Science.gov

Sample records for forceps tweezers hooks

  1. The history and evolution of surgical instruments. VII. Spring forceps (tweezers), hooks and simple retractors.

    PubMed Central

    Kirkup, J.

    1996-01-01

    Instruments manufactured by bending a basic metal strip or rod, either about its middle to create spring forceps (tweezers), or towards one extremity to create hooks and retractors are related structures. Spring forceps depend on tension mediated at the bend (hoop) or fixed end which is transmitted as dynamic 'spring' to the jaws, whereas the bend of hooks and retractors remains fixed and static. If such instruments refine the digital postures of pinch, pincer and retraction during surgery, they have not supplanted these manual actions entirely. After a brief historical introduction, the structure, modifications, functions and controls of spring forceps are analysed. Importantly, this instrument enjoys both right and left-handed functions, some of which are ancient, some transient as haemostats and needle-holders, and some, including left-handed dissection, surprisingly recent. Hooks are sharp or blunt and, among other functions, pre-date the left-handed spring forceps for dissection; in general hooks function as retractors. Hand-held retractors are enlarged blunt hooks, the wide retracting contact surface reducing trauma to wound margins and viscera. The physical effort of employing these retractors deep in body cavities is abated by applying them autostatically around a square or circular frame. Images Figure 1 PMID:8943642

  2. Obstetrical Forceps

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Marshall inventors Seth Lawson and Stanley Smeltzer display a pair of obstetrical forceps they designed. The forceps, made from composite space-age materials, measure the force applied during instrument-assisted delivery. The new forceps will help medical students get a feel for instrument-assisted deliveries before entering practice.

  3. 'Tusked' forceps for rapid and atraumatic subcuticular closure of the skin.

    PubMed

    Kelly, M B

    1998-03-01

    A modified skin forceps is presented that combines the advantages of skin hook and dressing forceps. Its use facilitates the atraumatic placement of continuous intradermal sutures by the surgeon who is working unassisted.

  4. Hands-free hook for endourological procedures.

    PubMed

    Ono, Yoshihiro; Suzuki, Kazuhiro

    2003-10-01

    We present here a hook that can be used to free both hands from holding the endoscope during endourological procedures. We made the hook from a wire hanger, and thus, it is a convenient, cheap and easy tool to make using this everyday item. As this hook makes the insertion of the endoscope into the urethra easier, it allows urologists to perform endourological procedures, which require the handling of biopsy forceps, a basket wire and lithotripsy probes, unassisted.

  5. Forceps: towards obsolescence or revival?

    PubMed

    Dietz, Hans Peter

    2015-04-01

    Cesarean section rates have become a political issue, attracting the attention of governments, health bureaucrats and professional organizations. In some instances this has led to a renewed interest in forceps delivery, even Kielland's rotational forceps. It is suggested that calls for a greater use of forceps, especially rotational forceps, are ill-advised and commonly based on ignorance of recent urogynecological and imaging literature. Forceps use is associated with a much higher likelihood of major maternal trauma, especially to the anal sphincter and levator ani muscles, which may result in substantial future morbidity. Hence, its use should be avoided whenever possible. This is particularly obvious for rotational forceps. PMID:25625336

  6. The birth of forceps

    PubMed Central

    Sheikh, Sukhera; Ganesaratnam, Inithan; Jan, Haider

    2013-01-01

    Operative vaginal delivery has been described since the Middle Ages. During this time, however, labour would be sustained over several days and intrapartum death almost inevitable. In these circumstances, intervention involving the use of surgical instruments or even kitchen utensils would serve purely as an attempt to avoid maternal mortality. The establishment of forceps-assisted delivery as a means of avoiding both maternal and neonatal morbidity was initiated in the 16th century by the Chamberlen family and later developed over several centuries by leading obstetricians of the time including Simpson, Barnes and Keilland. The evolution of forceps is a fascinating story which is rich in history. Despite the development of Ventouse and the increasing use of Caesarean section for difficult delivery, forceps remain an integral part of obstetric practice. The striking resemblance of modern day forceps to the original instruments used by the Chamberlens is a testament to both the family's ingenuity and enterprise as well as the subsequent pioneering obstetricians who followed in their footsteps. PMID:23885296

  7. Performance and Cost of Disposable Biopsy Forceps in Upper Gastrointestinal Endoscopy: Comparison with Reusable Biopsy Forceps

    PubMed Central

    Lim, Chul-Hyun; Kim, Won Chul; Kim, Jin Soo; Cho, Yu Kyung; Park, Jae Myung; Lee, In Seok; Kim, Sang Woo; Choi, Kyu Yong; Chung, In-Sik

    2012-01-01

    Background/Aims It is believed that disposable biopsy forceps are more costly than reusable biopsy forceps. In this study, we evaluated performance and cost of disposable forceps versus reusable forceps in esophagogastroduodenoscopic biopsy. Methods Between October 2009 and July 2010, we enrolled 200 patients undergoing esophagogastroduodenoscopic biopsy at Seoul St. Mary's Hospital. Biopsies were performed with 100 disposable or 5 reusable forceps by random assignment. Seventy-five additional patients were studied to estimate durability of reusable forceps. The assisting nurses estimated the performance of the forceps. The evaluation of costs included purchase prices and reprocessing costs. The adequacy of the sample was estimated according to the diameter of the obtained tissue. Results Performance of disposable forceps was estimated as excellent in 97.0%, good in 2.0% and adequate in 1.0%. Reusable forceps were estimated as excellent in 36.0%, good in 36.0%, adequate in 25.1% and inadequate in 2.9%. The performance of reusable forceps declined with the number of uses. The reprocessing cost of reusable forceps for one biopsy session was calculated as ₩8,021. The adequacy of the sample was excellent for both forceps. Conclusions Disposable forceps showed excellent performance. Considering the reprocessing costs of reusable forceps, usage of disposable forceps with a low price should be considered. PMID:22741133

  8. Composite redesign of obstetrical forceps

    NASA Technical Reports Server (NTRS)

    Lawson, Seth W.; Smeltzer, Stan S.

    1994-01-01

    Due to the increase in the number of children being born recently, medical technology has struggled to keep pace in certain areas. In these areas, particular needs have arisen to which the subject of this paper is directed. In the area of obstetrics, the forceps design and function has remained relatively unchanged for a number of years. In an effort to advance the technology, NASA Marshall Space Flight Center has been asked by the obstetrical community to help in a redesign of the obstetric forceps. Traditionally the forceps design has been of tubular stainless steel, constructed in two halves which interlock and hinge to provide the gripping force necessary to aid in the delivery of an infant. The stainless steel material was used to provide for ease of cleaning and sterilization. However, one of the drawbacks of the non-flexible steel design is that excessive force can be placed upon an infants head which could result in damage or injury to the infant. The redesign of this particular obstetric tool involves applying NASA's knowledge of advanced materials and state of the art instrumentation to create a tool which can be used freely throughout the obstetrics community without the fear of injury to an infant being delivered.

  9. [History and sidelights on the forceps].

    PubMed

    Dumont, M

    1984-01-01

    The author starts by showing that the first forceps were originally designed to handle hot metal in founderies and that the word derived from "formus" (hot) and "capere" (to take). The author, Professor Dumont, tries to trace the history of the development of modern forceps, discussing whether the Arabs or such well known authors of classical works as Roesslin, Raynald, Rueff and Rousset knew of the instrument or whether they just described instruments of destruction. Crainz in 1941 had written an article to discuss whether the early Romans had forceps and came to no firm conclusion. Speert in 1957 said that a live baby had been born earlier than the 17th Century, possibly as early as the 2nd or 3rd century of the Roman empire, i.e. over 300 years before Jesus-Christ, by forceps. The description is given of a bas-relief depicting forceps delivery but no one knows whether the bas-relief is genuine or not. The discovery of the Chamberlen forceps in 1813 at Woodham Mortimer Hall in Essex, England, and the lengthy description of how the Chamberlens kept the secret of the invention of the forceps over several generations is very well described. Then follows the story of Jean Palfyn's "mains de fer" which led later to Levret and his long curved forceps. Returning to England, the authors describes how William Smellie covered his forceps with leather so that the patients should not feel the cold metal or hear the clink of the handles. The author then quotes Dr Slop, who appears in Laurence Sterne's "Tristram Shandy" and who knew the Smellie's forceps. Sacombe was an arch enemy of instrumental delivery. The role of the Dane Saxtorph, and how Antoine Dubois delivered Napoleon's son, the future King of Rome, by forceps, is reviewed. Madame La Chapelle and her work as well as that of Scanzoni, and finally of Simpson who first used anaesthesia after inventing a forceps, continues the history. Great names such as Pajot, Tarnier with his axis-traction forceps and finally Barton

  10. 21 CFR 868.5780 - Tube introduction forceps.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Tube introduction forceps. 868.5780 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5780 Tube introduction forceps. (a) Identification. Tube introduction forceps (e.g., Magill forceps) are a right-angled device used to grasp...

  11. 21 CFR 868.5780 - Tube introduction forceps.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Tube introduction forceps. 868.5780 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5780 Tube introduction forceps. (a) Identification. Tube introduction forceps (e.g., Magill forceps) are a right-angled device used to grasp...

  12. 21 CFR 868.5780 - Tube introduction forceps.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Tube introduction forceps. 868.5780 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5780 Tube introduction forceps. (a) Identification. Tube introduction forceps (e.g., Magill forceps) are a right-angled device used to grasp...

  13. 21 CFR 868.5780 - Tube introduction forceps.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Tube introduction forceps. 868.5780 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5780 Tube introduction forceps. (a) Identification. Tube introduction forceps (e.g., Magill forceps) are a right-angled device used to grasp...

  14. 21 CFR 868.5780 - Tube introduction forceps.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Tube introduction forceps. 868.5780 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5780 Tube introduction forceps. (a) Identification. Tube introduction forceps (e.g., Magill forceps) are a right-angled device used to grasp...

  15. Split-mouth comparison of physics forceps and extraction forceps in orthodontic extraction of upper premolars.

    PubMed

    Hariharan, Samyuktha; Narayanan, Vinod; Soh, Chen Loong

    2014-12-01

    We compared outcome variables (operative complications, inflammatory complications, and operating time) in patients being treated by orthodontic extraction of upper premolars with the Physics forceps or the universal extraction forceps. We organised a single blind, split-mouth clinical trial to compare the outcomes of the 2 groups (n=54 premolars). The Physics forceps group had lower mean (SD) visual analogue scores (VAS) for pain (0.59 (0.57)) on the first postoperative day than the other group (1.04 (0.85)) (p=0.03). There were no other significant differences between the 2 groups in any other variable studied.

  16. Lunar crane hook

    NASA Technical Reports Server (NTRS)

    Cash, John Wilson, III; Cone, Alan E.; Garolera, Frank J.; German, David; Lindabury, David Peter; Luckado, Marshall Cleveland; Murphey, Craig; Rowell, John Bryan; Wilkinson, Brad

    1988-01-01

    The base and ball hook system is an attachment that is designed to be used on the lunar surface as an improved alternative to the common crane hook and eye system. The design proposed uses an omni-directional ball hook and base to overcome the design problems associated with a conventional crane hook. The base and ball hook is not sensitive to cable twist which would render a robotic lunar crane useless since there is little atmospheric resistance to dampen the motion of an oscillating member. The symmetric characteristics of the ball hook and base eliminates manual placement of the ball hook into the base; commonly associated with the typical hook and eye stem. The major advantage of the base and ball hook system is it's ease of couple and uncouple modes that are advantages during unmanned robotic lunar missions.

  17. Obstetrical Forceps Would Limit Force On An Infant's Head

    NASA Technical Reports Server (NTRS)

    Smeltzer, Stan; Lawson, Seth

    1995-01-01

    Improved obstetrical forceps proposed to reduce injuries to newborn infants. Fabricated mostly of thermoplastic material. Reinforcing fibers added in hinge region of forceps. Combination of material, size, and shape chosen to make forceps yield elastically by amount keeping applied force from rising beyond maximum allowable value. Fiber-optic sensors for measuring strains embedded in forceps. Strain measurements used to compute tensile and compressive forces applied to infant's head.

  18. 21 CFR 884.4400 - Obstetric forceps.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Obstetric forceps. 884.4400 Section 884.4400 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL... handles, designed to grasp and apply traction to the fetal head in the birth passage and...

  19. Are electron tweezers possible?

    PubMed

    Oleshko, Vladimir P; Howe, James M

    2011-11-01

    Positively answering the question in the title, we demonstrate in this work single electron beam trapping and steering of 20-300nm solid Al nanoparticles generated inside opaque submicron-sized molten Al-Si eutectic alloy spheres. Imaging of solid nanoparticles and liquid alloy in real time was performed using energy filtering in an analytical transmission electron microscope (TEM). Energy-filtering TEM combined with valence electron energy-loss spectroscopy enabled us to investigate in situ nanoscale transformations of the internal structure, temperature dependence of plasmon losses, and local electronic and optical properties under melting and crystallization of individual binary alloy particles. For particles below 20nm in size, enhanced vibrations of the dynamic solid-liquid interface due to instabilities near the critical threshold were observed just before melting. The obtained results indicate that focused electron beams can act as a tool for manipulation of metal nanoparticles by transferring linear and angular mechanical momenta. Such thermally assisted electron tweezers can be utilized for touchless manipulation and processing of individual nano-objects and potentially for fabrication of assembled nanodevices with atomic level sensitivity and lateral resolution provided by modern electron optical systems. This is by three orders of magnitude better than for light microscopy utilized in conventional optical tweezers. New research directions and potential applications of trapping and tracking of nano-objects by focused electron beams are outlined.

  20. CP-OCT sensor guided SMART micro-forceps

    NASA Astrophysics Data System (ADS)

    Song, Cheol; Gehlbach, Peter L.; Kang, Jin U.

    2014-02-01

    Even the most stable hands have unintended movements on the order of 50-100 microns within 0-15 Hz. Micro-forceps are one of the frequently used microsurgical tools used to grasp thin layers of tissue during microsurgery. Here, a handheld Smart Micromanipulation Aided Robotic-surgery Tool (SMART) micro-forceps is developed by integrating a fiber-optic common-path optical coherence tomography (CP-OCT) sensor into the micro-forceps. This forceps design could significantly improve performance by canceling unwanted hand tremor during the moment of a grasping. The basic grasping and peeling functions of the micro-forceps are evaluated in dry phantoms and in a biological tissue model.

  1. On chip shapeable optical tweezers

    NASA Astrophysics Data System (ADS)

    Renaut, C.; Cluzel, B.; Dellinger, J.; Lalouat, L.; Picard, E.; Peyrade, D.; Hadji, E.; de Fornel, F.

    2013-07-01

    Particles manipulation with optical forces is known as optical tweezing. While tweezing in free space with laser beams was established in the 1980s, integrating the optical tweezers on a chip is a challenging task. Recent experiments with plasmonic nanoantennas, microring resonators, and photonic crystal nanocavities have demonstrated optical trapping. However, the optical field of a tweezer made of a single microscopic resonator cannot be shaped. So far, this prevents from optically driven micromanipulations. Here we propose an alternative approach where the shape of the optical trap can be tuned by the wavelength in coupled nanobeam cavities. Using these shapeable tweezers, we present micromanipulation of polystyrene microspheres trapped on a silicon chip. These results show that coupled nanobeam cavities are versatile building blocks for optical near-field engineering. They open the way to much complex integrated tweezers using networks of coupled nanobeam cavities for particles or bio-objects manipulation at a larger scale.

  2. Comparative Evaluation of Efficacy of Physics Forceps versus Conventional Forceps in Orthodontic Extractions: A Prospective Randomized Split Mouth Study

    PubMed Central

    Managutti, Anil M; Menat, Shailesh; Agarwal, Arvind; Shah, Dishan; Patel, Jigar

    2016-01-01

    Introduction Tooth extraction is one of the most commonly performed procedures in dentistry. It is usually a traumatic procedure often resulting in immediate destruction and loss of alveolar bone and surrounding soft tissues. Various instruments have been described to perform atraumatic extractions which can prevent damage to the paradental structures. Recently developed physics forceps is one of the instruments which is claimed to perform atraumatic extractions. Aim The aim of the present study was to compare the efficacy of physics forceps with conventional forceps in terms of operating time, prevention of marginal bone loss & soft tissue loss, postoperative pain and postoperative complications following bilateral premolar extractions for orthodontic purpose. Materials and Methods In this prospective split-mouth study, outcomes of the 2 groups (n = 42 premolars) requiring extraction of premolars for orthodontic treatment purpose using Physics forceps and Conventional forceps were compared. Clinical outcomes in form of time taken, loss of buccal soft tissue and buccal cortical plate based on extraction defect classification system, postoperative pain and other complication associated with extraction were recorded and compared. Results Statistically significant reduction in the operating time was noted in physics forceps group. Marginal bone loss and soft tissue loss was also significantly lesser in physics forceps group when compared to conventional forceps group. However, there was no statistically significant difference in severity of postoperative pain between both groups. Conclusion The results of the present study suggest that physics forceps was more efficient in reducing operating time and prevention of marginal bone loss & soft tissue loss when compared to conventional forceps in orthodontically indicated premolar extractions.

  3. Comparative Evaluation of Efficacy of Physics Forceps versus Conventional Forceps in Orthodontic Extractions: A Prospective Randomized Split Mouth Study

    PubMed Central

    Managutti, Anil M; Menat, Shailesh; Agarwal, Arvind; Shah, Dishan; Patel, Jigar

    2016-01-01

    Introduction Tooth extraction is one of the most commonly performed procedures in dentistry. It is usually a traumatic procedure often resulting in immediate destruction and loss of alveolar bone and surrounding soft tissues. Various instruments have been described to perform atraumatic extractions which can prevent damage to the paradental structures. Recently developed physics forceps is one of the instruments which is claimed to perform atraumatic extractions. Aim The aim of the present study was to compare the efficacy of physics forceps with conventional forceps in terms of operating time, prevention of marginal bone loss & soft tissue loss, postoperative pain and postoperative complications following bilateral premolar extractions for orthodontic purpose. Materials and Methods In this prospective split-mouth study, outcomes of the 2 groups (n = 42 premolars) requiring extraction of premolars for orthodontic treatment purpose using Physics forceps and Conventional forceps were compared. Clinical outcomes in form of time taken, loss of buccal soft tissue and buccal cortical plate based on extraction defect classification system, postoperative pain and other complication associated with extraction were recorded and compared. Results Statistically significant reduction in the operating time was noted in physics forceps group. Marginal bone loss and soft tissue loss was also significantly lesser in physics forceps group when compared to conventional forceps group. However, there was no statistically significant difference in severity of postoperative pain between both groups. Conclusion The results of the present study suggest that physics forceps was more efficient in reducing operating time and prevention of marginal bone loss & soft tissue loss when compared to conventional forceps in orthodontically indicated premolar extractions. PMID:27630951

  4. Force Feedback Control of Robotic Forceps for Minimally Invasive Surgery

    NASA Astrophysics Data System (ADS)

    Ishii, Chiharu; Kamei, Yusuke

    2008-06-01

    Recently, the robotic surgical support systems are in clinical use for minimally invasive surgery. For improvement in operativity and safety of minimally invasive surgery, the development of haptic forceps manipulator is in demand to help surgeon's immersion and dexterity. We have developed a multi-DOF robotic forceps manipulator using a novel omni-directional bending mechanism, so far. In this paper, in order to control the developed robotic forceps as a slave manipulator, joy-stick type master manipulator with force feedback mechanism for remote control is designed and built, and force feedback bilateral control system was constructed for grasping and bending motions of the robotic forceps. Experimental works were carried out and experimental results showed the effectiveness of the proposed control system.

  5. Undergraduate Construction of Optical Tweezers

    NASA Astrophysics Data System (ADS)

    Hubbell, Lawrence

    2012-10-01

    I will present a poster on the construction of optical tweezers. This will demonstrate the full process one must go through when working on a research project. First I sifted through the internet for papers and information pertaining to the tweezers. Afterwards I discussed the budget with the lab manager. Next I made purchases, however some items, such as the sample mount, needed to be custom made. These I built in the machine shop. Once the tweezers were operational I spent some time ensuring that the mirrors and lenses were adjusted just right, so that the trap performed at full strength. Finally, I used video data of the Brownian motion of trapped silica microspheres to get a reasonable estimate of the trapping stiffness with such particles. As a general note, all of this was done with the intent of leaving the tweezers for future use by other undergraduates. Because of this extra effort was taken to ensure the tweezers were as safe to use as possible. For this reason a visible LASER was chosen over an infrared LASER, in addition, the LASER was oriented parallel to the surface of the table in order to avoid stray upwards beams.

  6. Magnetic tweezers for intracellular applications

    NASA Astrophysics Data System (ADS)

    Hosu, Basarab G.; Jakab, Károly; Bánki, Péter; Tóth, Ferenc I.; Forgacs, Gabor

    2003-09-01

    We have designed and constructed a versatile magnetic tweezer primarily for intracellular investigations. The micromanipulator uses only two coils to simultaneously magnetize to saturation micron-size superparamagnetic particles and generate high magnitude constant field gradients over cellular dimensions. The apparatus resembles a miniaturized Faraday balance, an industrial device used to measure magnetic susceptibility. The device operates in both continuous and pulse modes. Due to its compact size, the tweezers can conveniently be mounted on the stage of an inverted microscope and used for intracellular manipulations. A built-in temperature control unit maintains the sample at physiological temperatures. The operation of the tweezers was tested by moving 1.28 μm diameter magnetic beads inside macrophages with forces near 500 pN.

  7. Reflections on Sandy Hook

    ERIC Educational Resources Information Center

    Trump, Kenneth S.

    2013-01-01

    In this article, the author shares his thoughts for district administrators regarding the Sandy Hook Elementary school tragedy. Administrators heard a lot of potential solutions or attempts at solutions. However, these proposals raise lengthy lists of implementation questions and issues that illustrate a lack of understanding of school operations,…

  8. Development of Microelectromechanical Systems (MEMS) forceps for intraocular surgery

    PubMed Central

    Bhisitkul, R B; Keller, C G

    2005-01-01

    Aim: To develop silicon microforceps for intraocular surgery using Microelectromechanical Systems (MEMS) technology, the application of microchip fabrication techniques for the production of controllable three dimensional devices on the micrometre scale. Methods: Prototype MEMS forceps were designed and manufactured for intraocular surgery. Scanning electron microscopy was used to evaluate device tip construction. Designs using both thermal expansion actuators and conventional mechanical activation were tested in human cadaver eyes and in vivo rabbit eyes to assess functionality in standard vitreoretinal surgery. Results: MEMS forceps were constructed with various tip designs ranging from 100 μm to 2 mm in length. Scanning electron microscopy confirmed accurate construction of micro features such as forceps teeth as small as tens of micrometres. In surgical testing, the silicon forceps tips were effective in surgical manoeuvres, including grasping retinal membranes and excising tissue. The mechanical actuator design on a 20 gauge handle was more operational in the intraocular environment than the thermal expansion actuator design. While handheld operation was possible, the precision of the forceps was best exploited when mounted on a three axis micromanipulator. Conclusion: MEMS microforceps are feasible for conventional vitreoretinal surgery, and offer advances in terms of small scale, operating precision, and construction tolerance. PMID:16299136

  9. Optical tweezers technique and its applications

    NASA Astrophysics Data System (ADS)

    Guo, HongLian; Li, ZhiYuan

    2013-12-01

    Since their advent in the 1980s, optical tweezers have attracted more and more attention due to their unique non-contact and non-invasion characteristics and their wide applications in physics, biology, chemistry, medical science and nanoscience. In this paper, we introduce the basic principle, the history and typical applications of optical tweezers and review our recent experimental works on the development and application of optical tweezers technique. We will discuss in detail several technological issues, including high precision displacement and force measurement in single-trap and dual-trap optical tweezers, multi-trap optical tweezers with each trap independently and freely controlled by means of space light modulator, and incorporation of cylindrical vector optical beams to build diversified optical tweezers beyond the conventional Gaussian-beam optical tweezers. We will address the application of these optical tweezers techniques to study biophysical problems such as mechanical deformation of cell membrane and binding energy between plant microtubule and microtubule associated proteins. Finally we present application of the optical tweezers technique for trapping, transporting, and patterning of metallic nanoparticles, which can be harnessed to manipulate surface plasmon resonance properties of these nanoparticles.

  10. Relationship of difficult forceps delivery to dental arches and occlusion.

    PubMed

    Pirttiniemi, P; Grön, M; Alvesalo, L; Heikkinen, T; Osborne, R

    1994-01-01

    This study examined the relationship between the extensive use of forceps procedures during delivery and later occlusal characteristics. The work uses data collected in National Collaborative Perinatal Research Project (USA), in which more than 60,000 pregnancies and the children's health were followed by regular medical tests and examinations. Of these, a subsample of 2,074 children participated in dental examinations, including the production of dental casts with wax bites to register occlusion. A total of 84 children, 55 boys and 29 girls, were coded as having undergone difficult or very difficult forceps deliveries. A control group was matched by age, sex, race, and site of dental examination. The results show a significant increase in asymmetric molar occlusion (P < 0.005) and canine relations (P < 0.001) in the study group. The sagittal length of the mandibular arch was increased in the difficult forceps delivery group (P < 0.01). In conclusion, difficult forceps procedures are associated with a later asymmetric occlusion.

  11. Hooke's figurations: a figural drawing attributed to Robert Hooke.

    PubMed

    Hunter, Matthew C

    2010-09-20

    The experimental philosopher Robert Hooke (1635-1703) is known to have apprenticed to the leading painter Peter Lely on his first arrival in London in the late 1640s. Yet the relevance of Hooke's artistic training to his mature draughtsmanship and identity has remained unclear. Shedding light on that larger interpretive problem, this article argues for the attribution to Hooke of a figural drawing now in Tate Britain (T10678). This attributed drawing is especially interesting because it depicts human subjects and bears Hooke's name functioning as an artistic signature, both highly unusual features for his draughtsmanship. From evidence of how this drawing was collected and physically placed alongside images by leading artists in the early eighteenth century, I suggest how it can offer new insight into the reception of Hooke and his graphic work in the early Enlightenment. PMID:20973449

  12. Hooke's figurations: a figural drawing attributed to Robert Hooke.

    PubMed

    Hunter, Matthew C

    2010-09-20

    The experimental philosopher Robert Hooke (1635-1703) is known to have apprenticed to the leading painter Peter Lely on his first arrival in London in the late 1640s. Yet the relevance of Hooke's artistic training to his mature draughtsmanship and identity has remained unclear. Shedding light on that larger interpretive problem, this article argues for the attribution to Hooke of a figural drawing now in Tate Britain (T10678). This attributed drawing is especially interesting because it depicts human subjects and bears Hooke's name functioning as an artistic signature, both highly unusual features for his draughtsmanship. From evidence of how this drawing was collected and physically placed alongside images by leading artists in the early eighteenth century, I suggest how it can offer new insight into the reception of Hooke and his graphic work in the early Enlightenment.

  13. Making light work with optical tweezers

    NASA Astrophysics Data System (ADS)

    Block, Steven M.

    1992-12-01

    Microscopic objects, including biological material, can be remotely manipulated with tightly focused beams of infrared laser light. The use of optical traps, or 'optical tweezers', holds great promise for noninvasive micromanipulation and mechanical measurement in cell biology. Optical tweezers are the 'tractor beams' of today's technology.

  14. Optoelectronic tweezers for medical diagnostics

    NASA Astrophysics Data System (ADS)

    Kremer, Clemens; Neale, Steven; Menachery, Anoop; Barrett, Mike; Cooper, Jonathan M.

    2012-01-01

    Optoelectronic tweezers (OET) allows the spatial patterning of electric fields through selected illumination of a photoconductive surface. This enables the manipulation of micro particles and cells by creating non-uniform electrical fields that then produce dielectrophoretic (DEP) forces. The DEP responses of cells differ and can produce negative or positive (repelled or attracted to areas of high electric field) forces. Therefore OET can be used to manipulate individual cells and separate different cell types from each other. Thus OET has many applications for medical diagnostics, demonstrated here with work towards diagnosing Human African Trypanosomiasis, also known as sleeping sickness.

  15. Cell rotation using optoelectronic tweezers.

    PubMed

    Liang, Yuan-Li; Huang, Yuan-Peng; Lu, Yen-Sheng; Hou, Max T; Yeh, J Andrew

    2010-01-01

    A cell rotation method by using optoelectronic tweezers (OET) is reported. The binary image of a typical OET device, whose light and dark sides act as two sets of parallel plates with different ac voltages, was used to create a rotating electric field. Its feasibility for application to electrorotation of cells was demonstrated by rotating Ramos and yeast cells in their pitch axes. The electrorotation by using OET devices is dependent on the medium and cells' electrical properties, the cells' positions, and the OET device's geometrical dimension, as well as the frequency of the electric field. PMID:21267435

  16. Microcrystal manipulation with laser tweezers

    PubMed Central

    Wagner, Armin; Duman, Ramona; Stevens, Bob; Ward, Andy

    2013-01-01

    X-ray crystallography is the method of choice to deduce atomic resolution structural information from macromolecules. In recent years, significant investments in structural genomics initiatives have been undertaken to automate all steps in X-ray crystallography from protein expression to structure solution. Robotic systems are widely used to prepare crystallization screens and change samples on synchrotron beamlines for macromolecular crystallography. The only remaining manual handling step is the transfer of the crystal from the mother liquor onto the crystal holder. Manual mounting is relatively straightforward for crystals with dimensions of >25 µm; however, this step is nontrivial for smaller crystals. The mounting of microcrystals is becoming increasingly important as advances in microfocus synchrotron beamlines now allow data collection from crystals with dimensions of only a few micrometres. To make optimal usage of these beamlines, new approaches have to be taken to facilitate and automate this last manual handling step. Optical tweezers, which are routinely used for the manipulation of micrometre-sized objects, have successfully been applied to sort and mount macromolecular crystals on newly designed crystal holders. Diffraction data from CPV type 1 polyhedrin microcrystals mounted with laser tweezers are presented. PMID:23793156

  17. Mechanics of plant fruit hooks.

    PubMed

    Chen, Qiang; Gorb, Stanislav N; Gorb, Elena; Pugno, Nicola

    2013-04-01

    Hook-like surface structures, observed in some plant species, play an important role in the process of plant growth and seed dispersal. In this study, we developed an elastic model and further used it to investigate the mechanical behaviour of fruit hooks in four plant species, previously measured in an experimental study. Based on Euler-Bernoulli beam theory, the force-displacement relationship is derived, and its Young's modulus is obtained. The result agrees well with the experimental data. The model aids in understanding the mechanics of hooks, and could be used in the development of new bioinspired Velcro-like materials. PMID:23365190

  18. Quantum limited particle sensing in optical tweezers

    SciTech Connect

    Tay, J.W.; Hsu, Magnus T. L.; Bowen, Warwick P.

    2009-12-15

    Particle sensing in optical tweezers systems provides information on the position, velocity, and force of the specimen particles. The conventional quadrant detection scheme is applied ubiquitously in optical tweezers experiments to quantify these parameters. In this paper, we show that quadrant detection is nonoptimal for particle sensing in optical tweezers and propose an alternative optimal particle sensing scheme based on spatial homodyne detection. A formalism for particle sensing in terms of transverse spatial modes is developed and numerical simulations of the efficacies of both quadrant and spatial homodyne detection are shown. We demonstrate that 1 order of magnitude improvement in particle sensing sensitivity can be achieved using spatial homodyne over quadrant detection.

  19. [Tissue artefacts by the use of overheated forceps for paraffin embedding (author's transl)].

    PubMed

    Müller, K M

    1980-05-01

    Histologic work-up of tissue specimens, especially from endoscopic biopsies, requires the use of fine forceps for orientation and dressing in fluid paraffin during the embedding procedure. These forceps are usually preheated over an open flame. If, however, smaller tissue particles are handled with overheated forceps, arteficial alterations may occur which are apt to hamper or falsify the histologic evaluation of the prepared section. Some typical tissue artefacts due to the handling with overheated forceps, are demonstrated with slides from liver biopsies. Recent experiences with an auxiliary instrument for paraffin embedding (Histostat of Vogel, designed by Ciplea) are reported. The forceps are kept at stable temperatures by immersion in fluid paraffin during the embedding procedure, thus excluding almost completely the risk of tissue artefacts by handling with overheated forceps.

  20. The Hooked Galaxy

    NASA Astrophysics Data System (ADS)

    2006-06-01

    Life is not easy, even for galaxies. Some indeed get so close to their neighbours that they get rather distorted. But such encounters between galaxies have another effect: they spawn new generations of stars, some of which explode. ESO's VLT has obtained a unique vista of a pair of entangled galaxies, in which a star exploded. Because of the importance of exploding stars, and particularly of supernovae of Type Ia [1], for cosmological studies (e.g. relating to claims of an accelerated cosmic expansion and the existence of a new, unknown, constituent of the universe - the so called 'Dark Energy'), they are a preferred target of study for astronomers. Thus, on several occasions, they pointed ESO's Very Large Telescope (VLT) towards a region of the sky that portrays a trio of amazing galaxies. MCG-01-39-003 (bottom right) is a peculiar spiral galaxy, with a telephone number name, that presents a hook at one side, most probably due to the interaction with its neighbour, the spiral galaxy NGC 5917 (upper right). In fact, further enhancement of the image reveals that matter is pulled off MCG-01-39-003 by NGC 5917. Both these galaxies are located at similar distances, about 87 million light-years away, towards the constellation of Libra (The Balance). ESO PR Photo 22/06 ESO PR Photo 22/06 The Hooked Galaxy and its Companion NGC 5917 (also known as Arp 254 and MCG-01-39-002) is about 750 times fainter than can be seen by the unaided eye and is about 40,000 light-years across. It was discovered in 1835 by William Herschel, who strangely enough, seems to have missed its hooked companion, only 2.5 times fainter. As seen at the bottom left of this exceptional VLT image, a still fainter and nameless, but intricately beautiful, barred spiral galaxy looks from a distance the entangled pair, while many 'island universes' perform a cosmic dance in the background. But this is not the reason why astronomers look at this region. Last year, a star exploded in the vicinity of the hook

  1. A DNA tweezer-actuated enzyme nanoreactor.

    PubMed

    Liu, Minghui; Fu, Jinglin; Hejesen, Christian; Yang, Yuhe; Woodbury, Neal W; Gothelf, Kurt; Liu, Yan; Yan, Hao

    2013-01-01

    The functions of regulatory enzymes are essential to modulating cellular pathways. Here we report a tweezer-like DNA nanodevice to actuate the activity of an enzyme/cofactor pair. A dehydrogenase and NAD(+) cofactor are attached to different arms of the DNA tweezer structure and actuation of enzymatic function is achieved by switching the tweezers between open and closed states. The enzyme/cofactor pair is spatially separated in the open state with inhibited enzyme function, whereas in the closed state, enzyme is activated by the close proximity of the two molecules. The conformational state of the DNA tweezer is controlled by the addition of specific oligonucleotides that serve as the thermodynamic driver (fuel) to trigger the change. Using this approach, several cycles of externally controlled enzyme inhibition and activation are successfully demonstrated. This principle of responsive enzyme nanodevices may be used to regulate other types of enzymes and to introduce feedback or feed-forward control loops.

  2. Steerable optical tweezers for ultracold atom studies.

    PubMed

    Roberts, K O; McKellar, T; Fekete, J; Rakonjac, A; Deb, A B; Kjærgaard, N

    2014-04-01

    We report on the implementation of an optical tweezer system for controlled transport of ultracold atoms along a narrow, static confinement channel. The tweezer system is based on high-efficiency acousto-optic deflectors and offers two-dimensional control over beam position. This opens up the possibility for tracking the transport channel when shuttling atomic clouds along it, forestalling atom spilling. Multiple clouds can be tracked independently by time-shared tweezer beams addressing individual sites in the channel. The deflectors are controlled using a multichannel direct digital synthesizer, which receives instructions on a submicrosecond time scale from a field-programmable gate array. Using the tweezer system, we demonstrate sequential binary splitting of an ultracold 87Rb cloud into 2(5) clouds.

  3. Characterizing conical refraction optical tweezers.

    PubMed

    McDonald, C; McDougall, C; Rafailov, E; McGloin, D

    2014-12-01

    Conical refraction occurs when a beam of light travels through an appropriately cut biaxial crystal. By focusing the conically refracted beam through a high numerical aperture microscope objective, conical refraction optical tweezers can be created, allowing for particle manipulation in both Raman spots, and in the Lloyd/Poggendorff rings. We present a thorough quantification of the trapping properties of such a beam, focusing on the trap stiffness, and how this varies with trap power and trapped particle location. We show that the lower Raman spot can be thought of as a single-beam optical gradient force trap, while radiation pressure dominates in the upper Raman spot, leading to optical levitation rather than trapping. Particles in the Lloyd/Poggendorff rings experience a lower trap stiffness than particles in the lower Raman spot, but benefit from rotational control. PMID:25490654

  4. Diarylferrocene tweezers for cation binding.

    PubMed

    Lima, Carlos F R A C; Fernandes, Ana M; Melo, André; Gonçalves, Luís M; Silva, Artur M S; Santos, Luís M N B F

    2015-10-01

    The host-guest chemistry of ferrocene derivatives was explored by a combined experimental and theoretical study. Several 1-arylferrocenes and 1,1'-diarylferrocenes were synthesized by the Suzuki-Miyaura cross-coupling reaction. The ability of these compounds to bind small cations in the gas phase was investigated experimentally by electrospray ionization mass spectrometry (ESI-MS). The results evidenced a noticeable ability of all 1,1'-diarylferrocenes studied to bind cations, while the same was not observed for the corresponding 1-arylferrocenes nor ferrocene. The 1,1'-diarylferrocenecation relative interaction energies were evaluated by ESI-MS and quantum chemical calculations and showed that cation binding in these systems follows electrostatic trends. It was found that, due to their unique molecular shape and smooth torsional potentials, 1,1'-diarylferrocenes can act as molecular tweezers of small-sized cations in the gas phase. PMID:26309143

  5. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy

    PubMed Central

    Neuman, Keir C.; Nagy, Attila

    2012-01-01

    Single-molecule force spectroscopy has emerged as a powerful tool to investigate the forces and motions associated with biological molecules and enzymatic activity. The most common force spectroscopy techniques are optical tweezers, magnetic tweezers and atomic force microscopy. These techniques are described and illustrated with examples highlighting current capabilities and limitations. PMID:18511917

  6. Forces that fracture teeth during extraction with mandibular premolar and maxillary incisor forceps.

    PubMed

    Ahel, V; Ćabov, T; Špalj, S; Perić, B; Jelušić, D; Dmitrašinović, M

    2015-12-01

    Our aim was to measure the forces that fracture teeth during extraction based on the effectiveness of the extraction forceps, and to compare them with data collected about forces applied to extracted teeth that did not fracture. We studied 208 patients whose teeth fractured during both the standard and our new method of extraction: maxillary incisors (n=79) extracted with forceps 1 (maxillary incisor forceps), and both maxillary (n=95) and mandibular incisors (n=34) extracted with forceps 13 (mandibular premolar forceps). Forces needed to fracture were assessed with a specially-designed instrument for measuring pressure and rotation. Mean (SD) pressure at the fracture site was significantly higher in maxillary incisors extracted with forceps 1 (1.26 (0.26) bar) then in both maxillary and mandibular incisors extracted with forceps 13 (0.96 (0.19) and 0.98 (0.16), p<0.001). Pressure at dislocation and both left and right rotation showed similar patterns. Pressure correlated to root surfaces of teeth ranging from r=0.35-0.54 but the correlation coefficients did not differ significantly between the teeth-forceps groups. Pressure was higher in fractured than in extracted teeth, and this varied from 3%-48%. In conclusion, forces that break teeth during extractions are sometimes only slightly higher than the extraction forces, so caution is needed during extraction.

  7. Compact forceps manipulator using friction wheel mechanism and gimbals mechanism for laparoscopic surgery.

    PubMed

    Suzuki, Takashi; Katayama, Youichi; Kobayashi, Etsuko; Sakuma, Ichiro

    2005-01-01

    This paper reports evaluation of compact forceps manipulator designed for assisting laparoscopic surgery. The manipulator consists of two miniaturized parts; friction wheel mechanism which rotates and translates forceps (62 x 52 x 150[mm3], 0.6 [kg]), and gimbals mechanism which provides pivoting motion of forceps around incision hole on the abdomen (135 x 165 x 300 [mm3], 1.1 [kg]). The four-DOF motion of forceps around the incision hole on the abdomen in laparoscopic surgery is realized. By integration with robotized forceps or a needle insertion robot, it will work as a compact robotic arm in a master-slave system. It can also work under numerical control based on the computerized surgical planning. This table-mounted miniaturized manipulator contributes to the coexistence of clinical staffs and manipulators in the today's crowded operating room. As the results of mechanical performance evaluation with load of 4 [N], positioning accuracy was less than 1.2 [deg] in pivoting motion, less than 4 [deg] in rotation of forceps, less than 1.2 [mm] in longitudinal translation of forceps. As future works, we will modify mechanism for sterilization and safety improvement, and also integrate this manipulator with robotized forceps to build a surgery assisting robotic system.

  8. Robert Hooke's model of memory.

    PubMed

    Hintzman, Douglas L

    2003-03-01

    In 1682 the scientist and inventor Robert Hooke read a lecture to the Royal Society of London, in which he described a mechanistic model of human memory. Yet few psychologists today seem to have heard of Hooke's memory model. The lecture addressed questions of encoding, memory capacity, repetition, retrieval, and forgetting--some of these in a surprisingly modern way. Hooke's model shares several characteristics with the theory of Richard Semon, which came more than 200 years later, but it is more complete. Among the model's interesting properties are that (1) it allows for attention and other top-down influences on encoding; (2) it uses resonance to implement parallel, cue-dependent retrieval; (3) it explains memory for recency; (4) it offers a single-system account of repetition priming; and (5) the power law of forgetting can be derived from the model's assumptions in a straightforward way. PMID:12747488

  9. Robert Hooke, 1635-1703.

    PubMed

    Rowbury, Robin

    2012-01-01

    Robert Hooke was a polymath whose expertise during the 17th century spanned many different scientific areas. As a schoolboy on the Isle of Wight he was obsessed with the possibility of human flight and later became equally absorbed in cosmology and planetary motion. His skills as an artist were put to good use both as an architect following the Great Fire of London and before that in Micrographia. Although that book is best known for demonstrating the power of Hooke's microscope, Micrographia describes distant planetary bodies, the wave theory of light, the organic origin of fossils, and various other philosophical and scientific interests of its author The following thumbnail sketches of Hooke reveal him to be a man of enormous energy and imagination whose ideas were often pirated or under-rated. PMID:23094324

  10. Robert Hooke, 1635-1703.

    PubMed

    Rowbury, Robin

    2012-01-01

    Robert Hooke was a polymath whose expertise during the 17th century spanned many different scientific areas. As a schoolboy on the Isle of Wight he was obsessed with the possibility of human flight and later became equally absorbed in cosmology and planetary motion. His skills as an artist were put to good use both as an architect following the Great Fire of London and before that in Micrographia. Although that book is best known for demonstrating the power of Hooke's microscope, Micrographia describes distant planetary bodies, the wave theory of light, the organic origin of fossils, and various other philosophical and scientific interests of its author The following thumbnail sketches of Hooke reveal him to be a man of enormous energy and imagination whose ideas were often pirated or under-rated.

  11. Robert Hooke's model of memory.

    PubMed

    Hintzman, Douglas L

    2003-03-01

    In 1682 the scientist and inventor Robert Hooke read a lecture to the Royal Society of London, in which he described a mechanistic model of human memory. Yet few psychologists today seem to have heard of Hooke's memory model. The lecture addressed questions of encoding, memory capacity, repetition, retrieval, and forgetting--some of these in a surprisingly modern way. Hooke's model shares several characteristics with the theory of Richard Semon, which came more than 200 years later, but it is more complete. Among the model's interesting properties are that (1) it allows for attention and other top-down influences on encoding; (2) it uses resonance to implement parallel, cue-dependent retrieval; (3) it explains memory for recency; (4) it offers a single-system account of repetition priming; and (5) the power law of forgetting can be derived from the model's assumptions in a straightforward way.

  12. Fiber-optic OCT sensor guided “SMART” micro-forceps for microsurgery

    PubMed Central

    Song, Cheol; Park, Dong Yong; Gehlbach, Peter L.; Park, Seong Jin; Kang, Jin U.

    2013-01-01

    A handheld Smart Micromanipulation Aided Robotic-surgery Tool (SMART) micro-forceps guided by a fiber-optic common-path optical coherence tomography (CP-OCT) sensor is presented. A fiber-optic CP-OCT distance and motion sensor is integrated into the shaft of a micro-forceps. The tool tip position is manipulated longitudinally through a closed loop control using a piezoelectric motor. This novel forceps design could significantly enhance safety, efficiency and surgical outcomes. The basic grasping and peeling functions of the micro-forceps are evaluated in dry phantoms and in a biological tissue model. As compared to freehand use, targeted grasping and peeling performance assisted by active tremor compensation, significantly improves micro-forceps user performance. PMID:23847730

  13. Nasotracheal intubation with three indirect laryngoscopes assisted by standard or modified Magill forceps.

    PubMed

    Staar, S; Biesler, I; Müller, D; Pförtner, R; Mohr, C; Groeben, H

    2013-05-01

    We assessed the effect of modifying standard Magill forceps on the laryngeal introduction of an Eschmann stylet during nasotracheal intubations with three indirect laryngoscopes (Airtraq™, C-MAC(®) or GlideScope(®)) in patients with predicted difficult intubation. We allocated 50 participants to each laryngoscope. The stylet was advanced by one forceps followed by the other (standard or modified), with each sequence allocated to 25/50 for each laryngoscope. There were no differences in rates of failed tracheal intubation with the allocated laryngoscopes: 6/50, 5/50 and 5/50, respectively. An Eschmann stylet was advanced into the trachea less often with the standard forceps (65% vs 93%, p < 0.0001). Mean (SD) time for stylet advancement was longer with the standard forceps, 38 (30) vs 19 (19) s, p < 0.0001. In conclusion, the modified Magill forceps facilitated nasotracheal intubation, independent of the type of indirect laryngoscope. PMID:23480441

  14. Nasotracheal intubation with three indirect laryngoscopes assisted by standard or modified Magill forceps.

    PubMed

    Staar, S; Biesler, I; Müller, D; Pförtner, R; Mohr, C; Groeben, H

    2013-05-01

    We assessed the effect of modifying standard Magill forceps on the laryngeal introduction of an Eschmann stylet during nasotracheal intubations with three indirect laryngoscopes (Airtraq™, C-MAC(®) or GlideScope(®)) in patients with predicted difficult intubation. We allocated 50 participants to each laryngoscope. The stylet was advanced by one forceps followed by the other (standard or modified), with each sequence allocated to 25/50 for each laryngoscope. There were no differences in rates of failed tracheal intubation with the allocated laryngoscopes: 6/50, 5/50 and 5/50, respectively. An Eschmann stylet was advanced into the trachea less often with the standard forceps (65% vs 93%, p < 0.0001). Mean (SD) time for stylet advancement was longer with the standard forceps, 38 (30) vs 19 (19) s, p < 0.0001. In conclusion, the modified Magill forceps facilitated nasotracheal intubation, independent of the type of indirect laryngoscope.

  15. Magnetic Tweezers for the Measurement of Twist and Torque

    PubMed Central

    Lipfert, Jan; Lee, Mina; Ordu, Orkide; Kerssemakers, Jacob W. J.; Dekker, Nynke H.

    2014-01-01

    Single-molecule techniques make it possible to investigate the behavior of individual biological molecules in solution in real time. These techniques include so-called force spectroscopy approaches such as atomic force microscopy, optical tweezers, flow stretching, and magnetic tweezers. Amongst these approaches, magnetic tweezers have distinguished themselves by their ability to apply torque while maintaining a constant stretching force. Here, it is illustrated how such a “conventional” magnetic tweezers experimental configuration can, through a straightforward modification of its field configuration to minimize the magnitude of the transverse field, be adapted to measure the degree of twist in a biological molecule. The resulting configuration is termed the freely-orbiting magnetic tweezers. Additionally, it is shown how further modification of the field configuration can yield a transverse field with a magnitude intermediate between that of the “conventional” magnetic tweezers and the freely-orbiting magnetic tweezers, which makes it possible to directly measure the torque stored in a biological molecule. This configuration is termed the magnetic torque tweezers. The accompanying video explains in detail how the conversion of conventional magnetic tweezers into freely-orbiting magnetic tweezers and magnetic torque tweezers can be accomplished, and demonstrates the use of these techniques. These adaptations maintain all the strengths of conventional magnetic tweezers while greatly expanding the versatility of this powerful instrument. PMID:24894412

  16. 21 CFR 868.5420 - Ether hook.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ether hook. 868.5420 Section 868.5420 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5420 Ether hook. (a) Identification. An ether hook is a...

  17. 21 CFR 868.5420 - Ether hook.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ether hook. 868.5420 Section 868.5420 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5420 Ether hook. (a) Identification. An ether hook is a...

  18. 21 CFR 868.5420 - Ether hook.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ether hook. 868.5420 Section 868.5420 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5420 Ether hook. (a) Identification. An ether hook is a...

  19. 21 CFR 868.5420 - Ether hook.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ether hook. 868.5420 Section 868.5420 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5420 Ether hook. (a) Identification. An ether hook is a...

  20. 21 CFR 868.5420 - Ether hook.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ether hook. 868.5420 Section 868.5420 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5420 Ether hook. (a) Identification. An ether hook is a...

  1. Designing single-beam multitrapping acoustical tweezers.

    PubMed

    Silva, Glauber T; Baggio, André L

    2015-02-01

    The concept of a single-beam acoustical tweezer device which can simultaneously trap microparticles at different points is proposed and demonstrated through computational simulations. The device employs an ultrasound beam produced by a circular focused transducer operating at 1 MHz in water medium. The ultrasound beam exerts a radiation force that may tweeze suspended microparticles in the medium. Simulations show that the acoustical tweezer can simultaneously trap microparticles in the pre-focal zone along the beam axis, i.e. between the transducer surface and its geometric focus. As acoustical tweezers are fast becoming a key instrument in microparticle handling, the development of acoustic multitrapping concept may turn into a useful tool in engineering these devices.

