi, M. M.; Leckebusch, G. C.
2015-12-01
In the western coast of Saudi Arabia the climate is in general semi-arid but extreme precipitation events occur on a regular basis: e.g., on 26th November 2009, when 122 people were killed and 350 reported missing in Jeddah following more than 90mm in just four hours. Our investigation will a) analyse major drivers of the generation of extremes and b) investigate major responsible modes of variability for the occurrence of extremes. Firstly, we present a systematic analysis of station based observations of the most relevant extreme events (1985-2013) for 5 stations (Gizan, Makkah, Jeddah, Yenbo and Wejh). Secondly, we investigate the responsible mechanism on the synoptic to large-scale leading to the generation of extremes and will analyse factors for the time variability of extreme event occurrence. Extreme events for each station are identified in the wet season (Nov-Jan): 122 events show intensity above the respective 90th percentile. The most extreme events are systematically investigated with respect to the responsible forcing conditions which we can identify as: The influence of the Soudan Low, active Red-Sea-Trough situations established via interactions with mid-latitude tropospheric wave activity, low pressure systems over the Mediterranean, the influence of the North Africa High, the Arabian Anticyclone and the influence of the Indian monsoon trough. We investigate the role of dynamical forcing factors like the STJ and the upper-troposphere geopotential conditions and the relation to smaller local low-pressure systems. By means of an empirical orthogonal function (EOF) analysis based on MSLP we investigate the possibility to objectively quantify the influence of existing major variability modes and their role for the generation of extreme precipitation events.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Argueello, J.G.; Dohrmann, C.R.; Carne, T.G.
The combined analysis/test effort described in this paper compares predictions with measured data from a step-relaxation test in the absence of significant wind-driven aerodynamic loading. The process described here is intended to illustrate a method for validation of time domain codes for structural analysis of wind turbine structures. Preliminary analyses were performed to investigate the transient dynamic response that the rotating Sandia 34 m Vertical Axis Wind Turbine (VAWT) would undergo when one of the two blades was excited by step-relaxation. The calculations served two purposes. The first was for pretest planning to evaluate the relative importance of the variousmore » forces that would be acting on the structure during the test and to determine if the applied force in the step-relaxation would be sufficient to produce an excitation that was distinguishable from that produced by the aerodynamic loads. The second was to provide predictions that could subsequently be compared to the data from the test. The test was carried out specifically to help in the validation of the time-domain structural dynamics code, VAWT-SDS, which predicts the dynamic response of VAWTs subject to transient events. Post-test comparisons with the data were performed and showed a qualitative agreement between pretest predictions and measured response. However, they also showed that there was significantly more damping in the measurements than included in the predictions. Efforts to resolve this difference, including post-test analyses, were undertaken and are reported herein. The overall effort described in this paper represents a major step in the process of arriving at a validated structural dynamics code.« less
NASA Astrophysics Data System (ADS)
Smith, C. J.; Forster, P.; Richardson, T.; Myhre, G.
2016-12-01
Effective radiative forcing (ERF), rather than "traditional" radiative forcing (RF), has become an increasingly popular metric in recent years, as it more closely links the difference in the earth's top-of-atmosphere (TOA) energy budget to equilibrium near-surface temperature rise. One method to diagnose ERF is to take the difference of TOA radiative fluxes from two climate model runs (a perturbation and a control) with prescribed sea-surface temperatures and sea-ice coverage. ERF can be thought of as the sum of a direct forcing, which is the pure radiative effect of a forcing agent, plus rapid adjustments, which are changes in climate state triggered by the forcing agent that themselves affect the TOA energy budget and are unrelated to surface temperature changes.In addition to the classic experiment of doubling of CO2 (2xCO2), we analyse rapid adjustments to a tripling of methane (3xCH4), a quintupling of sulphate aerosol (5xSul), a ten times increase in black carbon (10xBC) and a 2% increase in the solar constant (2%Sol). We use CMIP-style climate model diagnostics from six participating models of the Precipitation Driver Response Model Intercomparison Project (PDRMIP).Assuming approximately linear contributions to the TOA flux differences, the rapid adjustments from changes in atmospheric temperature, surface temperature, surface albedo and water vapour can be cleanly and simply separated from the direct forcing by radiative kernels. The rapid adjustments are in turn decomposed into stratospheric and tropospheric components. We introduce kernels based on the HadGEM2 climate model and find similar results to those based on other models. Cloud adjustments are evaluated as a residual of the TOA radiative fluxes between all-sky and clear-sky runs once direct forcing and rapid adjustments have been subtracted. The cloud adjustments are also calculated online within the HadGEM2 model using the ISCCP simulator. For aerosol forcing experiments, rapid adjustments vary substantially between models. Much of the contribution to this model spread is in the cloud adjustments. We also notice a spread in the model calculations of direct forcing for greenhouse gases, which suggest differences in the radiative transfer parameterisations used by each model.
Effect of compressive force on PEM fuel cell performance
NASA Astrophysics Data System (ADS)
MacDonald, Colin Stephen
Polymer electrolyte membrane (PEM) fuel cells possess the potential, as a zero-emission power source, to replace the internal combustion engine as the primary option for transportation applications. Though there are a number of obstacles to vast PEM fuel cell commercialization, such as high cost and limited durability, there has been significant progress in the field to achieve this goal. Experimental testing and analysis of fuel cell performance has been an important tool in this advancement. Experimental studies of the PEM fuel cell not only identify unfiltered performance response to manipulation of variables, but also aid in the advancement of fuel cell modelling, by allowing for validation of computational schemes. Compressive force used to contain a fuel cell assembly can play a significant role in how effectively the cell functions, the most obvious example being to ensure proper sealing within the cell. Compression can have a considerable impact on cell performance beyond the sealing aspects. The force can manipulate the ability to deliver reactants and the electrochemical functions of the cell, by altering the layers in the cell susceptible to this force. For these reasons an experimental study was undertaken, presented in this thesis, with specific focus placed on cell compression; in order to study its effect on reactant flow fields and performance response. The goal of the thesis was to develop a consistent and accurate general test procedure for the experimental analysis of a PEM fuel cell in order to analyse the effects of compression on performance. The factors potentially affecting cell performance, which were a function of compression, were identified as: (1) Sealing and surface contact; (2) Pressure drop across the flow channel; (3) Porosity of the GDL. Each factor was analysed independently in order to determine the individual contribution to changes in performance. An optimal degree of compression was identified for the cell configuration in question and the performance gains from the aforementioned compression factors were quantified. The study provided a considerable amount of practical and analytical knowledge in the area of cell compression and shed light on the importance of precision compressive control within the PEM fuel cell.
FE Simulation of Ultrasonic Back Extrusion
NASA Astrophysics Data System (ADS)
Rosochowska, Malgorzata; Rosochowski, Andrzej
2007-04-01
The main benefit of using ultrasonic vibrations in metal forming arises from the reduction in the mean forming force. In order to examine mechanisms responsible for this effect FE simulations of ultrasonic back extrusion using ABAQUS/Explicit were carried out. In two analysed models, vibration of frequency of 20 kHz was imposed on the punch. In the first model, the die and the punch were defined as rigid bodies and in the second, the punch was modelled as an elastic body, this being the innovative feature of the research. The punch vibrated in a longitudinal mode. Simulations were performed for amplitude of vibrations of 8.5μm and different punch velocities for both friction and frictionless conditions. Results showed that the amplitude and the mean forming force depended on the process velocity. Further, the decrease in the mean forming force might be partly explained by the reduction in the friction force due to changes in the direction and magnitude of the frictional stress over the vibration period. A lower deflection of the elastic punch under oscillatory conditions was observed, which was an indirect evidence of the reduced forming force. It was also observed that amplitude of vibrations at the working surface of the elastic punch was smaller than the applied one.
Distinct dynamical patterns that distinguish willed and forced actions.
Garcia Dominguez, Luis; Kostelecki, Wojciech; Wennberg, Richard; Perez Velazquez, Jose L
2011-03-01
The neural pathways for generating willed actions have been increasingly investigated since the famous pioneering work by Benjamin Libet on the nature of free will. To better understand what differentiates the brain states underlying willed and forced behaviours, we performed a study of chosen and forced actions over a binary choice scenario. Magnetoencephalography recordings were obtained from six subjects during a simple task in which the subject presses a button with the left or right finger in response to a cue that either (1) specifies the finger with which the button should be pressed or (2) instructs the subject to press a button with a finger of their own choosing. Three independent analyses were performed to investigate the dynamical patterns of neural activity supporting willed and forced behaviours during the preparatory period preceding a button press. Each analysis offered similar findings in the temporal and spatial domains and in particular, a high accuracy in the classification of single trials was obtained around 200 ms after cue presentation with an overall average of 82%. During this period, the majority of the discriminatory power comes from differential neural processes observed bilaterally in the parietal lobes, as well as some differences in occipital and temporal lobes, suggesting a contribution of these regions to willed and forced behaviours.
Meyer, Antje S.; Alday, Phillip M.; Decuyper, Caitlin; Knudsen, Birgit
2018-01-01
As conversation is the most important way of using language, linguists and psychologists should combine forces to investigate how interlocutors deal with the cognitive demands arising during conversation. Linguistic analyses of corpora of conversation are needed to understand the structure of conversations, and experimental work is indispensable for understanding the underlying cognitive processes. We argue that joint consideration of corpus and experimental data is most informative when the utterances elicited in a lab experiment match those extracted from a corpus in relevant ways. This requirement to compare like with like seems obvious but is not trivial to achieve. To illustrate this approach, we report two experiments where responses to polar (yes/no) questions were elicited in the lab and the response latencies were compared to gaps between polar questions and answers in a corpus of conversational speech. We found, as expected, that responses were given faster when they were easy to plan and planning could be initiated earlier than when they were harder to plan and planning was initiated later. Overall, in all but one condition, the latencies were longer than one would expect based on the analyses of corpus data. We discuss the implication of this partial match between the data sets and more generally how corpus and experimental data can best be combined in studies of conversation. PMID:29706919
Grip force and force sharing in two different manipulation tasks with bottles.
Cepriá-Bernal, Javier; Pérez-González, Antonio; Mora, Marta C; Sancho-Bru, Joaquín L
2017-07-01
Grip force and force sharing during two activities of daily living were analysed experimentally in 10 right-handed subjects. Four different bottles, filled to two different levels, were manipulated for two tasks: transporting and pouring. Each test subject's hand was instrumented with eight thin wearable force sensors. The grip force and force sharing were significantly different for each bottle model. Increasing the filling level resulted in an increase in grip force, but the ratio of grip force to load force was higher for lighter loads. The task influenced the force sharing but not the mean grip force. The contributions of the thumb and ring finger were higher in the pouring task, whereas the contributions of the palm and the index finger were higher in the transport task. Mean force sharing among fingers was 30% for index, 29% for middle, 22% for ring and 19% for little finger. Practitioner Summary: We analysed grip force and force sharing in two manipulation tasks with bottles: transporting and pouring. The objective was to understand the effects of the bottle features, filling level and task on the contribution of different areas of the hand to the grip force. Force sharing was different for each task and the bottles features affected to both grip force and force sharing.
Jaśkowski, P; Włodarczyk, D
1997-04-01
Some recent findings suggested that response force measured during reaction time experiments might reflect changes in activation. We performed an experiment in which the effect of sleep deprivation, knowledge of results, and stimulus quality on response force was studied in simple and choice reaction tasks. As expected, both simple and choice reaction times increased with sleep deficit. Further, simple and choice reactions were faster with knowledge of results and slowed down when stimulus quality was degraded. As sleep deprivation affects both arousal and activation, we expected a detrimental effect of sleep on force amplitude. On the other hand, knowledge of results was expected to increase force by its compensatory effect on arousal and activation. No effect of sleep deprivation on response force was found. Knowledge of results increased response force independently of sleep deprivation.
The dynamic flexural response of propeller blades. M.S. Thesis
NASA Technical Reports Server (NTRS)
Djordjevic, S. Z.
1982-01-01
The determination of the torsional constants of three blade models having NACA four-digit symmetrical airfoil cross sections is presented. Values were obtained for these models analytically and experimentally. Results were also obtained for three other models having rectangular, elliptical, and parabolic cross sections. Complete modal analyses were performed for five blade models. The identification of modal parameters was done for cases when the blades were modeled as either undamped or damped multi-degree-of-freedom systems. For the experimental phase of this study, the modal testing was performed using a Dual Channel FFT analyzer and an impact hammer (which produced an impulsive excitation). The natural frequency and damping of each mode in the frequency range up to 2 kHz were measured. A small computer code was developed to calculate the dynamic response of the blade models for comparison with the experimental results. A comparison of the undamped and damped cases was made for all five blade models at the instant of maximum excitation force. The program was capable of handling models where the excitation forces were distributed arbitrarily along the length of the blade.
NASA Technical Reports Server (NTRS)
August, Richard; Kaza, Krishna Rao V.
1988-01-01
An investigation of the vibration, performance, flutter, and forced response of the large-scale propfan, SR7L, and its aeroelastic model, SR7A, has been performed by applying available structural and aeroelastic analytical codes and then correlating measured and calculated results. Finite element models of the blades were used to obtain modal frequencies, displacements, stresses and strains. These values were then used in conjunction with a 3-D, unsteady, lifting surface aerodynamic theory for the subsequent aeroelastic analyses of the blades. The agreement between measured and calculated frequencies and mode shapes for both models is very good. Calculated power coefficients correlate well with those measured for low advance ratios. Flutter results show that both propfans are stable at their respective design points. There is also good agreement between calculated and measured blade vibratory strains due to excitation resulting from yawed flow for the SR7A propfan. The similarity of structural and aeroelastic results show that the SR7A propfan simulates the SR7L characteristics.
Forced responses on a radial turbine with nozzle guide vanes
NASA Astrophysics Data System (ADS)
Liu, Yixiong; Yang, Ce; Ma, Chaochen; Lao, DaZhong
2014-04-01
Radial turbines with nozzle guide vanes are widely used in various size turbochargers. However, due to the interferences with guide vanes, the blades of impellers are exposed to intense unsteady aerodynamic excitations, which cause blade vibrations and lead to high cycle failures (HCF). Moreover, the harmonic resonance in some frequency regions are unavoidable due to the wide operation conditions. Aiming to achieve a detail insight into vibration characteristics of radial flow turbine, a numerical method based on fluid structure interaction (FSI) is presented. Firstly, the unsteady aerodynamic loads are determined by computational fluid dynamics (CFD). And the fluctuating pressures are transformed from time domain to frequency domain by fast Fourier-transform (FFT). Then, the entire rotor model is adopted to analyze frequencies and mode shapes considering mistuning in finite element (FE) method. Meanwhile, harmonic analyses, applying the pressure fluctuation from CFD, are conducted to investigate the impeller vibration behavior and blade forced response in frequency domain. The prediction of the vibration dynamic stress shows acceptable agreement to the blade actual damage in consistent tendency.
Spinal manipulation force and duration affect vertebral movement and neuromuscular responses.
Colloca, Christopher J; Keller, Tony S; Harrison, Deed E; Moore, Robert J; Gunzburg, Robert; Harrison, Donald D
2006-03-01
Previous study in human subjects has documented biomechanical and neurophysiological responses to impulsive spinal manipulative thrusts, but very little is known about the neuromechanical effects of varying thrust force-time profiles. Ten adolescent Merino sheep were anesthetized and posteroanterior mechanical thrusts were applied to the L3 spinous process using a computer-controlled, mechanical testing apparatus. Three variable pulse durations (10, 100, 200 ms, force = 80 N) and three variable force amplitudes (20, 40, 60 N, pulse duration = 100 ms) were examined for their effect on lumbar motion response (L3 displacement, L1, L2 acceleration) and normalized multifidus electromyographic response (L3, L4) using a repeated measures analysis of variance. Increasing L3 posteroanterior force amplitude resulted in a fourfold linear increase in L3 posteroanterior vertebral displacement (p < 0.001) and adjacent segment (L1, L2) posteroanterior acceleration response (p < 0.001). L3 displacement was linearly correlated (p < 0.001) to the acceleration response over the 20-80 N force range (100 ms). At constant force, 10 ms thrusts resulted in nearly fivefold lower L3 displacements and significantly increased segmental (L2) acceleration responses compared to the 100 ms (19%, p = 0.005) and 200 ms (16%, p = 0.023) thrusts. Normalized electromyographic responses increased linearly with increasing force amplitude at higher amplitudes and were appreciably affected by mechanical excitation pulse duration. Changes in the biomechanical and neuromuscular response of the ovine lumbar spine were observed in response to changes in the force-time characteristics of the spinal manipulative thrusts and may be an underlying mechanism in related clinical outcomes.
Contribution of Black Carbon Aerosol to Drying of the Mediterranean
NASA Astrophysics Data System (ADS)
Tang, T.; Shindell, D. T.; Samset, B. H.; Boucher, O.; Forster, P.; Hodnebrog, Ø.; Myhre, G.; Sillmann, J.; Voulgarakis, A.; Andrews, T.; Faluvegi, G.; Fläschner, D.; Iverson, T.; Kasoar, M.; Kharin, V. V.; Kirkevag, A.; Lamarque, J. F.; Olivié, D.; Richardson, T.; Stjern, C.; Takemura, T.; Zwiers, F. W.
2017-12-01
Atmospheric aerosols affect cloud properties, radiative balance and thus, the hydrological cycle. Many studies have reported that precipitation has decreased in the Mediterranean since the mid-20th century, and investigated possible mechanisms. So far, however, the effects of aerosol forcing on Mediterranean precipitation remain largely unknown. Here we compare observed Mediterranean precipitation trends during 1951-2010 with responses to individual forcing in a set of state-of-the-art global climate models. Our analyses suggest that nearly one-third (30%) of the observed precipitation decrease may be attributable to black carbon forcing. The remainder is most strongly linked to forcing of well-mixed greenhouse gases (WMGHGs), with scattering sulfate aerosols having negligible impacts. Black carbon caused an enhanced positive North Atlantic Oscillation (NAO)/Arctic Oscillation (AO)-like sea level pressure (SLP) pattern, characterized by higher SLP at mid-latitudes and lower SLP at high-latitudes. This SLP change diverted the jet stream and storm tracks further northward, reducing precipitation in the Mediterranean while increasing precipitation in Northern Europe. The results from this study suggest that future black carbon emissions may significantly affect regional water resources, agricultural practices, ecosystems, and economy in the Mediterranean region.
NASA Astrophysics Data System (ADS)
Jebri, B.; Khodri, M.; Gastineau, G.; Echevin, V.; Thiria, S.
2017-12-01
Upwelling is critical to the biological production, acidification, and deoxygenation of the ocean's major eastern boundary current ecosystems. A conceptual hypothesis suggests that the winds that favour coastal upwelling intensify with anthropogenic global warming due to increased land-sea temperature contrast. We examine this hypothesis for the dynamics of the Peru-Chile upwelling using a set of four large ensembles of coupled, ocean-atmosphere model simulations with the IPSL model covering the 1940-2014 period. In one large ensemble we prescribe the standard CMIP5 greenhouse gas (GHG) concentrations, anthropogenic aerosol, ozone and volcanic forcings, following the historical experiments through 2005 and RCP8.5 from 2006-2014, while the other ensembles consider separately the GHG, ozone and volcanic forcings. We find evidence for intensification of upwelling-favourable winds with however little evidence of atmospheric pressure gradients in response to increasing land-sea temperature differences. Our analyses reveal poleward migration and intensification of the South Pacific Anticyclone near poleward boundaries of climatological Peruvian and Chilean upwelling zones. This contribution further investigates the physical mechanisms for the Peru-Chile upwelling intensification and the relative role of natural and anthropogenic forcings.
Localised task-dependent motor-unit recruitment in the masseter.
Schindler, H J; Hellmann, D; Giannakopoulos, N N; Eiglsperger, U; van Dijk, J P; Lapatki, B G
2014-07-01
Localised motor-unit (MU) recruitment in the masseter was analysed in this study. We investigated whether differential activation behaviour, which has already been reported for distant masseter regions, can also be detected in small muscle subvolumes at the level of single MUs. Two bipolar fine-wire electrodes and an intra-oral 3D bite-force transmitter were used to record intra-muscular electromyograms (EMG) resulting from controlled bite-forces of 10 healthy human subjects (mean age 24.1 ± 1.2 years). Two-hundred and seventeen decomposed MUs were organised into localised MU task groups with different (P < 0.001) force-direction-specific behaviour. Proportions of MUs involved in one, two, three or four examined tasks were 46%, 31%, 18% and 5%, respectively. This study provides evidence of the ability of the neuromuscular system to modify the mechanical output of small masseter subvolumes by differential control of adjacent MUs belonging to distinct task groups. Localised differential activation behaviour of the masseter may be the crucial factor enabling highly flexible and efficient adjustment of the muscle activity in response to complex local biomechanical needs, for example, continually varying bite-forces during the demanding masticatory process. © 2014 John Wiley & Sons Ltd.
Dynamics of elastic nonlinear rotating composite beams with embedded actuators
NASA Astrophysics Data System (ADS)
Ghorashi, Mehrdaad
2009-08-01
A comprehensive study of the nonlinear dynamics of composite beams is presented. The study consists of static and dynamic solutions with and without active elements. The static solution provides the initial conditions for the dynamic analysis. The dynamic problems considered include the analyses of clamped (hingeless) and articulated (hinged) accelerating rotating beams. Numerical solutions for the steady state and transient responses have been obtained. It is shown that the transient solution of the nonlinear formulation of accelerating rotating beam converges to the steady state solution obtained by the shooting method. The effect of perturbing the steady state solution has also been calculated and the results are shown to be compatible with those of the accelerating beam analysis. Next, the coupled flap-lag rigid body dynamics of a rotating articulated beam with hinge offset and subjected to aerodynamic forces is formulated. The solution to this rigid-body problem is then used, together with the finite difference method, in order to produce the nonlinear elasto-dynamic solution of an accelerating articulated beam. Next, the static and dynamic responses of nonlinear composite beams with embedded Anisotropic Piezo-composite Actuators (APA) are presented. The effect of activating actuators at various directions on the steady state force and moments generated in a rotating composite beam has been presented. With similar results for the transient response, this analysis can be used in controlling the response of adaptive rotating beams.
Common Warming Pattern Emerges Irrespective of Forcing Location
NASA Astrophysics Data System (ADS)
Kang, Sarah M.; Park, Kiwoong; Jin, Fei-Fei; Stuecker, Malte F.
2017-10-01
The Earth's climate is changing due to the existence of multiple radiative forcing agents. It is under question whether different forcing agents perturb the global climate in a distinct way. Previous studies have demonstrated the existence of similar climate response patterns in response to aerosol and greenhouse gas (GHG) forcings. In this study, the sensitivity of tropospheric temperature response patterns to surface heating distributions is assessed by forcing an atmospheric general circulation model coupled to an aquaplanet slab ocean with a wide range of possible forcing patterns. We show that a common climate pattern emerges in response to localized forcing at different locations. This pattern, characterized by enhanced warming in the tropical upper troposphere and the polar lower troposphere, resembles the historical trends from observations and models as well as the future projections. Atmospheric dynamics in combination with thermodynamic air-sea coupling are primarily responsible for shaping this pattern. Identifying this common pattern strengthens our confidence in the projected response to GHG and aerosols in complex climate models.
Air Force Officer Specialty Structure. Reviewing the Fundamentals
2009-01-01
Corporation, is the U.S. Air Force’s federally funded research and development center for studies and analyses. PAF pro - vides the Air Force with...Shirlene LeBleu for sharing their database and insights about job con - tent and specialty analyses. At the Air Force Manpower Agency, we thank Col...processes. Also, we thank Maj Ernest Wearren (AF/ A1MZ) and Gary Stockinger (AF/A1MX) for sharing their knowledge of the Manpower Pro - gramming Execution
McGarry, J P
2009-11-01
A substantial body of work has been reported in which the mechanical properties of adherent cells were characterized using compression testing in tandem with computational modeling. However, a number of important issues remain to be addressed. In the current study, using computational analyses, the effect of cell compressibility on the force required to deform spread cells is investigated and the possibility that stiffening of the cell cytoplasm occurs during spreading is examined based on published experimental compression test data. The effect of viscoelasticity on cell compression is considered and difficulties in performing a complete characterization of the viscoelastic properties of a cell nucleus and cytoplasm by this method are highlighted. Finally, a non-linear force-deformation response is simulated using differing linear viscoelastic properties for the cell nucleus and the cell cytoplasm.
The latitude-height structure of 40-50 day variations in atmospheric angular momentum
NASA Technical Reports Server (NTRS)
Anderson, J. R.; Rosen, R. D.
1983-01-01
Using five years of U.S. National Meteorological Center twice-daily global analyses, a description of the two-dimensional latitude-height structure of the winds responsible for quasi-periodic variations in the relative angular momentum of the atmosphere observed by Langley et al. (1981) is constructed. Cross-spectral and amplitude phase eigenvector techniques indicate that these variations are associated with wave-like motions in the tropical upper troposphere which propagate poleward and downward in phase within the tropics. The tropical component is suggested to be the zonally averaged part of the motions described by Madden and Julian (1971, 1972), while a Northern Hemisphere midlatitude component whose phase is essentially independent of height may be a direct response to the tropical motions. Alternatively, both motions may be the common response to an as yet unidentified tropical forcing.
Generating extreme weather event sets from very large ensembles of regional climate models
NASA Astrophysics Data System (ADS)
Massey, Neil; Guillod, Benoit; Otto, Friederike; Allen, Myles; Jones, Richard; Hall, Jim
2015-04-01
Generating extreme weather event sets from very large ensembles of regional climate models Neil Massey, Benoit P. Guillod, Friederike E. L. Otto, Myles R. Allen, Richard Jones, Jim W. Hall Environmental Change Institute, University of Oxford, Oxford, UK Extreme events can have large impacts on societies and are therefore being increasingly studied. In particular, climate change is expected to impact the frequency and intensity of these events. However, a major limitation when investigating extreme weather events is that, by definition, only few events are present in observations. A way to overcome this issue it to use large ensembles of model simulations. Using the volunteer distributed computing (VDC) infrastructure of weather@home [1], we run a very large number (10'000s) of RCM simulations over the European domain at a resolution of 25km, with an improved land-surface scheme, nested within a free-running GCM. Using VDC allows many thousands of climate model runs to be computed. Using observations for the GCM boundary forcings we can run historical "hindcast" simulations over the past 100 to 150 years. This allows us, due to the chaotic variability of the atmosphere, to ascertain how likely an extreme event was, given the boundary forcings, and to derive synthetic event sets. The events in these sets did not actually occur in the observed record but could have occurred given the boundary forcings, with an associated probability. The event sets contain time-series of fields of meteorological variables that allow impact modellers to assess the loss the event would incur. Projections of events into the future are achieved by modelling projections of the sea-surface temperature (SST) and sea-ice boundary forcings, by combining the variability of the SST in the observed record with a range of warming signals derived from the varying responses of SSTs in the CMIP5 ensemble to elevated greenhouse gas (GHG) emissions in three RCP scenarios. Simulating the future with a range of SST responses, as well as a range of RCP scenarios, allows us to assess the uncertainty in the response to elevated GHG emissions that occurs in the CMIP5 ensemble. Numerous extreme weather events can be studied. Firstly, we analyse droughts in Europe with a focus on the UK in the context of the project MaRIUS (Managing the Risks, Impacts and Uncertainties of droughts and water Scarcity). We analyse the characteristics of the simulated droughts, the underlying physical mechanisms, and assess droughts observed in the recent past. Secondly, we analyse windstorms by applying an objective storm-identification and tracking algorithm to the ensemble output, isolating those storms that cause high loss and building a probabilistic storm catalogue, which can be used by impact modellers, insurance loss modellers, etc. Finally, we combine the model output with a heat-stress index to determine the detrimental effect on health of heat waves in Europe. [1] Massey, N. et al., 2014, Q. J. R. Meteorol. Soc.
NASA Astrophysics Data System (ADS)
Jalón-Rojas, Isabel; Schmidt, Sabine; Sottolichio, Aldo
2017-11-01
The relative contribution of environmental forcing frequencies on turbidity variability is, for the first time, quantified at seasonal and multiannual time scales in tidal estuarine systems. With a decade of high-frequency, multi-site turbidity monitoring, the two nearby, macrotidal and highly-turbid Gironde and Loire estuaries (west France) are excellent natural laboratories for this purpose. Singular Spectrum Analyses, combined with Lomb-Scargle periodograms and Wavelet Transforms, were applied to the continuous multiannual turbidity time series. Frequencies of the main environmental factors affecting turbidity were identified: hydrological regime (high versus low river discharges), river flow variability, tidal range, tidal cycles, and turbulence. Their relative influences show similar patterns in both estuaries and depend on the estuarine region (lower or upper estuary) and the time scale (multiannual or seasonal). On the multiannual time scale, the relative contribution of tidal frequencies (tidal cycles and range) to turbidity variability decreases up-estuary from 68% to 47%, while the influence of river flow frequencies increases from 3% to 42%. On the seasonal time scale, the relative influence of forcings frequencies remains almost constant in the lower estuary, dominated by tidal frequencies (60% and 30% for tidal cycles and tidal range, respectively); in the upper reaches, it is variable depending on hydrological regime, even if tidal frequencies are responsible for up 50% of turbidity variance. These quantifications show the potential of combined spectral analyses to compare the behavior of suspended sediment in tidal estuaries throughout the world and to evaluate long-term changes in environmental forcings, especially in a context of global change. The relevance of this approach to compare nearby and overseas systems and to support management strategies is discussed (e.g., selection of effective operation frequencies/regions, prediction of the most affected regions by the implementation of operational management plans).
The long view: Causes of climate change over the instrumental period
NASA Astrophysics Data System (ADS)
Hegerl, G. C.; Schurer, A. P.; Polson, D.; Iles, C. E.; Bronnimann, S.
2016-12-01
The period of instrumentally recorded data has seen remarkable changes in climate, with periods of rapid warming, and periods of stagnation or cooling. A recent analysis of the observed temperature change from the instrumental record confirms that most of the warming recorded since the middle of the 20rst century has been caused by human influences, but shows large uncertainty in separating greenhouse gas from aerosol response if accounting for model uncertainty. The contribution by natural forcing and internal variability to the recent warming is estimated to be small, but becomes more important when analysing climate change over earlier or shorter time periods. For example, the enigmatic early 20th century warming was a period of strong climate anomalies, including the US dustbowl drought and exceptional heat waves, and pronounced Arctic warming. Attribution results suggests that about half of the global warming 1901-1950 was forced by greenhouse gases increases, with an anomalously strong contribution by climate variability, and contributions by natural forcing. Long term variations in circulation are important for some regional climate anomalies. Precipitation is important for impacts of climate change and precipitation changes are uncertain in models. Analysis of the instrumental record suggests a human influence on mean and heavy precipitation, and supports climate model estimates of the spatial pattern of precipitation sensitivity to warming. Broadly, and particularly over ocean, wet regions are getting wetter and dry regions are getting drier. In conclusion, the historical record provides evidence for a strong response to external forcings, supports climate models, and raises questions about multi-decadal variability.
An item response curves analysis of the Force Concept Inventory
NASA Astrophysics Data System (ADS)
Morris, Gary A.; Harshman, Nathan; Branum-Martin, Lee; Mazur, Eric; Mzoughi, Taha; Baker, Stephen D.
2012-09-01
Several years ago, we introduced the idea of item response curves (IRC), a simplistic form of item response theory (IRT), to the physics education research community as a way to examine item performance on diagnostic instruments such as the Force Concept Inventory (FCI). We noted that a full-blown analysis using IRT would be a next logical step, which several authors have since taken. In this paper, we show that our simple approach not only yields similar conclusions in the analysis of the performance of items on the FCI to the more sophisticated and complex IRT analyses but also permits additional insights by characterizing both the correct and incorrect answer choices. Our IRC approach can be applied to a variety of multiple-choice assessments but, as applied to a carefully designed instrument such as the FCI, allows us to probe student understanding as a function of ability level through an examination of each answer choice. We imagine that physics teachers could use IRC analysis to identify prominent misconceptions and tailor their instruction to combat those misconceptions, fulfilling the FCI authors' original intentions for its use. Furthermore, the IRC analysis can assist test designers to improve their assessments by identifying nonfunctioning distractors that can be replaced with distractors attractive to students at various ability levels.
2012-01-01
Background Elucidating the selective and neutral forces underlying molecular evolution is fundamental to understanding the genetic basis of adaptation. Plants have evolved a suite of adaptive responses to cope with variable environmental conditions, but relatively little is known about which genes are involved in such responses. Here we studied molecular evolution on a genome-wide scale in two species of Cardamine with distinct habitat preferences: C. resedifolia, found at high altitudes, and C. impatiens, found at low altitudes. Our analyses focussed on genes that are involved in stress responses to two factors that differentiate the high- and low-altitude habitats, namely temperature and irradiation. Results High-throughput sequencing was used to obtain gene sequences from C. resedifolia and C. impatiens. Using the available A. thaliana gene sequences and annotation, we identified nearly 3,000 triplets of putative orthologues, including genes involved in cold response, photosynthesis or in general stress responses. By comparing estimated rates of molecular substitution, codon usage, and gene expression in these species with those of Arabidopsis, we were able to evaluate the role of positive and relaxed selection in driving the evolution of Cardamine genes. Our analyses revealed a statistically significant higher rate of molecular substitution in C. resedifolia than in C. impatiens, compatible with more efficient positive selection in the former. Conversely, the genome-wide level of selective pressure is compatible with more relaxed selection in C. impatiens. Moreover, levels of selective pressure were heterogeneous between functional classes and between species, with cold responsive genes evolving particularly fast in C. resedifolia, but not in C. impatiens. Conclusions Overall, our comparative genomic analyses revealed that differences in effective population size might contribute to the differences in the rate of protein evolution and in the levels of selective pressure between the C. impatiens and C. resedifolia lineages. The within-species analyses also revealed evolutionary patterns associated with habitat preference of two Cardamine species. We conclude that the selective pressures associated with the habitats typical of C. resedifolia may have caused the rapid evolution of genes involved in cold response. PMID:22257588
Fitton, L C; Shi, J F; Fagan, M J; O'Higgins, P
2012-07-01
Biomechanical analyses are commonly conducted to investigate how craniofacial form relates to function, particularly in relation to dietary adaptations. However, in the absence of corresponding muscle activation patterns, incomplete muscle data recorded experimentally for different individuals during different feeding tasks are frequently substituted. This study uses finite element analysis (FEA) to examine the sensitivity of the mechanical response of a Macaca fascicularis cranium to varying muscle activation patterns predicted via multibody dynamic analysis. Relative to the effects of varying bite location, the consequences of simulated variations in muscle activation patterns and of the inclusion/exclusion of whole muscle groups were investigated. The resulting cranial deformations were compared using two approaches; strain maps and geometric morphometric analyses. The results indicate that, with bite force magnitude controlled, the variations among the mechanical responses of the cranium to bite location far outweigh those observed as a consequence of varying muscle activations. However, zygomatic deformation was an exception, with the activation levels of superficial masseter being most influential in this regard. The anterior portion of temporalis deforms the cranial vault, but the remaining muscles have less profound effects. This study for the first time systematically quantifies the sensitivity of an FEA model of a primate skull to widely varying masticatory muscle activations and finds that, with the exception of the zygomatic arch, reasonable variants of muscle loading for a second molar bite have considerably less effect on cranial deformation and the resulting strain map than does varying molar bite point. The implication is that FEA models of biting crania will generally produce acceptable estimates of deformation under load as long as muscle activations and forces are reasonably approximated. In any one FEA study, the biological significance of the error in applied muscle forces is best judged against the magnitude of the effect that is being investigated. © 2012 The Authors. Journal of Anatomy © 2012 Anatomical Society.
Fitton, L C; Shi, J F; Fagan, M J; O’Higgins, P
2012-01-01
Biomechanical analyses are commonly conducted to investigate how craniofacial form relates to function, particularly in relation to dietary adaptations. However, in the absence of corresponding muscle activation patterns, incomplete muscle data recorded experimentally for different individuals during different feeding tasks are frequently substituted. This study uses finite element analysis (FEA) to examine the sensitivity of the mechanical response of a Macaca fascicularis cranium to varying muscle activation patterns predicted via multibody dynamic analysis. Relative to the effects of varying bite location, the consequences of simulated variations in muscle activation patterns and of the inclusion/exclusion of whole muscle groups were investigated. The resulting cranial deformations were compared using two approaches; strain maps and geometric morphometric analyses. The results indicate that, with bite force magnitude controlled, the variations among the mechanical responses of the cranium to bite location far outweigh those observed as a consequence of varying muscle activations. However, zygomatic deformation was an exception, with the activation levels of superficial masseter being most influential in this regard. The anterior portion of temporalis deforms the cranial vault, but the remaining muscles have less profound effects. This study for the first time systematically quantifies the sensitivity of an FEA model of a primate skull to widely varying masticatory muscle activations and finds that, with the exception of the zygomatic arch, reasonable variants of muscle loading for a second molar bite have considerably less effect on cranial deformation and the resulting strain map than does varying molar bite point. The implication is that FEA models of biting crania will generally produce acceptable estimates of deformation under load as long as muscle activations and forces are reasonably approximated. In any one FEA study, the biological significance of the error in applied muscle forces is best judged against the magnitude of the effect that is being investigated. PMID:22690885
Hirschauer, Thomas J; Buford, John A
2015-04-01
Neurons in the pontomedullary reticular formation (PMRF) give rise to the reticulospinal tract. The motor output of the PMRF was investigated using stimulus-triggered averaging of electromyography (EMG) and force recordings in two monkeys (M. fascicularis). EMG was recorded from 12 pairs of upper limb muscles, and forces were detected using two isometric force-sensitive handles. Of 150 stimulation sites, 105 (70.0%) produced significant force responses, and 139 (92.5%) produced significant EMG responses. Based on the average flexor EMG onset latency of 8.3 ms and average force onset latency of 15.9 ms poststimulation, an electromechanical delay of ∼7.6 ms was calculated. The magnitude of force responses (∼10 mN) was correlated with the average change in EMG activity (P < 0.001). A multivariate linear regression analysis was used to estimate the contribution of each muscle to force generation, with flexors and extensors exhibiting antagonistic effects. A predominant force output pattern of ipsilateral flexion and contralateral extension was observed in response to PMRF stimulation, with 65.3% of significant ipsilateral force responses directed medially and posteriorly (P < 0.001) and 78.6% of contralateral responses directed laterally and anteriorly (P < 0.001). This novel approach permits direct measurement of force outputs evoked by central nervous system microstimulation. Despite the small magnitude of poststimulus EMG effects, low-intensity single-pulse microstimulation of the PMRF evoked detectable forces. The forces, showing the combined effect of all muscle activity in the arms, are consistent with reciprocal pattern of force outputs from the PMRF detectable with stimulus-triggered averaging of EMG. Copyright © 2015 the American Physiological Society.
Cook, Karon F; Kallen, Michael A; Buckenmaier, Chester; Flynn, Diane M; Hanling, Steven R; Collins, Teresa S; Joltes, Kristin; Kwon, Kyung; Medina-Torne, Sheila; Nahavandi, Parisa; Suen, Joshua; Gershon, Richard
2017-07-01
In 2009, the Army Pain Management Task Force was chartered. On the basis of their findings, the Department of Defense recommended a comprehensive pain management strategy that included development of a standardized pain assessment system that would collect patient-reported outcomes data to inform the patient-provider clinical encounter. The result was the Pain Assessment Screening Tool and Outcomes Registry (PASTOR). The purpose of this study was to assess the validity and response burden of the patient-reported outcome measures in PASTOR. Data for analyses were collected from 681 individuals who completed PASTOR at baseline and follow-up as part of their routine clinical care. The survey tool included self-report measures of pain severity and pain interference (measured using the National Institutes of Health Patient-Reported Outcome Measurement Information System [PROMIS] and the Defense and Veterans Pain Rating scale). PROMIS measures of pain correlates also were administered. Validation analyses included estimation of score associations among measures, comparison of scores of known groups, responsiveness, ceiling and floor effects, and response burden. Results of psychometric testing provided substantial evidence for the validity of PASTOR self-report measures in this population. Expected associations among scores largely supported the concurrent validity of the measures. Scores effectively distinguished among respondents on the basis of their self-reported impressions of general health. PROMIS measures were administered using computer adaptive testing and each, on average, required less than 1 minute to administer. Statistical and graphical analyses demonstrated the responsiveness of PASTOR measures over time. Reprint & Copyright © 2017 Association of Military Surgeons of the U.S.
Sanderson, D J; Hennig, E M; Black, A H
2000-03-01
The aim of this study was to determine the response of cyclists to manipulations of cadence and power output in terms of force application and plantar pressure distribution. Two groups of cyclists, 17 recreational and 12 competitive, rode at three nominal cadences (60, 80, 100 rev x min(-1)) and four power outputs (100, 200, 300, 400 W) while simultaneous force and in-shoe pressure data were collected. Two piezoelectric triaxial force transducers mounted in the right pedal measured components of the pedal force and orientation, and a discrete transducer system with 12 transducers recorded the in-shoe pressures. Force application was characterized by calculating peak resultant and peak effective pedal forces and positive and negative impulses. In-shoe pressures were analysed as peak pressures and as the percent relative load. The force data showed no significant group effect but there was a cadence and power main effect. The impulse data showed a significant three-way interaction. Increased cadence resulted in a decreased positive impulse, while increased power output resulted in an increased impulse. The competitive group produced less positive impulse but the difference became less at higher cadences. Few between-group differences were found in pressure, notable only in the pressure under the first metatarsal region. This showed a consistent pattern of in-shoe pressure distribution, where the primary loading structures were the first metatarsal and hallux. There was no indication that pressure at specific sites influenced the pedal force application. The absence of group differences indicated that pressure distribution was not the result of training, but reflected the intrinsic relationship between the foot, the shoe and the pedal.
Optimization of cascade blade mistuning under flutter and forced response constraints
NASA Technical Reports Server (NTRS)
Murthy, D. V.; Haftka, R. T.
1984-01-01
In the development of modern turbomachinery, problems of flutter instabilities and excessive forced response of a cascade of blades that were encountered have often turned out to be extremely difficult to eliminate. The study of these instabilities and the forced response is complicated by the presence of mistuning; that is, small differences among the individual blades. The theory of mistuned cascade behavior shows that mistuning can have a beneficial effect on the stability of the rotor. This beneficial effect is produced by the coupling between the more stable and less stable flutter modes introduced by mistuning. The effect of mistuning on the forced response can be either beneficial or adverse. Kaza and Kielb have studied the effects of two types of mistuning on the flutter and forced response: alternate mistuning where alternte blades are identical and random mistuning. The objective is to investigate other patterns of mistuning which maximize the beneficial effects on the flutter and forced response of the cascade. Numerical optimization techniques are employed to obtain optimal mistuning patterns. The optimization program seeks to minimize the amount of mistuning required to satisfy constraints on flutter speed and forced response.
Magnetic induction constraints on electrical conductivity within Europa
NASA Astrophysics Data System (ADS)
Bills, B. G.; Vance, S.
2017-12-01
We examine the problem of inferring radial variations in electrical conductivity within Europa, from measurements of the magnetic field induced within Europa by its motion through Jupiter's magnetic field. The Europa Clipper mission is expected to make multiple encounters with Europa, sampling several periods at which significant magnetic induction forcing occurs. Most previous analyses have considered a simple 3-layer model of Europa's internal structure, with an insulating core, a uniform conductivity ocean, and an insulating ice shell, and have only examined responses at 2 forcing periods. We attempt to address the broader issues of what level of detail can be inferred from plausible estimates of induced field response at several additional forcing periods. We will present results of an analysis of the periods and amplitudes of magnetic field variations at Europa, and at the Europa Clipper spacecraft. It appears likely that useful information on the induction response will be attained at 6 forcing frequencies, spanning the interval from 1 to just over 15 cycles per orbital period, in Europa's motion about Jupiter. The range of periods is 5.6 to 85 hours. The induced field diffuses into the interior, and signals at longer periods penetrate more deeply. Having measurements at a range of forcing periods thus helps resolve radial structure. Even if the ocean is well mixed and has uniform salinity, there will be some depth-dependent variations in electrical conductivity due to temperature and pressure variations. Much larger variations would be present if the ocean were stably stratified, with a denser brine underlying a fresher upper layer. While vigorous convection within the ocean would likely mix and homogenize the water column, a stratified ocean is at least possible. Could such a feature of the ocean be detected via magnetic induction? Also, the conductivities in the ice shell above, and silicate layer beneath the ocean are expected to be substantially smaller than in a salty ocean. However, they are not zero. We will consider the extent to which these regions might also be interrogated via magnetic induction.
ERIC Educational Resources Information Center
Ridgely, Charles T.
2010-01-01
Many textbooks dealing with general relativity do not demonstrate the derivation of forces in enough detail. The analyses presented herein demonstrate straightforward methods for computing forces by way of general relativity. Covariant divergence of the stress-energy-momentum tensor is used to derive a general expression of the force experienced…
Inhibitory Effects on Response Force in the Stop-Signal Paradigm
ERIC Educational Resources Information Center
Ko, Yao-Ting; Alsford, Toni; Miller, Jeff
2012-01-01
The forcefulness of key press responses was measured in stop-all and selective stopping versions of the stop-signal paradigm. When stop signals were presented too late for participants to succeed in stopping their responses, response force was nonetheless reduced relative to trials in which no stop signal was presented. This effect shows that…
This Notice announces two industry-wide Task Forces being formed in response to generic exposure data requirements. It contains EPA's policy on a registrant's options for, and responsibilities when joining Task Force as a way to satisfy data requirements.
Jiang, Lei; Han, Juan; Yang, Limin; Ma, Hongchao; Huang, Bo
2015-10-07
Vocal folds are complex and multilayer-structured where the main layer is widely composed of hyaluronan (HA). The viscoelasticity of HA is key to voice production in the vocal fold as it affects the initiation and maintenance of phonation. In this study a simple layer-structured surface model was set up to mimic the structure of the vocal folds. The interactions between two opposing surfaces bearing HA were measured and characterised to analyse HA's response to the normal and shear compression at a stress level similar to that in the vocal fold. From the measurements of the quartz crystal microbalance, atomic force microscopy and the surface force balance, the osmotic pressure, normal interactions, elasticity change, volume fraction, refractive index and friction of both HA and the supporting protein layer were obtained. These findings may shed light on the physical mechanism of HA function in the vocal fold and the specific role of HA as an important component in the effective treatment of the vocal fold disease.
NASA Technical Reports Server (NTRS)
Dizio, Paul; Lackner, James R.; Evanoff, John N.
1987-01-01
The goal of the present experiment was to determine whether gravitoinertial force magnitude influences oculomotor and perceptual responses to Coriolis cross-coupling stimulation. Blindfolded subjects who were rotating at constant velocity were asked to make standardized head movements during the free-fall and high-force phases of parabolic flight, and the characteristics of their horizontal nystagmus and the magnitude of their experienced self-motion were measured. Both responses were less intense in the free-fall periods than in the high-force periods. These findings suggest that the response to semicircular canal stimulation depends on the background level of gravitoinertial force.
Orbital Forcing driving climate variability on Tropical South Atlantic
NASA Astrophysics Data System (ADS)
Oliveira, A. S.; Baker, P. A.; Silva, C. G.; Dwyer, G. S.; Chiessi, C. M.; Rigsby, C. A.; Ferreira, F.
2017-12-01
Past research on climate response to orbital forcing in tropical South America has emphasized on high precession cycles influencing low latitude hydrologic cycles, and driving the meridional migration of Intertropical Convergence Zone (ITCZ).However, marine proxy records from the tropical Pacific Ocean showed a strong 41-ka periodicities in Pleistocene seawater temperature and productivity related to fluctuations in Earth's obliquity. It Indicates that the western Pacific ITCZ migration was influenced by combined precession and obliquity changes. To reconstruct different climate regimes over the continent and understand the orbital cycle forcing over Tropical South America climate, hydrological reconstruction have been undertaken on sediment cores located on the Brazilian continental slope, representing the past 1.6 million years. Core CDH 79 site is located on a 2345 m deep seamount on the northern Brazilian continental slope (00° 39.6853' N, 44° 20.7723' W), 320 km from modern coastline of the Maranhão Gulf. High-resolution XRF analyses of Fe, Ti, K and Ca are used to define the changes in precipitation and sedimentary input history of Tropical South America. The response of the hydrology cycle to orbital forcing was studied using spectral analysis.The 1600 ka records of dry/wet conditions presented here indicates that orbital time-scale climate change has been a dominant feature of tropical climate. We conclude that the observed oscillation reflects variability in the ITCZ activity associated with the Earth's tilt. The prevalence of the eccentricity and obliquity signals in continental hydrology proxies (Ti/Ca and Fe/K) as implicated in our precipitation records, highlights that these orbital forcings play an important role in tropics hydrologic cycles. Throughout the Quaternary abrupt shifts of tropical variability are temporally correlated with abrupt climate changes and atmospheric reorganization during Mid-Pleistocene Transition and Mid-Brunhes Events. Our findings suggets that over Late Quaternary, the N-S ITCZ movement is not only exclusively related to precessional forcing. The prevalence of the obliquity signal in both precipitation and weathering as implicated in our records, highlights that this orbital forcing exerts a significant control on global hydrological cycle.
Forced response of mistuned bladed disks
NASA Technical Reports Server (NTRS)
Pierre, Christophe
1994-01-01
Small mistuning can cause large, catastrophic changes in blade vibrational response whereby the amplitudes of vibration of some blades may increase by several hundred percent. This can produce 'rogue' blades and HCF failure. The free and forced responses may be highly sensitive to mistuning, and the tuned system predictions may be qualitatively in error and grossly underestimate blade forced response and overestimate fatigue life. Manufacturing tolerances, material non-uniformities, nonidentical root fixtures, and in-service degradation result in blade-to-blade differences that destroy cyclic symmetry in bladed discs. Therefore, a credible forced response prediction system for turbomachinery vibration must take mistuning into account. This report addresses these problems, states several objectives, and introduces NASA research program thrusts concerning this problem. This report was given during the NASA LeRC Workshop on Forced Response in Turbomachinery in August of 1993.
NASA Astrophysics Data System (ADS)
Dai, Aiguo; Bloecker, Christine E.