  2. Designing single-beam multitrapping acoustical tweezers.

    PubMed

    Silva, Glauber T; Baggio, André L

    2015-02-01

    The concept of a single-beam acoustical tweezer device which can simultaneously trap microparticles at different points is proposed and demonstrated through computational simulations. The device employs an ultrasound beam produced by a circular focused transducer operating at 1 MHz in water medium. The ultrasound beam exerts a radiation force that may tweeze suspended microparticles in the medium. Simulations show that the acoustical tweezer can simultaneously trap microparticles in the pre-focal zone along the beam axis, i.e. between the transducer surface and its geometric focus. As acoustical tweezers are fast becoming a key instrument in microparticle handling, the development of acoustic multitrapping concept may turn into a useful tool in engineering these devices. PMID:25304994

  3. Micro-objective manipulated with optical tweezers

    SciTech Connect

    Sasaki, M.; Kurosawa, T.; Hane, K.

    1997-02-01

    A microscope is described that uses a {mu}m-sized ball lens, which is here termed micro-objective, manipulated with optical tweezers to image the side view of the arbitrary region of a sample. Since this micro-objective is small in size, it can go into a concave region to produce a local image of the inside which the conventional microscope cannot observe. Preliminary results show good lens performance from the micro-objective when combined with optical tweezers. {copyright} {ital 1997 American Institute of Physics.}

  4. Molecular tweezers targeting transthyretin amyloidosis.

    PubMed

    Ferreira, Nelson; Pereira-Henriques, Alda; Attar, Aida; Klärner, Frank-Gerrit; Schrader, Thomas; Bitan, Gal; Gales, Luís; Saraiva, Maria João; Almeida, Maria Rosário

    2014-04-01

    Transthyretin (TTR) amyloidoses comprise a wide spectrum of acquired and hereditary diseases triggered by extracellular deposition of toxic TTR aggregates in various organs. Despite recent advances regarding the elucidation of the molecular mechanisms underlying TTR misfolding and pathogenic self-assembly, there is still no effective therapy for treatment of these fatal disorders. Recently, the "molecular tweezers", CLR01, has been reported to inhibit self-assembly and toxicity of different amyloidogenic proteins in vitro, including TTR, by interfering with hydrophobic and electrostatic interactions known to play an important role in the aggregation process. In addition, CLR01 showed therapeutic effects in animal models of Alzheimer's disease and Parkinson's disease. Here, we assessed the ability of CLR01 to modulate TTR misfolding and aggregation in cell culture and in an animal model. In cell culture assays we found that CLR01 inhibited TTR oligomerization in the conditioned medium and alleviated TTR-induced neurotoxicity by redirecting TTR aggregation into the formation of innocuous assemblies. To determine whether CLR01 was effective in vivo, we tested the compound in mice expressing TTR V30M, a model of familial amyloidotic polyneuropathy, which recapitulates the main pathological features of the human disease. Immunohistochemical and Western blot analyses showed a significant decrease in TTR burden in the gastrointestinal tract and the peripheral nervous system in mice treated with CLR01, with a concomitant reduction in aggregate-induced endoplasmic reticulum stress response, protein oxidation, and apoptosis. Taken together, our preclinical data suggest that CLR01 is a promising lead compound for development of innovative, disease-modifying therapy for TTR amyloidosis.

  5. Hooke, Robert (1635-1703)

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Scientist, born in Freshwater, Isle of Wight, England, educated at Christ Church College, Oxford where he met Boyle and was employed by him to construct his air pump, became professor of geometry at Gresham College, London. Discovered Hooke's law of elasticity. Worked on optics, simple harmonic motion and elasticity in strings. Published a monograph called Micrographia, containing beautiful pict...

  6. Covariant Formulation of Hooke's Law.

    ERIC Educational Resources Information Center

    Gron, O.

    1981-01-01

    Introducing a four-vector strain and a four-force stress, Hooke's law is written as a four-vector equation. This formulation is shown to clarify seemingly paradoxical results in connection with uniformly accelerated motion, and rotational motion with angular acceleration. (Author/JN)

  7. MatLab program for precision calibration of optical tweezers

    NASA Astrophysics Data System (ADS)

    Tolić-Nørrelykke, Iva Marija; Berg-Sørensen, Kirstine; Flyvbjerg, Henrik

    2004-06-01

    Optical tweezers are used as force transducers in many types of experiments. The force they exert in a given experiment is known only after a calibration. Computer codes that calibrate optical tweezers with high precision and reliability in the ( x, y)-plane orthogonal to the laser beam axis were written in MatLab (MathWorks Inc.) and are presented here. The calibration is based on the power spectrum of the Brownian motion of a dielectric bead trapped in the tweezers. Precision is achieved by accounting for a number of factors that affect this power spectrum. First, cross-talk between channels in 2D position measurements is tested for, and eliminated if detected. Then, the Lorentzian power spectrum that results from the Einstein-Ornstein-Uhlenbeck theory, is fitted to the low-frequency part of the experimental spectrum in order to obtain an initial guess for parameters to be fitted. Finally, a more complete theory is fitted, a theory that optionally accounts for the frequency dependence of the hydrodynamic drag force and hydrodynamic interaction with a nearby cover slip, for effects of finite sampling frequency (aliasing), for effects of anti-aliasing filters in the data acquisition electronics, and for unintended "virtual" filtering caused by the position detection system. Each of these effects can be left out or included as the user prefers, with user-defined parameters. Several tests are applied to the experimental data during calibration to ensure that the data comply with the theory used for their interpretation: Independence of x- and y-coordinates, Hooke's law, exponential distribution of power spectral values, uncorrelated Gaussian scatter of residual values. Results are given with statistical errors and covariance matrix. Program summaryTitle of program: tweezercalib Catalogue identifier: ADTV Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland. Program Summary URL:http://cpc.cs.qub.ac.uk/summaries/ADTV Computer for

  8. Multi-purpose extraocular forceps for small-gauge pars plana vitrectomy.

    PubMed

    Reichel, Elias; Chun, Dal W; Gurley, Kiersten

    2012-01-01

    A multi-purpose titanium forceps has been developed for small-gauge pars plana vitrectomy surgery. These forceps were designed to provide the vitreoretinal surgeon with a single tool for the extraocular manipulations that are necessary for the placement and removal of 23- and 25-gauge trochars for small-incision, sutureless pars plana vitrectomy surgery. The forceps has been designed to allow for the atraumatic manipulation of the conjunctiva, measurement of distance from the limbus, and a strong purchase of the trochar for both its fixation and removal.

  9. A force calibration standard for magnetic tweezers

    NASA Astrophysics Data System (ADS)

    Yu, Zhongbo; Dulin, David; Cnossen, Jelmer; Köber, Mariana; van Oene, Maarten M.; Ordu, Orkide; Berghuis, Bojk A.; Hensgens, Toivo; Lipfert, Jan; Dekker, Nynke H.

    2014-12-01

    To study the behavior of biological macromolecules and enzymatic reactions under force, advances in single-molecule force spectroscopy have proven instrumental. Magnetic tweezers form one of the most powerful of these techniques, due to their overall simplicity, non-invasive character, potential for high throughput measurements, and large force range. Drawbacks of magnetic tweezers, however, are that accurate determination of the applied forces can be challenging for short biomolecules at high forces and very time-consuming for long tethers at low forces below ˜1 piconewton. Here, we address these drawbacks by presenting a calibration standard for magnetic tweezers consisting of measured forces for four magnet configurations. Each such configuration is calibrated for two commonly employed commercially available magnetic microspheres. We calculate forces in both time and spectral domains by analyzing bead fluctuations. The resulting calibration curves, validated through the use of different algorithms that yield close agreement in their determination of the applied forces, span a range from 100 piconewtons down to tens of femtonewtons. These generalized force calibrations will serve as a convenient resource for magnetic tweezers users and diminish variations between different experimental configurations or laboratories.

  10. An optical tweezer for complex plasmas

    SciTech Connect

    Schablinski, Jan; Wieben, Frank; Block, Dietmar

    2015-04-15

    This paper describes the experimental realization of an optical trap for microparticles levitating in the plasma sheath. Single particles can be trapped in a laser beam comparable to optical tweezers known from colloidal suspensions. The trapping mechanism is discussed and two applications of the system are shown.

  11. Surgical treatment of incarcerated calculi via laparoscopic bile duct exploration using laparotomy biliary lithotomy forceps

    PubMed Central

    Jiang, H.; Wang, S. Y.; Jin, X. L.; Jin, J. C.; Gu, H. B.; Zhang, F. M.

    2016-01-01

    The present study aimed to investigate the practicability and clinical value of applying laparotomy biliary lithotomy forceps to laparoscopic bile duct exploration (LCBDE) for the surgical treatment of incarcerated calculi. A total of 63 patients were diagnosed with cholecystolithiasis and choledocholithiasis. The present study performed a retrospective analysis of clinical samples from 16 of these patients who had incarcerated calculi at the terminus of the common bile duct, and who had been treated with laparoscopic cholecystectomy and LCBDE. During the procedure, laparotomy biliary lithotomy forceps were used to gently remove the calculi from the common bile duct. Of the surgical procedures that used laparotomy biliary lithotomy forceps, one case was unsuccessful and 15 cases were successful. The results of the present study suggested that it may be clinically advisable to use laparotomy biliary lithotomy forceps to remove incarcerated calculi from the common bile duct during a laparoscopy, since it is easy, economical and effective. PMID:27698730

  12. Surgical treatment of incarcerated calculi via laparoscopic bile duct exploration using laparotomy biliary lithotomy forceps

    PubMed Central

    Jiang, H.; Wang, S. Y.; Jin, X. L.; Jin, J. C.; Gu, H. B.; Zhang, F. M.

    2016-01-01

    The present study aimed to investigate the practicability and clinical value of applying laparotomy biliary lithotomy forceps to laparoscopic bile duct exploration (LCBDE) for the surgical treatment of incarcerated calculi. A total of 63 patients were diagnosed with cholecystolithiasis and choledocholithiasis. The present study performed a retrospective analysis of clinical samples from 16 of these patients who had incarcerated calculi at the terminus of the common bile duct, and who had been treated with laparoscopic cholecystectomy and LCBDE. During the procedure, laparotomy biliary lithotomy forceps were used to gently remove the calculi from the common bile duct. Of the surgical procedures that used laparotomy biliary lithotomy forceps, one case was unsuccessful and 15 cases were successful. The results of the present study suggested that it may be clinically advisable to use laparotomy biliary lithotomy forceps to remove incarcerated calculi from the common bile duct during a laparoscopy, since it is easy, economical and effective.

  13. [Endoscopic hemostasis using high-frequency hemostatic forceps for hemorrhagic gastric ulcer].

    PubMed

    Enomoto, Shotaro; Yahagi, Naohisa; Fujishiro, Mitsuhiro; Iguchi, Mikitaka; Ichinose, Masao

    2004-03-01

    Gastric ulcer is a major responsible lesion for upper gastrointestinal bleeding. Several methods for endoscopic hemostasis are widely used throughout Japan to treat the ulcerative lesion. High-frequency hemostatic forceps is one of the endoscopic coagulation devices developed solely for hemostasis. Unlike biopsy forceps, it has narrow opening angle, a small cup and a dull edge to make pinpoint holding of the target lesion possible. We applied high-frequency hemostatic forceps for eleven cases of hemorrhagic gastric ulcer with exposed vessels. All of the cases were treated by endoscopic hemostasis with the device. Initial hemostasis obtained in all of the cases(100%), and no rebleeding was observed. Additional treatment, however, was necessary in four cases(36%). No serious complication, like perforation, was observed. We concluded that endoscopic hemostasis using high-frequency hemostatic forceps for hemorrhagic gastric ulcer is safe and effective method.

  14. Evaluation of residual protein on unprocessed and decontaminated dental extraction forceps.

    PubMed

    Smith, Gordon W G; Smith, Andrew J

    2012-01-01

    Research into protein contamination of surgical instruments has received increasing attention and has focused on a quantitative analysis, without subsequent identification of these proteins. This study aimed to validate methods for the isolation and identification of instrument protein contamination using extraction forceps as a model. The working ends of used, unclean and decontaminated forceps were boiled in 1% (v/v) SDS and samples precipitated using StrataClean™ resin and Amicon® filtration. Proteins were visualised using SDS-PAGE and identified by mass spectrometry and Western blot. A total of 17 proteins were identified from used, unclean forceps, including blood and bacterial proteins and 2 protein bands from decontaminated forceps samples which could not be accurately identified. The methods described, when used in conjunction with quantitative and surface analysis of instruments, can aid development of cleaning processes by identifying contaminants on used devices that have been removed following cleaning.

  15. Novel Jumbo Biopsy Forceps for Surveillance of Inflammatory Bowel Disease: A Comparative Retrospective Assessment

    PubMed Central

    Song, Kenneth; Toweill, Daniel; Rulyak, Stephen J.; Lee, Scott D.

    2011-01-01

    Background and Study Aims. Most available jumbo cup forceps require a 3.7 mm biopsy channel, necessitating the use of standard-sized colonoscope. A newer jumbo forceps (Radial Jaw 4 Jumbo Biopsy Forceps [RJ4]) fits within a 3.2 mm biopsy channel, allowing use with a pediatric colonoscope. To assure the RJ4 did not alter biopsy adequacy, we compared the size and quality of specimens to a historical jumbo cup forceps (Radial Jaw 3 Max Capacity Biopsy Forceps, [RJ3 MC]). Patients and Methods. A retrospective comparative study of biopsies taken with either forceps. Biopsies were compared for diameter, depth, crush artifact, and acceptability for diagnosis. Results. 333 specimens were taken with RJ4 and 335 specimens with the RJ3 MC. Mean sample diameter was 4.45 mm and 4.55 mm for the RJ4 and RJ3 MC (P = 0.41). Mean depth of biopsies with the RJ4 was greater (P < 0.01). Conclusions. Biopsies from the RJ4 are similar in size and quality to biopsies from the RJ3 MC. The RJ4 has the advantage of fitting in a smaller biopsy channel. PMID:22007197

  16. Novel jumbo biopsy forceps for surveillance of inflammatory bowel disease: a comparative retrospective assessment.

    PubMed

    Song, Kenneth; Toweill, Daniel; Rulyak, Stephen J; Lee, Scott D

    2011-01-01

    Background and Study Aims. Most available jumbo cup forceps require a 3.7 mm biopsy channel, necessitating the use of standard-sized colonoscope. A newer jumbo forceps (Radial Jaw 4 Jumbo Biopsy Forceps [RJ4]) fits within a 3.2 mm biopsy channel, allowing use with a pediatric colonoscope. To assure the RJ4 did not alter biopsy adequacy, we compared the size and quality of specimens to a historical jumbo cup forceps (Radial Jaw 3 Max Capacity Biopsy Forceps, [RJ3 MC]). Patients and Methods. A retrospective comparative study of biopsies taken with either forceps. Biopsies were compared for diameter, depth, crush artifact, and acceptability for diagnosis. Results. 333 specimens were taken with RJ4 and 335 specimens with the RJ3 MC. Mean sample diameter was 4.45 mm and 4.55 mm for the RJ4 and RJ3 MC (P = 0.41). Mean depth of biopsies with the RJ4 was greater (P < 0.01). Conclusions. Biopsies from the RJ4 are similar in size and quality to biopsies from the RJ3 MC. The RJ4 has the advantage of fitting in a smaller biopsy channel.

  17. The Twin Forceps: A New Instrument for SILS

    PubMed Central

    Rizzuto, Antonia; Donnici, Mario; Nudo, Paola; Sinopoli, Basilio; Sacco, Rosario; Danieli, Guido

    2015-01-01

    In the last ten years, the single incision laparoscopic surgery (SILS) is gaining more interest than the traditional laparoscopic surgery (LAP). Many studies make a comparison between the performances of the SILS and the LAP. The results show that the single incision laparoscopic surgery reduces pain, length of period of postoperative hospitalization, and loss of blood. This technique is also able to reduce the infection sites. In spite of many advantages, SILS reveals some problems: laparoscopic instruments triangulation and small workspace. The surgeon has to be more skillful to make a surgery in SILS because the surgeon has only three laparoscopic instruments and only one hole in the abdomen cavity. In this paper, a novel laparoscopic instrument to help the surgeon during a SILS operation is presented. This instrument is innovative forceps with double graspers. Different designs of this instrument are presented, with the final one which greatly simplifies both construction and operation. The initial experience in the laboratory with the innovative instrument is presented. The surgeon experienced in laparoscopic surgery and with the help of assistants performed a training program based on predetermined task performed in simulation box (laparoscopic box-trainer). PMID:26346966

  18. Hamate hook nonunion treated with a hook plate: case report and surgical technique.

    PubMed

    Taleb, Chihab; Murachowsky, Joel; Ruggiero, Gustavo M

    2012-12-01

    Despite of its rarity, hamate hook nonunion can cause several complications like tendon rupture or loss of grip strength. Admitted treatments in the literature are excision of the bone fragment or its open reduction and internal fixation. We report a clinical case of a high-level baseball player with hamate hook nonunion treated with an original technique of fixation using a hook plate.

  19. Optoelectronic Tweezers for Microparticle and Cell Manipulation

    NASA Technical Reports Server (NTRS)

    Wu, Ming Chiang (Inventor); Chiou, Pei-Yu (Inventor); Ohta, Aaron T. (Inventor)

    2014-01-01

    An optical image-driven light induced dielectrophoresis (DEP) apparatus and method are described which provide for the manipulation of particles or cells with a diameter on the order of 100 micromillimeters or less. The apparatus is referred to as optoelectric tweezers (OET) and provides a number of advantages over conventional optical tweezers, in particular the ability to perform operations in parallel and over a large area without damage to living cells. The OET device generally comprises a planar liquid-filled structure having one or more portions which are photoconductive to convert incoming light to a change in the electric field pattern. The light patterns are dynamically generated to provide a number of manipulation structures that can manipulate single particles and cells or group of particles/cells. The OET preferably includes a microscopic imaging means to provide feedback for the optical manipulation, such as detecting position and characteristics wherein the light patterns are modulated accordingly.

  20. Optoelectronic tweezers for microparticle and cell manipulation

    NASA Technical Reports Server (NTRS)

    Wu, Ming Chiang (Inventor); Chiou, Pei Yu (Inventor); Ohta, Aaron T. (Inventor)

    2009-01-01

    An optical image-driven light induced dielectrophoresis (DEP) apparatus and method are described which provide for the manipulation of particles or cells with a diameter on the order of 100 .mu.m or less. The apparatus is referred to as optoelectric tweezers (OET) and provides a number of advantages over conventional optical tweezers, in particular the ability to perform operations in parallel and over a large area without damage to living cells. The OET device generally comprises a planar liquid-filled structure having one or more portions which are photoconductive to convert incoming light to a change in the electric field pattern. The light patterns are dynamically generated to provide a number of manipulation structures that can manipulate single particles and cells or groups of particles/cells. The OET preferably includes a microscopic imaging means to provide feedback for the optical manipulation, such as detecting position and characteristics wherein the light patterns are modulated accordingly.

  1. Exploring unconventional capabilities of holographic tweezers

    NASA Astrophysics Data System (ADS)

    Hernandez, R. J.; Pagliusi, P.; Provenzano, C.; Cipparrone, G.

    2011-06-01

    We report an investigation of manipulation and trapping capabilities of polarization holographic tweezers. A polarization gradient connected with a modulation of the ellipticity shows an optical force related to the polarization of the light that can influence optically isotropic particles. While in the case of birefringent particles an unconventional trapping in circularly polarized fringes is observed. A liquid crystal emulsion has been adopted to investigate the capabilities of the holographic tweezers. The unusual trapping observed for rotating bipolar nematic droplets has suggested the involvement of the lift hydrodynamic force responsible of the Magnus effect, originating from the peculiar optical force field. We show that the Magnus force which is ignored in the common approach can contribute to unconventional optohydrodynamic trapping and manipulation.

  2. Independent trapping and manipulation of microparticles using dexterous acoustic tweezers

    SciTech Connect

    Courtney, Charles R. P.; Demore, Christine E. M.; Wu, Hongxiao; Cochran, Sandy; Grinenko, Alon; Wilcox, Paul D.; Drinkwater, Bruce W.

    2014-04-14

    An electronically controlled acoustic tweezer was used to demonstrate two acoustic manipulation phenomena: superposition of Bessel functions to allow independent manipulation of multiple particles and the use of higher-order Bessel functions to trap particles in larger regions than is possible with first-order traps. The acoustic tweezers consist of a circular 64-element ultrasonic array operating at 2.35 MHz which generates ultrasonic pressure fields in a millimeter-scale fluid-filled chamber. The manipulation capabilities were demonstrated experimentally with 45 and 90-μm-diameter polystyrene spheres. These capabilities bring the dexterity of acoustic tweezers substantially closer to that of optical tweezers.

  3. Tweezers for Chimeras in Small Networks

    NASA Astrophysics Data System (ADS)

    Omelchenko, Iryna; Omel'chenko, Oleh E.; Zakharova, Anna; Wolfrum, Matthias; Schöll, Eckehard

    2016-03-01

    We propose a control scheme which can stabilize and fix the position of chimera states in small networks. Chimeras consist of coexisting domains of spatially coherent and incoherent dynamics in systems of nonlocally coupled identical oscillators. Chimera states are generally difficult to observe in small networks due to their short lifetime and erratic drifting of the spatial position of the incoherent domain. The control scheme, like a tweezer, might be useful in experiments, where usually only small networks can be realized.

  4. Fractal zone plate beam based optical tweezers

    NASA Astrophysics Data System (ADS)

    Cheng, Shubo; Zhang, Xinyu; Ma, Wenzhuo; Tao, Shaohua

    2016-09-01

    We demonstrate optical manipulation with an optical beam generated by a fractral zone plate (FZP). The experimental results show that the FZP beam can simultaneously trap multiple particles positioned in different focal planes of the FZP beam, owing to the multiple foci and self-reconstruction property of the FZP beam. The FZP beam can also be used to construct three-dimensional optical tweezers for potential applications.

  5. The Smallest Tweezers in the World

    ERIC Educational Resources Information Center

    Lewalle, Alexandre

    2008-01-01

    A pair of fine tweezers and a steady hand may well be enough to pick up a grain of sand, but what would you use to hold something hundreds of times smaller still, the size of only one micron? The answer is to use a device that is not mechanical in nature but that relies instead on the tiny forces that light exerts on small particles: "optical…

  6. Interactive approach to optical tweezers control

    SciTech Connect

    Leach, Jonathan; Wulff, Kurt; Sinclair, Gavin; Jordan, Pamela; Courtial, Johannes; Thomson, Laura; Gibson, Graham; Karunwi, Kayode; Cooper, Jon; Laczik, Zsolt John; Padgett, Miles

    2006-02-10

    We have developed software with an interactive user interface that can be used to generate phase holograms for use with spatial light modulators. The program utilizes different hologram design techniques, allowing the user to select an appropriate algorithm. The program can be used to generate multiple beams and can be used for beam steering. We see a major application of the program to be in optical tweezers to control the position, number, and type of optical traps.

  7. Fractal zone plate beam based optical tweezers

    PubMed Central

    Cheng, Shubo; Zhang, Xinyu; Ma, Wenzhuo; Tao, Shaohua

    2016-01-01

    We demonstrate optical manipulation with an optical beam generated by a fractral zone plate (FZP). The experimental results show that the FZP beam can simultaneously trap multiple particles positioned in different focal planes of the FZP beam, owing to the multiple foci and self-reconstruction property of the FZP beam. The FZP beam can also be used to construct three-dimensional optical tweezers for potential applications. PMID:27678305

  8. New approaches in the design of magnetic tweezers-current magnetic tweezers

    NASA Astrophysics Data System (ADS)

    Bessalova, Valentina; Perov, Nikolai; Rodionova, Valeria

    2016-10-01

    The main advantages of the magnetic tweezers are the low price and simplicity of use. However the range of their application is reduced due to shortcomings like, for example, the remanent induction of the core and interaction between ferromagnetic cores. We present the new design of magnetic tweezers-Current Magnetic Tweezers (CMT) that allow particle manipulation by means of the magnetic field generated by the electric currents flowing through the non-magnetic wires. Arranging wires in different geometric shapes allows the particle movement either in two or three dimensions. Forces acting on the magnetic particles with the magnetic moment of 2·10-11 A m2 at distances up to 1 mm had been experimentally measured. It is established that a current of about 1 A at a 1 mm distance generates force of (approximately) 3 pN which is consistent with theoretical estimates.

  9. Fatigue-Resistant Metal Hook-And-Loop Fastener

    NASA Technical Reports Server (NTRS)

    Sawaf, Bernard

    1994-01-01

    Proposed metal hook-and-loop fastener engaged and disengaged many hundreds of times without breaking. Fastener opens by mechanical action. Translation moves hooks out of loops or pushes loops away from hooks. Hooks not required to flex and, therefore, do not fail by fatigue. Lifetime much greater than that of other metal hook-and-loop fasteners, depending on flexure for disengagement such as article, "Hook-and-Loop Metal Fastener" (MSC-21586).

  10. Rectal forceps biopsy procedure in cystic fibrosis: technical aspects and patients perspective for clinical trials feasibility

    PubMed Central

    2013-01-01

    Background Measurements of CFTR function in rectal biopsies ex vivo have been used for diagnosis and prognosis of Cystic Fibrosis (CF) disease. Here, we aimed to evaluate this procedure regarding: i) viability of the rectal specimens obtained by biopsy forceps for ex vivo bioelectrical and biochemical laboratory analyses; and ii) overall assessment (comfort, invasiveness, pain, sedation requirement, etc.) of the rectal forceps biopsy procedure from the patients perspective to assess its feasibility as an outcome measure in clinical trials. Methods We compared three bowel preparation solutions (NaCl 0.9%, glycerol 12%, mannitol), and two biopsy forceps (standard and jumbo) in 580 rectal specimens from 132 individuals (CF and non-CF). Assessment of the overall rectal biopsy procedure (obtained by biopsy forceps) by patients was carried out by telephone surveys to 75 individuals who underwent the sigmoidoscopy procedure. Results Integrity and friability of the tissue specimens correlate with their transepithelial resistance (r = −0.438 and −0.305, respectively) and are influenced by the bowel preparation solution and biopsy forceps used, being NaCl and jumbo forceps the most compatible methods with the electrophysiological analysis. The great majority of the individuals (76%) did not report major discomfort due to the short procedure time (max 15 min) and considered it relatively painless (79%). Importantly, most (88%) accept repeating it at least for one more time and 53% for more than 4 times. Conclusions Obtaining rectal biopsies with a flexible endoscope and jumbo forceps after bowel preparation with NaCl solution is a safe procedure that can be adopted for both adults and children of any age, yielding viable specimens for CFTR bioelectrical/biochemical analyses. The procedure is well tolerated by patients, demonstrating its feasibility as an outcome measure in clinical trials. PMID:23688510

  11. Survival of foul-hooked largemouth bass (Micropterus salmoides)

    USGS Publications Warehouse

    Pope, K.L.; Wilde, G.R.

    2010-01-01

    We conducted a field experiment to determine the survival rate of foul-hooked (hooked external to the oral cavity) largemouth bass (Micropterus salmoides) caught and released by recreational anglers. Of 42 largemouth bass caught with hard-plastic baits containing three treble hooks, 15 were hooked only within the mouth and 27 had at least one hook penetrating the external surface of the fish (i.e., foul-hooked). There was no difference in survival of mouth-hooked (100%), foul-hooked (100%), or control (100%) largemouth bass.

  12. What is hooking up? Examining definitions of hooking up in relation to behavior and normative perceptions.

    PubMed

    Lewis, Melissa A; Atkins, David C; Blayney, Jessica A; Dent, David V; Kaysen, Debra L

    2013-01-01

    Research has demonstrated ambiguity about the definition of hooking up among college students. The current research examined whether there were multiple definitions of hooking up among college students and how different definitions might be associated with the participant's own hooking up behavior and normative perceptions of peer hooking up behavior. A random sample (N = 1,468) of undergraduates (56.4% female) completed a Web-based survey composed of measures of drinking and sexual behavior. Open-ended definitions of hooking up were content-coded and analyzed using a mixture model to explore discrete definitions of hooking up among college students. Findings indicated three clusters of student definitions of hooking up: Cluster 1 had the broadest definition, referring to sex in general, not specific sexual acts, and to making out. Cluster 2 placed an emphasis on interpersonal and social aspects. Cluster 3 defined hooking up as sex with notable references to specific sexual acts. Results further indicated that hooking up behavior and normative perceptions differentiated these three groups of definitions. Clinical implications regarding the inconsistency of student definitions of hooking up and how they may impact negative consequences associated with hooking up are discussed. PMID:23057805

  13. A Randomized Trial of Sheathed vs. Standard Forceps for Obtaining Uncontaminated Biopsy Specimens of Microbiota from the Terminal Ileum

    PubMed Central

    Dave, Maneesh; Johnson, Laura A.; Walk, Seth; Young, Vincent B.; Stidham, Ryan W.; Chaudhary, Meghana N.; FunNell, Jessica; Higgins, Peter D.R.

    2014-01-01

    Background The study of intestinal microbiota has been revolutionized by the use of molecular methods, including terminal restriction fragment length polymorphism (T-RFLP) analysis. A number of microbiota studies of Crohn’s disease patients have examined samples from stool or from the neoterminal ileum with a standard biopsy forceps, which could be contaminated by colonic bacteria when the forceps passes through the colonoscope channel. Objective To determine whether sheathed biopsy forceps are able to obtain terminal ileal microbiota samples with less colonic bacterial contamination compared to unsheathed (standard) biopsy forceps. Design Prospective randomized single center-study. Patients and Methods We obtained four (paired) biopsy specimens from adjacent locations in the terminal ileum using the sheathed and standard forceps of 27 consecutive subjects undergoing colonoscopy and characterized the microbiota using T-RFLP. We calculated the Bray Curtis similarity index (BCI) between samples (sheathed vs. unsheathed forceps) within patients and tested for significant differences across all patients. Results There was not a significant difference in the microbial diversity of samples obtained using sheathed vs. unsheathed forceps. The difference in microbial diversity between patients was much greater than the variability within patients by proximal vs. distal site or by forceps type. Limitations T-RFLP is based on PCR amplification, so it is not always sensitive to rare bacterial species. Conclusion Standard unsheathed forceps appear to be sufficient for microbiota sample collection from the terminal ileum. PMID:21317176

  14. Transgressions: Teaching According to "bell hooks."

    ERIC Educational Resources Information Center

    Hill, Susan E.; Fitzgerald, Linda May; Haack, Joel; Clayton, Scharron

    1998-01-01

    Four faculty members from different disciplines at the University of Northern Iowa discuss whether and to what extent they were engaging in the critical pedagogy proposed by bell hooks [sic], a writer on feminism, racism, pedagogy, and black intellectual life. They also consider the ways in which hooks's work informs their understanding of…

  15. Cooling system for three hook ring segment

    SciTech Connect

    Campbell, Christian X.; Eng, Darryl; Lee, Ching-Pang; Patat, Harry

    2014-08-26

    A triple hook ring segment including forward, midsection and aft mounting hooks for engagement with respective hangers formed on a ring segment carrier for supporting a ring segment panel, and defining a forward high pressure chamber and an aft low pressure chamber on opposing sides of the midsection mounting hook. An isolation plate is provided on the aft side of the midsection mounting hook to form an isolation chamber between the aft low pressure chamber and the ring segment panel. High pressure air is supplied to the forward chamber and flows to the isolation chamber through crossover passages in the midsection hook. The isolation chamber provides convection cooling air to an aft portion of the ring segment panel and enables a reduction of air pressure in the aft low pressure chamber to reduce leakage flow of cooling air from the ring segment.

  16. Designing physics video hooks for science students

    NASA Astrophysics Data System (ADS)

    McHugh, M.; McCauley, V.

    2016-01-01

    This paper offers an insight into the design structure of physics video hooks that were developed by the Science Education Resource design team in the school of education (SOE) in National University of Ireland, Galway (NUI Galway). A hook, is an instructional technique used to stimulate student attention (Hunter 1994, Lemov 2010), interest (Jewett 2013) and engagement (McCrory 2011, Riendeau 2013). The physics video hooks followed a design framework that is illustrated below by breaking down the centre of gravity (COG) hook. Various design principles and elements embedded within the COG hook are presented with examples and the time they occur within the video. The intention of this article is that the design can be replicated and modified to aid teachers and designers in the development of a multitude of classroom based multimedia resources.

  17. Force sensing micro-forceps with integrated fiber Bragg grating for vitreoretinal surgery

    NASA Astrophysics Data System (ADS)

    He, Xingchi; Balicki, Marcin A.; Kang, Jin U.; Gehlbach, Peter L.; Handa, James T.; Taylor, Russell H.; Iordachita, Iulian I.

    2012-01-01

    Vitreoretinal surgery is a technically demanding ophthalmologic discipline. One of the main technical challenges in vitreoretinal surgery is the lack of force sensing since the surgical maneuvers fall below the human sensory threshold. Previously, a 2-degree-of-freedom (DOF) force sensing instrument with a surgical pick was developed and tested. However, a more commonly used instrument for vitreoretinal surgery is the forceps, with which a surgeon can easily grasp and delaminate the scar tissue. We have designed, fabricated and calibrated a novel 20-gauge (Ga) microsurgical instrument with a 2-DOF force sensing forceps. Three fiber Bragg grating (FBG) sensors are integrated into the customized AlconTM forceps tip. The redundant sensor configuration provides good compensation for temperature-related drift. The calibration data show that the tool can provide a force resolution of 0.25 mN. In order to test the functionality and performance, the forceps was evaluated in inner shell membrane peeling experiments with chicken embryos as well as in in-vivo rabbit experiments. The instrument has demonstrated the capability of being applied in the clinical environment, with consistent force measurements. The force exerted in inner shell membrane peeling is from 6.07 to 34.65 mN. The development of the 2-DOF force sensing micro-forceps has shown that the fabrication process is feasible and reliable, and it can be used to develop a future 3-DOF force sensing tool.

  18. A treatment method for chronic suppurative lacrimal canaliculitis using chalazion forceps

    PubMed Central

    Jin, Xiuming; Fan, Fangli; Zhang, Fan; Zhao, Yingying; Hu, Renjian

    2016-01-01

    Purpose: The purpose of this study is to evaluate the effectiveness of chronic suppurative lacrimal canaliculitis treatment using chalazion forceps. Patients and Methods: A prospective study was performed on consecutive patients who accepted the aid of chalazion forceps to treat chronic suppurative lacrimal canaliculitis. Two different treatment methods using chalazion forceps were performed according to the degree of lacrimal canaliculitis. Postoperatively, the patients received 0.5% levofloxacin eye drops four times per day and 0.5 g oral levofloxacin tablets once per day for 4 days. The follow-up period was more than 3 months. Lacrimal irrigation, the condition of the lacrimal punctum, and patients’ symptoms were carefully evaluated. Results: In total, 32 patients met the criteria for chronic suppurative lacrimal canaliculitis. Included were 6 males and 26 females. Their average age was 51.7 ± 14.9 years (range; 19–80 years), and all had unilateral canaliculitis. The mean duration of the symptoms was 18.9 ± 9.8 months (range; 3–48 months). The mean follow-up time was 14.7 ± 7.8 months. The signs and symptoms resolved completely in all patients within 15 days, and no recurrence was observed. No patients reported epiphora after the treatment. Conclusions: The use of chalazion forceps is effective in treating chronic suppurative lacrimal canaliculitis. The forceps may offer an alternative treatment technology in the management of suppurative lacrimal canaliculitis. PMID:27688281

  19. Prospective randomized comparison of progressive dilational vs forceps dilational percutaneous tracheostomy.

    PubMed

    Kaiser, E; Cantais, E; Goutorbe, P; Salinier, L; Palmier, B

    2006-02-01

    This trial prospectively compares two methods of percutaneous tracheostomy, both routinely used in ICU: the Ciaglia progressive dilational tracheostomy and the Griggs forceps dilational tracheostomy. One hundred patients were randomized using a single-blinded envelope method to receive progressive or forceps percutaneous tracheostomy performed at the bedside. Operative time, the occurrence of hypoxaemia or hypercapnia and complications were recorded. The progressive technique took longer than the forceps technique (median 7 (range 2-26) vs. 4 (1-16) minutes, P = 0.0005). Hypercapnia occurred in both groups but was more marked with the progressive technique (56 (16) vs. 49 (13) mmHg, P = 0.0082). Minor complications (minor bleeding, transient hypoxaemia, damage to posterior tracheal wall without emphysema) were also more frequent with the progressive technique (31 vs. 9 complications, P < 0.0001). Six major complications occurred with the progressive technique, none with the forceps technique (P = 0.0085): tension pneumothorax, posterior tracheal wall injury with subcutaneous emphysema, loss of airway with hypoxaemia, loss of stoma with impossible re-catheterization, and two conversions to another technique. In conclusion, progressive dilational tracheostomy took longer, caused more hypercapnia and more minor and major difficulties than forceps dilational tracheostomy. PMID:16494150

  20. 21 CFR 878.5360 - Tweezer-type epilator.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Tweezer-type epilator. 878.5360 Section 878.5360 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Therapeutic Devices § 878.5360 Tweezer-type...

  1. 21 CFR 878.5360 - Tweezer-type epilator.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Tweezer-type epilator. 878.5360 Section 878.5360 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Therapeutic Devices § 878.5360 Tweezer-type...

  2. 21 CFR 878.5360 - Tweezer-type epilator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Tweezer-type epilator. 878.5360 Section 878.5360 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Therapeutic Devices § 878.5360 Tweezer-type...

  3. 21 CFR 878.5360 - Tweezer-type epilator.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Tweezer-type epilator. 878.5360 Section 878.5360 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Therapeutic Devices § 878.5360 Tweezer-type...

  4. 21 CFR 878.5360 - Tweezer-type epilator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Tweezer-type epilator. 878.5360 Section 878.5360 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Therapeutic Devices § 878.5360 Tweezer-type...

  5. Modular magnetic tweezers for single-molecule characterizations of helicases.

    PubMed

    Kemmerich, Felix E; Kasaciunaite, Kristina; Seidel, Ralf

    2016-10-01

    Magnetic tweezers provide a versatile toolkit supporting the mechanistic investigation of helicases. In the present article, we show that custom magnetic tweezers setups are straightforward to construct and can easily be extended to provide adaptable platforms, capable of addressing a multitude of enquiries regarding the functions of these fascinating molecular machines. We first address the fundamental components of a basic magnetic tweezers scheme and review some previous results to demonstrate the versatility of this instrument. We then elaborate on several extensions to the basic magnetic tweezers scheme, and demonstrate their applications with data from ongoing research. As our methodological overview illustrates, magnetic tweezers are an extremely useful tool for the characterization of helicases and a custom built instrument can be specifically tailored to suit the experimenter's needs.

  6. Optical Tweezers Array and Nimble Tweezers Probe Generated by Spatial- Light Modulator

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.; Jassemnejad, Baha; Seibel, Robin E.; Weiland, Kenneth E.

    2003-01-01

    An optical tweezers is being developed at the NASA Glenn Research Center as a visiblelight interface between ubiquitous laser technologies and the interrogation, visualization, manufacture, control, and energization of nanostructures such as silicon carbide (SiC) nanotubes. The tweezers uses one or more focused laser beams to hold micrometer-sized particles called tools (sometimes called tips in atomic-force-microscope terminology). A strongly focused laser beam has an associated light-pressure gradient that is strong enough to pull small particles to the focus, in spite of the oppositely directed scattering force; "optical tweezers" is the common term for this effect. The objective is to use the tools to create carefully shaped secondary traps to hold and assemble nanostructures that may contain from tens to hundreds of atoms. The interaction between a tool and the nanostructures is to be monitored optically as is done with scanning probe microscopes. One of the initial efforts has been to create, shape, and control multiple tweezers beams. To this end, a programmable spatial-light modulator (SLM) has been used to modify the phase of a laser beam at up to 480 by 480 points. One program creates multiple, independently controllable tweezer beams whose shapes can be tailored by making the SLM an adaptive mirror in an interferometer (ref. 1). The beams leave the SLM at different angles, and an optical Fourier transform maps these beams to different positions in the focal plane of a microscope objective. The following figure shows two arrays of multiple beams created in this manner. The patterns displayed above the beam array control the intensity-to-phase transformation required in programming the SLM. Three of the seven beams displayed can be used as independently controllable beams.

  7. Evaluation of microsurgical tasks with OCT-guided and/or robot-assisted ophthalmic forceps

    PubMed Central

    Yu, Haoran; Shen, Jin-Hui; Shah, Rohan J.; Simaan, Nabil; Joos, Karen M.

    2015-01-01

    Real-time intraocular optical coherence tomography (OCT) visualization of tissues with surgical feedback can enhance retinal surgery. An intraocular 23-gauge B-mode forward-imaging co-planar OCT-forceps, coupling connectors and algorithms were developed to form a unique ophthalmic surgical robotic system. Approach to the surface of a phantom or goat retina by a manual or robotic-controlled forceps, with and without real-time OCT guidance, was performed. Efficiency of lifting phantom membranes was examined. Placing the co-planar OCT imaging probe internal to the surgical tool reduced instrument shadowing and permitted constant tracking. Robotic assistance together with real-time OCT feedback improved depth perception accuracy. The first-generation integrated OCT-forceps was capable of peeling membrane phantoms despite smooth tips. PMID:25780736

  8. The art of performing a safe forceps delivery: a skill to revitalise.

    PubMed

    Rather, Henna; Muglu, Javaid; Veluthar, Luxmi; Sivanesan, K

    2016-04-01

    The number of forceps deliveries is globally falling possibly due to Obstetricians gaining more experience and competence in the use of Ventouse deliveries. The declining use of traction forceps can increase the rate of second stage caesarean sections, which may have a long-term impact on the overall rate of vaginal births, despite the efforts of improving uptake of vaginal births after caesarean sections. The failures in forceps deliveries are commonly related to inaccurate assessment of the foetal position and station, which can be addressed by gaining sound clinical experience and applying intra-partum scanning to determine the fetal head position in the second stage, and should be part of the core curriculum in obstetric training. The alternate techniques of rotation, like digital and manual rotation, should be taught and encouraged in cases where rotation is required, which will significantly increase the success rate of instrumental deliveries.

  9. Hook of the hamate fractures in athletes.

    PubMed

    Parker, R D; Berkowitz, M S; Brahms, M A; Bohl, W R

    1986-01-01

    Five patients have been treated for six hook of the hamate fractures over the past 8 years by the authors. Of these, four patients were professional baseball players and one patient was an accountant. All fractures occurred while playing baseball; four while swinging a bat, and two secondary to a fall on an outstretched hand. Roentgenographic diagnosis was made by carpal tunnel view alone in two, oblique and carpal tunnel view in one, bone scan and subsequent carpal tunnel view in two, and computerized tomography in one fracture. Five of the fractures were through the base of the hook, while one was toward the tip. All patients ultimately underwent hook resection, four early and two late. The patient who sustained the tip of the hook fracture underwent resection of the fracture only to refracture the same hook at its base 6 months later. All patients returned to their previous level of activity in 6 to 8 weeks after surgery without loss of function. Hence, it is the authors' opinion that the entire hook should be resected to the base of the hamate as the primary form of treatment in hook of the hamate fractures.

  10. Reusable acoustic tweezers for disposable devices.

    PubMed

    Guo, Feng; Xie, Yuliang; Li, Sixing; Lata, James; Ren, Liqiang; Mao, Zhangming; Ren, Baiyang; Wu, Mengxi; Ozcelik, Adem; Huang, Tony Jun

    2015-12-21

    We demonstrate acoustic tweezers used for disposable devices. Rather than forming an acoustic resonance, we locally transmitted standing surface acoustic waves into a removable, independent polydimethylsiloxane (PDMS)-glass hybridized microfluidic superstrate device for micromanipulation. By configuring and regulating the displacement nodes on a piezoelectric substrate, cells and particles were effectively patterned and transported into said superstrate, accordingly. With the label-free and contactless nature of acoustic waves, the presented technology could offer a simple, accurate, low-cost, biocompatible, and disposable method for applications in the fields of point-of-care diagnostics and fundamental biomedical studies.

  11. Active laser tweezers microrheometry of microbial biofilms

    NASA Astrophysics Data System (ADS)

    Osterman, N.; Slapar, V.; Boric, M.; Stopar, D.; Babič, D.; Poberaj, I.

    2010-08-01

    Microbial biofilms are present on biotic and abiotic surfaces and have a significant impact on many fields in industry, health care and technology. Thus, a better understanding of processes that lead to development of biofilms and their chemical and mechanical properties is needed. In the following paper we report the results of active laser tweezers microrheology study of optically inhomogeneous extracellular matrix secreted by Visbrio sp. bacteria. One particle and two particle active microrheology were used in experiments. Both methods exhibited high enough sensitivity to detect viscosity changes at early stages of bacterial growth. We also showed that both methods can be used in mature samples where optical inhomogeneity becomes significant.

  12. Reusable acoustic tweezers for disposable devices

    PubMed Central

    Guo, Feng; Xie, Yuliang; Li, Sixing; Lata, James; Ren, Liqiang; Mao, Zhangming; Ren, Baiyang; Wu, Mengxi; Ozcelik, Adem

    2015-01-01

    We demonstrate acoustic tweezers used for disposable devices. Rather than forming an acoustic resonance, we locally transmitted standing surface acoustic waves into a removable, independent polydimethylsiloxane (PDMS)-glass hybridized microfluidic superstrate device for micromanipulation. By configuring and regulating the displacement nodes on a piezoelectric substrate, cells and particles were effectively patterned and transported into said superstrate, accordingly. With the label-free and contactless nature of acoustic waves, the presented technology could offer a simple, accurate, low-cost, biocompatible, and disposable method for applications in the fields of point-of-care diagnostics and fundamental biomedical studies. PMID:26507411

  13. Writers Draw Visual Hooks: Children's Inquiry into Writing

    ERIC Educational Resources Information Center

    Leigh, S. Rebecca

    2012-01-01

    Drawing and writing in response to picturebook read-alouds, elementary children construct varying "visual hooks" in their sketches as effective visual devices for extending ideas for writing: the bubble hook, the zoom hook, and the group hook. This article reports on a 12-week qualitative study in which children in second grade develop as writers…

  14. Homage to Robert Hooke (1635-1703): new insights from the recently discovered Hooke Folio.

    PubMed

    Gest, Howard

    2009-01-01

    Microorganisms were first observed by Robert Hooke and Antoni van Leeuwenhoek between 1665 and 1678. In 1665, Hooke published Micrographia, which depicted the details of 60 objects as seen in the microscope. One chapter was devoted to the microfungus Mucor, the first microbe observed by the human eye. Leeuwenhoek, despite having no scientific training, became the first to observe protozoa, red blood cells, the sperm cells of animals, and bacteria, which he described in numerous letters to the Royal Society of London. In 1677, Hooke became Secretary of the Royal Society and, in the same year, confirmed some of Leeuwenhoek's discoveries. The discovery in 2006 of more than 650 pages of Hooke's missing records (the "Hooke Folio") allows us to verify the proceedings of Royal Society meetings and promises to be an important new source of Hooke's views on the renaissance of science in the 17th century. PMID:19684374

  15. Homage to Robert Hooke (1635-1703): new insights from the recently discovered Hooke Folio.

    PubMed

    Gest, Howard

    2009-01-01

    Microorganisms were first observed by Robert Hooke and Antoni van Leeuwenhoek between 1665 and 1678. In 1665, Hooke published Micrographia, which depicted the details of 60 objects as seen in the microscope. One chapter was devoted to the microfungus Mucor, the first microbe observed by the human eye. Leeuwenhoek, despite having no scientific training, became the first to observe protozoa, red blood cells, the sperm cells of animals, and bacteria, which he described in numerous letters to the Royal Society of London. In 1677, Hooke became Secretary of the Royal Society and, in the same year, confirmed some of Leeuwenhoek's discoveries. The discovery in 2006 of more than 650 pages of Hooke's missing records (the "Hooke Folio") allows us to verify the proceedings of Royal Society meetings and promises to be an important new source of Hooke's views on the renaissance of science in the 17th century.

  16. Quantitative Modeling and Optimization of Magnetic Tweezers

    PubMed Central

    Lipfert, Jan; Hao, Xiaomin; Dekker, Nynke H.

    2009-01-01

    Abstract Magnetic tweezers are a powerful tool to manipulate single DNA or RNA molecules and to study nucleic acid-protein interactions in real time. Here, we have modeled the magnetic fields of permanent magnets in magnetic tweezers and computed the forces exerted on superparamagnetic beads from first principles. For simple, symmetric geometries the magnetic fields can be calculated semianalytically using the Biot-Savart law. For complicated geometries and in the presence of an iron yoke, we employ a finite-element three-dimensional PDE solver to numerically solve the magnetostatic problem. The theoretical predictions are in quantitative agreement with direct Hall-probe measurements of the magnetic field and with measurements of the force exerted on DNA-tethered beads. Using these predictive theories, we systematically explore the effects of magnet alignment, magnet spacing, magnet size, and of adding an iron yoke to the magnets on the forces that can be exerted on tethered particles. We find that the optimal configuration for maximal stretching forces is a vertically aligned pair of magnets, with a minimal gap between the magnets and minimal flow cell thickness. Following these principles, we present a configuration that allows one to apply ≥40 pN stretching forces on ≈1-μm tethered beads. PMID:19527664

  17. Quantitative modeling and optimization of magnetic tweezers.

    PubMed

    Lipfert, Jan; Hao, Xiaomin; Dekker, Nynke H

    2009-06-17

    Magnetic tweezers are a powerful tool to manipulate single DNA or RNA molecules and to study nucleic acid-protein interactions in real time. Here, we have modeled the magnetic fields of permanent magnets in magnetic tweezers and computed the forces exerted on superparamagnetic beads from first principles. For simple, symmetric geometries the magnetic fields can be calculated semianalytically using the Biot-Savart law. For complicated geometries and in the presence of an iron yoke, we employ a finite-element three-dimensional PDE solver to numerically solve the magnetostatic problem. The theoretical predictions are in quantitative agreement with direct Hall-probe measurements of the magnetic field and with measurements of the force exerted on DNA-tethered beads. Using these predictive theories, we systematically explore the effects of magnet alignment, magnet spacing, magnet size, and of adding an iron yoke to the magnets on the forces that can be exerted on tethered particles. We find that the optimal configuration for maximal stretching forces is a vertically aligned pair of magnets, with a minimal gap between the magnets and minimal flow cell thickness. Following these principles, we present a configuration that allows one to apply > or = 40 pN stretching forces on approximately 1-microm tethered beads. PMID:19527664

  18. A compact holographic optical tweezers instrument

    NASA Astrophysics Data System (ADS)

    Gibson, G. M.; Bowman, R. W.; Linnenberger, A.; Dienerowitz, M.; Phillips, D. B.; Carberry, D. M.; Miles, M. J.; Padgett, M. J.

    2012-11-01

    Holographic optical tweezers have found many applications including the construction of complex micron-scale 3D structures and the control of tools and probes for position, force, and viscosity measurement. We have developed a compact, stable, holographic optical tweezers instrument which can be easily transported and is compatible with a wide range of microscopy techniques, making it a valuable tool for collaborative research. The instrument measures approximately 30×30×35 cm and is designed around a custom inverted microscope, incorporating a fibre laser operating at 1070 nm. We designed the control software to be easily accessible for the non-specialist, and have further improved its ease of use with a multi-touch iPad interface. A high-speed camera allows multiple trapped objects to be tracked simultaneously. We demonstrate that the compact instrument is stable to 0.5 nm for a 10 s measurement time by plotting the Allan variance of the measured position of a trapped 2 μm silica bead. We also present a range of objects that have been successfully manipulated.

  19. Kinematics of Hooke universal joint robot wrists

    NASA Technical Reports Server (NTRS)

    Mckinney, William S., Jr.

    1988-01-01

    The singularity problem associated with wrist mechanisms commonly found on industrial manipulators can be alleviated by redesigning the wrist so that it functions as a three-axis gimbal system. This paper discussess the kinematics of gimbal robot wrists made of one and two Hooke universal joints. Derivations of the resolved rate motion control equations for the single and double Hooke universal joint wrists are presented using the three-axis gimbal system as a theoretical wrist model.

  20. The Topic Is Sandy Hook: A Program for Gifted and Talented Students at Sandy Hook.

    ERIC Educational Resources Information Center

    Grant, David

    "The Topic Is Sandy Hook" is an experiential 10-week program designed to provide special opportunities and educational experiences for 6th to 10th grade gifted and talented students. Sandy Hook, a natural resource in Monmouth County, New Jersey, is unique in its physical and historical features and provides an exceptionally rich environment in…

  1. Investigating the potential applications of a Raman tweezer system

    NASA Astrophysics Data System (ADS)

    Wray, John Casey

    This thesis describes the construction of an Optical Tweezer apparatus to be used in conjunction with a confocal Raman spectrometer. The tweezer utilizes an infrared (e=1064 nm) laser directed into an inverted microscope with NA=1.4 oil immersion 100x objective lens that strongly focuses the laser light into a sample to function as a single-beam gradient force trap. The long term goal of this research program is to develop a single molecule Raman tweezers apparatus that allows one to control the position of a Raman nanoplasmonic amplifier. This thesis describes the construction of the Raman tweezer apparatus along with several Raman spectra obtained from optically trapped samples of polystyrene fluorescent orange, amine-modified latex beads. In addition, I explored the Raman spectra of bulk cytochrome c mixed with or injected onto Ag aggregates for SERs enhancement.

  2. Optical tweezers for studying taxis in parasites

    NASA Astrophysics Data System (ADS)

    de Thomaz, A. A.; Fontes, A.; Stahl, C. V.; Pozzo, L. Y.; Ayres, D. C.; Almeida, D. B.; Farias, P. M. A.; Santos, B. S.; Santos-Mallet, J.; Gomes, S. A. O.; Giorgio, S.; Feder, D.; Cesar, C. L.

    2011-04-01

    In this work we present a methodology to measure force strengths and directions of living parasites with an optical tweezers setup. These measurements were used to study the parasites chemotaxis in real time. We observed behavior and measured the force of: (i) Leishmania amazonensis in the presence of two glucose gradients; (ii) Trypanosoma cruzi in the vicinity of the digestive system walls, and (iii) Trypanosoma rangeli in the vicinity of salivary glands as a function of distance. Our results clearly show a chemotactic behavior in every case. This methodology can be used to study any type of taxis, such as chemotaxis, osmotaxis, thermotaxis, phototaxis, of any kind of living microorganisms. These studies can help us to understand the microorganism sensory systems and their response function to these gradients.

  3. Hooke, orbital motion, and Newton's Principia

    NASA Astrophysics Data System (ADS)

    Nauenberg, Michael

    1994-04-01

    A detailed analysis is given of a 1685 graphical construction by Robert Hooke for the polygonal path of a body moving in a periodically pulsed radial field of force. In this example the force varies linearly with the distance from the center. Hooke's method is based directly on his original idea from the mid-1660s that the orbital motion of a planet is determined by compounding its tangential velocity with a radial velocity impressed by the gravitational attraction of the sun at the center. This hypothesis corresponds to the second law of motion, as formulated two decades later by Newton, and its geometrical implementation constitutes the cornerstone of Newton's Principia. Hooke's diagram represents the first known accurate graphical evaluation of an orbit in a central field of force, and it gives evidence that he demonstrated that his resulting discrete orbit is an approximate ellipse centered at the origin of the field of force. A comparable calculation to obtain orbits for an inverse square force, which Hooke had conjectured to be the gravitational force, has not been found among his unpublished papers. Such a calculation is carried out here numerically with the Newton-Hooke geometrical construction. It is shown that for orbits of comparable or larger eccentricity than Hooke's example, a graphical approach runs into convergence difficulties due to the singularity of the gravitational force at the origin. This may help resolve the long-standing mystery why Hooke never published his controversial claim that he had demonstrated that an attractive force, which is ``...in a duplicate proportion to the Distance from the Center Reciprocall...'' implies elliptic orbits.

  4. Eukaryotic membrane tethers revisited using magnetic tweezers

    NASA Astrophysics Data System (ADS)

    Hosu, Basarab G.; Sun, Mingzhai; Marga, Françoise; Grandbois, Michel; Forgacs, Gabor

    2007-06-01

    Membrane nanotubes, under physiological conditions, typically form en masse. We employed magnetic tweezers (MTW) to extract tethers from human brain tumor cells and compared their biophysical properties with tethers extracted after disruption of the cytoskeleton and from a strongly differing cell type, Chinese hamster ovary cells. In this method, the constant force produced with the MTW is transduced to cells through super-paramagnetic beads attached to the cell membrane. Multiple sudden jumps in bead velocity were manifest in the recorded bead displacement-time profiles. These discrete events were interpreted as successive ruptures of individual tethers. Observation with scanning electron microscopy supported the simultaneous existence of multiple tethers. The physical characteristics, in particular, the number and viscoelastic properties of the extracted tethers were determined from the analytic fit to bead trajectories, provided by a standard model of viscoelasticity. Comparison of tethers formed with MTW and atomic force microscopy (AFM), a technique where the cantilever-force transducer is moved at constant velocity, revealed significant differences in the two methods of tether formation. Our findings imply that extreme care must be used to interpret the outcome of tether pulling experiments performed with single molecular techniques (MTW, AFM, optical tweezers, etc). First, the different methods may be testing distinct membrane structures with distinct properties. Second, as soon as a true cell membrane (as opposed to that of a vesicle) can attach to a substrate, upon pulling on it, multiple nonspecific membrane tethers may be generated. Therefore, under physiological conditions, distinguishing between tethers formed through specific and nonspecific interactions is highly nontrivial if at all possible.

  5. Eukaryotic membrane tethers revisited using magnetic tweezers.

    PubMed

    Hosu, Basarab G; Sun, Mingzhai; Marga, Françoise; Grandbois, Michel; Forgacs, Gabor

    2007-04-19

    Membrane nanotubes, under physiological conditions, typically form en masse. We employed magnetic tweezers (MTW) to extract tethers from human brain tumor cells and compared their biophysical properties with tethers extracted after disruption of the cytoskeleton and from a strongly differing cell type, Chinese hamster ovary cells. In this method, the constant force produced with the MTW is transduced to cells through super-paramagnetic beads attached to the cell membrane. Multiple sudden jumps in bead velocity were manifest in the recorded bead displacement-time profiles. These discrete events were interpreted as successive ruptures of individual tethers. Observation with scanning electron microscopy supported the simultaneous existence of multiple tethers. The physical characteristics, in particular, the number and viscoelastic properties of the extracted tethers were determined from the analytic fit to bead trajectories, provided by a standard model of viscoelasticity. Comparison of tethers formed with MTW and atomic force microscopy (AFM), a technique where the cantilever-force transducer is moved at constant velocity, revealed significant differences in the two methods of tether formation. Our findings imply that extreme care must be used to interpret the outcome of tether pulling experiments performed with single molecular techniques (MTW, AFM, optical tweezers, etc). First, the different methods may be testing distinct membrane structures with distinct properties. Second, as soon as a true cell membrane (as opposed to that of a vesicle) can attach to a substrate, upon pulling on it, multiple nonspecific membrane tethers may be generated. Therefore, under physiological conditions, distinguishing between tethers formed through specific and nonspecific interactions is highly nontrivial if at all possible.

  6. Optical manipulation of lipid and polymer nanotubes with optical tweezers

    NASA Astrophysics Data System (ADS)

    Reiner, Joseph E.; Kishore, Rani; Pfefferkorn, Candace; Wells, Jeffrey; Helmerson, Kristian; Howell, Peter; Vreeland, Wyatt; Forry, Samuel; Locascio, Laurie; Reyes-Hernandez, Darwin; Gaitan, Michael

    2004-10-01

    Using optical tweezers and microfluidics, we stretch either the lipid or polymer membranes of liposomes or polymersomes, respectively, into long nanotubes. The membranes can be grabbed directly with the optical tweezers to produce sub-micron diameter tubes that are several hundred microns in length. We can stretch tubes up to a centimeter in length, limited only by the travel of our microscope stage. We also demonstrate the cross linking of a pulled polymer nanotube.

  7. Two fault tolerant toggle-hook release

    NASA Technical Reports Server (NTRS)

    Graves, Thomas Joseph (Inventor); Brown, Christopher William (Inventor)

    1991-01-01

    A coupling device is disclosed which is mechanically two fault tolerant for release. The device comprises a fastener plate and fastener body, each of which is attachable to a different one of a pair of structures to be joined. The fastener plate and body are coupled by an elongate toggle mounted at one end in a socket on the fastener plate for universal pivotal movement thereon. The other end of the toggle is received in an opening in the fastener body and adapted for limited pivotal movement therein. The toggle is adapted to be restrained by three latch hooks arranged in symmetrical equiangular spacing about the axis of the toggle, each hook being mounted on the fastener body for pivotal movement between an unlatching non-contact position with respect to the toggle and a latching position in engagement with a latching surface of the toggle. The device includes releasable lock means for locking each latch hook in its latching position whereby the toggle couples the fastener plate to the fastener body and means for releasing the lock means to unlock each said latch hook from the latch position whereby the unlocking of at least one of the latch hooks from its latching position results in the decoupling of the fastener plate from the fastener body.

  8. Laser tweezers Raman spectroscopy of single cells

    NASA Astrophysics Data System (ADS)

    Chen, De

    Raman scattering is an inelastic collision between the vibrating molecules inside the sample and the incident photons. During this process, energy exchange takes place between the photon and the scattering molecule. By measuring the energy change of the photon, the molecular vibration mode can be probed. The vibrational spectrum contains valuable information about the disposition of atomic nuclei and chemical bonds within a molecule, the chemical compositions and the interactions between the molecule and its surroundings. In this dissertation, laser tweezers Raman spectroscopy (LTRS) technique is applied for the analysis of biological cells and human cells at single cell level. In LTRS, an individual cell is trapped in aqueous medium with laser tweezers, and Raman scattering spectra from the trapped cell are recorded in real-time. The Raman spectra of these cells can be used to reveal the dynamical processes of cell growth, cell response to environment changes, and can be used as the finger print for the identification of a bacterial cell species. Several biophysical experiments were carried out using LTRS: (1) the dynamic germination process of individual spores of Bacillus thuringiensis was detected via Ca-DPA, a spore-specific biomarker molecule; (2) inactivation and killing of Bacillus subtilis spores by microwave irradiation and wet heat were studied at single cell level; (3) the heat shock activation process of single B. subtilis spores were analyzed, in which the reversible transition from glass-like state at low temperature to liquid-like state at high temperature in spore was revealed at the molecular level; (4) the kinetic processes of bacterial cell lysis of E. coli by lysozyme and by temperature induction of lambda phage were detected real-time; (5) the fixation and rehydration of human platelets were quantitatively evaluated and characterized with Raman spectroscopy method, which provided a rapid way to quantify the quality of freeze-dried therapeutic

  9. Drawings of fossils by Robert Hooke and Richard Waller

    PubMed Central

    Kusukawa, Sachiko

    2013-01-01

    The drawings of fossils by Robert Hooke and Richard Waller that were the basis of the engravings in Hooke's Posthumous works (1705) are published here for the first time. The drawings show that both Hooke and Waller were proficient draftsmen with a keen eye for the details of petrified objects. These drawings provided Hooke with a polemic edge in making the case for the organic origins of ‘figured stones’.

  10. Forceps insertion supporting system in laparoscopic surgery: image projection onto the abdominal surface

    NASA Astrophysics Data System (ADS)

    Koishi, Takeshi; Ushiki, Suguru; Nakaguchi, Toshiya; Hayashi, Hideki; Tsumura, Norimichi; Miyake, Yoichi

    2007-03-01

    Laparoscopic surgery without ventrotomy has been widely used in recent years for quick recovery and out of pain of patients. However, surgeons are required to accumulate various experiences for this surgery since the difficulty in perceiving the positions of tissues by the limited field of view (FOV) of laparoscopes and the operational difficulties of forceps. In this paper, we propose a new laparoscopic surgery supporting system using projected images. The image of the FOV of a laparoscope is projected directly onto the abdominal surface of a patient. The shape distortion of the projected images produced by the unevenness of the abdominal surface is corrected by grating projection. The distortion due to the viewing angle of the surgeon is also corrected by using an electromagnetic tracking sensor. It is shown that the proposed system is significant to laparoscopic surgery, particularly for forceps insertion, by experiments using a model of the abdomen made with a dry box.

  11. 30 CFR 56.19075 - Use of open hooks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Use of open hooks. 56.19075 Section 56.19075 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... Hoisting Procedures § 56.19075 Use of open hooks. Open hooks shall not be used to hoist buckets or...

  12. 30 CFR 57.19075 - Use of open hooks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Use of open hooks. 57.19075 Section 57.19075 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... Hoisting Procedures § 57.19075 Use of open hooks. Open hooks shall not be used to hoist buckets or...

  13. A Pedagogy of Sight: Microscopic Vision in Robert Hooke's "Micrographia"

    ERIC Educational Resources Information Center

    Jack, Jordynn

    2009-01-01

    Robert Hooke's "Micrographia" (1665) holds an important place in the history of scientific visual rhetoric. Hooke's accomplishment lies not only in a stunning array of engravings, but also in a "pedagogy of sight"--a rhetorical framework that instructs readers how to view images in accordance with an ideological or epistemic program. Hooke not…

  14. Hooking Up and Identity Development of Female College Students

    ERIC Educational Resources Information Center

    Kooyman, Leslie; Pierce, Gloria; Zavadil, Amy

    2011-01-01

    Hooking up generally involves casual sex with noncommittal partners. Hooking up is prevalent on college campuses today and can negatively affect the identity development of female students. The authors examined this phenomenon with a feminist developmental perspective, evaluating hooking up in the context of sexual risk taking with physical and…

  15. Removal of a large foreign body in the rectosigmoid colon by colonoscopy using gastrolith forceps

    PubMed Central

    Lin, Xiao-Dong; Wu, Guang-Yao; Li, Song-Hu; Wen, Zong-Quan; Zhang, Fu; Yu, Shao-Ping

    2016-01-01

    Rectal foreign bodies are man-made injury that occurs occasionally. The management depends on its depth and the consequence it caused. We here report a case of rectal foreign body (a glass bottle measuring about 38 mm × 75 mm) which was located 13-15 cm from the anus. The patient had no sign of perforation, and we managed to remove it using endoscopy with gastrolith forceps. PMID:27182529

  16. Use of a novel through-the-needle biopsy forceps in endoscopic ultrasound

    PubMed Central

    Shakhatreh, Mohammad H.; Naini, Sohrab Rahimi; Brijbassie, Alan A.; Grider, Douglas J.; Shen, Perry; Yeaton, Paul

    2016-01-01

    Background and aims: Pancreatic cysts are becoming more common. Their differential diagnosis includes benign, premalignant, and malignant lesions. Distinguishing the type of cyst helps in the management decision making. We report on a novel tissue acquisition device for pancreatic cysts. Methods: Data on two patients who underwent endoscopic ultrasound (EUS) – guided fine-needle aspiration with a new micro forceps device are presented. Results: Two patients had large pancreatic cystic lesions in the pancreatic head. Linear EUS was performed, and tissue samples were obtained with the Moray micro forceps through a 19-gauge needle. In both patients, mucinous columnar epithelium lined the cystic walls. One patient underwent surgical resection, and the other elected surveillance. Examination of the surgical specimen from the first patient confirmed the cyst was a side-branch intraductal papillary mucinous neoplasm (IPMN), gastric type. Conclusions: The Moray micro forceps is a new tool that can be used to help determine the nature of pancreatic cysts and aid in their risk stratification and management. PMID:27092324

  17. Intraocular Microsurgical Forceps (20, 23, and 25 gauge) Membrane Peeling Forces Assessment.

    PubMed

    Velez-Montoya, Raul; Patel, Chirag; Oliver, Scott C N; Quiroz-Mercado, Hugo; Mandava, Naresh; Olson, Jeffrey L

    2013-01-01

    Background. To assess the peeling forces exerted by different calibers of microsurgical forceps on an experimental model of epiretinal membrane. Methods. A model of epiretinal membrane was constructed using thin cellulose paper and heptanes-isopropyl alcohol 1% mixture. The model was mounted on a force censoring device. Subsequently, flaps were created with three different microsurgical forceps of different calibers. We recorded the number of attempts, the duration of the event, and the pushing and the pulling forces during the peeling. The results were compared by a one-way ANOVA and a Fisher unprotected least significant difference test with an alpha value of 0.05 for statistically significance. Results. There was a statistical significant difference on the pulling and pushing forces between the 25 gauge (13.79 mN; -13.27 mN) and the 23 (6.63 mN; -5.76 mN) and 20 (5.02 mN; -5.30 mN) gauge, being greater in the first (P < 0.001). There were no differences in the duration of all events, meaning that all the forces were measured within the same period of time. Conclusions. The 25 gauge microsurgical forceps exerted the greatest mechanical stress over our simulated epiretinal membrane model and required more attempts to create a surgical suitable flap. The clinical implication of this finding is still to be determined. PMID:23956842

  18. Forceps, Actual Use, and Potential Cesarean Section Prevention: Study in a Selected Mexican Population

    PubMed Central

    Ayala-Yáñez, Rodrigo; Bayona-Soriano, Paulette; Hernández-Jimenez, Arturo; Contreras-Rendón, Alejandra; Chabat-Manzanera, Paulina; Nevarez-Bernal, Roberto

    2015-01-01

    Objective. Assessment of the frequency of complications observed with various forceps and operative vaginal delivery (OVD) techniques performed at the ABC Medical Center (Mexico City) to evaluate their safety, bearing in mind the importance of decreasing our country's high cesarean section incidence. Methods. We reviewed 5,375 deliveries performed between the years 2007 and 2012, only 146 were delivered by OVD.  Results. Only 1.0% of the cases had a serious, life-threatening situation (uterine rupture). The Simpson forceps was the most favored instrument (46%) due to its simplicity of use, effectiveness, and familiarity. Prophylactic use was the most common indication (30.8%) and significant complications observed were vaginal lacerations (p = 0.016), relative risk (RR) of 3.4 (95% confidence interval [CI]: 1.15–10.04), and fourth degree perineal tear (p = 0.016), RR of 3.4 (95% CI: 1.15–10.04). Conclusions. Forceps use and other OVD techniques are a safe alternative to be considered, diminishing C-section incidence and its complications. PMID:26380111

  19. Characterization of periodic cavitation in optical tweezers.

    PubMed

    Carmona-Sosa, Viridiana; Alba-Arroyo, José Ernesto; Quinto-Su, Pedro A

    2016-03-10

    Microscopic vapor explosions or cavitation bubbles can be generated repeatedly in optical tweezers with a microparticle that partially absorbs at the trapping laser wavelength. In this work we measure the size distribution and the production rate of cavitation bubbles for microparticles with a diameter of 3 μm using high-speed video recording and a fast photodiode. We find that there is a lower bound for the maximum bubble radius R(max)∼2  μm which can be explained in terms of the microparticle size. More than 94% of the measured R(max) are in the range between 2 and 6 μm, while the same percentage of the measured individual frequencies f(i) or production rates are between 10 and 200 Hz. The photodiode signal yields an upper bound for the lifetime of the bubbles, which is at most twice the value predicted by the Rayleigh equation. We also report empirical relations between R(max), f(i), and the bubble lifetimes. PMID:26974779

  20. Constructing Dual Beam Optical Tweezers for Undergraduate Biophysics Research

    NASA Astrophysics Data System (ADS)

    Daudelin, Brian; West-Coates, Devon; Del'Etoile, Jon; Grotzke, Eric; Paramanathan, Thayaparan

    Optical tweezing, or trapping, is a modern physics technique which allows us to use the radiation pressure from laser beams to trap micron sized particles. Optical tweezers are commonly used in graduate level biophysics research but seldom used at the undergraduate level. Our goal is to construct a dual beam optical tweezers for future undergraduate biophysical research. Dual beam optical tweezers use two counter propagating laser beams to provide a stronger trap. In this study we discuss how the assembly of the dual beam optical tweezers is done through three main phases. The first phase was to construct a custom compressed air system to isolate the optical table from the vibrations from its surroundings so that we can measure pico-newton scale forces that are observed in biological systems. In addition, the biomaterial flow system was designed with a flow cell to trap biomolecules by combining several undergraduate semester projects. During the second phase we set up the optics to image and display the inside of the flow cell. Currently we are in the process of aligning the laser to create an effective trap and developing the software to control the data collection. This optical tweezers set up will enable us to study potential cancer drug interactions with DNA at the single molecule level and will be a powerful tool in promoting interdisciplinary research at the undergraduate level.

  1. How safe is gamete micromanipulation by laser tweezers?

    NASA Astrophysics Data System (ADS)

    Koenig, Karsten; Tromberg, Bruce J.; Tadir, Yona; Berns, Michael W.

    1998-04-01

    Laser tweezers, used as novel sterile micromanipulation tools of living cells, are employed in laser-assisted in vitro fertilization (IVF). For example, controlled spermatozoa transport with 1064 nm tweezers to human egg cells has been performed in European clinics in cases of male infertility. The interaction of approximately 100 mW near infrared (NIR) trapping beams at MW/cm2 intensity with human gametes results in low mean less than 2 K temperature increases and less than 100 pN trapping forces. Therefore, photothermal or photomechanical induced destructive effects appear unlikely. However, the high photon flux densities may induce simultaneous absorption of two NIR photons resulting in nonlinear interactions. These nonlinear interactions imply non-resonant two-photon excitation of endogenous cellular chromophores. In the case of less than 800 nm tweezers, UV- like damage effects may occur. The destructive effect is amplified when multimode cw lasers are used as tweezer sources due to longitudinal mode-beating effects and partial mode- locking. Spermatozoa damage within seconds using 760 nm traps due to formation of unstable ps pulses in a cw Ti:Sa ring laser is demonstrated. We recommend the use of greater than or equal to 800 nm traps for optical gamete micromanipulation. To our opinion, further basic studies on the influence of nonlinear effects of laser tweezers on human gamete are necessary.

  2. Graded-index optical fiber tweezers with long manipulation length.

    PubMed

    Gong, Yuan; Huang, Wei; Liu, Qun-Feng; Wu, Yu; Rao, Yunjiang; Peng, Gang-Ding; Lang, Jinyi; Zhang, Ke

    2014-10-20

    Long manipulation length is critical for optical fiber tweezers to enhance the flexibility of non-contact trapping. In this paper a long manipulation distance of more than 40 μm is demonstrated experimentally by the graded-index fiber (GIF) tweezers, which is fabricated by chemically etching a GIF taper with a large cone angle of 58°. The long manipulation distance is obtained by introducing an air cavity between the lead-in single mode fiber and the GIF as well as by adjusting the laser power in the existence of a constant background flow. The influence of the cavity length and the GIF length on the light distribution and the focusing length of the GIF taper is investigated numerically, which is helpful for optimizing the parameters to perform stable optical trapping. This kind of optical fiber tweezers has advantages including low-cost, easy-to-fabricate and easy-to-use. PMID:25401560

  3. Optical tweezers force measurements to study parasites chemotaxis

    NASA Astrophysics Data System (ADS)

    de Thomaz, A. A.; Pozzo, L. Y.; Fontes, A.; Almeida, D. B.; Stahl, C. V.; Santos-Mallet, J. R.; Gomes, S. A. O.; Feder, D.; Ayres, D. C.; Giorgio, S.; Cesar, C. L.

    2009-07-01

    In this work, we propose a methodology to study microorganisms chemotaxis in real time using an Optical Tweezers system. Optical Tweezers allowed real time measurements of the force vectors, strength and direction, of living parasites under chemical or other kinds of gradients. This seems to be the ideal tool to perform observations of taxis response of cells and microorganisms with high sensitivity to capture instantaneous responses to a given stimulus. Forces involved in the movement of unicellular parasites are very small, in the femto-pico-Newton range, about the same order of magnitude of the forces generated in an Optical Tweezers. We applied this methodology to investigate the Leishmania amazonensis (L. amazonensis) and Trypanossoma cruzi (T. cruzi) under distinct situations.

  4. Optical tweezers reveal how proteins alter replication

    NASA Astrophysics Data System (ADS)

    Chaurasiya, Kathy

    Single molecule force spectroscopy is a powerful method that explores the DNA interaction properties of proteins involved in a wide range of fundamental biological processes such as DNA replication, transcription, and repair. We use optical tweezers to capture and stretch a single DNA molecule in the presence of proteins that bind DNA and alter its mechanical properties. We quantitatively characterize the DNA binding mechanisms of proteins in order to provide a detailed understanding of their function. In this work, we focus on proteins involved in replication of Escherichia coli (E. coli ), endogenous eukaryotic retrotransposons Ty3 and LINE-1, and human immunodeficiency virus (HIV). DNA polymerases replicate the entire genome of the cell, and bind both double-stranded DNA (dsDNA) and single-stranded DNA (ssDNA) during DNA replication. The replicative DNA polymerase in the widely-studied model system E. coli is the DNA polymerase III subunit alpha (DNA pol III alpha). We use optical tweezers to determine that UmuD, a protein that regulates bacterial mutagenesis through its interactions with DNA polymerases, specifically disrupts alpha binding to ssDNA. This suggests that UmuD removes alpha from its ssDNA template to allow DNA repair proteins access to the damaged DNA, and to facilitate exchange of the replicative polymerase for an error-prone translesion synthesis (TLS) polymerase that inserts nucleotides opposite the lesions, so that bacterial DNA replication may proceed. This work demonstrates a biophysical mechanism by which E. coli cells tolerate DNA damage. Retroviruses and retrotransposons reproduce by copying their RNA genome into the nuclear DNA of their eukaryotic hosts. Retroelements encode proteins called nucleic acid chaperones, which rearrange nucleic acid secondary structure and are therefore required for successful replication. The chaperone activity of these proteins requires strong binding affinity for both single- and double-stranded nucleic

  5. Tunable optical tweezers for wavelength-dependent measurements

    PubMed Central

    Hester, Brooke; Campbell, Gretchen K.; López-Mariscal, Carlos; Filgueira, Carly Levin; Huschka, Ryan; Halas, Naomi J.; Helmerson, Kristian

    2012-01-01

    Optical trapping forces depend on the difference between the trap wavelength and the extinction resonances of trapped particles. This leads to a wavelength-dependent trapping force, which should allow for the optimization of optical tweezers systems, simply by choosing the best trapping wavelength for a given application. Here we present an optical tweezer system with wavelength tunability, for the study of resonance effects. With this system, the optical trap stiffness is measured for single trapped particles that exhibit either single or multiple extinction resonances. We include discussions of wavelength-dependent effects, such as changes in temperature, and how to measure them. PMID:22559522

  6. Using laser tweezers to measure twitching motility in Neisseria.

    PubMed

    Maier, Berenike

    2005-06-01

    Dynamic properties of type IV pili are essential for their function in bacterial infection, twitching motility and gene transfer. Laser tweezers are versatile tools to study the molecular mechanism underlying pilus dynamics at the single molecule level. Recently, these optical tweezers have been used to monitor pilus elongation and retraction in vivo at a resolution of several nanometers. The force generated by type IV pili exceeds 100 pN making pili the strongest linear motors characterized to date. The study of pilus dynamics at the single molecule level sheds light on kinetics, force generation, switching and mechanics of the Neisseria gonorrhoeae pilus motor. PMID:15939360

  7. Marker-free cell discrimination by holographic optical tweezers

    NASA Astrophysics Data System (ADS)

    Schaal, F.; Warber, M.; Zwick, S.; van der Kuip, H.; Haist, T.; Osten, W.

    2009-06-01

    We introduce a method for marker-free cell discrimination based on optical tweezers. Cancerous, non-cancerous, and drug-treated cells could be distinguished by measuring the trapping forces using holographic optical tweezers. We present trapping force measurements on different cell lines: normal pre-B lymphocyte cells (BaF3; "normal cells"), their Bcr-Abl transformed counterparts (BaF3-p185; "cancer cells") as a model for chronic myeloid leukaemia (CML) and Imatinib treated BaF3-p185 cells. The results are compared with reference measurements obtained by a commercial flow cytometry system.

  8. Magnetic tweezers for manipulation of magnetic particles in single cells

    NASA Astrophysics Data System (ADS)

    Ebrahimian, H.; Giesguth, M.; Dietz, K.-J.; Reiss, G.; Herth, S.

    2014-02-01

    Magnetic tweezers gain increasing interest for applications in biology. Here, a setup of magnetic tweezers is introduced using micropatterned conducting lines on transparent glass slides. Magnetic particles of 1 μm diameter were injected in barley cell vacuoles using a microinject system under microscopic control. Time dependent tracking of the particles after application of a magnetic field was used to determine the viscosity of vacuolar sap in vivo relative to water and isolated vacuolar fluid. The viscosity of vacuolar sap in cells was about 2-fold higher than that of extracted vacuolar fluid and 5 times higher than that of water.

  9. Airy acoustical-sheet spinner tweezers

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2016-09-01

    The Airy acoustical beam exhibits parabolic propagation and spatial acceleration, meaning that the propagation bending angle continuously increases before the beam trajectory reaches a critical angle where it decays after a propagation distance, without applying any external bending force. As such, it is of particular importance to investigate its properties from the standpoint of acoustical radiation force, spin torque, and particle dynamics theories, in the development of novel particle sorting techniques and acoustically mediated clearing systems. This work investigates these effects on a two-dimensional (2D) circular absorptive structure placed in the field of a nonparaxial Airy "acoustical-sheet" (i.e., finite beam in 2D), for potential applications in surface acoustic waves and acousto-fluidics. Based on the characteristics of the acoustic field, the beam is capable of manipulating the circular cylindrical fluid cross-section and guides it along a transverse or parabolic trajectory. This feature of Airy acoustical beams could lead to a unique characteristic in single-beam acoustical tweezers related to acoustical sieving, filtering, and removal of particles and cells from a section of a small channel. The analysis developed here is based on the description of the nonparaxial Airy beam using the angular spectrum decomposition of plane waves in close association with the partial-wave series expansion method in cylindrical coordinates. The numerical results demonstrate the ability of the nonparaxial Airy acoustical-sheet beam to pull, propel, or accelerate a particle along a parabolic trajectory, in addition to particle confinement in the transverse direction of wave propagation. Negative or positive radiation force and spin torque causing rotation in the clockwise or the anticlockwise direction can occur depending on the nondimensional parameter ka (where k is the wavenumber and a is the radius) and the location of the cylinder in the beam. Applications in

  10. Assembling silver nanowires using optoelectronic tweezers

    NASA Astrophysics Data System (ADS)

    Zhang, Shuailong; Cooper, Jonathan M.; Neale, Steve L.

    2016-03-01

    Light patterned dielectrophoresis or optoelectronic tweezers (OET) has been proved to be an effective micromanipulation technology for cell separation, cell sorting and control of cell interactions. Apart from being useful for cell biology experiments, the capability of moving small objects accurately also makes OET an attractive technology for other micromanipulation applications. In particular, OET has the potential to be used for efficiently and accurately assembling small optoelectronic/electronic components into circuits. This approach could produce a step change in the size of the smallest components that are routinely assembled; down from the current smallest standard component size of 400×200 μm (0402 metric) to components a few microns across and even nanostructured components. In this work, we have demonstrated the use of OET to manipulate conductive silver nanowires into different patterns. The silver nanowires (typical diameter: 60 nm; typical length: 10 μm) were suspended in a 15 mS/m solution of KCL in water and manipulated by positive dielectrophoresis force generated by OET. A proof-of-concept demonstration was also made to prove the feasibility of using OET to manipulate silver nanowires to form a 150-μm-long conductive path between two isolated electrodes. It can be seen that the resistance between two electrodes was effectively brought down to around 700 Ω after the silver nanowires were assembled and the solution evaporated. Future work in this area will focus on increasing the conductivity of these tracks, encapsulating the assembled silver nanowires to prevent silver oxidation and provide mechanical protection, which can be achieved via 3D printing and inkjet printing technology.

  11. Plasmon enhanced optical tweezers with gold-coated black silicon

    PubMed Central

    Kotsifaki, D. G.; Kandyla, M.; Lagoudakis, P. G.

    2016-01-01

    Plasmonic optical tweezers are a ubiquitous tool for the precise manipulation of nanoparticles and biomolecules at low photon flux, while femtosecond-laser optical tweezers can probe the nonlinear optical properties of the trapped species with applications in biological diagnostics. In order to adopt plasmonic optical tweezers in real-world applications, it is essential to develop large-scale fabrication processes without compromising the trapping efficiency. Here, we develop a novel platform for continuous wave (CW) and femtosecond plasmonic optical tweezers, based on gold-coated black silicon. In contrast with traditional lithographic methods, the fabrication method relies on simple, single-step, maskless tabletop laser processing of silicon in water that facilitates scalability. Gold-coated black silicon supports repeatable trapping efficiencies comparable to the highest ones reported to date. From a more fundamental aspect, a plasmon-mediated efficiency enhancement is a resonant effect, and therefore, dependent on the wavelength of the trapping beam. Surprisingly, a wavelength characterization of plasmon-enhanced trapping efficiencies has evaded the literature. Here, we exploit the repeatability of the recorded trapping efficiency, offered by the gold-coated black silicon platform, and perform a wavelength-dependent characterization of the trapping process, revealing the resonant character of the trapping efficiency maxima. Gold-coated black silicon is a promising platform for large-scale parallel trapping applications that will broaden the range of optical manipulation in nanoengineering, biology, and the study of collective biophotonic effects. PMID:27195446

  12. Spin dynamics and Kondo physics in optical tweezers

    NASA Astrophysics Data System (ADS)

    Lin, Yiheng; Lester, Brian J.; Brown, Mark O.; Kaufman, Adam M.; Long, Junling; Ball, Randall J.; Isaev, Leonid; Wall, Michael L.; Rey, Ana Maria; Regal, Cindy A.

    2016-05-01

    We propose to use optical tweezers as a toolset for direct observation of the interplay between quantum statistics, kinetic energy and interactions, and thus implement minimum instances of the Kondo lattice model in systems with few bosonic rubidium atoms. By taking advantage of strong local exchange interactions, our ability to tune the spin-dependent potential shifts between the two wells and complete control over spin and motional degrees of freedom, we design an adiabatic tunneling scheme that efficiently creates a spin-singlet state in one well starting from two initially separated atoms (one atom per tweezer) in opposite spin state. For three atoms in a double-well, two localized in the lowest vibrational mode of each tweezer and one atom in an excited delocalized state, we plan to use similar techniques and observe resonant transfer of two-atom singlet-triplet states between the wells in the regime when the exchange coupling exceeds the mobile atom hopping. Moreover, we argue that such three-atom double-tweezers could potentially be used for quantum computation by encoding logical qubits in collective spin and motional degrees of freedom. Current address: Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA.

  13. Unraveling chromatin structure using magnetic tweezers

    NASA Astrophysics Data System (ADS)

    van Noort, John

    2010-03-01

    The compact, yet dynamic organization of chromatin plays an essential role in regulating gene expression. Although the static structure of chromatin fibers has been studied extensively, the controversy about the higher order folding remains. The compaction of eukaryotic DNA into chromatin has been implicated in the regulation of all DNA processes. To understand the relation between gene regulation and chromatin structure it is essential to uncover the mechanisms by which chromatin fibers fold and unfold. We used magnetic tweezers to probe the mechanical properties of individual nucleosomes and chromatin fibers consisting of a single, well-defined array of 25 nucleosomes. From these studies five major features appeared upon forced extension of chromatin fibers: the elastic stretching of chromatin's higher order structure, the breaking of internucleosomal contacts, unwrapping of the first turn of DNA, unwrapping of the second turn of DNA, and the dissociation of histone octamers. These events occur sequentially at the increasing force. Neighboring nucleosomes stabilize DNA folding into a nucleosome relative to isolated nucleosomes. When an array of nucleosomes is folded into a 30 nm fiber, representing the first level of chromatin condensation, the fiber stretched like a Hookian spring at forces up to 4 pN. Together with a nucleosome-nucleosome stacking energy of 14 kT this points to a solenoid as the underlying topology of the 30 nm fiber. Surprisingly, linker histones do not affect the length or stiffness of the fibers, but stabilize fiber folding up to forces of 7 pN. The stiffness of the folded chromatin fiber points at histone tails that mediate nucleosome stacking. Fibers with a nucleosome repeat length of 167 bp instead of 197 bp are significantly stiffer, consistent with a two-start helical arrangement. The extensive thermal breathing of the chromatin fiber that is a consequence of the observed high compliance provides a structural basis for understanding the

  14. Active depth-guiding handheld micro-forceps for membranectomy based on CP-SSOCT

    NASA Astrophysics Data System (ADS)

    Cheon, Gyeong Woo; Lee, Phillip; Gonenc, Berk; Gehlbach, Peter L.; Kang, Jin U.

    2016-03-01

    In this study, we demonstrate a handheld motion-compensated micro-forceps system using common-path swept source optical coherence tomography with highly accurate depth-targeting and depth-locking for Epiretinal Membrane Peeling. Two motors and a touch sensor were used to separate the two independent motions: motion compensation and tool-tip manipulation. A smart motion monitoring and guiding algorithm was devised for precise and intuitive freehand control. Ex-vivo bovine eye experiments were performed to evaluate accuracy in a bovine retina retinal membrane peeling model. The evaluation demonstrates system capabilities of 40 um accuracy when peeling the epithelial layer of bovine retina.

  15. Hook-up Sexual Experiences and Problem Behaviors Among Adolescents

    PubMed Central

    Fortunato, Leanna; Young, Amy M.; Boyd, Carol J.; Fons, Courntey E.

    2011-01-01

    This study focused on the sexual phenomenon of “hooking-up.” A hook-up is defined as a single sexual encounter that may or may not include sexual intercourse with someone who is a stranger, brief acquaintance, or friend. The aim of this study was to document the prevalence of hook-ups in a sample of 1,011 urban, middle and high school students and to examine the relationship between hooking-up and a variety of problem behaviors, including, alcohol, cigarette, illicit drug use, truancy, and school suspensions. The results revealed that 28% of the sample had engaged in at least one hook-up experience, and this percentage increased with age. Hook-ups were correlated moderately with all problem behaviors examined. PMID:22039333

  16. Hand-held multi-DOF robotic forceps for neurosurgery designed for dexterous manipulation in deep and narrow space.

    PubMed

    Okubo, Takuro; Harada, Kanako; Fujii, Masahiro; Tanaka, Shinichi; Ishimaru, Tetsuya; Iwanaka, Tadashi; Nakatomi, Hirohumi; Sora, Sigeo; Morita, Akio; Sugita, Naohiko; Mitsuishi, Mamoru

    2014-01-01

    Neurosurgical procedures require precise and dexterous manipulation of a surgical suture in narrow and deep spaces in the brain. This is necessary for surgical tasks such as the anastomosis of microscopic blood vessels and dura mater suturing. A hand-held multi-degree of freedom (DOF) robotic forceps was developed to aid the performance of such difficult tasks. The diameter of the developed robotic forceps is 3.5 mm, and its tip has three DOFs, namely, bending, rotation, and grip. Experimental results showed that the robotic forceps had an average needle insertion force of 1.7 N. Therefore, an increase in the needle insertion force is necessary for practical application of the developed device.

  17. Hook-Up Sexual Experiences and Problem Behaviors among Adolescents

    ERIC Educational Resources Information Center

    Fortunato, Leanna; Young, Amy M.; Boyd, Carol J.; Fons, Courtney E.

    2010-01-01

    This study focuses on the sexual phenomenon of "hooking up." A hook-up is defined as a single sexual encounter that may or may not include sexual intercourse with someone who is a stranger, brief acquaintance, or friend. The aim of this study was to document the prevalence of hook-ups in a sample of 1,011 urban middle and high school students and…

  18. Accidental ingestion of BiTine ring and a note on inefficient ring separation forceps

    PubMed Central

    Baghele, Om Nemichand; Baghele, Mangala Om

    2011-01-01

    Background: Accidental ingestion of medium-to-large instruments is relatively uncommon during dental treatment but can be potentially dangerous. A case of BiTine ring ingestion is presented with a note on inefficient ring separation forceps. Case description: A 28-year-old male patient accidentally ingested the BiTine ring (2 cm diameter, 0.5 cm outward projections) while it was being applied to a distoproximal cavity in tooth # 19. The ring placement forceps were excessively flexible; bending of the beaks towards the ring combined with a poor no-slippage mechanism led to sudden disengagement of the ring and accelerated movement towards the pharynx. We followed the patient with bulk forming agents and radiographs. Fortunately the ring passed out without any complications. Clinical implications: Checking equipment and methods is as important as taking precautions against any preventable medical emergency. It is the responsibility of the clinician to check, verify and then use any instrument/equipment. PMID:21691588

  19. Removal of Rectal Foreign Bodies Using Tenaculum Forceps Under Endoscopic Assistance

    PubMed Central

    Lim, Keun Joon; Kim, Boo Gyoung; Park, Sung Min; Ji, Jeong-Seon; Kim, Byung-Wook; Choi, Hwang

    2015-01-01

    The incidence of rectal foreign bodies is increasing by the day, though not as common as that of upper gastrointestinal foreign bodies. Various methods for removal of foreign bodies have been reported. Removal during endoscopy using endoscopic devices is simple and safe, but if the foreign body is too large to be removed by this method, other methods are required. We report two cases of rectal foreign body removal by a relatively simple and inexpensive technique. A 42-year-old man with a vibrator in the rectum was admitted due to inability to remove it by himself and various endoscopic methods failed. Finally, the vibrator was removed successfully by using tenaculum forceps under endoscopic assistance. Similarly, a 59-year-old man with a carrot in the rectum was admitted. The carrot was removed easily by using the same method as that in the previous case. The use of tenaculum forceps under endoscopic guidance may be a useful method for removal of rectal foreign bodies. PMID:26576143

  20. Hook nozzle arrangement for supporting airfoil vanes

    SciTech Connect

    Shaffer, James E.; Norton, Paul F.

    1996-01-01

    A gas turbine engine's nozzle structure includes a nozzle support ring, a plurality of shroud segments, and a plurality of airfoil vanes. The plurality of shroud segments are distributed around the nozzle support ring. Each airfoil vane is connected to a corresponding shroud segment so that the airfoil vanes are also distributed around the nozzle support ring. Each shroud segment has a hook engaging the nozzle support ring so that the shroud segments and corresponding airfoil vanes are supported by the nozzle support ring. The nozzle support ring, the shroud segments, and the airfoil vanes may be ceramic.

  1. Hook nozzle arrangement for supporting airfoil vanes

    DOEpatents

    Shaffer, J.E.; Norton, P.F.

    1996-02-20

    A gas turbine engine`s nozzle structure includes a nozzle support ring, a plurality of shroud segments, and a plurality of airfoil vanes. The plurality of shroud segments are distributed around the nozzle support ring. Each airfoil vane is connected to a corresponding shroud segment so that the airfoil vanes are also distributed around the nozzle support ring. Each shroud segment has a hook engaging the nozzle support ring so that the shroud segments and corresponding airfoil vanes are supported by the nozzle support ring. The nozzle support ring, the shroud segments, and the airfoil vanes may be ceramic. 8 figs.

  2. Single-sided lateral-field and phototransistor-based optoelectronic tweezers

    NASA Technical Reports Server (NTRS)

    Ohta, Aaron (Inventor); Chiou, Pei-Yu (Inventor); Hsu, Hsan-Yin (Inventor); Jamshidi, Arash (Inventor); Wu, Ming-Chiang (Inventor); Neale, Steven L. (Inventor)

    2011-01-01

    Described herein are single-sided lateral-field optoelectronic tweezers (LOET) devices which use photosensitive electrode arrays to create optically-induced dielectrophoretic forces in an electric field that is parallel to the plane of the device. In addition, phototransistor-based optoelectronic tweezers (PhOET) devices are described that allow for optoelectronic tweezers (OET) operation in high-conductivity physiological buffer and cell culture media.

  3. A microscopic steam engine implemented in an optical tweezer.

    PubMed

    Quinto-Su, Pedro A

    2014-01-01

    The introduction of improved steam engines at the end of the 18th century marked the start of the industrial revolution and the birth of classical thermodynamics. Currently, there is great interest in miniaturizing heat engines, but so far traditional heat engines operating with the expansion and compression of gas have not reached length scales shorter than one millimeter. Here, a micrometer-sized piston steam engine is implemented in an optical tweezer. The piston is a single colloidal microparticle that is driven by explosive vapourization of the surrounding liquid (cavitation bubbles) and by optical forces at a rate between a few tens of Hertz and one kilo-Hertz. The operation of the engine allows to exert impulsive forces with optical tweezers and induce streaming in the liquid, similar to the effect of transducers when driven at acoustic and ultrasound frequencies. PMID:25523395

  4. A microscopic steam engine implemented in an optical tweezer.

    PubMed

    Quinto-Su, Pedro A

    2014-12-19

    The introduction of improved steam engines at the end of the 18th century marked the start of the industrial revolution and the birth of classical thermodynamics. Currently, there is great interest in miniaturizing heat engines, but so far traditional heat engines operating with the expansion and compression of gas have not reached length scales shorter than one millimeter. Here, a micrometer-sized piston steam engine is implemented in an optical tweezer. The piston is a single colloidal microparticle that is driven by explosive vapourization of the surrounding liquid (cavitation bubbles) and by optical forces at a rate between a few tens of Hertz and one kilo-Hertz. The operation of the engine allows to exert impulsive forces with optical tweezers and induce streaming in the liquid, similar to the effect of transducers when driven at acoustic and ultrasound frequencies.

  5. A microscopic steam engine implemented in an optical tweezer

    NASA Astrophysics Data System (ADS)

    Quinto-Su, Pedro A.

    2014-12-01

    The introduction of improved steam engines at the end of the 18th century marked the start of the industrial revolution and the birth of classical thermodynamics. Currently, there is great interest in miniaturizing heat engines, but so far traditional heat engines operating with the expansion and compression of gas have not reached length scales shorter than one millimeter. Here, a micrometer-sized piston steam engine is implemented in an optical tweezer. The piston is a single colloidal microparticle that is driven by explosive vapourization of the surrounding liquid (cavitation bubbles) and by optical forces at a rate between a few tens of Hertz and one kilo-Hertz. The operation of the engine allows to exert impulsive forces with optical tweezers and induce streaming in the liquid, similar to the effect of transducers when driven at acoustic and ultrasound frequencies.

  6. Mechanical force characterization in manipulating live cells with optical tweezers.

    PubMed

    Wu, Yanhua; Sun, Dong; Huang, Wenhao

    2011-02-24

    Laser trapping with optical tweezers is a noninvasive manipulation technique and has received increasing attentions in biological applications. Understanding forces exerted on live cells is essential to cell biomechanical characterizations. Traditional numerical or experimental force measurement assumes live cells as ideal objects, ignoring their complicated inner structures and rough membranes. In this paper, we propose a new experimental method to calibrate the trapping and drag forces acted on live cells. Binding a micro polystyrene sphere to a live cell and moving the mixture with optical tweezers, we can obtain the drag force on the cell by subtracting the drag force on the sphere from the total drag force on the mixture, under the condition of extremely low Reynolds number. The trapping force on the cell is then obtained from the drag force when the cell is in force equilibrium state. Experiments on numerous live cells demonstrate the effectiveness of the proposed force calibration approach.

  7. A mechanical contact model for the simulation of obstetric forceps delivery in a virtual/augmented environment.

    PubMed

    Lapeer, R J

    2005-01-01

    During the process of human childbirth, obstetric forceps delivery can be a justified alternative to emergency Caesarean section when normal vaginal delivery proves difficult or impossible. Currently, training of forceps interventions is mainly done on real patients which poses a risk. This paper describes a pilot project on the simulation of training of obstetric forceps delivery, using Virtual Reality technology. We first give a brief historical review of the concept of 'birth simulation' and describe the current implementation of the interface. Then we report a number of experiments, conducted to test the feasibility of a real-time mechanical contact model to describe the interaction between the forceps and fetal head, eventually to be interfaced with a multi-purpose haptic feedback device. It is concluded that an explicit dynamic model to calculate the deformation of the main fetal skull bones only, or a quasi-static model to calculate the deformation of the fetal head in its entirety, can reach real-time performance. PMID:15718746

  8. Cluster formation in ferrofluids induced by holographic optical tweezers.

    PubMed

    Masajada, Jan; Bacia, Marcin; Drobczyński, Sławomir

    2013-10-01

    Holographic optical tweezers were used to show the interaction between a strongly focused laser beam and magnetic nanoparticles in ferrofluid. When the light intensity was high enough, magnetic nanoparticles were removed from the beam center and formed a dark ring. The same behavior was observed when focusing vortex or Bessel beams. The interactions between two or more separated rings of magnetic nanoparticles created by independent optical traps were also observed. PMID:24081086

  9. Canine retraction with J hook headgear.

    PubMed

    Ayala Perez, C; de Alba, J A; Caputo, A A; Chaconas, S J

    1980-11-01

    Several methods have been described for accomplishing distal movement of canines without losing posterior anchorage. An accepted method in canine retraction is the use of headgear with J hooks. Since it incorporates extraoral anchorage, it is most effective in maximum-anchorage cases. It was the purpose of this study to analyze the distribution of force transmitted to the alveolus and surrounding structures by means of photoelastic visualization, utilizing J hook headgear for maxillary canine retraction. A three-dimensional model representing a human skull was used. This model was constructed with different birefringent materials to simulate bone, teeth, and periodontal membranes. Three different vectors of force were applied representing high-, medium-, and low-pull headgear, which were placed at angles of 40, 20, and 0 degrees to the occlusal plane. The photoelastic analysis was made by means of a circular-transmission polariscope arrangement, and the photoelastic data were recorded photographically. The stress areas created by the three different vectors of force were associated with various degrees of canine tipping. This effect was greater with the low-pull force component than with the medium-pull traction. The high-pull headgear produced the least tipping tendency, being closer to a bodily movemment effect. Further, stresses were transmitted to deeper structures of the simulated facial bones; these regions were the frontozygomatic, zygomaticomaxillary, and zygomaticotemporal sutures.