2018-02-01
It is known that internal climate variability (ICV) can influence trends seen in observations and individual model simulations over a period of decades. This makes it difficult to quantify the forced response to external forcing. Here we analyze two large ensembles of simulations from 1950 to 2100 by two fully-coupled climate models, namely the CESM1 and CanESM2, to quantify ICV's influences on estimated trends in annual surface air temperature (Tas) and precipitation (P) over different time periods. Results show that the observed trends since 1979 in global-mean Tas and P are within the spread of the CESM1-simulated trends while the CanESM2 overestimates the historical changes, likely due to its deficiencies in simulating historical non-CO2 forcing. Both models show considerable spreads in the Tas and P trends among the individual simulations, and the spreads decrease rapidly as the record length increases to about 40 (50) years for global-mean Tas (P). Because of ICV, local and regional P trends may remain statistically insignificant and differ greatly among individual model simulations over most of the globe until the later part of the twenty-first century even under a high emissions scenario, while local Tas trends since 1979 are already statistically significant over many low-latitude regions and are projected to become significant over most of the globe by the 2030s. The largest influences of ICV come from the Inter-decadal Pacific Oscillation and polar sea ice. In contrast to the realization-dependent ICV, the forced Tas response to external forcing has a temporal evolution that is similar over most of the globe (except its amplitude). For annual precipitation, however, the temporal evolution of the forced response is similar (opposite) to that of Tas over many mid-high latitude areas and the ITCZ (subtropical regions), but close to zero over the transition zones between the regions with positive and negative trends. The ICV in the transient climate change simulations is slightly larger than that in the control run for P (and other related variables such as water vapor), but similar for Tas. Thus, the ICV for P from a control run may need to be scaled up in detection and attribution analyses.
NASA Astrophysics Data System (ADS)
Cartier, Rosine; Brisset, Elodie; Guiter, Frédéric; Sylvestre, Florence; Tachikawa, Kazuyo; Anthony, Edward J.; Paillès, Christine; Bruneton, Hélène; Bard, Edouard; Miramont, Cécile
2018-04-01
Palaeoenvironmental reconstructions of ecosystem responses to external forcing are generally limited by the difficulty of understanding the geosystem as a whole, because of the complex interactions between ecological compartments. Therefore, identifying which geosystem compartments or proxies co-vary is a prerequisite in unravelling the propagation of disturbances (e.g. climatic or anthropogenic) from one compartment to another. A multiproxy study of a continuous 13,500-year sedimentary profile cored in Lake Allos (European Alps, 2200 m a.s.l) was carried out on the basis of high-resolution sedimentological, geochemical, and botanical analyses, as well as determination of aquatic biotic proxies (diatoms, ostracods). These multiproxy datasets are rare at these high altitudes. Major changes occurred in the course of the palaeoenvironmental history of this alpine watershed at 12,000, 8600, 7200 and 3000 cal. BP. During the Holocene, two main transitions were recorded in all the ecological compartments (8600 and 3000 cal. BP), but the period 4500-3000 cal. BP stands out because of major changes that concerned only the lacustrine ecosystem. The frequent switches in lake level might correspond to the 4.2 ka climatic event. Proximity of this alpine lake to climatically-sensitive thresholds (ice-cover, thermal stratification, hydrological balance) may have amplified climatic signals in the lake ecosystem. This study illustrates the difficulties inherent to the use of common intra-Holocene stratigraphical limits, given that ecological compartments are likely to have different responses to forcing factors depending on the characteristics of the watershed and its capacity to accommodate disturbances.
Temperature Responses to Spectral Solar Variability on Decadal Time Scales
NASA Technical Reports Server (NTRS)
Cahalan, Robert F.; Wen, Guoyong; Harder, Jerald W.; Pilewskie, Peter
2010-01-01
Two scenarios of spectral solar forcing, namely Spectral Irradiance Monitor (SIM)-based out-of-phase variations and conventional in-phase variations, are input to a time-dependent radiative-convective model (RCM), and to the GISS modelE. Both scenarios and models give maximum temperature responses in the upper stratosphere, decreasing to the surface. Upper stratospheric peak-to-peak responses to out-of-phase forcing are approx.0.6 K and approx.0.9 K in RCM and modelE, approx.5 times larger than responses to in-phase forcing. Stratospheric responses are in-phase with TSI and UV variations, and resemble HALOE observed 11-year temperature variations. For in-phase forcing, ocean mixed layer response lags surface air response by approx.2 years, and is approx.0.06 K compared to approx.0.14 K for atmosphere. For out-of-phase forcing, lags are similar, but surface responses are significantly smaller. For both scenarios, modelE surface responses are less than 0.1 K in the tropics, and display similar patterns over oceanic regions, but complex responses over land.
2013-03-01
layering and typing to provide a vertical stratification of the cloud-filled pixels detected in Level 2. Level 3 output is remapped to the standard AFWA...analyses are compared to one another to see if the most recent analysis also has the lowest estimated error. Optimum interpolation (OI) occurs when...NORTHERN HEMISPHERE MERGED CLOUD ANALYSES FROM THE UNITED STATES AIR FORCE CLOUD DEPICTION FORECASTING SYSTEM II by Chandra M. Pasillas March
Umbral oscillations as resonant modes of magneto-atmospheric waves. [in sunspots
NASA Technical Reports Server (NTRS)
Scheuer, M. A.; Thomas, J. H.
1981-01-01
Umbral oscillations in sunspots are identified as a resonant response of the umbral atmosphere to forcing by oscillatory convection in the subphotosphere. The full, linearized equations for magnetoatmospheric waves are solved numerically for a detailed model of the umbral atmosphere, for both forced and free oscillations. Resonant 'fast' modes are found, the lowest mode having a period of 153 s, typical of umbral oscillations. A comparison is made with a similar analysis by Uchida and Sakurai (1975), who calculated resonant modes using an approximate ('quasi-Alfven') form of the wave equations. Whereas both analyses give an appropriate value for the period of oscillation, several new features of the motion follow from the full equations. The resonant modes are due to upward reflection in the subphotosphere (due to increasing sound speed) and downward reflection in the photosphere and low chromosphere (due to increasing Alfven speed); downward reflection at the chromosphere-corona transition is unimportant for these modes.
Aeroacoustics of automotive vents
NASA Astrophysics Data System (ADS)
Guérin, S.; Thomy, E.; Wright, M. C. M.
2005-08-01
This paper studies the generation of noise by car ventilation systems whose outlet rates are controlled by a butterfly valve and whose directions are controlled by grilles. First the noise created by the valve alone is analysed with the theory formulated by Nelson and Morfey for spoiler-generated noise in-duct flow. To confirm this theory the fluctuating force experienced by the valve is measured experimentally and the mean drag force is deduced from analytical work presented by Sarpkaya. Then the noise generated by the grille and its effect on sound transmission is investigated. Finally, it is shown that a strong and complex interaction between the wake shed behind the valve and the grille occurs when both elements are placed close together. This is responsible for an overall increase in the noise level although some sound reduction is measured at low frequency. It is found that moving the valve further upstream can reduce the noise by several decibels.
Improved approximations for control augmented structural synthesis
NASA Technical Reports Server (NTRS)
Thomas, H. L.; Schmit, L. A.
1990-01-01
A methodology for control-augmented structural synthesis is presented for structure-control systems which can be modeled as an assemblage of beam, truss, and nonstructural mass elements augmented by a noncollocated direct output feedback control system. Truss areas, beam cross sectional dimensions, nonstructural masses and rotary inertias, and controller position and velocity gains are treated simultaneously as design variables. The structural mass and a control-system performance index can be minimized simultaneously, with design constraints placed on static stresses and displacements, dynamic harmonic displacements and forces, structural frequencies, and closed-loop eigenvalues and damping ratios. Intermediate design-variable and response-quantity concepts are used to generate new approximations for displacements and actuator forces under harmonic dynamic loads and for system complex eigenvalues. This improves the overall efficiency of the procedure by reducing the number of complete analyses required for convergence. Numerical results which illustrate the effectiveness of the method are given.
Micro-fabrication of a novel linear actuator
NASA Astrophysics Data System (ADS)
Jiang, Shuidong; Liu, Lei; Hou, Yangqing; Fang, Houfei
2017-04-01
The novel linear actuator is researched with light weight, small volume, low power consumption, fast response and relatively large displacement output. It can be used for the net surface control of large deployable mesh antennas, the tension precise adjustment of the controlled cable in the tension and tensile truss structure and many other applications. The structure and the geometry parameters are designed and analysed by finite element method in multi-physics coupling. Meantime, the relationship between input voltage and displacement output is computed, and the strength check is completed according to the stress distribution. Carbon fiber reinforced composite (CFRC), glass fiber reinforced composited (GFRC), and Lead Zirconium Titanate (PZT) materials are used to fabricate the actuator by using laser etching and others MEMS process. The displacement output is measured by the laser displacement sensor device at the input voltage range of DC0-180V. The response time is obtained by oscilloscope at the arbitrarily voltage in the above range. The nominal force output is measured by the PTR-1101 mechanics setup. Finally, the computed and test results are compared and analysed.
Motor equivalence during multi-finger accurate force production
Mattos, Daniela; Schöner, Gregor; Zatsiorsky, Vladimir M.; Latash, Mark L.
2014-01-01
We explored stability of multi-finger cyclical accurate force production action by analysis of responses to small perturbations applied to one of the fingers and inter-cycle analysis of variance. Healthy subjects performed two versions of the cyclical task, with and without an explicit target. The “inverse piano” apparatus was used to lift/lower a finger by 1 cm over 0.5 s; the subjects were always instructed to perform the task as accurate as they could at all times. Deviations in the spaces of finger forces and modes (hypothetical commands to individual fingers) were quantified in directions that did not change total force (motor equivalent) and in directions that changed the total force (non-motor equivalent). Motor equivalent deviations started immediately with the perturbation and increased progressively with time. After a sequence of lifting-lowering perturbations leading to the initial conditions, motor equivalent deviations were dominating. These phenomena were less pronounced for analysis performed with respect to the total moment of force with respect to an axis parallel to the forearm/hand. Analysis of inter-cycle variance showed consistently higher variance in a subspace that did not change the total force as compared to the variance that affected total force. We interpret the results as reflections of task-specific stability of the redundant multi-finger system. Large motor equivalent deviations suggest that reactions of the neuromotor system to a perturbation involve large changes of neural commands that do not affect salient performance variables, even during actions with the purpose to correct those salient variables. Consistency of the analyses of motor equivalence and variance analysis provides additional support for the idea of task-specific stability ensured at a neural level. PMID:25344311
Application of the Probabilistic Dynamic Synthesis Method to the Analysis of a Realistic Structure
NASA Technical Reports Server (NTRS)
Brown, Andrew M.; Ferri, Aldo A.
1998-01-01
The Probabilistic Dynamic Synthesis method is a new technique for obtaining the statistics of a desired response engineering quantity for a structure with non-deterministic parameters. The method uses measured data from modal testing of the structure as the input random variables, rather than more "primitive" quantities like geometry or material variation. This modal information is much more comprehensive and easily measured than the "primitive" information. The probabilistic analysis is carried out using either response surface reliability methods or Monte Carlo simulation. A previous work verified the feasibility of the PDS method on a simple seven degree-of-freedom spring-mass system. In this paper, extensive issues involved with applying the method to a realistic three-substructure system are examined, and free and forced response analyses are performed. The results from using the method are promising, especially when the lack of alternatives for obtaining quantitative output for probabilistic structures is considered.
Application of the Probabilistic Dynamic Synthesis Method to Realistic Structures
NASA Technical Reports Server (NTRS)
Brown, Andrew M.; Ferri, Aldo A.
1998-01-01
The Probabilistic Dynamic Synthesis method is a technique for obtaining the statistics of a desired response engineering quantity for a structure with non-deterministic parameters. The method uses measured data from modal testing of the structure as the input random variables, rather than more "primitive" quantities like geometry or material variation. This modal information is much more comprehensive and easily measured than the "primitive" information. The probabilistic analysis is carried out using either response surface reliability methods or Monte Carlo simulation. In previous work, the feasibility of the PDS method applied to a simple seven degree-of-freedom spring-mass system was verified. In this paper, extensive issues involved with applying the method to a realistic three-substructure system are examined, and free and forced response analyses are performed. The results from using the method are promising, especially when the lack of alternatives for obtaining quantitative output for probabilistic structures is considered.
NASA Technical Reports Server (NTRS)
Yang, Charles; Sun, Wenjun; Tomblin, John S.; Smeltzer, Stanley S., III
2007-01-01
A semi-analytical method for determining the strain energy release rate due to a prescribed interface crack in an adhesively-bonded, single-lap composite joint subjected to axial tension is presented. The field equations in terms of displacements within the joint are formulated by using first-order shear deformable, laminated plate theory together with kinematic relations and force equilibrium conditions. The stress distributions for the adherends and adhesive are determined after the appropriate boundary and loading conditions are applied and the equations for the field displacements are solved. Based on the adhesive stress distributions, the forces at the crack tip are obtained and the strain energy release rate of the crack is determined by using the virtual crack closure technique (VCCT). Additionally, the test specimen geometry from both the ASTM D3165 and D1002 test standards are utilized during the derivation of the field equations in order to correlate analytical models with future test results. The system of second-order differential field equations is solved to provide the adherend and adhesive stress response using the symbolic computation tool, Maple 9. Finite element analyses using J-integral as well as VCCT were performed to verify the developed analytical model. The finite element analyses were conducted using the commercial finite element analysis software ABAQUS. The results determined using the analytical method correlated well with the results from the finite element analyses.
Prediction of impact force and duration during low velocity impact on circular composite laminates
NASA Technical Reports Server (NTRS)
Shivakumar, K. N.; Elber, W.; Illg, W.
1983-01-01
Two simple and improved models--energy-balance and spring-mass--were developed to calculate impact force and duration during low velocity impact of circular composite plates. Both models include the contact deformation of the plate and the impactor as well as bending, transverse shear, and membrane deformations of the plate. The plate was transversely isotropic graphite/epoxy composite laminate and the impactor was a steel sphere. Calculated impact forces from the two analyses agreed with each other. The analyses were verified by comparing the results with reported test data.
Systems and methods of detecting force and stress using tetrapod nanocrystal
Choi, Charina L.; Koski, Kristie J.; Sivasankar, Sanjeevi; Alivisatos, A. Paul
2013-08-20
Systems and methods of detecting force on the nanoscale including methods for detecting force using a tetrapod nanocrystal by exposing the tetrapod nanocrystal to light, which produces a luminescent response by the tetrapod nanocrystal. The method continues with detecting a difference in the luminescent response by the tetrapod nanocrystal relative to a base luminescent response that indicates a force between a first and second medium or stresses or strains experienced within a material. Such systems and methods find use with biological systems to measure forces in biological events or interactions.
Test and Analysis of Foam Impacting a 6x6 Inch RCC Flat Panel
NASA Technical Reports Server (NTRS)
Lessard, Wendy B.
2006-01-01
This report presents the testing and analyses of a foam projectile impacting onto thirteen 6x6 inch flat panels at a 90 degrees incidence angle. The panels tested in this investigation were fabricated of Reinforced-Carbon-Carbon material and were used to aid in the validation of an existing material model, MAT58. The computational analyses were performed using LS-DYNA, which is a physics-based, nonlinear, transient, finite element code used for analyzing material responses subjected to high impact forces and other dynamic conditions. The test results were used to validate LS-DYNA predictions and to determine the threshold of damage generated by the MAT58 cumulative damage material model. The threshold of damage parameter represents any external or internal visible RCC damage detectable by nondestructive evaluation techniques.
Daddi, Tiberio; Testa, Francesco; Frey, Marco; Iraldo, Fabio
2016-12-01
Institutional theory has been widely debated by scholars. A part of literature examines how institutional pressures act on company choices regarding proactive environmental strategies. However, the institutional perspective has still not completely clarified the influence of these pressures on the effectiveness of environmental management systems (EMSs) in achieving goals in terms of eco-innovation, competitiveness and corporate reputation. This paper analyses the role played by coercive, mimetic and normative forces in stimulating innovative and competitive responses by firms with an environmental certification. Using the results of a survey on 242 European EMAS-registered organisations, the paper highlights the more positive influence of mimetic and normative pressures than coercive ones. The paper contributes to the literature debate on EMSs analysed through the lens of institutional theory. Copyright © 2016 Elsevier Ltd. All rights reserved.
Unfolding of globular polymers by external force
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bell, Samuel; Terentjev, Eugene M., E-mail: emt1000@cam.ac.uk
2015-11-14
We examine the problem of a polymer chain, folded into a globule in poor solvent, subjected to a constant tensile force. Such a situation represents a Gibbs thermodynamic ensemble and is useful for analysing force-clamp atomic force microscopy measurements, now very common in molecular biophysics. Using a basic Flory mean-field theory, we account for surface interactions of monomers with solvent. Under an increasing tensile force, a first-order phase transition occurs from a compact globule to a fully extended chain, in an “all-or-nothing” unfolding event. This contrasts with the regime of imposed extension, first studied by Halperin and Zhulina [Europhys. Lett.more » 15, 417 (1991)], where there is a regime of coexistence of a partial globule with an extended chain segment. We relate the transition forces in this problem to the solvent quality and degree of polymerisation, and also find analytical expressions for the energy barriers present in the problem. Using these expressions, we analyse the kinetic problem of a force-ramp experiment and show that the force at which a globule ruptures depends on the rate of loading.« less
Fatigue in isometric contraction in a single muscle fibre: a compartmental calcium ion flow model.
Kothiyal, K P; Ibramsha, M
1986-01-01
Fatigue in muscle is a complex biological phenomenon which has so far eluded a definite explanation. Many biochemical and physiological models have been suggested in the literature to account for the decrement in the ability of muscle to sustain a given level of force for a long time. Some of these models have been critically analysed in this paper and are shown to be not able to explain all the experimental observations. A new compartmental model based on the intracellular calcium ion movement in muscle is proposed to study the mechanical responses of a muscle fibre. Computer simulation is performed to obtain model responses in isometric contraction to an impulse and a train of stimuli of long duration. The simulated curves have been compared with experimentally observed mechanical responses of the semitendinosus muscle fibre of Rana pipiens. The comparison of computed and observed responses indicates that the proposed calcium ion model indeed accounts very well for the muscle fatigue.
Optimal frequency-response sensitivity of compressible flow over roughness elements
NASA Astrophysics Data System (ADS)
Fosas de Pando, Miguel; Schmid, Peter J.
2017-04-01
Compressible flow over a flat plate with two localised and well-separated roughness elements is analysed by global frequency-response analysis. This analysis reveals a sustained feedback loop consisting of a convectively unstable shear-layer instability, triggered at the upstream roughness, and an upstream-propagating acoustic wave, originating at the downstream roughness and regenerating the shear-layer instability at the upstream protrusion. A typical multi-peaked frequency response is recovered from the numerical simulations. In addition, the optimal forcing and response clearly extract the components of this feedback loop and isolate flow regions of pronounced sensitivity and amplification. An efficient parametric-sensitivity framework is introduced and applied to the reference case which shows that first-order increases in Reynolds number and roughness height act destabilising on the flow, while changes in Mach number or roughness separation cause corresponding shifts in the peak frequencies. This information is gained with negligible effort beyond the reference case and can easily be applied to more complex flows.
Distance-responsive genes found in dancing honey bees.
Sen Sarma, M; Rodriguez-Zas, S L; Gernat, T; Nguyen, T; Newman, T; Robinson, G E
2010-10-01
We report that regions of the honey bee brain involved in visual processing and learning and memory show a specific genomic response to distance information. These results were obtained with an established method that separates effects of perceived distance from effects of actual distance flown. Individuals forced to shift from a short to perceived long distance to reach a feeding site showed gene expression differences in the optic lobes and mushroom bodies relative to individuals that continued to perceive a short distance, even though they all flew the same distance. Bioinformatic analyses suggest that the genomic response to distance information involves learning and memory systems associated with well-known signaling pathways, synaptic remodeling, transcription factors and protein metabolism. By showing distance-sensitive brain gene expression, our findings also significantly extend the emerging paradigm of the genome as a dynamic regulator of behavior, that is particularly responsive to stimuli important in social life. © 2010 The Authors. Genes, Brain and Behavior © 2010 Blackwell Publishing Ltd and International Behavioural and Neural Genetics Society.
Periodic Forced Response of Structures Having Three-Dimensional Frictional Constraints
NASA Astrophysics Data System (ADS)
CHEN, J. J.; YANG, B. D.; MENQ, C. H.
2000-01-01
Many mechanical systems have moving components that are mutually constrained through frictional contacts. When subjected to cyclic excitations, a contact interface may undergo constant changes among sticks, slips and separations, which leads to very complex contact kinematics. In this paper, a 3-D friction contact model is employed to predict the periodic forced response of structures having 3-D frictional constraints. Analytical criteria based on this friction contact model are used to determine the transitions among sticks, slips and separations of the friction contact, and subsequently the constrained force which consists of the induced stick-slip friction force on the contact plane and the contact normal load. The resulting constrained force is often a periodic function and can be considered as a feedback force that influences the response of the constrained structures. By using the Multi-Harmonic Balance Method along with Fast Fourier Transform, the constrained force can be integrated with the receptance of the structures so as to calculate the forced response of the constrained structures. It results in a set of non-linear algebraic equations that can be solved iteratively to yield the relative motion as well as the constrained force at the friction contact. This method is used to predict the periodic response of a frictionally constrained 3-d.o.f. oscillator. The predicted results are compared with those of the direct time integration method so as to validate the proposed method. In addition, the effect of super-harmonic components on the resonant response and jump phenomenon is examined.
Influence of Wave Energetics on Nearshore Storms and Adjacent Shoreline Morphology
NASA Astrophysics Data System (ADS)
Wadman, H. M.; McNinch, J. E.; Hanson, J.
2008-12-01
Large-scale climatic forcings (such as NAO and ENSO) are known to induce fluctuations in regional storm frequency and intensity. Morphology-based studies have traditionally focused on individual storms and their influence on the nearshore coastal wave regime and shoreline response. Few studies have attempted to link long-term observed changes in shoreline position, beach, and nearshore morphology with large-scale climatic forcings that influence regional storm patterns. In order to predict the response of coastlines to future sea level rise and climate change, we need to understand how changes in the frequency of storms affecting nearshore regions (nearshore storms) may influence trends in shoreline position and nearshore morphology. Nearly 30 years of wave data (deep and shallow) collected off of Duck, NC are examined for trends in storm frequency and/or intensity. Changes in shoreline position and shoreface elevation, as observed from monthly beach transects over the same period, are also investigated in light of the observed trends in hydrodynamic forcings. Our preliminary analysis was unable to identify any consistent linear trends (increases or decreases) in frequency or intensity over the ~30-year time period in either the offshore wave heights or the nearshore storm record. These data might suggest that previous observations of recent increases in storm intensity and frequency, speculated to be due to climate change, might be spatially limited. Future analyses will partition the contributions from individual wind sea and swell events in order to better identify long-term trends in wave energetics from the various wave generation regions in the Atlantic. At this location, offshore wave height and the nearshore storm record are dominated by seasonal fluctuations and a strong interdecadal- to decadal periodicity. Previous research in Duck, NC has suggested that changes in shoreline position and shoreface elevations are related both to seasonal trends as well as "storm groupiness". Our analyses support these findings, but also identify interdecadal- to decadal trends in the nearshore morphology. Despite these fluctuations, the overall position of the shoreline and elevation of the shoreface shows little net change over the 30 years investigated. We hypothesize that the interdecadal- to decadal periodicity in the morphology is driven largely by the influences of large-scale climatic forcings on the nearshore wave regime as reflected in the storm record. We also explore the relationship between morphological periodicity, storm and wave height periodicity, and climatic fluctuations.
Modeling Climate Responses to Spectral Solar Forcing on Centennial and Decadal Time Scales
NASA Technical Reports Server (NTRS)
Wen, G.; Cahalan, R.; Rind, D.; Jonas, J.; Pilewskie, P.; Harder, J.
2012-01-01
We report a series of experiments to explore clima responses to two types of solar spectral forcing on decadal and centennial time scales - one based on prior reconstructions, and another implied by recent observations from the SORCE (Solar Radiation and Climate Experiment) SIM (Spectral 1rradiance Monitor). We apply these forcings to the Goddard Institute for Space Studies (GISS) Global/Middle Atmosphere Model (GCMAM). that couples atmosphere with ocean, and has a model top near the mesopause, allowing us to examine the full response to the two solar forcing scenarios. We show different climate responses to the two solar forCing scenarios on decadal time scales and also trends on centennial time scales. Differences between solar maximum and solar minimum conditions are highlighted, including impacts of the time lagged reSponse of the lower atmosphere and ocean. This contrasts with studies that assume separate equilibrium conditions at solar maximum and minimum. We discuss model feedback mechanisms involved in the solar forced climate variations.
[Paid work, family and women's mental health.].
Dufort, F
1985-01-01
In this article, the results of a research on the influence of family and remunerated work on the mental health of women are presented. The impact of the working environment is analysed from the point of view of the characteristics of hiring, of the level of satisfaction at work and of the social support. The impact of the family environment is studied in the areas of shared responsabilities between married people, of the attitudes towards the presence of women in the work force, of single parentage and of family life cycles. Areas of long term and short term researches are proposed.
Iqbal, Ahmar; Barnes, Neil C; Brooks, Jean
2015-10-01
Chronic obstructive pulmonary disease (COPD) patients with blood eosinophil (EOS) count ≥ 2% benefit from exacerbation reductions with inhaled corticosteroids (ICSs). We conducted post hoc analyses to determine if EOS count ≥ 2% is a marker for greater responsiveness to the bronchodilators umeclidinium (UMEC; long-acting muscarinic antagonist), vilanterol (VI; long-acting β2-agonist) or UMEC/VI combination. Effects of once-daily UMEC/VI 62.5/25, UMEC 62.5 and VI 25 µg versus placebo on trough forced expiratory volume in one second (FEV1), Transition Dyspnoea Index (TDI), St George's Respiratory Questionnaire (SGRQ) scores and adverse event (AE) incidences in four completed, 6-month studies were assessed by EOS subgroup. Trough FEV1 was also evaluated by ICS use and EOS subgroup. Analyses were performed using a repeated measures model. At baseline, 2437 of 4647 (52%) patients had EOS count ≥ 2%. Overall, ≈ 50% of patients used ICSs. At day 169, no notable variations were observed in trough FEV1 least squares mean differences between EOS subgroups versus placebo for UMEC/VI, UMEC and VI; results according to ICS use were similar. No differences were reported between EOS subgroups in TDI and SGRQ scores on day 168, or for incidences of AEs, serious AEs and AEs leading to withdrawal. Response to UMEC/VI, UMEC and VI in terms of trough FEV1, dyspnoea and health-related quality of life was similar for COPD patients with baseline EOS counts ≥ 2 or <2%. EOS count did not appear to predict bronchodilator response in either ICS users or non-users.
The Privatisation of Military Force: Economic Virtues, Vices and Government Responsibility
1999-01-01
0 The Privatisation of Military Force: Economic Virtues, Vices and Government Responsibility ERIC FREDLAND Professor. Department of Economics...ApprovedOMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response , including the time...COVERED 00-00-1999 to 00-00-1999 4. TITLE AND SUBTITLE The Privatisation of Military Force: Economic Virtues, Vices and Government Responsibility
NASA Astrophysics Data System (ADS)
Fang, Qiang; Wu, Huaichun; Hinnov, Linda A.; Tian, Wenqian; Wang, Xunlian; Yang, Tianshui; Li, Haiyan; Zhang, Shihong
2018-04-01
At the end of the Late Paleozoic Ice Age (LPIA) from late Early Permian to early Late Permian, the global climate was impacted by a prevailing megamonsoon and Gondwanan deglaciation. To better understand the abiotic and biotic responses to Milankovitch-forced climate changes during this time period, multi-element X-ray fluorescence (XRF) geochemistry analyses were conducted on 948 samples from the late Early-late Middle Permian Maokou Formation at Shangsi, South China. The Fe/Ti, S/Ti, Ba/Ti and Ca time series, which were calibrated with an existing "floating" astronomical time scale (ATS), show the entire suite of Milankovitch rhythms including 405 kyr long eccentricity, 128 and 95 kyr short eccentricity, 33 kyr obliquity and 20 kyr precession. Spectral coherency and cross-phase analysis reveals that chemical weathering (monitored by Fe/Ti) and upwelling (captured by S/Ti and Ba/Ti) are nearly antiphase in the precession band, which suggests a contrast between summer and winter monsoon intensities. Strong obliquity signal in the Ba/Ti series is proposed to derive from changes in thermohaline circulation intensity from glaciation dynamics in southern Gondwana. The abundance of foraminifer, brachiopod and ostracod faunas within the Maokou Formation were mainly controlled by the 1.1 Myr obliquity modulation cycle. The obliquity-forced high-nutrient and oxygen-depleted conditions generally produced a benthic foraminifer bloom, but threatened the brachiopod and ostracod faunas.
Effect of land cover change on snow free surface albedo across the continental United States
Wickham, J.; Nash, M.S.; Barnes, Christopher A.
2016-01-01
Land cover changes (e.g., forest to grassland) affect albedo, and changes in albedo can influence radiative forcing (warming, cooling). We empirically tested albedo response to land cover change for 130 locations across the continental United States using high resolution (30 m-×-30 m) land cover change data and moderate resolution (~ 500 m-×-500 m) albedo data. The land cover change data spanned 10 years (2001 − 2011) and the albedo data included observations every eight days for 13 years (2001 − 2013). Empirical testing was based on autoregressive time series analysis of snow free albedo for verified locations of land cover change. Approximately one-third of the autoregressive analyses for woody to herbaceous or forest to shrub change classes were not significant, indicating that albedo did not change significantly as a result of land cover change at these locations. In addition, ~ 80% of mean differences in albedo arising from land cover change were less than ± 0.02, a nominal benchmark for precision of albedo measurements that is related to significant changes in radiative forcing. Under snow free conditions, we found that land cover change does not guarantee a significant albedo response, and that the differences in mean albedo response for the majority of land cover change locations were small.
Meng, Delong; Fricke, Wieland
2017-04-01
The aim of the present work was to assess the significance of changes in root AQP gene expression and hydraulic conductivity (Lp) in the regulation of water balance in two hydroponically-grown rice cultivars (Azucena, Bala) which differ in root morphology, stomatal regulation and aquaporin (AQP) isoform expression. Plants were exposed to NaCl (25 mM, 50 mM) and osmotic stress (5%, 10% PEG6000). Root Lp was determined for exuding root systems (osmotic forces driving water uptake; 'exudation Lp') and transpiring plants (hydrostatic forces dominating; 'transpiration-Lp'). Gene expression was analysed by qPCR. Stress treatments caused a consistent and significant decrease in plant growth, transpirational water loss, stomatal conductance, shoot-to-root surface area ratio and root Lp. Comparison of exudation-with transpiration-Lp supported a significant contribution of AQP-facilitated water flow to root water uptake. Changes in root Lp in response to treatments were correlated much stronger with root morphological characteristics, such as the number of main and lateral roots, surface area ratio of root to shoot and plant transpiration rate than with AQP gene expression. Changes in root Lp, involving AQP function, form an integral part of the plant hydraulic response to stress and facilitate changes in the root-to-shoot surface area ratio, transpiration and stomatal conductance. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
DEM modeling of failure mechanisms induced by excavations on the Moon
NASA Astrophysics Data System (ADS)
jiang, mingjing; shen, zhifu; Utili, Stefano
2013-04-01
2D Discrete Element Method (DEM) analyses were performed for excavations supported by retaining walls in lunar environment. The lunar terrain is made of a layer of sand (regolith) which differs from terrestrial sands for two main features: the presence of adhesive attractive forces due to van der Waals interactions and grains being very irregular in shape leading to high interlocking. A simplified contact model based on linear elasticity and perfect plasticity was employed. The contact model includes a moment - relative rotation law to account for high interlocking among grains and a normal adhesion law to account for the van der Waals interactions. Analyses of the excavations were run under both lunar and terrestrial environments. Under lunar environment, gravity is approximately one sixth than the value on Earth and adhesion forces between grains of lunar regolith due to van der Waals interactions are not negligible. From the DEM simulations it emerged that van der Waals interactions may significantly increase the bending moment and deflection of the retaining wall, and the ground displacements. Hence this study indicates that an unsafe estimate of the wall response to an excavation on the Moon would be obtained from physical experiments performed in a terrestrial environment, i.e., considering the effect of gravity but neglecting the van der Waals interactions.
Sensitivity Analysis of a Lagrangian Sea Ice Model
NASA Astrophysics Data System (ADS)
Rabatel, Matthias; Rampal, Pierre; Bertino, Laurent; Carrassi, Alberto; Jones, Christopher K. R. T.
2017-04-01
Large changes in the Arctic sea ice have been observed in the last decades in terms of the ice thickness, extension and drift. Understanding the mechanisms behind these changes is of paramount importance to enhance our modeling and forecasting capabilities. For 40 years, models have been developed to describe the non-linear dynamical response of the sea ice to a number of external and internal factors. Nevertheless, there still exists large deviations between predictions and observations. There are related to incorrect descriptions of the sea ice response and/or to the uncertainties about the different sources of information: parameters, initial and boundary conditions and external forcing. Data assimilation (DA) methods are used to combine observations with models, and there is nowadays an increasing interest of DA for sea-ice models and observations. We consider here the state-of-the art sea-ice model, neXtSIM te{Rampal2016a}, which is based on a time-varying Lagrangian mesh and makes use of the Elasto-Brittle rheology. Our ultimate goal is designing appropriate DA scheme for such a modelling facility. This contribution reports about the first milestone along this line: a sensitivity analysis in order to quantify forecast error to guide model development and to set basis for further Lagrangian DA methods. Specific features of the sea-ice dynamics in relation to the wind are thus analysed. Virtual buoys are deployed across the Arctic domain and their trajectories of motion are analysed. The simulated trajectories are also compared to real buoys trajectories observed. The model response is also compared with that one from a model version not including internal forcing to highlight the role of the rheology. Conclusions and perspectives for the general DA implementation are also discussed. \\bibitem{Rampal2016a} P. Rampal, S. Bouillon, E. Ólason, and M. Morlighem. ne{X}t{SIM}: a new {L}agrangian sea ice model. The Cryosphere, 10 (3): 1055-1073, 2016.
Influence of central set on anticipatory and triggered grip-force adjustments
NASA Technical Reports Server (NTRS)
Winstein, C. J.; Horak, F. B.; Fisher, B. E.; Peterson, B. W. (Principal Investigator)
2000-01-01
The effects of predictability of load magnitude on anticipatory and triggered grip-force adjustments were studied as nine normal subjects used a precision grip to lift, hold, and replace an instrumented test object. Experience with a predictable stimulus has been shown to enhance magnitude scaling of triggered postural responses to different amplitudes of perturbations. However, this phenomenon, known as a central-set effect, has not been tested systematically for grip-force responses in the hand. In our study, predictability was manipulated by applying load perturbations of different magnitudes to the test object under conditions in which the upcoming load magnitude was presented repeatedly or under conditions in which the load magnitudes were presented randomly, each with two different pre-load grip conditions (unconstrained and constrained). In constrained conditions, initial grip forces were maintained near the minimum level necessary to prevent pre-loaded object slippage, while in unconstrained conditions, no initial grip force restrictions were imposed. The effect of predictable (blocked) and unpredictable (random) load presentations on scaling of anticipatory and triggered grip responses was tested by comparing the slopes of linear regressions between the imposed load and grip response magnitude. Anticipatory and triggered grip force responses were scaled to load magnitude in all conditions. However, regardless of pre-load grip force constraint, the gains (slopes) of grip responses relative to load magnitudes were greater when the magnitude of the upcoming load was predictable than when the load increase was unpredictable. In addition, a central-set effect was evidenced by the fewer number of drop trials in the predictable relative to unpredictable load conditions. Pre-load grip forces showed the greatest set effects. However, grip responses showed larger set effects, based on prediction, when pre-load grip force was constrained to lower levels. These results suggest that anticipatory processes pertaining to load magnitude permit the response gain of both voluntary and triggered rapid grip force adjustments to be set, at least partially, prior to perturbation onset. Comparison of anticipatory set effects for reactive torque and lower extremity EMG postural responses triggered by surface translation perturbations suggests a more general rule governing anticipatory processes.
Diffo Kaze, Arnaud; Maas, Stefan; Arnoux, Pierre-Jean; Wolf, Claude; Pape, Dietrich
2017-12-07
Results of finite element (FE) analyses can give insight into musculoskeletal diseases if physiological boundary conditions, which include the muscle forces during specific activities of daily life, are considered in the FE modelling. So far, many simplifications of the boundary conditions are currently made. This study presents an approach for FE modelling of the lower limb for which muscle forces were included. The stance phase of normal gait was simulated. Muscle forces were calculated using a musculoskeletal rigid body (RB) model of the human body, and were subsequently applied to a FE model of the lower limb. It was shown that the inertial forces are negligible during the stance phase of normal gait. The contact surfaces between the parts within the knee were modelled as bonded. Weak springs were attached to the distal tibia for numerical reasons. Hip joint reaction forces from the RB model and those from the FE model were similar in magnitude with relative differences less than 16%. The forces of the weak spring were negligible compared to the applied muscle forces. The maximal strain was 0.23% in the proximal region of the femoral diaphysis and 1.7% in the contact zone between the tibia and the fibula. The presented approach based on FE modelling by including muscle forces from inverse dynamic analysis of musculoskeletal RB model can be used to perform analyses of the lower limb with very realistic boundary conditions. In the present form, this model can be used to better understand the loading, stresses and strains of bones in the knee area and hence to analyse osteotomy fixation devices.
Brushing force of manual and sonic toothbrushes affects dental hard tissue abrasion.
Wiegand, Annette; Burkhard, John Patrik Matthias; Eggmann, Florin; Attin, Thomas
2013-04-01
This study aimed to determine the brushing forces applied during in vivo toothbrushing with manual and sonic toothbrushes and to analyse the effect of these brushing forces on abrasion of sound and eroded enamel and dentin in vitro. Brushing forces of a manual and two sonic toothbrushes (low and high frequency mode) were measured in 27 adults before and after instruction of the respective brushing technique and statistically analysed by repeated measures analysis of variance (ANOVA). In the in vitro experiment, sound and eroded enamel and dentin specimens (each subgroup n = 12) were brushed in an automatic brushing machine with the respective brushing forces using a fluoridated toothpaste slurry. Abrasion was determined by profilometry and statistically analysed by one-way ANOVA. Average brushing force of the manual toothbrush (1.6 ± 0.3 N) was significantly higher than for the sonic toothbrushes (0.9 ± 0.2 N), which were not significantly different from each other. Brushing force prior and after instruction of the brushing technique was not significantly different. The manual toothbrush caused highest abrasion of sound and eroded dentin, but lowest on sound enamel. No significant differences were detected on eroded enamel. Brushing forces of manual and sonic toothbrushes are different and affect their abrasive capacity. Patients with severe tooth wear and exposed and/or eroded dentin surfaces should use sonic toothbrushes to reduce abrasion, while patients without tooth wear or with erosive lesions confining only to enamel do not benefit from sonic toothbrushes with regard to abrasion.
2013-06-14
ever-evolving contemporary nature of external and internal threats to the safety and security of the American homeland, it becomes increasingly...Major Justin P. Hurt, 146 pages. With the ever-evolving contemporary nature of external and internal threats to the safety and security of the American...HAZMAT Hazardous Materials HRF Homeland Response Force HSPD Homeland Security Presidential Directive JFHQ Joint Force
NASA Technical Reports Server (NTRS)
Smith, Andrew; LaVerde, Bruce; Waldon, James; Hunt, Ron
2014-01-01
Marshall Space Flight Center has conducted a series of ground acoustic tests with the dual goals of informing analytical judgment, and validating analytical methods when estimating vibroacoustic responses of launch vehicle subsystems. The process of repeatedly correlating finite element-simulated responses with test-measured responses has assisted in the development of best practices for modeling and post-processing. In recent work, force transducers were integrated to measure interface forces at the base of avionics box equipment. Other force data was indirectly measured using strain gauges. The combination of these direct and indirect force measurements has been used to support and illustrate the advantages of implementing the Force Limiting approach for equipment qualification tests. The comparison of force response from integrated system level tests to measurements at the same locations during component level vibration tests provides an excellent illustration. A second comparison of the measured response cases from the system level acoustic tests to finite element simulations has also produced some principles for assessing the suitability of Finite Element Models (FEMs) for making vibroacoustics estimates. The results indicate that when FEM models are employed to guide force limiting choices, they should include sufficient detail to represent the apparent mass of the system in the frequency range of interest.
NASA Astrophysics Data System (ADS)
Qi, Chenkun; Zhao, Xianchao; Gao, Feng; Ren, Anye; Hu, Yan
2016-11-01
The hardware-in-the-loop (HIL) contact simulation for flying objects in space is challenging due to the divergence caused by the time delay. In this study, a divergence compensation approach is proposed for the stiffness-varying discrete contact. The dynamic response delay of the motion simulator and the force measurement delay are considered. For the force measurement delay, a phase lead based force compensation approach is used. For the dynamic response delay of the motion simulator, a response error based force compensation approach is used, where the compensation force is obtained from the real-time identified contact stiffness and real-time measured position response error. The dynamic response model of the motion simulator is not required. The simulations and experiments show that the simulation divergence can be compensated effectively and satisfactorily by using the proposed approach.
Impact of titin strain on the cardiac slow force response.
Ait-Mou, Younss; Zhang, Mengjie; Martin, Jody L; Greaser, Marion L; de Tombe, Pieter P
2017-11-01
Stretch of myocardium, such as occurs upon increased filling of the cardiac chamber, induces two distinct responses: an immediate increase in twitch force followed by a slower increase in twitch force that develops over the course of several minutes. The immediate response is due, in part, to modulation of myofilament Ca 2+ sensitivity by sarcomere length (SL). The slowly developing force response, termed the Slow Force Response (SFR), is caused by a slowly developing increase in intracellular Ca 2+ upon sustained stretch. A blunted immediate force response was recently reported for myocardium isolated from homozygous giant titin mutant rats (HM) compared to muscle from wild-type littermates (WT). Here, we examined the impact of titin isoform on the SFR. Right ventricular trabeculae were isolated and mounted in an experimental chamber. SL was measured by laser diffraction. The SFR was recorded in response to a 0.2 μm SL stretch in the presence of [Ca 2+ ] o = 0.4 mM, a bathing concentration reflecting ∼50% of maximum twitch force development at 25 °C. Presence of the giant titin isoform (HM) was associated with a significant reduction in diastolic passive force upon stretch, and ∼50% reduction of the magnitude of the SFR; the rate of SFR development was unaffected. The sustained SL stretch was identical in both muscle groups. Therefore, our data suggest that cytoskeletal strain may underlie directly the cellular mechanisms that lead to the increased intracellular [Ca 2+ ] i that causes the SFR, possibly by involving cardiac myocyte integrin signaling pathways. Copyright © 2017 Elsevier Ltd. All rights reserved.
Effects of labor force participation on women's health: new evidence from a longitudinal study.
Waldron, I; Jacobs, J A
1988-12-01
Effects of labor force participation on women's health are evaluated in analyses of longitudinal data for a national sample of older middle-aged women. Our findings indicate that labor force participation had beneficial effects on health for unmarried women and for married black women, but, on the average, labor force participation had no significant effect on health for married white women. Analyses by occupational category suggest that labor force participation had beneficial effects on health for some blue collar married women, but, on the average, labor force participation had harmful effects on health for white collar married women. Our findings, taken together with previous evidence, suggest that employment may increase social support, and job-related social support may have particularly beneficial effects on health for unmarried women and for married women whose husbands are not emotionally supportive confidants. Additional results from this study showed no significant difference in the health effects of part-time and full-time employment.
Research on the influence of helical strakes on dynamic response of floating wind turbine platform
NASA Astrophysics Data System (ADS)
Ding, Qin-wei; Li, Chun
2017-04-01
The stability of platform structure is the paramount guarantee of the safe operation of the offshore floating wind turbine. The NREL 5MW floating wind turbine is established based on the OC3-Hywind Spar Buoy platform with the supplement of helical strakes for the purpose to analyze the impact of helical strakes on the dynamic response of the floating wind turbine Spar platform. The dynamic response of floating wind turbine Spar platform under wind, wave and current loading from the impact of number, height and pitch ratio of the helical strakes is analysed by the radiation and diffraction theory, the finite element method and orthogonal design method. The result reveals that the helical strakes can effectively inhibit the dynamic response of the platform but enlarge the wave exciting force; the best parameter combination is two pieces of helical strakes with the height of 15% D ( D is the diameter of the platform) and the pitch ratio of 5; the height of the helical strake and its pitch ratio have significant influence on pitch response.
Raghu Prasad, M S; Manivannan, M; Chandramohan, S M
2015-07-01
In laparoscopic surgery, no external feedback on the magnitude of the force exerted is available. Hence, surgeons and residents tend to exert excessive force, which leads to tissue trauma. Ability of surgeons and residents to perceive their own force output without external feedback is a critical factor in laparoscopic force-skills training. Additionally, existing methods of laparoscopic training do not effectively train residents and novices on force-skills. Hence, there is growing need for the development of force-based training curriculum. As a first step towards force-based laparoscopic skills training, this study analysed force perception difference between laparoscopic instrument and finger in contralateral bimanual passive probing task. The study compared the isometric force matching performance of novices, residents and surgeons with finger and laparoscopic instrument. Contralateral force matching paradigm was employed to analyse the force perception capability in terms of relative (accuracy), and constant errors in force matching. Force perception of experts was found to be better than novices and residents. Interestingly, laparoscopic instrument was more accurate in discriminating the forces than finger. The dominant hand attempted to match the forces accurately, whereas non-dominant hand (NH) overestimated the forces. Further, the NH of experts was found to be most accurate. Furthermore, excessive forces were applied at lower force levels and at very high force levels. Due to misperception of force, novices and residents applied excessive forces. However, experts had good control over force with both dominant and NHs. These findings suggest that force-based training curricula should not only have proprioception tasks, but should also include bimanual force-skills training exercises in order to improve force perception ability and hand skills of novices and residents. The results can be used as a performance metric in both box and virtual reality based force-skills training.
Mechanical response and buckling of a polymer simulation model of the cell nucleus
NASA Astrophysics Data System (ADS)
Banigan, Edward; Stephens, Andrew; Marko, John
The cell nucleus must robustly resist extra- and intracellular forces to maintain genome architecture. Micromanipulation experiments measuring nuclear mechanical response reveal that the nucleus has two force response regimes: a linear short-extension response due to the chromatin interior and a stiffer long-extension response from lamin A, comprising the intermediate filament protein shell. To explain these results, we developed a quantitative simulation model with realistic parameters for chromatin and the lamina. Our model predicts that crosslinking between chromatin and the lamina is essential for responding to small strains and that changes to the interior topological organization can alter the mechanical response of the whole nucleus. Thus, chromatin polymer elasticity, not osmotic pressure, is the dominant regulator of this force response. Our model reveals a novel buckling transition for polymer shells: as force increases, the shell buckles transverse to the applied force. This transition, which arises from topological constrains in the lamina, can be mitigated by tuning the properties of the chromatin interior. Thus, we find that the genome is a resistive mechanical element that can be tuned by its organization and connectivity to the lamina.
Homodyne detection of short-range Doppler radar using a forced oscillator model
NASA Astrophysics Data System (ADS)
Kittipute, Kunanon; Saratayon, Peerayudh; Srisook, Suthasin; Wardkein, Paramote
2017-03-01
This article presents the homodyne detection in a self-oscillation system, which represented by a short-range radar (SRR) circuit, that is analysed using a multi-time forced oscillator (MTFO) model. The MTFO model is based on a forced oscillation perspective with the signal and system theory, a second-order differential equation, and the multiple time variable technique. This model can also apply to analyse the homodyne phenomenon in a difference kind of the oscillation system under same method such as the self-oscillation system, and the natural oscillation system with external forced. In a free oscillation system, which forced by the external source is represented by a pendulum with an oscillating support experiment, and a modified Colpitts oscillator circuit in the UHF band with input as a Doppler signal is a representative of self-oscillation system. The MTFO model is verified with the experimental result, which well in line with the theoretical analysis.
32 CFR 644.368 - Procedures and responsibilities for care, custody, accountability, and maintenance.
Code of Federal Regulations, 2010 CFR
2010-07-01
... their jurisdiction until final disposition is effected. (c) Department of the Air Force property. Pursuant to AFR 87-4, the Department of the Air Force is responsible for care and custody of excess Air Force real property. However, upon request by the Air Force DEs may assume custody if no costs are...
32 CFR 644.368 - Procedures and responsibilities for care, custody, accountability, and maintenance.
Code of Federal Regulations, 2013 CFR
2013-07-01
... property under their jurisdiction until final disposition is effected. (c) Department of the Air Force property. Pursuant to AFR 87-4, the Department of the Air Force is responsible for care and custody of excess Air Force real property. However, upon request by the Air Force DEs may assume custody if no costs...
32 CFR 644.368 - Procedures and responsibilities for care, custody, accountability, and maintenance.
Code of Federal Regulations, 2011 CFR
2011-07-01
... property under their jurisdiction until final disposition is effected. (c) Department of the Air Force property. Pursuant to AFR 87-4, the Department of the Air Force is responsible for care and custody of excess Air Force real property. However, upon request by the Air Force DEs may assume custody if no costs...
Marshall, John; Armour, Kyle C.; Scott, Jeffery R.; Kostov, Yavor; Hausmann, Ute; Ferreira, David; Shepherd, Theodore G.; Bitz, Cecilia M.
2014-01-01
In recent decades, the Arctic has been warming and sea ice disappearing. By contrast, the Southern Ocean around Antarctica has been (mainly) cooling and sea-ice extent growing. We argue here that interhemispheric asymmetries in the mean ocean circulation, with sinking in the northern North Atlantic and upwelling around Antarctica, strongly influence the sea-surface temperature (SST) response to anthropogenic greenhouse gas (GHG) forcing, accelerating warming in the Arctic while delaying it in the Antarctic. Furthermore, while the amplitude of GHG forcing has been similar at the poles, significant ozone depletion only occurs over Antarctica. We suggest that the initial response of SST around Antarctica to ozone depletion is one of cooling and only later adds to the GHG-induced warming trend as upwelling of sub-surface warm water associated with stronger surface westerlies impacts surface properties. We organize our discussion around ‘climate response functions’ (CRFs), i.e. the response of the climate to ‘step’ changes in anthropogenic forcing in which GHG and/or ozone-hole forcing is abruptly turned on and the transient response of the climate revealed and studied. Convolutions of known or postulated GHG and ozone-hole forcing functions with their respective CRFs then yield the transient forced SST response (implied by linear response theory), providing a context for discussion of the differing warming/cooling trends in the Arctic and Antarctic. We speculate that the period through which we are now passing may be one in which the delayed warming of SST associated with GHG forcing around Antarctica is largely cancelled by the cooling effects associated with the ozone hole. By mid-century, however, ozone-hole effects may instead be adding to GHG warming around Antarctica but with diminished amplitude as the ozone hole heals. The Arctic, meanwhile, responding to GHG forcing but in a manner amplified by ocean heat transport, may continue to warm at an accelerating rate. PMID:24891392
Marshall, John; Armour, Kyle C; Scott, Jeffery R; Kostov, Yavor; Hausmann, Ute; Ferreira, David; Shepherd, Theodore G; Bitz, Cecilia M
2014-07-13
In recent decades, the Arctic has been warming and sea ice disappearing. By contrast, the Southern Ocean around Antarctica has been (mainly) cooling and sea-ice extent growing. We argue here that interhemispheric asymmetries in the mean ocean circulation, with sinking in the northern North Atlantic and upwelling around Antarctica, strongly influence the sea-surface temperature (SST) response to anthropogenic greenhouse gas (GHG) forcing, accelerating warming in the Arctic while delaying it in the Antarctic. Furthermore, while the amplitude of GHG forcing has been similar at the poles, significant ozone depletion only occurs over Antarctica. We suggest that the initial response of SST around Antarctica to ozone depletion is one of cooling and only later adds to the GHG-induced warming trend as upwelling of sub-surface warm water associated with stronger surface westerlies impacts surface properties. We organize our discussion around 'climate response functions' (CRFs), i.e. the response of the climate to 'step' changes in anthropogenic forcing in which GHG and/or ozone-hole forcing is abruptly turned on and the transient response of the climate revealed and studied. Convolutions of known or postulated GHG and ozone-hole forcing functions with their respective CRFs then yield the transient forced SST response (implied by linear response theory), providing a context for discussion of the differing warming/cooling trends in the Arctic and Antarctic. We speculate that the period through which we are now passing may be one in which the delayed warming of SST associated with GHG forcing around Antarctica is largely cancelled by the cooling effects associated with the ozone hole. By mid-century, however, ozone-hole effects may instead be adding to GHG warming around Antarctica but with diminished amplitude as the ozone hole heals. The Arctic, meanwhile, responding to GHG forcing but in a manner amplified by ocean heat transport, may continue to warm at an accelerating rate.