  10. Electromagnetic tweezers with independent force and torque control

    NASA Astrophysics Data System (ADS)

    Jiang, Chang; Lionberger, Troy A.; Wiener, Diane M.; Meyhofer, Edgar

    2016-08-01

    Magnetic tweezers are powerful tools to manipulate and study the mechanical properties of biological molecules and living cells. In this paper we present a novel, bona fide electromagnetic tweezer (EMT) setup that allows independent control of the force and torque applied via micrometer-sized magnetic beads to a molecule under study. We implemented this EMT by combining a single solenoid that generates force (f-EMT) with a set of four solenoids arranged into a symmetric quadrupole to generate torque (τ-EMT). To demonstrate the capability of the tweezers, we attached optically asymmetric Janus beads to single, tethered DNA molecules. We show that tension in the piconewton force range can be applied to single DNA molecules and the molecule can simultaneously be twisted with torques in the piconewton-nanometer range. Furthermore, the EMT allows the two components to be independently controlled. At various force levels applied to the Janus bead, the trap torsional stiffness can be continuously changed simply by varying the current magnitude applied to the τ-EMT. The flexible and independent control of force and torque by the EMT makes it an ideal tool for a range of measurements where tensional and torsional properties need to be studied simultaneously on a molecular or cellular level.

  11. Optical tweezers theory near a flat surface: a perturbative method

    NASA Astrophysics Data System (ADS)

    Flyvbjerg, Henrik; Dutra, Rafael S.; Maia Neto, Paolo A.; Nussenzveig, H. Moyses

    We propose a perturbative calculation of the optical force exercised by a focused laser beam on a microsphere of arbitrary radius that is localized near a flat glass surface in a standard optical tweezers setup. Starting from the Mie-Debye representation for the electric field of a Gaussian laser beam, focused by an objective of high numerical aperture, we derive a recursive series that represents the multiple reflections that describe the reverberation of laser light between the microsphere and the glass slide. We present numerical results for the axial component of the optical force and the axial trap stiffness. Numerical results for a configuration typical in biological applications--a microsphere of 0.5 µm radius at a distance around 0.25 µm from the surface--show a 37 [1] Viana N B, Rocha M S. Mesquita O N, et al. (2007) Towards absolute calibration of optical tweezers. Phys Rev E 75:021914-1-14. [2] Dutra R S, Viana N B, Maia Neto P A, et al. (2014) Absolute calibration of forces in optical tweezers. Phys Rev A 90:013825-1-13. Rafael S. Dutra thanks the Brazilian ``Science without Borders'' program for a postdoctoral scholarship.

  12. Electromagnetic tweezers with independent force and torque control.

    PubMed

    Jiang, Chang; Lionberger, Troy A; Wiener, Diane M; Meyhofer, Edgar

    2016-08-01

    Magnetic tweezers are powerful tools to manipulate and study the mechanical properties of biological molecules and living cells. In this paper we present a novel, bona fide electromagnetic tweezer (EMT) setup that allows independent control of the force and torque applied via micrometer-sized magnetic beads to a molecule under study. We implemented this EMT by combining a single solenoid that generates force (f-EMT) with a set of four solenoids arranged into a symmetric quadrupole to generate torque (τ-EMT). To demonstrate the capability of the tweezers, we attached optically asymmetric Janus beads to single, tethered DNA molecules. We show that tension in the piconewton force range can be applied to single DNA molecules and the molecule can simultaneously be twisted with torques in the piconewton-nanometer range. Furthermore, the EMT allows the two components to be independently controlled. At various force levels applied to the Janus bead, the trap torsional stiffness can be continuously changed simply by varying the current magnitude applied to the τ-EMT. The flexible and independent control of force and torque by the EMT makes it an ideal tool for a range of measurements where tensional and torsional properties need to be studied simultaneously on a molecular or cellular level. PMID:27587135

  13. Magnetic Forces and DNA Mechanics in Multiplexed Magnetic Tweezers

    PubMed Central

    van Loenhout, Marijn T. J.; Burnham, Daniel R.; Dekker, Cees

    2012-01-01

    Magnetic tweezers (MT) are a powerful tool for the study of DNA-enzyme interactions. Both the magnet-based manipulation and the camera-based detection used in MT are well suited for multiplexed measurements. Here, we systematically address challenges related to scaling of multiplexed magnetic tweezers (MMT) towards high levels of parallelization where large numbers of molecules (say 103) are addressed in the same amount of time required by a single-molecule measurement. We apply offline analysis of recorded images and show that this approach provides a scalable solution for parallel tracking of the xyz-positions of many beads simultaneously. We employ a large field-of-view imaging system to address many DNA-bead tethers in parallel. We model the 3D magnetic field generated by the magnets and derive the magnetic force experienced by DNA-bead tethers across the large field of view from first principles. We furthermore experimentally demonstrate that a DNA-bead tether subject to a rotating magnetic field describes a bicircular, Limaçon rotation pattern and that an analysis of this pattern simultaneously yields information about the force angle and the position of attachment of the DNA on the bead. Finally, we apply MMT in the high-throughput investigation of the distribution of the induced magnetic moment, the position of attachment of DNA on the beads, and DNA flexibility. The methods described herein pave the way to kilo-molecule level magnetic tweezers experiments. PMID:22870220

  14. Magnetic tweezers: micromanipulation and force measurement at the molecular level.

    PubMed Central

    Gosse, Charlie; Croquette, Vincent

    2002-01-01

    Cantilevers and optical tweezers are widely used for micromanipulating cells or biomolecules for measuring their mechanical properties. However, they do not allow easy rotary motion and can sometimes damage the handled material. We present here a system of magnetic tweezers that overcomes those drawbacks while retaining most of the previous dynamometers properties. Electromagnets are coupled to a microscope-based particle tracking system through a digital feedback loop. Magnetic beads are first trapped in a potential well of stiffness approximately 10(-7) N/m. Thus, they can be manipulated in three dimensions at a speed of approximately 10 microm/s and rotated along the optical axis at a frequency of 10 Hz. In addition, our apparatus can work as a dynamometer relying on either usual calibration against the viscous drag or complete calibration using Brownian fluctuations. By stretching a DNA molecule between a magnetic particle and a glass surface, we applied and measured vertical forces ranging from 50 fN to 20 pN. Similarly, nearly horizontal forces up to 5 pN were obtained. From those experiments, we conclude that magnetic tweezers represent a low-cost and biocompatible setup that could become a suitable alternative to the other available micromanipulators. PMID:12023254

  15. Design of 3-DOF Force Sensing Micro-Forceps for Robot Assisted Vitreoretinal Surgery*

    PubMed Central

    Gonenc, Berk; Handa, James; Gehlbach, Peter; Taylor, Russell H.; Iordachita, Iulian

    2014-01-01

    Vitreoretinal surgery is associated with serious complications that can easily stem from excessive tissue manipulation forces while the forces required for such surgery are routinely well below human tactile sensation. Despite the critical need in this area, there is still no practical vitreoretinal instrument that can sense both the axial and transverse tool-to-tissue interaction forces with sub-mN accuracy. In this study, we present the conceptual design and optimization of a 3 degrees-of-freedom (DOF) force sensing micro-forceps as the next generation of our force sensing instruments. 4 fiber Bragg grating (FBG) strain sensors are integrated in the design to measure tool tip forces. PMID:24111028

  16. A Hooke׳s law-based approach to protein folding rate.

    PubMed

    Ruiz-Blanco, Yasser B; Marrero-Ponce, Yovani; Prieto, Pablo J; Salgado, Jesús; García, Yamila; Sotomayor-Torres, Clivia M

    2015-01-01

    Kinetics is a key aspect of the renowned protein folding problem. Here, we propose a comprehensive approach to folding kinetics where a polypeptide chain is assumed to behave as an elastic material described by the Hooke׳s law. A novel parameter called elastic-folding constant results from our model and is suggested to distinguish between protein with two-state and multi-state folding pathways. A contact-free descriptor, named folding degree, is introduced as a suitable structural feature to study protein-folding kinetics. This approach generalizes the observed correlations between varieties of structural descriptors with the folding rate constant. Additionally several comparisons among structural classes and folding mechanisms were carried out showing the good performance of our model with proteins of different types. The present model constitutes a simple rationale for the structural and energetic factors involved in protein folding kinetics. PMID:25245368

  17. Structural insights into bacterial flagellar hooks similarities and specificities

    PubMed Central

    Yoon, Young-Ho; Barker, Clive S.; Bulieris, Paula V.; Matsunami, Hideyuki; Samatey, Fadel A.

    2016-01-01

    Across bacteria, the protein that makes the flagellar hook, FlgE, has a high variability in amino acid residue composition and sequence length. We hereby present the structure of two fragments of FlgE protein from Campylobacter jejuni and from Caulobacter crescentus, which were obtained by X-ray crystallography, and a high-resolution model of the hook from Caulobacter. By comparing these new structures of FlgE proteins, we show that bacterial hook can be divided in two distinct parts. The first part comprises domains that are found in all FlgE proteins and that will make the basic structure of the hook that is common to all flagellated bacteria. The second part, hyper-variable both in size and structure, will be bacteria dependent. To have a better understanding of the C. jejuni hook, we show that a special strain of Salmonella enterica, which was designed to encode a gene of flgE that has the extra domains found in FlgE from C. jejuni, is fully motile. It seems that no matter the size of the hook protein, the hook will always have a structure made of 11 protofilaments. PMID:27759043

  18. Fracture of the hook of the hamate.

    PubMed

    Stark, H H; Chao, E K; Zemel, N P; Rickard, T A; Ashworth, C R

    1989-09-01

    We removed the fracture fragment from fifty-nine patients who had an isolated fracture of the hook of the hamate. Preoperatively, all had complained of pain and tenderness on the ulnar side of the palm or on the dorsal ulnar aspect of the wrist. Most fractures were thought to have occurred while the patient was swinging a racquet, golf club, or baseball bat. Some fractures were caused by striking the palm on a solid object, by falling on the palm, or by a crush injury to the hand. Most of the fractures were diagnosed conclusively on a carpal tunnel roentgenogram or on a special oblique roentgenogram of the wrist supinated. We now believe that computed axial tomography is the best imaging technique for demonstrating this fracture. Except for two patients who had a crush injury, all of the patients returned to their regular occupational and athletic pursuits. There were no surgical complications.

  19. Robert Hooke's Seminal Contribution to Orbital Dynamics

    NASA Astrophysics Data System (ADS)

    Nauenberg, Michael

    2005-03-01

    During the second half of the seventeenth century, the outstanding problem in astronomy was to understand the physical basis for Kepler’s laws describing the observed orbital motion of a planet around the Sun. In the middle 1660s,Robert Hooke (1635 1703) proposed that a planet’s motion is determined by compounding its tangential velocity with the change in radial velocity impressed by the gravitational attraction of the Sun, and he described his physical concept to Isaac Newton (1642 1726) in correspondence in 1679. Newton denied having heard of Hooke’s novel concept of orbital motion, but shortly after their correspondence he implemented it by a geometric construction from which he deduced the physical origin of Kepler’s area law,which later became Proposition I, Book I, of his Principia in 1687.Three years earlier, Newton had deposited a preliminary draft of it, his De Motu Corporum in Gyrum (On the Motion of Bodies), at the Royal Society of London, which Hooke apparently was able to examine a few months later, because shortly there-after he applied Newton’s construction in a novel way to obtain the path of a body under the action of an attractive central force that varies linearly with the distance from its center of motion (Hooke’s law). I show that Hooke’s construction corresponds to Newton’s for his proof of Kepler’s area law in his De Motu. Hooke’s understanding of planetary motion was based on his observations with mechanical analogs. I repeated two of his experiments and demonstrated the accuracy of his observations.My results thus cast new light on the significance of Hooke’s contributions to the development of orbital dynamics, which in the past have either been neglected or misunderstood.

  20. Fractures of the hook of hamate: radiographic signs

    SciTech Connect

    Norman, A.; Nelson, J.; Green, S.

    1985-01-01

    Isolated fractures of the hamulus, formerly considered rare, are being seen more frequently. Many of these injuries are sports related, particularly in golf, tennis, racquetball and baseball players. Failure to make an early diagnosis can result in severe pain and sometimes incapacitating disability. The authors studied the clinical and radiological findings in 12 patients who had fracture of the hook of the hamate. The proposed three radiographic signs of fracture that are readily seen on routine PA projections: absence of the hook of the hamate; sclerosis of the hook; and lack of cortical density, i.e., barely visible outline, of the hamulus.

  1. Fractures of the hook of hamate: radiographic signs.

    PubMed

    Norman, A; Nelson, J; Green, S

    1985-01-01

    Isolated fractures of the hamulus, formerly considered rare, are being seen more frequently. Many of these injuries are sports related, particularly in golf, tennis, racquetball and baseball players. Failure to make an early diagnosis can result in severe pain and sometimes incapacitating disability. We studied the clinical and radiological findings in 12 patients who had fracture of the hook of the hamate. We propose three radiographic signs of fracture that are readily seen on routine PA projections: "absence" of the hook of the hamate; "sclerosis" of the hook; and lack of cortical density, i.e., a barely visible outline, of the hamulus.

  2. Interferometer-Controlled Optical Tweezers Constructed for Nanotechnology and Biotechnology

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.

    2002-01-01

    A new method to control microparticles was developed in-house at the NASA Glenn Research Center in support of the nanotechnology project under NASA's Aerospace Propulsion and Power Base Research Program. A prototype interferometer-controlled optical tweezers was constructed to manipulate scanning probe microscope (SPM) tips. A laser beam passed through a Mach-Zehnder interferometer, and a microscope objective then produced an optical trap from the coaxial beams. The trap levitated and generated the coarse motion of a 10-mm polystyrene sphere used to simulate a SPM tip. The interference between the beams provided fine control of the forces and moments on the sphere. The interferometer included a piezoelectric-scanned mirror to modulate the interference pattern. The 10-mm sphere was observed to oscillate about 1 mm as the mirror and fringe pattern oscillated. The prototype tweezers proved the feasibility of constructing a more sophisticated interferometer tweezers to hold and manipulate SPM tips. The SPM tips are intended to interrogate and manipulate nanostructures. A more powerful laser will be used to generate multiple traps to hold nanostructures and SPM tips. The vibrating mirror in the interferometer will be replaced with a spatial light modulator. The modulator will allow the optical phase distribution in one leg of the interferometer to be programmed independently at 640 by 480 points for detailed control of the forces and moments. The interference patterns will be monitored to measure the motion of the SPM tips. Neuralnetwork technology will provide fast analysis of the interference patterns for diagnostic purposes and for local or remote feedback control of the tips. This effort also requires theoretical and modeling support in the form of scattering calculations for twin coherent beams from nonspherical particles.

  3. A simple optical tweezers for trapping polystyrene particles

    NASA Astrophysics Data System (ADS)

    Shiddiq, Minarni; Nasir, Zulfa; Yogasari, Dwiyana

    2013-09-01

    Optical tweezers is an optical trap. For decades, it has become an optical tool that can trap and manipulate any particle from the very small size like DNA to the big one like bacteria. The trapping force comes from the radiation pressure of laser light which is focused to a group of particles. Optical tweezers has been used in many research areas such as atomic physics, medical physics, biophysics, and chemistry. Here, a simple optical tweezers has been constructed using a modified Leybold laboratory optical microscope. The ocular lens of the microscope has been removed for laser light and digital camera accesses. A laser light from a Coherent diode laser with wavelength λ = 830 nm and power 50 mW is sent through an immersion oil objective lens with magnification 100 × and NA 1.25 to a cell made from microscope slides containing polystyrene particles. Polystyrene particles with size 3 μm and 10 μm are used. A CMOS Thorlabs camera type DCC1545M with USB Interface and Thorlabs camera lens 35 mm are connected to a desktop and used to monitor the trapping and measure the stiffness of the trap. The camera is accompanied by camera software which makes able for the user to capture and save images. The images are analyzed using ImageJ and Scion macro. The polystyrene particles have been trapped successfully. The stiffness of the trap depends on the size of the particles and the power of the laser. The stiffness increases linearly with power and decreases as the particle size larger.

  4. Single molecule studies of helicases with magnetic tweezers.

    PubMed

    Hodeib, Samar; Raj, Saurabh; Manosas, M; Zhang, Weiting; Bagchi, Debjani; Ducos, Bertrand; Allemand, Jean-François; Bensimon, David; Croquette, Vincent

    2016-08-01

    Helicases are a broad family of enzymes that perform crucial functions in DNA replication and in the maintenance of DNA and RNA integrity. A detailed mechanical study of helicases on DNA and RNA is possible using single molecule manipulation methods. Among those, magnetic tweezers (or traps) present a convenient, moderate throughput assay (tens of enzymes can be monitored simultaneously) that allow for high resolution (single base-pair) studies of these enzymes in various conditions and on various substrates (double and single stranded DNA and RNA). Here we discuss various implementation of the basic assay relevant for these studies. PMID:27371121

  5. Single optical tweezers based on elliptical core fiber

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Zhao, Li; Chen, Yunhao; Liu, Zhihai; Zhang, Yaxun; Zhao, Enming; Yang, Jun; Yuan, Libo

    2016-04-01

    We propose and demonstrate a new single optical tweezers based on an elliptical core fiber, which can realize the trapped yeast cell rotation with a precise and simple control. Due to the elliptical shape of the fiber core, the LP11 mode beam can propagate stably. When we rotate the fiber tip, the LP11 mode beam will also rotate along with the fiber tip, which helps to realize the trapped micro-particle rotation. By using this method, we can easily realize the rotation of the trapped yeast cells, the rotating angle of the yeast cell is same as the elliptical core fiber tip.

  6. pH microprobe manipulated in microchannels using optical tweezers

    NASA Astrophysics Data System (ADS)

    Sinclair, Gavin S.; Klauke, Norbert; Monaghan, Paul; Padgett, Miles J.; Cooper, Jon

    2005-03-01

    SNARF-1 fluorochrome was used to functionalize 3μm diameter latex spheres making them sensitive to the pH of their environment, manifested as a change in their fluorescence. The fluorescence emission at 580nm was excited using a filtered xenon arc lamp at 515nm. A solution of functionalized latex spheres was placed between gold microelectrodes in a microfluidic channel. Optical tweezers were used to trap and manipulate the spheres in the vicinity of the microelectrodes, to map out the pH profile in the electrolyte solution, induced by passing 20 microsecond transient current pulses through the microelectrodes.

  7. Optical Tweezers for Sample Fixing in Micro-Diffraction Experiments

    SciTech Connect

    Amenitsch, H.; Rappolt, M.; Sartori, B.; Laggner, P.; Cojoc, D.; Ferrari, E.; Garbin, V.; Di Fabrizio, E.; Burghammer, M.; Riekel, Ch.

    2007-01-19

    In order to manipulate, characterize and measure the micro-diffraction of individual structural elements down to single phospholipid liposomes we have been using optical tweezers (OT) combined with an imaging microscope. We were able to install the OT system at the microfocus beamline ID13 at the ESRF and trap clusters of about 50 multi-lamellar liposomes (< 10 {mu}m large cluster). Further we have performed a scanning diffraction experiment with a 1 micrometer beam to demonstrate the fixing capabilities and to confirm the size of the liposome cluster by X-ray diffraction.

  8. Single molecule studies of helicases with magnetic tweezers.

    PubMed

    Hodeib, Samar; Raj, Saurabh; Manosas, M; Zhang, Weiting; Bagchi, Debjani; Ducos, Bertrand; Allemand, Jean-François; Bensimon, David; Croquette, Vincent

    2016-08-01

    Helicases are a broad family of enzymes that perform crucial functions in DNA replication and in the maintenance of DNA and RNA integrity. A detailed mechanical study of helicases on DNA and RNA is possible using single molecule manipulation methods. Among those, magnetic tweezers (or traps) present a convenient, moderate throughput assay (tens of enzymes can be monitored simultaneously) that allow for high resolution (single base-pair) studies of these enzymes in various conditions and on various substrates (double and single stranded DNA and RNA). Here we discuss various implementation of the basic assay relevant for these studies.

  9. Bohlin transformation: the hidden symmetry that connects Hooke to Newton

    NASA Astrophysics Data System (ADS)

    Saggio, Maria Luisa

    2013-01-01

    Hooke's name is familiar to students of mechanics thanks to the law of force that bears his name. Less well-known is the influence his findings had on the founder of mechanics, Isaac Newton. In a lecture given some twenty years ago, W Arnol'd pointed out the outstanding contribution to science made by Hooke, and also noted the controversial issue of the attribution of important discoveries to Newton that were actually inspired by Hooke. It therefore seems ironic that the two most famous force laws, named after Hooke and Newton, are two geometrical aspects of the same law. This relationship, together with other illuminating aspects of Newtonian mechanics, is described in Arnol'd's book and is worth remembering in standard physics courses. In this didactical paper the duality of the two forces is expounded and an account of the more recent contributions to the subject is given.

  10. Relationship between tornadoes and hook echoes on April 3, 1974

    NASA Technical Reports Server (NTRS)

    Forbes, G. S.

    1975-01-01

    Radar observations of tornado families occurring on April 3, 1974 are discussed. Of the 93 tornadoes included in the sample, 81% were associated with hook-like echoes with appendages at least 40 deg to the south of the echo movement. At least one tornado was associated with 62% of the hook-like echoes observed. All of the tornadoes with intensities of F 4 and F 5 were produced by hook-like echoes; the mean intensity of all tornadoes associated with this type of echo was F 3, while the mean intensity of the remaining tornadoes was F1. The tornadic hook-like echoes moved to the right of the non-tornadic echoes forming a tornado line in advance of the squall line. Some tornadoes were associated with 'spiral' echoes.

  11. Sleep Loses Out for Many Hooked on Video Games

    MedlinePlus

    ... page: https://medlineplus.gov/news/fullstory_159434.html Sleep Loses Out for Many Hooked on Video Games ... Bloodborne," "Fallout" and "Call of Duty" worth losing sleep over? For plenty of gamers, the answer is ...

  12. Towards Robot-Assisted Vitreoretinal Surgery: Force-Sensing Micro-Forceps Integrated with a Handheld Micromanipulator*

    PubMed Central

    Gonenc, Berk; Feldman, Ellen; Gehlbach, Peter; Handa, James; Taylor, Russell H.; Iordachita, Iulian

    2014-01-01

    In vitreoretinal practice, controlled tremor-free motion and limitation of applied forces to the retina are two highly desired features. This study addresses both requirements with a new integrated system: a force-sensing motorized micro-forceps combined with an active tremor-canceling handheld micromanipulator, known as Micron. The micro-forceps is a 20 Ga instrument that is mechanically decoupled from its handle and senses the transverse forces at its tip with an accuracy of 0.3 mN. Membrane peeling trials on a bandage phantom revealed a 60–95% reduction in the 2–20 Hz band in both the tip force and position spectra, while peeling forces remained below the set safety threshold. PMID:25401003

  13. Performance of barbed and barbless hooks in a marine recreational fishery

    USGS Publications Warehouse

    Schaeffer, Jeffrey S.; Hoffman, Elizabeth M.

    2002-01-01

    We used an angling study to examine catch per unit effort (CPUE), bait loss, and total landings by anglers fishing with natural bait on barbed and barbless hooks in a nearshore marine sport fishery located in the Gulf of Mexico near St. Petersburg, Florida. Anglers fished half the day with a barbed hook and half the day with a barbless hook. We also recorded anatomical hook placement, severity of injury or bleeding, and hook extraction times for each landed fish. Bait loss, CPUE, and mean length of catch did not differ between gears, but anglers landed 22% more fish with barbed hooks. Loss of hooked fish was significantly higher with barbless hooks, and efficiency appeared to vary among species. Mean unhooking times were significantly shorter with barbless hooks. Anatomical hook placement did not differ between gears and most fish were hooked in the jaws. Bleeding did not differ between gears because bleeding was influenced strongly by hook placement, but barbless hooks reduced unhooking injuries. In this fishery, barbless hooks probably did not reduce hooking mortality and conferred only slight benefits at the expense of reduced catches.

  14. Asymmetric forceps increase fighting success among males of similar size in the maritime earwig

    PubMed Central

    Munoz, Nicole E.; Zink, Andrew G.

    2012-01-01

    Extreme asymmetric morphologies are hypothesized to serve an adaptive function that counteracts sexual selection for symmetry. However direct tests of function for asymmetries are lacking, particularly in the context of animal weapons. The weapon of the maritime earwig, Anisolabis maritima, exhibits sizeable variation in the extent of directional asymmetry within and across body sizes, making it an ideal candidate for investigating the function of asymmetry. In this study, we characterized the extent of weapon asymmetry, characterized the manner in which asymmetric weapons are used in contests, staged dyadic contests between males of different size classes and analyzed the correlates of fighting success. In contests between large males, larger individuals won more fights and emerged as the dominant male. In contests between small males, however, weapon asymmetry was more influential in predicting overall fighting success than body size. This result reveals an advantage of asymmetric weaponry among males that are below the mean size in the population. A forceps manipulation experiment suggests that asymmetry may be an indirect, correlate of a morphologically independent factor that affects fighting ability. PMID:22984320

  15. Value of forceps biopsy and kyphoplasty in Kümmell's disease.

    PubMed

    Wang, Dalin; Wang, Liming; Xu, Jie; Zen, Yiwen; Zheng, Shengnai; Wang, Gangrui

    2013-08-01

    The diagnosis of Kümmell's disease mainly depends on clinical and radiologic findings. However, these are not the gold standards for diagnosing this disease; bone biopsy is required. The authors performed modified bone biopsy and cement-filling techniques during kyphoplasty and investigated the feasibility and efficacy of kyphoplasty for the treatment of Kümmell's disease. This study included 28 patients (9 men and 19 women; average age, 71.9 years) with Kümmell's disease. All patients underwent the modified biopsy procedure and kyphoplasty with the modified cement-filling technique. Treatment efficacy was evaluated using visual analog scale pain scores, Oswestry Disability Index scores, vertebral height, and Cobb angles pre- and postoperatively and at final follow-up. All patients tolerated the procedure well and had immediate back pain relief after kyphoplasty. Biopsy examination revealed necrotic bone in 24 patients and sparse cancellous bone in 2; it was unsuccessful in 2 patients. No severe complication occurred in any patient. Two patients had cement leakage but no clinical symptoms. All efficacy measures were significantly better at the postoperative assessments than the preoperative assessments (P<.05) but were similar at the postoperative and final follow-up assessments. Kyphoplasty is a relatively effective and safe method for treating Kümmell's disease when modified techniques are performed to prevent cement leakage, and forceps biopsy can be used in the differential diagnosis of this condition.

  16. Combining confocal microscopy with precise force-scope optical tweezers

    NASA Astrophysics Data System (ADS)

    Richardson, Andrew C.; Reihani, Nader; Oddershede, Lene B.

    2006-08-01

    We demonstrate an example of 'confocal-tweezers' wherein confocal images and precise optical force measurements, using photodiodes, are obtained simultaneously in the x-y plane without moving the objective lens. The optical trap is produced using a 1.064μm cw laser and is combined with Leica's TCS SP5 broadband confocal microscope to trap and image living cells. The unique method by which the confocal images are created facilitates the acquisition of images in areas far from the trapping location. In addition, because the scanning process involves moving galvanic mirrors independently of the objective, the trap is held stable in position and is not subject to any error in position for the x-y scan. We have successfully trapped and confocally imaged 80nm gold colloids, 150nm gold colloids and 1μm polystyrene beads whilst making quantitative measurements of the force applied by the trap on each bead. To the best of our knowledge this is the first time that anyone has combined precise force measuring optical tweezers with confocal microscopy. We also discuss some of the technical challenges involved in advancing the experimental set up to make quantitative force measurements in combination with 3D stacking. Having proven the potential of this system in 2D, we hope to develop it further to investigate the nano-mechanics of cell division through the attachment of gold beads to fluorescently labelled organelles in S. pombe yeast cells.

  17. Use of optical tweezers to probe epithelial mechanosensation

    NASA Astrophysics Data System (ADS)

    Resnick, Andrew

    2010-01-01

    Cellular mechanosensation mechanisms have been implicated in a variety of disease states. Specifically in renal tubules, the primary cilium and associated mechanosensitive ion channels are hypothesized to play a role in water and salt homeostasis, with relevant disease states including polycystic kidney disease and hypertension. Previous experiments investigating ciliary-mediated cellular mechanosensation have used either fluid flow chambers or micropipetting to elicit a biological response. The interpretation of these experiments in terms of the ``ciliary hypothesis'' has been difficult due the spatially distributed nature of the mechanical disturbance-several competing hypotheses regarding possible roles of primary cilium, glycocalyx, microvilli, cell junctions, and actin cytoskeleton exist. I report initial data using optical tweezers to manipulate individual primary cilia in an attempt to elicit a mechanotransduction response-specifically, the release of intracellular calcium. The advantage of using laser tweezers over previous work is that the applied disturbance is highly localized. I find that stimulation of a primary cilium elicits a response, while stimulation of the apical surface membrane does not. These results lend support to the hypothesis that the primary cilium mediates transduction of mechanical strain into a biochemical response in renal epithelia.

  18. Full-field OCT combined with optical tweezer

    NASA Astrophysics Data System (ADS)

    Choi, Woo June; Park, Kwan Seob; Eom, Tae Joong; Oh, Myung-Kyu; Lee, Byeong-Ha

    2012-03-01

    We present an optical tweezer technique assisted full-field optical coherence tomography (FF-OCT) system. The proposed scheme enables ultrahigh-resolution OCT imaging of a floating object optically trapped by single-beam gradient force in medium. The set up consists of a Linnik type of white light interference microscope combined with an optical tweezer system. The optical trap is formed by tightly focusing a 1064 nm Q-switching pulsed laser beam with a microscope objective lens of high numerical aperture (1.0 NA) in sample arm of the OCT interferometer. This co-sharing of probe channel between two of systems enables concurrent actions of trapping and OCT imaging for the sample. OCT imaging of the sample in depth can achieve by positioning the coherence gating with displacement of reference arm in the OCT interferometer. To demonstrate the efficacy of the system, micron-sized dielectric particles and living cells in solution are simultaneously trapped and optically sliced with cellular resolution.

  19. Determination of motility forces on isolated chromosomes with laser tweezers

    PubMed Central

    Khatibzadeh, Nima; Stilgoe, Alexander B.; Bui, Ann A. M.; Rocha, Yesenia; Cruz, Gladys M.; Loke, Vince; Shi, Linda Z.; Nieminen, Timo A.; Rubinsztein-Dunlop, Halina; Berns, Michael W.

    2014-01-01

    Quantitative determination of the motility forces of chromosomes during cell division is fundamental to understanding a process that is universal among eukaryotic organisms. Using an optical tweezers system, isolated mammalian chromosomes were held in a 1064 nm laser trap. The minimum force required to move a single chromosome was determined to be ≈0.8–5 pN. The maximum transverse trapping efficiency of the isolated chromosomes was calculated as ≈0.01–0.02. These results confirm theoretical force calculations of ≈0.1–12 pN to move a chromosome on the mitotic or meiotic spindle. The verification of these results was carried out by calibration of the optical tweezers when trapping microspheres with a diameter of 4.5–15 µm in media with 1–7 cP viscosity. The results of the chromosome and microsphere trapping experiments agree with optical models developed to simulate trapping of cylindrical and spherical specimens. PMID:25359514

  20. Use of optical tweezers to probe epithelial mechanosensation.

    PubMed

    Resnick, Andrew

    2010-01-01

    Cellular mechanosensation mechanisms have been implicated in a variety of disease states. Specifically in renal tubules, the primary cilium and associated mechanosensitive ion channels are hypothesized to play a role in water and salt homeostasis, with relevant disease states including polycystic kidney disease and hypertension. Previous experiments investigating ciliary-mediated cellular mechanosensation have used either fluid flow chambers or micropipetting to elicit a biological response. The interpretation of these experiments in terms of the "ciliary hypothesis" has been difficult due the spatially distributed nature of the mechanical disturbance-several competing hypotheses regarding possible roles of primary cilium, glycocalyx, microvilli, cell junctions, and actin cytoskeleton exist. I report initial data using optical tweezers to manipulate individual primary cilia in an attempt to elicit a mechanotransduction response-specifically, the release of intracellular calcium. The advantage of using laser tweezers over previous work is that the applied disturbance is highly localized. I find that stimulation of a primary cilium elicits a response, while stimulation of the apical surface membrane does not. These results lend support to the hypothesis that the primary cilium mediates transduction of mechanical strain into a biochemical response in renal epithelia.

  1. Invited article: a review of haptic optical tweezers for an interactive microworld exploration.

    PubMed

    Pacoret, Cécile; Régnier, Stéphane

    2013-08-01

    This paper is the first review of haptic optical tweezers, a new technique which associates force feedback teleoperation with optical tweezers. This technique allows users to explore the microworld by sensing and exerting picoNewton-scale forces with trapped microspheres. Haptic optical tweezers also allow improved dexterity of micromanipulation and micro-assembly. One of the challenges of this technique is to sense and magnify picoNewton-scale forces by a factor of 10(12) to enable human operators to perceive interactions that they have never experienced before, such as adhesion phenomena, extremely low inertia, and high frequency dynamics of extremely small objects. The design of optical tweezers for high quality haptic feedback is challenging, given the requirements for very high sensitivity and dynamic stability. The concept, design process, and specification of optical tweezers reviewed here are focused on those intended for haptic teleoperation. In this paper, two new specific designs as well as the current state-of-the-art are presented. Moreover, the remaining important issues are identified for further developments. The initial results obtained are promising and demonstrate that optical tweezers have a significant potential for haptic exploration of the microworld. Haptic optical tweezers will become an invaluable tool for force feedback micromanipulation of biological samples and nano- and micro-assembly parts.

  2. Invited article: a review of haptic optical tweezers for an interactive microworld exploration.

    PubMed

    Pacoret, Cécile; Régnier, Stéphane

    2013-08-01

    This paper is the first review of haptic optical tweezers, a new technique which associates force feedback teleoperation with optical tweezers. This technique allows users to explore the microworld by sensing and exerting picoNewton-scale forces with trapped microspheres. Haptic optical tweezers also allow improved dexterity of micromanipulation and micro-assembly. One of the challenges of this technique is to sense and magnify picoNewton-scale forces by a factor of 10(12) to enable human operators to perceive interactions that they have never experienced before, such as adhesion phenomena, extremely low inertia, and high frequency dynamics of extremely small objects. The design of optical tweezers for high quality haptic feedback is challenging, given the requirements for very high sensitivity and dynamic stability. The concept, design process, and specification of optical tweezers reviewed here are focused on those intended for haptic teleoperation. In this paper, two new specific designs as well as the current state-of-the-art are presented. Moreover, the remaining important issues are identified for further developments. The initial results obtained are promising and demonstrate that optical tweezers have a significant potential for haptic exploration of the microworld. Haptic optical tweezers will become an invaluable tool for force feedback micromanipulation of biological samples and nano- and micro-assembly parts. PMID:24007046

  3. Clathrin-Mediated Auxin Efflux and Maxima Regulate Hypocotyl Hook Formation and Light-Stimulated Hook Opening in Arabidopsis.

    PubMed

    Yu, Qinqin; Zhang, Ying; Wang, Juan; Yan, Xu; Wang, Chao; Xu, Jian; Pan, Jianwei

    2016-01-01

    The establishment of auxin maxima by PIN-FORMED 3 (PIN3)- and AUXIN RESISTANT 1/LIKE AUX1 (LAX) 3 (AUX1/LAX3)-mediated auxin transport is essential for hook formation in Arabidopsis hypocotyls. Until now, however, the underlying regulatory mechanism has remained poorly understood. Here, we show that loss of function of clathrin light chain CLC2 and CLC3 genes enhanced auxin maxima and thereby hook curvature, alleviated the inhibitory effect of auxin overproduction on auxin maxima and hook curvature, and delayed blue light-stimulated auxin maxima reduction and hook opening. Moreover, pharmacological experiments revealed that auxin maxima formation and hook curvature in clc2 clc3 were sensitive to auxin efflux inhibitors 1-naphthylphthalamic acid and 2,3,5-triiodobenzoic acid but not to the auxin influx inhibitor 1-naphthoxyacetic acid. Live-cell imaging analysis further uncovered that loss of CLC2 and CLC3 function impaired PIN3 endocytosis and promoted its lateralization in the cortical cells but did not affect AUX1 localization. Taken together, these results suggest that clathrin regulates auxin maxima and thereby hook formation through modulating PIN3 localization and auxin efflux, providing a novel mechanism that integrates developmental signals and environmental cues to regulate plant skotomorphogenesis and photomorphogenesis.

  4. Engineering Evaluation of International Low Impact Docking System Latch Hooks

    NASA Technical Reports Server (NTRS)

    Martinez, J.; Patin, R.; Figert, J.

    2013-01-01

    The international Low Impact Docking System (iLIDS) provides a structural arrangement that allows for visiting vehicles to dock with the International Space Station (ISS) (Fig 1). The iLIDS docking units are mechanically joined together by a series of active and passive latch hooks. In order to preserve docking capability at the existing Russian docking interfaces, the iLIDS latch hooks are required to conform to the existing Russian design. The latch hooks are classified as being fail-safe. Since the latch hooks are fail-safe, the hooks are not fracture critical and a fatigue based service life assessment will satisfy the structural integrity requirements. Constant amplitude fatigue testing to failure on four sets of active/passive iLIDS latch hooks was performed at load magnitudes of 10, 11, and 12 kips. Failure analysis of the hook fatigue failures identified multi-site fatigue initiation that was effectively centered about the hook mid-plane (consistent with the 3D model results). The fatigue crack initiation distribution implies that the fatigue damage accumulation effectively results in a very low aspect ratio surface crack (which can be simulated as thru-thickness crack). Fatigue damage progression resulted in numerous close proximity fatigue crack initiation sites. It was not possible to determine if fatigue crack coalescence occurs during cyclic loading or as result of the fast fracture response. The presence of multiple fatigue crack initiation sites on different planes will result in the formation of ratchet marks as the cracks coalesce. Once the stable fatigue crack becomes unstable and the fast fracture advances across the remaining ligament and the plane stress condition at a free-surface will result in failure along a 45 deg. shear plane (slant fracture) and the resulting inclined edge is called a shear lip. The hook thickness on the plane of fatigue crack initiation is 0.787". The distance between the shear lips on this plane was on the order of 0

  5. Structure and dynamics of single DNA molecules manipulated by magnetic tweezers and or flow

    PubMed Central

    Leuba, Sanford H.; Wheeler, Travis B.; Cheng, Chao-Min; LeDuc, Philip R.; Fernández-Sierra, Mónica; Quiñones, Edwin

    2009-01-01

    Here we describe experiments which employ magnetic tweezers and or microfluidics to manipulate single DNA molecules. We describe the use of magnetic tweezers coupled to an inverted microscope as well as the use of a magnetic tweezers setup with an upright microscope. Using a chamber prepared via soft lithography, we also describe a microfluidic device for the manipulation of individual DNA molecules. Finally, we present some past successful examples of using these approaches to elucidate unique information about protein-nucleic acid interactions. PMID:19015032

  6. Eos Interviews Robert Van Hook, Former AGU Interim Executive Director

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2010-08-01

    Robert Van Hook, who served as AGU's interim executive director since January 2009, led the organization during a transition period that began with the retirement of long-serving executive director A. F. (“Fred”) Spilhaus Jr. Van Hook's tenure concluded on 30 August when Christine McEntee assumed her position as AGU's new executive director (see Eos, 91(17), 153, 156, 2010). During his tenure at AGU, which overlapped with a global economic recession, Van Hook helped to guide the organization through key structural governance changes, strategic planning, and upgrades in technology, human resources, and accounting. He also helped to revitalize public outreach and member services, among many other efforts. Van Hook, president of Transition Management Consulting, recently reflected upon his tenure, the transition period, and the future of AGU. Van Hook credits AGU's strong volunteer leadership—including past presidents Tim Killeen and Tim Grove, current president Mike McPhaden, and president-elect Carol Finn—for courage in moving the organization through a successful transition. “They were the ones who shoved the boat off from the shore. I was lucky enough to be invited into the boat,” he said. He also credits the staff for their resiliency and commitment to supporting AGU's science.

  7. Esophageal Endoscopic Submucosal Dissection Assisted by an Overtube with a Traction Forceps: An Animal Study

    PubMed Central

    Fu, Kuangi; Sakai, Eiji; Tashima, Tomoaki; Minato, Yohei; Ohno, Akiko; Ito, Takafumi; Tsuji, Yosuke; Chiba, Hideyuki; Yamawaki, Makoto; Hemmi, Hideyuki; Nakaya, Teruo; Fukushima, Junichi

    2016-01-01

    Esophageal endoscopic submucosal dissection (ESD) is technically difficult. To make it safer, we developed a novel method using overtube with a traction forceps (OTF) for countertraction during submucosal dissection. We conducted an ex vivo animal study and compared the clinical outcomes between OTF-ESD and conventional method (C-ESD). A total of 32 esophageal ESD procedures were performed by four beginner and expert endoscopists. After circumferential mucosal incision for the target lesion, structured as the isolated pig esophagus 3 cm long, either C-ESD or OTF-ESD was randomly selected for submucosal dissection. All the ESD procedures were completed as en bloc resections, while perforation only occurred in a beginner's C-ESD procedure. The dissection time for OTF-ESD was significantly shorter than that for C-ESD for both the beginner and expert endoscopists (22.8 ± 8.3 min versus 7.8 ± 4.5 min, P < 0.001, and 11.3 ± 4.4 min versus 5.9 ± 2.5 min, P = 0.01, resp.). The frequency and volume of the submucosal injections were significantly smaller for OTF-ESD than for C-ESD (1.3 ± 0.6 times versus 2.9 ± 1.5 times, P < 0.001, and 5.3 ± 2.8 mL versus 15.6 ± 7.3 mL, P < 0.001, resp.). Histologically, muscular injury was more common among the C-ESD procedures (80% versus 13%, P = 0.009). Our results indicated that the OTF-ESD technique is useful for the safe and easy completion of esophageal ESD. PMID:27528866

  8. Esophageal Endoscopic Submucosal Dissection Assisted by an Overtube with a Traction Forceps: An Animal Study.

    PubMed

    Ohata, Ken; Fu, Kuangi; Sakai, Eiji; Nonaka, Kouichi; Tashima, Tomoaki; Minato, Yohei; Ohno, Akiko; Ito, Takafumi; Tsuji, Yosuke; Chiba, Hideyuki; Yamawaki, Makoto; Hemmi, Hideyuki; Nakaya, Teruo; Fukushima, Junichi; Matsuhashi, Nobuyuki

    2016-01-01

    Esophageal endoscopic submucosal dissection (ESD) is technically difficult. To make it safer, we developed a novel method using overtube with a traction forceps (OTF) for countertraction during submucosal dissection. We conducted an ex vivo animal study and compared the clinical outcomes between OTF-ESD and conventional method (C-ESD). A total of 32 esophageal ESD procedures were performed by four beginner and expert endoscopists. After circumferential mucosal incision for the target lesion, structured as the isolated pig esophagus 3 cm long, either C-ESD or OTF-ESD was randomly selected for submucosal dissection. All the ESD procedures were completed as en bloc resections, while perforation only occurred in a beginner's C-ESD procedure. The dissection time for OTF-ESD was significantly shorter than that for C-ESD for both the beginner and expert endoscopists (22.8 ± 8.3 min versus 7.8 ± 4.5 min, P < 0.001, and 11.3 ± 4.4 min versus 5.9 ± 2.5 min, P = 0.01, resp.). The frequency and volume of the submucosal injections were significantly smaller for OTF-ESD than for C-ESD (1.3 ± 0.6 times versus 2.9 ± 1.5 times, P < 0.001, and 5.3 ± 2.8 mL versus 15.6 ± 7.3 mL, P < 0.001, resp.). Histologically, muscular injury was more common among the C-ESD procedures (80% versus 13%, P = 0.009). Our results indicated that the OTF-ESD technique is useful for the safe and easy completion of esophageal ESD. PMID:27528866

  9. Holographic optical tweezers: manipulations at an air-liquid interface

    NASA Astrophysics Data System (ADS)

    Jesacher, Alexander; Fürhapter, Severin; Maurer, Christian; Bernet, Stefan; Ritsch-Marte, Monika

    2006-08-01

    By performing experiments at an air-water interface, we operate Holographic Optical Tweezers in a qualitatively new environment. In this regime, trapping and moving of micro particles may allow access to parameters like local viscosity and surface tension. Polystyrene micro beads are naturally stabilized in the interface due to a minimum in surface energy. For this reason, they can also be manipulated by light patterns with small axial field gradients, without causing the particles to escape due to scattering forces. In this manner, the interface provides a true two-dimensional "working environment", where particles can be manipulated with high effciency. For example, we demonstrate different optical "micro tools", which utilize scattering and gradient forces to enable controlled transport of matter within the surface.

  10. Skewed Brownian Fluctuations in Single-Molecule Magnetic Tweezers

    PubMed Central

    Burnham, Daniel R.; De Vlaminck, Iwijn; Henighan, Thomas; Dekker, Cees

    2014-01-01

    Measurements in magnetic tweezers rely upon precise determination of the position of a magnetic microsphere. Fluctuations in the position due to Brownian motion allows calculation of the applied force, enabling deduction of the force-extension response function for a single DNA molecule that is attached to the microsphere. The standard approach relies upon using the mean of position fluctuations, which is valid when the microsphere axial position fluctuations obey a normal distribution. However, here we demonstrate that nearby surfaces and the non-linear elasticity of DNA can skew the distribution. Through experiment and simulations, we show that such a skewing leads to inaccurate position measurements which significantly affect the extracted DNA extension and mechanical properties, leading to up to two-fold errors in measured DNA persistence length. We develop a simple, robust and easily implemented method to correct for such mismeasurements. PMID:25265383

  11. Combined holographic-mechanical optical tweezers: Construction, optimization, and calibration

    SciTech Connect

    Hanes, Richard D. L.; Jenkins, Matthew C.; Egelhaaf, Stefan U.

    2009-08-15

    A spatial light modulator (SLM) and a pair of galvanometer-mounted mirrors (GMM) were combined into an optical tweezers setup. This provides great flexibility as the SLM creates an array of traps, which can be moved smoothly and quickly with the GMM. To optimize performance, the effect of the incidence angle on the SLM with respect to phase and intensity response was investigated. Although it is common to use the SLM at an incidence angle of 45 deg., smaller angles give a full 2{pi} phase shift and an output intensity which is less dependent on the magnitude of the phase shift. The traps were calibrated using an active oscillatory technique and a passive probability distribution method.

  12. Trapping particles using waveguide-coupled gold bowtie plasmonic tweezers.

    PubMed

    Lin, Pin-Tso; Chu, Heng-Yi; Lu, Tsan-Wen; Lee, Po-Tsung

    2014-12-21

    We propose and demonstrate a trapping configuration integrating coupled waveguides and gold bowtie structures to form near-field plasmonic tweezers. Compared with excitation from the top, waves coupled through the waveguide can excite specific bowties on the waveguide and trap particles precisely. Thus this scheme is more efficient and compact, and will assist the circuit design on a chip. With lightning rod and gap effects, the gold bowtie structures can generate highly concentrated resonant fields and induce trapping forces as strong as 652 pN W(-1) on particles with diameters as small as 20 nm. This trapping capability is investigated numerically and verified experimentally with observations of the transport, trapping, and release of particles in the system. PMID:25288366

  13. Probing multiscale mechanics of collagen with optical tweezers

    NASA Astrophysics Data System (ADS)

    Shayegan, Marjan; Rezaei, Naghmeh; Lam, Norman H.; Altindal, Tuba; Wieczorek, Andrew; Forde, Nancy R.

    2013-09-01

    How the molecular structure of the structural, extracellular matrix protein collagen correlates with its mechanical properties at different hierarchical structural levels is not known. We demonstrate the utility of optical tweezers to probe collagen's mechanical response throughout its assembly hierarchy, from single molecule force-extension measurements through microrheology measurements on solutions of collagen molecules, collagen fibrillar gels and gelatin. These experiments enable the determination of collagen's flexibility, mechanics, and timescales and strengths of interaction at different levels of hierarchy, information critical to developing models of how collagen's physiological function and stability are influenced by its chemical composition. By investigating how the viscoelastic properties of collagen are affected by the presence of telopeptides, protein domains that strongly influence fibril formation, we demonstrate that these play a role in conferring transient elasticity to collagen solutions.

  14. Leukocyte-endothelium interaction: measurement by laser tweezers force spectroscopy.

    PubMed

    Wang, Shi-Kang; Chiu, Jeng-Jiann; Lee, Ming-Rou; Chou, Shih-Chin; Chen, Li-Jing; Hwang, Ned H C

    2006-09-01

    Leukocyte adhesion to vascular endothelium is an initial step of many inflammatory diseases. Although the atomic force microscopy (AFM) measurements of leukocyte-endothelial interaction have been recently introduced. with cell adhesion force unbinding curves (CAFUC). We obtained pico-Newton force in the initial interaction between a single living THP-1 cell and HUVEC monolayer using a custom-built laser tweezers (LT) system. The measured quantities included the non-linear force-distance relationship, and the effect of yielding in cell detachment. It is possible to introduce a time scale into the LT cell-detachment experiments for further exploration and more detailed information on the viscoelastic properties of living cells. PMID:16960761

  15. Combined holographic-mechanical optical tweezers: construction, optimization, and calibration.

    PubMed

    Hanes, Richard D L; Jenkins, Matthew C; Egelhaaf, Stefan U

    2009-08-01

    A spatial light modulator (SLM) and a pair of galvanometer-mounted mirrors (GMM) were combined into an optical tweezers setup. This provides great flexibility as the SLM creates an array of traps, which can be moved smoothly and quickly with the GMM. To optimize performance, the effect of the incidence angle on the SLM with respect to phase and intensity response was investigated. Although it is common to use the SLM at an incidence angle of 45 degrees, smaller angles give a full 2pi phase shift and an output intensity which is less dependent on the magnitude of the phase shift. The traps were calibrated using an active oscillatory technique and a passive probability distribution method. PMID:19725658

  16. Mechanical properties of a giant liposome studied using optical tweezers

    NASA Astrophysics Data System (ADS)

    Shitamichi, Yoko; Ichikawa, Masatoshi; Kimura, Yasuyuki

    2009-09-01

    The mechanical properties of a micrometer-sized giant liposome are studied by deforming it from the inside using dual-beam optical tweezers. As the liposome is extended, its shape changes from a sphere to a lemon shape, and finally, a tubular part is generated. The surface tension σ and the bending rigidity κ of the lipid membrane are obtained from the measured force-extension curve. In a one-phase liposome, it was found that σ increases as the charged component increases but κ remains approximately constant. In a two-phase liposome, the characteristic deformation and the force-extension curve differ from those observed for the one-phase liposome.

  17. Extending the Range for Force Calibration in Magnetic Tweezers

    PubMed Central

    Daldrop, Peter; Brutzer, Hergen; Huhle, Alexander; Kauert, Dominik J.; Seidel, Ralf

    2015-01-01

    Magnetic tweezers are a wide-spread tool used to study the mechanics and the function of a large variety of biomolecules and biomolecular machines. This tool uses a magnetic particle and a strong magnetic field gradient to apply defined forces to the molecule of interest. Forces are typically quantified by analyzing the lateral fluctuations of the biomolecule-tethered particle in the direction perpendicular to the applied force. Since the magnetic field pins the anisotropy axis of the particle, the lateral fluctuations follow the geometry of a pendulum with a short pendulum length along and a long pendulum length perpendicular to the field lines. Typically, the short pendulum geometry is used for force calibration by power-spectral-density (PSD) analysis, because the movement of the bead in this direction can be approximated by a simple translational motion. Here, we provide a detailed analysis of the fluctuations according to the long pendulum geometry and show that for this direction, both the translational and the rotational motions of the particle have to be considered. We provide analytical formulas for the PSD of this coupled system that agree well with PSDs obtained in experiments and simulations and that finally allow a faithful quantification of the magnetic force for the long pendulum geometry. We furthermore demonstrate that this methodology allows the calibration of much larger forces than the short pendulum geometry in a tether-length-dependent manner. In addition, the accuracy of determination of the absolute force is improved. Our force calibration based on the long pendulum geometry will facilitate high-resolution magnetic-tweezers experiments that rely on short molecules and large forces, as well as highly parallelized measurements that use low frame rates. PMID:25992733

  18. Measuring red blood cell aggregation forces using double optical tweezers.

    PubMed

    Fernandes, Heloise P; Fontes, Adriana; Thomaz, André; Castro, Vagner; Cesar, Carlos L; Barjas-Castro, Maria L

    2013-04-01

    Classic immunohematology approaches, based on agglutination techniques, have been used in manual and automated immunohematology laboratory routines. Red blood cell (RBC) agglutination depends on intermolecular attractive forces (hydrophobic bonds, Van der Walls, electrostatic forces and hydrogen bonds) and repulsive interactions (zeta potential). The aim of this study was to measure the force involved in RBC aggregation using double optical tweezers, in normal serum, in the presence of erythrocyte antibodies and associated to agglutination potentiator solutions (Dextran, low ionic strength solution [LISS] and enzymes). The optical tweezers consisted of a neodymium:yattrium aluminium garnet (Nd:YAG) laser beam focused through a microscope equipped with a minicam, which registered the trapped cell image in a computer where they could be analyzed using a software. For measuring RBC aggregation, a silica bead attached to RBCs was trapped and the force needed to slide one RBC over the other, as a function of the velocities, was determined. The median of the RBC aggregation force measured in normal serum (control) was 1 × 10(-3) (0.1-2.5) poise.cm. The samples analyzed with anti-D showed 2 × 10(-3) (1.0-4.0) poise.cm (p < 0.001). RBC diluted in potentiator solutions (Dextran 0.15%, Bromelain and LISS) in the absence of erythrocyte antibodies, did not present agglutination. High adherence was observed when RBCs were treated with papain. Results are in agreement with the imunohematological routine, in which non-specific results are not observed when using LISS, Dextran and Bromelain. Nevertheless, false positive results are frequently observed in manual and automated microplate analyzer using papain enzyme. The methodology proposed is simple and could provide specific information with the possibility of meansuration regarding RBC interaction.

  19. Extending the range for force calibration in magnetic tweezers.

    PubMed

    Daldrop, Peter; Brutzer, Hergen; Huhle, Alexander; Kauert, Dominik J; Seidel, Ralf

    2015-05-19

    Magnetic tweezers are a wide-spread tool used to study the mechanics and the function of a large variety of biomolecules and biomolecular machines. This tool uses a magnetic particle and a strong magnetic field gradient to apply defined forces to the molecule of interest. Forces are typically quantified by analyzing the lateral fluctuations of the biomolecule-tethered particle in the direction perpendicular to the applied force. Since the magnetic field pins the anisotropy axis of the particle, the lateral fluctuations follow the geometry of a pendulum with a short pendulum length along and a long pendulum length perpendicular to the field lines. Typically, the short pendulum geometry is used for force calibration by power-spectral-density (PSD) analysis, because the movement of the bead in this direction can be approximated by a simple translational motion. Here, we provide a detailed analysis of the fluctuations according to the long pendulum geometry and show that for this direction, both the translational and the rotational motions of the particle have to be considered. We provide analytical formulas for the PSD of this coupled system that agree well with PSDs obtained in experiments and simulations and that finally allow a faithful quantification of the magnetic force for the long pendulum geometry. We furthermore demonstrate that this methodology allows the calibration of much larger forces than the short pendulum geometry in a tether-length-dependent manner. In addition, the accuracy of determination of the absolute force is improved. Our force calibration based on the long pendulum geometry will facilitate high-resolution magnetic-tweezers experiments that rely on short molecules and large forces, as well as highly parallelized measurements that use low frame rates.

  20. Measurement of interaction forces between red blood cells in aggregates by optical tweezers

    SciTech Connect

    Maklygin, A Yu; Priezzhev, A V; Karmenian, A; Nikitin, Sergei Yu; Obolenskii, I S; Lugovtsov, Andrei E; Kisun Li

    2012-06-30

    We have fabricated double-beam optical tweezers and demonstrated the possibility of their use for measuring the interaction forces between red blood cells (erythrocytes). It has been established experimentally that prolonged trapping of red blood cells in a tightly focused laser beam does not cause any visible changes in their shape or size. We have measured the interaction between red blood cells in the aggregate, deformed by optical tweezers.

  1. Newton–Hooke-type symmetry of anisotropic oscillators

    SciTech Connect

    Zhang, P.M.; Horvathy, P.A.; Andrzejewski, K.; Gonera, J.; Kosiński, P.

    2013-06-15

    Rotation-less Newton–Hooke-type symmetry, found recently in the Hill problem, and instrumental for explaining the center-of-mass decomposition, is generalized to an arbitrary anisotropic oscillator in the plane. Conversely, the latter system is shown, by the orbit method, to be the most general one with such a symmetry. Full Newton–Hooke symmetry is recovered in the isotropic case. Star escape from a galaxy is studied as an application. -- Highlights: ► Rotation-less Newton–Hooke (NH) symmetry is generalized to an arbitrary anisotropic oscillator. ► The orbit method is used to find the most general case for rotation-less NH symmetry. ► The NH symmetry is decomposed into Heisenberg algebras based on chiral decomposition.

  2. EAARL Coastal Topography - Sandy Hook 2007

    USGS Publications Warehouse

    Nayegandhi, Amar; Brock, John C.; Wright, C. Wayne; Stevens, Sara; Yates, Xan; Bonisteel, Jamie M.

    2008-01-01

    These remotely sensed, geographically referenced elevation measurements of Lidar-derived topography were produced as a collaborative effort between the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL; the National Park Service (NPS), Northeast Coastal and Barrier Network, Kingston, RI; and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of Gateway National Recreation Area's Sandy Hook Unit in New Jersey, acquired on May 16, 2007. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative airborne Lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL) was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) Lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive Lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers and an integrated miniature digital inertial measurement unit, which provide for submeter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a Lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then

  3. BOOK REVIEW: Robert Hooke and the Royal Society

    NASA Astrophysics Data System (ADS)

    Brown, Neil

    2000-01-01

    Many physics students only come across Hooke when they learn his law of stretching springs, which is a pity because it is just one of his contributions to progress in science, and a minor one at that. His, Micrographia, the first great book of microscopical observations, arouses admiration to this day. He was also active in horology, astronomy, geology and surveying, and he took part in biological experiments, transfusing blood between animals. Much of his work was done while he was curator of experiments for the Royal Society, in which he was involved almost from its foundation. This was by no means a full-time occupation, however. After the Great Fire of London, Hooke was appointed one of the three surveyors for the rebuilding of the city. One of the others was Christopher Wren, a lifelong friend. In this role Hooke was responsible for the design of several buildings, including the Monument. Nichols writes about all these activities, as well as Hooke's childhood, his education at Westminster School, the University of Oxford when Hooke was an undergraduate, and the founding of the Royal Society. The book draws on research for a master's degree. Turning a dissertation into a popular book is risky. The author has avoided the pitfall of making it too academic, but the result is not satisfying. Nichols seems overawed by Hooke and his work, frequently seeming to credit Hooke with a far-reaching influence that he did not necessarily have. There may be a case for lauding Hooke as the father of English microscopy, the father of English meteorology, and the founder of English geology and earth sciences, but it needs to be made much more critically, even in a popular work. Hooke was full of good ideas, but he rarely continued long enough to put them into practice. There is no doubt that Hooke proposed using a balance wheel and spring to improve the timekeeping of a watch, for example, but he did not have a watch made to his design until after Christiaan Huygens had

  4. Stress fracture of the hook of the hamate.

    PubMed

    Guha, A R; Marynissen, H

    2002-06-01

    Fractures of the hook of the hamate have rarely been reported. They have usually resulted from blunt trauma or a sharp strike against the hamate hook while swinging a golf club, baseball bat, or tennis racquet. Patients present with acute onset of pain localised over the ulnar aspect of the wrist and reduction in grip strength. In the case reported here, the patient complained of gradual onset of pain on the ulnar aspect of the wrist after altering his grip for serving in tennis. Once the diagnosis was made, the fracture was treated conservatively and the patient made a complete recovery.

  5. Problem in Two Unknowns: Robert Hooke and a Worm in Newton's Apple.

    ERIC Educational Resources Information Center

    Weinstock, Robert

    1992-01-01

    Discusses the place that Robert Hooke has in science history versus the scientific contributions he made. Examines the relationship between Hooke and his contemporary, Isaac Newton, and Hooke's claims that Newton built on his ideas without receiving Newton's recognition. (26 references) (MDH)

  6. Automated multi-parametric sorting of micron-sized particles via multi-trap laser tweezers

    NASA Astrophysics Data System (ADS)

    Kaputa, Daniel S.

    The capabilities of laser tweezers have rapidly expanded since the first demonstration by Ashkin and co-workers in 1970 of the ability to trap particles using optical energy. Laser tweezers have been used to measure piconewton forces in many biological and material science application, sort bacteria, measure DNA bond strength, and even perform microsurgery. The laser tweezers system developed for this dissertation foreshadows the next generation of laser tweezer systems that provide automated particle sorted based upon multiple criteria. Many laser tweezer sorting applications today entail the operator sorting cells from a bulk sample, one by one. This dissertation demonstrates the technologies of pattern recognition and image processing that allow for an entire microscope slide to be sorted without any operator intervention. We already live in an automated world where the cars we drive are built by machines instead of humans. The technology is there, and the only factors limiting the advancements of fully automated biological instrumentation is the lack of developers with the appropriate knowledge sets. This dissertation introduces the concept of sorting particles via a multi-parametric approach where several parameters such as size, fluorescence, and Raman spectra are used as sorting criteria. Since the advent of laser tweezers, several groups have demonstrated the ability to sort cells and other particle by size, or by fluorescence, or by any other parameter, but to our knowledge there does not exist a laser tweezer sorting system that can sort particles based upon multiple parameters. Sorting via a single parameter can be a severe limitation as the method lacks the robustness and class specificity that exists when sorting based upon multiple parameters. Simply put, it makes more sense to determine the worth of a baseball card by considering it's condition as well as it's age, rather then solely upon its condition. By adding another parameter such as the name of

  7. Anharmonic Vibrations of an "Ideal" Hooke's Law Oscillator

    ERIC Educational Resources Information Center

    Thomchick, John; McKelvey, J. P.

    1978-01-01

    Presents a model describing the vibrations of a mass connected to fixed supports by "ideal" Hooke's law springs which may serve as a starting point in the study of the properties of irons in a crystal undergoing soft mode activated transition. (SL)

  8. School Safety in a Post-Sandy Hook World

    ERIC Educational Resources Information Center

    Trump, Kenneth S.

    2014-01-01

    In this report the author, who is a school safety expert, provides information about school safety in a post-Sandy Hook world. He presents the following: (1) Continuum of Threats and Responses; (2) The role social media plays; (3) Reliable Best Practices; (4) Policy and Funding--Climate and Context; (5) Policy and Funding--Things to Avoid; and (6)…

  9. Hooking up: gender differences, evolution, and pluralistic ignorance.

    PubMed

    Reiber, Chris; Garcia, Justin R

    2010-01-01

    "Hooking-up"--engaging in no-strings-attached sexual behaviors with uncommitted partners--has become a norm on college campuses, and raises the potential for disease, unintended pregnancy, and physical and psychological trauma. The primacy of sex in the evolutionary process suggests that predictions derived from evolutionary theory may be a useful first step toward understanding these contemporary behaviors. This study assessed the hook-up behaviors and attitudes of 507 college students. As predicted by behavioral-evolutionary theory: men were more comfortable than women with all types of sexual behaviors; women correctly attributed higher comfort levels to men, but overestimated men's actual comfort levels; and men correctly attributed lower comfort levels to women, but still overestimated women's actual comfort levels. Both genders attributed higher comfort levels to same-gendered others, reinforcing a pluralistic ignorance effect that might contribute to the high frequency of hook-up behaviors in spite of the low comfort levels reported and suggesting that hooking up may be a modern form of intrasexual competition between females for potential mates.

  10. Development of an externally powered prosthetic hook for amputees

    NASA Technical Reports Server (NTRS)

    Karchak, A., Jr.; Allen, J. R.; Bontrager, E. L.

    1973-01-01

    The powered hook with trigger finger appears to be a useful adaptation of a terminal device for an amputee when performing vocational activities involving the use of a powered tool requiring a trigger control. The proportional control system includes transducers and amplifiers and appears to have widespread application for control of any external power, whether it be in the orthotic or prosthetic field.

  11. The crafting of hook tools by wild New Caledonian crows.

    PubMed

    Hunt, Gavin R; Gray, Russell D

    2004-02-01

    The 'crafting' of tools involves (i) selection of appropriate raw material, (ii) preparatory trimming and (iii) fine, three-dimensional sculpting. Its evolution is technologically important because it allows the open-ended development of tools. New Caledonian crows manufacture an impressive range of stick and leaf tools. We previously reported that their toolkit included hooked implements made from leafy twigs, although their manufacture had never been closely observed. We describe the manufacture of 10 hooked-twig tools by an adult crow and its dependent juvenile. To make all 10 tools, the crows carried out a relatively invariant three-step sequence of complex manipulations that involved (i) the selection of raw material, (ii) trimming and (iii) a lengthy sculpting of the hook. Hooked-twig manufacture contrasts with the lack of sculpting in the making of wooden tools by other non-humans such as chimpanzees and woodpecker finches. This fine, three-stage crafting process removes another alleged difference between humans and other animals.

  12. Simulation of Hooke's Joint on the Analog Computer.

    ERIC Educational Resources Information Center

    Mitchell, Eugene E., Ed.

    1980-01-01

    A problem is presented that teaches the engineering student or practicing engineer the behavior of Hooke's joint, a widely used mechanism for transmitting rotary power in mechanical equipment. Also provided by this problem is an exercise in analog programing which utilizes nonlinear computer elements. (Author/CS)

  13. Usefulness of Kent retractor and lifting hook for Nuss procedure.

    PubMed

    Takahashi, Tsubasa; Okazaki, Tadaharu; Yamataka, Atsuyuki; Uchida, Eiji

    2015-11-01

    Although the Nuss procedure for pectus excavatum has been widely employed, a variety of complications have been reported. The most dangerous complication is cardiac injury from the insertion of the introducer. To eliminate these complications, we present a sternum elevating technique using a Kent retractor and a lifting hook.

  14. Hierarchy of hormone action controlling apical hook development in Arabidopsis.

    PubMed

    Gallego-Bartolomé, Javier; Arana, María V; Vandenbussche, Filip; Zádníková, Petra; Minguet, Eugenio G; Guardiola, Vicente; Van Der Straeten, Dominique; Benkova, Eva; Alabadí, David; Blázquez, Miguel A

    2011-08-01

    The apical hook develops in the upper part of the hypocotyl when seeds buried in the soil germinate, and serves to protect cotyledons and the shoot apical meristem from possible damage caused by pushing through the soil. The curvature is formed through differential cell growth that occurs at the two opposite sides of the hypocotyl, and it is established by a gradient of auxin activity and refined by the coordinated action of auxin and ethylene. Here we show that gibberellins (GAs) promote hook development through the transcriptional regulation of several genes of the ethylene and auxin pathways in Arabidopsis. The level of GA activity determines the speed of hook formation and the extent of the curvature during the formation phase independently of ethylene, probably by modulating auxin transport and response through HLS1, PIN3, and PIN7. Moreover, GAs cooperate with ethylene in preventing hook opening, in part through the induction of ethylene production mediated by ACS5/ETO2 and ACS8.

  15. Hooking up: gender differences, evolution, and pluralistic ignorance.

    PubMed

    Reiber, Chris; Garcia, Justin R

    2010-01-01

    "Hooking-up"--engaging in no-strings-attached sexual behaviors with uncommitted partners--has become a norm on college campuses, and raises the potential for disease, unintended pregnancy, and physical and psychological trauma. The primacy of sex in the evolutionary process suggests that predictions derived from evolutionary theory may be a useful first step toward understanding these contemporary behaviors. This study assessed the hook-up behaviors and attitudes of 507 college students. As predicted by behavioral-evolutionary theory: men were more comfortable than women with all types of sexual behaviors; women correctly attributed higher comfort levels to men, but overestimated men's actual comfort levels; and men correctly attributed lower comfort levels to women, but still overestimated women's actual comfort levels. Both genders attributed higher comfort levels to same-gendered others, reinforcing a pluralistic ignorance effect that might contribute to the high frequency of hook-up behaviors in spite of the low comfort levels reported and suggesting that hooking up may be a modern form of intrasexual competition between females for potential mates. PMID:22947808

  16. Dynamic infrared imaging analysis of apical hook development in Arabidopsis: the case of brassinosteroids.

    PubMed

    Smet, Dajo; Žádníková, Petra; Vandenbussche, Filip; Benková, Eva; Van Der Straeten, Dominique

    2014-06-01

    Germination of Arabidopsis seeds in darkness induces apical hook development, based on a tightly regulated differential growth coordinated by a multiple hormone cross-talk. Here, we endeavoured to clarify the function of brassinosteroids (BRs) and cross-talk with ethylene in hook development. An automated infrared imaging system was developed to study the kinetics of hook development in etiolated Arabidopsis seedlings. To ascertain the photomorphogenic control of hook opening, the system was equipped with an automatic light dimmer. We demonstrate that ethylene and BRs are indispensable for hook formation and maintenance. Ethylene regulation of hook formation functions partly through BRs, with BR feedback inhibition of ethylene action. Conversely, BR-mediated extension of hook maintenance functions partly through ethylene. Furthermore, we revealed that a short light pulse is sufficient to induce rapid hook opening. Our dynamic infrared imaging system allows high-resolution, kinetic imaging of up to 112 seedlings in a single experimental run. At this high throughput, it is ideally suited to rapidly gain insight in pathway networks. We demonstrate that BRs and ethylene cooperatively regulate apical hook development in a phase-dependent manner. Furthermore, we show that light is a predominant regulator of hook opening, inhibiting ethylene- and BR-mediated postponement of hook opening.

  17. Parallel lipoplex folding pathways revealed using magnetic tweezers

    PubMed Central

    Sun, Zhiqiang; Tikhonova, Elena B.; Zgurskaya, Helen I.; Rybenkov, Valentin V.

    2012-01-01

    Lipid-coated DNA nanoparticles (lipoplexes) are a powerful gene delivery tool with promising therapeutic applications. The mechanism of lipoplex assembly remains poorly understood. We explored DNA packing by a cationic lipid DSTAP (distearoyl trimethylammonium-propane) using magnetic tweezers. DSTAP-induced DNA condensation occurred as a series of bursts with the mean step size of 60 nm to 80 nm. The pause time preceding the steps could be approximated as a bimodal distribution, which reveals at least two distinct condensation pathways. The rapidly condensed DNA was more resilient to force-induced decondensation. The proportion of the stable, fast-formed complexes decreased at high salt concentrations. A similar trend was observed in bulk experiments. Lipoplexes assembled at low salt concentration more efficiently shielded DNA from fluorescent dyes and DNase even after transfer to the high salt conditions. These data reveal that lipoplex folding occurs via two parallel pathways even at the single molecule level. The progress through the two pathways can be monitored in real time using single DNA manipulations. The relative efficiency of the two pathways can be varied by external conditions. PMID:22988939

  18. Manipulating and assembling metallic beads with Optoelectronic Tweezers

    PubMed Central

    Zhang, Shuailong; Juvert, Joan; Cooper, Jonathan M.; Neale, Steven L.

    2016-01-01

    Optoelectronic tweezers (OET) or light-patterned dielectrophoresis (DEP) has been developed as a micromanipulation technology for controlling micro- and nano-particles with applications such as cell sorting and studying cell communications. Additionally, the capability of moving small objects accurately and assembling them into arbitrary 2D patterns also makes OET an attractive technology for microfabrication applications. In this work, we demonstrated the use of OET to manipulate conductive silver-coated Poly(methyl methacrylate) (PMMA) microspheres (50 μm diameter) into tailored patterns. It was found that the microspheres could be moved at a max velocity of 3200 μm/s, corresponding to 4.2 nano-newton (10−9 N) DEP force, and also could be positioned with high accuracy via this DEP force. The underlying mechanism for this strong DEP force is shown by our simulations to be caused by a significant increase of the electric field close to the particles, due to the interaction between the field and the silver shells coating the microspheres. The associated increase in electrical gradient causes DEP forces that are much stronger than any previously reported for an OET device, which facilitates manipulation of the metallic microspheres efficiently without compromise in positioning accuracy and is important for applications on electronic component assembling and circuit construction. PMID:27599445

  19. Bio-syncretic tweezers actuated by microorganisms: modeling and analysis.

    PubMed

    Zhang, C; Xie, S X; Wang, W X; Xi, N; Wang, Y C; Liu, L Q

    2016-09-28

    Advancements in micro-/nano-technology have led to the development of micro-manipulators. However, some challenges remain; for instance, the efficiency, precision and flexibility of micro-manipulators restrain their applications. This paper proposes a bio-tweezer system to flexibly manipulate micro-objects with bio-actuation via local light-induced high-concentration microorganisms in two different manipulation modes: light-spot induced mode and geometric shape-induced mode. Depending on the shape of micro-objects, either 2-dimensional translation or 1-dimensional rotation can be achieved. Based on the Langevin equation, a mathematical model considering both hydrodynamics and mimicked Brownian motion is proposed to analyze the bio-manipulation performance of the microorganisms; the model was validated by experiments to translate micro-particles in a two-dimensional plane and to rotate a micro-gear structure around its axis. This paper will aid in the development of micro-manipulators and the quantitative understanding of micro-/nano-manipulation actuated by microorganisms. PMID:27432020

  20. Magnetic tweezers force calibration for molecules that exhibit conformational switching

    NASA Astrophysics Data System (ADS)

    Jacobson, David R.; Saleh, Omar A.

    2016-09-01

    High spatial and temporal resolution magnetic tweezers experiments allow for the direct calibration of pulling forces applied to short biomolecules. In one class of experiments, a force is applied to a structured RNA or protein to induce an unfolding transition; when the force is maintained at particular values, the molecule can exhibit conformational switching between the folded and unfolded states or between intermediate states. Here, we analyze the degree to which common force calibration approaches, involving the fitting of model functions to the Allan variance or power spectral density of the bead trajectory, are biased by this conformational switching. We find significant effects in two limits: that of large molecular extension changes between the two states, in which alternative fitting functions must be used, and that of very fast switching kinetics, in which the force calibration cannot be recovered due to the slow diffusion time of the magnetic bead. We use simulations and high-resolution RNA hairpin data to show that most biophysical experiments do not occur in either of these limits.

  1. Membrane tether formation from outer hair cells with optical tweezers.

    PubMed Central

    Li, Zhiwei; Anvari, Bahman; Takashima, Masayoshi; Brecht, Peter; Torres, Jorge H; Brownell, William E

    2002-01-01

    Optical tweezers were used to characterize the mechanical properties of the outer hair cell (OHC) plasma membrane by pulling tethers with 4.5-microm polystyrene beads. Tether formation force and tether force were measured in static and dynamic conditions. A greater force was required for tether formations from OHC lateral wall (499 +/- 152 pN) than from OHC basal end (142 +/- 49 pN). The difference in the force required to pull tethers is consistent with an extensive cytoskeletal framework associated with the lateral wall known as the cortical lattice. The apparent plasma membrane stiffness, estimated under the static conditions by measuring tether force at different tether length, was 3.71 pN/microm for OHC lateral wall and 4.57 pN/microm for OHC basal end. The effective membrane viscosity was measured by pulling tethers at different rates while continuously recording the tether force, and estimated in the range of 2.39 to 5.25 pN x s/microm. The viscous force most likely results from the viscous interactions between plasma membrane lipids and the OHC cortical lattice and/or integral membrane proteins. The information these studies provide on the mechanical properties of the OHC lateral wall is important for understanding the mechanism of OHC electromotility. PMID:11867454

  2. Manipulating and assembling metallic beads with Optoelectronic Tweezers.

    PubMed

    Zhang, Shuailong; Juvert, Joan; Cooper, Jonathan M; Neale, Steven L

    2016-09-07

    Optoelectronic tweezers (OET) or light-patterned dielectrophoresis (DEP) has been developed as a micromanipulation technology for controlling micro- and nano-particles with applications such as cell sorting and studying cell communications. Additionally, the capability of moving small objects accurately and assembling them into arbitrary 2D patterns also makes OET an attractive technology for microfabrication applications. In this work, we demonstrated the use of OET to manipulate conductive silver-coated Poly(methyl methacrylate) (PMMA) microspheres (50 μm diameter) into tailored patterns. It was found that the microspheres could be moved at a max velocity of 3200 μm/s, corresponding to 4.2 nano-newton (10(-9) N) DEP force, and also could be positioned with high accuracy via this DEP force. The underlying mechanism for this strong DEP force is shown by our simulations to be caused by a significant increase of the electric field close to the particles, due to the interaction between the field and the silver shells coating the microspheres. The associated increase in electrical gradient causes DEP forces that are much stronger than any previously reported for an OET device, which facilitates manipulation of the metallic microspheres efficiently without compromise in positioning accuracy and is important for applications on electronic component assembling and circuit construction.

  3. Detecting Bacterial Surface Organelles on Single Cells Using Optical Tweezers.

    PubMed

    Zakrisson, Johan; Singh, Bhupender; Svenmarker, Pontus; Wiklund, Krister; Zhang, Hanqing; Hakobyan, Shoghik; Ramstedt, Madeleine; Andersson, Magnus

    2016-05-10

    Bacterial cells display a diverse array of surface organelles that are important for a range of processes such as intercellular communication, motility and adhesion leading to biofilm formation, infections, and bacterial spread. More specifically, attachment to host cells by Gram-negative bacteria are mediated by adhesion pili, which are nanometers wide and micrometers long fibrous organelles. Since these pili are significantly thinner than the wavelength of visible light, they cannot be detected using standard light microscopy techniques. At present, there is no fast and simple method available to investigate if a single cell expresses pili while keeping the cell alive for further studies. In this study, we present a method to determine the presence of pili on a single bacterium. The protocol involves imaging the bacterium to measure its size, followed by predicting the fluid drag based on its size using an analytical model, and thereafter oscillating the sample while a single bacterium is trapped by an optical tweezer to measure its effective fluid drag. Comparison between the predicted and the measured fluid drag thereby indicate the presence of pili. Herein, we verify the method using polymer coated silica microspheres and Escherichia coli bacteria expressing adhesion pili. Our protocol can in real time and within seconds assist single cell studies by distinguishing between piliated and nonpiliated bacteria.

  4. Force measurements with optical tweezers inside living cells

    NASA Astrophysics Data System (ADS)

    Mas, Josep; Farré, Arnau; Sancho-Parramon, Jordi; Martín-Badosa, Estela; Montes-Usategui, Mario

    2014-09-01

    The force exerted by optical tweezers can be measured by tracking the momentum changes of the trapping beam, a method which is more general and powerful than traditional calibration techniques as it is based on first principles, but which has not been brought to its full potential yet, probably due to practical difficulties when combined with high-NA optical traps, such as the necessity to capture a large fraction of the scattered light. We show that it is possible to measure forces on arbitrary biological objects inside cells without an in situ calibration, using this approach. The instrument can be calibrated by measuring three scaling parameters that are exclusively determined by the design of the system, thus obtaining a conversion factor from volts to piconewtons that is theoretically independent of the physical properties of the sample and its environment. We prove that this factor keeps valid inside cells as it shows good agreement with other calibration methods developed in recent years for viscoelastic media. Finally, we apply the method to measuring the stall forces of kinesin and dynein in living A549 cells.

  5. Manipulating and assembling metallic beads with Optoelectronic Tweezers.

    PubMed

    Zhang, Shuailong; Juvert, Joan; Cooper, Jonathan M; Neale, Steven L

    2016-01-01

    Optoelectronic tweezers (OET) or light-patterned dielectrophoresis (DEP) has been developed as a micromanipulation technology for controlling micro- and nano-particles with applications such as cell sorting and studying cell communications. Additionally, the capability of moving small objects accurately and assembling them into arbitrary 2D patterns also makes OET an attractive technology for microfabrication applications. In this work, we demonstrated the use of OET to manipulate conductive silver-coated Poly(methyl methacrylate) (PMMA) microspheres (50 μm diameter) into tailored patterns. It was found that the microspheres could be moved at a max velocity of 3200 μm/s, corresponding to 4.2 nano-newton (10(-9) N) DEP force, and also could be positioned with high accuracy via this DEP force. The underlying mechanism for this strong DEP force is shown by our simulations to be caused by a significant increase of the electric field close to the particles, due to the interaction between the field and the silver shells coating the microspheres. The associated increase in electrical gradient causes DEP forces that are much stronger than any previously reported for an OET device, which facilitates manipulation of the metallic microspheres efficiently without compromise in positioning accuracy and is important for applications on electronic component assembling and circuit construction. PMID:27599445

  6. Numerical study of the properties of optical vortex array laser tweezers.

    PubMed

    Kuo, Chun-Fu; Chu, Shu-Chun

    2013-11-01

    Chu et al. constructed a kind of Ince-Gaussian modes (IGM)-based vortex array laser beams consisting of p x p embedded optical vortexes from Ince-Gaussian modes, IG(e)(p,p) modes [Opt. Express 16, 19934 (2008)]. Such an IGM-based vortex array laser beams maintains its vortex array profile during both propagation and focusing, and is applicable to optical tweezers. This study uses the discrete dipole approximation (DDA) method to study the properties of the IGM-based vortex array laser tweezers while it traps dielectric particles. This study calculates the resultant force exerted on the spherical dielectric particles of different sizes situated at the IGM-based vortex array laser beam waist. Numerical results show that the number of trapping spots of a structure light (i.e. IGM-based vortex laser beam), is depended on the relation between the trapped particle size and the structure light beam size. While the trapped particle is small comparing to the beam size of the IGM-based vortex array laser beams, the IGM-based vortex array laser beams tweezers are suitable for multiple traps. Conversely, the tweezers is suitable for single traps. The results of this study is useful to the future development of the vortex array laser tweezers applications. PMID:24216863

  7. Mapping force of interaction between PLGA nanoparticle with cell membrane using optical tweezers

    NASA Astrophysics Data System (ADS)

    Chhajed, Suyash; Gu, Ling; Homayoni, Homa; Nguyen, Kytai; Mohanty, Samarendra

    2011-03-01

    Drug delivery using magnetic (Fe 3 O4) Poly Lactic-co-Glycolic Acid (PLGA) nanoparticles is finding increasing usage in therapeutic applications due to its biodegradability, biocompatibility and targeted localization. Since optical tweezers allow non-contact, highly sensitive force measurement, we utilized optical tweezers for studying interaction forces between the Fe 3 O4 -PLGA nanoparticles with prostate cancer PC3 cells. Presence of Fe 3 O4 within the PLGA shell allowed efficient trapping of these nanoparticles in near-IR optical tweezers. The conglomerated PLGA nanoparticles could be dispersed by use of the optical tweezers. Calibration of trapping stiffness as a function of laser beam power was carried out using equipartition theorem method, where the mean square displacement was measured with high precision using time-lapse fluorescence imaging of the nanoparticles. After the trapped PLGA nanoparticle was brought in close vicinity of the PC3 cell membrane, displacement of the nanoparticle from trap center was measured as a function of time. In short time scale (30 sec) , whiletheforceofinteractionwaswithin 0.2 pN , theforceincreasedbeyond 1 pNatlongertimescales (~ 10 min). We will present the results of the time-varying force of interactions between PLGA nanoparticles with PC3 cells using optical tweezers.

  8. Surface forces and drag coefficients of microspheres near a plane surface measured with optical tweezers.

    PubMed

    Schäffer, Erik; Nørrelykke, Simon F; Howard, Jonathon

    2007-03-27

    Optical tweezers are widely used to measure molecular forces in biology. Such measurements are often influenced by a nearby surface that can perturb both the calibration of the tweezers as well as the hydrodynamic forces acting on microspheres to which the biomolecules are attached. In this study, we have used a very stable optical tweezers setup employing a recently developed calibration method (Tolić-Nørrelykke, S. F.; Schäffer, E.; Howard, J.; Pavone, F. S.; Jülicher, F.; Flyvbjerg, H. Rev. Sci. Instrum. 2006, 77 (10), 103101) to determine how the calibration of the tweezers and the forces on the microspheres depend on the height above the surface. We show that the displacement sensitivity of the tweezers is modulated by a standing light wave between the microsphere and the surface. We measured the dependence of the drag coefficient on height and compared it to exact and closed-form solutions to the Navier-Stokes equations. Also, we measured the surface force gradients in different salt solutions and for different surface blocking methods. For a given blocking method, our data suggest that microspheres can experience attractive and/or repulsive forces close to surfaces. For example, a Teflon layer reduces attractive interactions, and the presence of casein can lead to long-range repulsive interactions. These measurements are a prerequisite for the accurate measurement of normal forces with respect to an interface that occur in biological molecules held between surfaces.

  9. Numerical study of the properties of optical vortex array laser tweezers.

    PubMed

    Kuo, Chun-Fu; Chu, Shu-Chun

    2013-11-01

    Chu et al. constructed a kind of Ince-Gaussian modes (IGM)-based vortex array laser beams consisting of p x p embedded optical vortexes from Ince-Gaussian modes, IG(e)(p,p) modes [Opt. Express 16, 19934 (2008)]. Such an IGM-based vortex array laser beams maintains its vortex array profile during both propagation and focusing, and is applicable to optical tweezers. This study uses the discrete dipole approximation (DDA) method to study the properties of the IGM-based vortex array laser tweezers while it traps dielectric particles. This study calculates the resultant force exerted on the spherical dielectric particles of different sizes situated at the IGM-based vortex array laser beam waist. Numerical results show that the number of trapping spots of a structure light (i.e. IGM-based vortex laser beam), is depended on the relation between the trapped particle size and the structure light beam size. While the trapped particle is small comparing to the beam size of the IGM-based vortex array laser beams, the IGM-based vortex array laser beams tweezers are suitable for multiple traps. Conversely, the tweezers is suitable for single traps. The results of this study is useful to the future development of the vortex array laser tweezers applications.

  10. Automatic real time evaluation of red blood cell elasticity by optical tweezers

    NASA Astrophysics Data System (ADS)

    Moura, Diógenes S.; Silva, Diego C. N.; Williams, Ajoke J.; Bezerra, Marcos A. C.; Fontes, Adriana; de Araujo, Renato E.

    2015-05-01

    Optical tweezers have been used to trap, manipulate, and measure individual cell properties. In this work, we show that the association of a computer controlled optical tweezers system with image processing techniques allows rapid and reproducible evaluation of cell deformability. In particular, the deformability of red blood cells (RBCs) plays a key role in the transport of oxygen through the blood microcirculation. The automatic measurement processes consisted of three steps: acquisition, segmentation of images, and measurement of the elasticity of the cells. An optical tweezers system was setup on an upright microscope equipped with a CCD camera and a motorized XYZ stage, computer controlled by a Labview platform. On the optical tweezers setup, the deformation of the captured RBC was obtained by moving the motorized stage. The automatic real-time homemade system was evaluated by measuring RBCs elasticity from normal donors and patients with sickle cell anemia. Approximately 150 erythrocytes were examined, and the elasticity values obtained by using the developed system were compared to the values measured by two experts. With the automatic system, there was a significant time reduction (60 × ) of the erythrocytes elasticity evaluation. Automated system can help to expand the applications of optical tweezers in hematology and hemotherapy.

  11. The value of forceps biopsy and core needle biopsy in prediction of pathologic complete remission in locally advanced rectal cancer treated with neoadjuvant chemoradiotherapy.

    PubMed

    Tang, Jing-Hua; An, Xin; Lin, Xi; Gao, Yuan-Hong; Liu, Guo-Chen; Kong, Ling-Heng; Pan, Zhi-Zhong; Ding, Pei-Rong

    2015-10-20

    Patients with pathological complete remission (pCR) after treated with neoadjuvant chemoradiotherapy (nCRT) have better long-term outcome and may receive conservative treatments in locally advanced rectal cancer (LARC). The study aimed to evaluate the value of forceps biopsy and core needle biopsy in prediction of pCR in LARC treated with nCRT. In total, 120 patients entered this study. Sixty-one consecutive patients received preoperative forceps biopsy during endoscopic examination. Ex vivo core needle biopsy was performed in resected specimens of another 43 consecutive patients. The accuracy for ex vivo core needle biopsy was significantly higher than forceps biopsy (76.7% vs. 36.1%; p < 0.001). The sensitivity for ex vivo core needle biopsy was significantly lower in good responder (TRG 3) than poor responder (TRG ≤ 2) (52.9% vs. 94.1%; p = 0.017). In vivo core needle biopsy was further performed in 16 patients with good response. Eleven patients had residual cancer cells in final resected specimens, among whom 4 (36.4%) patients were biopsy positive. In conclusion, routine forceps biopsy was of limited value in identifying pCR after nCRT. Although core needle biopsy might further identify a subset of patients with residual cancer cells, the accuracy was not substantially increased in good responders.

  12. Nasotracheal intubation of a patient with restricted mouth opening using a McGrath MAC X-Blade and Magill forceps.

    PubMed

    Arslan, Zehra İpek; Ozdal, P; Ozdamar, D; Agır, H; Solak, M

    2016-10-01

    We experienced a case of successful nasotracheal intubation using the X-Blade of the McGrath MAC in a 28-year-old woman with a 2.5-cm mouth opening. She had no teeth on the right side, her neck movement was limited, her mandibular protrusion was grade C, and her Mallampati could not be evaluated. Her tongue was fixed to the left wall during a previous surgery. We evaluated the awake glottic view using the McGrath MAC X-Blade and topical oral anesthesia. We obtained a Cormack-Lehane grade II view and then decided to administer general anesthesia. Intubation was attempted with a Macintosh laryngoscope, but we could not insert the scope deeply enough and there was no area in which to insert the Magill forceps or endotracheal tube. We then used the X-Blade 3 of the McGrath MAC and obtained a sufficient area in which to insert the tube and manipulate the Magill forceps. A laryngoscopic view was achieved in 7 s and nasotracheal intubation was performed in 16 s with a 7.0-mm spiral tube using the Magill forceps. McGrath MAC X-Blade can be used with the Magill forceps in patients with restricted mouth opening with careful patient selection, in experienced hands.

  13. Fiber based optical tweezers for simultaneous in situ force exertion and measurements in a 3D polyacrylamide gel compartment.

    PubMed

    Ti, Chaoyang; Thomas, Gawain M; Ren, Yundong; Zhang, Rui; Wen, Qi; Liu, Yuxiang

    2015-07-01

    Optical tweezers play an important role in biological applications. However, it is difficult for traditional optical tweezers based on objective lenses to work in a three-dimensional (3D) solid far away from the substrate. In this work, we develop a fiber based optical trapping system, namely inclined dual fiber optical tweezers, that can simultaneously apply and measure forces both in water and in a 3D polyacrylamide gel matrix. In addition, we demonstrate in situ, non-invasive characterization of local mechanical properties of polyacrylamide gel by measurements on an embedded bead. The fiber optical tweezers measurements agree well with those of atomic force microscopy (AFM). The inclined dual fiber optical tweezers provide a promising and versatile tool for cell mechanics study in 3D environments.

  14. Fiber based optical tweezers for simultaneous in situ force exertion and measurements in a 3D polyacrylamide gel compartment

    PubMed Central

    Ti, Chaoyang; Thomas, Gawain M; Ren, Yundong; Zhang, Rui; Wen, Qi; Liu, Yuxiang

    2015-01-01

    Optical tweezers play an important role in biological applications. However, it is difficult for traditional optical tweezers based on objective lenses to work in a three-dimensional (3D) solid far away from the substrate. In this work, we develop a fiber based optical trapping system, namely inclined dual fiber optical tweezers, that can simultaneously apply and measure forces both in water and in a 3D polyacrylamide gel matrix. In addition, we demonstrate in situ, non-invasive characterization of local mechanical properties of polyacrylamide gel by measurements on an embedded bead. The fiber optical tweezers measurements agree well with those of atomic force microscopy (AFM). The inclined dual fiber optical tweezers provide a promising and versatile tool for cell mechanics study in 3D environments. PMID:26203364

  15. Optical disassembly of cellular clusters by tunable ‘tug-of-war’ tweezers

    PubMed Central

    Bezryadina, Anna S; Preece, Daryl C; Chen, Joseph C; Chen, Zhigang

    2016-01-01

    Bacterial biofilms underlie many persistent infections, posing major hurdles in antibiotic treatment. Here we design and demonstrate ‘tug-of-war’ optical tweezers that can facilitate the assessment of cell–cell adhesion—a key contributing factor to biofilm development, thanks to the combined actions of optical scattering and gradient forces. With a customized optical landscape distinct from that of conventional tweezers, not only can such ‘tug-of-war’ tweezers stably trap and stretch a rod-shaped bacterium in the observing plane, but, more importantly, they can also impose a tunable lateral force that pulls apart cellular clusters without any tethering or mechanical movement. As a proof of principle, we examined a Sinorhizobium meliloti strain that forms robust biofilms and found that the strength of intercellular adhesion depends on the growth medium. This technique may herald new photonic tools for optical manipulation and biofilm study, as well as other biological applications.

  16. Hong-Ou-Mandel atom interferometry in tunnel-coupled optical tweezers

    NASA Astrophysics Data System (ADS)

    Lester, Brian; Kaufman, Adam; Reynolds, Collin; Wall, Michael; Foss-Feig, Michael; Hazzard, Kaden; Rey, Ana Maria; Regal, Cindy

    2014-05-01

    We present recent work in which we demonstrate near-complete control over all the internal and external degrees of freedom of laser-cooled 87Rb atoms trapped in sub-micron optical tweezers. Utilizing this control for two atoms in two optical tweezers, we implement a massive-particle analog of the Hong-Ou-Mandel interferometer where atom tunneling plays the role of the photon beamsplitter. The interferometer is used to probe the effect of atomic indistinguishability on the two-atom dynamics for a variety of initial conditions. These experiments demonstrate the viability of the optical tweezer platform for bottom-up generation of low-entropy quantum systems and pave the way toward the direct observation of quantum dynamics in more complex finite-sized systems.

  17. The extended AT-hook is a novel RNA binding motif

    PubMed Central

    Filarsky, Michael; Zillner, Karina; Araya, Ingrid; Villar-Garea, Ana; Merkl, Rainer; Längst, Gernot; Németh, Attila

    2015-01-01

    The AT-hook has been defined as a DNA binding peptide motif that contains a glycine-arginine-proline (G-R-P) tripeptide core flanked by basic amino acids. Recent reports documented variations in the sequence of AT-hooks and revealed RNA binding activity of some canonical AT-hooks, suggesting a higher structural and functional variability of this protein domain than previously anticipated. Here we describe the discovery and characterization of the extended AT-hook peptide motif (eAT-hook), in which basic amino acids appear symmetrical mainly at a distance of 12–15 amino acids from the G-R-P core. We identified 80 human and 60 mouse eAT-hook proteins and biochemically characterized the eAT-hooks of Tip5/BAZ2A, PTOV1 and GPBP1. Microscale thermophoresis and electrophoretic mobility shift assays reveal the nucleic acid binding features of this peptide motif, and show that eAT-hooks bind RNA with one order of magnitude higher affinity than DNA. In addition, cellular localization studies suggest a role for the N-terminal eAT-hook of PTOV1 in nucleocytoplasmic shuttling. In summary, our findings classify the eAT-hook as a novel nucleic acid binding motif, which potentially mediates various RNA-dependent cellular processes. PMID:26156556

  18. The effects of flagellar hook compliance on motility of monotrichous bacteria: A modeling study

    NASA Astrophysics Data System (ADS)

    Shum, H.; Gaffney, E. A.

    2012-06-01

    A crucial structure in the motility of flagellated bacteria is the hook, which connects the flagellum filament to the motor in the cell body. Early mathematical models of swimming bacteria assume that the helically shaped flagellum rotates rigidly about its axis, which coincides with the axis of the cell body. Motivated by evidence that the hook is much more flexible than the rest of the flagellum, we develop a new model that allows a naturally straight hook to bend. Hook dynamics are based on the Kirchhoff rod model, which is combined with a boundary element method for solving viscous interactions between the bacterium and the surrounding fluid. For swimming in unbounded fluid, we find good support for using a rigid model since the hook reaches an equilibrium configuration within several revolutions of the motor. However, for effective swimming, there are constraints on the hook stiffness relative to the scale set by the product of the motor torque with the hook length. When the hook is too flexible, its shape cannot be maintained and large deformations and stresses build up. When the hook is too rigid, the flagellum does not align with the cell body axis and the cell "wobbles" with little net forward motion. We also examine the attraction of swimmers to no-slip surfaces and find that the tendency to swim steadily close to a surface can be very sensitive to the combination of the hook rigidity and the precise shape of the cell and flagellum.

  19. The extended AT-hook is a novel RNA binding motif.

    PubMed

    Filarsky, Michael; Zillner, Karina; Araya, Ingrid; Villar-Garea, Ana; Merkl, Rainer; Längst, Gernot; Németh, Attila

    2015-01-01

    The AT-hook has been defined as a DNA binding peptide motif that contains a glycine-arginine-proline (G-R-P) tripeptide core flanked by basic amino acids. Recent reports documented variations in the sequence of AT-hooks and revealed RNA binding activity of some canonical AT-hooks, suggesting a higher structural and functional variability of this protein domain than previously anticipated. Here we describe the discovery and characterization of the extended AT-hook peptide motif (eAT-hook), in which basic amino acids appear symmetrical mainly at a distance of 12-15 amino acids from the G-R-P core. We identified 80 human and 60 mouse eAT-hook proteins and biochemically characterized the eAT-hooks of Tip5/BAZ2A, PTOV1 and GPBP1. Microscale thermophoresis and electrophoretic mobility shift assays reveal the nucleic acid binding features of this peptide motif, and show that eAT-hooks bind RNA with one order of magnitude higher affinity than DNA. In addition, cellular localization studies suggest a role for the N-terminal eAT-hook of PTOV1 in nucleocytoplasmic shuttling. In summary, our findings classify the eAT-hook as a novel nucleic acid binding motif, which potentially mediates various RNA-dependent cellular processes.

  20. RBCs under optical tweezers as cellular motors and rockers: microfluidic applications

    NASA Astrophysics Data System (ADS)

    Mohanty, Samarendra; Mohanty, Khyati; Gupta, Pradeep

    2006-08-01

    Recently, we have reported self-rotation of normal red blood cells (RBC), suspended in hypertonic buffer, and trapped in unpolarized laser tweezers. Here, we report use of such an optically driven RBC-motor for microfluidic applications such as pumping/centrifugation of fluids. Since the speed of rotation of the RBC-motor was found to vary with the power of the trapping beam, the flow rate could be controlled by controlling the laser power. In polarized optical tweezers, preferential alignment of trapped RBC was observed. The aligned RBC (simulating a disk) in isotonic buffer, could be rotated in a controlled manner for use as a microfluidic valve by rotation of the plane of polarization of the trapping beam. The thickness of the discotic RBC could be changed by changing the osmolarity of the solution and thus the alignment torque on the RBC due to the polarization of the trapping beam could be varied. Further, in polarized tweezers, the RBCs in hypertonic buffer showed rocking motion while being in rotation. Here, the RBC rotated over a finite angular range, stopped for some time at a particular angle, and then started rotating till it was back to the aligned position and this cycle was found repetitive. This can be attributed to the fact that though the RBCs were found to experience an alignment torque to align with plane of polarization of the tweezers due to its form birefringence, it was smaller in magnitude as compared to the rotational torque due to its structural asymmetry in hypertonic solution. Changes in the laser power caused a transition from/to rocking to/from motor behavior of the RBC in a linearly polarized tweezers. By changing the direction of polarization caused by rotation of an external half wave plate, the stopping angle of rocking could be changed. Further, RBCs suspended in intermediate hypertonic buffer and trapped with polarized tweezers showed fluttering about the vertical plane.