Flutter and forced response of mistuned rotors using standing wave analysis
NASA Technical Reports Server (NTRS)
Dugundji, J.; Bundas, D. J.
1983-01-01
A standing wave approach is applied to the analysis of the flutter and forced response of tuned and mistuned rotors. The traditional traveling wave cascade airforces are recast into standing wave arbitrary motion form using Pade approximants, and the resulting equations of motion are written in the matrix form. Applications for vibration modes, flutter, and forced response are discussed. It is noted that the standing wave methods may prove to be more versatile for dealing with certain applications, such as coupling flutter with forced response and dynamic shaft problems, transient impulses on the rotor, low-order engine excitation, bearing motions, and mistuning effects in rotors.
Flutter and forced response of mistuned rotors using standing wave analysis
NASA Technical Reports Server (NTRS)
Bundas, D. J.; Dungundji, J.
1983-01-01
A standing wave approach is applied to the analysis of the flutter and forced response of tuned and mistuned rotors. The traditional traveling wave cascade airforces are recast into standing wave arbitrary motion form using Pade approximants, and the resulting equations of motion are written in the matrix form. Applications for vibration modes, flutter, and forced response are discussed. It is noted that the standing wave methods may prove to be more versatile for dealing with certain applications, such as coupling flutter with forced response and dynamic shaft problems, transient impulses on the rotor, low-order engine excitation, bearing motion, and mistuning effects in rotors.
Luu, Phan; Tucker, Don M; Makeig, Scott
2004-08-01
The error-related negativity (ERN) is an event-related potential (ERP) peak occurring between 50 and 100 ms after the commission of a speeded motor response that the subject immediately realizes to be in error. The ERN is believed to index brain processes that monitor action outcomes. Our previous analyses of ERP and EEG data suggested that the ERN is dominated by partial phase-locking of intermittent theta-band EEG activity. In this paper, this possibility is further evaluated. The possibility that the ERN is produced by phase-locking of theta-band EEG activity was examined by analyzing the single-trial EEG traces from a forced-choice speeded response paradigm before and after applying theta-band (4-7 Hz) filtering and by comparing the averaged and single-trial phase-locked (ERP) and non-phase-locked (other) EEG data. Electrical source analyses were used to estimate the brain sources involved in the generation of the ERN. Beginning just before incorrect button presses in a speeded choice response paradigm, midfrontal theta-band activity increased in amplitude and became partially and transiently phase-locked to the subject's motor response, accounting for 57% of ERN peak amplitude. The portion of the theta-EEG activity increase remaining after subtracting the response-locked ERP from each trial was larger and longer lasting after error responses than after correct responses, extending on average 400 ms beyond the ERN peak. Multiple equivalent-dipole source analysis suggested 3 possible equivalent dipole sources of the theta-bandpassed ERN, while the scalp distribution of non-phase-locked theta amplitude suggested the presence of additional frontal theta-EEG sources. These results appear consistent with a body of research that demonstrates a relationship between limbic theta activity and action regulation, including error monitoring and learning.
NASA Astrophysics Data System (ADS)
Li, Yupeng; Kim, Hyung-Ick; Wei, Bingqing; Kang, Junmo; Choi, Jae-Boong; Nam, Jae-Do; Suhr, Jonghwan
2015-08-01
The local buckling behavior of vertically aligned carbon nanotubes (VACNTs) has been investigated and interpreted in the view of a collective nanotube response by taking van der Waals interactions into account. To the best of our knowledge, this is the first report on the case of collective VACNT behavior regarding van der Waals force among nanotubes as a lateral support effect during the buckling process. The local buckling propagation and development of VACNTs were experimentally observed and theoretically analyzed by employing finite element modeling with lateral support from van der Waals interactions among nanotubes. Both experimental and theoretical analyses show that VACNTs buckled in the bottom region with many short waves and almost identical wavelengths, indicating a high mode buckling. Furthermore, the propagation and development mechanism of buckling waves follow the wave damping effect.The local buckling behavior of vertically aligned carbon nanotubes (VACNTs) has been investigated and interpreted in the view of a collective nanotube response by taking van der Waals interactions into account. To the best of our knowledge, this is the first report on the case of collective VACNT behavior regarding van der Waals force among nanotubes as a lateral support effect during the buckling process. The local buckling propagation and development of VACNTs were experimentally observed and theoretically analyzed by employing finite element modeling with lateral support from van der Waals interactions among nanotubes. Both experimental and theoretical analyses show that VACNTs buckled in the bottom region with many short waves and almost identical wavelengths, indicating a high mode buckling. Furthermore, the propagation and development mechanism of buckling waves follow the wave damping effect. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03581c
de Barros E Lima Bueno, Renan; Dias, Ana Paula; Ponce, Katia J; Wazen, Rima; Brunski, John B; Nanci, Antonio
2018-05-31
When bone implants are loaded, they are inevitably subjected to displacement relative to bone. Such micromotion generates stress/strain states at the interface that can cause beneficial or detrimental sequels. The objective of this study is to better understand the mechanobiology of bone healing at the tissue-implant interface during repeated loading. Machined screw shaped Ti implants were placed in rat tibiae in a hole slightly bigger than the implant diameter. Implants were held stable by a specially-designed bone plate that permits controlled loading. Three loading regimens were applied, (a) zero loading, (b) one daily loading session of 60 cycles with an axial force of 1.5 N/cycle for 7 days, and (c) two such daily sessions with the same axial force also for 7 days. Finite element analysis was used to characterize the mechanobiological conditions produced by the loading sessions. After 7 days, the implants with surrounding interfacial tissue were harvested and processed for histological, histomorphometric and DNA microarray analyses. Histomorphometric analyses revealed that the group subjected to repeated loading sessions exhibited a significant decrease in bone-implant contact and increase in bone-implant distance, as compared to unloaded implants and those subjected to only one loading session. Gene expression profiles differed during osseointegration between all groups mainly with respect to inflammatory and unidentified gene categories. The results indicate that increasing the daily cyclic loading of implants induces deleterious changes in the bone healing response, most likely due to the accumulation of tissue damage and associated inflammatory reaction at the bone-implant interface. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
How Tidal Forces Cause Ocean Tides in the Equilibrium Theory
ERIC Educational Resources Information Center
Ng, Chiu-king
2015-01-01
We analyse why it is erroneous to think that a tidal bulge is formed by pulling the water surface directly up by a local vertical tidal force. In fact, ocean tides are caused by the global effect of the horizontal components of the tidal forces.
Influence of sleep deprivation and auditory intensity on reaction time and response force.
Włodarczyk, Dariusz; Jaśkowski, Piotr; Nowik, Agnieszka
2002-06-01
Arousal and activation are two variables supposed to underlie change in response force. This study was undertaken to explain these roles, specifically, for strong auditory stimuli and sleep deficit. Loud auditory stimuli can evoke phasic overarousal whereas sleep deficit leads to general underarousal. Moreover, Van der Molen and Keuss (1979, 1981) showed that paradoxically long reaction times occurred with extremely strong auditory stimuli when the task was difficult, e.g., choice reaction or Simon paradigm. It was argued that this paradoxical behavior related to reaction time is due to active disconnecting of the coupling between arousal and activation to prevent false responses. If so, we predicted that for extremely loud stimuli and for difficult tasks, the lengthening of reaction time should be associated with reduction of response force. The effects of loudness and sleep deficit on response time and force were investigated in three different tasks: simple response, choice response, and Simon paradigm. According to our expectation, we found a detrimental effect of sleep deficit on reaction time and on response force. In contrast to Van der Molen and Keuss, we found no increase in reaction time for loud stimuli (up to 110 dB) even on the Simon task.
Méndez-Vilas, A; Gallardo-Moreno, A M; Calzado-Montero, R; González-Martín, M L
2008-05-01
AFM probing of microbial cells in liquid environments usually requires them to be physically or chemically attached to a solid surface. The fixation mechanisms may influence the nanomechanical characterization done by force curve mapping using an AFM. To study the response of a microbial cell surface to this kind of local measurement this study attempts to overcome the problem associated to the uncertainties introduced by the different fixation treatments by analysing the surface of Staphylococcus epidermidis cells naturally (non-artificially mediated) immobilised on a glass support surface. The particularities of this natural bacterial fixation process for AFM surface analysis are discussed in terms of theoretical predictions of the XDLVO model applied to the systems bacteria/support substratum and bacteria/AFM tip immersed in water. In this sense, in the first part of this study the conditions for adequate natural fixation of three S. epidermidis strains have been analyzed by taking into account the geometries of the bacterium, substrate and tip. In the second part, bacteria are probed without the risk of any possible artefacts due to the mechanical or chemical fixation procedures. Forces measured over the successfully adhered cells have (directly) shown that the untreated bacterial surface suffers from a combination of both reversible and non-reversible deformations during acquisition of force curves all taken under the same operational conditions. This is revealed directly through high-resolution tapping-mode imaging of the bacterial surface immediately following force curve mapping. The results agree with the two different types of force curves that were repeatedly obtained. Interestingly, one type of these force curves suggests that the AFM tip is breaking (rather than pushing) the cell surface during acquisition of the force curve. In this case, adhesive peaks were always observed, suggesting a mechanical origin of the measured pull-off forces. The other type of force curves shows no adhesive peaks and exhibits juxtaposing of approaching and retraction curves, reflecting elastic deformations.
Finite Element Model Optimization of the FalconSAT-5 Structural Engineering Model
2009-03-01
for coupled loads analyses. To develop the FE tuning process, this research focuses on the United States Air Force Academy (USAFA) FalconSAT-5 SEM II...Kirtland Air Force Base (KAFB) were sufficient for design engineers to ensure compliance with launch loads. However, for the coupled loads analysis...OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base, Ohio APPROVED FOR PUBLIC RELEASE; DISTRIBUTION
NASA Astrophysics Data System (ADS)
Yu, S.; Pritchard, M. S.
2017-12-01
The role of different location of top-of-atmosphere (TOA) solar forcing to the annual-mean, zonal-mean ITCZ location is examined in a dynamic ocean coupled Community Earth System Model. We observe a damped ITCZ shift response that is now a familiar response of coupled GCMs, but a new finding is that the damping efficiency is increases monotonically as the latitudinal location of forcing is moved poleward. More Poleward forcing cases exhibit weaker shifts of the annual-mean ITCZ position consistent with a more ocean-centric cross-equatorial energy partitioning response to the forcing, which is in turn linked to changes in ocean circulation, not thermodynamic structure. The ocean's dynamic response is partly due to Ekman-driven shallow overturning circulation responses, as expected from a recent theory, but also contains a significant Atlantic meridional overturning circulation (AMOC) component--which is in some sense surprising given that it is activated even in near-tropical forcing experiments. Further analysis of the interhemispheric energy budget reveals the surface heating feedback response provides a useful framework for interpreting the cross-equatorial energy transport partitioning between atmosphere and ocean. Overall, the results of this study may help explain the mixed results of the degree of ITCZ shift response to interhemispheric asymmetric forcing documented in coupled GCMs in recent years. Furthermore, the sensitive AMOC response motivates expanding current coupled theoretical frameworks on meridional energy transport partitioning to include effects beyond Ekman transport.
Directional constraint of endpoint force emerges from hindlimb anatomy.
Bunderson, Nathan E; McKay, J Lucas; Ting, Lena H; Burkholder, Thomas J
2010-06-15
Postural control requires the coordination of force production at the limb endpoints to apply an appropriate force to the body. Subjected to horizontal plane perturbations, quadruped limbs stereotypically produce force constrained along a line that passes near the center of mass. This phenomenon, referred to as the force constraint strategy, may reflect mechanical constraints on the limb or body, a specific neural control strategy or an interaction among neural controls and mechanical constraints. We used a neuromuscular model of the cat hindlimb to test the hypothesis that the anatomical constraints restrict the mechanical action of individual muscles during stance and constrain the response to perturbations to a line independent of perturbation direction. In a linearized neuromuscular model of the cat hindlimb, muscle lengthening directions were highly conserved across 10,000 different muscle activation patterns, each of which produced an identical, stance-like endpoint force. These lengthening directions were closely aligned with the sagittal plane and reveal an anatomical structure for directionally constrained force responses. Each of the 10,000 activation patterns was predicted to produce stable stance based on Lyapunov stability analysis. In forward simulations of the nonlinear, seven degree of freedom model under the action of 200 random muscle activation patterns, displacement of the endpoint from its equilibrium position produced restoring forces, which were also biased toward the sagittal plane. The single exception was an activation pattern based on minimum muscle stress optimization, which produced destabilizing force responses in some perturbation directions. The sagittal force constraint increased during simulations as the system shifted from an inertial response during the acceleration phase to a viscoelastic response as peak velocity was obtained. These results qualitatively match similar experimental observations and suggest that the force constraint phenomenon may result from the anatomical arrangement of the limb.
Directional constraint of endpoint force emerges from hindlimb anatomy
Bunderson, Nathan E.; McKay, J. Lucas; Ting, Lena H.; Burkholder, Thomas J.
2010-01-01
Postural control requires the coordination of force production at the limb endpoints to apply an appropriate force to the body. Subjected to horizontal plane perturbations, quadruped limbs stereotypically produce force constrained along a line that passes near the center of mass. This phenomenon, referred to as the force constraint strategy, may reflect mechanical constraints on the limb or body, a specific neural control strategy or an interaction among neural controls and mechanical constraints. We used a neuromuscular model of the cat hindlimb to test the hypothesis that the anatomical constraints restrict the mechanical action of individual muscles during stance and constrain the response to perturbations to a line independent of perturbation direction. In a linearized neuromuscular model of the cat hindlimb, muscle lengthening directions were highly conserved across 10,000 different muscle activation patterns, each of which produced an identical, stance-like endpoint force. These lengthening directions were closely aligned with the sagittal plane and reveal an anatomical structure for directionally constrained force responses. Each of the 10,000 activation patterns was predicted to produce stable stance based on Lyapunov stability analysis. In forward simulations of the nonlinear, seven degree of freedom model under the action of 200 random muscle activation patterns, displacement of the endpoint from its equilibrium position produced restoring forces, which were also biased toward the sagittal plane. The single exception was an activation pattern based on minimum muscle stress optimization, which produced destabilizing force responses in some perturbation directions. The sagittal force constraint increased during simulations as the system shifted from an inertial response during the acceleration phase to a viscoelastic response as peak velocity was obtained. These results qualitatively match similar experimental observations and suggest that the force constraint phenomenon may result from the anatomical arrangement of the limb. PMID:20511528
NASA Technical Reports Server (NTRS)
Zanchettin, Davide; Khodri, Myriam; Timmreck, Claudia; Toohey, Matthew; Schmidt, Anja; Gerber, Edwin P.; Hegerl, Gabriele; Robock, Alan; Pausata, Francesco; Ball, William T.;
2016-01-01
The enhancement of the stratospheric aerosol layer by volcanic eruptions induces a complex set of responses causing global and regional climate effects on a broad range of timescales. Uncertainties exist regarding the climatic response to strong volcanic forcing identified in coupled climate simulations that contributed to the fifth phase of the Coupled Model Intercomparison Project (CMIP5). In order to better understand the sources of these model diversities, the Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP) has defined a coordinated set of idealized volcanic perturbation experiments to be carried out in alignment with the CMIP6 protocol. VolMIP provides a common stratospheric aerosol data set for each experiment to minimize differences in the applied volcanic forcing. It defines a set of initial conditions to assess how internal climate variability contributes to determining the response. VolMIP will assess to what extent volcanically forced responses of the coupled ocean-atmosphere system are robustly simulated by state-of-the-art coupled climate models and identify the causes that limit robust simulated behavior, especially differences in the treatment of physical processes. This paper illustrates the design of the idealized volcanic perturbation experiments in the VolMIP protocol and describes the common aerosol forcing input data sets to be used.
In vivo measurement of muscle output in intact Drosophila.
Elliott, Christopher J H; Sparrow, John C
2012-01-01
We describe our methods for analysing muscle function in a whole intact small insect, taking advantage of a simple flexible optical beam to produce an inexpensive transducer with wide application. We review our previous data measuring the response to a single action potential driven muscle twitch to explore jumping behaviour in Drosophila melanogaster. In the fruitfly, where the sophisticated and powerful genetic toolbox is being widely employed to investigate neuromuscular function, we further demonstrate the use of the apparatus to analyse in detail, within whole flies, neuronal and muscle mutations affecting activation of muscle contraction in the jump muscle. We have now extended the use of the apparatus to record the muscle forces during larval and other aspects of adult locomotion. The robustness, simplicity and versatility of the apparatus are key to these measurements. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ramanujam, G.; Bert, C. W.
1983-06-01
The objective of this paper is to provide a theoretical foundation to predict many aspects of dynamic behavior of flywheel systems when spin-tested with a quill shaft support and driven by an air turbine. Theoretical analyses for the following are presented: (1) determination of natural frequencies (or for brevity critical speeds of various orders), (2) Routh-type stability analysis to determine the stability limits (i.e., the speed range within which small perturbations attenuate rather than cause catastrophic failure), and (3) forced whirling analysis to estimate the response of major components of the system to flywheel mass eccentricity and initial tilt. For the first and third kinds of analyses, two different mathematical models of the generic system are investigated. One is a seven-degree-of-freedom lumped parameter analysis, while the other is a combined distributed and lumped parameter analysis.
Strength reduction factors for seismic analyses of buildings exposed to near-fault ground motions
NASA Astrophysics Data System (ADS)
Qu, Honglue; Zhang, Jianjing; Zhao, J. X.
2011-06-01
To estimate the near-fault inelastic response spectra, the accuracy of six existing strength reduction factors ( R) proposed by different investigators were evaluated by using a suite of near-fault earthquake records with directivity-induced pulses. In the evaluation, the force-deformation relationship is modelled by elastic-perfectly plastic, bilinear and stiffness degrading models, and two site conditions, rock and soil, are considered. The R-value ratio (ratio of the R value obtained from the existing R-expressions (or the R-µ- T relationships) to that from inelastic analyses) is used as a measurement parameter. Results show that the R-expressions proposed by Ordaz & Perez-Rocha are the most suitable for near-fault ground motions, followed by the Newmark & Hall and the Berrill et al. relationships. Based on an analysis using the near-fault ground motion dataset, new expressions of R that consider the effects of site conditions are presented and verified.
On the analytical modeling of the nonlinear vibrations of pretensioned space structures
NASA Technical Reports Server (NTRS)
Housner, J. M.; Belvin, W. K.
1983-01-01
Pretensioned structures are receiving considerable attention as candidate large space structures. A typical example is a hoop-column antenna. The large number of preloaded members requires efficient analytical methods for concept validation and design. Validation through analyses is especially important since ground testing may be limited due to gravity effects and structural size. The present investigation has the objective to present an examination of the analytical modeling of pretensioned members undergoing nonlinear vibrations. Two approximate nonlinear analysis are developed to model general structural arrangements which include beam-columns and pretensioned cables attached to a common nucleus, such as may occur at a joint of a pretensioned structure. Attention is given to structures undergoing nonlinear steady-state oscillations due to sinusoidal excitation forces. Three analyses, linear, quasi-linear, and nonlinear are conducted and applied to study the response of a relatively simple cable stiffened structure.
Consumer fears and familiarity of processed food. The value of information provided by the FTNS.
Verneau, Fabio; Caracciolo, Francesco; Coppola, Adele; Lombardi, Pasquale
2014-02-01
Food choice and consumption behaviour are influenced by many interacting factors. In this paper we present an empirical effort to enhance understanding of the neophobia-neophilia forces affecting food choice. Starting from the analysis of consumer preferences for some of the most familiar highly processed foods, namely fat-reduced, functional (enriched drinks and yogurt) and ready-to-eat frozen food, our study investigates the role of traditional demographic variables vs attitudes to new food technologies in predicting the consumption behaviour of a sample of Italians buying such products. Consumer attitudes toward food technologies were collected by means of the Food Technology Neophobia Scale (FTNS). Moreover, this paper explicitly analyses the value of the information provided by the FTNS. Underlying the research is the hypothesis that the FTNS may contribute to provide a comprehensive picture of the driving forces behind consumers' behavioural responses towards processed foods which are the end-result of mature technologies. The four FTNS components, once measured and used independently, help clarify the influence on food choices of each neophobia-neophilia force (risk perception and novelty seeking, media influence, own health and environmental concerns) into a single, comprehensive framework. Copyright © 2013 Elsevier Ltd. All rights reserved.
2014-01-01
This systematic review aims to provide information about the implications of the movement-related cortical potential (MRCP) in acute and chronic responses to the counter resistance training. The structuring of the methods of this study followed the proposals of the PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses). It was performed an electronically search in Pubmed/Medline and ISI Web of Knowledge data bases, from 1987 to 2013, besides the manual search in the selected references. The following terms were used: Bereitschaftspotential, MRCP, strength and force. The logical operator “AND” was used to combine descriptors and terms used to search publications. At the end, 11 studies attended all the eligibility criteria and the results demonstrated that the behavior of MRCP is altered because of different factors such as: force level, rate of force development, fatigue induced by exercise, and the specific phase of muscular action, leading to an increase in the amplitude in eccentric actions compared to concentric actions, in acute effects. The long-term adaptations demonstrated that the counter resistance training provokes an attenuation in the amplitude in areas related to the movement, which may be caused by neural adaptation occurred in the motor cortex. PMID:24602228
NASA Astrophysics Data System (ADS)
Alari, Victor; Staneva, Joanna; Breivik, Øyvind; Bidlot, Jean-Raymond; Mogensen, Kristian; Janssen, Peter
2016-04-01
The effects of wind waves on the Baltic Sea water temperature has been studied by coupling the hydrodynamical model NEMO with the wave model WAM. The wave forcing terms that have been taken into consideration are: Stokes-Coriolis force, seastate dependent energy flux and sea-state dependent momentum flux. The combined role of these processes as well as their individual contributions on simulated temperature is analysed. The results indicate a pronounced effect of waves on surface temperature, on the distribution of vertical temperature and on upwellinǵs. In northern parts of the Baltic Sea a warming of the surface layer occurs in the wave included simulations. This in turn reduces the cold bias between simulated and measured data. The warming is primarily caused by sea-state dependent energy flux. Wave induced cooling is mostly observed in near coastal areas and is mainly due to Stokes-Coriolis forcing. The latter triggers effect of intensifying upwellings near the coasts, depending on the direction of the wind. The effect of sea-state dependent momentum flux is predominantly to warm the surface layer. During the summer the wave induced water temperature changes were up to 1 °C.
32 CFR 806.5 - Responsibilities.
Code of Federal Regulations, 2010 CFR
2010-07-01
... to the Director, Freedom of Information and Security Review (DFOISR), and provides guidance and instructions to MAJCOMs. Responsibilities of other Air Force elements follow. (b) SAF/GCA makes final decisions... Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE ADMINISTRATION AIR FORCE FREEDOM OF...
Jones, Adriane Clark; Hambright, K David; Caron, David A
2018-05-01
Microbial communities are comprised of complex assemblages of highly interactive taxa. We employed network analyses to identify and describe microbial interactions and co-occurrence patterns between microbial eukaryotes and bacteria at two locations within a low salinity (0.5-3.5 ppt) lake over an annual cycle. We previously documented that the microbial diversity and community composition within Lake Texoma, southwest USA, were significantly affected by both seasonal forces and a site-specific bloom of the harmful alga, Prymnesium parvum. We used network analyses to answer ecological questions involving both the bacterial and microbial eukaryotic datasets and to infer ecological relationships within the microbial communities. Patterns of connectivity at both locations reflected the seasonality of the lake including a large rain disturbance in May, while a comparison of the communities between locations revealed a localized response to the algal bloom. A network built from shared nodes (microbial operational taxonomic units and environmental variables) and correlations identified conserved associations at both locations within the lake. Using network analyses, we were able to detect disturbance events, characterize the ecological extent of a harmful algal bloom, and infer ecological relationships not apparent from diversity statistics alone.
Forcing and Responses of the Surface Energy Budget at Summit, Greenland
NASA Astrophysics Data System (ADS)
Miller, Nathaniel B.
Energy exchange at the Greenland Ice Sheet surface governs surface temperature variability, a factor critical for representing increasing surface melt extent, which portends a rise in global sea level. A comprehensive set of cloud, tropospheric, near-surface and sub-surface measurements at Summit Station is utilized to determine the driving forces and subsequent responses of the surface energy budget (SEB). This budget includes radiative, turbulent, and ground heat fluxes, and ultimately controls the evolution of surface temperature. At Summit Station, clouds radiatively warm the surface in all months with an annual average cloud radiative forcing value of 33 W m -2, largely driven by the occurrence of liquid-bearing clouds. The magnitude of the surface temperature response is dependent on how turbulent and ground heat fluxes modulate changes to radiative forcing. Relationships between forcing terms and responding surface fluxes show that changes in the upwelling longwave radiation compensate for 65-85% (50- 60%) of the total change in radiative forcing in the winter (summer). The ground heat flux is the second largest response term (16% annually), especially during winter. Throughout the annual cycle, the sensible heat flux response is comparatively constant (9%) and latent heat flux response is only 1.5%, becoming more of a factor in modulating surface temperature responses during the summer. Combining annual cycles of these responses with cloud radiative forcing results, clouds warm the surface by an estimated 7.8°C annually. A reanalysis product (ERA-I), operational model (CFSv2), and climate model (CESM) are evaluated utilizing the comprehensive set of SEB observations and process-based relationships. Annually, surface temperatures in each model are warmer than observed with overall poor representation of the coldest surface temperatures. Process-based relationships between different SEB flux terms offer insight into how well a modeling framework represents physical processes and the ability to distinguish errors in forcing versus those in physical representation. Such relationships convey that all three models underestimate the response of surface temperatures to changes in radiative forcing. These results provide a method to expose model deficiencies and indicate the importance of representing surface, sub-surface and boundary-layer processes when portraying cloud impacts on surface temperature variability.
The effect of bracing availability on one-hand isometric force exertion capability.
Jones, Monica L H; Reed, Matthew P; Chaffin, Don B
2013-01-01
Environmental obstructions that workers encounter can kinematically limit the postures that they can achieve. However, such obstructions can also provide an opportunity for additional support by bracing with the hand, thigh or other body part. The reaction forces on bracing surfaces, which are in addition to those acting at the feet and task hand, are hypothesised to improve force exertion capability, and become required inputs to biomechanical analysis of tasks with bracing. The effects of kinematic constraints and associated bracing opportunities on isometric hand force were quantified in a laboratory study of 22 men and women. Analyses of one-hand maximal push, pull and lift tasks demonstrated that bracing surfaces available at the thighs and non-task hand enabled participants to exert an average of 43% more force at the task hand. Task hand force direction deviated significantly from the nominal direction for exertions performed with bracing at both medium and low task hand locations. This study quantifies the effect of bracing on kinematically constrained force exertions. Knowledge that appropriate bracing surfaces can substantially increase hand force is critical to the evaluation of task-oriented strength capability. Force estimates may also involve large off-axis components, which have clear implications for ergonomic analyses of manual tasks.
The Impacts of Daily Surface Forcing in the Upper Ocean over Tropical Pacific: A Numerical Study
NASA Technical Reports Server (NTRS)
Sui, C.-H.; Rienecker, Michele M.; Li, Xiaofan; Lau, William K.-M.; Laszlo, Istvan; Pinker, Rachel T.
2001-01-01
Tropical Pacific Ocean is an important region that affects global climate. How the ocean responds to the atmospheric surface forcing (surface radiative, heat and momentum fluxes) is a major topic in oceanographic research community. The ocean becomes warm when more heat flux puts into the ocean. The monthly mean forcing has been used in the past years since daily forcing was unavailable due to the lack of observations. The daily forcing is now available from the satellite measurements. This study investigates the response of the upper ocean over tropical Pacific to the daily atmospheric surface forcing. The ocean surface heat budgets are calculated to determine the important processes for the oceanic response. The differences of oceanic responses between the eastern and western Pacific are intensively discussed.
NASA Astrophysics Data System (ADS)
Pincus, R.; Stevens, B. B.; Forster, P.; Collins, W.; Ramaswamy, V.
2014-12-01
The Radiative Forcing Model Intercomparison Project (RFMIP): Assessment and characterization of forcing to enable feedback studies An enormous amount of attention has been paid to the diversity of responses in the CMIP and other multi-model ensembles. This diversity is normally interpreted as a distribution in climate sensitivity driven by some distribution of feedback mechanisms. Identification of these feedbacks relies on precise identification of the forcing to which each model is subject, including distinguishing true error from model diversity. The Radiative Forcing Model Intercomparison Project (RFMIP) aims to disentangle the role of forcing from model sensitivity as determinants of varying climate model response by carefully characterizing the radiative forcing to which such models are subject and by coordinating experiments in which it is specified. RFMIP consists of four activities: 1) An assessment of accuracy in flux and forcing calculations for greenhouse gases under past, present, and future climates, using off-line radiative transfer calculations in specified atmospheres with climate model parameterizations and reference models 2) Characterization and assessment of model-specific historical forcing by anthropogenic aerosols, based on coordinated diagnostic output from climate models and off-line radiative transfer calculations with reference models 3) Characterization of model-specific effective radiative forcing, including contributions of model climatology and rapid adjustments, using coordinated climate model integrations and off-line radiative transfer calculations with a single fast model 4) Assessment of climate model response to precisely-characterized radiative forcing over the historical record, including efforts to infer true historical forcing from patterns of response, by direct specification of non-greenhouse-gas forcing in a series of coordinated climate model integrations This talk discusses the rationale for RFMIP, provides an overview of the four activities, and presents preliminary motivating results.
NASA Astrophysics Data System (ADS)
Toohey, M.; Krüger, K.; Bittner, M.; Timmreck, C.; Schmidt, H.
2014-12-01
Observations and simple theoretical arguments suggest that the Northern Hemisphere (NH) stratospheric polar vortex is stronger in winters following major volcanic eruptions. However, recent studies show that climate models forced by prescribed volcanic aerosol fields fail to reproduce this effect. We investigate the impact of volcanic aerosol forcing on stratospheric dynamics, including the strength of the NH polar vortex, in ensemble simulations with the Max Planck Institute Earth System Model. The model is forced by four different prescribed forcing sets representing the radiative properties of stratospheric aerosol following the 1991 eruption of Mt. Pinatubo: two forcing sets are based on observations, and are commonly used in climate model simulations, and two forcing sets are constructed based on coupled aerosol-climate model simulations. For all forcings, we find that simulated temperature and zonal wind anomalies in the NH high latitudes are not directly impacted by anomalous volcanic aerosol heating. Instead, high-latitude effects result from enhancements in stratospheric residual circulation, which in turn result, at least in part, from enhanced stratospheric wave activity. High-latitude effects are therefore much less robust than would be expected if they were the direct result of aerosol heating. Both observation-based forcing sets result in insignificant changes in vortex strength. For the model-based forcing sets, the vortex response is found to be sensitive to the structure of the forcing, with one forcing set leading to significant strengthening of the polar vortex in rough agreement with observation-based expectations. Differences in the dynamical response to the forcing sets imply that reproducing the polar vortex responses to past eruptions, or predicting the response to future eruptions, depends on accurate representation of the space-time structure of the volcanic aerosol forcing.
NASA Lewis Research Center Workshop on Forced Response in Turbomachinery
NASA Technical Reports Server (NTRS)
Stefko, George L. (Compiler); Murthy, Durbha V. (Compiler); Morel, Michael (Compiler); Hoyniak, Dan (Compiler); Gauntner, Jim W. (Compiler)
1994-01-01
A summary of the NASA Lewis Research Center (LeRC) Workshop on Forced Response in Turbomachinery in August, 1993 is presented. It was sponsored by the following NASA organizations: Structures, Space Propulsion Technology, and Propulsion Systems Divisions of NASA LeRC and the Aeronautics and Advanced Concepts & Technology Offices of NASA Headquarters. In addition, the workshop was held in conjunction with the GUIde (Government/Industry/Universities) Consortium on Forced Response. The workshop was specifically designed to receive suggestions and comments from industry on current research at NASA LeRC in the area of forced vibratory response of turbomachinery blades which includes both computational and experimental approaches. There were eight presentations and a code demonstration. Major areas of research included aeroelastic response, steady and unsteady fluid dynamics, mistuning, and corresponding experimental work.
Symptoms, airway responsiveness, and exposure to dust in beech and oak wood workers
Bohadana, A.; Massin, N.; Wild, P.; Toamain, J.; Engel, S.; Goutet, P.
2000-01-01
OBJECTIVES—To investigate the relation between levels of cumulative exposure to wood dust and respiratory symptoms and the occurrence of bronchial hyperresponsiveness among beech and oak workers. METHODS—114 Male woodworkers from five furniture factories and 13 male unexposed controls were examined. The unexposed control group was supplemented by 200 male historical controls. Statistical analyses were performed excluding and including the historical controls. Dust concentration was measured by personal sampling methods. Cumulative exposure to dust was calculated for each woodworker by multiplying the duration of the work by the intensity of exposure (years.mg/m3). Bronchial hyperresponsiveness was assessed by the methacholine bronchial challenge test. Subjects were labelled methacholine bronchial challenge positive if forced expiratory volume in 1 second (FEV1) fell by ⩾20%. The linear dose-response slope was calculated as the last dose divided by the total dose given. RESULTS—443 Dust samples were collected. The median cumulative exposure to dust was 110 years.mg/m3 with lower and upper quartiles at 70 and 160 years.mg/m3 Overall, no declines in FEV1 and forced vital capacity (FVC) were found with increasing exposures. A dose-response relation was found between intensity of exposure on the one hand, and sore throat, increased prevalence of positive methacholine bronchial challenge tests, and steeper dose-response slope, on the other. CONCLUSION—Exposure to oak and beech dust may lead to the development of sore throat and bronchial hyperresponsiveness. Keywords: bronchial hyperresponsiveness; wood dust; beech; oak PMID:10810114
NASA Technical Reports Server (NTRS)
Islam, Akm Anwarul; Dempsey, Paula J.; Feldman, Jason; Larsen, Chris
2014-01-01
Health monitoring of rotorcraft components, currently being performed by Health and Usage Monitoring Systems through analyses of vibration signatures of dynamic mechanical components, is very important for their safe and economic operation. HUMS analyze vibration signatures associated with faults and quantify them as condition indicators to predict component behavior. Vibration transfer paths are characterized by frequency response functions derived from the input/output relationship between applied force and dynamic response through a structure as a function of frequency. With an objective to investigate the differences in transfer paths, transfer path measurements were recorded under similar conditions in the left and right nose gearboxes of an AH-64 helicopter and in an isolated left nose gearbox in a test fixture at NASA Glenn Research Center. The test fixture enabled the application of measured torques-common during an actual operation. An impact hammer as well as commercial and lab piezo shakers, were used in conjunction with two types of commercially available accelerometers to collect the vibration response under various test conditions. The frequency response functions measured under comparable conditions of both systems were found to be consistent. Measurements made on the fixture indicated certain real-world installation and maintenance issues, such as sensor alignments, accelerometer locations and installation torques, had minimal effect. However, gear vibration transfer path dynamics appeared to be somewhat dependent on the presence of oil, and the transfer path dynamics were notably different if the force input was on the internal ring gear rather than on the external gearbox case.
Chen, Cai-Ping; Chen, Xin; Qiao, Yan-Ning; Wang, Pei; He, Wei-Qi; Zhang, Cheng-Hai; Zhao, Wei; Gao, Yun-Qian; Chen, Chen; Tao, Tao; Sun, Jie; Wang, Ye; Gao, Ning; Kamm, Kristine E; Stull, James T; Zhu, Min-Sheng
2015-01-01
Force production and maintenance in smooth muscle is largely controlled by different signalling modules that fine tune myosin regulatory light chain (RLC) phosphorylation, which relies on a balance between Ca2+/calmodulin-dependent myosin light chain kinase (MLCK) and myosin light chain phosphatase (MLCP) activities. To investigate the regulation of MLCP activity in vivo, we analysed the role of two phosphorylation sites on MYPT1 (regulatory subunit of MLCP) that biochemically inhibit MLCP activity in vitro. MYPT1 is constitutively phosphorylated at T694 by unidentified kinases in vivo, whereas the T852 site is phosphorylated by RhoA-associated protein kinase (ROCK). We established two mouse lines with alanine substitution of T694 or T852. Isolated bladder smooth muscle from T852A mice displayed no significant changes in RLC phosphorylation or force responses, but force was inhibited with a ROCK inhibitor. In contrast, smooth muscles containing the T694A mutation showed a significant reduction of force along with reduced RLC phosphorylation. The contractile responses of T694A mutant smooth muscle were also independent of ROCK activation. Thus, phosphorylation of MYPT1 T694, but not T852, is a primary mechanism contributing to inhibition of MLCP activity and enhancement of RLC phosphorylation in vivo. The constitutive phosphorylation of MYPT1 T694 may provide a mechanism for regulating force maintenance of smooth muscle. Key points Force production and maintenance in smooth muscle is largely controlled by myosin regulatory light chain (RLC) phosphorylation, which relies on a balance between Ca2+/calmodulin-dependent myosin light chain kinase (MLCK) and myosin light chain phosphatase (MLCP) activities. MYPT1 is the regulatory subunit of MLCP that biochemically inhibits MLCP activity via T694 or T852 phosphorylation in vitro. Here we separately investigated the contribution of these two phosphorylation sites in bladder smooth muscles by establishing two single point mutation mouse lines, T694A and T852A, and found that phosphorylation of MYPT1 T694, but not T852, mediates force maintenance via inhibition of MLCP activity and enhancement of RLC phosphorylation in vivo. Our findings reveal the role of MYPT1 T694/T852 phosphorylation in vivo in regulation of smooth muscle contraction. PMID:25433069
Chen, Cai-Ping; Chen, Xin; Qiao, Yan-Ning; Wang, Pei; He, Wei-Qi; Zhang, Cheng-Hai; Zhao, Wei; Gao, Yun-Qian; Chen, Chen; Tao, Tao; Sun, Jie; Wang, Ye; Gao, Ning; Kamm, Kristine E; Stull, James T; Zhu, Min-Sheng
2015-02-01
Force production and maintenance in smooth muscle is largely controlled by myosin regulatory light chain (RLC) phosphorylation, which relies on a balance between Ca(2+)/calmodulin-dependent myosin light chain kinase (MLCK) and myosin light chain phosphatase (MLCP) activities. MYPT1 is the regulatory subunit of MLCP that biochemically inhibits MLCP activity via T694 or T852 phosphorylation in vitro. Here we separately investigated the contribution of these two phosphorylation sites in bladder smooth muscles by establishing two single point mutation mouse lines, T694A and T852A, and found that phosphorylation of MYPT1 T694, but not T852, mediates force maintenance via inhibition of MLCP activity and enhancement of RLC phosphorylation in vivo. Our findings reveal the role of MYPT1 T694/T852 phosphorylation in vivo in regulation of smooth muscle contraction. Force production and maintenance in smooth muscle is largely controlled by different signalling modules that fine tune myosin regulatory light chain (RLC) phosphorylation, which relies on a balance between Ca(2+)/calmodulin-dependent myosin light chain kinase (MLCK) and myosin light chain phosphatase (MLCP) activities. To investigate the regulation of MLCP activity in vivo, we analysed the role of two phosphorylation sites on MYPT1 (regulatory subunit of MLCP) that biochemically inhibit MLCP activity in vitro. MYPT1 is constitutively phosphorylated at T694 by unidentified kinases in vivo, whereas the T852 site is phosphorylated by RhoA-associated protein kinase (ROCK). We established two mouse lines with alanine substitution of T694 or T852. Isolated bladder smooth muscle from T852A mice displayed no significant changes in RLC phosphorylation or force responses, but force was inhibited with a ROCK inhibitor. In contrast, smooth muscles containing the T694A mutation showed a significant reduction of force along with reduced RLC phosphorylation. The contractile responses of T694A mutant smooth muscle were also independent of ROCK activation. Thus, phosphorylation of MYPT1 T694, but not T852, is a primary mechanism contributing to inhibition of MLCP activity and enhancement of RLC phosphorylation in vivo. The constitutive phosphorylation of MYPT1 T694 may provide a mechanism for regulating force maintenance of smooth muscle. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.
Automation of a Large Analytical Chemistry Laboratory
1990-12-01
Division Brooks Air Force Base , Texas 78235-5501 NOTICES When Government drawings, specifications, or other data are used for any purpose other than a...been reviewed and is approved for publication. Air Force installations may direct requests for copies of this report to: Air Force Occupational and...remaining for the analyses. Our laboratory serves worldwide Air Force installations and therefore comes up against these sample holding time requirements
Aeroelastic Response of the Adaptive Compliant Trailing Edge Transtition Section
NASA Technical Reports Server (NTRS)
Herrera, Claudia Y.; Spivey, Natalie D.; Lung, Shun-fat
2016-01-01
The Adaptive Compliant Trailing Edge demonstrator was a joint task under the Environmentally Responsible Aviation Project in partnership with the Air Force Research Laboratory and FlexSys, Inc. (Ann Arbor, Michigan), chartered by the National Aeronautics and Space Administration to develop advanced technologies that enable environmentally friendly aircraft, such as continuous mold-line technologies. The Adaptive Compliant Trailing Edge demonstrator encompassed replacing the Fowler flaps on the SubsoniC Aircraft Testbed, a Gulfstream III (Gulfstream Aerospace, Savannah, Georgia) aircraft, with control surfaces developed by FlexSys, Inc., a pair of uniquely-designed, unconventional flaps to be used as lifting surfaces during flight-testing to substantiate their structural effectiveness. The unconventional flaps consisted of a main flap section and two transition sections, inboard and outboard, which demonstrated the continuous mold-line technology. Unique characteristics of the transition sections provided a challenge to the airworthiness assessment for this part of the structure. A series of build-up tests and analyses were conducted to ensure the data required to support the airworthiness assessment were acquired and applied accurately. The transition sections were analyzed both as individual components and as part of the flight-test article assembly. Instrumentation was installed in the transition sections based on the analysis to best capture the in-flight aeroelastic response. Flight-testing was conducted and flight data were acquired to validate the analyses. This paper documents the details of the aeroelastic assessment and in-flight response of the transition sections of the unconventional Adaptive Compliant Trailing Edge flaps.
NASA Technical Reports Server (NTRS)
Schubert, Siegfried; Wang, Hailan; Koster, Randal; Weaver, Scott; Gutzler, David; Dai, Aiguo; Delworth, Tom; Deser, Clara; Findell, Kristen; Fu, Rong;
2009-01-01
The USCLI VAR working group on drought recently initiated a series of global climate model simulations forced with idealized SST anomaly patterns, designed to address a number of uncertainties regarding the impact of SST forcing and the role of land-atmosphere feedbacks on regional drought. Specific questions that the runs are designed to address include: What are the mechanisms that maintain drought across the seasonal cycle and from one year to the next? What is the role of the leading patterns of SST variability, and what are the physical mechanisms linking the remote SST forcing to regional drought, including the role of land-atmosphere coupling? The runs were carried out with five different atmospheric general circulation models (AGCM5), and one coupled atmosphere-ocean model in which the model was continuously nudged to the imposed SST forcing. This paper provides an overview of the experiments and some initial results focusing on the responses to the leading patterns of annual mean SST variability consisting of a Pacific El Nino/Southern Oscillation (ENSO)-like pattern, a pattern that resembles the Atlantic Multi-decadal Oscillation (AMO), and a global trend pattern. One of the key findings is that all the AGCMs produce broadly similar (though different in detail) precipitation responses to the Pacific forcing pattern, with a cold Pacific leading to reduced precipitation and a warm Pacific leading to enhanced precipitation over most of the United States. While the response to the Atlantic pattern is less robust, there is general agreement among the models that the largest precipitation response over the U.S. tends to occur when the two oceans have anomalies of opposite sign. That is, a cold Pacific and warm Atlantic tend to produce the largest precipitation reductions, whereas a warm Pacific and cold Atlantic tend to produce the greatest precipitation enhancements. Further analysis of the response over the U.S. to the Pacific forcing highlights a number of noteworthy and to some extent unexpected results. These include a seasonal dependence of the precipitation response that is characterized by signal-to-noise ratios that peak in spring, and surface temperature signal-to-noise ratios that are both lower and show less agreement among the models than those found for the precipitation response. Another interesting result concerns what appears to be a substantially different character in the surface temperature response over the U.S. to the Pacific forcing by the only model examined here that was developed for use in numerical weather prediction. The response to the positive SST trend forcing pattern is an overall surface warming over the world's land areas with substantial regional variations that are in part reproduced in runs forced with a globally uniform SST trend forcing. The precipitation response to the trend forcing is weak in all the models.
CK-2127107 amplifies skeletal muscle response to nerve activation in humans.
Andrews, Jinsy A; Miller, Timothy M; Vijayakumar, Vipin; Stoltz, Randall; James, Joyce K; Meng, Lisa; Wolff, Andrew A; Malik, Fady I
2018-05-01
Three studies evaluated safety, tolerability, pharmacokinetics, and pharmacodynamics of CK-2127107 (CK-107), a next-generation fast skeletal muscle troponin activator (FSTA), in healthy participants. We tested the hypothesis that CK-107 would amplify the force-frequency response of muscle in humans. To assess the force-frequency response, participants received single doses of CK-107 and placebo in a randomized, double-blind, 4-period, crossover study. The force-frequency response of foot dorsiflexion following stimulation of the deep fibular nerve to activate the tibialis anterior muscle was assessed. CK-107 significantly increased tibialis anterior muscle response with increasing dose and plasma concentration in a frequency-dependent manner; the largest increase in peak force was ∼60% at 10 Hz. CK-107 appears more potent and produced larger increases in force than tirasemtiv-a first-generation FSTA-in a similar pharmacodynamic study, thereby supporting its development for improvement of muscle function of patients. Muscle Nerve 57: 729-734, 2018. © 2017 The Authors. Muscle & Nerve published by Wiley Periodicals, Inc.
A new approach to evaluating the well-being of police.
Juniper, B; White, N; Bellamy, P
2010-10-01
There is a growing body of evidence that links employee well-being to organizational performance. Although police forces are under increasing pressure to improve efficiency and productivity, the evaluation of well-being in law enforcement is mostly restricted to self-report stress questionnaires that are based on questionable construction methodologies. No instrument to specifically determine the well-being of police force employees currently exists. To construct an instrument that measures the work-related well-being of officers and staff within a police force. The approach is drawn from well-established clinical models used to evaluate the well-being of patients. Potential variables were confirmed using an item selection method known as impact analysis that places keen emphasis on frequency and importance as perceived by the respondents themselves. Analyses of 822 completed response sets showed that nine separate dimensions of police work can adversely affect well-being (advancement, facilities, home work interface, job, physical health, psychological health, relationships, organizational and workload). Overall, officers showed inferior well-being compared with their colleagues. Content validity and adequate internal reliability were confirmed. This study considered a new robust approach to evaluating the well-being of all those working in law enforcement. The nine dimensions extended beyond conventional stress measures and may offer a practical alternative way of assessing the overall well-being status of an entire force using a systematic item selection framework.
Forced guidance and distribution of practice in sequential information processing.
NASA Technical Reports Server (NTRS)
Decker, L. R.; Rogers, C. A., Jr.
1973-01-01
Distribution of practice and forced guidance were used in a sequential information-processing task in an attempt to increase the capacity of human information-processing mechanisms. A reaction time index of the psychological refractory period was used as the response measure. Massing of practice lengthened response times while forced guidance shortened them. Interpretation was in terms of load reduction upon the response-selection stage of the information-processing system.-
Role of Equatorial Pacific SST Anomalies in Precipitation over Western Americas
NASA Astrophysics Data System (ADS)
Jong, B. T.; Ting, M.; Seager, R.; Henderson, N.; Lee, D.
2017-12-01
El Niño, as the prime source of seasonal to interannual climate predictability, could impose impacts on the Americas from tropical to mid-latitude regions. The teleconnection patterns are sensitive to the longitudinal location of the maximum tropical sea surface temperature anomalies (SSTA). Meanwhile, slight differences in the location and configuration of the anomalous atmospheric circulations could differentiate between a wet and dry season regionally. For example, the 2015/16 strong El Niño event did not bring excessive precipitation to California despite expectations based on observational and model-based analyses. Whether the westward shift in the tropical SSTA pattern played a key role during this event is examined. We conduct two SSTA-forced experimental runs in three NCAR GCMs (CCM3, CAM4, and CAM5): one forced by the observed February-March-April 2016 SSTA and the other forced by the model-ensemble mean forecast FMA 2016 SSTA from the North America Multi-Model Ensemble. The observed SSTAs, compared to the forecast SSTAs, are colder in the central-eastern tropical Pacific and slightly warmer in the westernmost tropical Pacific. In response, all three models have a weaker and westward shifted low-pressure anomaly over the North Pacific and west coast of North America when the observed SSTA is prescribed. As the result, northern California is either about the same or drier in the observed SSTA runs than in the forecast SSTA runs. However, the precipitation over southern California responds differently across models. One of the possible explanations is that in CCM3 the teleconnections respond mainly to the SSTA differences in the eastern tropical Pacific; while in CAM4 and CAM5, the teleconnections are also sensitive to the small SSTA differences in the western tropical Pacific. The results suggest that the tropical SSTA differences matter for atmospheric circulations and precipitation over western Americas even though models disagree on the details of the circulation responses and subsequently the sign of regional precipitation responses. Further work on the sensitivity of circulations and precipitation to the tropical Pacific SSTA forcing will be conducted to improve the prediction of precipitation over western Americas.
Nonlinear rotordynamics analysis. [Space Shuttle Main Engine turbopumps
NASA Technical Reports Server (NTRS)
Noah, Sherif T.
1991-01-01
Effective analysis tools were developed for predicting the nonlinear rotordynamic behavior of the Space Shuttle Main Engine (SSME) turbopumps under steady and transient operating conditions. Using these methods, preliminary parametric studies were conducted on both generic and actual HPOTP (high pressure oxygen turbopump) models. In particular, a novel modified harmonic balance/alternating Fourier transform (HB/AFT) method was developed and used to conduct a preliminary study of the effects of fluid, bearing and seal forces on the unbalanced response of a multi-disk rotor in the presence of bearing clearances. The method makes it possible to determine periodic, sub-, super-synchronous and chaotic responses of a rotor system. The method also yields information about the stability of the obtained response, thus allowing bifurcation analyses. This provides a more effective capability for predicting the response under transient conditions by searching in proximity of resonance peaks. Preliminary results were also obtained for the nonlinear transient response of an actual HPOTP model using an efficient, newly developed numerical method based on convolution integration. Currently, the HB/AFT is being extended for determining the aperiodic response of nonlinear systems. Initial results show the method to be promising.
Fully-Coupled Fluid/Structure Vibration Analysis Using MSC/NASTRAN
NASA Technical Reports Server (NTRS)
Fernholz, Christian M.; Robinson, Jay H.
1996-01-01
MSC/NASTRAN's performance in the solution of fully-coupled fluid/structure problems is evaluated. NASTRAN is used to perform normal modes (SOL 103) and forced-response analyses (SOL 108, 111) on cylindrical and cubic fluid/structure models. Bulk data file cards unique to the specification of a fluid element are discussed and analytic partially-coupled solutions are derived for each type of problem. These solutions are used to evaluate NASTRAN's solutions for accuracy. Appendices to this work include NASTRAN data presented in fringe plot form, FORTRAN source code listings written in support of this work, and NASTRAN data file usage requirements for each analysis.
Michael, P E; Jahncke, J; Hyrenbach, K D
2016-01-01
At-sea surveys facilitate the study of the distribution and abundance of marine birds along standardized transects, in relation to changes in the local environmental conditions and large-scale oceanographic forcing. We analyzed the form and the intensity of black-footed albatross (Phoebastria nigripes: BFAL) spatial dispersion off central California, using five years (2004-2008) of vessel-based surveys of seven replicated survey lines. We related BFAL patchiness to local, regional and basin-wide oceanographic variability using two complementary approaches: a hypothesis-based model and an exploratory analysis. The former tested the strength and sign of hypothesized BFAL responses to environmental variability, within a hierarchical atmosphere-ocean context. The latter explored BFAL cross-correlations with atmospheric / oceanographic variables. While albatross dispersion was not significantly explained by the hierarchical model, the exploratory analysis revealed that aggregations were influenced by static (latitude, depth) and dynamic (wind speed, upwelling) environmental variables. Moreover, the largest BFAL patches occurred along the survey lines with the highest densities, and in association with shallow banks. In turn, the highest BFAL densities occurred during periods of negative Pacific Decadal Oscillation index values and low atmospheric pressure. The exploratory analyses suggest that BFAL dispersion is influenced by basin-wide, regional-scale and local environmental variability. Furthermore, the hypothesis-based model highlights that BFAL do not respond to oceanographic variability in a hierarchical fashion. Instead, their distributions shift more strongly in response to large-scale ocean-atmosphere forcing. Thus, interpreting local changes in BFAL abundance and dispersion requires considering diverse environmental forcing operating at multiple scales.
Long-range persistence in the global mean surface temperature and the global warming "time bomb"
NASA Astrophysics Data System (ADS)
Rypdal, M.; Rypdal, K.
2012-04-01
Detrended Fluctuation Analysis (DFA) and Maximum Likelihood Estimations (MLE) based on instrumental data over the last 160 years indicate that there is Long-Range Persistence (LRP) in Global Mean Surface Temperature (GMST) on time scales of months to decades. The persistence is much higher in sea surface temperature than in land temperatures. Power spectral analysis of multi-model, multi-ensemble runs of global climate models indicate further that this persistence may extend to centennial and maybe even millennial time-scales. We also support these conclusions by wavelet variogram analysis, DFA, and MLE of Northern hemisphere mean surface temperature reconstructions over the last two millennia. These analyses indicate that the GMST is a strongly persistent noise with Hurst exponent H>0.9 on time scales from decades up to at least 500 years. We show that such LRP can be very important for long-term climate prediction and for the establishment of a "time bomb" in the climate system due to a growing energy imbalance caused by the slow relaxation to radiative equilibrium under rising anthropogenic forcing. We do this by the construction of a multi-parameter dynamic-stochastic model for the GMST response to deterministic and stochastic forcing, where LRP is represented by a power-law response function. Reconstructed data for total forcing and GMST over the last millennium are used with this model to estimate trend coefficients and Hurst exponent for the GMST on multi-century time scale by means of MLE. Ensembles of solutions generated from the stochastic model also allow us to estimate confidence intervals for these estimates.
Moon, Younghye; Balke, Jordan E; Madorma, Derik; Siegel, Michael P; Knowels, Gary; Brouckaert, Peter; Buys, Emmanuel S; Marcinek, David J; Percival, Justin M
2017-06-10
Skeletal muscle nitric oxide-cyclic guanosine monophosphate (NO-cGMP) pathways are impaired in Duchenne and Becker muscular dystrophy partly because of reduced nNOSμ and soluble guanylate cyclase (GC) activity. However, GC function and the consequences of reduced GC activity in skeletal muscle are unknown. In this study, we explore the functions of GC and NO-cGMP signaling in skeletal muscle. GC1, but not GC2, expression was higher in oxidative than glycolytic muscles. GC1 was found in a complex with nNOSμ and targeted to nNOS compartments at the Golgi complex and neuromuscular junction. Baseline GC activity and GC agonist responsiveness was reduced in the absence of nNOS. Structural analyses revealed aberrant microtubule directionality in GC1 -/- muscle. Functional analyses of GC1 -/- muscles revealed reduced fatigue resistance and postexercise force recovery that were not due to shifts in type IIA-IIX fiber balance. Force deficits in GC1 -/- muscles were also not driven by defects in resting mitochondrial adenosine triphosphate (ATP) synthesis. However, increasing muscle cGMP with sildenafil decreased ATP synthesis efficiency and capacity, without impacting mitochondrial content or ultrastructure. GC may represent a new target for alleviating muscle fatigue and that NO-cGMP signaling may play important roles in muscle structure, contractility, and bioenergetics. These findings suggest that GC activity is nNOS dependent and that muscle-specific control of GC expression and differential GC targeting may facilitate NO-cGMP signaling diversity. They suggest that nNOS regulates muscle fiber type, microtubule organization, fatigability, and postexercise force recovery partly through GC1 and suggest that NO-cGMP pathways may modulate mitochondrial ATP synthesis efficiency. Antioxid. Redox Signal. 26, 966-985.
The Army National Guard: Part of the Operational Force and Strategic Reserve
2016-05-26
avoiding the war. The limited use of the RC in the Vietnam 6 Patrick M. Cronin, The Total Force Policy in Historical Perspective, No. CRM -87-78. Center...Cronin, Patrick M. The Total Force Policy in Historical Perspective. No. CRM -87-78. Center for Naval Analyses, Alexandria, VA: Naval Planning
Electromagnetic Force on a Moving Dipole
ERIC Educational Resources Information Center
Kholmetskii, Alexander L.; Missevitch, Oleg V.; Yarman, T.
2011-01-01
We analyse the force acting on a moving dipole due to an external electromagnetic field and show that the expression derived in Vekstein (1997 "Eur. J. Phys." 18 113) is erroneous and suggest the correct equation for the description of this force. We also discuss the physical meaning of the relativistic transformation of current for a closed…
Glavičić, Snježana; Anić, Ivica; Braut, Alen; Miletić, Ivana; Borčić, Josipa
2011-08-01
The purpose was to measure and analyse the vertical force and torque developed in the wider and narrower root canals during hand ProTaper instrumentation. Twenty human incisors were divided in two groups. Upper incisors were experimental model for the wide, while the lower incisors for the narrow root canals. Measurements of the force and torque were done by a device constructed for this purpose. Differences between the groups were statistically analysed by Mann-Whitney U-test with the significance level set to P<0.05. Vertical force in the upper incisors ranged 0.25-2.58 N, while in the lower incisors 0.38-6.94 N. Measured torque in the upper incisors ranged 0.53-12.03 Nmm, while in the lower incisor ranged 0.94-10.0 Nmm. Vertical force and torque were higher in the root canals of smaller diameter. The increase in the contact surface results in increase of the vertical force and torque as well in both narrower and wider root canals. © 2010 The Authors. Australian Endodontic Journal © 2010 Australian Society of Endodontology.
Annually resolved North Atlantic marine climate over the last millennium
NASA Astrophysics Data System (ADS)
Reynolds, D. J.; Scourse, J. D.; Halloran, P. R.; Nederbragt, A. J.; Wanamaker, A. D.; Butler, P. G.; Richardson, C. A.; Heinemeier, J.; Eiríksson, J.; Knudsen, K. L.; Hall, I. R.
2016-12-01
Owing to the lack of absolutely dated oceanographic information before the modern instrumental period, there is currently significant debate as to the role played by North Atlantic Ocean dynamics in previous climate transitions (for example, Medieval Climate Anomaly-Little Ice Age, MCA-LIA). Here we present analyses of a millennial-length, annually resolved and absolutely dated marine δ18O archive. We interpret our record of oxygen isotope ratios from the shells of the long-lived marine bivalve Arctica islandica (δ18O-shell), from the North Icelandic shelf, in relation to seawater density variability and demonstrate that solar and volcanic forcing coupled with ocean circulation dynamics are key drivers of climate variability over the last millennium. During the pre-industrial period (AD 1000-1800) variability in the sub-polar North Atlantic leads changes in Northern Hemisphere surface air temperatures at multi-decadal timescales, indicating that North Atlantic Ocean dynamics played an active role in modulating the response of the atmosphere to solar and volcanic forcing.
Evidence on the coherence-pieces debate from the force concept inventory
NASA Astrophysics Data System (ADS)
Badagnani, D.; Petrucci, D.; Cappannini, O.
2018-01-01
We use force concept inventory (FCI) data to probe the consistency of commonsense physics as a knowledge system. The source of this data is the administration of the FCI to first-year science university students. Data quality was checked using item response theory and studying answer distributions for each question. We find apparently paradoxical results: depending on how the data is analysed, answers seem highly systematic or almost random-like. These results are compatible with others found in the literature and can be construed as arising either from a coherent knowledge system or from knowledge in pieces. We hypothesise as a possible source of this apparent contradiction that predictions and explanations use different resources: the former would use reflex, low-cost cognitive resources while the latter would involve conceptualisations. We show that the articulation of both resources may be crucial for expert thinking productivity (the ability to apply a theory to novel situations). We sketch some consequences of the proposed structure of commonsense thinking for teaching and further research.
NASA Technical Reports Server (NTRS)
Milder, G.
1975-01-01
The current work presents an overview of the Viking 1975 environmental testing from an engineering standpoint. An extremely large vibration test fixture had to be designed, analyzed, and integrated into a test setup that employed hydrostatic bearings in a new fashion. A vibration control system was also required that would allow for thirty-six channels of sine-wave peak select control from acceleration, force-of-strain transducers. In addition, some 68 channels of peak limiting shutdown capability were needed for backup and monitoring of other data during the forced vibration test. Pretesting included analyses of the fixture design, overturning moment, control system capabilities, and response of the entire spacecraft/fixture/exciter system to the test environment. Closed-loop control for acoustic testing was a necessity due to the fact that the Viking spacecraft took up a major portion of the volume of the 10,000 cu ft chamber. The spacecraft emerged from testing undamaged.
Non-linear modelling and control of semi-active suspensions with variable damping
NASA Astrophysics Data System (ADS)
Chen, Huang; Long, Chen; Yuan, Chao-Chun; Jiang, Hao-Bin
2013-10-01
Electro-hydraulic dampers can provide variable damping force that is modulated by varying the command current; furthermore, they offer advantages such as lower power, rapid response, lower cost, and simple hardware. However, accurate characterisation of non-linear f-v properties in pre-yield and force saturation in post-yield is still required. Meanwhile, traditional linear or quarter vehicle models contain various non-linearities. The development of a multi-body dynamics model is very complex, and therefore, SIMPACK was used with suitable improvements for model development and numerical simulations. A semi-active suspension was built based on a belief-desire-intention (BDI)-agent model framework. Vehicle handling dynamics were analysed, and a co-simulation analysis was conducted in SIMPACK and MATLAB to evaluate the BDI-agent controller. The design effectively improved ride comfort, handling stability, and driving safety. A rapid control prototype was built based on dSPACE to conduct a real vehicle test. The test and simulation results were consistent, which verified the simulation.
Turan, Janet M.; Hatcher, Abigail M.; Romito, Patrizia; Mangone, Emily; Durojaiye, Modupeoluwa; Odero, Merab; Camlin, Carol S.
2015-01-01
Little is known about migration during pregnancy related to intimate partner violence (IPV). In this paper, we examine issues of agency in relation to pregnant women’s migrations in a high HIV prevalence area of Kenya. We qualitatively explored forced migration among pregnant women, using data from in-depth interviews, focus groups, and IPV screening forms. To quantitatively examine migration during pregnancy, we analyzed data from a prospective study of 614 pregnant women. The qualitative data revealed that women had varied responses to violence in pregnancy, with some being able to leave the marital home voluntarily as a strategy to escape violence. Others were ‘sent packing’ from their marital homes when they dared to exercise autonomy, in some cases related to HIV status. Quantitative analyses revealed that pregnant women who migrated were more educated, less likely to be living with a partner, and had fewer children than other women. Migration among pregnant women in Kenya illustrates the complexity of understanding women’s agency in the context of IPV. The findings indicate that there is not a dichotomy between “victim” and “agent”, but rather a complex dynamic between and within pregnant women, who may sequentially or simultaneously experience aspects of victimhood and/or agentic response. PMID:25996287
Complex Dynamics of Equatorial Scintillation
NASA Astrophysics Data System (ADS)
Piersanti, Mirko; Materassi, Massimo; Forte, Biagio; Cicone, Antonio
2017-04-01
Radio power scintillation, namely highly irregular fluctuations of the power of trans-ionospheric GNSS signals, is the effect of ionospheric plasma turbulence. The scintillation patterns on radio signals crossing the medium inherit the ionospheric turbulence characteristics of inter-scale coupling, local randomness and large time variability. On this basis, the remote sensing of local features of the turbulent plasma is feasible by studying radio scintillation induced by the ionosphere. The distinctive character of intermittent turbulent media depends on the fluctuations on the space- and time-scale statistical properties of the medium. Hence, assessing how the signal fluctuation properties vary under different Helio-Geophysical conditions will help to understand the corresponding dynamics of the turbulent medium crossed by the signal. Data analysis tools, provided by complex system science, appear to be best fitting to study the response of a turbulent medium, as the Earth's equatorial ionosphere, to the non-linear forcing exerted by the Solar Wind (SW). In particular we used the Adaptive Local Iterative Filtering, the Wavelet analysis and the Information theory data analysis tool. We have analysed the radio scintillation and ionospheric fluctuation data at low latitude focusing on the time and space multi-scale variability and on the causal relationship between forcing factors from the SW environment and the ionospheric response.
Fitzpatrick, Joan; Gray, Floyd; Dubiel, Russell; Langman, Jeff; Moring, J. Bruce; Norman, Laura M.; Page, William R.; Parcher, Jean W.
2013-01-01
The prediction of global climate change in response to both natural forces and human activity is one of the defining issues of our times. The unprecedented observational capacity of modern earth-orbiting satellites coupled with the development of robust computational representations (models) of the Earth’s weather and climate systems afford us the opportunity to observe and investigate how these systems work now, how they have worked in the past, and how they will work in the future when forced in specific ways. In the most recent report on global climate change by the Intergovernmental Panel on Climate Change (IPCC; Solomon and others, 2007), analyses using multiple climate models support recent observations that the Earth’s climate is changing in response to a combination of natural and human-induced causes. These changes will be significant in the United States–Mexican border region, where the process of climate change affects all of the Borderlands challenge themes discussed in the preceding chapters. The dual possibilities of both significantly-changed climate and increasing variability in climate make it challenging to take full measure of the potential effects because the Borderlands already experience a high degree of interannual variability and climatological extremes.
Pereyra-Venegas, J; Segura-Alegría, B; Guadarrama-Olmos, J C; Mariscal-Tovar, S; Quiróz-González, S; Jiménez-Estrada, I
2015-10-01
In this study, we compare the effects of pre- and post-natal food deprivation on the relative proportion of fibre types and contractile responses in the extensor digitorum longus (EDL) muscle of female and male rats at different post-natal ages. EDL muscles from undernourished male (UM) rats showed a higher proportion of Type IIB than IIA fibres and larger normalized twitch responses (with respect to muscle weight) than those of controls (CM). In contrast, EDL muscles from control (CF) and undernourished female rats (UF) showed no significant differences in their fibre type composition and normalized twitch forces at most of the ages analysed. Our data are indicative that the EDL muscles from undernourished males are more susceptible to the effects exerted by low food income than the EDL muscles from female rats. It is proposed that changes in the reactive oxygen species (ROS) concentration and hormonal factors, due to undernutrition, are involved in the alterations observed in the fibre type composition and force production of EDL muscles in undernourished male rats and that estrogens may have an antioxidant protective role on the undernourished EDL muscles in female rats. Journal of Animal Physiology and Animal Nutrition © 2014 Blackwell Verlag GmbH.
RAPID RESCUE: BREAKING THE MOLD OF ROUTINE CONTINGENCY RESPONSE FOR PERSONNEL RECOVERY
2016-10-23
ultimately lead to timelier response and greater economy of force for an already critically strained Air Force core function. 1 INTRODUCTION...achieve economy of force. When an OPLAN calls for PR, a capability is requested rather than individual unit. The existing UTCs are too rigid and...the combatant commander and operational planners to achieve unity and economy of force without exceeding PR capacity.61 Tactical Employment
Structural learning in feedforward and feedback control.
Yousif, Nada; Diedrichsen, Jörn
2012-11-01
For smooth and efficient motor control, the brain needs to make fast corrections during the movement to resist possible perturbations. It also needs to adapt subsequent movements to improve future performance. It is important that both feedback corrections and feedforward adaptation need to be made based on noisy and often ambiguous sensory data. Therefore, the initial response of the motor system, both for online corrections and adaptive responses, is guided by prior assumptions about the likely structure of perturbations. In the context of correcting and adapting movements perturbed by a force field, we asked whether these priors are hard wired or whether they can be modified through repeated exposure to differently shaped force fields. We found that both feedback corrections to unexpected perturbations and feedforward adaptation to a new force field changed, such that they were appropriate to counteract the type of force field that participants had experienced previously. We then investigated whether these changes were driven by a common mechanism or by two separate mechanisms. Participants experienced force fields that were either temporally consistent, causing sustained adaptation, or temporally inconsistent, causing little overall adaptation. We found that the consistent force fields modified both feedback and feedforward responses. In contrast, the inconsistent force field modified the temporal shape of feedback corrections but not of the feedforward adaptive response. These results indicate that responses to force perturbations can be modified in a structural manner and that these modifications are at least partly dissociable for feedback and feedforward control.
Structural learning in feedforward and feedback control
Diedrichsen, Jörn
2012-01-01
For smooth and efficient motor control, the brain needs to make fast corrections during the movement to resist possible perturbations. It also needs to adapt subsequent movements to improve future performance. It is important that both feedback corrections and feedforward adaptation need to be made based on noisy and often ambiguous sensory data. Therefore, the initial response of the motor system, both for online corrections and adaptive responses, is guided by prior assumptions about the likely structure of perturbations. In the context of correcting and adapting movements perturbed by a force field, we asked whether these priors are hard wired or whether they can be modified through repeated exposure to differently shaped force fields. We found that both feedback corrections to unexpected perturbations and feedforward adaptation to a new force field changed, such that they were appropriate to counteract the type of force field that participants had experienced previously. We then investigated whether these changes were driven by a common mechanism or by two separate mechanisms. Participants experienced force fields that were either temporally consistent, causing sustained adaptation, or temporally inconsistent, causing little overall adaptation. We found that the consistent force fields modified both feedback and feedforward responses. In contrast, the inconsistent force field modified the temporal shape of feedback corrections but not of the feedforward adaptive response. These results indicate that responses to force perturbations can be modified in a structural manner and that these modifications are at least partly dissociable for feedback and feedforward control. PMID:22896725
Lindsay, A; Lewis, J G; Scarrott, C; Gill, N; Gieseg, S P; Draper, N
2015-06-01
Rugby union is a sport involving high force and frequency impacts making the likelihood of injury a significant risk. The aim of this study was to measure and report the individual and group acute and cumulative physiological stress response during 3 professional rugby games through non-invasive sampling. 24 professional rugby players volunteered for the study. Urine and saliva samples were collected pre and post 3 matches. Myoglobin, salivary immunoglobulin A, cortisol, neopterin and total neopterin (neopterin+7,8-dihydroneopterin) were analysed by high performance liquid chromatography or enzyme linked immunosorbent assay. Significant increases in cortisol, myoglobin, neopterin and total neopterin when urine volume was corrected with specific gravity were observed (p<0.05). Significant decreases in salivary immunoglobulin A concentration were observed for games 1 and 2 while secretion rate decreased after games 2 and 3. Significant decreases were seen with the percent of 7,8-dihydroneopterin being converted to neopterin following games 2 and 3. The intensity of 3 professional rugby games was sufficient to elicit significant changes in the physiological markers selected for our study. Furthermore, results suggest the selected markers not only provide a means for analysing the stress encountered during a single game of rugby but also highlight the unique pattern of response for each individual player. © Georg Thieme Verlag KG Stuttgart · New York.
NASA Astrophysics Data System (ADS)
Jungclaus, Johann H.; Bard, Edouard; Baroni, Mélanie; Braconnot, Pascale; Cao, Jian; Chini, Louise P.; Egorova, Tania; Evans, Michael; Fidel González-Rouco, J.; Goosse, Hugues; Hurtt, George C.; Joos, Fortunat; Kaplan, Jed O.; Khodri, Myriam; Klein Goldewijk, Kees; Krivova, Natalie; LeGrande, Allegra N.; Lorenz, Stephan J.; Luterbacher, Jürg; Man, Wenmin; Maycock, Amanda C.; Meinshausen, Malte; Moberg, Anders; Muscheler, Raimund; Nehrbass-Ahles, Christoph; Otto-Bliesner, Bette I.; Phipps, Steven J.; Pongratz, Julia; Rozanov, Eugene; Schmidt, Gavin A.; Schmidt, Hauke; Schmutz, Werner; Schurer, Andrew; Shapiro, Alexander I.; Sigl, Michael; Smerdon, Jason E.; Solanki, Sami K.; Timmreck, Claudia; Toohey, Matthew; Usoskin, Ilya G.; Wagner, Sebastian; Wu, Chi-Ju; Leng Yeo, Kok; Zanchettin, Davide; Zhang, Qiong; Zorita, Eduardo
2017-11-01
The pre-industrial millennium is among the periods selected by the Paleoclimate Model Intercomparison Project (PMIP) for experiments contributing to the sixth phase of the Coupled Model Intercomparison Project (CMIP6) and the fourth phase of the PMIP (PMIP4). The past1000 transient simulations serve to investigate the response to (mainly) natural forcing under background conditions not too different from today, and to discriminate between forced and internally generated variability on interannual to centennial timescales. This paper describes the motivation and the experimental set-ups for the PMIP4-CMIP6 past1000 simulations, and discusses the forcing agents orbital, solar, volcanic, and land use/land cover changes, and variations in greenhouse gas concentrations. The past1000 simulations covering the pre-industrial millennium from 850 Common Era (CE) to 1849 CE have to be complemented by historical simulations (1850 to 2014 CE) following the CMIP6 protocol. The external forcings for the past1000 experiments have been adapted to provide a seamless transition across these time periods. Protocols for the past1000 simulations have been divided into three tiers. A default forcing data set has been defined for the Tier 1 (the CMIP6 past1000) experiment. However, the PMIP community has maintained the flexibility to conduct coordinated sensitivity experiments to explore uncertainty in forcing reconstructions as well as parameter uncertainty in dedicated Tier 2 simulations. Additional experiments (Tier 3) are defined to foster collaborative model experiments focusing on the early instrumental period and to extend the temporal range and the scope of the simulations. This paper outlines current and future research foci and common analyses for collaborative work between the PMIP and the observational communities (reconstructions, instrumental data).
Homodyne detection of short-range Doppler radar using a forced oscillator model
Kittipute, Kunanon; Saratayon, Peerayudh; Srisook, Suthasin; Wardkein, Paramote
2017-01-01
This article presents the homodyne detection in a self-oscillation system, which represented by a short-range radar (SRR) circuit, that is analysed using a multi-time forced oscillator (MTFO) model. The MTFO model is based on a forced oscillation perspective with the signal and system theory, a second-order differential equation, and the multiple time variable technique. This model can also apply to analyse the homodyne phenomenon in a difference kind of the oscillation system under same method such as the self-oscillation system, and the natural oscillation system with external forced. In a free oscillation system, which forced by the external source is represented by a pendulum with an oscillating support experiment, and a modified Colpitts oscillator circuit in the UHF band with input as a Doppler signal is a representative of self-oscillation system. The MTFO model is verified with the experimental result, which well in line with the theoretical analysis. PMID:28252000
Displacement and frequency analyses of vibratory systems
NASA Astrophysics Data System (ADS)
Low, K. H.
1995-02-01
This paper deals with the frequency and response studies of vibratory systems, which are represented by a set of n coupled second-order differential equations. The following numerical methods are used in the response analysis: central difference, fourth-order Runge-Kutta and modal methods. Data generated in the response analysis are processed to obtain the system frequencies by using the fast Fourier transform (FFT) or harmonic response methods. Two types of the windows are used in the FFT analysis: rectangular and Hanning windows. Examples of two, four and seven degrees of freedom systems are considered, to illustrate the proposed algorithms. Comparisons with those existing results confirm the validity of the proposed methods. The Hanning window attenuates the results that give a narrower bandwidth around the peak if compared with those using the rectangular window. It is also found that in free vibrations of a multi-mass system, the masses will vibrate in a manner that is the superposition of the natural frequencies of the system, while the system will vibrate at the driving frequency in forced vibrations.
NASA Astrophysics Data System (ADS)
Alexeev, V. A.; Langen, P. L.
2004-05-01
Non-ice-albedo feedback mechanisms leading to polar amplification, as reported by Alexeev (2003), are explored in three aquaplanet climate model systems of different complexity. We analyze this pattern using three different "ghost forcing" experiments (Hansen et al, 1997). In the first one we uniformly add 4W/m2 to the oceanic mixed layer in order to roughly simulate a 2xCO2 forcing at the surface. The second forcing, of the same magnitude, is applied only within the tropics and the third forcing is applied only polewards of 30 degrees (north and south). It turns out that our systems' equilibrium responses are linear with respect to these forcings. Surprisingly, the response to the tropical-only forcing is essentially non-local with quite significant warming at higher latitudes. The response to the high-latitude-only forcing is more local and has higher amplitude near the poles. Our explanation of the polar amplification obtained in the uniform forcing experiment is therefore two-fold. Firstly, the tropics are much more difficult to warm because of the higher sensitivity of the surface budget to SST changes at higher temperatures. Secondly, any extra heat deposited in the tropics is not easily radiated to outer space because of the high opaqueness of the tropical atmosphere. The energy, most of which is latent, needs to be redistributed by transports to the extra-tropics. Consequently, the tropical "ghost forcing" results in an essentially non-local response, while the extra-tropical one yields a more localized response, because the energy in the atmosphere cannot propagate effectively equator-wards from high latitudes. The paper deals with these mechanisms in three climate model systems with no ice-albedo feedback - an EBM and two different GCMs - one with cloud feedbacks and the other with cloud feedbacks excluded. References. Alexeev, V.A., (2003) Sensitivity to CO2 doubling of an atmospheric GCM coupled to an oceanic mixed layer: a linear analysis. Climate Dynamics, 20: p.775-787. Hansen, J., Sato M, and R. Ruedy, (1997) Radiative forcing and climate response, JGR, 102, No. D6, 6831-6864.
Guenole, Nigel; Brown, Anna A; Cooper, Andrew J
2018-06-01
This article describes an investigation of whether Thurstonian item response modeling is a viable method for assessment of maladaptive traits. Forced-choice responses from 420 working adults to a broad-range personality inventory assessing six maladaptive traits were considered. The Thurstonian item response model's fit to the forced-choice data was adequate, while the fit of a counterpart item response model to responses to the same items but arranged in a single-stimulus design was poor. Monotrait heteromethod correlations indicated corresponding traits in the two formats overlapped substantially, although they did not measure equivalent constructs. A better goodness of fit and higher factor loadings for the Thurstonian item response model, coupled with a clearer conceptual alignment to the theoretical trait definitions, suggested that the single-stimulus item responses were influenced by biases that the independent clusters measurement model did not account for. Researchers may wish to consider forced-choice designs and appropriate item response modeling techniques such as Thurstonian item response modeling for personality questionnaire applications in industrial psychology, especially when assessing maladaptive traits. We recommend further investigation of this approach in actual selection situations and with different assessment instruments.
Conflict in object affordance revealed by grip force
McBride, Jennifer; Sumner, Petroc; Husain, Masud
2011-01-01
Viewing objects can result in automatic, partial activation of motor plans associated with them—“object affordance”. Here, we recorded grip force simultaneously from both hands in an object affordance task to investigate the effects of conflict between coactivated responses. Participants classified pictures of objects by squeezing force transducers with their left or right hand. Responses were faster on trials where the object afforded an action with the same hand that was required to make the response (congruent trials) compared to the opposite hand (incongruent trials). In addition, conflict between coactivated responses was reduced if it was experienced on the preceding trial, just like Gratton adaptation effects reported in “conflict” tasks (e.g., Eriksen flanker). This finding suggests that object affordance demonstrates conflict effects similar to those shown in other stimulus–response mapping tasks and thus could be integrated into the wider conceptual framework on overlearnt stimulus–response associations. Corrected erroneous responses occurred more frequently when there was conflict between the afforded response and the response required by the task, providing direct evidence that viewing an object activates motor plans appropriate for interacting with that object. Recording continuous grip force, as here, provides a sensitive way to measure coactivated responses in affordance tasks. PMID:21824035
NASA Astrophysics Data System (ADS)
Royer, Jean-François; Chauvin, Fabrice; Daloz, Anne-Sophie
2010-05-01
The response of tropical cyclones (TC) activity to global warming has not yet reached a clear consensus in the Fourth Assessment Report (AR4) published by the Intergovernmental Panel on Climate Change (IPCC, 2007) or in the recent scientific literature. Observed series are neither long nor reliable enough for a statistically significant detection and attribution of past TC trends, and coupled climate models give widely divergent results for the future evolution of TC activity in the different ocean basins. The potential importance of the spatial structure of the future SST warming has been pointed out by Chauvin et al. (2006) in simulations performed at CNRM with the ARPEGE-Climat GCM. The current presentation describes a new set of simulations that have been performed with the ARPEGE-Climat model to try to understand the possible role of SST patterns in the TC cyclogenesis response in 15 CMIP3 coupled simulations analysed by Royer et al (2009). The new simulations have been performed with the atmospheric component of the ARPEGE-Climat GCM forced in 10 year simulations by the SST patterns from each of 15 CMIP3 simulations with different climate model at the end of the 21st century according to scenario A2. The TC analysis is based on the computation of a Convective Yearly Genesis Parameter (CYGP) and the Genesis Potential Index (GPI). The computed genesis indices for each of the ARPEGE-Climat forced simulations is compared with the indices computed directly from the initial coupled simulation. The influence of SST patterns can then be more easily assessed since all the ARPEGE-Climat simulations are performed with the same atmospheric model, whereas the original simulations used models with different parameterization and resolutions. The analysis shows that CYGP or GPI anomalies obtained with ARPEGE are as variable between each other as those obtained originally by the different IPCC models. The variety of SST patterns used to force ARPEGE explains a large part of the dispersion, though for a given SST pattern, ARPEGE does not necessarily reproduce the anomaly produced originally by the IPCC model which produced the SST anomaly. Many factors can contribute to this discrepancy, but the most prominent seems to be the absence of coupling between the forced atmospheric ARPEGE simulation and the underlying ocean. When the atmospheric model is forced by prescribed SST anomalies some retroactions between cyclogenesis and ocean are missing. There are however areas over the globe were models agree about the CYGP or GPI anomalies induced by global warming, such as the Indian Ocean that shows a better coherency in the coupled and forced responses. This could be an indication that interaction between ocean and atmosphere is not as strong there as in the other basins. Details of the results for all the other ocean basins will be presented. References: Chauvin F. and J.-F. Royer and M. Déqué , 2006: Response of hurricane-type vortices to global warming as simulated by ARPEGE-Climat at high resolution. Climate Dynamics 27(4), 377-399. IPCC [Intergovernmental Panel for Climate Change], Climate change 2007: The physical science basis, in: S. Solomon et al. (eds.), Cambridge University Press. Royer JF, F Chauvin, 2009: Response of tropical cyclogenesis to global warming in an IPCC AR-4 scenario assessed by a modified yearly genesis parameter. "Hurricanes and Climate Change", J. B. Elsner and T. H. Jagger (Eds.), Springer, ISBN: 978-0-387-09409-0, pp 213-234.
Students' Proficiency Scores within Multitrait Item Response Theory
ERIC Educational Resources Information Center
Scott, Terry F.; Schumayer, Daniel
2015-01-01
In this paper we present a series of item response models of data collected using the Force Concept Inventory. The Force Concept Inventory (FCI) was designed to poll the Newtonian conception of force viewed as a multidimensional concept, that is, as a complex of distinguishable conceptual dimensions. Several previous studies have developed…
2009 Strategic Plan, Air Force District of Washington (AFDW)
2009-09-11
JTF CapMed . As the Air Force single voice for Joint matters in the NCR, AFDW has a critical responsibility to protect and enhance the Air...and its surrounding counties, is a critical Area of Responsibility (AOR) for US military organizations. It is the central hub of US political and...NCR and worldwide. Furthermore, AFDW presents forces to Joint Task Force-National Capital Region Medical Command (JTF CapMed ) and, through the
Touching force response of the piezoelectric Braille cell.
Smithmaitrie, Pruittikorn; Kanjantoe, Jinda; Tandayya, Pichaya
2008-11-01
The objective of this research is to investigate dynamic responses of the piezoelectric Braille cell when it is subjected to both electrical signal and touching force. Physical behavior of the piezoelectric actuator inside the piezoelectric Braille cell is analyzed. The mathematical model of the piezoelectric Braille system is presented. Then, data of visually impaired people using a Braille Note is studied as design information and a reference input for calculation of the piezoelectric Braille response under the touching force. The results show dynamic responses of the piezoelectric Braille cell. The designed piezoelectric bimorph has a settling time of 0.15 second. The relationship between the Braille dot height and applied voltage is linear. The behavior of the piezoelectric Braille dot when it is touched during operation shows that the dot height is decreased as the force increases. The result provides understanding of the piezoelectric Braille cell behavior under both touching force and electrical excitation simultaneously. This is the important issue for the design and development of piezoelectric Braille cells in senses of controlling Braille dot displacement or force-feedback in the future.
Unsteady Flowfield in a High-Pressure Turbine Modeled by TURBO
NASA Technical Reports Server (NTRS)
Bakhle, Milind A.; Mehmed, Oral
2003-01-01
Forced response, or resonant vibrations, in turbomachinery components can cause blades to crack or fail because of the large vibratory blade stresses and subsequent high-cycle fatigue. Forced-response vibrations occur when turbomachinery blades are subjected to periodic excitation at a frequency close to their natural frequency. Rotor blades in a turbine are constantly subjected to periodic excitations when they pass through the spatially nonuniform flowfield created by upstream vanes. Accurate numerical prediction of the unsteady aerodynamics phenomena that cause forced-response vibrations can lead to an improved understanding of the problem and offer potential approaches to reduce or eliminate specific forced-response problems. The objective of the current work was to validate an unsteady aerodynamics code (named TURBO) for the modeling of the unsteady blade row interactions that can cause forced response vibrations. The three-dimensional, unsteady, multi-blade-row, Reynolds-averaged Navier-Stokes turbomachinery code named TURBO was used to model a high-pressure turbine stage for which benchmark data were recently acquired under a NASA contract by researchers at the Ohio State University. The test article was an initial design for a high-pressure turbine stage that experienced forced-response vibrations which were eliminated by increasing the axial gap. The data, acquired in a short duration or shock tunnel test facility, included unsteady blade surface pressures and vibratory strains.
ERIC Educational Resources Information Center
Martin-Blas, Teresa; Seidel, Luis; Serrano-Fernandez, Ana
2010-01-01
This work presents the results of a study whose aim is to detect systematic errors about the concept of force among freshmen students. The researchers analysed the results of the Force Concept Inventory test, which was administered to two different groups of students. The results show that, although there were significant performance variations…
NASA Astrophysics Data System (ADS)
Zabri, S. W. K. Ali; Basaruddin, K. S.; Salleh, A. F.; Rusli, W. M. R.; Daud, R.
2017-09-01
Leg length discrepancy (LLD) is caused either due to functional disorder or shortening of bone structure. This disorder could contribute to the significant effects on body weight distribution and lumbar scoliosis at the certain extend. Ground reaction force and joint reaction force are the parameters that can be used to analyze the responses in weight distribution and kinetics changes on the body joints, respectively. Hence, the purpose of this paper is to review the studies that focus on the clinical effects of LLD to the lower limb and spine through ground and joint reaction force responses that could lead to the orthopedics disorder.
Chandramohan, Yalini; Droste, Susanne K; Arthur, J Simon C; Reul, Johannes M H M
2008-05-01
The hippocampus is involved in learning and memory. Previously, we have shown that the acquisition of the behavioural immobility response after a forced swim experience is associated with chromatin modifications and transcriptional induction in dentate gyrus granule neurons. Given that both N-methyl-D-aspartate (NMDA) receptors and the extracellular signal-regulated kinases (ERK) 1/2 signalling pathway are involved in neuroplasticity processes underlying learning and memory, we investigated in rats and mice whether these signalling pathways regulate chromatin modifications and transcriptional events participating in the acquisition of the immobility response. We found that: (i) forced swimming evoked a transient increase in the number of phospho-acetylated histone H3-positive [P(Ser10)-Ac(Lys14)-H3(+)] neurons specifically in the middle and superficial aspects of the dentate gyrus granule cell layer; (ii) antagonism of NMDA receptors and inhibition of ERK1/2 signalling blocked forced swimming-induced histone H3 phospho-acetylation and the acquisition of the behavioural immobility response; (iii) double knockout (DKO) of the histone H3 kinase mitogen- and stress-activated kinases (MSK) 1/2 in mice completely abolished the forced swimming-induced increases in histone H3 phospho-acetylation and c-Fos induction in dentate granule neurons and the behavioural immobility response; (iv) blocking mineralocorticoid receptors, known not to be involved in behavioural immobility in the forced swim test, did not affect forced swimming-evoked histone H3 phospho-acetylation in dentate neurons; and (v) the pharmacological manipulations and gene deletions did not affect behaviour in the initial forced swim test. We conclude that the forced swimming-induced behavioural immobility response requires histone H3 phospho-acetylation and c-Fos induction in distinct dentate granule neurons through recruitment of the NMDA/ERK/MSK 1/2 pathway.
Krishnan, Ramaswamy; Canović, Elizabeth Peruski; Iordan, Andreea L.; Rajendran, Kavitha; Manomohan, Greeshma; Pirentis, Athanassios P.; Smith, Michael L.; Butler, James P.; Fredberg, Jeffrey J.
2012-01-01
Mechanical stretch plays an important role in regulating shape and orientation of the vascular endothelial cell. This morphological response to stretch is basic to angiogenesis, neovascularization, and vascular homeostasis, but mechanism remains unclear. To elucidate mechanisms, we used cell mapping rheometry to measure traction forces in primary human umbilical vein endothelial cells subjected to periodic uniaxial stretches. Onset of periodic stretch of 10% strain amplitude caused a fluidization response typified by attenuation of traction forces almost to zero. As periodic stretch continued, the prompt fluidization response was followed by a slow resolidification response typified by recovery of the traction forces, but now aligned along the axis perpendicular to the imposed stretch. Reorientation of the cell body lagged reorientation of the traction forces, however. Together, these observations demonstrate that cellular reorientation in response to periodic stretch is preceded by traction attenuation by means of cytoskeletal fluidization and subsequent traction recovery transverse to the stretch direction by means of cytoskeletal resolidification. PMID:22700796
Calvert, Sandra L; Appelbaum, Mark; Dodge, Kenneth A; Graham, Sandra; Nagayama Hall, Gordon C; Hamby, Sherry; Fasig-Caldwell, Lauren G; Citkowicz, Martyna; Galloway, Daniel P; Hedges, Larry V
2017-01-01
A task force of experts was convened by the American Psychological Association (APA) to update the knowledge and policy about the impact of violent video game use on potential adverse outcomes. This APA Task Force on Media Violence examined the existing literature, including the meta-analyses in the field, since the last APA report on media violence in 2005. Because the most recent meta-analyses were published in 2010 and reflected work through 2009, the task force conducted a search of the published studies from 2009-2013. These recently published articles were scored and assessed by a systematic evidentiary review, followed by a meta-analysis of the high utility studies, as documented in the evidentiary review. Consistent with the literature that we reviewed, we found that violent video game exposure was associated with: an increased composite aggression score; increased aggressive behavior; increased aggressive cognitions; increased aggressive affect, increased desensitization, and decreased empathy; and increased physiological arousal. The size of the effects was similar to that in prior meta-analyses, suggesting a stable result. Our task force concluded that violent video game use is a risk factor for adverse outcomes, but found insufficient studies to examine any potential link between violent video game use and delinquency or criminal behavior. Our technical report is the basis of this article. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
NASA Astrophysics Data System (ADS)
Gu, Tingwei; Kong, Deren; Shang, Fei; Chen, Jing
2017-12-01
We present an optimization algorithm to obtain low-uncertainty dynamic pressure measurements from a force-transducer-based device. In this paper, the advantages and disadvantages of the methods that are commonly used to measure the propellant powder gas pressure, the applicable scope of dynamic pressure calibration devices, and the shortcomings of the traditional comparison calibration method based on the drop-weight device are firstly analysed in detail. Then, a dynamic calibration method for measuring pressure using a force sensor based on a drop-weight device is introduced. This method can effectively save time when many pressure sensors are calibrated simultaneously and extend the life of expensive reference sensors. However, the force sensor is installed between the drop-weight and the hammerhead by transition pieces through the connection mode of bolt fastening, which causes adverse effects such as additional pretightening and inertia forces. To solve these effects, the influence mechanisms of the pretightening force, the inertia force and other influence factors on the force measurement are theoretically analysed. Then a measurement correction method for the force measurement is proposed based on an artificial neural network optimized by a genetic algorithm. The training and testing data sets are obtained from calibration tests, and the selection criteria for the key parameters of the correction model is discussed. The evaluation results for the test data show that the correction model can effectively improve the force measurement accuracy of the force sensor. Compared with the traditional high-accuracy comparison calibration method, the percentage difference of the impact-force-based measurement is less than 0.6% and the relative uncertainty of the corrected force value is 1.95%, which can meet the requirements of engineering applications.
Langevin equation with time dependent linear force and periodic load force: stochastic resonance
NASA Astrophysics Data System (ADS)
Sau Fa, Kwok
2017-11-01
The motion of a particle described by the Langevin equation with constant diffusion coefficient, time dependent linear force (ω (1+α \\cos ({ω }1t))x) and periodic load force ({A}0\\cos ({{Ω }}t)) is investigated. Analytical solutions for the probability density function (PDF) and n-moment are obtained and analysed. For {ω }1\\gg α ω the influence of the periodic term α \\cos ({ω }1t) is negligible to the PDF and n-moment for any time; this result shows that the statistical averages such as n-moments and the PDF have no access to some information of the system. For small and intermediate values of {ω }1 the influence of the periodic term α \\cos ({ω }1t) to the system is also analysed; in particular the system may present multiresonance. The solutions are obtained in a direct and pedagogical manner readily understandable by graduate students.
Calibration Designs for Non-Monolithic Wind Tunnel Force Balances
NASA Technical Reports Server (NTRS)
Johnson, Thomas H.; Parker, Peter A.; Landman, Drew
2010-01-01
This research paper investigates current experimental designs and regression models for calibrating internal wind tunnel force balances of non-monolithic design. Such calibration methods are necessary for this class of balance because it has an electrical response that is dependent upon the sign of the applied forces and moments. This dependency gives rise to discontinuities in the response surfaces that are not easily modeled using traditional response surface methodologies. An analysis of current recommended calibration models is shown to lead to correlated response model terms. Alternative modeling methods are explored which feature orthogonal or near-orthogonal terms.
Independence of reaction time and response force control during isometric leg extension.
Fukushi, Tamami; Ohtsuki, Tatsuyuki
2004-04-01
In this study, we examined the relative control of reaction time and force in responses of the lower limb. Fourteen female participants (age 21.2 +/- 1.0 years, height 1.62 +/- 0.05 m, body mass 54.1 +/- 6.1 kg; mean +/- s) were instructed to exert their maximal isometric one-leg extension force as quickly as possible in response to an auditory stimulus presented after one of 13 foreperiod durations, ranging from 0.5 to 10.0 s. In the 'irregular condition' each foreperiod was presented in random order, while in the 'regular condition' each foreperiod was repeated consecutively. A significant interactive effect of foreperiod duration and regularity on reaction time was observed (P < 0.001 in two-way ANOVA with repeated measures). In the irregular condition the shorter foreperiod induced a longer reaction time, while in the regular condition the shorter foreperiod induced a shorter reaction time. Peak amplitude of isometric force was affected only by the regularity of foreperiod and there was a significant variation of changes in peak force across participants; nine participants were shown to significantly increase peak force for the regular condition (P < 0.001), three to decrease it (P < 0.05) and two showed no difference. These results indicate the independence of reaction time and response force control in the lower limb motor system. Variation of changes in peak force across participants may be due to the different attention to the bipolar nature of the task requirements such as maximal force and maximal speed.
Social desirability response bias and dietary inventory responses.
Worsley, A; Baghurst, K I; Leitch, D R
1984-02-01
Royal Australian Air Force recruits completed a dietary frequency inventory (n = 309), a short social desirability inventory phrased in dietary terms (SDF, n = 309), and, in addition, a subsample answered the Marlow-Crowne social desirability scale (n = 96). Correlational and factor analyses showed that the SDF scores were related to the MC scale; and, the scores on the SDF scale were significantly related to the reported consumption of fresh fruit and vegetables and snack foods. In a further study, 20 lay persons were asked to sort the 66 foods listed in the dietary inventory into three categories: nutritionist-approved foods; nutritionist-disapproved foods; and, an 'uncertain' category. The results confirmed the finding that fresh fruit and vegetables were socially desirable foods, but sweet foods were not. It is concluded that social approval needs may influence the manner in which individuals report their consumption of these foods.
A hierarchy of models for ENSO flavors in past climates.
NASA Astrophysics Data System (ADS)
Karamperidou, C.; Xie, R.; Di Nezio, P. N.
2017-12-01
The existence of two distinct ENSO flavors versus an ENSO continuum remains an open question. Investigating the response of ENSO diversity to past climate forcings provides a framework to approach this question. Previous work using GCMs has shown that ENSO flavors may respond differentially to mid-Holocene orbital forcing, with a significant suppression of Eastern Pacific ENSO as opposed to insensitivity of Central Pacific ENSO. Here, we employ a hierarchy of models to explore the robustness of ENSO-flavor response to orbital forcing. First, we use a modified version of the Zebiak-Cane model which simulates two ENSO modes reminiscent of ENSO flavors. We find a quasi-linear response of these two modes to orbital forcing corresponding to 6ka, 111ka, and 121ka BP in terms of growth rates, frequency and spatial pattern of SST anomalies. We then employ an Earth System Model subject only to orbital forcing to show the corresponding response in the three past climates. This investigation indicates that no extratropical influences may be required to produce such quasi-linear ENSO-flavor response to orbital forcing. Aided by paleoclimate proxies, the hierarchy of models employed here presents a paleoclimate perspective to the fundamental and elusive question of the nature and origins of ENSO diversity.
NASA Astrophysics Data System (ADS)
Goosse, Hugues
2017-03-01
Available proxy-based temperature reconstructions covering the past millennium display contrasted evolutions between the continents. The difference is particularly large between the two hemispheres. When driven by realistic natural and anthropogenic forcings, climate models tend to simulate a more spatially homogenous temperature response. This is associated with a relatively good agreement between model results and reconstructions in the Northern Hemisphere but a low consistency in the Southern Hemisphere. Here, simulations with data assimilations are performed to analyse the causes of this apparent disagreement. It shows that, when the uncertainties are taken into account, states of the climate system compatible with the forcing estimates, the reconstructions and the model physics can be obtained over the past millennium, except for the twentieth century in Antarctica where the simulated warming is always much larger than in the reconstructions. Such states consistent with all sources of information can be achieved even if the uncertainties of the reconstructions are underestimated. Although, well within the range of the proxy-based reconstructions, the temperatures obtained after data assimilation display more similar developments between the hemispheres than in those reconstructions. Ensuring the compatibility does not require to systematically reduce the model response to the forcing or to strongly enhance the model internal variability. From those results, there is thus no reason to suspect that the model is strongly biased in one aspect or another. The constraint imposed by the data assimilation is too low to unambiguously identify the origin of each feature displayed in the reconstructions but, as expected, changes in atmospheric circulation likely played a role in many of them. Furthermore, ocean heat uptake and release as well as oceanic heat transport are key elements to understand the delayed response of the Southern Hemisphere compared to the northern one during some transitions from warmer to colder states or from colder to warmer ones. The last millennium is thus an interesting test period to better understand and quantify the associated mechanisms.