  1. Calibration of a dual-trap optical tweezers for single molecule force spectroscopy study

    NASA Astrophysics Data System (ADS)

    Wang, Guoqing; Hu, Chunguang; Gao, Xiaoqing; Su, Chenguang; Wang, Sirong; Lei, Hai; Hu, Xiaodong; Li, Hongbin; Hu, Xiaotang

    2015-10-01

    Optical tweezers has shown its significant advantages in applying pico-Newton force on micro beads and handling them with nanometer-level precision, and becomes a powerful tool for single-molecule biology. Many excellent researching results in use of the optical tweezers have been reported. Most of them focus on the single-trap optical tweezers experiments. However, when a single-trap optical tweezers is applied to biological molecule, there is often an obvious noise from the sample chamber holder to which one end of the sample molecule is tethered. In contrast, a dual-trap optical tweezers can intrinsically avoid this problem because both ends of the sample tethered to microspheres are manipulated with two separate optical traps. In order to force the molecule precisely, it is of importance to do calibrations for both traps. Many approaches have been studied to obtain the stiffness and sensitivity of the trap, but those are not quite suitable for making calibration during experiment. Here, we use a modified method of power spectrum density (PSD) for the calibrations of the stiffness and sensitivity of the traps, which combines a sinusoidal motion of the sample stage. The main strength of the method is that the beads used for the calibration also can be used in experiment later. In addition, the calibration can be performed during experiment. Finally, an experiment using a dsDNA molecule to test the system is presented. The results show that the calibration approach for the dual-trap optical tweezers is efficient and accurate.

  2. On the reliability of hook echoes as tornado indicators

    NASA Technical Reports Server (NTRS)

    Forbes, G. S.

    1981-01-01

    A study of radar echoes associated with the tornadoes of the 3 April 1974 outbreak was performed to evaluate the usefulness of echo shape as an indicator of tornadic thunderstorms. The hook shape was usually successful in characterizing an echo as tornadic, with a false alarm rate of 16%. Because hook echoes were relatively rare, however, a less restrictive shape called distinctive was more successful at detecting tornadic thunderstorms, identifying 65% of the tornadic echoes. An echo had a distinctive shape if it possessed a marked appendage on its right rear flank or was in the shape of a spiral, comma or line echo wave pattern (LEWP). Characteristics of the distinctive echo are given.

  3. A New Surgical Approach for the Treatment of Conjunctivochalasis: Reduction of the Conjunctival Fold with Bipolar Electrocautery Forceps

    PubMed Central

    Arenas, Eduardo; Muñoz, Diana

    2016-01-01

    Aim. To report a new surgical technique for the treatment of conjunctivochalasis. Methods. A new surgical technique in which specially designed bipolar electrocautery forceps facilitate the complete reduction of the conjunctival folds without creating lesions near the corneoscleral limbus was designed. A retrospective revision of the medical records of patients treated with this technique between the years 2011 and 2013 was made, and eighteen eyes of sixteen patients with conjunctivochalasis treated with this new technique were included. Results. All the eyes treated showed a significant improvement with no evidence of scar lesions after a mean follow-up time of 10 months. Conclusions. The surgical technique presented here could be a good alternative for the management of conjunctivochalasis. PMID:27200408

  4. Studying Hooke's Law by Using a Pogo Stick

    NASA Astrophysics Data System (ADS)

    Silva, Nicolás

    2011-05-01

    Perhaps the pogo stick was little Robert Hooke's favorite childhood toy, consisting of a stiff spring inserted in a tube fixed at the upper end and connected to a moveable rod at the other. Hand grips and a foot rest are connected to the tube. The idea is to jump on it taking advantage of the force provided by the spring when it is compressed. Figure 1 shows a schematic of a pogo stick.

  5. Studying Hooke's Law by Using a Pogo Stick

    ERIC Educational Resources Information Center

    Silva, Nicolas

    2011-01-01

    Perhaps the pogo stick was little Robert Hooke's favorite childhood toy, consisting of a stiff spring inserted in a tube fixed at the upper end and connected to a moveable rod at the other. Hand grips and a foot rest are connected to the tube. The idea is to jump on it taking advantage of the force provided by the spring when it is compressed.…

  6. Manipulating multiparticles simultaneously with tapered-tip single fiber optical tweezers

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Wu, Zhongfu; Liu, Zhihai; Yang, Jun; Yuan, Libo

    2008-12-01

    We present a single-core tapered-tip single fiber optical tweezers, which can trap multi-particle simultaneously. In order to test and verify its new function, finite difference time domain (FDTD) method is used to calculate and simulate. The relationship between the trapping force and the particle-parameters, such as the size, refractive index and others of particle are studied. By experimental validation, the tapered-tip single optic fiber tweezers can trap Particle 2nd after the Particle 1st trapped firmly, but can not trap Particle 3rd, which just verifies the theoretical simulation results to be right.

  7. On-site manipulation of single whole-genome DNA molecules using optical tweezers

    NASA Astrophysics Data System (ADS)

    Oana, Hidehiro; Kubo, Koji; Yoshikawa, Kenichi; Atomi, Haruyuki; Imanaka, Tadayuki

    2004-11-01

    In this letter, we describe a noninvasive methodology for manipulating single Mb-size whole-genome DNA molecules. Cells were subjected to osmotic shock and the genome DNA released from the burst cells was transferred to a region of higher salt concentration using optical tweezers. The transferred genome DNA exhibits a conformational transition from a compact state into an elongated state, accompanied by the change in its environment. The applicability of optical tweezers to the on-site manipulation of giant genome DNA is suggested, i.e., lab-on-a-plate.

  8. Mechanical and electrical properties of red blood cells using optical tweezers

    NASA Astrophysics Data System (ADS)

    Fontes, A.; Barjas Castro, M. L.; Brandão, M. M.; Fernandes, H. P.; Thomaz, A. A.; Huruta, R. R.; Pozzo, L. Y.; Barbosa, L. C.; Costa, F. F.; Saad, S. T. O.; Cesar, C. L.

    2011-04-01

    Optical tweezers are a very sensitive tool, based on photon momentum transfer, for individual, cell by cell, manipulation and measurements, which can be applied to obtain important properties of erythrocytes for clinical and research purposes. Mechanical and electrical properties of erythrocytes are critical parameters for stored cells in transfusion centers, immunohematological tests performed in transfusional routines and in blood diseases. In this work, we showed methods, based on optical tweezers, to study red blood cells and applied them to measure apparent overall elasticity, apparent membrane viscosity, zeta potential, thickness of the double layer of electrical charges and adhesion in red blood cells.

  9. Near-field enhanced optical tweezers utilizing femtosecond-laser nanostructured substrates

    SciTech Connect

    Kotsifaki, D. G. Kandyla, M.; Lagoudakis, P. G.

    2015-11-23

    We present experimental evidence of plasmonic-enhanced optical tweezers, of polystyrene beads in deionized water in the vicinity of metal-coated nanostructures. The optical tweezers operate with a continuous wave near-infrared laser. We employ a Cu/Au bilayer that significantly improves dissipation of heat generated by the trapping laser beam and avoid de-trapping from heat convection currents. We investigate the improvement of the optical trapping force and the effective trapping quality factor, and observe an exponential distance dependence of the trapping force from the nanostructures, indicative of evanescent plasmonic enhancement.

  10. Raman tweezers on bacteria: following the mechanisms of bacteriostatic versus bactericidal action

    NASA Astrophysics Data System (ADS)

    Bernatova, Silvie; Samek, Ota; Pilat, Zdenek; Sery, Mojmir; Jezek, Jan; Jakl, Petr; Siler, Martin; Krzyzanek, Vladislav; Zemanek, Pavel; Hola, Veronika; Dvorackova, Milada; Ruzicka, Filip

    2014-05-01

    Raman tweezers represents a unique method for identification of different microorganisms on the basis of Raman scattering. Raman tweezers allows us to fix and sterile manipulate with the trapped object and in the same time check the growth, viability, response to the external environment etc. by Raman signal evaluating. The investigations presented here include distinction of bacteria in general (staphylococcal cells), identification of bacteria strains (biofilm-positive and biofilm-negative) by using principal component analysis (PCA) and monitoring the influence of antibiotics.

  11. Shape deformations of giant unilamellar vesicles with a laser tweezer array

    NASA Astrophysics Data System (ADS)

    Losert, Wolfgang; Poole, Cory; Bradford, Peter; English, Doug

    2004-10-01

    Vesicles are phospholipid bilayers that form a surface enclosing a volume of water or solution. They are of importance as model systems to study cells, as well as having practical applications such as containers for performing nanochemistry and facilitating drug delivery. Their properties have been studied for decades. Using a holographic laser tweezer array (LTA), which converts a single laser beam into many laser tweezer points, we stretch the vesicles in controlled ways from several points at once, measuring each force applied. Here, we present data on shape deformations of simple, spherical vesicles and on membrane fracture.

  12. Two-particle quantum interference in tunnel-coupled optical tweezers.

    PubMed

    Kaufman, A M; Lester, B J; Reynolds, C M; Wall, M L; Foss-Feig, M; Hazzard, K R A; Rey, A M; Regal, C A

    2014-07-18

    The quantum statistics of atoms is typically observed in the behavior of an ensemble via macroscopic observables. However, quantum statistics modifies the behavior of even two particles. Here, we demonstrate near-complete control over all the internal and external degrees of freedom of two laser-cooled (87)Rb atoms trapped in two optical tweezers. This controllability allows us to observe signatures of indistinguishability via two-particle interference. Our work establishes laser-cooled atoms in optical tweezers as a promising route to bottom-up engineering of scalable, low-entropy quantum systems.

  13. Dynamics of multiple trapping by a single-beam laser tweezer.

    PubMed

    Kaputa, Daniel S; Kuzmin, Andrey N; Kachynski, Aliaksandr V; Cartwright, Alexander N; Prasad, Paras N

    2005-07-01

    A multiple-trap single-beam scanning laser tweezer system was developed and characterized. Different stationary and mobile multiple-trap modes were generated for polystyrene beads in a water environment. Trapping efficiency and stability were investigated for several dynamic parameters such as transition time between the sites, waiting time on a single site, number of trapping sites, and IR laser power. Optimal parameters for efficient generation of complex arrays and matrices were determined. We demonstrate an example of a single laser beam multiple-trap application by measuring the trap's stiffness in water for our laser tweezer setup.

  14. Substrate-dependent cell elasticity measured by optical tweezers indentation

    NASA Astrophysics Data System (ADS)

    Yousafzai, Muhammad S.; Ndoye, Fatou; Coceano, Giovanna; Niemela, Joseph; Bonin, Serena; Scoles, Giacinto; Cojoc, Dan

    2016-01-01

    In the last decade, cell elasticity has been widely investigated as a potential label free indicator for cellular alteration in different diseases, cancer included. Cell elasticity can be locally measured by pulling membrane tethers, stretching or indenting the cell using optical tweezers. In this paper, we propose a simple approach to perform cell indentation at pN forces by axially moving the cell against a trapped microbead. The elastic modulus is calculated using the Hertz-model. Besides the axial component, the setup also allows us to examine the lateral cell-bead interaction. This technique has been applied to measure the local elasticity of HBL-100 cells, an immortalized human cell line, originally derived from the milk of a woman with no evidence of breast cancer lesions. In addition, we have studied the influence of substrate stiffness on cell elasticity by performing experiments on cells cultured on two substrates, bare and collagen-coated, having different stiffness. The mean value of the cell elastic modulus measured during indentation was 26±9 Pa for the bare substrate, while for the collagen-coated substrate it diminished to 19±7 Pa. The same trend was obtained for the elastic modulus measured during the retraction of the cell: 23±10 Pa and 13±7 Pa, respectively. These results show the cells adapt their stiffness to that of the substrate and demonstrate the potential of this setup for low-force probing of modifications to cell mechanics induced by the surrounding environment (e.g. extracellular matrix or other cells).

  15. Mechanical properties of stored red blood cells using optical tweezers

    NASA Astrophysics Data System (ADS)

    Fontes, Adriana; Alexandre de Thomaz, Andre; de Ysasa Pozzo, Liliana; de Lourdes Barjas-Castro, Maria; Brandao, Marcelo M.; Saad, Sara T. O.; Barbosa, Luiz Carlos; Cesar, Carlos Lenz

    2005-08-01

    We have developed a method for measuring the red blood cell (RBC) membrane overall elasticity μ by measuring the deformation of the cells when dragged at a constant velocity through a plasma fluid by an optical tweezers. The deformability of erythrocytes is a critical determinant of blood flow in the microcirculation. We tested our method and hydrodynamic models, which included the presence of two walls, by measuring the RBC deformation as a function of drag velocity and of the distance to the walls. The capability and sensitivity of this method can be evaluated by its application to a variety of studies, such as, the measurement of RBC elasticity of sickle cell anemia patients comparing homozygous (HbSS), including patients taking hydroxyrea (HU) and heterozygous (HbAS) with normal donors and the RBC elasticity measurement of gamma irradiated stored blood for transfusion to immunosupressed patients as a function of time and dose. These studies show that the technique has the sensitivity to discriminate heterozygous and homozygous sickle cell anemia patients from normal donors and even follow the course of HU treatment of Homozygous patients. The gamma irradiation studies show that there is no significant change in RBC elasticity over time for up to 14 days of storage, regardless of whether the unit was irradiated or not, but there was a huge change in the measured elasticity for the RBC units stored for more than 21 days after irradiation. These finds are important for the assessment of stored irradiated RBC viability for transfusion purposes because the present protocol consider 28 storage days after irradiation as the limit for the RBC usage.

  16. Dynamic properties of bacterial pili measured by optical tweezers

    NASA Astrophysics Data System (ADS)

    Fallman, Erik G.; Andersson, Magnus J.; Schedin, Staffan S.; Jass, Jana; Uhlin, Bernt Eric; Axner, Ove

    2004-10-01

    The ability of uropathogenic Escherichia coli (UPEC) to cause urinary tract infections is dependent on their ability to colonize the uroepithelium. Infecting bacteria ascend the urethra to the bladder and then kidneys by attaching to the uroepithelial cells via the differential expression of adhesins. P pili are associated with pyelonephritis, the more severe infection of the kidneys. In order to find means to treat pyelonephritis, it is therefore of interest to investigate the properties P pili. The mechanical behavior of individual P pili of uropathogenic Escherichia coli has recently been investigated using optical tweezers. P pili, whose main part constitutes the PapA rod, composed of ~1000 PapA subunits in a helical arrangement, are distributed over the bacterial surface and mediate adhesion to host cells. We have earlier studied P pili regarding its stretching/elongation properties where we have found and characterized three different elongation regions, of which one constitute an unfolding of the quaternary (helical) structure of the PapA rod. It was shown that this unfolding takes place at an elongation independent force of 27 +/- 2 pN. We have also recently performed studies on its folding properties and shown that the unfolding/folding of the PapA rod is completely reversible. Here we present a study of the dynamical properties of the PapA rod. We show, among other things, that the unfolding force increases and that the folding force decreases with the speed of unfolding and folding respectively. Moreover, the PapA rod can be folded-unfolded a significant number of times without loosing its characteristics, a phenomenon that is believed to be important for the bacterium to keep close contact to the host tissue and consequently helps the bacterium to colonize the host tissue.

  17. Fracture of the hook of the hamate in athletes.

    PubMed

    Stark, H H; Jobe, F W; Boyes, J H; Ashworth, C R

    1977-07-01

    During an eight-year period, four tennis players, seven golfers, and nine baseball players were seen with a fracture of the hook of the hamate. Eighteen of these twenty patients were disabled by pain and after the fracture fragment was removed, all eighteen were relieved so that they returned to their athletic pursuits. Two patients were asymptomatic, their old fracture being discovered accidentally when they were treated for other injuries. Nineteen of the twenty patients had been examined before coming under our care, but the correct diagnosis had been made in only two. Conservative treatment, including rest, physical therapy, and injections of steroids into the wrist and hand, had not been beneficial. From the history and findings, we believe that these fractures were caused by a direct blow against the hook of the hamate caused by the handle of the tennis racket, golf club, or bat during a swing, and not by indirect force produced by the ligaments and muscles attached to the hook. The fracture was demonstrated in all twenty patients by a roentgenogram (profile view) of the carpal tunnel. PMID:873952

  18. Fracture of the hook of the hamate in athletes.

    PubMed

    Stark, H H; Jobe, F W; Boyes, J H; Ashworth, C R

    1977-07-01

    During an eight-year period, four tennis players, seven golfers, and nine baseball players were seen with a fracture of the hook of the hamate. Eighteen of these twenty patients were disabled by pain and after the fracture fragment was removed, all eighteen were relieved so that they returned to their athletic pursuits. Two patients were asymptomatic, their old fracture being discovered accidentally when they were treated for other injuries. Nineteen of the twenty patients had been examined before coming under our care, but the correct diagnosis had been made in only two. Conservative treatment, including rest, physical therapy, and injections of steroids into the wrist and hand, had not been beneficial. From the history and findings, we believe that these fractures were caused by a direct blow against the hook of the hamate caused by the handle of the tennis racket, golf club, or bat during a swing, and not by indirect force produced by the ligaments and muscles attached to the hook. The fracture was demonstrated in all twenty patients by a roentgenogram (profile view) of the carpal tunnel.

  19. Growth in solution of hooked Ni-Fe fibers by oriented rotation and attachment approaches

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Liu, Fang; Zhang, Wei-ze

    2016-04-01

    Inspired by the curved branches of fractal trees, hooked Ni-Fe fibers were grown in situ in Ni-Fe composite coatings on a spheroidal graphite cast iron substrate. These hooked Ni-Fe fibers exhibited inclination angles of about 39°, which was in accordance with the theoretical prediction of 37°. Ni-Fe nanostructures self-assembled to form dendrites and evolved into hooked fibers by an oriented attachment reaction. The orientation rotation of Ni-Fe nanostructures played an important role in the growth of curved hooked Ni-Fe fibers. During sliding wear tests, the volume loss of the spheroidal graphite cast iron substrate was 2.2 times as large as that of the Ni-Fe coating reinforced by hooked fibers. The good load-transferring ability of hooked Ni-Fe fibers led to an improvement in their wear properties during wear tests.

  20. Percutaneous Radiofrequency Ablation of Lung Tumors: Difficulty Withdrawing the Hooks Resulting in a Split Needle

    SciTech Connect

    Steinke, Karin King, Julie; Glenn, Derek; Morris, David L.

    2003-11-15

    We describe a most unusual problem of a split needle following a lung radiofrequency ablation (RFA) procedure. We encountered the problem when retracting the electrode hooks into the shaft at completion of the ablation. We describe the process we adopted to overcome this problem. Charring of the ablated tissue can cause the tissue to become caught in the space between the hooks and the shaft or stick to the hooks. This can prevent withdrawal of the hooks into the shaft and is therefore an important complication of which practitioners need to be aware.

  1. RBC aggregation dynamics in autologous plasma and serum studied with double-channel optical tweezers

    NASA Astrophysics Data System (ADS)

    Lee, Kisung; Danilina, Anna; Potkin, Anton; Kinnunen, Matti; Priezzhev, Alexander; Meglinski, Igor

    2016-04-01

    Red blood cells aggregating and disaggregating forces were measured in the autologous plasma and serum using the double-channeled optical tweezers. A significant, three-fold decrease of the both forces was observed in the serum compared to the plasma. The results of this study help to better assess the RBC aggregation mechanism.

  2. Research Advances: Nanoscale Molecular Tweezers; Cinnamon as Pesticide?; Recently Identified Dietary Sources of Antioxidants

    NASA Astrophysics Data System (ADS)

    King, Angela G.

    2004-12-01

    This Report from Other Journals surveys articles of interest to chemists that have been recently published in other science journals. Topics surveyed include reports that receptors have been designed to act as molecular tweezers; cinnamon has potential in the fight against mosquitoes; and high levels of antioxidants are found in some surprising foods. See Featured Molecules .

  3. Actin and myosin regulate cytoplasm stiffness in plant cells: a study using optical tweezers.

    PubMed

    van der Honing, Hannie S; de Ruijter, Norbert C A; Emons, Anne Mie C; Ketelaar, Tijs

    2010-01-01

    Here, we produced cytoplasmic protrusions with optical tweezers in mature BY-2 suspension cultured cells to study the parameters involved in the movement of actin filaments during changes in cytoplasmic organization and to determine whether stiffness is an actin-related property of plant cytoplasm. Optical tweezers were used to create cytoplasmic protrusions resembling cytoplasmic strands. Simultaneously, the behavior of the actin cytoskeleton was imaged. After actin filament depolymerization, less force was needed to create cytoplasmic protrusions. During treatment with the myosin ATPase inhibitor 2,3-butanedione monoxime, more trapping force was needed to create and maintain cytoplasmic protrusions. Thus, the presence of actin filaments and, even more so, the deactivation of a 2,3-butanedione monoxime-sensitive factor, probably myosin, stiffens the cytoplasm. During 2,3-butanedione monoxime treatment, none of the tweezer-formed protrusions contained filamentous actin, showing that a 2,3-butanedione monoxime-sensitive factor, probably myosin, is responsible for the movement of actin filaments, and implying that myosin serves as a static cross-linker of actin filaments when its motor function is inhibited. The presence of actin filaments does not delay the collapse of cytoplasmic protrusions after tweezer release. Myosin-based reorganization of the existing actin cytoskeleton could be the basis for new cytoplasmic strand formation, and thus the production of an organized cytoarchitecture.

  4. Molecular tweezers modulate 14-3-3 protein-protein interactions.

    PubMed

    Bier, David; Rose, Rolf; Bravo-Rodriguez, Kenny; Bartel, Maria; Ramirez-Anguita, Juan Manuel; Dutt, Som; Wilch, Constanze; Klärner, Frank-Gerrit; Sanchez-Garcia, Elsa; Schrader, Thomas; Ottmann, Christian

    2013-03-01

    Supramolecular chemistry has recently emerged as a promising way to modulate protein functions, but devising molecules that will interact with a protein in the desired manner is difficult as many competing interactions exist in a biological environment (with solvents, salts or different sites for the target biomolecule). We now show that lysine-specific molecular tweezers bind to a 14-3-3 adapter protein and modulate its interaction with partner proteins. The tweezers inhibit binding between the 14-3-3 protein and two partner proteins--a phosphorylated (C-Raf) protein and an unphosphorylated one (ExoS)--in a concentration-dependent manner. Protein crystallography shows that this effect arises from the binding of the tweezers to a single surface-exposed lysine (Lys214) of the 14-3-3 protein in the proximity of its central channel, which normally binds the partner proteins. A combination of structural analysis and computer simulations provides rules for the tweezers' binding preferences, thus allowing us to predict their influence on this type of protein-protein interactions. PMID:23422566

  5. Red blood cell micromanipulation with elliptical laser beam profile optical tweezers in different osmolarity conditions

    NASA Astrophysics Data System (ADS)

    Spyratou, E.; Makropoulou, M.; Serafetinides, A. A.

    2011-07-01

    In this work optical tweezers with elliptical beam profiles have been developed in order to examine the effect of optical force on fresh red blood cells (RBC) in isotonic, hypertonic and hypotonic buffer solutions. Considering that the optical force depends essentially on the cell surface and the cytoplasmic refractive index, it is obvious that biochemical modifications associated with different states of the cell will influence its behaviour in the optical trap. Line optical tweezers were used to manipulate simultaneously more than one red blood cell. After we have been manipulated a RBC with an elliptical laser beam profile in an isotonic or hypertonic buffer, we noticed that it rotates by itself when gets trapped by optical tweezers and undergoes folding. Further shape deformations can be observed attributed to the competition between alignment and rotational torque which are transferred by laser light to the cell. In hypotonic buffer RBCs become spherical and do not rotate or fold since the resultant force due to rays emerging from diametrically opposite points of the cell leads to zero torque. Manipulation of fresh red blood cells in isotonic solution by line optical tweezers leads to folding and elongation of trapped RBCs. Membrane elasticity properties such as bending modulus can be estimated by measuring RBC's folding time in function with laser power.

  6. Hands-on with optical tweezers: a multitouch interface for holographic optical trapping.

    PubMed

    Grieve, J A; Ulcinas, A; Subramanian, S; Gibson, G M; Padgett, M J; Carberry, D M; Miles, M J

    2009-03-01

    We report the implementation of a multitouch console for control of a holographic optical tweezers system. This innovative interface enables the independent but simultaneous interactive control of numerous optical traps by multiple users, overcoming the limitations of traditional interfaces and placing the full power of holographic optical tweezing into the operators' hands.

  7. Adhesion of nanoparticles to polymer brushes studied with the ghost tweezers method.

    PubMed

    Cheng, Jianli; Vishnyakov, Aleksey; Neimark, Alexander V

    2015-01-21

    Mechanisms of interactions between nanoparticles (NPs) and polymer brushes (PBs) are explored using dissipative particle dynamics simulations and an original "ghost tweezers" method that emulates lab experiments performed with optical or magnetic tweezers. The ghost tweezers method is employed to calculate the free energy of adhesion. Ghost tweezers represents a virtual harmonic potential, which tethers NP with a spring to a given anchor point. The average spring force represents the effective force of NP-PB interaction as a function of the NP coordinate. The free energy landscape of NP-PB interactions is calculated as the mechanical work needed to transfer NP from the solvent bulk to a particular distance from the substrate surface. With this technique, we explore the adhesion of bare and ligand-functionalized spherical NPs to polyisoprene natural rubber brush in acetone-benzene binary solvent. We examine two basic mechanisms of NP-PB interactions, NP adhesion at PB exterior and NP immersion into PB, which are governed by interplay between entropic repulsive forces and enthalpic attractive forces caused by polymer adsorption at the NP surface and ligand adsorption at the substrate. The relative free energies of the equilibrium adhesion states and the potential barriers separating these states are calculated at varying grafting density, NP size, and solvent composition. PMID:25612723

  8. Development of high frequency focused transducers for single beam acoustic tweezers

    NASA Astrophysics Data System (ADS)

    Hsu, Hsiu-Sheng

    Contactless particle trapping and manipulation have found many potential applications in diverse fields, especially in biological and medical research. Among the various methods, optical tweezers is the most well-known and extensively investigated technique. However, there are some limitations for particle manipulation based on optical tweezers. Due to the conceptual similarity with the optical tweezers and recent advances in high frequency ultrasonic transducer, a single beam acoustic tweezer using high frequency (≥ 20 MHz) focused transducer has recently been considered, and its feasibility was theoretically and experimentally investigated. This dissertation mainly describes the development of high frequency focused ultrasonic transducers for single beam acoustic tweezers applications. Three different types of transducers were fabricated. First, a 60 MHz miniature focused transducer (<1 mm) was made using press-focusing technique. The single beam acoustic trapping experiment was performed to manipulate 15 microm polystyrene microspheres using this transducer. In vitro ultrasonic biomicroscopy imaging on the rabbit eye was also obtained with this device. Second approach is to build a 200 MHz self-focused ZnO transducer by sputtering ZnO film on a curved surface of the aluminum backing material. An individual 10 microm microsphere was effectively manipulated in two dimensions by this type of transducer. Another ultrahigh frequency focused transducer based on silicon lens design has also been developed, where a 330 MHz silicon lens transducer was fabricated and evaluated. Microparticle trapping experiment was carried out to demonstrate that silicon lens transducer can manipulate a single microsphere as small as 5 microm. The realization of single beam acoustic tweezers using high frequency focused transducers can offer wide range of applications in biomedical and chemical sciences including intercellular kinetics studies and cell stimulation. Additionally, we

  9. Oscillating optical tweezer-based 3-D confocal microrheometer for investigating the intracellular micromechanics and structures

    NASA Astrophysics Data System (ADS)

    Ou-Yang, H. D.; Rickter, E. A.; Pu, C.; Latinovic, O.; Kumar, A.; Mengistu, M.; Lowe-Krentz, L.; Chien, S.

    2005-08-01

    Mechanical properties of living biological cells are important for cells to maintain their shapes, support mechanical stresses and move through tissue matrix. The use of optical tweezers to measure micromechanical properties of cells has recently made significant progresses. This paper presents a new approach, the oscillating optical tweezer cytorheometer (OOTC), which takes advantage of the coherent detection of harmonically modulated particle motions by a lock-in amplifier to increase sensitivity, temporal resolution and simplicity. We demonstrate that OOTC can measure the dynamic mechanical modulus in the frequency range of 0.1-6,000 Hz at a rate as fast as 1 data point per second with submicron spatial resolution. More importantly, OOTC is capable of distinguishing the intrinsic non-random temporal variations from random fluctuations due to Brownian motion; this capability, not achievable by conventional approaches, is particular useful because living systems are highly dynamic and often exhibit non-thermal, rhythmic behavior in a broad time scale from a fraction of a second to hours or days. Although OOTC is effective in measuring the intracellular micromechanical properties, unless we can visualize the cytoskeleton in situ, the mechanical property data would only be as informative as that of "Blind men and the Elephant". To solve this problem, we take two steps, the first, to use of fluorescent imaging to identify the granular structures trapped by optical tweezers, and second, to integrate OOTC with 3-D confocal microscopy so we can take simultaneous, in situ measurements of the micromechanics and intracellular structure in living cells. In this paper, we discuss examples of applying the oscillating tweezer-based cytorheometer for investigating cultured bovine endothelial cells, the identification of caveolae as some of the granular structures in the cell as well as our approach to integrate optical tweezers with a spinning disk confocal microscope.

  10. Fullerene recognition with molecular tweezers made up of efficient buckybowls: a dispersion-corrected DFT study.

    PubMed

    Josa, Daniela; Rodríguez-Otero, Jesús; Cabaleiro-Lago, Enrique M

    2015-05-28

    In 2007, Sygula and co-workers introduced a novel type of molecular tweezers with buckybowl pincers that have attracted the substantial interest of researchers due to their ideal architecture for recognizing fullerenes by concave-convex π∙∙∙π interactions (A. Sygula et al., J. Am. Chem. Soc., 2007, 129, 3842). Although in recent years some modifications have been performed on these original molecular tweezers to improve their ability for catching fullerenes, very few improvements were achieved to date. For that reason, in the present work a series of molecular tweezers have been devised and their supramolecular complexes with C60 studied at the B97-D2/TZVP//SCC-DFTB-D and B97-D2/TZVP levels. Three different strategies have been tested: (1) changing the corannulene pincers to other buckybowls, (2) replacing the tetrabenzocyclooctatetraene tether by a buckybowl, and (3) adding methyl groups on the molecular tweezers. According to the results, all the three approaches are effective, in such a way that a combination of the three strategies results in buckycatchers with complexation energies (with C60) up to 2.6 times larger than that of the original buckycatcher, reaching almost -100 kcal mol(-1). The B97-D2/TZVP//SCC-DFTB-D approach can be a rapid screening tool for testing new molecular tweezers. However, since this approach does not reproduce correctly the deformation energy and this energy represents an important contribution to the total complexation energy of complexes, subsequent higher-level re-optimization is compulsory to achieve reliable results (the full B97-D2/TZVP level is used herein). This re-optimization could be superfluous when quite rigid buckycatchers are studied.

  11. Robert Hooke: early respiratory physiologist, polymath, and mechanical genius.

    PubMed

    West, John B

    2014-07-01

    Robert Hooke (1635-1703) was a polymath who made important contributions to respiratory physiology and many other scientific areas. With Robert Boyle, he constructed the first air pump that allowed measurements on small animals at a reduced atmospheric pressure, and this started the discipline of high-altitude physiology. He also built the first human low-pressure chamber and described his experiences when the pressure was reduced to the equivalent of an altitude of ∼2,400 m. Using artificial ventilation in an animal preparation, he demonstrated that movement of the lung was not essential for life. His book Micrographia describing early studies with a microscope remains a classic. He produced an exquisite drawing of the head of a fly, showing the elaborate compound eye. There is also a detailed drawing of a flea, and Hooke noted how the long, many-jointed legs enable the insect to jump so high. For 40 years, he was the curator of experiments for the newly founded Royal Society in London and contributed greatly to its intellectual ferment. His mechanical inventions covered an enormous range, including the watch spring, the wheel barometer, and the universal joint. Following the Great Fire of London in 1666, he designed many of the new buildings in conjunction with Christopher Wren. Unfortunately, Hooke had an abrasive personality, which was partly responsible for a lack of recognition of his work for many years. However, during the last 25 years, there has been renewed interest, and he is now recognized as a brilliant scientist and innovator. PMID:24985326

  12. Robert Hooke: early respiratory physiologist, polymath, and mechanical genius.

    PubMed

    West, John B

    2014-07-01

    Robert Hooke (1635-1703) was a polymath who made important contributions to respiratory physiology and many other scientific areas. With Robert Boyle, he constructed the first air pump that allowed measurements on small animals at a reduced atmospheric pressure, and this started the discipline of high-altitude physiology. He also built the first human low-pressure chamber and described his experiences when the pressure was reduced to the equivalent of an altitude of ∼2,400 m. Using artificial ventilation in an animal preparation, he demonstrated that movement of the lung was not essential for life. His book Micrographia describing early studies with a microscope remains a classic. He produced an exquisite drawing of the head of a fly, showing the elaborate compound eye. There is also a detailed drawing of a flea, and Hooke noted how the long, many-jointed legs enable the insect to jump so high. For 40 years, he was the curator of experiments for the newly founded Royal Society in London and contributed greatly to its intellectual ferment. His mechanical inventions covered an enormous range, including the watch spring, the wheel barometer, and the universal joint. Following the Great Fire of London in 1666, he designed many of the new buildings in conjunction with Christopher Wren. Unfortunately, Hooke had an abrasive personality, which was partly responsible for a lack of recognition of his work for many years. However, during the last 25 years, there has been renewed interest, and he is now recognized as a brilliant scientist and innovator.

  13. An experimental 'Life' for an experimental life: Richard Waller's biography of Robert Hooke (1705).

    PubMed

    Moxham, Noah

    2016-03-01

    Richard Waller's 'Life of Dr Robert Hooke', prefixed to his edition of Hooke's Posthumous Works (1705), is an important source for the life of one of the most eminent members of the early Royal Society. It also has the distinction of being one of the earliest biographies of a man of science to be published in English. I argue that it is in fact the first biography to embrace the subject's natural-philosophical work as the centre of his life, and I investigate Waller's reasons for adopting this strategy and his struggle with the problem of how to represent an early experimental philosopher in print. I suggest that Waller eschews the 'Christian philosopher' tradition of contemporary biography - partly because of the unusually diverse and fragmentary nature of Hooke's intellectual output - and draws instead upon the structure of the Royal Society's archive as a means of organizing and understanding Hooke's life. The most quoted phrase from Waller's biography is that Hooke became 'to a crime close and reserved' in later life; this essay argues that Waller's biographical sketch was fashioned in order to undo the effects of that reserve. In modelling his approach very closely on the structure of the society's records he was principally concerned with making Hooke's work and biography accessible, intelligible and useful to the fellowship in a context familiar to them, a context which had provided the institutional framework for most of Hooke's adult life. I argue that Waller's 'Life' was also intended to make the largest claims for Hooke's intellectual standing that the author dared in the context of the enmity between Hooke and Isaac Newton once the latter became president of the Royal Society. However, I also adduce fresh manuscript evidence that Waller actually compiled, but did not publish, a defence of Hooke's claim to have discovered the inverse square law of gravity, allowing us to glimpse a much more assertive biography of Hooke than the published version.

  14. An experimental 'Life' for an experimental life: Richard Waller's biography of Robert Hooke (1705).

    PubMed

    Moxham, Noah

    2016-03-01

    Richard Waller's 'Life of Dr Robert Hooke', prefixed to his edition of Hooke's Posthumous Works (1705), is an important source for the life of one of the most eminent members of the early Royal Society. It also has the distinction of being one of the earliest biographies of a man of science to be published in English. I argue that it is in fact the first biography to embrace the subject's natural-philosophical work as the centre of his life, and I investigate Waller's reasons for adopting this strategy and his struggle with the problem of how to represent an early experimental philosopher in print. I suggest that Waller eschews the 'Christian philosopher' tradition of contemporary biography - partly because of the unusually diverse and fragmentary nature of Hooke's intellectual output - and draws instead upon the structure of the Royal Society's archive as a means of organizing and understanding Hooke's life. The most quoted phrase from Waller's biography is that Hooke became 'to a crime close and reserved' in later life; this essay argues that Waller's biographical sketch was fashioned in order to undo the effects of that reserve. In modelling his approach very closely on the structure of the society's records he was principally concerned with making Hooke's work and biography accessible, intelligible and useful to the fellowship in a context familiar to them, a context which had provided the institutional framework for most of Hooke's adult life. I argue that Waller's 'Life' was also intended to make the largest claims for Hooke's intellectual standing that the author dared in the context of the enmity between Hooke and Isaac Newton once the latter became president of the Royal Society. However, I also adduce fresh manuscript evidence that Waller actually compiled, but did not publish, a defence of Hooke's claim to have discovered the inverse square law of gravity, allowing us to glimpse a much more assertive biography of Hooke than the published version. PMID

  15. The influence of hook type, angler experience, and fish size on injury rates and the duration of capture in an Alaskan catch-and-release rainbow trout fishery

    USGS Publications Warehouse

    Meka, J.M.

    2004-01-01

    Owing to concerns about the high incidence of past hooking injuries in Alagnak River rainbow trout Oncorhynchus mykiss, fish were captured with spin- and fly-fishing gear with barbed and barbless circle and "J" hooks to determine gear types contributing to injury. Landing and hook removal times were measured for a portion of fish captured, and the anatomical hooking location, hooking scar locations, bleeding intensity, angler experience, and fish size were recorded for all captured fish. Approximately 62% of fish captured experienced at least one new hooking injury, and 29% of fish had at least one past hooking injury. Small fish sustained higher new injury and bleeding rates, but large fish had higher past injury rates. Injury rates were higher for barbed J hooks, barbed J hooks took longer to remove, and fish caught by spin-fishing were injured more frequently than fish caught by fly-fishing. Fewer fly-fishing-caught fish were injured using circle hooks, and circle hooks tended to hook fish in only one location, generally in the jaw. Barbed J hooks were more efficient at landing fish, and J hooks were more efficient at landing fish than circle hooks. Novice anglers injured proportionally more fish than experienced anglers, primarily during hook removal. Landing time was positively correlated with fish size, and experienced anglers took longer to land fish than novices because they captured larger fish. These results suggest that a reduction in hooking injuries may be achieved by using circle hooks as an alternative to J hooks and barbless J hooks to reduce injury and handling time, yet catch efficiency for both methods would be reduced. Although fish captured with barbless J hooks and circle hooks had fewer injuries, it is important to note that each hook type also caused significant injury, and angler education is recommended to promote proper hook removal techniques.

  16. Neurotropic components from star anise (Illicium verum Hook. fil.)

    PubMed

    Nakamura, T; Okuyama, E; Yamazaki, M

    1996-10-01

    Three new neurotropic sesquiterpenoids, veranisatins A, B and C, were isolated from star anise (Illicium verum Hook. fil., Illiciaceae). Veranisatins showed convulsion and lethal toxicity in mice at a dose of 3 mg/kg (p.o.), and at lower doses they caused hypothermia. Veranisatin A and the related compound, anisatin, were tested for the other pharmacological activities such as locomotor activity and analgesic effect. Both compounds decreased the locomotion enhanced by methamphetamine at oral doses of 0.1 and 0.03 mg/kg, respectively, and demonstrated the analgesia on acetic acid-induced writhing and tail pressure pain at almost similar doses.

  17. Robert Hooke (1635-1703), in his own words.

    PubMed

    Breathnach, C S

    2003-11-01

    The diaries and other writings of Robert Hooke (1635-1703), as well as those of his contemporaries, are drawn upon to sketch his social and scientific life. An account is presented of his involvement with the Royal Society from its earliest days, and of his relations with notable scientists. In exploring the similarity between combustion and respiration, he established that air is composed of different gases, and that it is not motion of the lungs but a supply of fresh air that is necessary for life. PMID:14562156

  18. Ununited fracture of the hook of the hamate.

    PubMed

    Carter, P R; Eaton, R G; Littler, J W

    1977-07-01

    Of nine ununited fractures of the hook of the hamate, eight were treated by surgical excision of the fragment. All eight patients had relief from persistent pain and regained the preinjury level of function. This fracture occurs frequently in athletes and is often not diagnosed because it can be demonstrated only by special roentgenographic views. It is concluded that this fracture may be less rare than is commonly believed and that surgical excision permits early return of function, especially in athletes and laborers who must be able to grip hard objects strongly.

  19. Robert Hooke (1635-1703), in his own words.

    PubMed

    Breathnach, C S

    2003-11-01

    The diaries and other writings of Robert Hooke (1635-1703), as well as those of his contemporaries, are drawn upon to sketch his social and scientific life. An account is presented of his involvement with the Royal Society from its earliest days, and of his relations with notable scientists. In exploring the similarity between combustion and respiration, he established that air is composed of different gases, and that it is not motion of the lungs but a supply of fresh air that is necessary for life.

  20. Kohn's theorem and Newton-Hooke symmetry for Hill's equations

    NASA Astrophysics Data System (ADS)

    Zhang, P. M.; Gibbons, G. W.; Horvathy, P. A.

    2012-02-01

    Hill’s equations, which first arose in the study of the Earth-Moon-Sun system, admit the two-parameter centrally extended Newton-Hooke symmetry without rotations. This symmetry allows us to extend Kohn’s theorem about the center-of-mass decomposition. Particular light is shed on the problem using Duval’s “Bargmann” framework. The separation of the center-of-mass motion into that of a guiding center and relative motion is derived by a generalized chiral decomposition.

  1. Transcatheter coil closure of large patent ductus arteriosus with 0.052-inch Gianturco coils using myocardial biopsy forceps in a 70-year-old woman.

    PubMed

    Tokuda, Y; Matsumoto, M; Suda, K; Matsumura, M

    2001-06-01

    Small patent ductus arteriosus is generally closed in children using a transcatheter coil. This is done less often in older patients or those with large patent ductus arteriosus. We report successful antegrade transcatheter coil closure of patent ductus arteriosus in a 70-year-old woman. Into the patent ductus arteriosus, using flexible myocardial biopsy forceps, we placed two large 0.052-inch Gianturco coils, which were easily used as multipurpose vascular occlusion coils. The forceps and the coils were readily available and provided complete occlusion. Other delivery devices cannot deliver such large coils. Transcatheter coil closure thus appears to be safe and effective for closing large patent ductus arteriosus in the elderly. PMID:11481843

  2. Optimal dose of an anesthetic in epidural anesthesia and its effect on labor duration and administration of vacuum extractor and forceps.

    PubMed

    Cutura, N; Soldo, V; Milovanović, S R; Orescanin-Dusić, Z; Curković, A; Tomović, B; Janković-Raznatović, S

    2011-01-01

    This study examined the factors that influence the optimal dose of epidural anesthesia (EA), its effect on labor duration, and the frequency of vacuum and forceps administration at the end of delivery. The study group included 100 women who underwent vaginal delivery with EA with administration of 0.125% bupivacaine. A control group included 100 vaginally delivered women, without EA administration. In both groups delivery was stimulated by syntocinon. The level of labor pain influenced the optimal bolus dose of EA more than the body mass. However, the maintenance dose was influenced by both of these factors equally. Labor in the study group was somewhat shorter. In the group with EA the percentage of forceps and vacuum extractor application was twice that in the control group. There was no difference in average value of 5-minute Apgar scor in newborns.

  3. The supramolecular design of low-dimensional carbon nano-hybrids encoding a polyoxometalate-bis-pyrene tweezer.

    PubMed

    Modugno, Gloria; Syrgiannis, Zois; Bonasera, Aurelio; Carraro, Mauro; Giancane, Gabriele; Valli, Ludovico; Bonchio, Marcella; Prato, Maurizio

    2014-05-18

    A novel bis-pyrene tweezer anchored on a rigid polyoxometalate scaffold fosters a unique interplay of hydrophobic and electrostatic supramolecular interactions, to shape carbon nanostructures (CNSs)-based extended architectures.

  4. Study of the Line Optical Tweezers Characteristics Using a Novel Method and Establishing a Model for Cell Sorting

    NASA Astrophysics Data System (ADS)

    Lin, Ho-Chien; Hsu, Long

    2009-07-01

    Optical tweezers have become a powerful tool in cellular and molecule biology. Line optical tweezers enhanced its function in cell sorting. This study presents the line trap model, based on the ray-optics model, and demonstrates its accuracy for the line optical tweezers. The line optical tweezers system is established to produce the optical intensity distribution of a line pattern and to trap the micro-sized beads. The main parameter, optical intensity distribution, is used to calculate the trapping force distribution in the model. The two forces, trapping force and water dragging force, and the equation of motion is used to simulate the trajectory of micro-sized beads as they pass through the line pattern in flowing water in the microchannel. The trajectory is analyzed to determine the effective separation distance between the micro-sized beads or cells. The method will be applied in biological and medical detection.

  5. Building Prior Knowledge and Vocabulary in Science in the Intermediate Grades: Creating Hooks for Learning

    ERIC Educational Resources Information Center

    Rupley, William H.; Slough, Scott

    2010-01-01

    Vocabulary knowledge is a salient factor influencing success both in and out of school. The specialized vocabulary knowledge in science represents the concept-laden hooks on which learning is hung and enables students to build prior knowledge through the expansion of these conceptual hooks. We have identified four levels of learners--struggling…

  6. Collaborative Lesson Hook Design in Science Teacher Education: Advancing Professional Practice

    ERIC Educational Resources Information Center

    McCauley, Veronica; Davison, Kevin; Byrne, Corinna

    2015-01-01

    This article documents the process of collaboratively developing lesson hook e-resources for science teachers to establish a community of inquiry and to strengthen the pedagogy of science teaching. The authors aim to illustrate how the development and application of strategic hooks can bridge situational interest and personal interest so that…

  7. "Individualized Science" Field Test Findings and Recommendations, the Hooke Unit. Appendix A.

    ERIC Educational Resources Information Center

    Loue, William E., III

    This informal report contains the findings and recommendations resulting from the field test of the Hooke Unit of the "Individualized Science" program. Data were collected from three schools. Because of an unusual number of weaknesses ranging from formal inconsistencies to manipulative deficiencies, it was concluded that the Hooke Unit is somewhat…

  8. 77 FR 47435 - Prime Hook National Wildlife Refuge, Sussex County, DE; Draft Comprehensive Conservation Plan and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-08

    ... Fish and Wildlife Service Prime Hook National Wildlife Refuge, Sussex County, DE; Draft Comprehensive Conservation Plan and Environmental Impact Statement AGENCY: Fish and Wildlife Service, Interior. ACTION... conservation plan and draft environmental impact statement (draft CCP/EIS) for Prime Hook National...

  9. Interactions of light and ethylene in hypocotyl hook maintenance in Arabidopsis thaliana seedlings

    NASA Technical Reports Server (NTRS)

    Knee, E. M.; Hangarter, R. P.; Knee, M.

    2000-01-01

    Etiolated seedlings frequently display a hypocotyl or epicotyl hook which opens on exposure to light. Etylene has been shown to be necessary for maintenance of the hook in a number of plants in darkness. We investigated the interaction of ethylene and light in the regulation of hypocotyl hook opening in Arabidopsis thaliana. We found that hooks of Arabidopsis open in response to continuous red, far-red or blue light in the presence of up to 100 microliters l-1 ethylene. Thus a change in sensitivity to ethylene is likely to be responsible for hook opening in Arabidopsis, rather than a decrease in ethylene production in hook tissues. We used photomorphogenic mutants of Arabidopsis to demonstrate the involvement of both blue light and phytochrome photosensory systems in light-induced hook opening in the presence of ethylene. In addition we used ethylene mutants and inhibitors of ethylene action to investigate the role of ethylene in hook maintenance in seedlings grown in light and darkness.

  10. 77 FR 76510 - Prime Hook National Wildlife Refuge, Sussex County, DE; Final Comprehensive Conservation Plan and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-28

    ... Refuge (NWR). The CCP/EIS describes how we propose to manage the refuge for the next 15 years. DATES: We... developing a CCP is to provide refuge managers with a 15-year plan for achieving refuge purposes and goals... 15 years, in accordance with the Refuge Administration Act. Prime Hook NWR In 1963, Prime Hook...

  11. 76 FR 11961 - Safety Zone, Dredging Operations; Delaware River, Marcus Hook, PA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-04

    ... Hook, PA AGENCY: Coast Guard, DHS. ACTION: Temporary final rule. SUMMARY: The Coast Guard is... Hook, PA. This action is necessary to maintain the 42 ft. berth draft in this portion of the Delaware..., PA. DATES: This rule is effective from 8 a.m. on March 3, 2011 through 10 p.m. on March 14,...

  12. Interactions of light and ethylene in hypocotyl hook maintenance in Arabidopsis thaliana seedlings.

    PubMed

    Knee, E M; Hangarter, R P; Knee, M

    2000-02-01

    Etiolated seedlings frequently display a hypocotyl or epicotyl hook which opens on exposure to light. Etylene has been shown to be necessary for maintenance of the hook in a number of plants in darkness. We investigated the interaction of ethylene and light in the regulation of hypocotyl hook opening in Arabidopsis thaliana. We found that hooks of Arabidopsis open in response to continuous red, far-red or blue light in the presence of up to 100 microliters l-1 ethylene. Thus a change in sensitivity to ethylene is likely to be responsible for hook opening in Arabidopsis, rather than a decrease in ethylene production in hook tissues. We used photomorphogenic mutants of Arabidopsis to demonstrate the involvement of both blue light and phytochrome photosensory systems in light-induced hook opening in the presence of ethylene. In addition we used ethylene mutants and inhibitors of ethylene action to investigate the role of ethylene in hook maintenance in seedlings grown in light and darkness.

  13. Are College Students Replacing Dating and Romantic Relationships with Hooking Up?

    ERIC Educational Resources Information Center

    Siebenbruner, Jessica

    2013-01-01

    This study assessed female college students' ("N" = 197) participation in dating, romantic relationships, hooking up behaviors, and the intersection of these activities. Hooking up was prevalent among students ("n" = 78; 39.6%), but dating ("n" = 139; 70.6%) and romantic relationship ("n" = 147; 74.6%)…

  14. Hooking tomorrow's geoscientists: Authentic field inquiry as a compelling pedagogy

    NASA Astrophysics Data System (ADS)

    Wallstrom, Erica

    2015-04-01

    Engaging high school students in the geosciences without providing them with opportunities to directly explore, understand, and question the natural world is like trying to catch a fish without a hook. How can educators hope to inspire youth to pursue a career in the geosciences when the subject is first introduced to teenagers within the confines of a classroom? Regardless of the content and activities employed by the teacher, the synthetic classroom setting is unable to recreate the organic richness of an authentic outdoor learning environment. A new course offering at Rutland High School in Rutland, Vermont, USA shifts away from the traditional classroom based pedagogy by focusing the learning on exploring the temporal changes occurring in the region's geologic features. Numerous visits to local quarries, outcrops, overlooks, and universities guide the course curriculum. Students use their new understandings and personal observations to complete a culminating independent investigation. This alternate learning model is made possible through collaboration with local universities, businesses, and government agencies. If the geosciences is to remain competitive in the recruitment of exemplary STEM candidates, than the focus of high school earth science programs must be considered. This course offers one alternative to improve engagement and understanding of the geoscience standards. While not the only option, it offers one possibility for hooking students on geosciences.

  15. Capsular hook-assisted implantation of modified capsular tension ring.

    PubMed

    Khokhar, Sudarshan; Gupta, Shikha; Nayak, Bhagabat; Gogia, Varun

    2016-01-01

    A 16-year-old boy presented with decrease of vision over a period of 2 years. On examination, he was diagnosed to have microspherophakia with lenticular myopia with secondary glaucoma in both eyes. He was treated by lens aspiration and two-point capsular support using a modified capsular tension ring (M-CTR) and capsular tension segment (CTS) sutured to the sclera along with implantation of a foldable intraocular lens inside the bag. Lens aspiration was performed without artificial capsular hook support of the bag, as the lens was soft and vitreous was formed. However, M-CTR rotation into the bag was fraught with repeated adherence of the advancing end of the M-CTR into the loose bag causing simultaneous rotation of the bag with the rotation of the ring resulting in transient increase in bag subluxation. Capsular hooks provided appropriate countertraction to the unsupported bag, thus facilitating easy insertion and rotation of the ring into the bag. PMID:27048263

  16. THE BLUE HOOK POPULATIONS OF MASSIVE GLOBULAR CLUSTERS

    SciTech Connect

    Brown, Thomas M.; Smith, Ed; Sweigart, Allen V.; Lanz, Thierry; Landsman, Wayne B.; Hubeny, Ivan E-mail: edsmith@stsci.ed E-mail: lanz@astro.umd.ed E-mail: hubeny@aegis.as.arizona.ed

    2010-08-01

    We present new Hubble Space Telescope ultraviolet color-magnitude diagrams of five massive Galactic globular clusters: NGC 2419, NGC 6273, NGC 6715, NGC 6388, and NGC 6441. These observations were obtained to investigate the 'blue hook' (BH) phenomenon previously observed in UV images of the globular clusters {omega} Cen and NGC 2808. Blue hook stars are a class of hot (approximately 35,000 K) subluminous horizontal branch stars that occupy a region of the HR diagram that is unexplained by canonical stellar evolution theory. By coupling new stellar evolution models to appropriate non-LTE synthetic spectra, we investigate various theoretical explanations for these stars. Specifically, we compare our photometry to canonical models at standard cluster abundances, canonical models with enhanced helium (consistent with cluster self-enrichment at early times), and flash-mixed models formed via a late helium-core flash on the white dwarf cooling curve. We find that flash-mixed models are required to explain the faint luminosity of the BH stars, although neither the canonical models nor the flash-mixed models can explain the range of color observed in such stars, especially those in the most metal-rich clusters. Aside from the variation in the color range, no clear trends emerge in the morphology of the BH population with respect to metallicity.

  17. Closed Rupture of the Flexor Tendon Secondary to Sclerosis of the Hook of the Hamate: A Report of Two Cases.

    PubMed

    Yamazaki, Hiroshi; Uchiyama, Shigeharu; Hosaka, Masato; Kato, Hiroyuki

    2016-10-01

    Closed flexor tendon ruptures in the little finger can be caused by fracture or nonunion of the hook of the hamate, but no case of the disorder secondary to the sclerosis and thinning of the hamate hook has been reported. We report two rare cases with this complication due to rough surface of the hamate hook. Carpal tunnel view radiographs and computed tomography showed the sclerosis and thinning of the hook. PMID:27595962

  18. Motorized Force-Sensing Micro-Forceps with Tremor Cancelling and Controlled Micro-Vibrations for Easier Membrane Peeling*

    PubMed Central

    Gonenc, Berk; Gehlbach, Peter; Handa, James; Taylor, Russell H.; Iordachita, Iulian

    2014-01-01

    Retinal microsurgery requires the manipulation of extremely delicate tissues by various micron scale maneuvers and the application of very small forces. Among vitreoretinal procedures, membrane peeling is a standard procedure requiring the delamination of a very thin fibrous membrane on the retina surface. This study presents the development and evaluation of an integrated assistive system for membrane peeling. This system combines a force-sensing motorized micro-forceps with an active tremor-canceling handheld micromanipulator, Micron. The proposed system (1) attenuates hand-tremor when accurate positioning is needed, (2) provides auditory force feedback to keep the exerted forces at a safe level, and (3) pulsates the tool tip at high frequency to provide ease in delaminating membranes. Experiments on bandages and raw chicken eggs have revealed that controlled micro-vibrations provide significant ease in delaminating membranes. Applying similar amount of forces, much faster delamination was observed when the frequency of these vibrations were increased (up to 50 Hz). PMID:25544965

  19. Hanging foot switch for bipolar forceps: a device for surgeons operating in the standing position: technical note.

    PubMed

    Shimizu, Satoru; Kondo, Koji; Yamazaki, Tomoya; Koizumi, Hiroyuki; Miyazaki, Tomoko; Osawa, Shigeyuki; Sagiuchi, Takao; Nakayama, Kenji; Yamamoto, Isao; Fujii, Kiyotaka

    2013-01-01

    For surgeons operating in the standing position, the manipulation of foot switches involves shifting of the weight to the pivoting leg and the possible loss of contact between the switch and the foot. We solved this problem by changing the position of the switch that operates bipolar forceps. Our novel device is made of aluminum plates. The base plate features a foot strap and a height-adjustable overhang over the switch-operating foot. A commercially-available disc type foot switch is attached to the underside of the overhang in upside-down position, so the switch is operable with the toe. To turn on the switch, the toe is flexed dorsally to push the switch pedal, so the action is limited to the part distal to the metatarsophalangeal joints. Our switch was used in more than 100 consecutive microsurgeries performed by surgeons operating in the standing position. The switch manipulation required no shifting of the weight and was easier and quicker than manipulation of conventionally-placed switches. The surgeons were able to change the foot position freely with the modified switch, thereby avoiding loss of contact with the switch. The modified switch placement reduced physical fatigue in the lower extremities, annoyance related to the manipulation of conventionally-placed switches, and increased the comfort of surgeons operating in the standing position. PMID:23358172

  20. Robert Hooke, inventor of the vacuum pump and the first altitude chamber (1671).

    PubMed

    Harsch, Viktor

    2006-08-01

    Robert Hooke (1635-1703), an assistant researcher to Robert Boyle (1627-1691), invented the first functional British air pump. Applying it to scientific research, Hooke operated the world's first hypobaric chamber in 1671, using it for self-experimentation. He recorded the first physiological observations in an artificial altitude-equivalent environment up to 2400 m. Though Hooke's experiment showed some methodological insufficiencies, his imaginative experimental techniques were remarkable for their time and were indicative of the lively intellectual atmosphere of the Royal Society and the significant contributions of Hooke, who was a member. Two centuries passed before the French physiologist Paul Bert (1830-1886) conducted his famous laboratory-supported investigations of high altitude physiology. Bert played a decisive role in the discovery of the causes of decompression sickness; a contribution Hooke could not make due to the technical deficiencies of the 17th century.

  1. Prevalence of Ingested Fish Hooks in Freshwater Turtles from Five Rivers in the Southeastern United States

    PubMed Central

    Steen, David A.; Hopkins, Brittney C.; Van Dyke, James U.; Hopkins, William A.

    2014-01-01

    Freshwater turtles may ingest baited fish hooks because many are opportunistic scavengers. Although the ingestion of fish hooks is known to be a source of mortality in multiple vertebrate groups, the prevalence of hook ingestion by freshwater turtles has not been well studied. We trapped turtles from five rivers in the southeastern United States and used radiographs to examine over 600 individuals of four species. Depending on the species, sex, and age class, 0–33% of turtles contained ingested fish hooks. For some species, larger turtles were more likely to contain a fish hook than smaller individuals. Freshwater turtle demography suggests that even small increases in adult mortality may lead to population declines. If our study areas are representative of other aquatic systems that receive fishing pressure, this work likely identifies a potential conflict between a widespread, common recreational activity (i.e., fishing) and an imperiled taxonomic group. PMID:24621919

  2. Robert Hooke, inventor of the vacuum pump and the first altitude chamber (1671).

    PubMed

    Harsch, Viktor

    2006-08-01

    Robert Hooke (1635-1703), an assistant researcher to Robert Boyle (1627-1691), invented the first functional British air pump. Applying it to scientific research, Hooke operated the world's first hypobaric chamber in 1671, using it for self-experimentation. He recorded the first physiological observations in an artificial altitude-equivalent environment up to 2400 m. Though Hooke's experiment showed some methodological insufficiencies, his imaginative experimental techniques were remarkable for their time and were indicative of the lively intellectual atmosphere of the Royal Society and the significant contributions of Hooke, who was a member. Two centuries passed before the French physiologist Paul Bert (1830-1886) conducted his famous laboratory-supported investigations of high altitude physiology. Bert played a decisive role in the discovery of the causes of decompression sickness; a contribution Hooke could not make due to the technical deficiencies of the 17th century. PMID:16909884

  3. 49 CFR 393.134 - What are the rules for securing roll-on/roll-off or hook lift containers?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... or hook lift containers? 393.134 Section 393.134 Transportation Other Regulations Relating to... for securing roll-on/roll-off or hook lift containers? (a) Applicability. The rules in this section apply to the transportation of roll-on/roll-off or hook lift containers. (b) Securement of a...

  4. 49 CFR 393.134 - What are the rules for securing roll-on/roll-off or hook lift containers?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... or hook lift containers? 393.134 Section 393.134 Transportation Other Regulations Relating to... for securing roll-on/roll-off or hook lift containers? (a) Applicability. The rules in this section apply to the transportation of roll-on/roll-off or hook lift containers. (b) Securement of a...

  5. 49 CFR 393.134 - What are the rules for securing roll-on/roll-off or hook lift containers?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... or hook lift containers? 393.134 Section 393.134 Transportation Other Regulations Relating to... for securing roll-on/roll-off or hook lift containers? (a) Applicability. The rules in this section apply to the transportation of roll-on/roll-off or hook lift containers. (b) Securement of a...

  6. 49 CFR 393.134 - What are the rules for securing roll-on/roll-off or hook lift containers?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... or hook lift containers? 393.134 Section 393.134 Transportation Other Regulations Relating to... for securing roll-on/roll-off or hook lift containers? (a) Applicability. The rules in this section apply to the transportation of roll-on/roll-off or hook lift containers. (b) Securement of a...

  7. 49 CFR 393.134 - What are the rules for securing roll-on/roll-off or hook lift containers?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... or hook lift containers? 393.134 Section 393.134 Transportation Other Regulations Relating to... for securing roll-on/roll-off or hook lift containers? (a) Applicability. The rules in this section apply to the transportation of roll-on/roll-off or hook lift containers. (b) Securement of a...

  8. Neural Network for Image-to-Image Control of Optical Tweezers

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.; Anderson, Robert C.; Weiland, Kenneth E.; Wrbanek, Susan Y.

    2004-01-01

    A method is discussed for using neural networks to control optical tweezers. Neural-net outputs are combined with scaling and tiling to generate 480 by 480-pixel control patterns for a spatial light modulator (SLM). The SLM can be combined in various ways with a microscope to create movable tweezers traps with controllable profiles. The neural nets are intended to respond to scattered light from carbon and silicon carbide nanotube sensors. The nanotube sensors are to be held by the traps for manipulation and calibration. Scaling and tiling allow the 100 by 100-pixel maximum resolution of the neural-net software to be applied in stages to exploit the full 480 by 480-pixel resolution of the SLM. One of these stages is intended to create sensitive null detectors for detecting variations in the scattered light from the nanotube sensors.

  9. Probing the structural dynamics of proteins and nucleic acids with optical tweezers.

    PubMed

    Ritchie, Dustin B; Woodside, Michael T

    2015-10-01

    Conformational changes are an essential feature of most molecular processes in biology. Optical tweezers have emerged as a powerful tool for probing conformational dynamics at the single-molecule level because of their high resolution and sensitivity, opening new windows on phenomena ranging from folding and ligand binding to enzyme function, molecular machines, and protein aggregation. By measuring conformational changes induced in a molecule by forces applied by optical tweezers, new insight has been gained into the relationship between dynamics and function. We discuss recent advances from studies of how structure forms in proteins and RNA, including non-native structures, fluctuations in disordered proteins, and interactions with chaperones assisting native folding. We also review the development of assays probing the dynamics of complex protein-nucleic acid and protein-protein assemblies that reveal the dynamic interactions between biomolecular machines and their substrates.

  10. Membrane tether formation from voltage-clamped outer hair cells using optical tweezers

    NASA Astrophysics Data System (ADS)

    Qian, Feng; Ermilov, Sergey A.; Murdock, David R.; Brownell, William E.; Anvari, Bahman

    2004-06-01

    Outer hair cells contribute an active mechanical feedback to the vibrations of the cochlear structures resulting in the high sensitivity and frequency selectivity of normal hearing. We have designed and implemented a novel experimental setup that combines optical tweezers with patch-clamp apparatus to investigate the electromechanical properties of cellular plasma membranes. A micron-size bead trapped by the optical tweezers is brought in contact with the membrane of a voltage-clamped cell, and subsequently moved away to form a plasma membrane tether. Bead displacement during tether elongation is monitored by a quadrant photodetector to obtain time-resolved measurements of the tethering force. Salient information associated with the mechanical properties of the membrane tether can thus be obtained. Tethers can be pulled from the cell membrane at different holding potentials, and the tether force response can be measured while changing transmembrane potential. Experimental results from outer hair cells and human embryonic kidney cells are presented.

  11. An Improved Optical Tweezers Assay for Measuring the Force Generation of Single Kinesin Molecules

    PubMed Central

    Nicholas, Matthew P.; Rao, Lu; Gennerich, Arne

    2014-01-01

    Numerous microtubule-associated molecular motors, including several kinesins and cytoplasmic dynein, produce opposing forces that regulate spindle and chromosome positioning during mitosis. The motility and force generation of these motors are therefore critical to normal cell division, and dysfunction of these processes may contribute to human disease. Optical tweezers provide a powerful method for studying the nanometer motility and piconewton force generation of single motor proteins in vitro. Using kinesin-1 as a prototype, we present a set of step-by-step, optimized protocols for expressing a kinesin construct (K560-GFP) in Escherichia coli, purifying it, and studying its force generation in an optical tweezers microscope. We also provide detailed instructions on proper alignment and calibration of an optical trapping microscope. These methods provide a foundation for a variety of similar experiments. PMID:24633799

  12. Identification of individual biofilm-forming bacterial cells using Raman tweezers

    NASA Astrophysics Data System (ADS)

    Samek, Ota; Bernatová, Silvie; Ježek, Jan; Šiler, Martin; Šerý, Mojmir; Krzyžánek, Vladislav; Hrubanová, Kamila; Zemánek, Pavel; Holá, Veronika; Růžička, Filip

    2015-05-01

    A method for in vitro identification of individual bacterial cells is presented. The method is based on a combination of optical tweezers for spatial trapping of individual bacterial cells and Raman microspectroscopy for acquisition of spectral "Raman fingerprints" obtained from the trapped cell. Here, Raman spectra were taken from the biofilm-forming cells without the influence of an extracellular matrix and were compared with biofilm-negative cells. Results of principal component analyses of Raman spectra enabled us to distinguish between the two strains of Staphylococcus epidermidis. Thus, we propose that Raman tweezers can become the technique of choice for a clearer understanding of the processes involved in bacterial biofilms which constitute a highly privileged way of life for bacteria, protected from the external environment.

  13. Raman sorting and identification of single living micro-organisms with optical tweezers

    NASA Astrophysics Data System (ADS)

    Xie, Changan; Chen, De; Li, Yong-Qing

    2005-07-01

    We report on a novel technique for sorting and identification of single biological cells and food-borne bacteria based on laser tweezers and Raman spectroscopy (LTRS). With this technique, biological cells of different physiological states in a sample chamber were identified by their Raman spectral signatures and then they were selectively manipulated into a clean collection chamber with optical tweezers through a microchannel. As an example, we sorted the live and dead yeast cells into the collection chamber and validated this with a standard staining technique. We also demonstrated that bacteria existing in spoiled foods could be discriminated from a variety of food particles based on their characteristic Raman spectra and then isolated with laser manipulation. This label-free LTRS sorting technique may find broad applications in microbiology and rapid examination of food-borne diseases.

  14. In Vivo Quantification of Peroxisome Tethering to Chloroplasts in Tobacco Epidermal Cells Using Optical Tweezers.

    PubMed

    Gao, Hongbo; Metz, Jeremy; Teanby, Nick A; Ward, Andy D; Botchway, Stanley W; Coles, Benjamin; Pollard, Mark R; Sparkes, Imogen

    2016-01-01

    Peroxisomes are highly motile organelles that display a range of motions within a short time frame. In static snapshots, they can be juxtaposed to chloroplasts, which has led to the hypothesis that they are physically interacting. Here, using optical tweezers, we tested the dynamic physical interaction in vivo. Using near-infrared optical tweezers combined with TIRF microscopy, we were able to trap peroxisomes and approximate the forces involved in chloroplast association in vivo in tobacco (Nicotiana tabacum) and observed weaker tethering to additional unknown structures within the cell. We show that chloroplasts and peroxisomes are physically tethered through peroxules, a poorly described structure in plant cells. We suggest that peroxules have a novel role in maintaining peroxisome-organelle interactions in the dynamic environment. This could be important for fatty acid mobilization and photorespiration through the interaction with oil bodies and chloroplasts, highlighting a fundamentally important role for organelle interactions for essential biochemistry and physiological processes.

  15. Multiple Optical Traps with a Single-Beam Optical Tweezer Utilizing Surface Micromachined Planar Curved Grating

    NASA Astrophysics Data System (ADS)

    Kuo, Ju-Nan; Chen, Kuan-Yu

    2010-11-01

    In this paper, we present a single-beam optical tweezer integrated with a planar curved diffraction grating for microbead manipulation. Various curvatures of the surface micromachined planar curved grating are systematically investigated. The planar curved grating was fabricated using multiuser micro-electro-mechanical-system (MEMS) processes (MUMPs). The angular separation and the number of diffracted orders were determined. Experimental results indicate that the diffraction patterns and curvature of the planar curved grating are closely related. As the curvature of the planar curved grating increases, the vertical diffraction angle increases, resulting in the strip patterns of the planar curved grating. A single-beam optical tweezer integrated with a planar curved diffraction grating was developed. We demonstrate a technique for creating multiple optical traps from a single laser beam using the developed planar curved grating. The strip patterns of the planar curved grating that resulted from diffraction were used to trap one row of polystyrene beads.

  16. In Vivo Quantification of Peroxisome Tethering to Chloroplasts in Tobacco Epidermal Cells Using Optical Tweezers.

    PubMed

    Gao, Hongbo; Metz, Jeremy; Teanby, Nick A; Ward, Andy D; Botchway, Stanley W; Coles, Benjamin; Pollard, Mark R; Sparkes, Imogen

    2016-01-01

    Peroxisomes are highly motile organelles that display a range of motions within a short time frame. In static snapshots, they can be juxtaposed to chloroplasts, which has led to the hypothesis that they are physically interacting. Here, using optical tweezers, we tested the dynamic physical interaction in vivo. Using near-infrared optical tweezers combined with TIRF microscopy, we were able to trap peroxisomes and approximate the forces involved in chloroplast association in vivo in tobacco (Nicotiana tabacum) and observed weaker tethering to additional unknown structures within the cell. We show that chloroplasts and peroxisomes are physically tethered through peroxules, a poorly described structure in plant cells. We suggest that peroxules have a novel role in maintaining peroxisome-organelle interactions in the dynamic environment. This could be important for fatty acid mobilization and photorespiration through the interaction with oil bodies and chloroplasts, highlighting a fundamentally important role for organelle interactions for essential biochemistry and physiological processes. PMID:26518344

  17. Identification of individual biofilm-forming bacterial cells using Raman tweezers.

    PubMed

    Samek, Ota; Bernatová, Silvie; Ježek, Jan; Šiler, Martin; Šerý, Mojmir; Krzyžánek, Vladislav; Hrubanová, Kamila; Zemánek, Pavel; Holá, Veronika; Růžička, Filip

    2015-05-01

    A method for in vitro identification of individual bacterial cells is presented. The method is based on a combination of optical tweezers for spatial trapping of individual bacterial cells and Raman microspectroscopy for acquisition of spectral “Raman fingerprints” obtained from the trapped cell. Here, Raman spectra were taken from the biofilm-forming cells without the influence of an extracellular matrix and were compared with biofilm-negative cells. Results of principal component analyses of Raman spectra enabled us to distinguish between the two strains of Staphylococcus epidermidis. Thus, we propose that Raman tweezers can become the technique of choice for a clearer understanding of the processes involved in bacterial biofilms which constitute a highly privileged way of life for bacteria, protected from the external environment.

  18. Optical tweezers and surface plasmon resonance combination system based on the high numerical aperture lens

    NASA Astrophysics Data System (ADS)

    Shan, Xuchen; Zhang, Bei; Lan, Guoqiang; Wang, Yiqiao; Liu, Shugang

    2015-11-01

    Biology and medicine sample measurement takes an important role in the microscopic optical technology. Optical tweezer has the advantage of accurate capture and non-pollution of the sample. The SPR(surface plasmon resonance) sensor has so many advantages include high sensitivity, fast measurement, less consumption of sample and label-free detection of biological sample that the SPR sensing technique has been used for surface topography, analysis of biochemical and immune, drug screening and environmental monitoring. If they combine, they will play an important role in the biological, chemical and other subjects. The system we propose use the multi-axis cage system, by using the methods of reflection and transmiss ion to improve the space utilization. The SPR system and optical tweezer were builtup and combined in one system. The cage of multi-axis system gives full play to its accuracy, simplicity and flexibility. The size of the system is 20 * 15 * 40 cm3 and thus the sample can be replaced to switch between the optical tweezers system and the SPR system in the small space. It means that we get the refractive index of the sample and control the particle in the same system. In order to control the revolving stage, get the picture and achieve the data stored automatically, we write a LabVIEW procedure. Then according to the data from the back focal plane calculate the refractive index of the sample. By changing the slide we can trap the particle as optical tweezer, which makes us measurement and trap the sample at the same time.

  19. Light-induced rotations of chiral birefringent microparticles in optical tweezers.

    PubMed

    Donato, M G; Mazzulla, A; Pagliusi, P; Magazzù, A; Hernandez, R J; Provenzano, C; Gucciardi, P G; Maragò, O M; Cipparrone, G

    2016-01-01

    We study the rotational dynamics of solid chiral and birefringent microparticles induced by elliptically polarized laser light in optical tweezers. We find that both reflection of left circularly polarized light and residual linear retardance affect the particle dynamics. The degree of ellipticity of laser light needed to induce rotations is found. The experimental results are compared with analytical calculations of the transfer of angular moment from elliptically polarized light to chiral birefringent particles. PMID:27601200

  20. A feasibility study of in vivo applications of single beam acoustic tweezers

    NASA Astrophysics Data System (ADS)

    Li, Ying; Lee, Changyang; Chen, Ruimin; Zhou, Qifa; Shung, K. Kirk

    2014-10-01

    Tools that are capable of manipulating micro-sized objects have been widely used in such fields as physics, chemistry, biology, and medicine. Several devices, including optical tweezers, atomic force microscope, micro-pipette aspirator, and standing surface wave type acoustic tweezers have been studied to satisfy this need. However, none of them has been demonstrated to be suitable for in vivo and clinical studies. Single beam acoustic tweezers (SBAT) is a technology that uses highly focused acoustic beam to trap particles toward the beam focus. Its feasibility was first theoretically and experimentally demonstrated by Lee and Shung several years ago. Since then, much effort has been devoted to improving this technology. At present, the tool is capable of trapping a microparticle as small as 1 μm, as well as a single red blood cell. Although in comparing to other microparticles manipulating technologies, SBAT has advantages of providing stronger trapping force and deeper penetration depth in tissues, and producing less tissue damage, its potential for in vivo applications has yet been explored. It is worth noting that ultrasound has been used as a diagnostic tool for over 50 years and no known major adverse effects have been observed at the diagnostic energy level. This paper reports the results of an initial attempt to assess the feasibility of single beam acoustic tweezers to trap microparticles in vivo inside of a blood vessel. The acoustic intensity of SBAT under the trapping conditions that were utilized was measured. The mechanical index and thermal index at the focus of acoustic beam were found to be 0.48 and 0.044, respectively, which meet the standard of commercial diagnostic ultrasound system.

  1. A feasibility study of in vivo applications of single beam acoustic tweezers

    SciTech Connect

    Li, Ying Lee, Changyang; Chen, Ruimin; Zhou, Qifa; Shung, K. Kirk

    2014-10-27

    Tools that are capable of manipulating micro-sized objects have been widely used in such fields as physics, chemistry, biology, and medicine. Several devices, including optical tweezers, atomic force microscope, micro-pipette aspirator, and standing surface wave type acoustic tweezers have been studied to satisfy this need. However, none of them has been demonstrated to be suitable for in vivo and clinical studies. Single beam acoustic tweezers (SBAT) is a technology that uses highly focused acoustic beam to trap particles toward the beam focus. Its feasibility was first theoretically and experimentally demonstrated by Lee and Shung several years ago. Since then, much effort has been devoted to improving this technology. At present, the tool is capable of trapping a microparticle as small as 1 μm, as well as a single red blood cell. Although in comparing to other microparticles manipulating technologies, SBAT has advantages of providing stronger trapping force and deeper penetration depth in tissues, and producing less tissue damage, its potential for in vivo applications has yet been explored. It is worth noting that ultrasound has been used as a diagnostic tool for over 50 years and no known major adverse effects have been observed at the diagnostic energy level. This paper reports the results of an initial attempt to assess the feasibility of single beam acoustic tweezers to trap microparticles in vivo inside of a blood vessel. The acoustic intensity of SBAT under the trapping conditions that were utilized was measured. The mechanical index and thermal index at the focus of acoustic beam were found to be 0.48 and 0.044, respectively, which meet the standard of commercial diagnostic ultrasound system.

  2. Rapid formation of size-controllable multicellular spheroids via 3D acoustic tweezers.

    PubMed

    Chen, Kejie; Wu, Mengxi; Guo, Feng; Li, Peng; Chan, Chung Yu; Mao, Zhangming; Li, Sixing; Ren, Liqiang; Zhang, Rui; Huang, Tony Jun

    2016-07-01

    The multicellular spheroid is an important 3D cell culture model for drug screening, tissue engineering, and fundamental biological research. Although several spheroid formation methods have been reported, the field still lacks high-throughput and simple fabrication methods to accelerate its adoption in drug development industry. Surface acoustic wave (SAW) based cell manipulation methods, which are known to be non-invasive, flexible, and high-throughput, have not been successfully developed for fabricating 3D cell assemblies or spheroids, due to the limited understanding on SAW-based vertical levitation. In this work, we demonstrated the capability of fabricating multicellular spheroids in the 3D acoustic tweezers platform. Our method used drag force from microstreaming to levitate cells in the vertical direction, and used radiation force from Gor'kov potential to aggregate cells in the horizontal plane. After optimizing the device geometry and input power, we demonstrated the rapid and high-throughput nature of our method by continuously fabricating more than 150 size-controllable spheroids and transferring them to Petri dishes every 30 minutes. The spheroids fabricated by our 3D acoustic tweezers can be cultured for a week with good cell viability. We further demonstrated that spheroids fabricated by this method could be used for drug testing. Unlike the 2D monolayer model, HepG2 spheroids fabricated by the 3D acoustic tweezers manifested distinct drug resistance, which matched existing reports. The 3D acoustic tweezers based method can serve as a novel bio-manufacturing tool to fabricate complex 3D cell assembles for biological research, tissue engineering, and drug development. PMID:27327102

  3. Time-shared optical tweezers with a microlens array for dynamic microbead arrays

    PubMed Central

    Tanaka, Yoshio; Wakida, Shin-ichi

    2015-01-01

    Dynamic arrays of microbeads and cells offer great flexibility and potential as platforms for sensing and manipulation applications in various scientific fields, especially biology and medicine. Here, we present a simple method for assembling and manipulating dense dynamic arrays based on time-shared scanning optical tweezers with a microlens array. Three typical examples, including the dynamic and simultaneous bonding of microbeads in real-time, are demonstrated. The optical design and the hardware setup for our approach are also described. PMID:26504619

  4. Dynamic micro-bead arrays using optical tweezers combined with intelligent control techniques.

    PubMed

    Tanaka, Yoshio; Kawada, Hiroyuki; Tsutsui, Shogo; Ishikawa, Mitsuru; Kitajima, Hiroyuki

    2009-12-21

    Dynamic micro-bead arrays offer great flexibility and potential as sensing tools in various scientific fields. Here we present a software-oriented approach for fully automated assembly of versatile dynamic micro-bead arrays using multi-beam optical tweezers combined with intelligent control techniques. Four typical examples, including the collision-free sorting of array elements by bead features, are demonstrated in real time. Control algorithms and experimental apparatus for these demonstrations are also described.

  5. Light-induced rotations of chiral birefringent microparticles in optical tweezers

    PubMed Central

    Donato, M. G.; Mazzulla, A.; Pagliusi, P.; Magazzù, A.; Hernandez, R. J.; Provenzano, C.; Gucciardi, P. G.; Maragò, O. M.; Cipparrone, G.

    2016-01-01

    We study the rotational dynamics of solid chiral and birefringent microparticles induced by elliptically polarized laser light in optical tweezers. We find that both reflection of left circularly polarized light and residual linear retardance affect the particle dynamics. The degree of ellipticity of laser light needed to induce rotations is found. The experimental results are compared with analytical calculations of the transfer of angular moment from elliptically polarized light to chiral birefringent particles. PMID:27601200

  6. Magnetic torque tweezers: measuring torsional stiffness in DNA and RecA-DNA filaments.

    PubMed

    Lipfert, Jan; Kerssemakers, Jacob W J; Jager, Tessa; Dekker, Nynke H

    2010-12-01

    We introduce magnetic torque tweezers, which enable direct single-molecule measurements of torque. Our measurements of the effective torsional stiffness C of dsDNA indicated a substantial force dependence, with C = approximately 40 nm at low forces up to C = approximately 100 nm at high forces. The initial torsional stiffness of RecA filaments was nearly twofold larger than that for dsDNA, yet at moderate torques further build-up of torsional strain was prevented. PMID:20953173

  7. Red blood cell membrane viscoelasticity, agglutination and zeta potential measurements with double optical tweezers

    NASA Astrophysics Data System (ADS)

    Fontes, Adriana; Fernandes, Heloise P.; Barjas-Castro, Maria L.; de Thomaz, André A.; de Ysasa Pozzo, Liliana; Barbosa, Luiz C.; Cesar, Carlos L.

    2006-02-01

    The red blood cell (RBC) viscoelastic membrane contains proteins and glycolproteins embedded in, or attached, to a fluid lipid bilayer and are negatively charged, which creates a repulsive electric (zeta) potential between the cells and prevents their aggregation in the blood stream. There are techniques, however, to decrease the zeta potential to allow cell agglutination which are the basis of most of the tests of antigen-antibody interactions in blood banks. This report shows the use of a double optical tweezers to measure RBC membrane viscosity, agglutination and zeta potential. In our technique one of the optical tweezers trap a silica bead that binds strongly to a RBC at the end of a RBCs rouleaux and, at the same time, acts as a pico-Newton force transducer, after calibration through its displacement from the equilibrium position. The other optical tweezers trap the RBC at the other end. To measure the membrane viscosity the optical force is measured as a function of the velocity between the RBCs. To measure the adhesion the tweezers are slowly displaced apart until the RBCs disagglutination happens. The RBC zeta potential is measured in two complimentary ways, by the force on the silica bead attached to a single RBC in response to an applied electric field, and the conventional way, by the measurement of terminal velocity of the RBC after released from the optical trap. These two measurements provide information about the RBC charges and, also, electrolytic solution properties. We believe this can improve the methods of diagnosis in blood banks.

  8. New biodiagnostics based on optical tweezers: typing red blood cells, and identification of drug resistant bacteria

    NASA Astrophysics Data System (ADS)

    Chen, Jia-Wen; Lin, Chuen-Fu; Wang, Shyang-Guang; Lee, Yi-Chieh; Chiang, Chung-Han; Huang, Min-Hui; Lee, Yi-Hsiung; Vitrant, Guy; Pan, Ming-Jeng; Lee, Horng-Mo; Liu, Yi-Jui; Baldeck, Patrice L.; Lin, Chih-Lang

    2013-09-01

    Measurements of optical tweezers forces on biological micro-objects can be used to develop innovative biodiagnostics methods. In the first part of this report, we present a new sensitive method to determine A, B, D types of red blood cells. Target antibodies are coated on glass surfaces. Optical forces needed to pull away RBC from the glass surface increase when RBC antigens interact with their corresponding antibodies. In this work, measurements of stripping optical forces are used to distinguish the major RBC types: group O Rh(+), group A Rh(+) and group B Rh(+). The sensitivity of the method is found to be at least 16-folds higher than the conventional agglutination method. In the second part of this report, we present an original way to measure in real time the wall thickness of bacteria that is one of the most important diagnostic parameters of bacteria drug resistance in hospital diagnostics. The optical tweezers force on a shell bacterium is proportional to its wall thickness. Experimentally, we determine the optical tweezers force applied on each bacteria family by measuring their escape velocity. Then, the wall thickness of shell bacteria can be obtained after calibrating with known bacteria parameters. The method has been successfully applied to indentify, from blind tests, Methicillinresistant Staphylococcus aureus (MRSA), including VSSA (NCTC 10442), VISA (Mu 50), and heto-VISA (Mu 3)

  9. Amyloid β-Protein Assembly: The Effect of Molecular Tweezers CLR01 and CLR03

    PubMed Central

    2015-01-01

    The early oligomerization of amyloid β-protein (Aβ) has been shown to be an important event in the pathology of Alzheimer’s disease (AD). Designing small molecule inhibitors targeting Aβ oligomerization is one attractive and promising strategy for AD treatment. Here we used ion mobility spectrometry coupled to mass spectrometry (IMS-MS) to study the different effects of the molecular tweezers CLR01 and CLR03 on Aβ self-assembly. CLR01 was found to bind to Aβ directly and disrupt its early oligomerization. Moreover, CLR01 remodeled the early oligomerization of Aβ42 by compacting the structures of dimers and tetramers and as a consequence eliminated higher-order oligomers. Unexpectedly, the negative-control derivative, CLR03, which lacks the hydrophobic arms of the tweezer structure, was found to facilitate early Aβ oligomerization. Our study provides an example of IMS as a powerful tool to study and better understand the interaction between small molecule modulators and Aβ oligomerization, which is not attainable by other methods, and provides important insights into therapeutic development of molecular tweezers for AD treatment. PMID:25751170

  10. Measurement of macrophage adhesion using optical tweezers with backward-scattered detection

    NASA Astrophysics Data System (ADS)

    Wei, Sung-Yang; Su, Yi-Jr; Shih, Po-Chen; Yang, Shih-Mo; Hsu, Long

    2010-08-01

    Macrophages are members of the leukocyte family. Tissue damage causes inflammation and release of vasoactive and chemotactic factors, which trigger a local increase in blood flow and capillary permeability. Then, leukocytes accumulate quickly to the infection site. The leukocyte extravasation process takes place according to a sequence of events that involve tethering, activation by a chemoattractant stimulus, adhesion by integrin binding, and migrating to the infection site. The leukocyte extravasation process reveals that adhesion is an important part of the immune system. Optical tweezers have become a useful tool with broad applications in biology and physics. In force measurement, the trapped bead as a probe usually uses a polystyrene bead of 1 μm diameter to measure adhesive force between the trapped beads and cell by optical tweezers. In this paper, using the ray-optics model calculated trapping stiffness and defined the linear displacement ranges. By the theoretical values of stiffness and linear displacement ranges, this study attempted to obtain a proper trapped particle size in measuring adhesive force. Finally, this work investigates real-time adhesion force measurements between human macrophages and trapped beads coated with lipopolysaccharides using optical tweezers with backscattered detection.

  11. Combining optical tweezers and patch clamp for studies of cell membrane electromechanics

    NASA Astrophysics Data System (ADS)

    Qian, Feng; Ermilov, Sergey; Murdock, David; Brownell, William E.; Anvari, Bahman

    2004-09-01

    We have designed and implemented a novel experimental setup which combines optical tweezers with patch-clamp apparatus to investigate the electromechanical properties of cellular plasma membranes. In this system, optical tweezers provide measurement of forces at piconewton scale, and the patch-clamp technique allows control of the cell transmembrane potential. A micron-size bead trapped by the optical tweezers is brought in contact with the membrane of a voltage-clamped cell, and subsequently moved away to form a plasma membrane tether. Bead displacement from the trapping center is monitored by a quadrant photodetector for dynamic measurements of tether force. Fluorescent beads and the corresponding fluorescence imaging optics are used to eliminate the shadow of the cell projected on the quadrant photodetector. Salient information associated with the mechanical properties of the membrane tether can thus be obtained. A unique feature of this setup is that the patch-clamp headstage and the manipulator for the recording pipette are mounted on a piezoelectric stage, preventing relative movements between the cell and the patch pipette during the process of tether pulling. Tethers can be pulled from the cell membrane at different holding potentials, and the tether force response can be measured while changing transmembrane potential. Experimental results from mammalian cochlear outer hair cells and human embryonic kidney cells are presented.

  12. Design and optimization of arrays of neodymium iron boron-based magnets for magnetic tweezers applications.

    PubMed

    Zacchia, Nicholas A; Valentine, Megan T

    2015-05-01

    We present the design methodology for arrays of neodymium iron boron (NdFeB)-based magnets for use in magnetic tweezers devices. Using finite element analysis (FEA), we optimized the geometry of the NdFeB magnet as well as the geometry of iron yokes designed to focus the magnetic fields toward the sample plane. Together, the magnets and yokes form a magnetic array which is the basis of the magnetic tweezers device. By systematically varying 15 distinct shape parameters, we determined those features that maximize the magnitude of the magnetic field gradient as well as the length scale over which the magnetic force operates. Additionally, we demonstrated that magnetic saturation of the yoke material leads to intrinsic limitations in any geometric design. Using this approach, we generated a compact and light-weight magnetic tweezers device that produces a high field gradient at the image plane in order to apply large forces to magnetic beads. We then fabricated the optimized yoke and validated the FEA by experimentally mapping the magnetic field of the device. The optimization data and iterative FEA approach outlined here will enable the streamlined design and construction of specialized instrumentation for force-sensitive microscopy. PMID:26026529

  13. Single-cell optoporation and transfection using femtosecond laser and optical tweezers

    PubMed Central

    Waleed, Muhammad; Hwang, Sun-Uk; Kim, Jung-Dae; Shabbir, Irfan; Shin, Sang-Mo; Lee, Yong-Gu

    2013-01-01

    In this paper, we demonstrate a new single-cell optoporation and transfection technique using a femtosecond Gaussian laser beam and optical tweezers. Tightly focused near-infrared (NIR) femtosecond laser pulse was employed to transiently perforate the cellular membrane at a single point in MCF-7 cancer cells. A distinct technique was developed by trapping the microparticle using optical tweezers to focus the femtosecond laser precisely on the cell membrane to puncture it. Subsequently, an external gene was introduced in the cell by trapping and inserting the same plasmid-coated microparticle into the optoporated cell using optical tweezers. Various experimental parameters such as femtosecond laser exposure power, exposure time, puncture hole size, exact focusing of the femtosecond laser on the cell membrane, and cell healing time were closely analyzed to create the optimal conditions for cell viability. Following the insertion of plasmid-coated microparticles in the cell, the targeted cells exhibited green fluorescent protein (GFP) under the fluorescent microscope, hence confirming successful transfection into the cell. This new optoporation and transfection technique maximizes the level of selectivity and control over the targeted cell, and this may be a breakthrough method through which to induce controllable genetic changes in the cell. PMID:24049675

  14. Acoustic tweezers via sub–time-of-flight regime surface acoustic waves

    PubMed Central

    Collins, David J.; Devendran, Citsabehsan; Ma, Zhichao; Ng, Jia Wei; Neild, Adrian; Ai, Ye

    2016-01-01

    Micrometer-scale acoustic waves are highly useful for refined optomechanical and acoustofluidic manipulation, where these fields are spatially localized along the transducer aperture but not along the acoustic propagation direction. In the case of acoustic tweezers, such a conventional acoustic standing wave results in particle and cell patterning across the entire width of a microfluidic channel, preventing selective trapping. We demonstrate the use of nanosecond-scale pulsed surface acoustic waves (SAWs) with a pulse period that is less than the time of flight between opposing transducers to generate localized time-averaged patterning regions while using conventional electrode structures. These nodal positions can be readily and arbitrarily positioned in two dimensions and within the patterning region itself through the imposition of pulse delays, frequency modulation, and phase shifts. This straightforward concept adds new spatial dimensions to which acoustic fields can be localized in SAW applications in a manner analogous to optical tweezers, including spatially selective acoustic tweezers and optical waveguides. PMID:27453940

  15. Probing orientation and rotation of red blood cells in optical tweezers by digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Cardenas, Nelson; Yu, Lingfeng; Mohanty, Samarendra K.

    2011-03-01

    Interaction of red blood cells (RBC) with optical tweezers has been found to differ under varied physiological and pathological conditions as compared to its normal conditions. Earlier, we reported difference in rotation of trapped RBC in hypertonic conditions for detection of malaria infection. Disk-like RBC when trapped in optical tweezers get oriented in the vertical plane to maximize interaction with trapping beam. However, classical bright field, phase contrast or epifluorescence microscopy cannot confirm its orientation, thus leading to ambiguous conclusions such as folding of RBC during trapping by some researchers. Now, with use of digital holographic microscopy (DHM), we achieved high axial sensitivity that confirmed orientation of trapped red blood cell. Further, DHM enabled quantitative phase imaging of RBC under hypertonic condition. Dynamic changes of rotating RBC under optical tweezers at different trapping laser power were evaluated by the use of DHM. The deviation from linear dependence of rotation speed of RBC on laser power, was attributed towards deformation of RBC shape due to higher laser power (or speed).

  16. Design and optimization of arrays of neodymium iron boron-based magnets for magnetic tweezers applications

    SciTech Connect

    Zacchia, Nicholas A.; Valentine, Megan T.

    2015-05-15

    We present the design methodology for arrays of neodymium iron boron (NdFeB)-based magnets for use in magnetic tweezers devices. Using finite element analysis (FEA), we optimized the geometry of the NdFeB magnet as well as the geometry of iron yokes designed to focus the magnetic fields toward the sample plane. Together, the magnets and yokes form a magnetic array which is the basis of the magnetic tweezers device. By systematically varying 15 distinct shape parameters, we determined those features that maximize the magnitude of the magnetic field gradient as well as the length scale over which the magnetic force operates. Additionally, we demonstrated that magnetic saturation of the yoke material leads to intrinsic limitations in any geometric design. Using this approach, we generated a compact and light-weight magnetic tweezers device that produces a high field gradient at the image plane in order to apply large forces to magnetic beads. We then fabricated the optimized yoke and validated the FEA by experimentally mapping the magnetic field of the device. The optimization data and iterative FEA approach outlined here will enable the streamlined design and construction of specialized instrumentation for force-sensitive microscopy.

  17. Grating-flanked plasmonic coaxial apertures for efficient fiber optical tweezers.

    PubMed

    Saleh, Amr A E; Sheikhoelislami, Sassan; Gastelum, Steven; Dionne, Jennifer A

    2016-09-01

    Subwavelength plasmonic apertures have been foundational for direct optical manipulation of nanoscale specimens including sub-100 nm polymeric beads, metallic nanoparticles and proteins. While most plasmonic traps result in two-dimensional localization, three-dimensional manipulation has been demonstrated by integrating a plasmonic aperture on an optical fiber tip. However, such 3D traps are usually inefficient since the optical mode of the fiber and the subwavelength aperture only weakly couple. In this paper we design more efficient optical-fiber-based plasmonic tweezers combining a coaxial plasmonic aperture with a plasmonic grating coupler at the fiber tip facet. Using full-field finite difference time domain analysis, we optimize the grating design for both gold and silver fiber-based coaxial tweezers such that the optical transmission through the apertures is maximized. With the optimized grating, we show that the maximum transmission efficiency increases from 2.5% to 19.6% and from 1.48% to 16.7% for the gold and silver structures respectively. To evaluate their performance as optical tweezers, we calculate the optical forces and the corresponding trapping potential on dielectric particles interacting with the apertures. We demonstrate that the enahncement in the transmission translates into an equivalent increase in the optical forces. Consequently, the optical power required to achieve stable optical trapping is significantly reduced allowing for efficient localization and 3D manipulation of sub-30 nm dielectric particles. PMID:27607663

  18. Acoustic tweezers for studying intracellular calcium signaling in SKBR-3 human breast cancer cells.

    PubMed

    Hwang, Jae Youn; Yoon, Chi Woo; Lim, Hae Gyun; Park, Jin Man; Yoon, Sangpil; Lee, Jungwoo; Shung, K Kirk

    2015-12-01

    Extracellular matrix proteins such as fibronectin (FNT) play crucial roles in cell proliferation, adhesion, and migration. For better understanding of these associated cellular activities, various microscopic manipulation tools have been used to study their intracellular signaling pathways. Recently, it has appeared that acoustic tweezers may possess similar capabilities in the study. Therefore, we here demonstrate that our newly developed acoustic tweezers with a high-frequency lithium niobate ultrasonic transducer have potentials to study intracellular calcium signaling by FNT-binding to human breast cancer cells (SKBR-3). It is found that intracellular calcium elevations in SKBR-3 cells, initially occurring on the microbead-contacted spot and then eventually spreading over the entire cell, are elicited by attaching an acoustically trapped FNT-coated microbead. Interestingly, they are suppressed by either extracellular calcium elimination or phospholipase C (PLC) inhibition. Hence, this suggests that our acoustic tweezers may serve as an alternative tool in the study of intracellular signaling by FNT-binding activities.

  19. Design and optimization of arrays of neodymium iron boron-based magnets for magnetic tweezers applications

    NASA Astrophysics Data System (ADS)

    Zacchia, Nicholas A.; Valentine, Megan T.

    2015-05-01

    We present the design methodology for arrays of neodymium iron boron (NdFeB)-based magnets for use in magnetic tweezers devices. Using finite element analysis (FEA), we optimized the geometry of the NdFeB magnet as well as the geometry of iron yokes designed to focus the magnetic fields toward the sample plane. Together, the magnets and yokes form a magnetic array which is the basis of the magnetic tweezers device. By systematically varying 15 distinct shape parameters, we determined those features that maximize the magnitude of the magnetic field gradient as well as the length scale over which the magnetic force operates. Additionally, we demonstrated that magnetic saturation of the yoke material leads to intrinsic limitations in any geometric design. Using this approach, we generated a compact and light-weight magnetic tweezers device that produces a high field gradient at the image plane in order to apply large forces to magnetic beads. We then fabricated the optimized yoke and validated the FEA by experimentally mapping the magnetic field of the device. The optimization data and iterative FEA approach outlined here will enable the streamlined design and construction of specialized instrumentation for force-sensitive microscopy.

  20. Role of PIN-mediated auxin efflux in apical hook development of Arabidopsis thaliana.

    PubMed

    Zádníková, Petra; Petrásek, Jan; Marhavy, Peter; Raz, Vered; Vandenbussche, Filip; Ding, Zhaojun; Schwarzerová, Katerina; Morita, Miyo T; Tasaka, Masao; Hejátko, Jan; Van Der Straeten, Dominique; Friml, Jirí; Benková, Eva

    2010-02-01

    The apical hook of dark-grown Arabidopsis seedlings is a simple structure that develops soon after germination to protect the meristem tissues during emergence through the soil and that opens upon exposure to light. Differential growth at the apical hook proceeds in three sequential steps that are regulated by multiple hormones, principally auxin and ethylene. We show that the progress of the apical hook through these developmental phases depends on the dynamic, asymmetric distribution of auxin, which is regulated by auxin efflux carriers of the PIN family. Several PIN proteins exhibited specific, partially overlapping spatial and temporal expression patterns, and their subcellular localization suggested auxin fluxes during hook development. Genetic manipulation of individual PIN activities interfered with different stages of hook development, implying that specific combinations of PIN genes are required for progress of the apical hook through the developmental phases. Furthermore, ethylene might modulate apical hook development by prolonging the formation phase and strongly suppressing the maintenance phase. This ethylene effect is in part mediated by regulation of PIN-dependent auxin efflux and auxin signaling.

  1. Ethylene-mediated enhancement of apical hook formation in etiolated Arabidopsis thaliana seedlings is gibberellin dependent.

    PubMed

    Vriezen, Wim H; Achard, Patrick; Harberd, Nicholas P; Van Der Straeten, Dominique

    2004-02-01

    Dark-grown Arabidopsis seedlings develop an apical hook by differential elongation and division of hypocotyl cells. This allows the curved hypocotyl to gently drag the apex, which is protected by the cotyledons, upwards through the soil. Several plant hormones are known to be involved in hook development, including ethylene, which causes exaggeration of the hook. We show that gibberellins (GAs) are also involved in this process. Inhibition of GA biosynthesis with paclobutrazol (PAC) prevented hook formation in wild-type (WT) seedlings and in constitutive ethylene response (ctr)1-1, a mutant that exhibits a constitutive ethylene response. In addition, a GA-deficient mutant (ga1-3) did not form an apical hook in the presence of the ethylene precursor 1-aminocyclopropane-1-carboxylate (ACC). Analysis of transgenic Arabidopsis seedlings expressing a green fluorescent protein (GFP)-repressor of ga1-3 (RGA) fusion protein suggested that ACC inhibits cell elongation in the apical hook by inhibition of GA signaling. A decreased feedback of GA possibly causes an induction of GA biosynthesis based upon the expression of genes encoding copalyl diphosphate synthase (CPS; GA1) and GA 2-oxidase (AtGA2ox1). Furthermore, expression of GASA1, a GA-response gene, suggests that differential cell elongation in the apical hook might be a result of differential GA-sensitivity.

  2. Cryopreservation of Galanthus elwesii Hook. apical meristems by droplet vitrification.

    PubMed

    Maslanka, M; Panis, B; Bach, A

    2013-01-01

    The aim of this study was to develop an efficient cryopreservation protocol for the geophyte giant snowdrop (Galanthus elwesii Hook.) that guarantees a high rate of survival and plant regeneration after cryopreservation. The excised apical meristems were obtained from cultures of in vitro grown bulb scales. Using a vitrification procedure and optimizing the duration of the exposure to the loading solution (LS), meristem post-rewarm survival rates higher than 90 percent were achieved. Also regrowth percentages were very high, ranging from 87 to 91 percent. After optimizing the time of exposure to the plant vitrification solution (PVS2), the survival rate was between 83 and 97 percent. During post-rewarm regeneration, good growth recovery was as high as 76 percent; however, hyperhydration and callusing were also observed. The results demonstrate that cryopreservation of Galanthus elwesii germplasm seems to be feasible.