Kubesch, Nadine Janet; de Nazelle, Audrey; Westerdahl, Dane; Martinez, David; Carrasco-Turigas, Gloria; Bouso, Laura; Guerra, Stefano; Nieuwenhuijsen, Mark J
2015-04-01
Exposure to traffic-related air pollution (TRAP) has been associated with adverse respiratory and systemic outcomes. Physical activity (PA) in polluted air may increase pollutant uptake and thereby health effects. The authors aimed to determine the short-term health effects of TRAP in healthy participants and any possible modifying effect of PA. Crossover real-world exposure study comparing in 28 healthy participants pulmonary and inflammatory responses to four different exposure scenarios: 2 h exposure in a high and low TRAP environment, each at rest and in combination with intermittent moderate PA, consisting of four 15 min rest and cycling intervals. Data were analysed using mixed effect models for repeated measures. Intermittent PA compared to rest, irrespective of the TRAP exposure status, increased statistically significant (p≤0.05) pulmonary function (forced expiratory volume in 1 s (34 mL), forced vital capacity (29 mL), forced expiratory flow (FEF25-75%) (91 mL)), lung inflammation (fraction of exhaled nitric oxide, FeNO, (0.89 ppb)), and systemic inflammation markers interleukin-6 (52.3%), leucocytes (9.7%) and neutrophils count (18.8%). Interquartile increases in coarse particulate matter were statistically significantly associated with increased FeNO (0.80 ppb) and neutrophil count (5.7%), while PM2.5 and PM10 (particulate matter smaller than 2.5 and 10 µm in diameter, respectively) increased leucocytes (5.1% and 4.0%, respectively). We found no consistent evidence for an interaction between TRAP and PA for any of the outcomes of interest. In a healthy population, intermittent moderate PA has beneficial effects on pulmonary function even when performed in a highly polluted environment. This study also suggests that particulate air pollution is inducing pulmonary and systemic inflammatory responses. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Pagé, Isabelle; Nougarou, François; Descarreaux, Martin
2016-04-01
The present study aimed to compare the neuromuscular response under various mechanical stimulations of the lumbar spine in participants with and without chronic low back pain (cLBP). Four mechanical stimulations, characterized by forces ranging from 75 to 225N, were delivered using a servo-controlled linear actuator motor to the L3 spinous process of 25 healthy participants and 26 participants with cLBP. Lumbar neuromuscular responses were recorded using 64-electrodes large surface electromyography arrays. Between-group differences in the dose-response relationship (neuromuscular response amplitude according to each force level) were assessed using mixed model ANOVAs. No differences between groups were shown (all p values>.05). A significant linear relationship was observed between forces and neuromuscular response amplitudes (p<.001) indicating an increase in response amplitudes with increasing stimulation force. Responses were observed throughout the lumbar region with highest response amplitudes in the vicinity of the contacted vertebra. The neuromuscular response amplitude triggered by localized lumbar mechanical stimulations does not differ between participants with and without cLBP. Moreover, even though stimulations were delivered at specific spinal segment, a neuromuscular response, although rapidly decreasing, was observed in areas distant from the contact site. Copyright © 2016 Elsevier Ltd. All rights reserved.
Evaluation of force-torque displays for use with space station telerobotic activities
NASA Technical Reports Server (NTRS)
Hendrich, Robert C.; Bierschwale, John M.; Manahan, Meera K.; Stuart, Mark A.; Legendre, A. Jay
1992-01-01
Recent experiments which addressed Space Station remote manipulation tasks found that tactile force feedback (reflecting forces and torques encountered at the end-effector through the manipulator hand controller) does not improve performance significantly. Subjective response from astronaut and non-astronaut test subjects indicated that force information, provided visually, could be useful. No research exists which specifically investigates methods of presenting force-torque information visually. This experiment was designed to evaluate seven different visual force-torque displays which were found in an informal telephone survey. The displays were prototyped in the HyperCard programming environment. In a within-subjects experiment, 14 subjects nullified forces and torques presented statically, using response buttons located at the bottom of the screen. Dependent measures included questionnaire data, errors, and response time. Subjective data generally demonstrate that subjects rated variations of pseudo-perspective displays consistently better than bar graph and digital displays. Subjects commented that the bar graph and digital displays could be used, but were not compatible with using hand controllers. Quantitative data show similar trends to the subjective data, except that the bar graph and digital displays both provided good performance, perhaps do to the mapping of response buttons to display elements. Results indicate that for this set of displays, the pseudo-perspective displays generally represent a more intuitive format for presenting force-torque information.
32 CFR 855.5 - Responsibilities and authorities.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 32 National Defense 6 2011-07-01 2011-07-01 false Responsibilities and authorities. 855.5 Section 855.5 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE AIRCRAFT CIVIL AIRCRAFT USE OF UNITED STATES AIR FORCE AIRFIELDS Civil Aircraft Landing Permits § 855.5 Responsibilities...
Stress Transmission in Granular Packings: Localization and Cooperative Response
NASA Astrophysics Data System (ADS)
Ramola, Kabir
We develop a framework for stress transmission in two dimensional granular media that respects vector force balance at the microscopic level. For a packing of grains interacting via pairwise contact forces, we introduce local gauge degrees of freedom that determine the response of the system to external perturbations. This allows us to construct unique force-balanced solutions that determine the change in contact forces as a response to external stress. By mapping this response to diffusion in the underlying contact network, we show that this naturally leads to spatial localization of forces. We present numerical evidence for stress localization using exact diagonalization studies of network Laplacians associated with soft disk packings. We use this formalism to characterize the deviation from elastic behaviour as the amount of disorder in the underlying network is varied. We discuss generalizations to systems with large friction between grains and other networks that display topological disorder. This work has been supported by NSF-DMR 1409093 and the W. M. Keck Foundation.
García-Fernández, Alfredo; Iriondo, Jose M; Escudero, Adrián; Aguilar, Javier Fuertes; Feliner, Gonzalo Nieto
2013-08-01
Mountain plants are among the species most vulnerable to global warming, because of their isolation, narrow geographic distribution, and limited geographic range shifts. Stochastic and selective processes can act on the genome, modulating genetic structure and diversity. Fragmentation and historical processes also have a great influence on current genetic patterns, but the spatial and temporal contexts of these processes are poorly known. We aimed to evaluate the microevolutionary processes that may have taken place in Mediterranean high-mountain plants in response to changing historical environmental conditions. Genetic structure, diversity, and loci under selection were analyzed using AFLP markers in 17 populations distributed over the whole geographic range of Armeria caespitosa, an endemic plant that inhabits isolated mountains (Sierra de Guadarrama, Spain). Differences in altitude, geographic location, and climate conditions were considered in the analyses, because they may play an important role in selective and stochastic processes. Bayesian clustering approaches identified nine genetic groups, although some discrepancies in assignment were found between alternative analyses. Spatially explicit analyses showed a weak relationship between genetic parameters and spatial or environmental distances. However, a large proportion of outlier loci were detected, and some outliers were related to environmental variables. A. caespitosa populations exhibit spatial patterns of genetic structure that cannot be explained by the isolation-by-distance model. Shifts along the altitude gradient in response to Pleistocene climatic oscillations and environmentally mediated selective forces might explain the resulting structure and genetic diversity values found.
Polar Amplification of Global Warming in Models Without Ice-Albedo Feedbacks
NASA Astrophysics Data System (ADS)
Alexeev, V. A.; Langen, P. L.
2004-12-01
Non-ice-albedo feedback mechanisms leading to polar amplification, as reported by Alexeev (2003), are explored in three aquaplanet climate model systems of different complexity. We analyze this pattern using three different "ghost forcing" experiments (Hansen et al, 1997). In the first one we uniformly add 4W/m2 to the oceanic mixed layer in order to roughly simulate a 2xCO2 forcing at the surface. The second forcing, of the same magnitude, is applied only within the tropics and the third forcing is applied only polewards of 30 degrees (north and south). It turns out that our systems' equilibrium responses are linear with respect to these forcings. Surprisingly, the response to the tropical-only forcing is essentially non-local with quite significant warming at higher latitudes. The response to the high-latitude-only forcing is more local and has higher amplitude near the poles. Our explanation of the polar amplification obtained in the uniform forcing experiment is therefore two-fold. Firstly, the tropics are much more difficult to warm because of the higher sensitivity of the surface budget to SST changes at higher temperatures. Secondly, any extra heat deposited in the tropics is not easily radiated to outer space because of the high opaqueness of the tropical atmosphere. The energy, most of which is latent, needs to be redistributed by transports to the extra-tropics. Consequently, the tropical "ghost forcing" results in an essentially non-local response, while the extra-tropical one yields a more localized response, because the energy in the atmosphere cannot propagate effectively equator-wards from high latitudes. The paper deals with these mechanisms in three climate model systems with no ice-albedo feedbacks - an EBM and two different GCMs - one with cloud feedbacks and the other with cloud feedbacks excluded. References. Alexeev, V.A., (2003) Sensitivity to CO2 doubling of an atmospheric GCM coupled to an oceanic mixed layer: a linear analysis. Climate Dynamics, 20: p.775-787. Hansen, J., Sato M, and R. Ruedy, (1997) Radiative forcing and climate response, JGR, 102, No. D6, 6831-6864.
NASA Technical Reports Server (NTRS)
Remsberg, E. E.
2008-01-01
Results are presented on responses in 14-yr time series of stratospheric ozone and temperature from the Halogen Occultation Experiment (HALOE) of the Upper Atmosphere Research Satellite (UARS) to a solar cycle (SC-like) variation. The ozone time series are for ten, 20-degree wide, latitude bins from 45S to 45N and for thirteen "half-Umkehr" layers of about 2.5 km thickness and extending from 63 hPa to 0.7 hPa. The temperature time series analyses were restricted to pressure levels in the range of 2 hPa to 0.7 hPa. Multiple linear regression (MLR) techniques were applied to each of the 130 time series of zonally-averaged, sunrise plus sunset ozone points over that latitude/pressure domain. A simple, 11-yr periodic term and a linear trend term were added to the final MLR models after their seasonal and interannual terms had been determined. Where the amplitudes of the 11-yr terms were significant, they were in-phase with those of the more standard proxies for the solar uv-flux. The max minus min response for ozone is of order 2 to 3% from about 2 to 5 hPa and for the latitudes of 45S to 45N. There is also a significant max minus min response of order 1 K for temperature between 15S and 15N and from 2 to 0.7 hPa. The associated linear trends for ozone are near zero in the upper stratosphere. Negative ozone trends of 4 to 6%/decade were found at 10 to 20 hPa across the low to middle latitudes of both hemispheres. It is concluded that the analyzed responses from the HALOE data are of good quality and can be used to evaluate the responses of climate/chemistry models to a solar cycle forcing.
Interpretation bias in Cluster-C and borderline personality disorders.
Arntz, Arnoud; Weertman, Anoek; Salet, Sjoerd
2011-08-01
Cognitive therapy (CT) assumes that personality disorders (PDs) are characterized by interpretational biases that maintain the disorder. Changing interpretations is therefore a major aim of CT of PDs. This study tested whether Borderline PD (BPD), Avoidant and Dependent PD (AV/DEPD), and Obsessive-Compulsive PD (OCPD) are characterized by specific interpretations. Among the 122 participants there were 55 PD patients (17 BPD, 30 AV/DEPD, 29 OCPD diagnoses), 26 axis-1 patients, and 41 nonpatients. Participants put themselves into 10 scripts of negative events and noted feelings, thoughts and behaviors that came to mind. Next, they chose between hypothesized BPD-specific, AV/DEPD-specific, and OCPD-specific interpretations of each event (forced choice). Lastly, participants rated belief in each interpretation. Regression analyses revealed that forced choices and belief ratings supported the CT-model of BPD and AV/DEP: interpretations were specific. The alleged OCPD-beliefs were however not specifically related to OCPD, with relatively high popularity in axis-1 patients and nonpatients. The open responses were classified by judges blind for diagnoses, with the following results. BPD was characterized by low levels of solution-focused and healthy-flexible/accepting responses, and higher levels of criticizing others and malevolent interpretations of others. AV/DEPD was characterized by lower levels of solution-focused responses, and higher levels of self-criticism, negative emotions, guilt and fear of judgment, as well as lower levels of other-criticism. OCPD only showed trends for lower healthy responses, and higher compulsiveness and worry. It is concluded that the assumptions of CT are supported for BPD and AV/DEPD, but not - at least not on the explicit interpretational level - for OCPD. CT of OCPD might need a slightly different approach. Copyright © 2011 Elsevier Ltd. All rights reserved.
Mayfield, Dean L; Launikonis, Bradley S; Cresswell, Andrew G; Lichtwark, Glen A
2016-11-15
There are high mechanical demands placed on skeletal muscles in movements requiring rapid acceleration of the body or its limbs. Tendons are responsible for transmitting muscle forces, but, because of their elasticity, can manipulate the mechanics of the internal contractile apparatus. Shortening of the contractile apparatus against the stretch of tendon affects force generation according to known mechanical properties; however, the extent to which differences in tendon compliance alter force development in response to a burst of electrical impulses is unclear. To establish the influence of series compliance on force summation, we studied electrically evoked doublet contractions in the cane toad peroneus muscle in the presence and absence of a compliant artificial tendon. Additional series compliance reduced tetanic force by two-thirds, a finding predicted based on the force-length property of skeletal muscle. Doublet force and force-time integral expressed relative to the twitch were also reduced by additional series compliance. Active shortening over a larger range of the ascending limb of the force-length curve and at a higher velocity, leading to a progressive reduction in force-generating potential, could be responsible. Muscle-tendon interaction may also explain the accelerated time course of force relaxation in the presence of additional compliance. Our findings suggest that a compliant tendon limits force summation under constant-length conditions. However, high series compliance can be mechanically advantageous when a muscle-tendon unit is actively stretched, permitting muscle fibres to generate force almost isometrically, as shown during stretch-shorten cycles in locomotor activities. Restricting active shortening would likely favour rapid force development. © 2016. Published by The Company of Biologists Ltd.
Dynamics and stability of mechanical systems with follower forces
NASA Technical Reports Server (NTRS)
Herrmann, G.
1971-01-01
A monograph on problems of stability of equilibrium of mechanical systems with follower forces is presented. Concepts of stability and criteria of stability are reviewed briefly, together with means of analytical specification of follower forces. Nondissipative systems with two degrees of freedom are discussed, and destabilizing effects due to various types of dissipative forces both in discrete and continuous systems, are treated. The analyses are accompanied by some quantative experiments and observations on demonstrational laboratory models.
Electrostatic forces for personnel restraints
NASA Technical Reports Server (NTRS)
Ashby, N.; Ciciora, J.; Gardner, R.; Porter, K.
1977-01-01
The feasibility of utilizing electrostatic forces for personnel retention devices on exterior spacecraft surfaces was analyzed. The investigation covered: (1) determination of the state of the art; (2) analysis of potential adhesion surfaces; (3) safety considerations for personnel; (4) electromagnetic force field determination and its effect on spacecraft instrumentation; and (5) proposed advances to current technology based on documentation review, analyses, and experimental test data.
The Effects of Ejection Seat Cushion Design on Physical Fatigue and Cognitive Performance
2006-11-01
Protection Division Biomechanics Branch Wright-Patterson AFB Ohio 45433-7947 Approved for public release; distribution is unlimited. NOTICE...ADDRESS(ES *Air Force Materiel Command Air Force Research Laboratory Human Effectiveness Directorate Biosciences & Protection Division Biomechanics ...Dayton, Ohio. Analyses of the data were accomplished by the Biomechanics Branch, Human Effectiveness Directorate of the Air Force Research Laboratory
Importance of contraction history on muscle force of porcine urinary bladder smooth muscle.
Menzel, Robin; Böl, Markus; Siebert, Tobias
2017-02-01
The purpose of this study was to provide a comprehensive dataset of porcine urinary bladder smooth muscle properties. Particularly, the history dependence of force production, namely force depression (FD) following shortening and force enhancement (FE) following stretch, was analysed. During active micturition, the circumference of the urinary bladder changes enormously. Thus, FD might be an important phenomenon during smooth muscle contraction. Electrically stimulated, intact urinary bladder strips from pigs (n = 10) were suspended in an aerated-filled organ bath, and different isometric, isotonic, and isokinetic contraction protocols were performed to determine the force-length and the force-velocity relation. FD and FE were assessed in concentric and eccentric contractions with different ramp lengths and ramp velocities. Bladder smooth muscles exhibit considerable amounts of FD and FE. The amount of FD increased significantly with ramp length, while FE did not change. However, FE and FD were independent of ramp velocity. The results imply that smooth muscle bladder strips exhibit similar muscle properties and history-dependent behaviour compared to striated muscles. The provided dataset of muscle properties is important for bladder modelling as well as for the analyses and interpretation of dynamic bladder filling and voiding.
Cell force mapping using a double-sided micropillar array based on the moiré fringe method
NASA Astrophysics Data System (ADS)
Zhang, F.; Anderson, S.; Zheng, X.; Roberts, E.; Qiu, Y.; Liao, R.; Zhang, X.
2014-07-01
The mapping of traction forces is crucial to understanding the means by which cells regulate their behavior and physiological function to adapt to and communicate with their local microenvironment. To this end, polymeric micropillar arrays have been used for measuring cell traction force. However, the small scale of the micropillar deflections induced by cell traction forces results in highly inefficient force analyses using conventional optical approaches; in many cases, cell forces may be below the limits of detection achieved using conventional microscopy. To address these limitations, the moiré phenomenon has been leveraged as a visualization tool for cell force mapping due to its inherent magnification effect and capacity for whole-field force measurements. This Letter reports an optomechanical cell force sensor, namely, a double-sided micropillar array (DMPA) made of poly(dimethylsiloxane), on which one side is employed to support cultured living cells while the opposing side serves as a reference pattern for generating moiré patterns. The distance between the two sides, which is a crucial parameter influencing moiré pattern contrast, is predetermined during fabrication using theoretical calculations based on the Talbot effect that aim to optimize contrast. Herein, double-sided micropillar arrays were validated by mapping mouse embryo fibroblast contraction forces and the resulting force maps compared to conventional microscopy image analyses as the reference standard. The DMPA-based approach precludes the requirement for aligning two independent periodic substrates, improves moiré contrast, and enables efficient moiré pattern generation. Furthermore, the double-sided structure readily allows for the integration of moiré-based cell force mapping into microfabricated cell culture environments or lab-on-a-chip devices.
Analysis of heel pad tissues mechanics at the heel strike in bare and shod conditions.
Fontanella, C G; Forestiero, A; Carniel, E L; Natali, A N
2013-04-01
A combined experimental and numerical approach is used to investigate the interaction phenomena occurring between foot and footwear during the heel strike phase of the gait. Two force platforms are utilised to evaluate the ground reaction forces of a subject in bare and shod walking. The reaction forces obtained from the experimental tests are assumed as loading conditions for the numerical analyses using three dimensional models of the heel region and of the running shoe. The heel pad region, as fat and skin tissues, is described by visco-hyperelastic and fibre-reinforced hyperelastic formulations respectively and bone region by a linear orthotropic formulation. Different elastomeric foams are considered with regard to the outsole, the midsole and the insole layers. The mechanical properties are described by a hyperfoam formulation. The evaluation of the mechanical behaviour of the heel pad tissues at the heel strike in bare and shod conditions is performed considering different combinations of materials for midsole and insole layers. Results allow for the definition of the influence of different material characteristics on the mechanical response of the heel pad region, in particular showing the compressive stress differentiation in the bare and shod conditions. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.
Shake-table testing of a self-centering precast reinforced concrete frame with shear walls
NASA Astrophysics Data System (ADS)
Lu, Xilin; Yang, Boya; Zhao, Bin
2018-04-01
The seismic performance of a self-centering precast reinforced concrete (RC) frame with shear walls was investigated in this paper. The lateral force resistance was provided by self-centering precast RC shear walls (SPCW), which utilize a combination of unbonded prestressed post-tensioned (PT) tendons and mild steel reinforcing bars for flexural resistance across base joints. The structures concentrated deformations at the bottom joints and the unbonded PT tendons provided the self-centering restoring force. A 1/3-scale model of a five-story self-centering RC frame with shear walls was designed and tested on a shake-table under a series of bi-directional earthquake excitations with increasing intensity. The acceleration response, roof displacement, inter-story drifts, residual drifts, shear force ratios, hysteresis curves, and local behaviour of the test specimen were analysed and evaluated. The results demonstrated that seismic performance of the test specimen was satisfactory in the plane of the shear wall; however, the structure sustained inter-story drift levels up to 2.45%. Negligible residual drifts were recorded after all applied earthquake excitations. Based on the shake-table test results, it is feasible to apply and popularize a self-centering precast RC frame with shear walls as a structural system in seismic regions.
NASA Astrophysics Data System (ADS)
Harig, Roland; Matz, Gerhard; Rusch, Peter; Gerhard, Hans-Hennig; Gerhard, Jörn-Hinnrich; Schlabs, Volker
2007-04-01
The German ministry of the interior, represented by the civil defence agency BBK, established analytical task forces for the analysis of released chemicals in the case of fires, chemical accidents, terrorist attacks, or war. One of the first assignments of the task forces was the provision of analytical services during the football world cup 2006. One part of the equipment of these emergency response forces is a remote sensing system that allows identification and visualisation of hazardous clouds from long distances, the scanning infrared gas imaging system SIGIS 2. The system is based on an interferometer with a single detector element in combination with a telescope and a synchronised scanning mirror. The system allows 360° surveillance. The system is equipped with a video camera and the results of the analyses of the spectra are displayed by an overlay of a false colour image on the video image. This allows a simple evaluation of the position and the size of a cloud. The system was deployed for surveillance of stadiums and public viewing areas, where large crowds watched the games. Although no intentional or accidental releases of hazardous gases occurred in the stadiums and in the public viewing areas, the systems identified and located various foreign gases in the air.
Sensitivity of Totten Glacier Ice Shelf extent and grounding line to oceanic forcing
NASA Astrophysics Data System (ADS)
Pelle, T.; Morlighem, M.; Choi, Y.
2017-12-01
Totten Glacier is a major outlet glacier of the East Antarctic Ice Sheet and has been shown to be vulnerable to ocean-induced melt in both its past and present states. The intrusion of warm, circumpolar deep water beneath the Totten Glacier Ice Shelf (TGIS) has been observed to accelerate ice shelf thinning and promote iceberg calving, a primary mechanism of mass discharge from Totten. As such, accurately simulating TGIS's ice front dynamics is crucial to the predictive capabilities of ice sheet models in this region. Here, we study the TGIS using the Ice Sheet System Model (ISSM) and test the applicability of three calving laws: Crevasse Formation calving, Eigen calving, and Tensile Stress calving. We simulate the evolution of Totten Glacier through 2100 under enhanced oceanic forcing in order to investigate both future changes in ice front dynamics and possible thresholds of instability. In addition, we artificially retreat Totten's ice front position and allow the model to proceed dynamically in order to analyze the response of the glacier to calving events. Our analyses show that Tensile Stress calving most accurately reproduces Totten Glacier's observed ice front position. Furthermore, unstable grounding line retreat is projected when Totten is simulated under stronger oceanic thermal forcing scenarios and when the calving front is significantly retreated.
Salticid predation as one potential driving force of ant mimicry in jumping spiders
Huang, Jin-Nan; Cheng, Ren-Chung; Li, Daiqin; Tso, I-Min
2011-01-01
Many spiders possess myrmecomorphy, and species of the jumping spider genus Myrmarachne exhibit nearly perfect ant mimicry. Most salticids are diurnal predators with unusually high visual acuity that prey on various arthropods, including conspecifics. In this study, we tested whether predation pressure from large jumping spiders is one possible driving force of perfect ant mimicry in jumping spiders. The results showed that small non-ant-mimicking jumping spiders were readily treated as prey by large ones (no matter whether heterospecific or conspecific) and suffered high attack and mortality rates. The size difference between small and large jumping spiders significantly affected the outcomes of predatory interactions between them: the smaller the juvenile jumping spiders, the higher the predation risk from large ones. The attack and mortality rates of ant-mimicking jumping spiders were significantly lower than those of non-ant-mimicking jumping spiders, indicating that a resemblance to ants could provide protection against salticid predation. However, results of multivariate behavioural analyses showed that the responses of large jumping spiders to ants and ant-mimicking salticids differed significantly. Results of this study indicate that predation pressure from large jumping spiders might be one selection force driving the evolution of nearly perfect myrmecomorphy in spiders and other arthropods. PMID:20961898
Neuroplastic changes in the sensorimotor cortex associated with orthodontic tooth movement in rats.
Sood, Mandeep; Lee, Jye-Chang; Avivi-Arber, Limor; Bhatt, Poolak; Sessle, Barry J
2015-07-01
Orthodontic tooth movement (OTM) causes transient pain and changes in the dental occlusion that may lead to altered somatosensory inputs and patterns of mastication. This study used intracortical microstimulation (ICMS) and electromyographic (EMG) recordings to test whether neuroplastic changes occur in the ICMS-defined motor representations of left and right anterior digastric (LAD, RAD), masseter, buccinator, and genioglossus (GG) muscles within the rat's face primary motor cortex (face-M1) and adjacent face primary somatosensory cortex (face-S1) during OTM. Analyses included any changes in the number of ICMS sites representing these muscles and in the onset latencies of ICMS-evoked responses in the muscles. Sprague-Dawley rats were divided into experimental (E), sham (S), and naive (N) groups; OTM was induced in the E group. Statistical analyses involved a mixed model repeated-measures analysis of variance (MMRM ANOVA). OTM resulted in significant neuroplastic changes in the number of positive sites in the E group for LAD, RAD, and GG muscles in face-M1 and face-S1 at days 1, 7, and 28 of continuous orthodontic force application, and in the number of sites in face-M1 from which ICMS could simultaneously evoke EMG responses in different combinations of LAD, RAD, and GG muscles. However, the onset latencies of ICMS-evoked responses were not significantly different between groups or between face-M1 and face-S1. The neuroplastic changes documented in this study may reflect adaptive sensorimotor changes in response to the altered environment in the oral cavity induced by OTM. © 2015 Wiley Periodicals, Inc.
Coordinating Military Response to Disasters
2016-01-22
of two noted natural disasters . Section four analyzes the two options of the affected area National Guard forces and the tailored regional located...recommendations and conclusions. Title Coordinating Military Response to Disasters Thesis Military response to natural disasters is a critical aspect...National Guard forces in response to natural disasters and man-made emergencies such as riots or terrorist attacks.13 The third role is federal
Nonparametric Model of Smooth Muscle Force Production During Electrical Stimulation.
Cole, Marc; Eikenberry, Steffen; Kato, Takahide; Sandler, Roman A; Yamashiro, Stanley M; Marmarelis, Vasilis Z
2017-03-01
A nonparametric model of smooth muscle tension response to electrical stimulation was estimated using the Laguerre expansion technique of nonlinear system kernel estimation. The experimental data consisted of force responses of smooth muscle to energy-matched alternating single pulse and burst current stimuli. The burst stimuli led to at least a 10-fold increase in peak force in smooth muscle from Mytilus edulis, despite the constant energy constraint. A linear model did not fit the data. However, a second-order model fit the data accurately, so the higher-order models were not required to fit the data. Results showed that smooth muscle force response is not linearly related to the stimulation power.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ross, Michael; Cap, Jerome S.; Starr, Michael J.
One of the more severe environments for a store on an aircraft is during the ejection of the store. During this environment it is not possible to instrument all component responses, and it is also likely that some instruments may fail during the environment testing. This work provides a method for developing these responses from failed gages and uninstrumented locations. First, the forces observed by the store during the environment are reconstructed. A simple sampling method is used to reconstruct these forces given various parameters. Then, these forces are applied to a model to generate the component responses. Validation ismore » performed on this methodology.« less
Lin, Yu-Chen; Chao, Yen-Li; Wu, Shyi-Kuen; Lin, Ho-Hsio; Hsu, Chieh-Hsiang; Hsu, Hsiao-Man; Kuo, Li-Chieh
2017-10-01
Numerous tools have been developed to evaluate handwriting performances by analysing written products. However, few studies have directly investigated kinetic performances of digits when holding a pen. This study thus attempts to investigate pen-grip kinetics during writing tasks of school-age children and explore the relationship between the kinetic factors and fine motor skills. This study recruited 181 children aged from 5 to 12 years old and investigated the effects of age on handwriting kinetics and the relationship between these and fine motor skills. The forces applied from the digits and pen-tip were measured during writing tasks via a force acquisition pen, and the children's fine motor performances were also evaluated. The results indicate that peak force and average force might not be direct indicators of handwriting performance for normally developing children at this age. Younger children showed larger force variation and lower adjustment frequency during writing, which might indicate they had poorer force control than the older children. Force control when handling a pen is significantly correlated with fine motor performance, especially in relation to the manual dexterity. A novel system is proposed for analysing school-age children's force control while handwriting. We observed the development of force control in relation to pen grip among the children with different ages in this study. The findings suggested that manipulation skill may be crucial when children are establishing their handwriting capabilities. © 2017 Occupational Therapy Australia.
Bimanual Force Variability and Chronic Stroke: Asymmetrical Hand Control
Kang, Nyeonju; Cauraugh, James H.
2014-01-01
The purpose of this study was to investigate force variability generated by both the paretic and non-paretic hands during bimanual force control. Nine chronic stroke individuals and nine age-matched individuals with no stroke history performed a force control task with both hands simultaneously. The task involved extending the wrist and fingers at 5%, 25%, and 50% of maximum voluntary contraction. Bimanual and unimanual force variability during bimanual force control was determined by calculating the coefficient of variation. Analyses revealed two main findings: (a) greater bimanual force variability in the stroke group than the control group and (b) increased force variability by the paretic hands during bimanual force control in comparison to the non-paretic hands at the 5% and 25% force production conditions. A primary conclusion is that post stroke bimanual force variability is asymmetrical between hands. PMID:25000185
NASA Astrophysics Data System (ADS)
Zhao, Yan; Li, DongXu; Liu, ZhiZhen; Liu, Liang
2013-03-01
The dexterous upper limb serves as the most important tool for astronauts to implement in-orbit experiments and operations. This study developed a simulated weightlessness experiment and invented new measuring equipment to quantitatively evaluate the muscle ability of the upper limb. Isometric maximum voluntary contractions (MVCs) and surface electromyography (sEMG) signals of right-handed pushing at the three positions were measured for eleven subjects. In order to enhance the comprehensiveness and accuracy of muscle force assessment, the study focused on signal processing techniques. We applied a combination method, which consists of time-, frequency-, and bi-frequency-domain analyses. Time- and frequency-domain analyses estimated the root mean square (RMS) and median frequency (MDF) of sEMG signals, respectively. Higher order spectra (HOS) of bi-frequency domain evaluated the maximum bispectrum amplitude ( B max), Gaussianity level (Sg) and linearity level (S l ) of sEMG signals. Results showed that B max, S l , and RMS values all increased as force increased. MDF and Sg values both declined as force increased. The research demonstrated that the combination method is superior to the conventional time- and frequency-domain analyses. The method not only described sEMG signal amplitude and power spectrum, but also deeper characterized phase coupling information and non-Gaussianity and non-linearity levels of sEMG, compared to two conventional analyses. The finding from the study can aid ergonomist to estimate astronaut muscle performance, so as to optimize in-orbit operation efficacy and minimize musculoskeletal injuries.
Tropic responses of Phycomyces sporangiophores to gravitational and centrifugal stimuli.
DENNISON, D S
1961-09-01
A low-speed centrifuge was used to study the tropic responses of Phycomyces sporangiophores in darkness to the stimulus of combined gravitational and centrifugal forces. If this stimulus is constant the response is a relatively slow tropic reaction, which persists for up to 12 hours. The response is accelerated by increasing the magnitude of the gravitational-centrifugal force. A wholly different tropic response, the transient response, is elicited by an abrupt change in the gravitational-centrifugal stimulus. The transient response has a duration of only about 6 min. but is characterized by a high bending speed (about 5 degrees /min.). An analysis of the distribution of the transient response along the growing zone shows that the active phase of the response has a distribution similar to that of the light sensitivity for the light-growth and phototropic responses. Experiments in which sporangiophores are centrifuged in an inert dense fluid indicate that the sensory mechanism of the transient response is closely related to the physical deformation of the growing zone caused by the action of the gravitational-centrifugal force on the sporangiophore as a whole. However, the response to a steady gravitational-centrifugal force is most likely not connected with this deformation, but is probably triggered by the shifting of regions or particles of differing density relative to one another inside the cell.
Mechanotransduction in bone: osteoblasts are more responsive to fluid forces than mechanical strain
NASA Technical Reports Server (NTRS)
Owan, I.; Burr, D. B.; Turner, C. H.; Qiu, J.; Tu, Y.; Onyia, J. E.; Duncan, R. L.
1997-01-01
Mechanical force applied to bone produces two localized mechanical signals on the cell: deformation of the extracellular matrix (substrate strain) and extracellular fluid flow. To study the effects of these stimuli on osteoblasts, MC3T3-E1 cells were grown on type I collagen-coated plastic plates and subjected to four-point bending. This technique produces uniform levels of physiological strain and fluid forces on the cells. Each of these parameters can be varied independently. Osteopontin (OPN) mRNA expression was used to assess the anabolic response of MC3T3-E1 cells. When fluid forces were low, neither strain magnitude nor strain rate was correlated with OPN expression. However, higher-magnitude fluid forces significantly increased OPN message levels independently of the strain magnitude or rate. These data indicate that fluid forces, and not mechanical stretch, influence OPN expression in osteoblasts and suggest that fluid forces induced by extracellular fluid flow within the bone matrix may play an important role in bone formation in response to mechanical loading.
Assessment of Ablative Therapies in Swine: Response of Respiratory Diaphragm to Varying Doses.
Singal, Ashish; Mattison, Lars M; Soule, Charles L; Ballard, John R; Rudie, Eric N; Cressman, Erik N K; Iaizzo, Paul A
2018-03-28
Ablation is a common procedure for treating patients with cancer, cardiac arrhythmia, and other conditions, yet it can cause collateral injury to the respiratory diaphragm. Collateral injury can alter the diaphragm's properties and/or lead to respiratory dysfunction. Thus, it is important to understand the diaphragm's physiologic and biomechanical properties in response to ablation therapies, in order to better understand ablative modalities, minimize complications, and maximize the safety and efficacy of ablative procedures. In this study, we analyzed physiologic and biomechanical properties of swine respiratory diaphragm muscle bundles when exposed to 5 ablative modalities. To assess physiologic properties, we performed in vitro tissue bath studies and measured changes in peak force and baseline force. To assess biomechanical properties, we performed uniaxial stress tests, measuring force-displacement responses, stress-strain characteristics, and avulsion forces. After treating the muscle bundles with all 5 ablative modalities, we observed dose-dependent sustained reductions in peak force and transient increases in baseline force-but no consistent dose-dependent biomechanical responses. These data provide novel insights into the effects of various ablative modalities on the respiratory diaphragm, insights that could enable improvements in ablative techniques and therapies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Fukai; Lu, Jian; Garuba, Oluwayemi
This paper explores the use of linear response function (LRF) to relate the mean sea surface temperature (SST) response to prescribed ocean heat convergence (q-flux) forcings. Two methods for constructing the LRF based on the fluctuation-dissipation theorem (FDT) and Green’s function (GRF) are examined. A 900-year preindustrial simulation from the Community Earth System Model with a slab ocean (CESM-SOM) is used to estimate the LRF using FDT. For GRF, 106 pairs of CESM-SOM simulations with warm and cold q-flux patches are performed. FDT is found to have skill in estimating the SST response to a q-flux forcing when the localmore » SST response is strong, but it fails in inverse estimation of the q-flux forcing for a given SST pattern. In contrast, GRF is shown to be reasonably accurate in estimating both SST response and q-flux forcing. Possible degradation in FDT may be attributed to insufficient data sampling, significant departures of the SST data from Gaussian, and the non-normality of the constructed operator. The accurately estimated GRF-based LRF is used to (i) generate a global surface temperature sensitivity map that shows the q-flux forcing in higher latitudes to be three to four times more effective than in low latitudes in producing global surface warming; (ii) identify the most excitable SST mode (neutral vector) resembling Interdecadal Pacific Oscillation; and (iii) estimate a time-invariant q-flux forcing needed for maintaining the GHG-induced SST warming pattern. The GRF experiments will be used to construct LRF for other variables to further explore climate sensitivities and feedbacks.« less
The transient response of ice-shelf melting to ocean change
NASA Astrophysics Data System (ADS)
Holland, P.
2017-12-01
Idealised modelling studies show that the melting of ice shelves varies as a quadratic function of ocean temperature. This means that warm-water ice shelves have higher melt rates and are also more sensitive to ocean warming. However, this result is the equilibrium response, derived from a set of ice—ocean simulations subjected to a fixed ocean forcing and run until steady. This study considers instead the transient response of melting, using unsteady simulations subjected to forcing conditions that are oscillated in time with a range of periods. The results show that when the ocean forcing is varied slowly, the melt rates follow the equililbrium response. However, for rapid ocean change melting deviates from the equilibrium response in interesting ways. The residence time of water in the sub-ice cavity offers a critical timescale. When the forcing varies slowly (period of oscillation >> residence time), the cavity is fully-flushed with forcing anomalies at all stages of the cycle and melting follows the equilibrium response. When the forcing varies rapidly (period ≤ residence time), multiple cold and warm anomalies coexist in the cavity, cancelling each other in the spatial mean and thus inducing a relatively steady melt rate. This implies that all ice shelves have a maximum frequency of ocean variability that can be manifested in melting. The results also show that ice shelves forced by warm water have high melt rates, high equilibrium sensitivity, and short residence times, hence a short timescale over which the equilibrium sensitivity is manifest. The most rapid melting adjustment is induced by warm anomalies that are also saline. Thus, ice shelves in the Amundsen and Bellingshausen seas, Antarctica, are highly sensitive to ocean change.
[Brazilian Army nurses and transportation of the wounded: a challenge faced during World War II].
Bernardes, Margarida Maria Rocha; Lopes, Gertrudes Teixeira
2007-01-01
This historic-sociologic study aims to analyse the challenges faced by the Brazilian Expeditionary Force's Air Transportation Nurses of the Army with the Theatre of Operations on the course of World War II. The primary source was comprised of a photograph from this time period and oral testimonies of those who participated in the conflict. Ideas by sociologist Pierre Bourdieu support the discussion. Results suggest that Brazilian nurses were challenged to transport the wounded without medical advice. We conclude that the challenge to fulfill the task imposed, which led to independent decision-making, gave confidence and autonomy to the ones already responsible for the transportation of the wounded.
Analysis of the human operator subsystems
NASA Technical Reports Server (NTRS)
Jones, Lynette A.; Hunter, Ian W.
1991-01-01
Except in low-bandwidth systems, knowledge of the human operator transfer function is essential for high-performance telerobotic systems. This information has usually been derived from detailed analyses of tracking performance, in which the human operator is considered as a complete system rather than as a summation of a number of subsystems, each of which influences the operator's output. Studies of one of these subsystems, the limb mechanics system, demonstrate that large parameter variations can occur that can have a profound effect on the stability of force-reflecting telerobot systems. An objective of this research was to decompose the performance of the human operator system in order to establish how the dynamics of each of the elements influence the operator's responses.
Cryogenic Fluid Film Bearing Tester Development Study
NASA Technical Reports Server (NTRS)
Scharrer, Joseph K. (Editor); Murphy, Brian T.; Hawkins, Lawrence A.
1993-01-01
Conceptual designs were developed for the determination of rotordynamic coefficients of cryogenic fluid film bearings. The designs encompassed the use of magnetic and conventional excitation sources as well as the use of magnetic bearings as support bearings. Test article configurations reviewed included overhung, floating housing, and fixed housing. Uncertainty and forced response analyses were performed to assess quality of data and suitability of each for testing a variety of fluid film bearing designs. Development cost and schedule estimates were developed for each design. Facility requirements were reviewed and compared with existing MSFC capability. The recommended configuration consisted of a fixed test article housing centrally located between two magnetic bearings. The magnetic bearings would also serve as the excitation source.
Pan, Daniel; Xu, Xueyan S; Welcome, Daniel E; McDowell, Thomas W; Warren, Christopher; Wu, John; Dong, Ren G
2018-06-01
This study conducted two series of experiments to investigate the relationships between hand coupling force and biodynamic responses of the hand-arm system. In the first experiment, the vibration transmissibility on the system was measured as a continuous function of grip force while the hand was subjected to discrete sinusoidal excitations. In the second experiment, the biodynamic responses of the system subjected to a broadband random vibration were measured under five levels of grip forces and a combination of grip and push forces. This study found that the transmissibility at each given frequency increased with the increase in the grip force before reaching a maximum level. The transmissibility then tended to plateau or decrease when the grip force was further increased. This threshold force increased with an increase in the vibration frequency. These relationships remained the same for both types of vibrations. The implications of the experimental results are discussed. Practitioner Summary: Shocks and vibrations transmitted to the hand-arm system may cause injuries and disorders of the system. How to take hand coupling force into account in the risk assessment of vibration exposure remains an important issue for further studies. This study is designed and conducted to help resolve this issue.
Eddy response to variable atmospheric forcing in the Southern Ocean
NASA Astrophysics Data System (ADS)
Ward, M. L.; McC. Hogg, A.
2009-04-01
Satellite altimeter data of the Southern Ocean (SO) reveal an anomalous peak in eddy kinetic energy (EKE) in the Antarctic Circumpolar Current (ACC) in 2000-2002. This peak has been attributed to a delayed response to an earlier peak in the Southern Annular Mode (SAM) and its associated circumpolar eastward winds that occurred around 1998, where the delay is due to the formation and adjustment of the eddy field associated with the increased winds (Meredith & Hogg, 2006). A more recent analysis reveals that the EKE response varies regionally, with the strongest response in the Pacific, and it has been suggested that this variability is due to the additional influence of ENSO. The 2000-2002 peak in EKE is therefore attributed to the coincident peak in SAM and ENSO 2-3 years earlier, and that the EKE response was weaker in past years when modes were out of phase (Morrow & Pasquet, 2008). We investigate this issue by applying SAM-like and ENSO-like wind forcings to Q-GCM, the eddy-resolving model used in Meredith & Hogg and configured for the Southern Ocean. We analyze the EKE response to each individual forcing as well as a simultaneous forcing of the two, both in and out of phase. From these results, we are able to quantify both the global and regional response to each forcing, and the degree to which each mode is responsible for the EKE strength and distribution across the ACC.
Neuromuscular mechanisms and neural strategies in the control of time-varying muscle contractions.
Erimaki, Sophia; Agapaki, Orsalia M; Christakos, Constantinos N
2013-09-01
The organization of the neural input to motoneurons that underlies time-varying muscle force is assumed to depend on muscle transfer characteristics and neural strategies or control modes utilizing sensory signals. We jointly addressed these interlinked, but previously studied individually and partially, issues for sinusoidal (range 0.5-5.0 Hz) force-tracking contractions of a human finger muscle. Using spectral and correlation analyses of target signal, force signal, and motor unit (MU) discharges, we studied 1) patterns of such discharges, allowing inferences on the motoneuronal input; 2) transformation of MU population activity (EMG) into quasi-sinusoidal force; and 3) relation of force oscillation to target, carrying information on the input's organization. A broad view of force control mechanisms and strategies emerged. Specifically, synchronized MU and EMG modulations, reflecting a frequency-modulated motoneuronal input, accompanied the force variations. Gain and delay drops between EMG modulation and force oscillation, critical for the appropriate organization of this input, occurred with increasing target frequency. According to our analyses, gain compensation was achieved primarily through rhythmical activation/deactivation of higher-threshold MUs and secondarily through the adaptation of the input's strength expected during tracking tasks. However, the input's timing was not adapted to delay behaviors and seemed to depend on the control modes employed. Thus, for low-frequency targets, the force oscillation was highly coherent with, but led, a target, this timing error being compatible with predictive feedforward control partly based on the target's derivatives. In contrast, the force oscillation was weakly coherent, but in phase, with high-frequency targets, suggesting control mainly based on a target's rhythm.
NASA Technical Reports Server (NTRS)
Fijany, A.; Featherstone, R.
1999-01-01
This paper presents a new formulation of the Constraint Force Algorithm that corrects a major limitation in the original, and sheds new light on the relationship between it and other dynamics algoritms.
Unger, Ewald; Bijak, Manfred; Stoiber, Martin; Lanmüller, Hermann; Jarvis, Jonathan Charles
2017-01-01
Direct measurements of muscular forces usually require a substantial rearrangement of the biomechanical system. To circumvent this problem, various indirect techniques have been used in the past. We introduce a novel direct method, using a lightweight (~0.5 g) miniature (3 x 3 x 7 mm) in-line load-cell to measure tension in the tibialis anterior tendon of rats. A linear motor was used to produce force-profiles to assess linearity, step-response, hysteresis and frequency behavior under controlled conditions. Sensor responses to a series of rectangular force-pulses correlated linearly (R2 = 0.999) within the range of 0–20 N. The maximal relative error at full scale (20 N) was 0.07% of the average measured signal. The standard deviation of the mean response to repeated 20 N force pulses was ± 0.04% of the mean response. The step-response of the load-cell showed the behavior of a PD2T2-element in control-engineering terminology. The maximal hysteretic error was 5.4% of the full-scale signal. Sinusoidal signals were attenuated maximally (-4 dB) at 200 Hz, within a measured range of 0.01–200 Hz. When measuring muscular forces this should be of minor concern as the fusion-frequency of muscles is generally much lower. The newly developed load-cell measured tensile forces of up to 20 N, without inelastic deformation of the sensor. It qualifies for various applications in which it is of interest directly to measure forces within a particular tendon causing only minimal disturbance to the biomechanical system. PMID:28934327
Schmoll, Martin; Unger, Ewald; Bijak, Manfred; Stoiber, Martin; Lanmüller, Hermann; Jarvis, Jonathan Charles
2017-01-01
Direct measurements of muscular forces usually require a substantial rearrangement of the biomechanical system. To circumvent this problem, various indirect techniques have been used in the past. We introduce a novel direct method, using a lightweight (~0.5 g) miniature (3 x 3 x 7 mm) in-line load-cell to measure tension in the tibialis anterior tendon of rats. A linear motor was used to produce force-profiles to assess linearity, step-response, hysteresis and frequency behavior under controlled conditions. Sensor responses to a series of rectangular force-pulses correlated linearly (R2 = 0.999) within the range of 0-20 N. The maximal relative error at full scale (20 N) was 0.07% of the average measured signal. The standard deviation of the mean response to repeated 20 N force pulses was ± 0.04% of the mean response. The step-response of the load-cell showed the behavior of a PD2T2-element in control-engineering terminology. The maximal hysteretic error was 5.4% of the full-scale signal. Sinusoidal signals were attenuated maximally (-4 dB) at 200 Hz, within a measured range of 0.01-200 Hz. When measuring muscular forces this should be of minor concern as the fusion-frequency of muscles is generally much lower. The newly developed load-cell measured tensile forces of up to 20 N, without inelastic deformation of the sensor. It qualifies for various applications in which it is of interest directly to measure forces within a particular tendon causing only minimal disturbance to the biomechanical system.
NASA Astrophysics Data System (ADS)
Fulmer, Gavin W.; Liang, Ling L.; Liu, Xiufeng
2014-11-01
This exploratory study applied a proposed force and motion learning progression (LP) to high-school and university students and to content involving both one- and two-dimensional force and motion situations. The Force Concept Inventory (FCI) was adapted, based on a previous content analysis and coding of the questions in the FCI in terms of the level descriptors of the LP. Using a Rasch measurement model and latent class analysis, students' responses were tested for fit with the proposed LP. Results indicated that the recoded FCI response options are generally consistent with a progression of difficulties as proposed in the LP, and that the students could be organized into different groups with progressively different levels of ability. However, reliability for the ability estimates was only moderate and response options at lower levels of the LP were not well differentiated. Implications for the assessments with LPs and revisions for both the FCI and the force and motion LP are also discussed.
The structure of cell-matrix adhesions: the new frontier.
Hanein, Dorit; Horwitz, Alan Rick
2012-02-01
Adhesions between the cell and the extracellular matrix (ECM) are mechanosensitive multi-protein assemblies that transmit force across the cell membrane and regulate biochemical signals in response to the chemical and mechanical environment. These combined functions in force transduction, signaling and mechanosensing contribute to cellular phenotypes that span development, homeostasis and disease. These adhesions form, mature and disassemble in response to actin organization and physical forces that originate from endogenous myosin activity or external forces by the extracellular matrix. Despite advances in our understanding of the protein composition, interactions and regulation, our understanding of matrix adhesion structure and organization, how forces affect this organization, and how these changes dictate specific signaling events is limited. Insights across multiple structural levels are acutely needed to elucidate adhesion structure and ultimately the molecular basis of signaling and mechanotransduction. Here we describe the challenges and recent advances and prospects for unraveling the structure of cell-matrix adhesions and their response to force. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ghorbanirenani, Iman
This thesis presents two experimental programs together with companion numerical studies that were carried out on reinforced concrete shear walls: static tests and dynamic (shake table) tests. The first series of experiments were monotonic and cyclic quasi-static testing on ductile reinforced concrete shear wall specimens designed and detailed according to the seismic provisions of NBCC 2005 and CSA-A23.3-04 standard. The tests were carried out on full-scale and 1:2.37 reduced scale wall specimens to evaluate the seismic design provisions and similitude law and determine the appropriate scaling factor that could be applied for further studies such as dynamic tests. The second series of experiments were shake table tests conducted on two identical 1:2.33 scaled, 8-storey moderately ductile reinforced concrete shear wall specimens to investigate the effects of higher modes on the inelastic response of slender walls under high frequency ground motions expected in Eastern North America. The walls were designed and detailed according to the seismic provisions of NBCC 2005 and CSA-A23.3-04 standard. The objectives were to validate and understand the inelastic response and interaction of shear, flexure and axial loads in plastic hinge zones of the walls considering the higher mode effects and to investigate the formation of second hinge in upper part of the wall due to higher mode responses. Second mode response significantly affected the response of the walls. This caused inelastic flexural response to develop at the 6th level with approximately the same rotation ductility compared to that observed at the base. Dynamic amplification of the base shear forces was also observed in both walls. Numerical modeling of these two shake table tests was performed to evaluate the test results and validate current modeling approaches. Nonlinear time history analyses were carried out by the reinforced concrete fibre element (OpenSees program) and finite element (VecTor2 program) methods using the shake table feedback signals as input. Good agreement was generally obtained between numerical and experimental results. Both computer programs were able to predict the natural frequency of the walls in the undamaged and damaged conditions. Both modeling techniques could predict that the maximum bending moment at the base of the walls reached the actual wall moment capacity. The inelastic response and the dual plastic hinge behaviour of the walls could be adequately reproduced using the fibre element and finite element analysis programs. The fibre element method is a good alternative in terms of computing time. It produces reasonable results in comparison with the finite element method, although particular attention needs to be given to the selection of the damping ratios. The different parametric analyses performed in this thesis showed that, for both models, adding a small amount of global viscous damping in combination with a refined reinforced concrete hysteretic model could predict better the seismic behaviour of the tested structures. For the VecTor2 program, a viscous damping of 1% led to reasonable results for the studied RC walls. For the OpenSees program, 2% damping resulted in a good match between test and predictions for the 100% EQ test on the initially undamaged wall. When increasing the earthquake intensities, the damping had to be reduced between 1.5% and 1% to achieve good results for a damaged wall with elongated vibration periods. According to the experimental results and numerical analyses on reinforced concrete shear walls subjected to ground motions from Eastern North America earthquakes, there is a high possibility of having a second plastic hinge forming in the upper part of walls in addition to the one assumed in design at the base. This second hinge could dissipate the earthquake energy more effectively and decrease the force demand on the wall. A dual plastic hinge design approach in which the structures become plastic in the upper wall segment as well as the base could be therefore more appropriate. Preliminary design recommendations considering higher mode effects on dual hinge response and base shear forces for ductile slender shear walls are given in this thesis. (Abstract shortened by UMI.)
Perumal, Ramu; Wexler, Anthony S.; Kesar, Trisha M.; Jancosko, Angela; Laufer, Yocheved
2010-01-01
Superimposition of electrical stimulation during voluntary contractions is used to produce functional movements in individuals with central nervous system impairment, to evaluate the ability to activate a muscle, to characterize the nature of fatigue, and to improve muscle strength during postsurgical rehabilitation. Currently, the manner in which voluntary contractions and electrically elicited forces summate is not well understood. The objective of the present study is to develop a model that predicts the forces obtained when electrical stimulation is superimposed on a volitional contraction. Quadriceps femoris muscles of 12 able-bodied subjects were tested. Our results showed that the total force produced when electrical stimulation was superimposed during a volitional contraction could be modeled by the equation T = V + S[(MaxForce − V)/MaxForce]N, where T is the total force produced, V is the force in response to volitional contraction alone, S is the force response to the electrical stimulation alone, MaxForce is the maximum force-generating ability of the muscle, and N is a parameter that we posit depends on the differences in the motor unit recruitment order and firing rates between volitional and electrically elicited contractions. In addition, our results showed that the model predicted accurately (intraclass correlation coefficient ≥0.97) the total force in response to a wide range of stimulation intensities and frequencies superimposed on a wide range of volitional contraction levels. Thus the model will be helpful to clinicians and scientists to predict the amount of stimulation needed to produce the targeted force levels in individuals with partial paralysis. PMID:20299613
NASA Astrophysics Data System (ADS)
Bocian, M.; Brownjohn, J. M. W.; Racic, V.; Hester, D.; Quattrone, A.; Gilbert, L.; Beasley, R.
2018-05-01
A multi-scale and multi-object interaction phenomena can arise when a group of walking pedestrians crosses a structure capable of exhibiting dynamic response. This is because each pedestrian is an autonomous dynamic system capable of displaying intricate behaviour affected by social, psychological, biomechanical and environmental factors, including adaptations to the structural motion. Despite a wealth of mathematical models attempting to describe and simulate coupled crowd-structure system, their applicability can generally be considered uncertain. This can be assigned to a number of assumptions made in their development and the scarcity or unavailability of data suitable for their validation, in particular those associated with pedestrian-pedestrian and pedestrian-structure interaction. To alleviate this problem, data on behaviour of individual pedestrians within groups of six walkers with different spatial arrangements are gathered simultaneously with data on dynamic structural response of a footbridge, from a series of measurements utilising wireless motion monitors. Unlike in previous studies on coordination of pedestrian behaviour, the collected data can serve as a proxy for pedestrian vertical force, which is of critical importance from the point of view of structural stability. A bivariate analysis framework is proposed and applied to these data, encompassing wavelet transform, synchronisation measures based on Shannon entropy and circular statistics. A topological pedestrian map is contrived showing the strength and directionality of between-subjects interactions. It is found that the coordination in pedestrians' vertical force depends on the spatial collocation within a group, but it is generally weak. The relationship between the bridge and pedestrian behaviour is also analysed, revealing stronger propensity for pedestrians to coordinate their force with the structural motion rather than with each other.
Optimization of a simplified automobile finite element model using time varying injury metrics.
Gaewsky, James P; Danelson, Kerry A; Weaver, Caitlin M; Stitzel, Joel D
2014-01-01
In 2011, frontal crashes resulted in 55% of passenger car injuries with 10,277 fatalities and 866,000 injuries in the United States. To better understand frontal crash injury mechanisms, human body finite element models (FEMs) can be used to reconstruct Crash Injury Research and Engineering Network (CIREN) cases. A limitation of this method is the paucity of vehicle FEMs; therefore, we developed a functionally equivalent simplified vehicle model. The New Car Assessment Program (NCAP) data for our selected vehicle was from a frontal collision with Hybrid III (H3) Anthropomorphic Test Device (ATD) occupant. From NCAP test reports, the vehicle geometry was created and the H3 ATD was positioned. The material and component properties optimized using a variation study process were: steering column shear bolt fracture force and stroke resistance, seatbelt pretensioner force, frontal and knee bolster airbag stiffness, and belt friction through the D-ring. These parameters were varied using three successive Latin Hypercube Designs of Experiments with 130-200 simulations each. The H3 injury response was compared to the reported NCAP frontal test results for the head, chest and pelvis accelerations, and seat belt and femur forces. The phase, magnitude, and comprehensive error factors, from a Sprague and Geers analysis were calculated for each injury metric and then combined to determine the simulations with the best match to the crash test. The Sprague and Geers analyses typically yield error factors ranging from 0 to 1 with lower scores being more optimized. The total body injury response error factor for the most optimized simulation from each round of the variation study decreased from 0.466 to 0.395 to 0.360. This procedure to optimize vehicle FEMs is a valuable tool to conduct future CIREN case reconstructions in a variety of vehicles.
Wilson, Emma; Rustighi, Emiliano; Newland, Philip L; Mace, Brian R
2012-03-01
Muscle models are an important tool in the development of new rehabilitation and diagnostic techniques. Many models have been proposed in the past, but little work has been done on comparing the performance of models. In this paper, seven models that describe the isometric force response to pulse train inputs are investigated. Five of the models are from the literature while two new models are also presented. Models are compared in terms of their ability to fit to isometric force data, using Akaike's and Bayesian information criteria and by examining the ability of each model to describe the underlying behaviour in response to individual pulses. Experimental data were collected by stimulating the locust extensor tibia muscle and measuring the force generated at the tibia. Parameters in each model were estimated by minimising the error between the modelled and actual force response for a set of training data. A separate set of test data, which included physiological kick-type data, was used to assess the models. It was found that a linear model performed the worst whereas a new model was found to perform the best. The parameter sensitivity of this new model was investigated using a one-at-a-time approach, and it found that the force response is not particularly sensitive to changes in any parameter.
Investigation on the forced response of a radial turbine under aerodynamic excitations
NASA Astrophysics Data System (ADS)
Ma, Chaochen; Huang, Zhi; Qi, Mingxu
2016-04-01
Rotor blades in a radial turbine with nozzle guide vanes typically experience harmonic aerodynamic excitations due to the rotor stator interaction. Dynamic stresses induced by the harmonic excitations can result in high cycle fatigue (HCF) of the blades. A reliable prediction method for forced response issue is essential to avoid the HCF problem. In this work, the forced response mechanisms were investigated based on a fluid structure interaction (FSI) method. Aerodynamic excitations were obtained by three-dimensional unsteady computational fluid dynamics (CFD) simulation with phase shifted periodic boundary conditions. The first two harmonic pressures were determined as the primary components of the excitation and applied to finite element (FE) model to conduct the computational structural dynamics (CSD) simulation. The computed results from the harmonic forced response analysis show good agreement with the predictions of Singh's advanced frequency evaluation (SAFE) diagram. Moreover, the mode superposition method used in FE simulation offers an efficient way to provide quantitative assessments of mode response levels and resonant strength.
α-cardiac actin is a novel disease gene in familial hypertrophic cardiomyopathy
Mogensen, Jens; Klausen, Ib C.; Pedersen, Anders K.; Egeblad, Henrik; Bross, Peter; Kruse, Torben A.; Gregersen, Niels; Hansen, Peter S.; Baandrup, Ulrik; Børglum, Anders D.
1999-01-01
We identified the α-cardiac actin gene (ACTC) as a novel disease gene in a pedigree suffering from familial hypertrophic cardiomyopathy (FHC). Linkage analyses excluded all the previously reported FHC loci as possible disease loci in the family studied, with lod scores varying between –2.5 and –6.0. Further linkage analyses of plausible candidate genes highly expressed in the adult human heart identified ACTC as the most likely disease gene, showing a maximal lod score of 3.6. Mutation analysis of ACTC revealed an Ala295Ser mutation in exon 5 close to 2 missense mutations recently described to cause the inherited form of idiopathic dilated cardiomyopathy (IDC). ACTC is the first sarcomeric gene described in which mutations are responsible for 2 different cardiomyopathies. We hypothesize that ACTC mutations affecting sarcomere contraction lead to FHC and that mutations affecting force transmission from the sarcomere to the surrounding syncytium lead to IDC. PMID:10330430
Structural dynamics of shroudless, hollow fan blades with composite in-lays
NASA Technical Reports Server (NTRS)
Aiello, R. A.; Hirschbein, M. S.; Chamis, C. C.
1982-01-01
Structural and dynamic analyses are presented for a shroudless, hollow titanium fan blade proposed for future use in aircraft turbine engines. The blade was modeled and analyzed using the composite blade structural analysis computer program (COBSTRAN); an integrated program consisting of mesh generators, composite mechanics codes, NASTRAN, and pre- and post-processors. Vibration and impact analyses are presented. The vibration analysis was conducted with COBSTRAN. Results show the effect of the centrifugal force field on frequencies, twist, and blade camber. Bird impact analysis was performed with the multi-mode blade impact computer program. This program uses the geometric model and modal analysis from the COBSTRAN vibration analysis to determine the gross impact response of the fan blades to bird strikes. The structural performance of this blade is also compared to a blade of similar design but with composite in-lays on the outer surface. Results show that the composite in-lays can be selected (designed) to substantially modify the mechanical performance of the shroudless, hollow fan blade.
On the state of lithospheric stress in the absence of applied tectonic forces
McGarr, A.
1988-01-01
Numerous published analyses of the nontectonic state of stress are based on Hooke's law and the boundary condition of zero horizontal deformation. This approach has been used to determine the gravitational stress state as well as the effects of processes such as erosion and temperature changes on the state of lithospheric stress. The major disadvantage of these analyses involves the assumption of lateral constraint which seems unrealistic in view of the observational fact that the crust can deform horizontally in response to applied loads. If the same problems are addressed by assuming that the remote stress state is constant, instead of the condition of zero horizontal deformation, then the resulting stress states are entirely different and in good accord with observations. The processes of erosion and sedimentation have slight tendencies to increase and decrease, respectively, the state of deviatoric stress. Temperature changes have only minor effects on the stress state, as averaged over the thickness of the lithosphere. -from Author
[Mobbing and working environment: towards an organizational prevention].
Bosco, Maria Giuseppina; Salerno, Silvana
2004-01-01
Psychological violence in the workplaces is increasing and the Italian national health service and trade unions are mostly involved in single cases of diagnosis strategy. To analyse published mobbing cases using a mobbing prevention approach that takes account of the main civil rights violation in mobbing actions. 25 cases were analysed in order to identify the type of mobbing, gender, the professional position and the main civil rights that were violated. Seven main civil rights had been violated in the 25 mobbing cases: health, work, professional skills, equal treatment, legality, diversity, dignity. Men working in unhealthy conditions, mostly due to unhealthy working environments, were forced to leave under the pressure of moral violence. In women, equal treatment and diversity were the main rights that were violated. Co-worker support was absent in all cases. A civil rights assessment to prevent mobbing is considered. Italian legislation, particularly the Civil Code, can be the legislation key for prevention, with the employer responsible for providing a violence-free environment as indicated in European Directive 626/94.
Seiberl, Wolfgang; Jensen, Elisabeth; Merker, Josephine; Leitel, Marco; Schwirtz, Ansgar
2018-05-29
Force plates represent the "gold standard" in measuring running kinetics to predict performance or to identify the sources of running-related injuries. As these measurements are generally limited to laboratory analyses, wireless high-quality sensors for measuring in the field are needed. This work analysed the accuracy and precision of a new wireless insole forcesensor for quantifying running-related kinetic parameters. Vertical ground reaction force (GRF) was simultaneously measured with pit-mounted force plates (1 kHz) and loadsol ® sensors (100 Hz) under unshod forefoot and rearfoot running-step conditions. GRF data collections were repeated four times, each separated by 30 min treadmill running, to test influence of extended use. A repeated-measures ANOVA was used to identify differences between measurement devices. Additionally, mean bias and Bland-Altman limits of agreement (LoA) were calculated. We found a significant difference (p < .05) in ground contact time, peak force, and force rate, while there was no difference in parameters impulse, time to peak, and negative force rate. There was no influence of time point of measurement. The mean bias of ground contact time, impulse, peak force, and time to peak ranged between 0.6% and 3.4%, demonstrating high accuracy of loadsol ® devices for these parameters. For these same parameters, the LoA analysis showed that 95% of all measurement differences between insole and force plate measurements were less than 12%, demonstrating high precision of the sensors. However, highly dynamic behaviour of GRF, such as force rate, is not yet sufficiently resolved by the insole devices, which is likely explained by the low sampling rate.
Chen, Chao; Wang, Huihua; Liu, Zhiguang; Chen, Xiao; Tang, Jiao; Meng, Fanming; Shi, Wei
2018-06-20
The mechanisms by which organisms adapt to variable environments are a fundamental question in evolutionary biology and are important to protect important species in response to a changing climate. An interesting candidate to study this question is the honey bee Apis cerana, a keystone pollinator with a wide distribution throughout a large variety of climates, that exhibits rapid dispersal. Here, we re-sequenced the genome of 180 A. cerana individuals from eighteen populations throughout China. Using a population genomics approach, we observed considerable genetic variation in A. cerana. Patterns of genetic differentiation indicate high divergence at the subspecies level, and physical barriers rather than distance are the driving force for population divergence. Estimations of divergence time suggested that the main branches diverged between 300 and 500 ka. Analyses of the population history revealed a substantial influence of the Earth's climate on the effective population size of A. cerana, as increased population sizes were observed during warmer periods. Further analyses identified candidate genes under natural selection that are potentially related to honey bee cognition, temperature adaptation, and olfactory. Based on our results, A. cerana may have great potential in response to climate change. Our study provides fundamental knowledge of the evolution and adaptation of A. cerana.
ERIC Educational Resources Information Center
Bani-Salameh, Hisham N.
2017-01-01
We started this work with the goal of detecting misconceptions held by our students about force and motion. A total of 341 students participated in this study by taking the force concept inventory (FCI) test both before and after receiving instructions about force or motion. The data from this study were analysed using different statistical…
2012-02-01
release; distribution unlimited. See additional restrictions described on inside pages STINFO COPY AIR FORCE RESEARCH...LABORATORY MATERIALS AND MANUFACTURING DIRECTORATE WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7750 AIR FORCE MATERIEL COMMAND UNITED STATES AIR FORCE...AFRL/RXLP) Materials and Manufacturing Directorate, Air Force Research Laboratory Wright-Patterson Air Force Base, OH 45433-7750 Air Force
Kaptein, Simone A; Gignac, Monique A M; Badley, Elizabeth M
2009-05-15
To examine the employment status characteristics of people with arthritis disability, with a focus on gender differences and who remains in the workforce. Analyses were based on cross-sectional, self-reported data of the Canadian Participation and Activity Limitation Survey, administered in 2001-2002 (n = 28,908). Labor force status was categorized into employed, unemployed, and not in the labor force. Prevalence estimates were derived from descriptive analyses, and logistic regression determined the factors associated with being out of the labor force. Chi-square and sex-stratified analyses examined gender differences. An estimated 2.3% of the working-age population (ages 25-64 years) reported arthritis disability, and >50% were out of the labor force. Being female, single, older, and having less education and more severe pain and disability were associated with being out of the labor force. Employed women with arthritis disability required more accommodations in the workplace and reported more activity limitations than men. Perceived discrimination was more likely to be reported by employed men, and men reported more changes to their work than women. This study underscores the importance of looking more closely at differences in the employment experiences of women and men. Specifically, the results suggest that arthritis may marginalize women and men in different ways. Women may be more likely to leave employment, whereas men may be more likely to remain working and report negative workplace experiences.
Sparse regularization for force identification using dictionaries
NASA Astrophysics Data System (ADS)
Qiao, Baijie; Zhang, Xingwu; Wang, Chenxi; Zhang, Hang; Chen, Xuefeng
2016-04-01
The classical function expansion method based on minimizing l2-norm of the response residual employs various basis functions to represent the unknown force. Its difficulty lies in determining the optimum number of basis functions. Considering the sparsity of force in the time domain or in other basis space, we develop a general sparse regularization method based on minimizing l1-norm of the coefficient vector of basis functions. The number of basis functions is adaptively determined by minimizing the number of nonzero components in the coefficient vector during the sparse regularization process. First, according to the profile of the unknown force, the dictionary composed of basis functions is determined. Second, a sparsity convex optimization model for force identification is constructed. Third, given the transfer function and the operational response, Sparse reconstruction by separable approximation (SpaRSA) is developed to solve the sparse regularization problem of force identification. Finally, experiments including identification of impact and harmonic forces are conducted on a cantilever thin plate structure to illustrate the effectiveness and applicability of SpaRSA. Besides the Dirac dictionary, other three sparse dictionaries including Db6 wavelets, Sym4 wavelets and cubic B-spline functions can also accurately identify both the single and double impact forces from highly noisy responses in a sparse representation frame. The discrete cosine functions can also successfully reconstruct the harmonic forces including the sinusoidal, square and triangular forces. Conversely, the traditional Tikhonov regularization method with the L-curve criterion fails to identify both the impact and harmonic forces in these cases.
NASA Technical Reports Server (NTRS)
Schubert, Siegfried
2009-01-01
The USCLIVAR working group on drought recently initiated a series of global climate model simulations forced with idealized SST anomaly patterns, designed to address a number of uncertainties regarding the impact of SST forcing and the role of land-atmosphere feedbacks on regional drought. Specific questions that the runs are designed to address include, What are the mechanisms that maintain drought across the seasonal cycle and from one year to the next? What is the role of the leading patterns of SST variability, and what are the physical mechanisms linking the remote SST forcing to regional drought, including the role of land-atmosphere coupling? The runs were carried out with five different atmospheric general circulation models (AGCMs), and one coupled atmosphere-ocean model in which the model was continuously nudged to the imposed SST forcing. This talk provides an overview of the experiments and some initial results focusing on the responses to the leading patterns of annual mean SST variability consisting of a Pacific El Nino/Southern Oscillation (ENSO)-like pattern, a pattern that resembles the Atlantic Multi-decadal Oscillation (AMO), and a global trend pattern. One of the key findings is that all the AGCMs produce broadly similar (though different in detail) precipitation responses to the Pacific forcing pattern, with a cold Pacific leading to reduced precipitation and a warm Pacific leading to enhanced precipitation over most of the United States. While the response to the Atlantic pattern is less robust, there is general agreement among the models that the largest precipitation response over the U.S. tends to occur when the two oceans have anomalies of opposite sign. That is, a cold Pacific and warm Atlantic tend to produce the largest precipitation reductions, whereas a warm Pacific and cold Atlantic tend to produce the greatest precipitation enhancements. Further analysis of the response over the U.S. to the Pacific forcing highlights a number of noteworthy and to some extent unexpected results. These include a seasonal dependence of the precipitation response that is characterized by signal-to-noise ratios that peak in spring, and surface temperature signal-to-noise ratios that are both lower and show less agreement among the models than those found for the precipitation response. Another interesting result concerns what appears to be a substantially different character in the surface temperature response over the U.S. to the Pacific forcing by the only model examined here that was developed for use in numerical weather prediction. The response to the positive SST trend forcing pattern is an overall surface warming over the world's land areas with substantial regional variations that are in part reproduced in runs forced with a globally uniform SST trend forcing. The precipitation response to the trend forcing is weak in all the models. It is hoped that these early results will serve to stimulate further analysis of these simulations, as well as suggest new research on the physical mechanisms contributing to hydroclimatic variability and change throughout the world.
Force sharing and other collaborative strategies in a dyadic force perception task
Tatti, Fabio
2018-01-01
When several persons perform a physical task jointly, such as transporting an object together, the interaction force that each person experiences is the sum of the forces applied by all other persons on the same object. Therefore, there is a fundamental ambiguity about the origin of the force that each person experiences. This study investigated the ability of a dyad (two persons) to identify the direction of a small force produced by a haptic device and applied to a jointly held object. In this particular task, the dyad might split the force produced by the haptic device (the external force) in an infinite number of ways, depending on how the two partners interacted physically. A major objective of this study was to understand how the two partners coordinated their action to perceive the direction of the third force that was applied to the jointly held object. This study included a condition where each participant responded independently and another one where the two participants had to agree upon a single negotiated response. The results showed a broad range of behaviors. In general, the external force was not split in a way that would maximize the joint performance. In fact, the external force was often split very unequally, leaving one person without information about the external force. However, the performance was better than expected in this case, which led to the discovery of an unanticipated strategy whereby the person who took all the force transmitted this information to the partner by moving the jointly held object. When the dyad could negotiate the response, we found that the participant with less force information tended to switch his or her response more often. PMID:29474433
Coupled loads analysis for Space Shuttle payloads
NASA Technical Reports Server (NTRS)
Eldridge, J.
1992-01-01
Described here is a method for determining the transient response of, and the resultant loads in, a system exposed to predicted external forces. In this case, the system consists of four racks mounted on the inside of a space station resource node module (SSRNMO) which is mounted in the payload bay of the space shuttle. The predicted external forces are forcing functions which envelope worst case forces applied to the shuttle during liftoff and landing. This analysis, called a coupled loads analysis, is used to couple the payload and shuttle models together, determine the transient response of the system, and then recover payload loads, payload accelerations, and payload to shuttle interface forces.
32 CFR Appendix A to Part 806 - References
Code of Federal Regulations, 2011 CFR
2011-07-01
... Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE ADMINISTRATION AIR FORCE FREEDOM OF..., Air Force Security and Policy Review Program AFI 36-2603, Air Force Board for Correction of Military... Responsibility AFI 36-2907, Unfavorable Information File (UIF) Program AFPD 37-1, Air Force Information...
32 CFR Appendix A to Part 806 - References
Code of Federal Regulations, 2013 CFR
2013-07-01
... Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE ADMINISTRATION AIR FORCE FREEDOM OF..., Air Force Security and Policy Review Program AFI 36-2603, Air Force Board for Correction of Military... Responsibility AFI 36-2907, Unfavorable Information File (UIF) Program AFPD 37-1, Air Force Information...
Preparing for the Unthinkable: DOD Support to Foreign Consequence Management
2010-05-03
Nuclear Disaster ” (research paper, Maxwell Air Force Base, AL: Air University, 2001), 23. 17 Department of Defense Consequence Management...States Government Response to an Overseas Chemical, Biological, Radiological, or Nuclear Disaster ” (research paper, Maxwell Air Force Base, AL: Air...Government Response to an Overseas Chemical, Biological, Radiological, or Nuclear Disaster .” Research paper, Maxwell Air Force Base, AL: Air University
Influence of the Basset force on the resonant behavior of an oscillator with fluctuating frequency
NASA Astrophysics Data System (ADS)
Rekker, A.; Mankin, R.
2015-10-01
The influence of hydrodynamic interactions, such as Stokes and Basset forces, on the dynamics of a harmonically trapped Brownian tracer is considered. A generalized Langevin equation is used to describe the tracer's response to an external periodic force and to dichotomous fluctuations of the stiffness of the trapping potential. Relying on the Shapiro-Loginov formula, exact expressions for the complex susceptibility and for the response function are presented. On the basis of these exact formulas, it is demonstrated that interplay of a multiplicative colored noise and the Basset force induced memory effects can generate a variety of cooperation effects, such as multiresonance versus the driving frequency, as well as stochastic resonance versus noise parameters. In particular, in certain parameter regions the response function exhibits a resonance-like enhancement at intermediate values of the intensity of the Basset force. Conditions for the appearance of these effects are also discussed.
Handgrip force of maltreating mothers in reaction to infant signals.
Compier-de Block, Laura H C G; Alink, Lenneke R A; Reijman, Sophie; Werner, Claudia D; Maras, Athanasios; Rijnberk, Corine; van IJzendoorn, Marinus H; Bakermans-Kranenburg, Marian J
2015-02-01
Handgrip force responses to infant signals were examined in a sample of 43 maltreating and 40 non-maltreating mothers. During a standardized handgrip paradigm, mothers were asked to squeeze a handgrip dynamometer at maximal and at half of their maximal handgrip strength while listening to infant crying and laughter sounds. Maltreating mothers used excessive force more often while listening to infant crying and laughter than non-maltreating mothers. Of the maltreating mothers, only neglectful mothers (n=20) tended to use excessive force more often during crying than non-maltreating mothers. Participants did not rate the sounds differently, indicating that maltreating mothers cannot be differentiated from non-maltreating mothers based on their perception of infant signals, but show different behavioral responses to the signals. Results imply that, in response to infant signals (i.e., crying or laughing), maltreating mothers may be insufficiently able to regulate the exertion of physical force. Copyright © 2014 Elsevier Ltd. All rights reserved.
Contact position sensor using constant contact force control system
NASA Technical Reports Server (NTRS)
Sturdevant, Jay (Inventor)
1995-01-01
A force control system (50) and method are provided for controlling a position contact sensor (10) so as to produce a constant controlled contact force therewith. The system (50) includes a contact position sensor (10) which has a contact probe (12) for contacting the surface of a target to be measured and an output signal (V.sub.o) for providing a position indication thereof. An actuator (30) is provided for controllably driving the contact position sensor (10) in response to an actuation control signal (I). A controller (52) receives the position indication signal (V.sub.o) and generates in response thereto the actuation control signal (I) so as to provide a substantially constant selective force (F) exerted by the contact probe (12). The actuation drive signal (I) is generated further in response to substantially linear approximation curves based on predetermined force and position data attained from the sensor (10) and the actuator (30).
Report of AAPT Task Force on Teaching Responsibility for Four Year Colleges.
ERIC Educational Resources Information Center
Fuller, Richard M.
1979-01-01
Describes the purpose of establishing the task force on teaching responsibilities, and outlines the recommended guidelines which called for clear definitions of conditions and components necessary for high quality physics programs. (GA)
The Response of Ice Sheets to Climate Variability
NASA Astrophysics Data System (ADS)
Snow, K.; Goldberg, D. N.; Holland, P. R.; Jordan, J. R.; Arthern, R. J.; Jenkins, A.
2017-12-01
West Antarctic Ice Sheet loss is a significant contributor to sea level rise. While the ice loss is thought to be triggered by fluctuations in oceanic heat at the ice shelf bases, ice sheet response to ocean variability remains poorly understood. Using a synchronously coupled ice-ocean model permitting grounding line migration, this study evaluates the response of an ice sheet to periodic variations in ocean forcing. Resulting oscillations in grounded ice volume amplitude is shown to grow as a nonlinear function of ocean forcing period. This implies that slower oscillations in climatic forcing are disproportionately important to ice sheets. The ice shelf residence time offers a critical time scale, above which the ice response amplitude is a linear function of ocean forcing period and below which it is quadratic. These results highlight the sensitivity of West Antarctic ice streams to perturbations in heat fluxes occurring at decadal time scales.
DiNovo, Karyn. M.; Connolly, Tiffanny M.
2010-01-01
The mammalian diving response, consisting of apnea, bradycardia, and increased total peripheral resistance, can be modified by conscious awareness, fear, and anticipation. We wondered whether swim and dive training in rats would 1) affect the magnitude of the cardiovascular responses during voluntary and forced diving, and 2) whether this training would reduce or eliminate any stress due to diving. Results indicate Sprague-Dawley rats have a substantial diving response. Immediately upon submersion, heart rate (HR) decreased by 78%, from 453 ± 12 to 101 ± 8 beats per minute (bpm), and mean arterial pressure (MAP) decreased 25%, from 143 ± 1 to 107 ± 5 mmHg. Approximately 4.5 s after submergence, MAP had increased to a maximum 174 ± 3 mmHg. Blood corticosterone levels indicate trained rats find diving no more stressful than being held by a human, while untrained rats find swimming and diving very stressful. Forced diving is stressful to both trained and untrained rats. The magnitude of bradycardia was similar during both voluntary and forced diving, while the increase in MAP was greater during forced diving. The diving response of laboratory rats, therefore, appears to be dissimilar from that of other animals, as most birds and mammals show intensification of diving bradycardia during forced diving compared with voluntary diving. Rats may exhibit an accentuated antagonism between the parasympathetic and sympathetic branches of the autonomic nervous system, such that in the autonomic control of HR, parasympathetic activity overpowers sympathetic activity. Additionally, laboratory rats may lack the ability to modify the degree of parasympathetic outflow to the heart during an intense cardiorespiratory response (i.e., the diving response). PMID:19923359
Evaluation of the Absolute Regional Temperature Potential
NASA Technical Reports Server (NTRS)
Shindell, D. T.
2012-01-01
The Absolute Regional Temperature Potential (ARTP) is one of the few climate metrics that provides estimates of impacts at a sub-global scale. The ARTP presented here gives the time-dependent temperature response in four latitude bands (90-28degS, 28degS-28degN, 28-60degN and 60-90degN) as a function of emissions based on the forcing in those bands caused by the emissions. It is based on a large set of simulations performed with a single atmosphere-ocean climate model to derive regional forcing/response relationships. Here I evaluate the robustness of those relationships using the forcing/response portion of the ARTP to estimate regional temperature responses to the historic aerosol forcing in three independent climate models. These ARTP results are in good accord with the actual responses in those models. Nearly all ARTP estimates fall within +/-20%of the actual responses, though there are some exceptions for 90-28degS and the Arctic, and in the latter the ARTP may vary with forcing agent. However, for the tropics and the Northern Hemisphere mid-latitudes in particular, the +/-20% range appears to be roughly consistent with the 95% confidence interval. Land areas within these two bands respond 39-45% and 9-39% more than the latitude band as a whole. The ARTP, presented here in a slightly revised form, thus appears to provide a relatively robust estimate for the responses of large-scale latitude bands and land areas within those bands to inhomogeneous radiative forcing and thus potentially to emissions as well. Hence this metric could allow rapid evaluation of the effects of emissions policies at a finer scale than global metrics without requiring use of a full climate model.
On the dynamic response at the wheel axle of a pneumatic tire
NASA Astrophysics Data System (ADS)
Kung, L. E.; Soedel, W.; Yang, T. Y.
1986-06-01
A method for calculating the steady state displacement response and force transmission at the wheel axle of a pneumatic tire-suspension system due to a steady state force or displacement excitation at the tire to ground contact point is developed. The method requires the frequency responses (or receptances)_of both tire-wheel and suspension units. The frequency response of the tire-wheel unit is obtained by using the modal expansion method. The natural frequencies and mode shapes of the tire-wheel unit are obtained by using a geometrically non-linear, ring type, thin shell finite element of laminate composite. The frequency response of the suspension unit is obtained analytically. These frequency responses are used to calculate the force-input and the displacement-input responses at the wheel axle. This method allows the freedom of designing a vehicle and its tires independently and still achieving optimum dynamic performance.
Climate and carbon-cycle response to astronomical forcing over the last 35 Ma.
NASA Astrophysics Data System (ADS)
De Vleeschouwer, D.; Palike, H.; Vahlenkamp, M.; Crucifix, M.
2017-12-01
On a million-year time scale, the characteristics of insolation forcing caused by cyclical variations in the astronomical parameters of the Earth remain stable. Nevertheless, Earth's climate responded very differently to this forcing during different parts of the Cenozoic. The recently-published ∂18Obenthic megasplice (De Vleeschouwer et al., 2017) allowed for a clear visualization of these changes in global climate response to astronomical forcing. However, many open questions remain regarding how carbon-cycle dynamics influence Earth's climate sensitivity to astronomical climate forcing. To provide insight into the interaction between the carbon cycle and astronomical insolation forcing, we built a benthic carbon isotope (∂13Cbenthic) megasplice for the last 35 Ma, employing the same technique used to build the ∂18Obenthic megasplice. The ∂13Cbenthic megasplice exhibits a strong imprint of the 405 and 100-kyr eccentricity cycles throughout the last 35 Ma. This is intriguing, as the oxygen isotope megasplice looses its eccentricity imprint after the mid-Miocene climatic transition (MMCT; see Fig. 1 in De Vleeschouwer et al., 2017). In other words, the carbon cycle responded completely differently to astronomical forcing, compared to global climate during the late Miocene. We visualize this difference in response by the application of a Gaussian process, which renders the dependence of one variable (here ∂18Obenthic or ∂13Cbenthic) in a multidimensional space (here precession, obliquity and eccentricity). Together, the ∂13Cbenthic and ∂18Obenthic megasplices thus provide a unique tool for paleoclimatology, allowing for the quantification and visualization of the changing paleoclimate and carbon-cycle response to astronomical forcing throughout geologic time. References De Vleeschouwer, D., Vahlenkamp, M., Crucifix, M., Pälike, H., 2017. Alternating Southern and Northern Hemisphere climate response to astronomical forcing during the past 35 m.y. Geology 45, 375-378.
NASA Astrophysics Data System (ADS)
Talento, Stefanie; Barreiro, Marcelo
2018-03-01
This study aims to determine the role of the tropical ocean dynamics in the response of the climate to extratropical thermal forcing. We analyse and compare the outcomes of coupling an atmospheric general circulation model (AGCM) with two ocean models of different complexity. In the first configuration the AGCM is coupled with a slab ocean model while in the second a reduced gravity ocean (RGO) model is additionally coupled in the tropical region. We find that the imposition of extratropical thermal forcing (warming in the Northern Hemisphere and cooling in the Southern Hemisphere with zero global mean) produces, in terms of annual means, a weaker response when the RGO is coupled, thus indicating that the tropical ocean dynamics oppose the incoming remote signal. On the other hand, while the slab ocean coupling does not produce significant changes to the equatorial Pacific sea surface temperature (SST) seasonal cycle, the RGO configuration generates strong warming in the central-eastern basin from April to August balanced by cooling during the rest of the year, strengthening the seasonal cycle in the eastern portion of the basin. We hypothesize that such changes are possible via the dynamical effect that zonal wind stress has on the thermocline depth. We also find that the imposed extratropical pattern affects El Niño-Southern Oscillation, weakening its amplitude and low-frequency behaviour.
Impact of external forcing on simulated hydroclimate from interannual to multicentennial timescales
NASA Astrophysics Data System (ADS)
Roldán, Pedro; Fidel González-Rouco, Jesús; Melo-Aguilar, Camilo
2017-04-01
During the last millennium, external forcing experienced important changes in different timescales. It has been demostrated that these changes had an impact on climate. In particular, changes in solar activity, volcanic eruptions and emissions of greenhouse gases are related to short-term and long-term changes in global temperatures, with situations of higher total external forcing generally related with higher global and hemispherical temperatures, and conversely with situations of lower forcing. This connection is clearly observed in climate simulations from different models and in proxy-based reconstructions. The changes in external forcing can also explain certain changes in atmospheric dynamics and hydroclimate, although in this case it is in general more difficult to trace causality arguments. Analyses based on simulations from two different models (ECHO-G and CESM-LME) have been performed, to assess the impact of external forcing on climate in timescales ranging from interannual to multicentennial. Various climatic variables have been analysed, including temperature, sea level pressure, surface wind, precipitation and soil moisture. For interannual timescales, composites have been defined with the years before and after the main volcanic eruptions of the last millennium as well as the minima of solar activity during this period. For longer timescales, a Principal Component analysis has been performed, to try to separate the signal of external forcing from that of internal variability. This has been done for the whole millennium and for the pre-industrial period, to assess the difference between natural and anthropogenic forcing. For multicentennial timescales, composites for the Medieval Climate Anomaly (MCA; ca. 950-1250), the Little Ice Age (LIA; ca. 1450-1850) and the 20th Century have been compared. These three periods were respectively characterised by higher, lower and higher forcing. This allows to assess the contribution of external forcing to the evolution of climate over longer time intervals. These analyses have shown that external forcing is an important factor in the evolution of the simulated hydroclimate of the last millennium. In the short-term, it has been observed that volcanic eruptions and other situations of extreme forcing significantly alter the global precipitation in the subsequent years. In the long-term, variations of external forcing can be related to changes in atmospheric dynamics and in hydroclimate. However, this impact is not homogeneously distributed. There are areas where hydroclimate is mainly influenced by the external forcing and other areas more influenced by internal variability, with spatial decorrelation being higher in precipitation or drought related variables than in temperature. The regional sensitivity to external forcing of hydroclimate is model and, to a lesser degree, simulation dependent.
Modulation of ENSO evolution by strong tropical volcanic eruptions
NASA Astrophysics Data System (ADS)
Wang, Tao; Guo, Dong; Gao, Yongqi; Wang, Huijun; Zheng, Fei; Zhu, Yali; Miao, Jiapeng; Hu, Yongyun
2017-11-01
The simulated responses of the El Niño-Southern Oscillation (ENSO) to volcanic forcings are controversial, and some mechanisms of these responses are not clear. We investigate the impacts of volcanic forcing on the ENSO using a long-term simulation covering 1400-1999 as simulated by the Bergen Climate Model (BCM) and a group of simulations performed with the Community Atmosphere Model version 4.0 (CAM4) and the BCM's ocean component Miami Isopycanic Coordinated Ocean Model (MICOM). The analysis of the long-term BCM simulation indicates that ENSO has a negative-positive-negative response to strong tropical volcanic eruptions (SVEs), which corresponds to the different stages of volcanic forcing. In the initial forcing stage, a brief and weak La Niña-like response is caused by the cooling along the west coast of the South American continent and associated enhancement of the trade winds. In the peak forcing stage, westerly wind anomalies are excited by both reduced east-west sea level pressure gradients and weakened and equatorward shifted tropical convergence zones. These westerly wind anomalies extend to the equatorial eastern Pacific, leading to an El Niño-like response. At the same time, easterly wind anomalies west of 120°E and strong cooling effects can promote a discharged thermocline state and excite an upwelling Kelvin wave in the western Pacific. In the declining forcing stage, forced by the recovered trade winds, the upwelling Kelvin wave propagates eastward and reaches the equatorial eastern Pacific. Through the Bjerknes feedback, a strong and temporally extended La Niña-like response forms. Additional CAM4 simulations suggest a more important role of the surface cooling over the Maritime Continent and surrounding ocean in shaping the westerly wind anomalies over the equatorial central-eastern Pacific and the easterly wind anomalies west of 120° E, which are key to causing the El Niño-like responses and subsequent La Niña-like responses, respectively. The MICOM sensitivity simulations confirm that SVE-induced tropical atmospheric circulation anomalies play a dominant role in regulating post-eruption ENSO evolution in the observation, while the influences of anomalous buoyance forcing (heat and freshwater fluxes) are secondary. Therefore, SVEs play an important role in modulating the ENSO evolution. Compared with proxy data, the simulated El Niño-like responses and subsequent La Niña-like responses are consistent with the reconstructed ENSO responses to SVEs. However, the simulated initial brief La Niña-like response, which is reproduced by most models, is seen in only one proxy dataset and is absent in most of the reconstructed ENSOs and those observed. The reason for this model-data mismatch will require further investigation.
Mertz, Laura; Docherty, Carrie
2012-12-01
Ballet technique classes are designed to train dancers symmetrically, but they may actually create a lateral bias. It is unknown whether dancers in general are functionally asymmetrical, or how an individual dancer's perceived imbalance between legs might manifest itself. The purpose of this study was to examine ballet dancers' lateral preference by analyzing their postural stability and ground reaction forces in fifth position when landing from dance-specific jumps. Thirty university ballet majors volunteered to participate in this study. The subjects wore their own ballet technique shoes and performed fundamental ballet jumps out of fifth position on a force plate. The force plate recorded center of pressure (COP) and ground reaction force (GRF) data. Each subject completed a laterality questionnaire that determined his or her preferred landing leg for ballet jumps, self-identified stronger leg, and self-identified leg with better balance. All statistical comparisons were made between the leg indicated on the laterality questionnaire and the other leg (i.e., if the dancer's response to a question was "left," the comparison was made with the left leg as the "preferred" leg and the right leg as the "non-preferred leg"). No significant differences were identified between the limbs in any of the analyses conducted (all statistical comparisons produced p values > 0.05). The results of this study indicate that a dancer's preferential use of one limb over the other has no bearing on GRFs or balance ability after landing jumps in ballet. Similarly, dancers' opinions of their leg characteristics (such as one leg being stronger than the other) seem not to correlate with the dancers' actual ability to absorb GRFs or to balance when landing from ballet jumps.
Reduced G tolerance associated with supplement use.
Barker, Patrick D
2011-02-01
High G forces encountered in tactical military aviation and aerobatic flight produce a host of physiologic responses aimed at preserving cerebral perfusion. The military has instituted measures to augment the physiologic response in order to avoid G-induced loss of consciousness (G-LOC) because of its potential to cause a catastrophic mishap. The case presented here details a Naval Aviator who experienced reduced G tolerance over two successive flights with a temporal relationship of starting a new supplement. Two components of the supplement, coenzyme Q10 and niacin, are highlighted here for their hemodynamic effects. After stopping the supplement the aviator regained his normal G tolerance and had no further issues in flight. There are several factors that can reduce G tolerance and supplement use has to be considered here because of the potential for altering the normal physiological response to increased G force. Our discussion reviews the physiological effects of increased G force, the spectrum of signs of decompensation under the stress of G force, and the potential effects this supplement had on the normal physiological response to increased G force, thus reducing the aviator's G tolerance.
NASA Astrophysics Data System (ADS)
Toohey, Matthew; Stevens, Bjorn; Schmidt, Hauke; Timmreck, Claudia
2016-04-01
Radiative forcing by stratospheric sulfate aerosol of volcanic origin is one of the strongest drivers of natural climate variability. Transient model simulations attempting to match observed climate variability, such as the CMIP historical simulations, rely on volcanic forcing reconstructions based on observations of a small sample of recent eruptions and coarse proxy data for eruptions before the satellite era. Volcanic forcing data sets used in CMIP5 were provided either in terms of optical properties, or in terms of sulfate aerosol mass, leading to significant inter-model spread in the actual volcanic radiative forcing produced by models and in their resulting climate responses. It remains therefore unclear to what degree inter-model spread in response to volcanic forcing represents model differences or variations in the forcing. In order to isolate model differences, Easy Volcanic Aerosol (EVA) provides an analytic representation of volcanic stratospheric aerosol forcing, based on available observations and aerosol model results, prescribing the aerosol's radiative properties and primary modes of spatial and temporal variability. In contrast to regriddings of observational data, EVA allows for the production of physically consistent forcing for historic and hypothetical eruptions of varying magnitude, source latitude, and season. Within CMIP6, EVA will be used to reconstruct volcanic forcing over the past 2000 years for use in the Paleo-Modeling Intercomparison Project (PMIP), and will provide forcing sets for VolMIP experiments aiming to quantify model uncertainty in the response to volcanic forcing. Here, the functional form of EVA will be introduced, along with illustrative examples including the EVA-based reconstruction of volcanic forcing over the historical period, and that of the 1815 Tambora eruption.
Contact force history and dynamic response due to the impact of a soft projectile
NASA Technical Reports Server (NTRS)
Grady, J. E.
1988-01-01
A series of ballistic impact tests on several different instrumented targets was performed to characterize the dynamic contact force history resulting from the impact of a compliant projectile. The results show that the variation of contact force history with impact velocity does not follow the trends predicted by classical impact models. An empirical model was therefore developed to describe this behavior. This model was then used in a finite-element analysis to estimate the force history and calculate the resulting dynamic strain response in a transversely impacted composite laminate.
Monsoonal Responses to External Forcings over the Past Millennium: A Model Study (Invited)
NASA Astrophysics Data System (ADS)
Liu, J.; Wang, B.
2009-12-01
The climate variations related to Global Monsoon (GM) and East Asian summer monsoon (EASM) rainfall over the past 1000 years were investigated by analysis of a pair of millennium simulations with the coupled climate model named ECHO-G. The free run was generated using fixed external (annual cycle) forcing, while the forced run was obtained using time-varying solar irradiance variability, greenhouse gases (CO2 and CH4) concentration and estimated radiative effect of volcanic aerosols. The model results indicate that the centennial-millennial variation of the GM and EASM is essentially a forced response to the external radiative forcings (insolation, volcanic aerosols, and greenhouse gases). The GM strength responds more directly to the effective solar forcing (insolation plus radiative effect of the volcanoes) when compared to responses of the global mean surface temperature on centennial timescale. The simulated GM precipitation in the forced run exhibits a significant quasi-bi-centennial oscillation. Weak GM precipitation was simulated during the Little Ice Age (1450-1850) with three weakest periods concurring with the Spörer, Maunder, and Dalton Minimum of solar activity. Conversely, strong GM was simulated during the model Medieval Warm Period (ca. 1030-1240). Before the industrial period, the natural variation in effective solar forcing reinforces the thermal contrasts both between the ocean and continent and between the northern and southern hemispheres, resulting in millennium-scale variation and the quasi-bi-centennial oscillation of the GM. The prominent upward trend in the GM precipitation occurring in the last century and the remarkably strengthening of the global monsoon in the period of 1961-1990 appear unprecedented and owed possibly in part to the increase of atmospheric carbon dioxide concentration. The EASM has the largest meridional extent (5oN-55oN) among all the regional monsoons on globe. Thus, the EASM provides an unique opportunity for understanding the latitudinal differences of the monsoonal responses to external forcings and internal feedback processes. The strength of the forced response depends on latitude. On centennial-millennial time scales, the variation of the extratropical and subtropical rainfall tends to follow the effective solar radiation forcing closely; the tropical rainfall is less sensitive to the effective solar radiation forcing but responds significantly to the modern anthropogenic CO2 forcing. The spatial patterns and structures of the forced response differ from the internal mode (i.e., interannual variability that arises primarily from the internal feedback processes within the climate system). Further, the behavior of the internal mode is effectively modulated by changes in the mean state on the centennial to millennial time scales. These findings have important ramification in understanding the differences and linkages between the forced and internal modes of variability as well as in promoting communication between scientists studying modern- and paleo-monsoon variations.
NASA Astrophysics Data System (ADS)
Williams, Kevin Vaughan
Rapid growth in use of composite materials in structural applications drives the need for a more detailed understanding of damage tolerant and damage resistant design. Current analytical techniques provide sufficient understanding and predictive capabilities for application in preliminary design, but current numerical models applicable to composites are few and far between and their development into well tested, rigorous material models is currently one of the most challenging fields in composite materials. The present work focuses on the development, implementation, and verification of a plane-stress continuum damage mechanics based model for composite materials. A physical treatment of damage growth based on the extensive body of experimental literature on the subject is combined with the mathematical rigour of a continuum damage mechanics description to form the foundation of the model. The model has been implemented in the LS-DYNA3D commercial finite element hydrocode and the results of the application of the model are shown to be physically meaningful and accurate. Furthermore it is demonstrated that the material characterization parameters can be extracted from the results of standard test methodologies for which a large body of published data already exists for many materials. Two case studies are undertaken to verify the model by comparison with measured experimental data. The first series of analyses demonstrate the ability of the model to predict the extent and growth of damage in T800/3900-2 carbon fibre reinforced polymer (CFRP) plates subjected to normal impacts over a range of impact energy levels. The predicted force-time and force-displacement response of the panels compare well with experimental measurements. The damage growth and stiffness reduction properties of the T800/3900-2 CFRP are derived using published data from a variety of sources without the need for parametric studies. To further demonstrate the physical nature of the model, a IM6/937 CFRP with a more brittle matrix system than 3900-2 is also analysed. Results of analyses performed under the same impact conditions do not compare as well quantitatively with measurements but the results are still promising and qualitative differences between the T800/3900-2 and IM6/937 are accurately captured. Finally, to further demonstrate the capability of the model, the response of a notched CFRP plate under quasi-static tensile loading is simulated and compared to experimental measurements. Of particular significance is the fact that the experimental test modelled in this case is uniquely suited to the characterization of the strain softening phenomenon observed in FRP laminates. Results of this virtual experiment compare very favourably with the measured damage growth and force-displacement curves.
Engineering analyses for railroad tank car head puncture resistance
DOT National Transportation Integrated Search
2006-11-06
This paper describes engineering analyses to estimate the : forces, deformations, and puncture resistance of railroad tank : cars. Different approaches to examine puncture of the tank car : head are described. One approach is semi-empirical equations...
Wysocki, Tim; Brosig, Cheryl L.; Hilliard, Marisa E.
2016-01-01
There are few detailed workforce studies of specialty fields within professional psychology, and none have been reported for pediatric psychology since 2006. Availability of such data could facilitate more-informed decision making by students and trainees, psychologists pursuing employment opportunities, and psychologists involved in employment or compensation negotiations. This article describes the work of a task force of the American Psychological Association (APA) Division 54 (Society of Pediatric Psychology) in the design, construction, pretesting, distribution, and data management for the Society of Pediatric Psychology (SPP) Workforce Survey. The 18-member task force was established to design and implement a workforce survey that balanced needs for breadth, clarity, brevity, and protection of confidentiality. The survey solicits information about demographic characteristics; training, licensure and certifications; employment settings, responsibilities, and productivity metrics; compensation; and employment satisfaction. A survey link was distributed via e-mail to full members of the SPP in June 2015. A total of 404 members (32.3% return rate) completed the survey. This article focuses on the development, methodology, and respondent characteristics for this 1st administration of the workforce survey. Separate articles will report detailed analyses of the survey results such as compensation and work satisfaction. Future distributions of the survey will enable compilation of a longitudinal database to track changes in the profession. SPP members and others may propose additional analyses of these data. This work may provide guidance to other groups of specialized psychologists who may wish to implement similar initiatives. PMID:28066693
Stress Response of Granular Systems
NASA Astrophysics Data System (ADS)
Ramola, Kabir; Chakraborty, Bulbul
2017-10-01
We develop a framework for stress response in two dimensional granular media, with and without friction, that respects vector force balance at the microscopic level. We introduce local gauge degrees of freedom that determine the response of contact forces between constituent grains on a given, disordered, contact network, to external perturbations. By mapping this response to the spectral properties of the graph Laplacian corresponding to the underlying contact network, we show that this naturally leads to spatial localization of forces. We present numerical evidence for localization using exact diagonalization studies of network Laplacians of soft disk packings. Finally, we discuss the role of other constraints, such as torque balance, in determining the stability of a granular packing to external perturbations.
Knee joint forces: prediction, measurement, and significance
D’Lima, Darryl D.; Fregly, Benjamin J.; Patil, Shantanu; Steklov, Nikolai; Colwell, Clifford W.
2011-01-01
Knee forces are highly significant in osteoarthritis and in the survival and function of knee arthroplasty. A large number of studies have attempted to estimate forces around the knee during various activities. Several approaches have been used to relate knee kinematics and external forces to internal joint contact forces, the most popular being inverse dynamics, forward dynamics, and static body analyses. Knee forces have also been measured in vivo after knee arthroplasty, which serves as valuable validation of computational predictions. This review summarizes the results of published studies that measured knee forces for various activities. The efficacy of various methods to alter knee force distribution, such as gait modification, orthotics, walking aids, and custom treadmills are analyzed. Current gaps in our knowledge are identified and directions for future research in this area are outlined. PMID:22468461
The Relationship Between Sports Participation and Managerial Behavior: An Exploratory Study
1986-09-01
Response ...... .......................... 44 Analysis ........................................ 45 T-Test Decision Criteria ................. 45...magnitude and the limited availability of Air Force resources managed by its officer corp. Air Force officers are charged with the responsibility and S...successful organization, the SPO requires careful definition of authority and responsibility as well as strenuous efforts toward coordination, teamwork and
INF (Intermediate Range Nuclear Forces) Treaty and flexible response. Research report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, J.W.
1988-03-01
This paper examines how the Intermediate Range Nuclear Forces (INF) Treaty affects NATO's military strategy of flexible response. A discussion of flexible response strategy is provided as background for the reader. Then, relevant terms of the INF treaty are addressed followed by an assessment of the treaty's impact on the military strategy of the alliance.
Bufton, Marcia J; Marklin, Richard W; Nagurka, Mark L; Simoneau, Guy G
2006-08-15
This study aimed to compare and analyse rubber-dome desktop, spring-column desktop and notebook keyboards in terms of key stiffness and fingertip typing force. The spring-column keyboard resulted in the highest mean peak contact force (0.86N), followed by the rubber dome desktop (0.68N) and the notebook (0.59N). All these differences were statistically significant. Likewise, the spring-column keyboard registered the highest fingertip typing force and the notebook keyboard the lowest. A comparison of forces showed the notebook (rubber dome) keyboard had the highest fingertip-to-peak contact force ratio (overstrike force), and the spring-column generated the least excess force (as a ratio of peak contact force). The results of this study could aid in optimizing computer key design that could possibly reduce subject discomfort and fatigue.
Single cell active force generation under dynamic loading - Part I: AFM experiments.
Weafer, P P; Reynolds, N H; Jarvis, S P; McGarry, J P
2015-11-01
A novel series of experiments are performed on single cells using a bespoke AFM system where the response of cells to dynamic loading at physiologically relevant frequencies is uncovered. Measured forces for the untreated cells are dramatically different to cytochalasin-D (cyto-D) treated cells, indicating that the contractile actin cytoskeleton plays a critical role in the response of cells to dynamic loading. Following a change in applied strain magnitude, while maintaining a constant applied strain rate, the compression force for contractile cells recovers to 88.9±7.8% of the steady state force. In contrast, cyto-D cell compression forces recover to only 38.0±6.7% of the steady state force. Additionally, untreated cells exhibit strongly negative (pulling) forces during unloading half-cycles when the probe is retracted. In comparison, negligible pulling forces are measured for cyto-D cells during probe retraction. The current study demonstrates that active contractile forces, generated by actin-myosin cross-bridge cycling, dominate the response of single cells to dynamic loading. Such active force generation is shown to be independent of applied strain magnitude. Passive forces generated by the applied deformation are shown to be of secondary importance, exhibiting a high dependence on applied strain magnitude, in contrast to the active forces in untreated cells. A novel series of experiments are performed on single cells using a bespoke AFM system where the response of cells to dynamic loading at physiologically relevant frequencies is uncovered. Contractile cells, which contain the active force generation machinery of the actin cytoskeleton, are shown to be insensitive to applied strain magnitude, exhibiting high resistance to dynamic compression and stretching. Such trends are not observed for cells in which the actin cytoskeleton has been chemically disrupted. These biomechanical insights have not been previously reported. This detailed characterisation of single cell active and passive stress during dynamic loading has important implications for tissue engineering strategies, where applied deformation has been reported to significantly affect cell mechanotransduction and matrix synthesis. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
The 2014/15 Warm Anomaly in the Southern California Current - Physical and Biological Responses
NASA Astrophysics Data System (ADS)
Ralf, G.
2016-02-01
The 2014/15 Warm Anomaly (WarmA) off Southern California manifested itself in the summer of 2014 as an anomalously warm surface layer in the Southern Calif. Bight with low concentrations of Chl a. This layer intensified in spatial extent, covering the entire CalCOFI surface area by the winter of 2015 with temperature anomalies 3 StDev larger than long-term averages. Concentrations of nutrients, phytoplankton biomass and rates of primary production were extremely low during the WarmA. The evolution of the WarmA as well as the 2015/16 El Niño with time will be compared to the evolution of the weak and strong El Niño's observed over the last 60 years. These events provide unique insights in the controls of phytoplankton biomass and production in the southern California Current System. Preliminary analyses suggest that the response of the phytoplankton community to the WarmA was consistent with responses to similar forcing during the prior decade. This presentation is based on data collected during the quarterly CalCOFI cruises by the CalCOFI and the CCE-LTER groups.
Zhang, Lulu; Liu, Xu; Li, Youping; Liu, Yuan; Liu, Zhipeng; Lin, Juncong; Shen, Ji; Tang, Xuefeng; Zhang, Yi; Liang, Wannian
2012-03-03
Major earthquakes often result in incalculable environmental damage, loss of life, and threats to health. Tremendous progress has been made in response to many medical challenges resulting from earthquakes. However, emergency medical rescue is complicated, and great emphasis should be placed on its organisation to achieve the best results. The 2008 Wenchuan earthquake was one of the most devastating disasters in the past 10 years and caused more than 370,000 casualties. The lessons learnt from the medical disaster relief effort and the subsequent knowledge gained about the regulation and capabilities of medical and military back-up teams should be widely disseminated. In this Review we summarise and analyse the emergency medical rescue efforts after the Wenchuan earthquake. Establishment of a national disaster medical response system, an active and effective commanding system, successful coordination between rescue forces and government agencies, effective treatment, a moderate, timely and correct public health response, and long-term psychological support are all crucial to reduce mortality and morbidity and promote overall effectiveness of rescue efforts after a major earthquake. Copyright © 2012 Elsevier Ltd. All rights reserved.
Cost and risk assessment for spacecraft operation decisions caused by the space debris environment
NASA Astrophysics Data System (ADS)
Schaub, Hanspeter; Jasper, Lee E. Z.; Anderson, Paul V.; McKnight, Darren S.
2015-08-01
Space debris is a topic of concern among many in the space community. Most forecasting analyses look centuries into the future to attempt to predict how severe debris densities and fluxes will become in orbit regimes of interest. Conversely, space operators currently do not treat space debris as a major mission hazard. This survey paper outlines the range of cost and risk evaluations a space operator must consider when determining a debris-related response. Beyond the typical direct costs of performing an avoidance maneuver, the total cost including indirect costs, political costs and space environmental costs are discussed. The weights on these costs can vary drastically across mission types and orbit regimes flown. The operator response options during a mission are grouped into four categories: no action, perform debris dodging, follow stricter mitigation, and employ ADR. Current space operations are only considering the no action and debris dodging options, but increasing debris risk will eventually force the stricter mitigation and ADR options. Debris response equilibria where debris-related risks and costs settle on a steady-state solution are hypothesized.
A Scaling Model for the Anthropocene Climate Variability with Projections to 2100
NASA Astrophysics Data System (ADS)
Hébert, Raphael; Lovejoy, Shaun
2017-04-01
The determination of the climate sensitivity to radiative forcing is a fundamental climate science problem with important policy implications. We use a scaling model, with a limited set of parameters, which can directly calculate the forced globally-average surface air temperature response to anthropogenic and natural forcings. At timescales larger than an inner scale τ, which we determine as the ocean-atmosphere coupling scale at around 2 years, the global system responds, approximately, linearly, so that the variability may be decomposed into additive forced and internal components. The Ruelle response theory extends the classical linear response theory for small perturbations to systems far from equilibrium. Our model thus relates radiative forcings to a forced temperature response by convolution with a suitable Green's function, or climate response function. Motivated by scaling symmetries which allow for long range dependence, we assume a general scaling form, a scaling climate response function (SCRF) which is able to produce a wide range of responses: a power-law truncated at τ. This allows us to analytically calculate the climate sensitivity at different time scales, yielding a one-to-one relation from the transient climate response to the equilibrium climate sensitivity which are estimated, respectively, as 1.6+0.3-0.2K and 2.4+1.3-0.6K at the 90 % confidence level. The model parameters are estimated within a Bayesian framework, with a fractional Gaussian noise error model as the internal variability, from forcing series, instrumental surface temperature datasets and CMIP5 GCMs Representative Concentration Pathways (RCP) scenario runs. This observation based model is robust and projections for the coming century are made following the RCP scenario 2.6, 4.5 and 8.5, yielding in the year 2100, respectively : 1.5 +0.3)_{-0.2K, 2.3 ± 0.4 K and 4.0 ± 0.6 K at the 90 % confidence level. For comparison, the associated projections from a CMIP5 multi-model ensemble(MME) (32 models) are: 1.7 ± 0.8 K, 2.6 ± 0.8 K and 4.8 ± 1.3 K. Therefore, our projection uncertainty is less than half the structural uncertainty of this CMIP5 MME.
ERIC Educational Resources Information Center
California State Dept. of Education, Sacramento.
This document contains the final report of a California Task Force created to promote self-esteem and personal responsibility. It begins with an executive summary listing key principles of the task force and providing recommendations and discussions in each of six major areas upon which the report focuses. The next section presents the task…
Aerosol contribution to the rapid warming of near-term climate under RCP 2.6
NASA Astrophysics Data System (ADS)
Chalmers, N.; Highwood, E. J.; Hawkins, E.; Sutton, R.; Wilcox, L. J.
2012-09-01
The importance of aerosol emissions for near term climate projections is investigated by analysing simulations with the HadGEM2-ES model under two different emissions scenarios: RCP2.6 and RCP4.5. It is shown that the near term warming projected under RCP2.6 is greater than under RCP4.5, even though the greenhouse gas forcing is lower. Rapid and substantial reductions in sulphate aerosol emissions due to a reduction of coal burning in RCP2.6 lead to a reduction in the negative shortwave forcing due to aerosol direct and indirect effects. Indirect effects play an important role over the northern hemisphere oceans, especially the subtropical northeastern Pacific where an anomaly of 5-10 Wm-2 develops. The pattern of surface temperature change is consistent with the expected response to this surface radiation anomaly, whilst also exhibiting features that reflect redistribution of energy, and feedbacks, within the climate system. These results demonstrate the importance of aerosol emissions as a key source of uncertainty in near term projections of global and regional climate.
Evaluation of sonic IR for NDE at Lawrence Livermore National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, W O
2001-02-01
Sonic IR was evaluated as an NDE technique at LLNL using a commercial ThermoSoniX system from Indigo Systems Corp. The main effort was to detect small cracks in aluminum oxide, a dense stiff ceramic. Test coupons were made containing 0.2-mm cracks by surface grinding, 1-mm cracks by compression with a Vickers bit, and 4-mm cracks by 3-point bending. Only the 3-point bend cracks produced thermal images. Several parts shattered during testing, perhaps by being forced at resonance by the 20-kHz acoustic probe. Tests on damaged carbon composite coupons produced thermal images that were in excellent agreement with ultrasonic inspection. Themore » composite results also showed some dependence on contact location of the acoustic probe, and on the method of support. Tests on glass with surface damage produced weak images at the pits. Tests on metal ballistic targets produced thermal images at the impact sites. Modal analyses suggest that the input frequency should be matched to the desired response, and also that forced resonance damaged some parts.« less
Analyses of balance and flexibility of obese patients undergoing bariatric surgery
Benetti, Fernanda Antico; Bacha, Ivan Leo; Junior, Arthur Belarmino Garrido; Greve, Júlia Maria D'Andréa
2016-01-01
OBJECTIVE: To assess the postural control and flexibility of obese subjects before and both six and 12 months after bariatric surgery. To verify whether postural control is related to flexibility following weight reductions resulting from bariatric surgery. METHODS: The sample consisted of 16 subjects who had undergone bariatric surgery. All assessments were performed before and six and 12 months after bariatric surgery. Postural balance was assessed using an Accusuway® portable force platform, and flexibility was assessed using a standard chair sit and reach test (Wells' chair). RESULTS: With the force platform, no differences were observed in the displacement area or velocity from the center of pressure in the mediolateral and anteroposterior directions. The displacement speed from the center of pressure was decreased at the six month after the surgery; however, unchanged from baseline at 12 months post-surgery. Flexibility increased over time according to the three measurements tested. CONCLUSIONS: Static postural balance did not change. The velocity of postural adjustment responses were increased at six months after surgery. Therefore, weight loss promotes increased flexibility. Yet, improvements in flexibility are not related to improvements in balance. PMID:26934236
NASA Astrophysics Data System (ADS)
Kiani, Keivan
2014-06-01
Novel nonlocal discrete and continuous models are proposed for dynamic analysis of two- and three-dimensional ensembles of single-walled carbon nanotubes (SWCNTs). The generated extra van der Waals forces between adjacent SWCNTs due to their lateral motions are evaluated via Lennard-Jones potential function. Using a nonlocal Rayleigh beam model, the discrete and continuous models are developed for both two- and three-dimensional ensembles of SWCNTs acted upon by transverse dynamic loads. The capabilities of the proposed continuous models in capturing the vibration behavior of SWCNTs ensembles are then examined through various numerical simulations. A reasonably good agreement between the results of the continuous models and those of the discrete ones is also reported. The effects of the applied load frequency, intertube spaces, and small-scale parameter on the transverse dynamic responses of both two- and three-dimensional ensembles of SWCNTs are explained. The proposed continuous models would be very useful for dynamic analyses of large populated ensembles of SWCNTs whose discrete models suffer from both computational efforts and labor costs.
Reed, Laura K; LaFlamme, Brooke A; Markow, Therese A
2008-08-27
The genetic basis of postzygotic isolation is a central puzzle in evolutionary biology. Evolutionary forces causing hybrid sterility or inviability act on the responsible genes while they still are polymorphic, thus we have to study these traits as they arise, before isolation is complete. Isofemale strains of D. mojavensis vary significantly in their production of sterile F(1) sons when females are crossed to D. arizonae males. We took advantage of the intraspecific polymorphism, in a novel design, to perform quantitative trait locus (QTL) mapping analyses directly on F(1) hybrid male sterility itself. We found that the genetic architecture of the polymorphism for hybrid male sterility (HMS) in the F(1) is complex, involving multiple QTL, epistasis, and cytoplasmic effects. The role of extensive intraspecific polymorphism, multiple QTL, and epistatic interactions in HMS in this young species pair shows that HMS is arising as a complex trait in this system. Directional selection alone would be unlikely to maintain polymorphism at multiple loci, thus we hypothesize that directional selection is unlikely to be the only evolutionary force influencing postzygotic isolation.
Nanopatterning on calixarene thin films via low-energy field-emission scanning probe lithography.
He, Xiaoyue; Li, Peng; Liu, Pengchong; Zhang, Xiaoxian; Zhou, Xiangqian; Liu, Wei; Qiu, Xiaohui
2018-08-10
Field-emitted, low-energy electrons from the conducting tip of an atomic force microscope were adopted for nanolithography on calixarene ultrathin films coated on silicon wafers. A structural evolution from protrusion to depression down to a 30 nm spatial resolution was reproducibly obtained by tuning the sample voltage and exposure current in the lithography process. Close analyses of the profiles showed that the nanostructures formed by a single exposure with a high current are almost identical to those created by cumulative exposure with a lower current but an equal number of injected electrons. Surface potential imaging by Kelvin probe force microscopy found a negatively charged region surrounding the groove structures once the structures were formed. We conclude that the mechanism related to the formation of a temporary negative state and molecule decomposition, rather than thermal ablation, is responsible for the low-energy field-emission electron lithography on a calixarene molecular resist. We hope that our elucidation of the underlying mechanism is helpful for molecular resist design and further improving the reproducibility and throughput of nanolithography.
Analysis of dynamic cantilever behavior in tapping mode atomic force microscopy.
Deng, Wenqi; Zhang, Guang-Ming; Murphy, Mark F; Lilley, Francis; Harvey, David M; Burton, David R
2015-10-01
Tapping mode atomic force microscopy (AFM) provides phase images in addition to height and amplitude images. Although the behavior of tapping mode AFM has been investigated using mathematical modeling, comprehensive understanding of the behavior of tapping mode AFM still poses a significant challenge to the AFM community, involving issues such as the correct interpretation of the phase images. In this paper, the cantilever's dynamic behavior in tapping mode AFM is studied through a three dimensional finite element method. The cantilever's dynamic displacement responses are firstly obtained via simulation under different tip-sample separations, and for different tip-sample interaction forces, such as elastic force, adhesion force, viscosity force, and the van der Waals force, which correspond to the cantilever's action upon various different representative computer-generated test samples. Simulated results show that the dynamic cantilever displacement response can be divided into three zones: a free vibration zone, a transition zone, and a contact vibration zone. Phase trajectory, phase shift, transition time, pseudo stable amplitude, and frequency changes are then analyzed from the dynamic displacement responses that are obtained. Finally, experiments are carried out on a real AFM system to support the findings of the simulations. © 2015 Wiley Periodicals, Inc.
Maintenance Training Simulators Design and Acquisition: Summary of Current Procedures.
1979-11-01
of maintenance training and training equipment for new systems . This organization has a core of highly experienced ISD team personnel and has evolved...S LABORATORY AIR FORCE SYSTEMS COMMAND BROOKS AIR FORCE BAbE,TEXAS 78235 ." .~ 8. . NOTI(’F When U.S. Government drawings. specifications. ot otlher...Force personirel in performning 4 Instrutinal Systems Devlopmrent (ISO) analyses to define maintenance training equipment requirements. and byv
2017-05-25
operate independently without external nation support; (3) a custom approach is necessary in security forces development based on political requirements...independently without external nation support; (3) a custom approach is necessary in security forces development based on political requirements...interventions both successful and unsuccessful, that an external country must craft a custom approach to develop local security forces based on the
Unsteady computational fluid dynamics in front crawl swimming.
Samson, Mathias; Bernard, Anthony; Monnet, Tony; Lacouture, Patrick; David, Laurent
2017-05-01
The development of codes and power calculations currently allows the simulation of increasingly complex flows, especially in the turbulent regime. Swimming research should benefit from these technological advances to try to better understand the dynamic mechanisms involved in swimming. An unsteady Computational Fluid Dynamics (CFD) study is conducted in crawl, in order to analyse the propulsive forces generated by the hand and forearm. The k-ω SST turbulence model and an overset grid method have been used. The main objectives are to analyse the evolution of the hand-forearm propulsive forces and to explain this relative to the arm kinematics parameters. In order to validate our simulation model, the calculated forces and pressures were compared with several other experimental and numerical studies. A good agreement is found between our results and those of other studies. The hand is the segment that generates the most propulsive forces during the aquatic stroke. As the pressure component is the main source of force, the orientation of the hand-forearm in the absolute coordinate system is an important kinematic parameter in the swimming performance. The propulsive forces are biggest when the angles of attack are high. CFD appears as a very valuable tool to better analyze the mechanisms of swimming performance and offers some promising developments, especially for optimizing the performance from a parametric study.
Kutzner, I; Bender, A; Dymke, J; Duda, G; von Roth, P; Bergmann, G
2017-06-01
Tibiofemoral alignment is important to determine the rate of progression of osteoarthritis and implant survival after total knee arthroplasty (TKA). Normally, surgeons aim for neutral tibiofemoral alignment following TKA, but this has been questioned in recent years. The aim of this study was to evaluate whether varus or valgus alignment indeed leads to increased medial or lateral tibiofemoral forces during static and dynamic weight-bearing activities. Tibiofemoral contact forces and moments were measured in nine patients with instrumented knee implants. Medial force ratios were analysed during nine daily activities, including activities with single-limb support (e.g. walking) and double-limb support (e.g. knee bend). Hip-knee-ankle angles in the frontal plane were analysed using full-leg coronal radiographs. The medial force ratio strongly correlated with the tibiofemoral alignment in the static condition of one-legged stance (R² = 0.88) and dynamic single-limb loading (R² = 0.59) with varus malalignment leading to increased medial force ratios of up to 88%. In contrast, the correlation between leg alignment and magnitude of medial compartment force was much less pronounced. A lateral shift of force occurred during activities with double-limb support and higher knee flexion angles. The medial force ratio depends on both the tibiofemoral alignment and the nature of the activity involved. It cannot be generalised to a single value. Higher medial ratios during single-limb loading are associated with varus malalignment in TKA. The current trend towards a 'constitutional varus' after joint replacement, in terms of overall tibiofemoral alignment, should be considered carefully with respect to the increased medial force ratio. Cite this article: Bone Joint J 2017;99-B:779-87. ©2017 The British Editorial Society of Bone & Joint Surgery.
Morouço, Pedro G; Marinho, Daniel A; Keskinen, Kari L; Badillo, Juan J; Marques, Mário C
2014-11-01
The purpose of this study was two-fold: (a) to compare stroke and the physiological responses between maximal tethered and free front crawl swimming and (b) to evaluate the contribution of force exertion for swimming performance over short distances. A total of 34 male swimmers, representing various levels of competitive performance, participated in this study. Each participant was tested in both a 30-second maximal tethered swimming test and a 50-m free swimming test. The tethered force parameters, the swimming speed, stroke (stroke rate [SR]), and the physiological responses (increase in blood lactate concentration [ΔBLa], heart rate, and rate of perceived exertion) were recorded and calculated. The results showed no differences in stroke and the physiological responses between tethered and free swimming, with a high level of agreement for the SR and ΔBLa. A strong correlation was obtained between the maximum impulse of force per stroke and the speed (r = 0.91; p < 0.001). Multiple regression analysis revealed that the maximum impulse and SR in the tethered condition explained 84% of the free swimming performance. The relationship between the swimming speed and maximum force tended to be nonlinear, whereas linear relationships were observed with the maximum impulse. This study demonstrates that tethered swimming does not significantly alter stroke and the physiological responses compared with free swimming, and that the maximum impulse per stroke should be used to evaluate the balance between force and the ability to effectively apply force during sprint swimming. Consequently, coaches can rely on tethered forces to identify strength deficits and improve swimming performance over short distances.
A generalized modal shock spectra method for spacecraft loads analysis
NASA Technical Reports Server (NTRS)
Trubert, M.; Salama, M.
1979-01-01
Unlike the traditional shock spectra approach, the generalization presented in this paper permits elastic interaction between the spacecraft and launch vehicle in order to obtain accurate bounds on the spacecraft response and structural loads. In addition, the modal response from a previous launch vehicle transient analysis - with or without a dummy spacecraft - is exploited in order to define a modal impulse as a simple idealization of the actual forcing function. The idealized modal forcing function is then used to derive explicit expressions for an estimate of the bound on the spacecraft structural response and forces.
Detecting the gravitational sensitivity of Paramecium caudatum using magnetic forces
NASA Astrophysics Data System (ADS)
Guevorkian, Karine; Valles, James M., Jr.
2006-03-01
Under normal conditions, Paramecium cells regulate their swimming speed in response to the pN level mechanical force of gravity. This regulation, known as gravikinesis, is more pronounced when the external force is increased by methods such as centrifugation. Here we present a novel technique that simulates gravity fields using the interactions between strong inhomogeneous magnetic fields and cells. We are able to achieve variable gravities spanning from 10xg to -8xg; where g is earth's gravity. Our experiments show that the swimming speed regulation of Paramecium caudatum to magnetically simulated gravity is a true physiological response. In addition, they reveal a maximum propulsion force for paramecia. This advance establishes a general technique for applying continuously variable forces to cells or cell populations suitable for exploring their force transduction mechanisms.
Schwarz, Simon; Ravens, Ursula; Knaut, Michael
2016-01-01
Abstract Background and Purpose 5‐HT increases force and L‐type Ca2 + current (ICa,L) and causes arrhythmias through 5‐HT4 receptors in human atrium. In permanent atrial fibrillation (peAF), atrial force responses to 5‐HT are blunted, arrhythmias abolished but ICa,L responses only moderately attenuated. We investigated whether, in peAF, this could be due to an increased function of PDE3 and/or PDE4, using the inhibitors cilostamide (300 nM) and rolipram (1 μM) respectively. Experimental Approach Contractile force, arrhythmic contractions and ICa,L were assessed in right atrial trabeculae and myocytes, obtained from patients with sinus rhythm (SR), paroxysmal atrial fibrillation (pAF) and peAF. Key Results Maximum force responses to 5‐HT were reduced to 15% in peAF, but not in pAF. Cilostamide, but not rolipram, increased both the blunted force responses to 5‐HT in peAF and the inotropic potency of 5‐HT fourfold to sevenfold in trabeculae of patients with SR, pAF and peAF. Lusitropic responses to 5‐HT were not decreased in peAF. Responses of ICa,L to 5‐HT did not differ and were unaffected by cilostamide or rolipram in myocytes from patients with SR or peAF. Concurrent cilostamide and rolipram increased 5‐HT's propensity to elicit arrhythmias in trabeculae from patients with SR, but not with peAF. Conclusions and Implications PDE3, but not PDE4, reduced inotropic responses to 5‐HT in peAF, independently of lusitropy and ICa,L, but PDE3 activity was the same as that in patients with SR and pAF. Atrial remodelling in peAF abolished the facilitation of 5‐HT to induce arrhythmias by inhibition of PDE3 plus PDE4. PMID:27238373
Rethinking Faraday's Law for Teaching Motional Electromotive Force
ERIC Educational Resources Information Center
Zuza, Kristina; Guisasola, Jenaro; Michelini, Marisa; Santi, Lorenzo
2012-01-01
This study shows physicists' discussions on the meaning of Faraday's law where situations involving extended conductors or moving contact points are particularly troublesome. We raise questions to test students' difficulties in applying Faraday's law in motional electromotive force phenomena. We suggest the benefit of analysing these phenomena…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Fengfei; Zhou, Tianjun; Qian, Yun
2014-01-31
In this study, we examined the responses of East Asian Summer Monsoon (EASM) to natural (solar variability and volcanic aerosols) and anthropogenic (greenhouse gasses and aerosols) forcings simulated in the 17 latest Coupled Model Intercomparison Program phase 5 (CMIP5) models with 105 realizations. The observed weakening trend of low-level EASM circulation during 1958-2001 is partly reproduced under all-forcing runs. A comparison of separate forcing experiments reveals that the aerosol-forcing plays a primary role in driving the weakened low-level monsoon circulation. The preferential cooling over continental East Asia caused by aerosol affects the monsoon circulation through reducing the land-sea thermal contrastmore » and results in higher sea level pressure over northern China. In the upper-level, both natural-forcing and aerosol-forcing contribute to the observed southward shift of East Asian subtropical jet through changing the meridional temperature gradient.« less
The electromigration force in metallic bulk
NASA Astrophysics Data System (ADS)
Lodder, A.; Dekker, J. P.
1998-01-01
The voltage induced driving force on a migrating atom in a metallic system is discussed in the perspective of the Hellmann-Feynman force concept, local screening concepts and the linear-response approach. Since the force operator is well defined in quantum mechanics it appears to be only confusing to refer to the Hellmann-Feynman theorem in the context of electromigration. Local screening concepts are shown to be mainly of historical value. The physics involved is completely represented in ab initio local density treatments of dilute alloys and the implementation does not require additional precautions about screening, being typical for jellium treatments. The linear-response approach is shown to be a reliable guide in deciding about the two contributions to the driving force, the direct force and the wind force. Results are given for the wind valence for electromigration in a number of FCC and BCC metals, calculated using an ab initio KKR-Green's function description of a dilute alloy.
Design of helicopter rotor blades for optimum dynamic characteristics
NASA Technical Reports Server (NTRS)
Peters, D. A.; Ko, T.; Korn, A.; Rossow, M. P.
1984-01-01
The optimal design of helicopter rotor blades is addressed. The forced response of an initial (i.e., non-optimized) blade to those of a final (optimized) blade are compared. Response of starting design and optimal designs for varying forcing frequencies, blade response to harmonics of rotor speed, and derivation of mass and stiffness matrices or functions of natural frequencies are discussed.
Sarcomeric gene mutations in sudden infant death syndrome (SIDS).
Brion, Maria; Allegue, Catarina; Santori, Montserrat; Gil, Rocio; Blanco-Verea, Alejandro; Haas, Cordula; Bartsch, Christine; Poster, Simone; Madea, Burkhard; Campuzano, Oscar; Brugada, Ramon; Carracedo, Angel
2012-06-10
In developed countries, sudden infant death syndrome (SIDS) represents the most prevalent cause of death in children between 1 month and 1 year of age. SIDS is a diagnosis of exclusion, a negative autopsy which requires the absence of structural organ disease. Although investigators have confirmed that a significant percentage of SIDS cases are actually channelopathies, no data have been made available as to whether other sudden cardiac death-associated diseases, such as hypertrophic cardiomyopathy (HCM), could be responsible for some cases of SIDS. The presence of a genetic mutation in the sarcomeric protein usually affects the force of contraction of the myocyte, whose weakness is compensated with progressive hypertrophy and disarray. However, it is unclear whether in the most incipient forms, that is, first years of life, the lack of these phenotypes still confers a risk of arrhythmogenesis. The main goal of the present study is to wonder whether genetic defects in the sarcomeric proteins, previously associated with HCM, could be responsible for SIDS. We have analysed 286 SIDS cases for the most common genes implicated in HCM in adults. A total of 680 mutations localised in 16 genes were analysed by semi-automated matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDITOF-MS) using the Sequenom MassARRAY(®) System. Ten subjects with completely normal hearts showed mutated alleles at nine of the genetic variants analysed, and one additional novel mutation was detected by conventional sequencing. Therefore, a genetic mutation associated with HCM may cause sudden cardiac death in the absence of an identifiable phenotype. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Pfeffer, J.; Tregoning, P.; Purcell, A. P.
2017-12-01
Due to increased greenhouse gases emissions, the oceans are accumulating heat. In response to the ocean circulation and atmospheric forcing, the heat is irregularly redistributed within the oceans, causing sea level to rise at variable rates in space and time. These rates of steric expansion are extremely difficult to assess because of the sparsity of in-situ hydrographic observations available within the course of the 20th century. We compare here three methods to reconstruct the steric sea levels over the past 13, 25 and 58 years based on satellite geodesy, objective analyses and ocean reanalyses. The interannual to decadal variability of each dataset is explored with a model merging six climate indices representative of the natural variability of the ocean and climate system. Consistent regional patterns are identified for the Pacific Decadal Oscillation (PDO) and El Niño Southern Oscillation (ENSO) in all datasets at all timescales. Despite the short time coverage (13 years), the combination of satellite geodetic data (altimetry and GRACE) also reveals significant steric responses to the North Pacific Gyre Oscillation (NPGO), Indian Dipole (IOD) and Indian ocean basinwide (IOBM) mode. The richer information content in the ocean reanalyses allows us to recover the regional fingerprints of the PDO, ENSO, NPGO, IOD and IOBM, but also of the Atlantic Multidecadal Oscillation (AMO) acting over longer time scales (40 to 60 years). Therefore, ocean reanalyses, coupled with climate mode analyses, constitute innovative and promising tools to investigate the mechanisms triggering the variability of sea level rise over the past decades.
Is globalisation outpacing ethics and social responsibility in occupational health?
Voyi, Kuku
2006-01-01
The definition of globalisation is varied. However, one certainty is that in a globalised world the borders are porous in many aspects; people movement, goods exchange, knowledge sharing and redistribution of labour. The concept of globalisation, its impact on society, and its direction leads to a two-sided argument. Could this be the effect of globalisation on ethics and social responsibility, as it is perceived? This paper endeavours to further our understanding of the dynamic relationship of globalisation, ethics and social responsibility in occupational health. The multidisciplinary activity approach to occupational health was used. The globalisation, ethical and social responsibility relationship of the activities in occupational health was analysed using a schematic map of the direct and indirect influences. The analysis revealed areas that can be clustered to address the interaction between driving forces in occupational health ethics and social responsibility for a healthy workforce. Each cluster is discussed highlighting areas of concern. In the discussion proposals are made on how we can modify the way we think in order to avoid repeating mistakes. Suggestion is made of using an innovative method borrowed from other disciplines and adopted for use in occupational health. A partnership approach is proposed and explored on how it will be applied in situations of unequal balance of power.
Size Effects in Impact Damage of Composite Sandwich Panels
NASA Technical Reports Server (NTRS)
Dobyns, Alan; Jackson, Wade
2003-01-01
Panel size has a large effect on the impact response and resultant damage level of honeycomb sandwich panels. It has been observed during impact testing that panels of the same design but different panel sizes will show large differences in damage when impacted with the same impact energy. To study this effect, a test program was conducted with instrumented impact testing of three different sizes of sandwich panels to obtain data on panel response and residual damage. In concert with the test program. a closed form analysis method was developed that incorporates the effects of damage on the impact response. This analysis method will predict both the impact response and the residual damage of a simply-supported sandwich panel impacted at any position on the panel. The damage is incorporated by the use of an experimental load-indentation curve obtained for the face-sheet/honeycomb and indentor combination under study. This curve inherently includes the damage response and can be obtained quasi-statically from a rigidly-backed specimen or a specimen with any support conditions. Good correlation has been obtained between the test data and the analysis results for the maximum force and residual indentation. The predictions can be improved by using a dynamic indentation curve. Analyses have also been done using the MSC/DYTRAN finite element code.
Allgöwer, Kathrin; Kern, Claudia; Hermsdörfer, Joachim
2017-03-01
To determine the effects of multiple sclerosis (MS) on predictive and reactive grip force control in a catching task and on clinical tests of hand function. Case-control study with matched-pairs control group. University prevention and rehabilitation center. Participants (N=30) consisted of people with multiple sclerosis (PwMS) (n=15) and healthy controls (n=15), matched for sex, age, and hand dominance. Not applicable. Performance on the Expanded Disability Status Scale (EDSS), Nine-Hole Peg Test (9-HPT), Jebsen-Taylor Hand Function Test (JTHFT), and 2-point discrimination (2PD) was evaluated. To analyze grip force control, blindfolded subjects held a receptacle equipped with grip force and acceleration sensors in their hand. In a catching task, a weight was dropped from (1) the experimenter's hand unexpectedly into the receptacle (reactive force control); and (2) from the subject's opposite hand (predictive force control). Grip forces and time lags were analyzed. PwMS (mean EDSS ± SD, 4.2±1.86) had impairments in the 9-HPT and JTHFT (P<.001). The 2PD did not differ significantly between PwMS and controls. During reactive force control (catching task 1), PwMS showed significantly higher grip forces immediately after impact (P<.05), and a significant prolongation of the time from grip force increase until reaching the peak of grip force (P<.001). PwMS and controls did not differ during predictive force control (catching task 2; P>.1). Exaggerated grip force responses and alterations of timing after an unpredictable perturbation, combined with preserved grip force control during predictable conditions, is a characteristic pattern of fine motor control deficits in MS. Measures of reactive grip force responses may be used to complement neurologic assessments. Further studies exploring the usefulness of these measures should be performed in a broader community of PwMS. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Physician-applied contact pressure and table force response during unilateral thoracic manipulation.
Kirstukas, S J; Backman, J A
1999-06-01
To measure the applied loading to human subjects during the reinforced unilateral thoracic manipulation. Biomechanical descriptive study. The National College of Chiropractic Clinical Biomechanical Laboratory in Lombard, Illinois. Seven men, ages 24 to 47, with no positive responses regarding muscle relaxants or thoracic spinal fractures, surgeries, or pain. We measured the contact pressure distribution at the physician-subject contact region and extracted three biomechanical parameters. From the measured time-dependent support force magnitudes, we extracted five additional biomechanical parameters. In the application of the reinforced unilateral manipulative treatment, the physician establishes contact and applies a near-static preload force of 250 to 350 N. The dynamic portion of the typical thrust is preceded by a 22% decrease in force magnitude, and the peak thrust magnitude is linearly related to the preload force magnitude. We estimate that the peak contact pressure beneath the chiropractor's pisiform can exceed 1000 kPa, with the highest pressures transmitted over areas as small as 3.6 cm2, depending on manipulative style. This work represents the first attempt at performing simultaneous measurements of the physician-applied loading and table force response and measuring the contact pressure distribution at the physician-patient contact region during chiropractic manipulation. This type of work will lead to a better understanding of the relationship between the dynamic physician-applied normal forces and the resulting load response at the table and gives us additional outcome parameters to quantify manipulative technique.
Item Response Modeling of Forced-Choice Questionnaires
ERIC Educational Resources Information Center
Brown, Anna; Maydeu-Olivares, Alberto
2011-01-01
Multidimensional forced-choice formats can significantly reduce the impact of numerous response biases typically associated with rating scales. However, if scored with classical methodology, these questionnaires produce ipsative data, which lead to distorted scale relationships and make comparisons between individuals problematic. This research…
The United States Strategic Bombing Survey and Air Force Doctrine
2001-06-01
a picture of Air Force doctrine after World War II. Published official Air Force doctrine is evaluated, but is not the sole source as it was tardy ...126. 21 Anderson’s Military Analysis Division had a similar response to the Naval Analysis Division’s report, The Philippines Campaign. Samples...of their response are shown below. Comment No. 2. This sentence concluded that the defeat in the Philippines campaign would constitute the final
Gröning, Flora; Jones, Marc E. H.; Curtis, Neil; Herrel, Anthony; O'Higgins, Paul; Evans, Susan E.; Fagan, Michael J.
2013-01-01
Computer-based simulation techniques such as multi-body dynamics analysis are becoming increasingly popular in the field of skull mechanics. Multi-body models can be used for studying the relationships between skull architecture, muscle morphology and feeding performance. However, to be confident in the modelling results, models need to be validated against experimental data, and the effects of uncertainties or inaccuracies in the chosen model attributes need to be assessed with sensitivity analyses. Here, we compare the bite forces predicted by a multi-body model of a lizard (Tupinambis merianae) with in vivo measurements, using anatomical data collected from the same specimen. This subject-specific model predicts bite forces that are very close to the in vivo measurements and also shows a consistent increase in bite force as the bite position is moved posteriorly on the jaw. However, the model is very sensitive to changes in muscle attributes such as fibre length, intrinsic muscle strength and force orientation, with bite force predictions varying considerably when these three variables are altered. We conclude that accurate muscle measurements are crucial to building realistic multi-body models and that subject-specific data should be used whenever possible. PMID:23614944
Orbital forced frequencies in the 975000 year pollen record from Tenagi Philippon (Greece)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mommersteeg, H.J.P.M.; Young, R.; Wijmstra, T.A.
Frequency analysis was applied to different time series obtained from the 975 ka pollen record of Tenagi Philippon (Macedonia, Greece). These time series are characteristic of different vegetation types related to specific climatic conditions. Time control of the 196 m deep core was based on 11 finite {sup 14}C dates in the upper 17 m, magnetostratigraphy and correlation with the marine oxygen isotope stratigraphy. Maximum entropy spectrum analyses and thomson multi-taper spectrum analysis were applied using the complete time series. Periods of 95-99, 40-45. 24.0-25.5 and 19-21 ka which can be related to orbital forcing, as well as periods ofmore » about 68, 30 ka and of about 15.5, 13.5, 12 and 10.5 ka were detected. The detected periods of about 68, 30 ka and 16, 14, 12, 10.5 ka are likely to be harmonics and combination tones of the periods related to orbital forcing. The period of around 30 ka is possibly a secondary peak of obliquity. To study the stability of the detected periods through time, analysis with a moving window was employed. Signals in the eccentricity band were detected clearly during the last 650 ka. In the precession band, detected periods of about 24 ka show an increase in amplitude during the last 650 ka. The evolution of orbital frequencies during the last 1.0 Ma is in general agreement with the results of other marine and continental time series. Time series related to different climatic settings showed a different response to orbital forcing. Time series of vegetational elements sensitive to changes in net precipitation were forced in the precession and obliquity bands. Changes in precession caused changes in the monsoon system, which indirectly had a strong influence on the climatic history of Greece. Time series of vegetational elements which are more indicative of changes in annual temperature are forced in the eccentricity band. 54 refs., 12 figs., 3 tabs.« less
Stelzer, Julian E.; Larsson, Lars; Fitzsimons, Daniel P.; Moss, Richard L.
2006-01-01
Recent evidence suggests that ventricular ejection is partly powered by a delayed development of force, i.e., stretch activation, in regions of the ventricular wall due to stretch resulting from torsional twist of the ventricle around the apex-to-base axis. Given the potential importance of stretch activation in cardiac function, we characterized the stretch activation response and its Ca2+ dependence in murine skinned myocardium at 22°C in solutions of varying Ca2+ concentrations. Stretch activation was induced by suddenly imposing a stretch of 0.5–2.5% of initial length to the isometrically contracting muscle and then holding the muscle at the new length. The force response to stretch was multiphasic: force initially increased in proportion to the amount of stretch, reached a peak, and then declined to a minimum before redeveloping to a new steady level. This last phase of the response is the delayed force characteristic of myocardial stretch activation and is presumably due to increased attachment of cross-bridges as a consequence of stretch. The amplitude and rate of stretch activation varied with Ca2+ concentration and more specifically with the level of isometric force prior to the stretch. Since myocardial force is regulated both by Ca2+ binding to troponin-C and cross-bridge binding to thin filaments, we explored the role of cross-bridge binding in the stretch activation response using NEM-S1, a strong-binding, non-force–generating derivative of myosin subfragment 1. NEM-S1 treatment at submaximal Ca2+-activated isometric forces significantly accelerated the rate of the stretch activation response and reduced its amplitude. These data show that the rate and amplitude of myocardial stretch activation vary with the level of activation and that stretch activation involves cooperative binding of cross-bridges to the thin filament. Such a mechanism would contribute to increased systolic ejection in response to increased delivery of activator Ca2+ during excitation–contraction coupling. PMID:16446502
Quantifying the plant actin cytoskeleton response to applied pressure using nanoindentation.
Branco, Rémi; Pearsall, Eliza-Jane; Rundle, Chelsea A; White, Rosemary G; Bradby, Jodie E; Hardham, Adrienne R
2017-03-01
Detection of potentially pathogenic microbes through recognition by plants and animals of both physical and chemical signals associated with the pathogens is vital for host well-being. Signal perception leads to the induction of a variety of responses that augment pre-existing, constitutive defences. The plant cell wall is a highly effective preformed barrier which becomes locally reinforced at the infection site through delivery of new wall material by the actin cytoskeleton. Although mechanical stimulation can produce a reaction, there is little understanding of the nature of physical factors capable of triggering plant defence. Neither the magnitude of forces nor the contact time required has been quantified. In the study reported here, mechanical stimulation with a tungsten microneedle has been used to quantify the response of Arabidopsis plants expressing an actin-binding protein tagged with green fluorescent protein (GFP) to reveal the organisation of the actin cytoskeleton. Using confocal microscopy, the response time for actin reorganisation in epidermal cells of Arabidopsis hypocotyls was shown to be 116 ± 49 s. Using nanoindentation and a diamond spherical tip indenter, the magnitude of the forces capable of triggering an actin response has been quantified. We show that Arabidopsis hypocotyl cells can detect a force as small as 4 μN applied for as short a time as 21.6 s to trigger reorganisation of the actin cytoskeleton. This force is an order of magnitude less than the potential invasive force determined for a range of fungal and oomycete plant pathogens. To our knowledge, this is the first quantification of the magnitude and duration of mechanical forces capable of stimulating a structural defence response in a plant cell.
Hoenicka, Markus; Kaspar, Marcel; Schmid, Christof; Liebold, Andreas; Schrammel, Siegfried
2017-10-01
Tissue-engineered vessel grafts have to mimic the biomechanical properties of native blood vessels. Manufacturing processes often condition grafts to adapt them to the target flow conditions. Graft stiffness is influenced by material properties and dimensions and determines graft compliance. This proof-of-concept study evaluated a contact-free method to monitor biomechanical properties without compromising sterility. Forced vibration response analysis was performed on human umbilical vein (HUV) segments mounted in a buffer-filled tubing system. A linear motor and a dynamic signal analyser were used to excite the fluid by white noise (0-200 Hz). Vein responses were read out by laser triangulation and analysed by fast Fourier transformation. Modal analysis was performed by monitoring multiple positions of the vessel surface. As an inverse model of graft stiffening during conditioning, HUV were digested proteolytically, and the course of natural frequencies (NFs) was monitored over 120 min. Human umbilical vein showed up to five modes with NFs in the range of 5-100 Hz. The first natural frequencies of HUV did not alter over time while incubated in buffer (p = 0.555), whereas both collagenase (-35%, p = 0.0061) and elastase (-45%, p < 0.001) treatments caused significant decreases of NF within 120 min. Decellularized HUV showed similar results, indicating that changes of the extracellular matrix were responsible for the observed shift in NF. Performing vibration response analysis on vessel grafts is feasible without compromising sterility or integrity of the samples. This technique allows direct measurement of stiffness as an important biomechanical property, obviating the need to monitor surrogate parameters. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Relationship between olive flowering and latitude in two Mediterranean countries (Italy and Tunisia)
NASA Astrophysics Data System (ADS)
Orlandi, F.; Msallem, M.; Bonofiglio, T.; Ben Dhiab, A.; Sgromo, C.; Romano, B.; Fornaciari, M.
2010-11-01
In phenological studies, the plant developments are analysed considering their relationships with seasonal meteorological conditions; moreover, the influences of geographical features on biological responses have to be also considered. Different studies analysed the influence of latitude on phenological phases to investigate the possible different magnitude of biological response. In our experience, this type of geographic evaluation was conducted considering one of the more important plant species of Mediterranean shrub, the olive ( Olea europaea L.) in fifteen olive monitoring stations, four located in Tunisia and eleven in Italy, from the southern Zarzis area at 33° to the northern Perugia area at 43° of latitude. The olive flowering phenomenon was studied, utilising an aerobiological monitoring method through appropriate pollen traps located inside olive groves from 1999 to 2008. The olive monitored pollen grains were recognised and evaluated to obtain daily pollen concentrations to define the flowering dates in the different study areas. The biometeorological statistical analysis showed the 7°C threshold temperature and the single triangle method for growing degree days (GDD) yearly computing as the better ones in comparison to others. Moreover, the regression analysis between the dates of full flowering and the GDD amounts at the different monitoring latitudes permitted us to evidence the biological response of olive species in geographic regions with different climate patterns. The specific biological response at different latitude was investigated, the slope results, as flowering days per heat amounts, evidenced that olive species behaviours are very constant in consequence to similar meteorological conditions independently to latitude variations. Averagely, the relationships between plant’s phenology, temperature trends and geographical features are very close, even if the yearly mesoscale meteorological variations force to consider, year by year, phenological advances or delays as local events.
The molten globule state is unusually deformable under mechanical force
Elms, Phillip J.; Chodera, John D.; Bustamante, Carlos; Marqusee, Susan
2012-01-01
Recently, the role of force in cellular processes has become more evident, and now with advances in force spectroscopy, the response of proteins to force can be directly studied. Such studies have found that native proteins are brittle, and thus not very deformable. Here, we examine the mechanical properties of a class of intermediates referred to as the molten globule state. Using optical trap force spectroscopy, we investigated the response to force of the native and molten globule states of apomyoglobin along different pulling axes. Unlike natively folded proteins, the molten globule state of apomyoglobin is compliant (large distance to the transition state); this large compliance means that the molten globule is more deformable and the unfolding rate is more sensitive to force (the application of force or tension will have a more dramatic effect on the unfolding rate). Our studies suggest that these are general properties of molten globules and could have important implications for mechanical processes in the cell. PMID:22355138
Actin Filament Elasticity and Retrograde Flow Shape the Force-Velocity Relation of Motile Cells
Zimmermann, Juliane; Brunner, Claudia; Enculescu, Mihaela; Goegler, Michael; Ehrlicher, Allen; Käs, Josef; Falcke, Martin
2012-01-01
Cells migrate through a crowded environment during processes such as metastasis or wound healing, and must generate and withstand substantial forces. The cellular motility responses to environmental forces are represented by their force-velocity relation, which has been measured for fish keratocytes but remains unexplained. Even pN opposing forces slow down lamellipodium motion by three orders of magnitude. At larger opposing forces, the retrograde flow of the actin network accelerates until it compensates for polymerization, and cell motion stalls. Subsequently, the lamellipodium adapts to the stalled state. We present a mechanism quantitatively explaining the cell's force-velocity relation and its changes upon application of drugs that hinder actin polymerization or actomyosin-based contractility. Elastic properties of filaments, close to the lamellipodium leading edge, and retrograde flow shape the force-velocity relation. To our knowledge, our results shed new light on how these migratory responses are regulated, and on the mechanics and structure of the lamellipodium. PMID:22339865
Monitoring of wind load and response for cable-supported bridges in Hong Kong
NASA Astrophysics Data System (ADS)
Wong, Kai-yuen; Chan, Wai-Yee K.; Man, King-Leung
2001-08-01
Structural health monitoring for the three cable-supported bridges located in the West of Hong Kong or the Tsing Ma Control Area has been carried out since the opening of these bridges to public traffic. The three cable-supported bridges are referred to as the Tsing Ma (suspension) Bridge, the Kap Shui Mun (cable-stayed) Bridge and the Ting Kau (cable-stayed) Bridge. The structural health monitoring works involved are classified as six monitoring categories, namely, wind load and response, temperature load and response, traffic load and response, geometrical configuration monitoring, strains and stresses/forces monitoring and global dynamic characteristics monitoring. As wind loads and responses had been a major concern in the design and construction stages, this paper therefore outlines the work of wind load and response monitoring on Tsing Ma, Kap Shui Mun and Ting Kau Bridges. The paper starts with a brief description of the sensory systems. The description includes the layout and performance requirements of sensory systems for wind load and responses monitoring. Typical results of wind load and response monitoring in graphical forms are then presented. These graphical forms include the plots of wind rose diagrams, wind incidences vs wind speeds, wind turbulence intensities, wind power spectra, gust wind factors, coefficient of terrain roughness, extreme wind analyses, deck deflections/rotations vs wind speeds, acceleration spectra, acceleration/displacement contours, and stress demand ratios. Finally conclusions on wind load and response monitoring on the three cable-supported bridges are drawn.
Validation and Verification of Operational Land Analysis Activities at the Air Force Weather Agency
NASA Technical Reports Server (NTRS)
Shaw, Michael; Kumar, Sujay V.; Peters-Lidard, Christa D.; Cetola, Jeffrey
2011-01-01
The NASA developed Land Information System (LIS) is the Air Force Weather Agency's (AFWA) operational Land Data Assimilation System (LDAS) combining real time precipitation observations and analyses, global forecast model data, vegetation, terrain, and soil parameters with the community Noah land surface model, along with other hydrology module options, to generate profile analyses of global soil moisture, soil temperature, and other important land surface characteristics. (1) A range of satellite data products and surface observations used to generate the land analysis products (2) Global, 1/4 deg spatial resolution (3) Model analysis generated at 3 hours
Experimental studies of protozoan response to intense magnetic fields and forces
NASA Astrophysics Data System (ADS)
Guevorkian, Karine
Intense static magnetic fields of up to 31 Tesla were used as a novel tool to manipulate the swimming mechanics of unicellular organisms. It is shown that homogenous magnetic fields alter the swimming trajectories of the single cell protozoan Paramecium caudatum, by aligning them parallel to the applied field. Immobile neutrally buoyant paramecia also oriented in magnetic fields with similar rates as the motile ones. It was established that the magneto-orientation is mostly due to the magnetic torques acting on rigid structures in the cell body and therefore the response is a non-biological, passive response. From the orientation rate of paramecia in various magnetic field strengths, the average anisotropy of the diamagnetic susceptibility of the cell was estimated. It has also been demonstrated that magnetic forces can be used to create increased, decreased and even inverted simulated gravity environments for the investigation of the gravi-responses of single cells. Since the mechanisms by which Earth's gravity affects cell functioning are still not fully understood, a number of methods to simulate different strength gravity environments, such as centrifugation, have been employed. Exploiting the ability to exert magnetic forces on weakly diamagnetic constituents of the cells, we were able to vary the gravity from -8 g to 10 g, where g is Earth's gravity. Investigations of the swimming response of paramecia in these simulated gravities revealed that they actively regulate their swimming speed to oppose the external force. This result is in agreement with centrifugation experiments, confirming the credibility of the technique. Moreover, the Paramecium's swimming ceased in simulated gravity of 10 g, indicating a maximum possible propulsion force of 0.7 nN. The magnetic force technique to simulate gravity is the only earthbound technique that can create increased and decreased simulated gravities in the same experimental setup. These findings establish a general technique for applying continuously variable forces to cells or cell populations suitable for exploring their force transduction mechanisms.
On the Roles of Upper- versus Lower-level Thermal Forcing in Shifting the Eddy-Driven Jet
NASA Astrophysics Data System (ADS)
Zhang, Y.; Nie, Y.; Chen, G.; Yang, X. Q.
2017-12-01
One most drastic atmospheric change in the global warming scenario is the increase in temperature over tropical upper-troposphere and polar surface. The strong warming over those two area alters the spacial distributions of the baroclinicity in the upper-troposphere of subtropics and in the lower-level of subpolar region, with competing effects on the mid-latitude atmospheric circulation. The final destination of the eddy-driven jet in future climate could be "a tug of war" between the impacts of such upper- versus lower-level thermal forcing. In this study, the roles of upper- versus lower-level thermal forcing in shifting the eddy-driven jet are investigated using a nonlinear multi-level quasi-geostrophic channel model. All of our sensitivity experiments show that the latitudinal position of the eddy-driven jet is more sensitive to the upper-level thermal forcing. Such upper-level dominance over the lower-level forcing can be attributed to the different mechanisms through which eddy-driven jet responses to them. The upper-level thermal forcing induces a jet shift mainly by affecting the baroclinic generation of eddies, which supports the latitudinal shift of the eddy momentum flux convergence. The jet response to the lower-level thermal forcing, however, is strongly "eddy dissipation control". The lower-level forcing, by changing the baroclinicity in the lower troposphere, induces a direct thermal zonal wind response in the upper level thus modifies the nonlinear wave breaking and the resultant irreversible eddy mixing, which amplifies the latitudinal shift of the eddy-driven jet. Whether the eddy response is "generation control" or "dissipation control" may strongly depend on the eddy behavior in its baroclinic processes. Only the anomalous eddy generation that penetrates into the upper troposphere can have a striking impact on the eddy momentum flux, which pushes the jet shift more efficiently and dominates the eddy response.
Influences of rolling method on deformation force in cold roll-beating forming process
NASA Astrophysics Data System (ADS)
Su, Yongxiang; Cui, Fengkui; Liang, Xiaoming; Li, Yan
2018-03-01
In process, the research object, the gear rack was selected to study the influence law of rolling method on the deformation force. By the mean of the cold roll forming finite element simulation, the variation regularity of radial and tangential deformation was analysed under different rolling methods. The variation of deformation force of the complete forming racks and the single roll during the steady state under different rolling modes was analyzed. The results show: when upbeating and down beating, radial single point average force is similar, the tangential single point average force gap is bigger, the gap of tangential single point average force is relatively large. Add itionally, the tangential force at the time of direct beating is large, and the dire ction is opposite with down beating. With directly beating, deformation force loading fast and uninstall slow. Correspondingly, with down beating, deformat ion force loading slow and uninstall fast.
2006-04-01
Banking Mr. Robert Luby, IBM Dr. Robert Lucky, Telcordia Technologies Mr. William Lynn, Raytheon Mr. Dave Oliver, EADS North America GOVERNMENT...MAY 2005 Central Command (CENTCOM) COL Peter Zielinski CENTCOM Office of Force Transformation (OFT) Review of COCOM Experimentation COL Richard...for Defense Analyses Mr. Patrick McCarthy, U.S. Joint Forces Command Mr. Stephen Moore, U.S. Joint Forces Command MAY 10, 2005 COL Peter Zielinski
Sex differences in jealousy: the (lack of) influence of researcher theoretical perspective.
Edlund, John; Heider, Jeremy D; Nichols, Austin Lee; McCarthy, Randy J; Wood, Sarah E; Scherer, Cory R; Hartnett, Jessica L; Walker, Richard
2017-09-01
The sex difference in jealousy is an effect that has generated significant controversy in the academic literature (resulting in two meta-analyses that reached different conclusions on the presence or absence of the effect). In this study, we had a team of researchers from different theoretical perspectives use identical protocols to test whether the sex difference in jealousy would occur across many different samples (while testing whether mate value would moderate the effect). In our samples, we found the sex difference in jealousy to occur using both forced choice and continuous measures, this effect appeared in several different settings, and, we found that mate value moderated participant responses. The results are discussed in light of the controversy surrounding the presence of the effect.
Effect of subliminal visual material on an auditory signal detection task.
Moroney, E; Bross, M
1984-02-01
An experiment assessed the effect of subliminally embedded, visual material on an auditory detection task. 22 women and 19 men were presented tachistoscopically with words designated as "emotional" or "neutral" on the basis of prior GSRs and a Word Rating List under four conditions: (a) Unembedded Neutral, (b) Embedded Neutral, (c) Unembedded Emotional, and (d) Embedded Emotional. On each trial subjects made forced choices concerning the presence or absence of an auditory tone (1000 Hz) at threshold level; hits and false alarm rates were used to compute non-parametric indices for sensitivity (A') and response bias (B"). While over-all analyses of variance yielded no significant differences, further examination of the data suggests the presence of subliminally "receptive" and "non-receptive" subpopulations.
NASA Astrophysics Data System (ADS)
Fatemi, Javad
2011-05-01
The thermal protection system of the EXPERT re-entry vehicle is subjected to accelerations, vibrations, acoustic and shock loads during launch and aero-heating loads and aerodynamic forces during re-entry. To fully understand the structural and thermomechanical performances of the TPS, heat transfer analysis, thermal stress analysis, and thermal buckling analysis must be performed. This requires complex three-dimensional thermal and structural models of the entire TPS including the insulation and sensors. Finite element (FE) methods are employed to assess the thermal and structural response of the TPS to the mechanical and aerothermal loads. The FE analyses results are used for the design verification and design improvement of the EXPERT thermal protection system.
West Florida shelf circulation and temperature budget for the 1999 spring transition
He, Ruoying; Weisberg, Robert H.
2002-01-01
Mid-latitude continental shelves undergo a spring transition as the net surface heat flux changes from cooling to warming. Using in situ data and a numerical circulation model we investigate the circulation and temperature budget on the West Florida Continental Shelf (WFS) for the spring transition of 1999. The model is a regional adaptation of the primitive equation, Princeton Ocean Model forced by NCEP reanalysis wind and heat flux fields and by river inflows. Based on agreements between the modeled and observed fields we use the model to draw inferences on how the surface momentum and heat fluxes affect the seasonal and synoptic scale variability. We account for a strong southeastward current at mid-shelf by the baroclinic response to combined wind and buoyancy forcing, and we show how this local forcing leads to annually occurring cold and low salinity tongues. Through term-by-term analyses of the temperature budget we describe the WFS temperature evolution in spring. Heat flux largely controls the seasonal transition, whereas ocean circulation largely controls the synoptic scale variability. These two processes, however, are closely linked. Bottom topography and coastline geometry are important in generating regions of convergence and divergence. Rivers contribute to the local hydrography and are important ecologically. Along with upwelling, river inflows facilitate frontal aggregation of nutrients and the spring formation of a high concentration chlorophyll plume near the shelf break (the so-called ‘Green River’) coinciding with the cold, low salinity tongues. These features originate by local, shelf-wide forcing; the Loop Current is not an essential ingredient.
David, Pascal; Laval, David; Terrien, Jérémy; Petitjean, Michel
2012-01-01
The present study sought to establish links between hyperventilation and postural stability. Eight university students were asked to stand upright under two hyperventilation conditions applied randomly: (1) a metabolic hyperventilation induced by 5 min of hypercapnic-hyperoxic rebreathing (CO(2)-R); and, (2) a voluntary hyperventilation (VH) of 3 min imposed by a metronome set at 25 cycles per min. Recordings were obtained with eyes open, with the subjects standing on a force plate over 20-s periods. Ventilatory response, displacements in the centre of pressure in both the frontal and sagittal planes and fluctuations in the three planes of the ground reaction force were monitored in the time and frequency domains. Postural changes related to respiratory variations were quantified by coherence analysis. Myoelectric activities of the calf muscles were recorded using surface electromyography. Force plate measurements revealed a reduction in postural stability during both CO(2)-R and VH conditions, mainly in the sagittal plane. Coherence analysis provided evidence of a ventilatory origin in the vertical ground reaction force fluctuations during VH. Electromyographic analyses showed different leg muscles strategies, assuming the existence of links between the control of respiration and the control of posture. Our results suggest that the greater disturbing effects caused by voluntary hyperventilation on body balance are more compensated when respiration is under automatic control. These findings may have implications for understanding the organisation of postural and respiratory activities and suggest that stability of the body may be compromised in situations in which respiratory demand increases and requires voluntary control.
Alongshore wind forcing of coastal sea level as a function of frequency
Ryan, H.F.; Noble, M.A.
2006-01-01
The amplitude of the frequency response function between coastal alongshore wind stress and adjusted sea level anomalies along the west coast of the United States increases linearly as a function of the logarithm (log10) of the period for time scales up to at least 60, and possibly 100, days. The amplitude of the frequency response function increases even more rapidly at longer periods out to at least 5 yr. At the shortest periods, the amplitude of the frequency response function is small because sea level is forced only by the local component of the wind field. The regional wind field, which controls the wind-forced response in sea level for periods between 20 and 100 days, not only has much broader spatial scales than the local wind, but also propagates along the coast in the same direction as continental shelf waves. Hence, it has a stronger coupling to and an increased frequency response for sea level. At periods of a year or more, observed coastal sea level fluctuations are not only forced by the regional winds, but also by joint correlations among the larger-scale climatic patterns associated with El Nin??o. Therefore, the amplitude of the frequency response function is large, despite the fact that the energy in the coastal wind field is relatively small. These data show that the coastal sea level response to wind stress forcing along the west coast of the United States changes in a consistent and predictable pattern over a very broad range of frequencies with time scales from a few days to several years.
Effect of loudness on reaction time and response force in different motor tasks.
Jaśkowski, Piotr; Włodarczyk, Dariusz
2005-12-01
Van der Molen and Keuss, in 1979 and 1981, showed that paradoxically long reaction times occur with extremely strong auditory stimuli when the task is difficult, e.g., choice-by-location or Simon paradigm. It was argued that this paradoxical behavior of RT is due to active inhibition of an arousal-dependent bypassing mechanism to prevent false responses. As the peak force, i.e., maximal force exerted by participants on a response key, is considered to be related to immediate arousal, we predicted that for extremely loud stimuli and for difficult tasks, lengthening of RT should be associated with reduction of peak force. Moreover, these effects should be enhanced when emphasis is on accuracy rather than speed. Although the relation between RT and intensity depended on task difficulty, no increase in RT was found for the loudest tones. Moreover, peak force increased monotonically with loudness, showing no tendency to be suppressed for loudest tones and difficult tasks.
A Finite-Element Method Model of Soft Tissue Response to Impulsive Acoustic Radiation Force
Palmeri, Mark L.; Sharma, Amy C.; Bouchard, Richard R.; Nightingale, Roger W.; Nightingale, Kathryn R
2010-01-01
Several groups are studying acoustic radiation force and its ability to image the mechanical properties of tissue. Acoustic radiation force impulse (ARFI) imaging is one modality using standard diagnostic ultrasound scanners to generate localized, impulsive, acoustic radiation forces in tissue. The dynamic response of tissue is measured via conventional ultrasonic speckle-tracking methods and provides information about the mechanical properties of tissue. A finite-element method (FEM) model has been developed that simulates the dynamic response of tissues, with and without spherical inclusions, to an impulsive acoustic radiation force excitation from a linear array transducer. These FEM models were validated with calibrated phantoms. Shear wave speed, and therefore elasticity, dictates tissue relaxation following ARFI excitation, but Poisson’s ratio and density do not significantly alter tissue relaxation rates. Increased acoustic attenuation in tissue increases the relative amount of tissue displacement in the near field compared with the focal depth, but relaxation rates are not altered. Applications of this model include improving image quality, and distilling material and structural information from tissue’s dynamic response to ARFI excitation. Future work on these models includes incorporation of viscous material properties and modeling the ultrasonic tracking of displaced scatterers. PMID:16382621
32 CFR 806b.7 - Responsibilities.
Code of Federal Regulations, 2010 CFR
2010-07-01
... is the senior Air Force Privacy Official with overall responsibility for the Air Force Privacy Act... Data Integrity Board. (5) Provides guidance and assistance to Major Commands, field operating agencies... validate currency. (6) Evaluate the health of the program at regular intervals using this part as guidance...
A sensitivity study of fast outlet glaciers to short timescale cyclical perturbations
NASA Astrophysics Data System (ADS)
Aykutlug, E.; Dupont, T. K.
2015-01-01
The dynamic response of outlet glaciers on short (annual to decadal) timescales is affected by various external forcings, such as basal or oceanic conditions. Understanding the sensitivity of the dynamic response to such forcings can help assess more accurate ice volume projections. In this work, we investigate the spatiotemporal sensitivity of outlet glaciers to fast cyclical forcings using a one-dimensional depth and width-averaged heuristic model. Our results indicate that even on such short timescales, nonlinearities in ice dynamics may lead to an asymmetric response, despite the forcing functions being symmetric around each reference value. Results also show that such short-timescale effects become more pronounced as glaciers become closer to flotation. While being qualitatively similar for both downsloping and upsloping bed geometries, the results indicate higher sensitivity for upsloping ("West Antarctica-like") beds. The range in asymmetric response for different configurations motivate parameterizing or including short-timescale effects in models while investigating the dynamic behavior of outlet glaciers.
Lin, Yen-Ting; Kuo, Chia-Hua; Hwang, Ing-Shiou
2014-01-01
Continuous force output containing numerous intermittent force pulses is not completely smooth. By characterizing force fluctuation properties and force pulse metrics, this study investigated adaptive changes in trajectory control, both force-generating capacity and force fluctuations, as fatigue progresses. Sixteen healthy subjects (20–24 years old) completed rhythmic isometric gripping with the non-dominant hand to volitional failure. Before and immediately following the fatigue intervention, we measured the gripping force to couple a 0.5 Hz sinusoidal target in the range of 50–100% maximal voluntary contraction. Dynamic force output was off-line decomposed into 1) an ideal force trajectory spectrally identical to the target rate; and 2) a force pulse trace pertaining to force fluctuations and error-correction attempts. The amplitude of ideal force trajectory regarding to force-generating capacity was more suppressed than that of the force pulse trace with increasing fatigue, which also shifted the force pulse trace to lower frequency bands. Multi-scale entropy analysis revealed that the complexity of the force pulse trace at high time scales increased with fatigue, contrary to the decrease in complexity of the force pulse trace at low time scales. Statistical properties of individual force pulses in the spatial and temporal domains varied with muscular fatigue, concurrent with marked suppression of gamma muscular oscillations (40–60 Hz) in the post-fatigue test. In conclusion, this study first reveals that muscular fatigue impairs the amplitude modulation of force pattern generation more than it affects the amplitude responsiveness of fine-tuning a force trajectory. Besides, motor fatigue results disadvantageously in enhancement of motor noises, simplification of short-term force-tuning strategy, and slow responsiveness to force errors, pertaining to dimensional changes in force fluctuations, scaling properties of force pulse, and muscular oscillation. PMID:24465605
Discrete sensors distribution for accurate plantar pressure analyses.
Claverie, Laetitia; Ille, Anne; Moretto, Pierre
2016-12-01
The aim of this study was to determine the distribution of discrete sensors under the footprint for accurate plantar pressure analyses. For this purpose, two different sensor layouts have been tested and compared, to determine which was the most accurate to monitor plantar pressure with wireless devices in research and/or clinical practice. Ten healthy volunteers participated in the study (age range: 23-58 years). The barycenter of pressures (BoP) determined from the plantar pressure system (W-inshoe®) was compared to the center of pressures (CoP) determined from a force platform (AMTI) in the medial-lateral (ML) and anterior-posterior (AP) directions. Then, the vertical ground reaction force (vGRF) obtained from both W-inshoe® and force platform was compared for both layouts for each subject. The BoP and vGRF determined from the plantar pressure system data showed good correlation (SCC) with those determined from the force platform data, notably for the second sensor organization (ML SCC= 0.95; AP SCC=0.99; vGRF SCC=0.91). The study demonstrates that an adjusted placement of removable sensors is key to accurate plantar pressure analyses. These results are promising for a plantar pressure recording outside clinical or laboratory settings, for long time monitoring, real time feedback or for whatever activity requiring a low-cost system. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Berger, M.; Brandefelt, J.; Nilsson, J.
2013-04-01
In the present work the Arctic sea ice in the mid-Holocene and the pre-industrial climates are analysed and compared on the basis of climate-model results from the Paleoclimate Modelling Intercomparison Project phase 2 (PMIP2) and phase 3 (PMIP3). The PMIP3 models generally simulate smaller and thinner sea-ice extents than the PMIP2 models both for the pre-industrial and the mid-Holocene climate. Further, the PMIP2 and PMIP3 models all simulate a smaller and thinner Arctic summer sea-ice cover in the mid-Holocene than in the pre-industrial control climate. The PMIP3 models also simulate thinner winter sea ice than the PMIP2 models. The winter sea-ice extent response, i.e. the difference between the mid-Holocene and the pre-industrial climate, varies among both PMIP2 and PMIP3 models. Approximately one half of the models simulate a decrease in winter sea-ice extent and one half simulates an increase. The model-mean summer sea-ice extent is 11 % (21 %) smaller in the mid-Holocene than in the pre-industrial climate simulations in the PMIP2 (PMIP3). In accordance with the simple model of Thorndike (1992), the sea-ice thickness response to the insolation change from the pre-industrial to the mid-Holocene is stronger in models with thicker ice in the pre-industrial climate simulation. Further, the analyses show that climate models for which the Arctic sea-ice responses to increasing atmospheric CO2 concentrations are similar may simulate rather different sea-ice responses to the change in solar forcing between the mid-Holocene and the pre-industrial. For two specific models, which are analysed in detail, this difference is found to be associated with differences in the simulated cloud fractions in the summer Arctic; in the model with a larger cloud fraction the effect of insolation change is muted. A sub-set of the mid-Holocene simulations in the PMIP ensemble exhibit open water off the north-eastern coast of Greenland in summer, which can provide a fetch for surface waves. This is in broad agreement with recent analyses of sea-ice proxies, indicating that beach-ridges formed on the north-eastern coast of Greenland during the early- to mid-Holocene.
Attributing the Human Influence on Precipitation Changes over India
NASA Astrophysics Data System (ADS)
R, D.; Achutarao, K. M.; Thanigachalam, A.
2017-12-01
Variations in rainfall over India -much of which is received during the summer monsoon season (June-September) - influences the economy of the country as nearly 50% of the population is engaged in the agricultural sector which constitutes 17.4% of the GDP of India. The agriculture and economy of India is highly vulnerable to any changes in the monsoon rainfall is well recognised. Recent decades have seen decreasing monsoon rainfall in various parts of India. Whether these are a consequence of natural monsoon variations or are caused by specific anthropogenic factors is an important question to answer in formulating the right policy response to these changes. Understanding the physical changes is also a first step towards being able to attribute downstream impacts due to rainfall changes. We have carried out an optimal fingerprint based Detection & Attribution analysis to study the changing rainfall patterns. We make use of outputs from 7 models in the Coupled Model Intercomparison Project Phase-5 (CMIP5) database that carried out single forcing experiments with, Natural, GHG, Anthropogenic Aerosols, and historical (All) forcings. We use multiple observational datasets of rainfall (CRU 3.22 and IMD gridded) to account for observational uncertainty to analyse seasonal (JJA and DJF) and annual mean rainfall over the 1906-2005 period. Our analysis shows the dominant role of GHG and Anthropogenic Aerosol forcings on the observed rainfall changes.
NASA Astrophysics Data System (ADS)
Eldrett, James S.; Ma, Chao; Bergman, Steven C.; Ozkan, Aysen; Minisini, Daniel; Lutz, Brendan; Jackett, Sarah-Jane; Macaulay, Calum; Kelly, Amy E.
2015-08-01
We present an integrated multidisciplinary study of limestone-marlstone couplets from a continuously cored section including parts of the upper Buda Limestone, the entire Eagle Ford Group (Boquillas Formation) and lower Austin Chalk from the Shell Iona-1 research borehole (Texas, USA), which provides a >8 million year (myr) distal, clastic sediment-starved, intrashelf basin record of the early Cenomanian to the earliest Coniacian Stages. Results show that despite variable yet minimal diagenetic overprints, several unambiguous primary environmental signals are preserved and support greater water-mass ventilation and current activity promoting increased silica/carbonate productivity during the deposition of limestone beds compared to deposition of marlstone beds which reflect greater organic matter productivity and preservation. Furthermore, our astronomical analyses demonstrate that the limestone-marlstone couplets in the Iona-1 core reflect climatic forcing driven by solar insolation resulting from integrated Milankovitch periodicities. In particular, we propose that obliquity and precession forcing on the latitudinal distribution of solar insolation may have been responsible for the observed lithological and environmental variations through the Cenomanian, Turonian and Coniacian in this mid-latitude epicontinental sea setting. Our data also suggests that rhythmic lithological alternations deposited in Greenhouse periods, in general, may simply reflect climate-driven cycles related to Earth-Sun dynamics without the need to invoke significant sea-level variations.
Biospheric feedback effects in a synchronously coupled model of human and Earth systems
NASA Astrophysics Data System (ADS)
Thornton, P. E.; Calvin, K. V.; Jones, A. D.; Di Vittorio, A. V.; Bond-Lamberty, B. P.; Chini, L. P.; Shi, X.; Mao, J.; Collins, W. D.; Edmonds, J.; Hurtt, G. C.
2017-12-01
Fossil fuel combustion and land-use change are the two largest contributors to industrial-era increases in atmospheric CO2 concentration. Projections of these are thus fundamental inputs for coupled Earth system models (ESMs) used to estimate the physical and biological consequences of future climate system forcing. While historical datasets are available to inform past and current climate analyses, assessments of future climate change have relied on projections of energy and land use from energy economic models, constrained by assumptions about future policy, land-use patterns, and socio-economic development trajectories. In this work we show that the climatic impacts on land ecosystems drives significant feedbacks in energy, agriculture, land-use, and carbon cycle projections for the 21st century. We find that exposure of human appropriated land ecosystem productivity to biospheric change results in reductions of land area used for crops; increases in managed forest area and carbon stocks; decreases in global crop prices; and reduction in fossil fuel emissions for a low-mid range forcing scenario. Land ecosystem response to increased carbon dioxide concentration, increased anthropogenic nitrogen deposition, and changes in temperature and precipitation all play a role. The feedbacks between climate-induced biospheric change and human system forcings to the climate system demonstrated in this work are handled inconsistently, or excluded altogether, in the one-way asynchronous coupling of energy economic models to ESMs used to date.
Particle Physics Primer: Explaining the Standard Model of Matter.
ERIC Educational Resources Information Center
Vondracek, Mark
2002-01-01
Describes the Standard Model, a basic model of the universe that describes electromagnetic force, weak nuclear force radioactivity, and the strong nuclear force responsible for holding particles within the nucleus together. (YDS)
Dynamic Loads Generation for Multi-Point Vibration Excitation Problems
NASA Technical Reports Server (NTRS)
Shen, Lawrence
2011-01-01
A random-force method has been developed to predict dynamic loads produced by rocket-engine random vibrations for new rocket-engine designs. The method develops random forces at multiple excitation points based on random vibration environments scaled from accelerometer data obtained during hot-fire tests of existing rocket engines. This random-force method applies random forces to the model and creates expected dynamic response in a manner that simulates the way the operating engine applies self-generated random vibration forces (random pressure acting on an area) with the resulting responses that we measure with accelerometers. This innovation includes the methodology (implementation sequence), the computer code, two methods to generate the random-force vibration spectra, and two methods to reduce some of the inherent conservatism in the dynamic loads. This methodology would be implemented to generate the random-force spectra at excitation nodes without requiring the use of artificial boundary conditions in a finite element model. More accurate random dynamic loads than those predicted by current industry methods can then be generated using the random force spectra. The scaling method used to develop the initial power spectral density (PSD) environments for deriving the random forces for the rocket engine case is based on the Barrett Criteria developed at Marshall Space Flight Center in 1963. This invention approach can be applied in the aerospace, automotive, and other industries to obtain reliable dynamic loads and responses from a finite element model for any structure subject to multipoint random vibration excitations.
Connection forces in deformable multibody dynamics
NASA Technical Reports Server (NTRS)
Shabana, A. A.; Chang, C. W.
1989-01-01
In the dynamic formulation of holonomic and nonholonomic systems based on D'Alembert-Lagrange equation, the forces of constraints are maintained in the dynamic equations by introducing auxiliary variables, called Lagrange multipliers. This approach introduces a set of generalized reaction forces associated with the system generalized coordinates. Different sets of variables can be used as generalized coordinates and accordingly, the generalized reactions associated with these generalized coordinates may not be the actual reaction forces at the joints. In rigid body dynamics, the generalized reaction forces and the actual reaction forces at the joints represent equipollent systems of forces since they produce the same total forces and moments at and about any point on the rigid body. This is not, however, the case in deformable body analyses wherein the generalized reaction forces depend on the system generalized reference and elastic coordinates. In this paper, a method for determining the actual reaction forces at the joints from the generalized reaction forces in deformable multibody systems is presented.
NASA Astrophysics Data System (ADS)
Davis, Nicholas A.; Seidel, Dian J.; Birner, Thomas; Davis, Sean M.; Tilmes, Simone
2016-08-01
Model simulations of future climates predict a poleward expansion of subtropical arid climates at the edges of Earth's tropical belt, which would have significant environmental and societal impacts. This expansion may be related to the poleward shift of the Hadley cell edges, where subsidence stabilizes the atmosphere and suppresses precipitation. Understanding the primary drivers of tropical expansion is hampered by the myriad forcing agents in most model projections of future climate. While many previous studies have examined the response of idealized models to simplified climate forcings and the response of comprehensive climate models to more complex climate forcings, few have examined how comprehensive climate models respond to simplified climate forcings. To shed light on robust processes associated with tropical expansion, here we examine how the tropical belt width, as measured by the Hadley cell edges, responds to simplified forcings in the Geoengineering Model Intercomparison Project (GeoMIP). The tropical belt expands in response to a quadrupling of atmospheric carbon dioxide concentrations and contracts in response to a reduction in the solar constant, with a range of a factor of 3 in the response among nine models. Models with more surface warming and an overall stronger temperature response to quadrupled carbon dioxide exhibit greater tropical expansion, a robust result in spite of inter-model differences in the mean Hadley cell width, parameterizations, and numerical schemes. Under a scenario where the solar constant is reduced to offset an instantaneous quadrupling of carbon dioxide, the Hadley cells remain at their preindustrial width, despite the residual stratospheric cooling associated with elevated carbon dioxide levels. Quadrupled carbon dioxide produces greater tropical belt expansion in the Southern Hemisphere than in the Northern Hemisphere. This expansion is strongest in austral summer and autumn. Ozone depletion has been argued to cause this pattern of changes in observations and model experiments, but the results here indicate that seasonally and hemispherically asymmetric tropical expansion can be a basic response of the general circulation to climate forcings.
32 CFR 842.11 - Air Force claims organization.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 32 National Defense 6 2013-07-01 2013-07-01 false Air Force claims organization. 842.11 Section 842.11 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE CLAIMS AND LITIGATION ADMINISTRATIVE CLAIMS Functions and Responsibilities § 842.11 Air Force claims organization. Air...
32 CFR 842.11 - Air Force claims organization.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 6 2010-07-01 2010-07-01 false Air Force claims organization. 842.11 Section 842.11 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE CLAIMS AND LITIGATION ADMINISTRATIVE CLAIMS Functions and Responsibilities § 842.11 Air Force claims organization. Air...
32 CFR 842.11 - Air Force claims organization.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 32 National Defense 6 2011-07-01 2011-07-01 false Air Force claims organization. 842.11 Section 842.11 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE CLAIMS AND LITIGATION ADMINISTRATIVE CLAIMS Functions and Responsibilities § 842.11 Air Force claims organization. Air...
Biochemical analysis of force-sensitive responses using a large-scale cell stretch device.
Renner, Derrick J; Ewald, Makena L; Kim, Timothy; Yamada, Soichiro
2017-09-03
Physical force has emerged as a key regulator of tissue homeostasis, and plays an important role in embryogenesis, tissue regeneration, and disease progression. Currently, the details of protein interactions under elevated physical stress are largely missing, therefore, preventing the fundamental, molecular understanding of mechano-transduction. This is in part due to the difficulty isolating large quantities of cell lysates exposed to force-bearing conditions for biochemical analysis. We designed a simple, easy-to-fabricate, large-scale cell stretch device for the analysis of force-sensitive cell responses. Using proximal biotinylation (BioID) analysis or phospho-specific antibodies, we detected force-sensitive biochemical changes in cells exposed to prolonged cyclic substrate stretch. For example, using promiscuous biotin ligase BirA* tagged α-catenin, the biotinylation of myosin IIA increased with stretch, suggesting the close proximity of myosin IIA to α-catenin under a force bearing condition. Furthermore, using phospho-specific antibodies, Akt phosphorylation was reduced upon stretch while Src phosphorylation was unchanged. Interestingly, phosphorylation of GSK3β, a downstream effector of Akt pathway, was also reduced with stretch, while the phosphorylation of other Akt effectors was unchanged. These data suggest that the Akt-GSK3β pathway is force-sensitive. This simple cell stretch device enables biochemical analysis of force-sensitive responses and has potential to uncover molecules underlying mechano-transduction.
Naval Expeditionary Logistics: A Handbook for Complementing and Supporting Land Forces
2006-09-01
required for Navy or Marine Corps forces assigned or attached to other commands, services, or nations. (5) (U) Assign responsibilities to support...PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response , including...accomplished by reviewing numerous documents of military units and federal agencies whose principal responsibility is expeditionary warfare and
NASA Technical Reports Server (NTRS)
Michalopoulos, C. D.
1974-01-01
Optimal control theory is applied to analyze the transient response of discrete linear systems to forcing functions with unknown time dependence but having known bounds. Particular attention is given to forcing functions which include: (1) maximum displacement of any given mass element, (2) maximum relative displacement of any two adjacent masses, and (3) maximum acceleration of a given mass. Linear mechanical systems with an arbitrary number of degrees of freedom and only one forcing function acting are considered. In the general case, the desired forcing function is found to be a function that switches from the upper-to-lower bound and vice-versa at certain moments of time. A general procedure for finding such switching times is set forth.
NASA Technical Reports Server (NTRS)
Fralick, G. C.
1982-01-01
It is shown that a conventional electronic frequency compensator does not provide adequate compensation near the resonant frequency of a lightly damped second order system, such as the drag force anemometer. The reason for this is discussed, and a simple circuit modification is presented which overcomes the difficulty. The improvement is shown in theoretical frequency response curves as well as in the experimental results from some typical drag force anemometers.
NASA Technical Reports Server (NTRS)
Dizio, Paul; Lackner, James R.; Evanoff, John N.
1987-01-01
The goal of this investigation was to determine whether the vestibular response to vertical, z-axis body rotation in the dark is influenced by the magnitude of gravitoinertial force. The parameters measured were the nystagmus and the duration of illusory self-motion elicited in blindfolded subjects by cessation of such rotation during the free-fall, high, and terrestrial force phases of parabolic flight maneuvers. The pattern of findings is consistent with the responses that were observed earlier to constant levels of Coriolis cross-coupled stimulation during parabolic flight maneuvers both in terms of the mode of nystagmus suppression and the effect of G-level.
Sugii, Mari Miura; Barreto, Bruno de Castro Ferreira; Francisco Vieira-Júnior, Waldemir; Simone, Katia Regina Izola; Bacchi, Ataís; Caldas, Ricardo Armini
2018-01-01
The aim of his study was to evaluate the stress on tooth and alveolar bone caused by orthodontic intrusion forces in a supraerupted upper molar, by using a three-dimensional Finite Element Method (FEM). A superior maxillary segment was modeled in the software SolidWorks 2010 (SolidWorks Corporation, Waltham, MA, USA) containing: cortical and cancellous bone, supraerupted first molar, periodontal tissue and orthodontic components. A finite element model has simulated intrusion forces of 4N onto a tooth, directed to different mini-screw locations. Three different intrusion mechanics vectors were simulated: anchoring on a buccal mini-implant; anchoring on a palatal mini-implant and the association of both anchorage systems. All analyses were performed considering the minimum principal stress and total deformation. Qualitative analyses exhibited stress distribution by color maps. Quantitative analysis was performed with a specific software for reading and solving numerical equations (ANSYS Workbench 14, Ansys, Canonsburg, Pennsylvania, USA). Intrusion forces applied from both sides (buccal and palatal) resulted in a more homogeneous stress distribution; no high peak of stress was detected and it has allowed a vertical resultant movement. Buccal or palatal single-sided forces resulted in concentrated stress zones with higher values and tooth tipping to respective force side. Unilateral forces promoted higher stress in root apex and higher dental tipping. The bilateral forces promoted better distribution without evidence of dental tipping. Bilateral intrusion technique suggested lower probability of root apex resorption.
NASA Astrophysics Data System (ADS)
Shoop, Brian; Johnston, Michael; Goehring, Richard; Moneyhun, Jon; Skibba, Brian
2006-05-01
MDARS is a Semi-autonomous unmanned ground vehicle with intrusion detection & assessment, product & barrier assessment payloads. Its functions include surveillance, security, early warning, incident first response and product and barrier status primarily focused on a depot/munitions security mission at structured/semi-structured facilities. MDARS is in Systems Development and Demonstration (SDD) under the Product Manager for Force Protection Systems (PM-FPS). MDARS capabilities include semi-autonomous navigation, obstacle avoidance, motion detection, day and night imagers, radio frequency tag inventory/barrier assessment and audio challenge and response. Four SDD MDARS Patrol Vehicles have been undergoing operational evaluation at Hawthorne Army Depot, NV (HWAD) since October 2004. Hawthorne personnel were trained to administer, operate and maintain the system in accordance with the US Army Military Police School (USAMPS) Concept of Employment and the PM-FPS MDARS Integrated Logistic Support Plan. The system was subjected to intensive periods of evaluation under the guidance and control of the Army Test and Evaluation Center (ATEC) and PM-FPS. Significantly, in terms of User acceptance, the system has been under the "operational control" of the installation performing security and force protection missions in support of daily operations. This evaluation is intended to assess MDARS operational effectiveness in an operational environment. Initial observations show that MDARS provides enhanced force protection, can potentially reduce manpower requirements by conducting routine tasks within its design capabilities and reduces Soldier exposure in the initial response to emerging incidents and situations. Success of the MDARS program has been instrumental in the design and development of two additional robotic force protection programs. The first was the USAF Force Protection Battle Lab sponsored Remote Detection Challenge & Response (REDCAR) concept demonstration executed by the Air Force Robotics Lab (AFRL). The REDCAR used an MDARS PUV as the central robotic technology and expanded the concept to incorporate a smaller high speed platform (SCOUT) equipped with lethal, non-lethal and challenge components as an engagement platform and, in a marsupial configuration on the MDARS, a small UGV that can be deployed to investigate close quarters areas. The Family of Integrated Rapid Response Equipment (FIRRE) program further expands these concepts by incorporating and adapting other mobile/tactical force protection equipment with a more robust Unmanned Ground Vehicle into an "Expeditionary" configuration to provide the current force with a rapidly deployable force protection system that can operate in austere less structured and protected environments. A USAMPS/ MANCEN sponsored "FIRRE System Demonstration" in Iraq is scheduled to begin in FY '07.
Biphasic force response to iso-velocity stretch in airway smooth muscle.
Norris, Brandon A; Lan, Bo; Wang, Lu; Pascoe, Christopher D; Swyngedouw, Nicholas E; Paré, Peter D; Seow, Chun Y
2015-10-01
Airway smooth muscle (ASM) in vivo is constantly subjected to oscillatory strain due to tidal breathing and deep inspirations. ASM contractility is known to be adversely affected by strains, especially those of large amplitudes. Based on the cross-bridge model of contraction, it is likely that strain impairs force generation by disrupting actomyosin cross-bridge interaction. There is also evidence that strain modulates muscle stiffness and force through induction of cytoskeletal remodeling. However, the molecular mechanism by which strain alters smooth muscle function is not entirely clear. Here, we examine the response of ASM to iso-velocity stretches to probe the components within the muscle preparation that give rise to different features in the force response. We found in ASM that force response to a ramp stretch showed a biphasic feature, with the initial phase associated with greater muscle stiffness compared with that in the later phase, and that the transition between the phases occurred at a critical strain of ∼3.3%. Only strains with amplitudes greater than the critical strain could lead to reduction in force and stiffness of the muscle in the subsequent stretches. The initial-phase stiffness was found to be linearly related to the degree of muscle activation, suggesting that the stiffness stems mainly from attached cross bridges. Both phases were affected by the degree of muscle activation and by inhibitors of myosin light-chain kinase, PKC, and Rho-kinase. Different responses due to different interventions suggest that cross-bridge and cytoskeletal stiffness is regulated differently by the kinases. Copyright © 2015 the American Physiological Society.
Task Force on Confidentiality: A Report
ERIC Educational Resources Information Center
Campbell, Roger
1978-01-01
After discussing opening the admission file, challenging the contents, and retention of records the NACAC Task Force recommends that the House of Representatives Bill 9982 be discarded. The more institutions are allowed to consider responsible information, responsibly gathered within reasonable limits, the better they will serve individuals and…
Charting a New Path: Modernizing the U.S. Air Force Fighter Pilots Career Development
2015-12-01
truly provides no new incentives for undecided fighter pilots and is proving to be an antiquated attempt to maintain the fighter pilot force...growing technological requirements. Weapons shops are responsible for a growing number of responsibilities to support combat operations. Crypto
Liu, Wei; Xie, Shang-Ping; Liu, Zhengyu; Zhu, Jiang
2017-01-01
Changes in the Atlantic Meridional Overturning Circulation (AMOC) are moderate in most climate model projections under increasing greenhouse gas forcing. This intermodel consensus may be an artifact of common model biases that favor a stable AMOC. Observationally based freshwater budget analyses suggest that the AMOC is in an unstable regime susceptible for large changes in response to perturbations. By correcting the model biases, we show that the AMOC collapses 300 years after the atmospheric CO 2 concentration is abruptly doubled from the 1990 level. Compared to an uncorrected model, the AMOC collapse brings about large, markedly different climate responses: a prominent cooling over the northern North Atlantic and neighboring areas, sea ice increases over the Greenland-Iceland-Norwegian seas and to the south of Greenland, and a significant southward rain-belt migration over the tropical Atlantic. Our results highlight the need to develop dynamical metrics to constrain models and the importance of reducing model biases in long-term climate projection.
Overlooked possibility of a collapsed Atlantic Meridional Overturning Circulation in warming climate
Liu, Wei; Xie, Shang-Ping; Liu, Zhengyu; Zhu, Jiang
2017-01-01
Changes in the Atlantic Meridional Overturning Circulation (AMOC) are moderate in most climate model projections under increasing greenhouse gas forcing. This intermodel consensus may be an artifact of common model biases that favor a stable AMOC. Observationally based freshwater budget analyses suggest that the AMOC is in an unstable regime susceptible for large changes in response to perturbations. By correcting the model biases, we show that the AMOC collapses 300 years after the atmospheric CO2 concentration is abruptly doubled from the 1990 level. Compared to an uncorrected model, the AMOC collapse brings about large, markedly different climate responses: a prominent cooling over the northern North Atlantic and neighboring areas, sea ice increases over the Greenland-Iceland-Norwegian seas and to the south of Greenland, and a significant southward rain-belt migration over the tropical Atlantic. Our results highlight the need to develop dynamical metrics to constrain models and the importance of reducing model biases in long-term climate projection. PMID:28070560
Non-contact tensile viscoelastic characterization of microscale biological materials
NASA Astrophysics Data System (ADS)
Li, Yuhui; Hong, Yuan; Xu, Guang-Kui; Liu, Shaobao; Shi, Qiang; Tang, Deding; Yang, Hui; Genin, Guy M.; Lu, Tian Jian; Xu, Feng
2018-06-01
Many structures and materials in nature and physiology have important "meso-scale" structures at the micron length-scale whose tensile responses have proven difficult to characterize mechanically. Although techniques such as atomic force microscopy and micro- and nano-identation are mature for compression and indentation testing at the nano-scale, and standard uniaxial and shear rheometry techniques exist for the macroscale, few techniques are applicable for tensile-testing at the micrometre-scale, leaving a gap in our understanding of hierarchical biomaterials. Here, we present a novel magnetic mechanical testing (MMT) system that enables viscoelastic tensile testing at this critical length scale. The MMT system applies non-contact loading, avoiding gripping and surface interaction effects. We demonstrate application of the MMT system to the first analyses of the pure tensile responses of several native and engineered tissue systems at the mesoscale, showing the broad potential of the system for exploring micro- and meso-scale analysis of structured and hierarchical biological systems.
Sequential megafaunal collapse in the North Pacific Ocean: An ongoing legacy of industrial whaling?
Springer, A.M.; Estes, J.A.; Van Vliet, Gus B.; Williams, T.M.; Doak, D.F.; Danner, E.M.; Forney, K.A.; Pfister, B.
2003-01-01
Populations of seals, sea lions, and sea otters have sequentially collapsed over large areas of the northern North Pacific Ocean and southern Bering Sea during the last several decades. A bottom-up nutritional limitation mechanism induced by physical oceanographic change or competition with fisheries was long thought to be largely responsible for these declines. The current weight of evidence is more consistent with top-down forcing. Increased predation by killer whales probably drove the sea otter collapse and may have been responsible for the earlier pinniped declines as well. We propose that decimation of the great whales by post-World War II industrial whaling caused the great whales' foremost natural predators, killer whales, to begin feeding more intensively on the smaller marine mammals, thus "fishing-down" this element of the marine food web. The timing of these events, information on the abundance, diet, and foraging behavior of both predators and prey, and feasibility analyses based on demographic and energetic modeling are all consistent with this hypothesis.
Sequential megafaunal collapse in the North Pacific Ocean: An ongoing legacy of industrial whaling?
Springer, A. M.; Estes, J. A.; van Vliet, G. B.; Williams, T. M.; Doak, D. F.; Danner, E. M.; Forney, K. A.; Pfister, B.
2003-01-01
Populations of seals, sea lions, and sea otters have sequentially collapsed over large areas of the northern North Pacific Ocean and southern Bering Sea during the last several decades. A bottom-up nutritional limitation mechanism induced by physical oceanographic change or competition with fisheries was long thought to be largely responsible for these declines. The current weight of evidence is more consistent with top-down forcing. Increased predation by killer whales probably drove the sea otter collapse and may have been responsible for the earlier pinniped declines as well. We propose that decimation of the great whales by post-World War II industrial whaling caused the great whales' foremost natural predators, killer whales, to begin feeding more intensively on the smaller marine mammals, thus “fishing-down” this element of the marine food web. The timing of these events, information on the abundance, diet, and foraging behavior of both predators and prey, and feasibility analyses based on demographic and energetic modeling are all consistent with this hypothesis. PMID:14526101
Non-contact tensile viscoelastic characterization of microscale biological materials
NASA Astrophysics Data System (ADS)
Li, Yuhui; Hong, Yuan; Xu, Guang-Kui; Liu, Shaobao; Shi, Qiang; Tang, Deding; Yang, Hui; Genin, Guy M.; Lu, Tian Jian; Xu, Feng
2018-01-01
Many structures and materials in nature and physiology have important "meso-scale" structures at the micron length-scale whose tensile responses have proven difficult to characterize mechanically. Although techniques such as atomic force microscopy and micro- and nano-identation are mature for compression and indentation testing at the nano-scale, and standard uniaxial and shear rheometry techniques exist for the macroscale, few techniques are applicable for tensile-testing at the micrometre-scale, leaving a gap in our understanding of hierarchical biomaterials. Here, we present a novel magnetic mechanical testing (MMT) system that enables viscoelastic tensile testing at this critical length scale. The MMT system applies non-contact loading, avoiding gripping and surface interaction effects. We demonstrate application of the MMT system to the first analyses of the pure tensile responses of several native and engineered tissue systems at the mesoscale, showing the broad potential of the system for exploring micro- and meso-scale analysis of structured and hierarchical biological systems.
Stability of peatland carbon to rising temperatures
Wilson, R. M.; Hopple, A. M.; Tfaily, M. M.; ...
2016-12-13
Peatlands contain one-third of soil carbon (C), mostly buried in deep, saturated anoxic zones (catotelm). The response of catotelm C to climate forcing is uncertain, because prior experiments have focused on surface warming. Here, we show that deep peat heating of a 2 m-thick peat column results in an exponential increase in CH 4 emissions. But, this response is due solely to surface processes and not degradation of catotelm peat. Incubations show that only the top 20–30 cm of peat from experimental plots have higher CH 4 production rates at elevated temperatures. Radiocarbon analyses demonstrate that CH 4 and COmore » 2 are produced primarily from decomposition of surface-derived modern photosynthate, not catotelm C. Furthermore, there are no differences in microbial abundances, dissolved organic matter concentrations or degradative enzyme activities among treatments. Our results suggest that although surface peat will respond to increasing temperature, the large reservoir of catotelm C is stable under current anoxic conditions.« less
Stability of peatland carbon to rising temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, R. M.; Hopple, A. M.; Tfaily, M. M.
Peatlands contain one-third of soil carbon (C), mostly buried in deep, saturated anoxic zones (catotelm). The response of catotelm C to climate forcing is uncertain, because prior experiments have focused on surface warming. Here, we show that deep peat heating of a 2 m-thick peat column results in an exponential increase in CH 4 emissions. But, this response is due solely to surface processes and not degradation of catotelm peat. Incubations show that only the top 20–30 cm of peat from experimental plots have higher CH 4 production rates at elevated temperatures. Radiocarbon analyses demonstrate that CH 4 and COmore » 2 are produced primarily from decomposition of surface-derived modern photosynthate, not catotelm C. Furthermore, there are no differences in microbial abundances, dissolved organic matter concentrations or degradative enzyme activities among treatments. Our results suggest that although surface peat will respond to increasing temperature, the large reservoir of catotelm C is stable under current anoxic conditions.« less
Calcium regulation of oxidative phosphorylation in rat skeletal muscle mitochondria.
Kavanagh, N I; Ainscow, E K; Brand, M D
2000-02-24
Activation of oxidative phosphorylation by physiological levels of calcium in mitochondria from rat skeletal muscle was analysed using top-down elasticity and regulation analysis. Oxidative phosphorylation was conceptually divided into three subsystems (substrate oxidation, proton leak and phosphorylation) connected by the membrane potential or the protonmotive force. Calcium directly activated the phosphorylation subsystem and (with sub-saturating 2-oxoglutarate) the substrate oxidation subsystem but had no effect on the proton leak kinetics. The response of mitochondria respiring on 2-oxoglutarate at two physiological concentrations of free calcium was quantified using control and regulation analysis. The partial integrated response coefficients showed that direct stimulation of substrate oxidation contributed 86% of the effect of calcium on state 3 oxygen consumption, and direct activation of the phosphorylation reactions caused 37% of the increase in phosphorylation flux. Calcium directly activated phosphorylation more strongly than substrate oxidation (78% compared to 45%) to achieve homeostasis of mitochondrial membrane potential during large increases in flux.
Atmospheric response to anomalous autumn surface forcing in the Arctic Basin
NASA Astrophysics Data System (ADS)
Cassano, Elizabeth N.; Cassano, John J.
2017-09-01
Data from four reanalyses are analyzed to evaluate the downstream atmospheric response both spatially and temporally to anomalous autumn surface forcing in the Arctic Basin. Running weekly mean skin temperature anomalies were classified using the self-organizing map algorithm. The resulting classes were used to both composite the initial atmospheric state and determine how the atmosphere evolves from this state. The strongest response was to anomalous forcing—positive skin temperature and total surface energy flux anomalies and reduced sea ice concentration—in the Barents and Kara Seas. Analysis of the evolution of the atmospheric state for 12 weeks after the initial forcing showed a persistence in the anomalies in this area which led to a buildup of heat in the atmosphere. This resulted in positive 1000-500 hPa thickness and high-pressure circulation anomalies in this area which were associated with cold air advection and temperatures over much of central and northern Asia. Evaluation of days with the opposite forcing (i.e., negative skin temperature anomalies and increased sea ice concentration in the Barents and Kara Seas) showed a mirrored, opposite downstream atmospheric response. Other patterns with positive skin temperature anomalies in the Arctic Basin did not show the same response most likely because the anomalies were not as strong nor did they persist for as many weeks following the initial forcing.
32 CFR 855.5 - Responsibilities and authorities.
Code of Federal Regulations, 2012 CFR
2012-07-01
... aircraft use of Air Force airfields, subject to the laws and regulations of the US, or to applicable international agreements (e.g., status of forces agreements) with the country in which the Air Force... 855.5 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE AIRCRAFT CIVIL...