  3. Hooke's Law and the Stiffness of a Plastic Spoon

    NASA Astrophysics Data System (ADS)

    Pestka, Kenneth A.; Warren, Cori

    2012-11-01

    The study of elastic properties of solids is essential to both physics and engineering. Finding simple, easy-to-visualize examples to demonstrate these concepts is often difficult. In a previous article written by one of us (KAPII), a simple method for determining Youngs modulus using marshmallows was given. In this article we will illustrate another method to explore elastic properties of everyday materials. This experiment uses a common plastic spoon exposed to a transverse force in order to determine the stiffness constant, yield point, and rupture point of the plastic spoon. In addition, much like the "Youngs Modulus of a Marshmallow" activity, this experiment visually demonstrates Hooke's law, is fun and easy to perform, and leaves a lasting impression on the students.

  4. New steroidal saponin from Antigonon leptopus Hook. and Arn.

    PubMed Central

    Apaya, Maria Karmella L.; Chichioco-Hernandez, Christine L.

    2014-01-01

    Background: Antigonon leptopus Hook. and Arn., Polygonaceae (cadena de amor), is a herbal remedy for pain and gout-like symptoms in the Philippines. The methanol extract of A. leptopus have shown strong inhibitory action against xanthine oxidase. Objective: To isolate and identify the compound responsible for the xanthine oxidase inhibitory action. Materials and Methods: A bioassay-guided isolation scheme using an in vitro assay for the inhibition of xanthine oxidase was employed. The structure was established using spectroscopic analysis and chemical methods. Results: The isolated compound was determined to be a noncompetitive inhibitor of xanthine with an IC50 of 1.79 μg/mL. Conclusion: The isolated compound may represent a new class of xanthine oxidase inhibitors. PMID:25298666

  5. Antibacterial alkaloids from Artabotrys crassifolius Hook.f. & Thomson.

    PubMed

    Tan, Kok Kwan; Khoo, Teng Jing; Rajagopal, Mogana; Wiart, Christophe

    2015-01-01

    Chloroform extract of bark of Artabotrys crassifolius Hook.f. & Thomson exhibited antibacterial activities against both American Type Culture Collection and clinical bacterial strains in vitro with zones of inhibition ranging from 7 to 14 mm. Further analysis of this extract yielded artabotrine, liridine, lysicamine and atherospermidine. Artabotrine displayed a broad array of antibacterial activity mostly against Gram-positive bacteria with minimum inhibitory concentration (MIC) values ranging from 1.25 μg/mL to 5 μg/mL. Of note, artabotrine, liridine and lysicamine are bactericidal against Gram-negative extended-spectrum beta-lactamase-producing Klebsiella with MIC values equal 2.5, 2.5 and 10 μg/mL, respectively, and minimum bactericidal concentrations values equal to 2.5, 5 and 20 μg/mL.

  6. Coordinated regulation of apical hook development by gibberellins and ethylene in etiolated Arabidopsis seedlings

    PubMed Central

    An, Fengying; Zhang, Xing; Zhu, Ziqiang; Ji, Yusi; He, Wenrong; Jiang, Zhiqiang; Li, Mingzhe; Guo, Hongwei

    2012-01-01

    Dark-grown Arabidopsis seedlings develop an apical hook when germinating in soil, which protects the cotyledons and apical meristematic tissues when protruding through the soil. Several hormones are reported to distinctly modulate this process. Previous studies have shown that ethylene and gibberellins (GAs) coordinately regulate the hook development, although the underlying molecular mechanism is largely unknown. Here we showed that GA3 enhanced while paclobutrazol repressed ethylene- and EIN3-overexpression (EIN3ox)-induced hook curvature, and della mutant exhibited exaggerated hook curvature, which required an intact ethylene signaling pathway. Genetic study revealed that GA-enhanced hook development was dependent on HOOKLESS 1 (HLS1), a central regulator mediating the input of the multiple signaling pathways during apical hook development. We further found that GA3 induced (and DELLA proteins repressed) HLS1 expression in an ETHYLENE INSENSITIVE 3/EIN3-LIKE 1 (EIN3/EIL1)-dependent manner, whereby EIN3/EIL1 activated HLS1 transcription by directly binding to its promoter. Additionally, DELLA proteins were found to interact with the DNA-binding domains of EIN3/EIL1 and repress EIN3/EIL1-regulated HLS1 expression. Treatment with naphthylphthalamic acid, a polar auxin transport inhibitor, repressed the constitutively exaggerated hook curvature of EIN3ox line and della mutant, supporting that auxin functions downstream of the ethylene and GA pathways in hook development. Taken together, our results identify EIN3/EIL1 as a new class of DELLA-associated transcription factors and demonstrate that GA promotes apical hook formation in cooperation with ethylene partly by inducing the expression of HLS1 via derepression of EIN3/EIL1 functions. PMID:22349459

  7. Casual hook up sex during the first year of college: Prospective associations with attitudes about sex and love relationships.

    PubMed

    Katz, Jennifer; Schneider, Monica E

    2013-11-01

    This study examined bidirectional relationships among emerging adults' involvement in casual hook up sex and attitudes about sex and love relationships. At the start and end of their first year in college, undergraduates (N = 163) responded to measures of sexual behavior, sexual attitudes, and attitudes about love relationships. In cross-sectional analyses, attitudes about sex and love both were associated with involvement in casual hook up sex. In prospective analyses, initial attitudes about sexual instrumentality uniquely predicted involvement in later hook up sex, even after controlling for past hook up sex. Furthermore, involvement in hook up sex during the first year of college predicted greater sexual permissiveness and comfort with casual genital contact, even after controlling for initial sexual attitudes and hook up behaviors. None of the associations between attitudes and behavior were qualified by gender. Experiences of causal hook up sex appear to have implications primarily for emerging adults' attitudes about sexual interactions rather than their attitudes about love relationships.

  8. The remarkable vision of Robert Hooke (1635-1703): first observer of the microbial world.

    PubMed

    Gest, Howard

    2005-01-01

    Robert Hooke played important roles in the early development of the Royal Society of London. As Curator of Experiments of the Society, he became a pioneering microscopist, prolific inventor, astronomer, geologist, architect, and an effective surveyor of the City of London following the Great Fire of 1666. Hooke's Micrographia (1665) revealed the microscopic structures of numerous biological and inorganic objects and became an important source of information for later studies. Aside from the body of detailed observations reported and depicted in Micrographia, the Preface is in itself an extraordinary document that exhibits Hooke's fertile mind, philosophical insights, and rare ability to look into the future. PMID:15834198

  9. The remarkable vision of Robert Hooke (1635-1703): first observer of the microbial world.

    PubMed

    Gest, Howard

    2005-01-01

    Robert Hooke played important roles in the early development of the Royal Society of London. As Curator of Experiments of the Society, he became a pioneering microscopist, prolific inventor, astronomer, geologist, architect, and an effective surveyor of the City of London following the Great Fire of 1666. Hooke's Micrographia (1665) revealed the microscopic structures of numerous biological and inorganic objects and became an important source of information for later studies. Aside from the body of detailed observations reported and depicted in Micrographia, the Preface is in itself an extraordinary document that exhibits Hooke's fertile mind, philosophical insights, and rare ability to look into the future.

  10. Crystal Structure of a Complex of DNA with One AT-Hook of HMGA1

    PubMed Central

    Fonfría-Subirós, Elsa; Acosta-Reyes, Francisco; Saperas, Núria; Pous, Joan; Subirana, Juan A.; Campos, J. Lourdes

    2012-01-01

    We present here for the first time the crystal structure of an AT-hook domain. We show the structure of an AT-hook of the ubiquitous nuclear protein HMGA1, combined with the oligonucleotide d(CGAATTAATTCG)2, which has two potential AATT interacting groups. Interaction with only one of them is found. The structure presents analogies and significant differences with previous NMR studies: the AT-hook forms hydrogen bonds between main-chain NH groups and thymines in the minor groove, DNA is bent and the minor groove is widened. PMID:22615915

  11. High-refractive index particles in counter-propagating optical tweezers - manipulation and forces

    NASA Astrophysics Data System (ADS)

    van der Horst, Astrid

    2006-09-01

    With a tightly focused single laser beam, also called optical tweezers, particles of a few nanometers up to several micrometers in size can be trapped and manipulated in 3D. The size, shape and refractive index of such colloidal particles are of influence on the optical forces exerted on them in the trap. A higher refractive-index difference between a particle and the surrounding medium will increase the forces. The destabilizing scattering force, however, pushing the particle in the direction of the beam, increases more than the gradient force, directed towards the focus. As a consequence, particles with a certain refractive index cannot be trapped in a single-beam gradient trap, and a limit is set to the force that can be exerted. We developed an experimental setup with two opposing high-numerical objectives. By splitting the laser beam, we created counter-propagating tweezers in which the scattering forces were canceled in the axial direction and high-refractive index and metallic particles could also be trapped. With the use of a separate laser beam combined with a quadrant photodiode, accurate position detection on a trapped particle in the counter-propagating tweezers is possible. We used this to determine trap stiffnesses, and show, with measurements and calculations, an enhancement in trap stiffness of at least 3 times for high-index 1.1-micrometer-diameter titania particles as compared to 1.4-micrometer-diameter silica particles under the same conditions. The ability to exert higher forces with lower laser power finds application in biophysical experiments, where laser damage and heating play a role. The manipulation of high-index and metallic particles also has applications in materials and colloid science, for example to incorporate high-index defects in colloidal photonic crystals. We demonstrate the patterning of high-index particles onto a glass substrate. The sample cell was mounted on a high-accuracy piezo stage combined with a long-range stage with

  12. Efficacy and safety of cryobiopsy versus forceps biopsy for interstitial lung diseases and lung tumours: A systematic review and meta-analysis.

    PubMed

    Ganganah, Oormila; Guo, Shu Liang; Chiniah, Manu; Li, Yi Shi

    2016-07-01

    Forceps biopsy (FB) is the most commonly used diagnostic tool for lung pathologies. FB is associated with a high diagnostic failure rate. Cryobiopsy (CB) is a novel technique providing a larger specimen size, few artefacts, more alveolar parts and superior diagnostic yield. CB, however, has drawbacks such as higher bleeding and pneumothorax rate. We conducted a meta-analysis to investigate the specimen area, diagnostic rate and bleeding severity in CB versus FB in interstitial lung diseases (ILDs) and lung tumours. A systematic literature search of PUBMED, BIOSIS PREVIEW and OVID databases was conducted using specific search terms. Eligible studies including RCTs and non-RCTs comparing cryobiopsy/cryotransbronchial biopsy (CB/CTBB) and forceps biopsy/forceps transbronchial biopsy (FB/FTBB) for specimen area, diagnostic rate and bleeding rate in ILDs and lung tumours were analysed. Two reviewers independently extracted data and evaluated the quality of the studies. Eight studies involving 916 patients were analysed. Specimen area (mm(2) ) was significantly larger in CB/CTBB than FB/FTBB (standard mean difference = 1.21, 95% confidence interval (0.94, 1.48), P < 0.00001). The diagnostic rate was significantly higher in CB/CTBB than FB/FTBB (Risk ratio 1.36, 95% confidence interval (1.16, 1.59), P = 0.0002). Three studies compared the bleeding severity with only one showing significantly more bleeding in CB. Cryobiopsy/cryotransbronchial shows superiority to FB/FTBB for specimen area and diagnostic rate. CB/CTBB has better efficacy over FB/FTBB.

  13. Determining the structure-mechanics relationships of dense microtubule networks with confocal microscopy and magnetic tweezers-based microrheology.

    PubMed

    Yang, Yali; Valentine, Megan T

    2013-01-01

    The microtubule (MT) cytoskeleton is essential in maintaining the shape, strength, and organization of cells. Its spatiotemporal organization is fundamental for numerous dynamic biological processes, and mechanical stress within the MT cytoskeleton provides an important signaling mechanism in mitosis and neural development. This raises important questions about the relationships between structure and mechanics in complex MT structures. In vitro, reconstituted cytoskeletal networks provide a minimal model of cell mechanics while also providing a testing ground for the fundamental polymer physics of stiff polymer gels. Here, we describe our development and implementation of a broad tool kit to study structure-mechanics relationships in reconstituted MT networks, including protocols for the assembly of entangled and cross-linked MT networks, fluorescence imaging, microstructure characterization, construction and calibration of magnetic tweezers devices, and mechanical data collection and analysis. In particular, we present the design and assembly of three neodymium iron boron (NdFeB)-based magnetic tweezers devices optimized for use with MT networks: (1) high-force magnetic tweezers devices that enable the application of nano-Newton forces and possible meso- to macroscale materials characterization; (2) ring-shaped NdFeB-based magnetic tweezers devices that enable oscillatory microrheology measurements; and (3) portable magnetic tweezers devices that enable direct visualization of microscale deformation in soft materials under applied force.

  14. 76 FR 26751 - Prime Hook National Wildlife Refuge, Sussex County, DE; Comprehensive Conservation Plan and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-09

    ... the planting of genetically modified organisms until the refuge completed compatibility determinations... 17, 2005 (70 FR 60365) stating we intended to prepare a CCP and EA for Prime Hook NWR. We held...

  15. Stress fracture of the hook of the hamate: a case report.

    PubMed

    Van Demark, Robert E; Van Demark, Robert E; Helsper, Elizabeth

    2015-04-01

    Hook of the hamate fractures are uncommon. This fracture is usually seen in sports involving a club or a racquet (i.e., baseball or golf) and is caused by blunt trauma. Stress fractures of the hamate are exceedingly rare. Because of its subcutaneous position and associated soft tissue structures, hook of the hamate fractures can be difficult to diagnosis. When treated early, conservative (non-operative) options can be used to successfully treat the fracture. When the diagnosis is delayed, nonunion of the fracture is common and is usually treated with surgery. This case represents a hook of the hamate stress fracture that healed with casting in spite of being seen two months from the onset of symptoms. Hamate fractures are reviewed, including the anatomy and treatment options for hook of the hamate fractures. PMID:25946894

  16. 33 CFR 165.130 - Sandy Hook Bay, New Jersey-security zone.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Hook Bay, New Jersey—security zone. (a) Naval Ammunition Depot Piers. The navigable waters within the... safely navigate outside the Terminal Channel, is approaching or leaving the Naval Ammunition Depot...

  17. 33 CFR 165.130 - Sandy Hook Bay, New Jersey-security zone.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Hook Bay, New Jersey—security zone. (a) Naval Ammunition Depot Piers. The navigable waters within the... safely navigate outside the Terminal Channel, is approaching or leaving the Naval Ammunition Depot...

  18. Stress fracture of the hook of the hamate: a case report.

    PubMed

    Van Demark, Robert E; Van Demark, Robert E; Helsper, Elizabeth

    2015-04-01

    Hook of the hamate fractures are uncommon. This fracture is usually seen in sports involving a club or a racquet (i.e., baseball or golf) and is caused by blunt trauma. Stress fractures of the hamate are exceedingly rare. Because of its subcutaneous position and associated soft tissue structures, hook of the hamate fractures can be difficult to diagnosis. When treated early, conservative (non-operative) options can be used to successfully treat the fracture. When the diagnosis is delayed, nonunion of the fracture is common and is usually treated with surgery. This case represents a hook of the hamate stress fracture that healed with casting in spite of being seen two months from the onset of symptoms. Hamate fractures are reviewed, including the anatomy and treatment options for hook of the hamate fractures.

  19. Talk about "hooking up": the influence of college student social networks on nonrelationship sex.

    PubMed

    Holman, Amanda; Sillars, Alan

    2012-01-01

    This research considers how communication within college student social networks may encourage high-risk sexual relationships. Students (n = 274) described sexual scripts for hooking up and reported on peer communication, sexual behavior, and sexual attitudes. Students described varied hookup scripts, expressed ambivalent attitudes, and reported moderate participation in hookups overall. However, the most common hookup script, suggesting high-risk sexual activity (i.e., unplanned, inebriated sex), was featured in most accounts of students who themselves participated in hookups. Students overestimated how often others were hooking up, and these estimates were especially inflated by students who frequently talked about hooking up with friends. Among students with strong ties to peers, frequent peer communication about sex predicted participation in hookups and favorable attitudes about hooking up. Peer approval also predicted hookup behavior and attitudes.

  20. Structural study and geochronology in the Hook Batholith, Central Zambia

    NASA Astrophysics Data System (ADS)

    Naydenov, K.; Lehmann, J.; Saalmann, K.; Milani, L.; Kinnaird, J.; Charlesworth, G.; Frei, D.

    2013-12-01

    The Pan-African Hook batholith is emplaced N of the Mwembeshi dislocation, a regional scale structure at the contact between Zambezi Belt and Lufilian Arc in Central Zambia. Exposed over 12000 km2 the batholith is composed mainly of fine-grained and coarse-grained porphyritic granites and leucogranites affected by solid-state deformation along high-strain zones. Two main zones of deformation were investigated - the Itezhi-Tezhi Zone (ITZ) in the SW part of the batholith and the Nalusanga Zone (NZ) to the NE. The 2.5 km wide, N-S trending, subvertical ITZ is a medium-grade, pure shear dominated structure, reflecting probably regional scale E-W shortening. In the central part of the zone, augen-gneiss textures developed. Mineral lineations plunging ~40° S are recorded occasionally. The deformed feldspar porphyroclasts show symmetrical tails and rarely sinistral stair-stepping. In the SE part of the Hook batholith the continuation of the ITZ trends E-W. This orientation can be explained by rotation of the original ITZ trend by N-S shortening that also has been recorded in the siliciclastic metasediments S of the contact. S dipping, up to 15 cm wide thrust zones observed in the ITZ area were probably formed during this tectonic event. The 3 km wide NZ is a subvertical to steeply SSW dipping structure, parallel to the NE contact of the batholith, with well-developed foliation and mineral stretching lineations. Field and microstructural analyses defined the NZ as a medium-grade, non-coaxial, sinistral strike-slip shear zone. The transition from weak foliated granite to S-C mylonites and ultramylonites was observed. The sinistral shearing is consistent with E-W shortening in agreement with the tectonic framework of the ITZ. The low grade metasediments to the E of the granite are folded in N to NNW trending structures also implying E-W shortening. Temperature conditions during the deformation in ITZ and NZ inferred from microstructural analyses are about 500°-550°C. The

  1. HookA is a novel dynein-early endosome linker critical for cargo movement in vivo.

    PubMed

    Zhang, Jun; Qiu, Rongde; Arst, Herbert N; Peñalva, Miguel A; Xiang, Xin

    2014-03-17

    Cytoplasmic dynein transports membranous cargoes along microtubules, but the mechanism of dynein-cargo interaction is unclear. From a genetic screen, we identified a homologue of human Hook proteins, HookA, as a factor required for dynein-mediated early endosome movement in the filamentous fungus Aspergillus nidulans. HookA contains a putative N-terminal microtubule-binding domain followed by coiled-coil domains and a C-terminal cargo-binding domain, an organization reminiscent of cytoplasmic linker proteins. HookA-early endosome interaction occurs independently of dynein-early endosome interaction and requires the C-terminal domain. Importantly, HookA interacts with dynein and dynactin independently of HookA-early endosome interaction but dependent on the N-terminal part of HookA. Both dynein and the p25 subunit of dynactin are required for the interaction between HookA and dynein-dynactin, and loss of HookA significantly weakens dynein-early endosome interaction, causing a virtually complete absence of early endosome movement. Thus, HookA is a novel linker important for dynein-early endosome interaction in vivo.

  2. Three-dimensional image and spatial spectrum analysis of behavior of small animal erythrocytes in optical tweezers

    NASA Astrophysics Data System (ADS)

    Chen, Hui Chi; Shen, Wen-Tai; Kong, Yu-Han; Chuang, Chun-Hao

    2008-02-01

    Because of the softness of membrane, erythrocytes (red blood cell, RBC) have different shapes while being immersed in buffer with different osmotic pressure. While affecting by different viruses and illnesses, RBC may change its shape, or its membrane may become rigid. Moreover, RBC will ford and stretch when it is trapped by optical tweezers. Therefore, the behaviors of RBC in optical tweezers raise more discussion. In this report, we set up an optical tweezers to trap RBC of small animals like feline and canine. By adding a long working distance objective to collect the side-viewing image, a 3-D image system was constructed to detect the motion of trapped RBC. To improve the image quality for side-view, an aperture and narrow glass plate were used. From the video of these images and their spatial spectrum, the shape of trapped RBC was studied.

  3. Fluorinated porphyrin tweezer: a powerful reporter of absolute configuration for erythro and threo diols, amino alcohols, and diamines.

    PubMed

    Li, Xiaoyong; Tanasova, Marina; Vasileiou, Chrysoula; Borhan, Babak

    2008-02-13

    A general and sensitive nonempirical protocol to determine the absolute configurations of erythro and threo diols, amino alcohols, and diamines is reported. Binding of diols to the porphyrin tweezer system is greatly enhanced by increasing the Lewis acidity of the metalloporphyrin. Supramolecular complexes formed between the porphyrin tweezer host and chiral substrates exhibited exciton-coupled bisignate CD spectra with predictable signs based on the substituents on the chiral center. The working model suggests that the observed helicity of the porphyrin tweezer is dictated via steric differentiation experienced by the porphyrin ring bound to each chiral center. A variety of erythro and threo substrates were investigated to verify this chiroptical method. Their absolute configurations were unequivocally determined, and thus a general mnemonic is provided for the assignment of chirality.

  4. Quantum Hooke's Law to classify pulse laser induced ultrafast melting

    SciTech Connect

    Hu, Hao; Ding, Hepeng; Liu, Feng

    2015-02-03

    Ultrafast crystal-to-liquid phase transition induced by femtosecond pulse laser excitation is an interesting material's behavior manifesting the complexity of light-matter interaction. There exist two types of such phase transitions: one occurs at a time scale shorter than a picosecond via a nonthermal process mediated by electron-hole plasma formation; the other at a longer time scale via a thermal melting process mediated by electron-phonon interaction. However, it remains unclear what material would undergo which process and why? Here, by exploiting the property of quantum electronic stress (QES) governed by quantum Hooke's law, we classify the transitions by two distinct classes of materials: the faster nonthermal process can only occur in materials like ice having an anomalous phase diagram characterized with dTm/dP < 0, where Tm is the melting temperature and P is pressure, above a high threshold laser fluence; while the slower thermal process may occur in all materials. Especially, the nonthermal transition is shown to be induced by the QES, acting like a negative internal pressure, which drives the crystal into a “super pressing” state to spontaneously transform into a higher-density liquid phase. Our findings significantly advance fundamental understanding of ultrafast crystal-to-liquid phase transitions, enabling quantitative a priori predictions.

  5. Automation Hooks Architecture Trade Study for Flexible Test Orchestration

    NASA Technical Reports Server (NTRS)

    Lansdowne, Chatwin A.; Maclean, John R.; Graffagnino, Frank J.; McCartney, Patrick A.

    2010-01-01

    We describe the conclusions of a technology and communities survey supported by concurrent and follow-on proof-of-concept prototyping to evaluate feasibility of defining a durable, versatile, reliable, visible software interface to support strategic modularization of test software development. The objective is that test sets and support software with diverse origins, ages, and abilities can be reliably integrated into test configurations that assemble and tear down and reassemble with scalable complexity in order to conduct both parametric tests and monitored trial runs. The resulting approach is based on integration of three recognized technologies that are currently gaining acceptance within the test industry and when combined provide a simple, open and scalable test orchestration architecture that addresses the objectives of the Automation Hooks task. The technologies are automated discovery using multicast DNS Zero Configuration Networking (zeroconf), commanding and data retrieval using resource-oriented Restful Web Services, and XML data transfer formats based on Automatic Test Markup Language (ATML). This open-source standards-based approach provides direct integration with existing commercial off-the-shelf (COTS) analysis software tools.

  6. Quantum Hooke's law to classify pulse laser induced ultrafast melting.

    PubMed

    Hu, Hao; Ding, Hepeng; Liu, Feng

    2015-02-03

    Ultrafast crystal-to-liquid phase transition induced by femtosecond pulse laser excitation is an interesting material's behavior manifesting the complexity of light-matter interaction. There exist two types of such phase transitions: one occurs at a time scale shorter than a picosecond via a nonthermal process mediated by electron-hole plasma formation; the other at a longer time scale via a thermal melting process mediated by electron-phonon interaction. However, it remains unclear what material would undergo which process and why? Here, by exploiting the property of quantum electronic stress (QES) governed by quantum Hooke's law, we classify the transitions by two distinct classes of materials: the faster nonthermal process can only occur in materials like ice having an anomalous phase diagram characterized with dTm/dP < 0, where Tm is the melting temperature and P is pressure, above a high threshold laser fluence; while the slower thermal process may occur in all materials. Especially, the nonthermal transition is shown to be induced by the QES, acting like a negative internal pressure, which drives the crystal into a "super pressing" state to spontaneously transform into a higher-density liquid phase. Our findings significantly advance fundamental understanding of ultrafast crystal-to-liquid phase transitions, enabling quantitative a priori predictions.

  7. Quantum Hooke's Law to classify pulse laser induced ultrafast melting

    DOE PAGES

    Hu, Hao; Ding, Hepeng; Liu, Feng

    2015-02-03

    Ultrafast crystal-to-liquid phase transition induced by femtosecond pulse laser excitation is an interesting material's behavior manifesting the complexity of light-matter interaction. There exist two types of such phase transitions: one occurs at a time scale shorter than a picosecond via a nonthermal process mediated by electron-hole plasma formation; the other at a longer time scale via a thermal melting process mediated by electron-phonon interaction. However, it remains unclear what material would undergo which process and why? Here, by exploiting the property of quantum electronic stress (QES) governed by quantum Hooke's law, we classify the transitions by two distinct classes ofmore » materials: the faster nonthermal process can only occur in materials like ice having an anomalous phase diagram characterized with dTm/dP < 0, where Tm is the melting temperature and P is pressure, above a high threshold laser fluence; while the slower thermal process may occur in all materials. Especially, the nonthermal transition is shown to be induced by the QES, acting like a negative internal pressure, which drives the crystal into a “super pressing” state to spontaneously transform into a higher-density liquid phase. Our findings significantly advance fundamental understanding of ultrafast crystal-to-liquid phase transitions, enabling quantitative a priori predictions.« less

  8. Quantum Hooke's Law to Classify Pulse Laser Induced Ultrafast Melting

    PubMed Central

    Hu, Hao; Ding, Hepeng; Liu, Feng

    2015-01-01

    Ultrafast crystal-to-liquid phase transition induced by femtosecond pulse laser excitation is an interesting material's behavior manifesting the complexity of light-matter interaction. There exist two types of such phase transitions: one occurs at a time scale shorter than a picosecond via a nonthermal process mediated by electron-hole plasma formation; the other at a longer time scale via a thermal melting process mediated by electron-phonon interaction. However, it remains unclear what material would undergo which process and why? Here, by exploiting the property of quantum electronic stress (QES) governed by quantum Hooke's law, we classify the transitions by two distinct classes of materials: the faster nonthermal process can only occur in materials like ice having an anomalous phase diagram characterized with dTm/dP < 0, where Tm is the melting temperature and P is pressure, above a high threshold laser fluence; while the slower thermal process may occur in all materials. Especially, the nonthermal transition is shown to be induced by the QES, acting like a negative internal pressure, which drives the crystal into a “super pressing” state to spontaneously transform into a higher-density liquid phase. Our findings significantly advance fundamental understanding of ultrafast crystal-to-liquid phase transitions, enabling quantitative a priori predictions. PMID:25645258

  9. Magnetic tweezers with high permeability electromagnets for fast actuation of magnetic beads

    SciTech Connect

    Chen, La; Offenhäusser, Andreas; Krause, Hans-Joachim

    2015-04-15

    As a powerful and versatile scientific instrument, magnetic tweezers have been widely used in biophysical research areas, such as mechanical cell properties and single molecule manipulation. If one wants to steer bead position, the nonlinearity of magnetic properties and the strong position dependence of the magnetic field in most magnetic tweezers lead to quite a challenge in their control. In this article, we report multi-pole electromagnetic tweezers with high permeability cores yielding high force output, good maneuverability, and flexible design. For modeling, we adopted a piece-wise linear dependence of magnetization on field to characterize the magnetic beads. We implemented a bi-linear interpolation of magnetic field in the work space, based on a lookup table obtained from finite element simulation. The electronics and software were custom-made to achieve high performance. In addition, the effects of dimension and defect on structure of magnetic tips also were inspected. In a workspace with size of 0.1 × 0.1 mm{sup 2}, a force of up to 400 pN can be applied on a 2.8 μm superparamagnetic bead in any direction within the plane. Because the magnetic particle is always pulled towards a tip, the pulling forces from the pole tips have to be well balanced in order to achieve control of the particle’s position. Active video tracking based feedback control is implemented, which is able to work at a speed of up to 1 kHz, yielding good maneuverability of the magnetic beads.

  10. Dynamic properties of molecular tweezers with a bis(2-hydroxyphenyl)pyrimidine backbone.

    PubMed

    Tsuchido, Yoshitaka; Suzaki, Yuji; Ide, Tomohito; Osakada, Kohtaro

    2014-04-14

    4,6-Bis(2-hydroxyphenyl)-2-alkylpyrimidines with two anthryl or 9-ethylnylanthryl substituents at the positions para to the OH groups prefer a U-shaped conformation supported by two intramolecular OH⋅⋅⋅N hydrogen bonds in the solid state and in CDCl3 solution. The compound with a hexyl substituent on the pyrimidine group and two 9-ethynylanthryl arms at the hydroxyphenyl groups forms a 1:1 complex with 2,4,7-trinitrofluorenone. Its association constant K(a) was estimated to be 2100 M(-1) at 298 K, which is larger than those of other molecular tweezers (K(a) < 1000 M(-1)). DFT calculations suggested that the complex adopts a stable conformation supported by intramolecular hydrogen bonds among the OH groups and the pyrimidine ring as well as by intermolecular π-π interaction between the anthryl groups and 2,4,7-trinitrofluorenone. Addition of nBu4NF to a solution of the molecular tweezers or their complexes causes the cleavage of one or two OH⋅⋅⋅N hydrogen bonds, formation of new O⋅⋅⋅HF hydrogen bonds, and changes in the molecular conformation. The resulting structure of the molecular tweezers contains nonparallel anthryl groups, which do not bind the guest molecule. Photochemical measurements on 4,6-bis(2-hydroxyphenyl)-2-methylpyrimidine with two anthryl substituents showed negligible luminescence (quantum yield ϕ<0.01), owing to photoinduced electron transfer of the molecule with a U-shaped structure. However, the O-hexylated compound exhibits emission from the anthryl groups with ϕ=0.39.

  11. Magnetic tweezers with high permeability electromagnets for fast actuation of magnetic beads.

    PubMed

    Chen, La; Offenhäusser, Andreas; Krause, Hans-Joachim

    2015-04-01

    As a powerful and versatile scientific instrument, magnetic tweezers have been widely used in biophysical research areas, such as mechanical cell properties and single molecule manipulation. If one wants to steer bead position, the nonlinearity of magnetic properties and the strong position dependence of the magnetic field in most magnetic tweezers lead to quite a challenge in their control. In this article, we report multi-pole electromagnetic tweezers with high permeability cores yielding high force output, good maneuverability, and flexible design. For modeling, we adopted a piece-wise linear dependence of magnetization on field to characterize the magnetic beads. We implemented a bi-linear interpolation of magnetic field in the work space, based on a lookup table obtained from finite element simulation. The electronics and software were custom-made to achieve high performance. In addition, the effects of dimension and defect on structure of magnetic tips also were inspected. In a workspace with size of 0.1 × 0.1 mm(2), a force of up to 400 pN can be applied on a 2.8 μm superparamagnetic bead in any direction within the plane. Because the magnetic particle is always pulled towards a tip, the pulling forces from the pole tips have to be well balanced in order to achieve control of the particle's position. Active video tracking based feedback control is implemented, which is able to work at a speed of up to 1 kHz, yielding good maneuverability of the magnetic beads.

  12. Optical macro-tweezers: trapping of highly motile micro-organisms

    NASA Astrophysics Data System (ADS)

    Thalhammer, G.; Steiger, R.; Bernet, S.; Ritsch-Marte, M.

    2011-04-01

    Optical micromanipulation stands for contact-free handling of microscopic particles by light. Optical forces can manipulate non-absorbing objects in a large range of sizes, e.g., from biological cells down to cold atoms. Recently much progress has been made going from the micro- down to the nanoscale. Less attention has been paid to going the other way, trapping increasingly large particles. Optical tweezers typically employ a single laser beam tightly focused by a microscope objective of high numerical aperture to stably trap a particle in three dimensions (3D). As the particle size increases, stable 3D trapping in a single-beam trap requires scaling up the optical power, which eventually induces adverse biological effects. Moreover, the restricted field of view of standard optical tweezers, dictated by the use of high NA objectives, is particularly unfavorable for catching actively moving specimens. Both problems can be overcome by traps with counter-propagating beams. Our 'macro-tweezers' are especially designed to trap highly motile organisms, as they enable three-dimensional all-optical trapping and guiding in a volume of 2 × 1 × 2 mm3. Here we report for the first time the optical trapping of large actively swimming organisms, such as for instance Euglena protists and dinoflagellates of up to 70 µm length. Adverse bio-effects are kept low since trapping occurs outside high intensity regions, e.g., focal spots. We expect our approach to open various possibilities in the contact-free handling of 50-100 µm sized objects that could hitherto not be envisaged, for instance all-optical holding of individual micro-organisms for taxonomic identification, selective collecting or tagging.

  13. Magnetic tweezers with high permeability electromagnets for fast actuation of magnetic beads

    NASA Astrophysics Data System (ADS)

    Chen, La; Offenhäusser, Andreas; Krause, Hans-Joachim

    2015-04-01

    As a powerful and versatile scientific instrument, magnetic tweezers have been widely used in biophysical research areas, such as mechanical cell properties and single molecule manipulation. If one wants to steer bead position, the nonlinearity of magnetic properties and the strong position dependence of the magnetic field in most magnetic tweezers lead to quite a challenge in their control. In this article, we report multi-pole electromagnetic tweezers with high permeability cores yielding high force output, good maneuverability, and flexible design. For modeling, we adopted a piece-wise linear dependence of magnetization on field to characterize the magnetic beads. We implemented a bi-linear interpolation of magnetic field in the work space, based on a lookup table obtained from finite element simulation. The electronics and software were custom-made to achieve high performance. In addition, the effects of dimension and defect on structure of magnetic tips also were inspected. In a workspace with size of 0.1 × 0.1 mm2, a force of up to 400 pN can be applied on a 2.8 μm superparamagnetic bead in any direction within the plane. Because the magnetic particle is always pulled towards a tip, the pulling forces from the pole tips have to be well balanced in order to achieve control of the particle's position. Active video tracking based feedback control is implemented, which is able to work at a speed of up to 1 kHz, yielding good maneuverability of the magnetic beads.

  14. Genetic and biochemical analysis of the flagellar hook of Treponema phagedenis.

    PubMed Central

    Limberger, R J; Slivienski, L L; Samsonoff, W A

    1994-01-01

    The periplasmic flagellum of Treponema phagedenis consists of the flagellar filament and hook-basal body. We report here a characterization of the hook gene and flagellar hook of T. phagedenis, and in the process of this analysis we found evidence that the hook polypeptide is likely cross-linked in situ. A T. phagedenis genomic library was screened with a Treponema pallidum antiserum, and the DNA segments from several positive plaques were subcloned and sequenced. DNA sequencing of two overlapping segments revealed a 1,389-nucleotide (nt) open reading frame (ORF) with a deduced amino acid sequence that was 36% identical to that of FlgE, the hook polypeptide of Salmonella typhimurium. This gene was designated T. phagedenis flgE. Beginning at 312 nt downstream from flgE was a partial ORF of 486 nt with a deduced amino acid sequence that was 33% identical to that of MotA of Bacillus subtilis, a polypeptide that enables flagellar rotation. Upstream of flgE, separated by 39 nt, was a partial (291-nt) ORF with a deduced amino acid sequence that was homologous to that of ORF8, a polypeptide of unknown function located in an operon encoding polypeptides involved in motility of B. subtilis. The T. phagedenis flgE gene was cloned into an Escherichia coli protein expression plasmid, and the purified recombinant protein was used to prepare a FlgE antiserum. Western blots (immunoblots) of whole-cell lysates probed with this antiserum revealed a 55-kDa polypeptide and a ladder of polypeptide bands with increasing molecular masses. T. phagedenis hooks were then isolated and purified, and electron microscopic analysis revealed that the morphology of the hooks resembled that in other bacteria. The hooks were slightly curved and had an average length of 69 +/- 8 nm and a diameter of 23 +/- 1 nm. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blots of purified hook preparations using the FlgE antiserum also revealed a polypeptide ladder, suggesting that the

  15. Optical tweezers study of red blood cell aggregation and disaggregation in plasma and protein solutions

    NASA Astrophysics Data System (ADS)

    Lee, Kisung; Kinnunen, Matti; Khokhlova, Maria D.; Lyubin, Evgeny V.; Priezzhev, Alexander V.; Meglinski, Igor; Fedyanin, Andrey A.

    2016-03-01

    Kinetics of optical tweezers (OT)-induced spontaneous aggregation and disaggregation of red blood cells (RBCs) were studied at the level of cell doublets to assess RBC interaction mechanics. Measurements were performed under in vitro conditions in plasma and fibrinogen and fibrinogen + albumin solutions. The RBC spontaneous aggregation kinetics was found to exhibit different behavior depending on the cell environment. In contrast, the RBC disaggregation kinetics was similar in all solutions qualitatively and quantitatively, demonstrating a significant contribution of the studied proteins to the process. The impact of the study on assessing RBC interaction mechanics and the protein contribution to the reversible RBC aggregation process is discussed.

  16. The Cryptococcus neoformans capsule: lessons from the use of optical tweezers and other biophysical tools

    PubMed Central

    Pontes, Bruno; Frases, Susana

    2015-01-01

    The fungal pathogen Cryptococcus neoformans causes life-threatening infections in immunocompromised individuals, representing one of the leading causes of morbidity and mortality in AIDS patients. The main virulence factor of C. neoformans is the polysaccharide capsule; however, many fundamental aspects of capsule structure and function remain poorly understood. Recently, important capsule properties were uncovered using optical tweezers and other biophysical techniques, including dynamic and static light scattering, zeta potential and viscosity analysis. This review provides an overview of the latest findings in this emerging field, explaining the impact of these findings on our understanding of C. neoformans biology and resistance to host immune defenses. PMID:26157436

  17. The Cryptococcus neoformans capsule: lessons from the use of optical tweezers and other biophysical tools.

    PubMed

    Pontes, Bruno; Frases, Susana

    2015-01-01

    The fungal pathogen Cryptococcus neoformans causes life-threatening infections in immunocompromised individuals, representing one of the leading causes of morbidity and mortality in AIDS patients. The main virulence factor of C. neoformans is the polysaccharide capsule; however, many fundamental aspects of capsule structure and function remain poorly understood. Recently, important capsule properties were uncovered using optical tweezers and other biophysical techniques, including dynamic and static light scattering, zeta potential and viscosity analysis. This review provides an overview of the latest findings in this emerging field, explaining the impact of these findings on our understanding of C. neoformans biology and resistance to host immune defenses.

  18. Measuring stall forces in vivo with optical tweezers through light momentum changes

    NASA Astrophysics Data System (ADS)

    Mas, J.; Farré, A.; López-Quesada, C.; Fernández, X.; Martín-Badosa, E.; Montes-Usategui, M.

    2011-10-01

    The stall forces of processive molecular motors have been widely studied previously in vitro. Even so, in vivo experiments are required for determining the actual performance of each molecular motor in its natural environment. We report the direct measurement of light momentum changes in single beam optical tweezers as a suitable technique for measuring forces inside living cells, where few alternatives exist. The simplicity of this method, which does not require force calibration for each trapped object, makes it convenient for measuring the forces involved in fast dynamic biological processes such us intracellular traffic. Here we present some measurements of the stall force of processive molecular motors inside living Allium cepa cells.

  19. Programmable manipulation of motile cells in optoelectronic tweezers using a grayscale image

    NASA Astrophysics Data System (ADS)

    Choi, Wonjae; Nam, Seong-Won; Hwang, Hyundoo; Park, Sungsu; Park, Je-Kyun

    2008-10-01

    This paper describes a grayscale optoelectronic tweezers (OET) which allows adjustment of the electric field strength at each position of OET. A grayscale light image was used to pattern vertical electric field strength on an OET. As an electric field depends on the brightness at each point, the brighter light patterns generate the stronger electric field in the OET. Its feasibility for application to cell manipulation was demonstrated by aligning highly motile protozoan cells in vertical direction. Depending on the brightness of each pixel, the behaviors of aligned cells varied due to the different electric field strength to each cell.

  20. Laser-induced fusion of human embryonic stem cells with optical tweezers

    SciTech Connect

    Chen Shuxun; Wang Xiaolin; Sun Dong; Cheng Jinping; Han Cheng, Shuk; Kong, Chi-Wing; Li, Ronald A.

    2013-07-15

    We report a study on the laser-induced fusion of human embryonic stem cells (hESCs) at the single-cell level. Cells were manipulated by optical tweezers and fused under irradiation with pulsed UV laser at 355 nm. Successful fusion was indicated by green fluorescence protein transfer. The influence of laser pulse energy on the fusion efficiency was investigated. The fused products were viable as gauged by live cell staining. Successful fusion of hESCs with somatic cells was also demonstrated. The reported fusion outcome may facilitate studies of cell differentiation, maturation, and reprogramming.

  1. Laser-induced fusion of human embryonic stem cells with optical tweezers

    NASA Astrophysics Data System (ADS)

    Chen, Shuxun; Cheng, Jinping; Kong, Chi-Wing; Wang, Xiaolin; Han Cheng, Shuk; Li, Ronald A.; Sun, Dong

    2013-07-01

    We report a study on the laser-induced fusion of human embryonic stem cells (hESCs) at the single-cell level. Cells were manipulated by optical tweezers and fused under irradiation with pulsed UV laser at 355 nm. Successful fusion was indicated by green fluorescence protein transfer. The influence of laser pulse energy on the fusion efficiency was investigated. The fused products were viable as gauged by live cell staining. Successful fusion of hESCs with somatic cells was also demonstrated. The reported fusion outcome may facilitate studies of cell differentiation, maturation, and reprogramming.

  2. Fast acoustic tweezers for the two-dimensional manipulation of individual particles in microfluidic channels

    NASA Astrophysics Data System (ADS)

    Tran, S. B. Q.; Marmottant, P.; Thibault, P.

    2012-09-01

    This paper presents a microfluidic device that implements standing surface acoustic waves in order to handle single cells, droplets, and generally particles. The particles are moved in a very controlled manner by the two-dimensional drifting of a standing wave array, using a slight frequency modulation of two ultrasound emitters around their resonance. These acoustic tweezers allow any type of motion at velocities up to few ×10 mm/s, while the device transparency is adapted for optical studies. The possibility of automation provides a critical step in the development of lab-on-a-chip cell sorters and it should find applications in biology, chemistry, and engineering domains.

  3. Optical Tweezers Analysis of Double-Stranded DNA Denaturation in the Presence of Urea

    NASA Astrophysics Data System (ADS)

    Zhu, Chunli; Li, Jing

    2016-09-01

    Urea is a kind of denaturant prone to form hydrogen bonds with the electronegative centers of the nitrogenous bases, threatening the stability of hydrogen bonds between DNA base pairs. In this paper, the stability and stiffness of DNA double helix influenced by urea are investigated at single-molecule level using optical tweezers. Experimental results show that DNA's double helix stability and stiffness both decrease with increasing urea concentration. In addition, the re-forming of ruptured hydrogen bonds between the base pairs is blocked by urea as the tension on DNA is released.

  4. Photovoltaic tweezers an emergent tool for applications in nano and bio-technology

    NASA Astrophysics Data System (ADS)

    Carrascosa, M.; García-Cabañes, A.; Jubera, M.; Elvira, I.; Burgos, H.; Bella, J. L.; Agulló-López, F.; Muñoz-Martínez, J. F.; Alcázar, A.

    2015-05-01

    An overview of the work recently conducted by our group on the development and applications of photovoltaic tweezers is presented. It includes the analysis of the physical basis of the method and the main achievements in its experimental implementation. Particular attention will be paid to the main potential applications and first demonstrations of its use in nano- and bio-technology. Specifically: i) fabrication of metallic nanoestructures for plasmonic applications, ii) development of diffractive components, iii) manipulation and patterning (1D and 2D) of various types of bio-objects (spores or pollen…) and iv) effects of PV fields of LiNbO3 in tumour cells.

  5. Template stripped double nanohole in a gold film for nano-optical tweezers.

    PubMed

    Zehtabi-Oskuie, Ana; Zinck, Aurora A; Gelfand, Ryan M; Gordon, Reuven

    2014-12-12

    Double nanohole (DNH) laser tweezers can optically trap and manipulate objects such as proteins, nanospheres, and other nanoparticles; however, precise fabrication of those DNHs has been expensive with low throughput. In this work, template stripping was used to pattern DNHs with gaps as small as 7 nm, in optically thick Au films. These DNHs were used to trap streptavidin as proof of operation. The structures were processed multiple times from the same template to demonstrate reusability. Template stripping is a promising method for high-throughput, reproducible, and cost efficient fabrication of DNH apertures for optical trapping. PMID:25407447

  6. A journey in bioinspired supramolecular chemistry: from molecular tweezers to small molecules that target myotonic dystrophy

    PubMed Central

    2016-01-01

    Summary This review summarizes part of the author’s research in the area of supramolecular chemistry, beginning with his early life influences and early career efforts in molecular recognition, especially molecular tweezers. Although designed to complex DNA, these hosts proved more applicable to the field of host–guest chemistry. This early experience and interest in intercalation ultimately led to the current efforts to develop small molecule therapeutic agents for myotonic dystrophy using a rational design approach that heavily relies on principles of supramolecular chemistry. How this work was influenced by that of others in the field and the evolution of each area of research is highlighted with selected examples. PMID:26877815

  7. Measurement of the total optical angular momentum transfer in optical tweezers.

    PubMed

    Parkin, Simon; Knöner, Gregor; Nieminen, Timo A; Heckenberg, Norman R; Rubinsztein-Dunlop, Halina

    2006-07-24

    We describe a way to determine the total angular momentum, both spin and orbital, transferred to a particle trapped in optical tweezers. As an example an LG(02) mode of a laser beam with varying degrees of circular polarisation is used to trap and rotate an elongated particle with a well defined geometry. The method successfully estimates the total optical torque applied to the particle. For this technique, there is no need to measure the viscous drag on the particle, as it is an optical measurement. Therefore, knowledge of the particle's size and shape, as well as the fluid's viscosity, is not required.

  8. Nano-bio-optomechanics: nanoaperture tweezers probe single nanoparticles, proteins, and their interactions

    NASA Astrophysics Data System (ADS)

    Gordon, Reuven

    2015-09-01

    Nanoparticles in the single digit nanometer range can be easily isolated and studied with low optical powers using nanoaperture tweezers. We have studied individual proteins and their interactions with small molecules, DNA and antibodies. Recently, using the fluctuations of the trapped object, we have pioneered a new way to "listen" to the vibrations of nanoparticles in the 100 GHz - 1 THz range; the approach is called extraordinary acoustic Raman (EAR). EAR gives unprecedented low frequency spectra of individual proteins in solution, allowing for identification and analysis, as well as probing their role in biological functions. We have also used EAR to study the elastic properties, shape and size of various individual nanoparticles.

  9. Assessing the Personal Negative Impacts of Hooking Up Experienced by College Students: Gender Differences and Mental Health.

    PubMed

    Napper, Lucy E; Montes, Kevin S; Kenney, Shannon R; LaBrie, Joseph W

    2016-09-01

    Hooking up is a normative behavior among college students that is associated with a range of positive and negative consequences. While previous research has primarily focused on women's negative experiences of hooking up, the current study explored the relationships among hooking up behaviors, psychological distress, and a broad range of negative effects of hooking up in both male and female college students. Using a multisite sample of college students, we developed the 14-item Negative Impact of Hookups Inventory (NIHI) to assess negative health outcomes, emotional responses, and social consequences associated with hooking up. Unprotected sex and having more hookup partners were associated with greater negative experiences of hooking up. Contrary to expectations, there were no gender differences in the total number of negative hookup effects, although men reported more frequent hookups. In addition, negative impacts of hooking up were positively associated with psychological distress regardless of gender. The NIHI may offer a useful tool to assess the negative impacts of hooking up. Understanding students' hookup experiences is an important step toward developing targeted health interventions related to hooking up behavior in young adult populations.

  10. Closeup of QF-106 release hook for Eclipse program

    NASA Technical Reports Server (NTRS)

    1997-01-01

    View of the release hook on the QF-106 that allowed the pilot to release the tow rope extending from the C-141A tow plane in the Eclipse project. In 1997 and 1998, the Dryden Flight Research Center at Edwards, California, supported and hosted a Kelly Space & Technology, Inc. project called Eclipse, which sought to demonstrate the feasibility of a reusable tow-launch vehicle concept. The project goal was to successfully tow, inflight, a modified QF-106 delta-wing aircraft with an Air Force C-141A transport aircraft. This would demonstrate the possibility of towing and launching an actual launch vehicle from behind a tow plane. Dryden was the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden provided engineering, instrumentation, simulation, modification, maintenance, range support, and research pilots for the test program. The Air Force Flight Test Center (AFFTC), Edwards, California, supplied the C-141A transport aircraft and crew and configured the aircraft as needed for the tests. The AFFTC also provided the concept and detail design and analysis as well as hardware for the tow system and QF-106 modifications. Dryden performed the modifications to convert the QF-106 drone into the piloted EXD-01 (Eclipse eXperimental Demonstrator-01) experimental aircraft. Kelly Space & Technology hoped to use the results gleaned from the tow test in developing a series of low-cost, reusable launch vehicles. These tests demonstrated the validity of towing a delta-wing aircraft having high wing loading, validated the tow simulation model, and demonstrated various operational procedures, such as ground processing of in-flight maneuvers and emergency abort scenarios.

  11. Hooked Flare Ribbons and Flux-rope-related QSL Footprints

    NASA Astrophysics Data System (ADS)

    Zhao, Jie; Gilchrist, Stuart A.; Aulanier, Guillaume; Schmieder, Brigitte; Pariat, Etienne; Li, Hui

    2016-05-01

    We studied the magnetic topology of active region 12158 on 2014 September 10 and compared it with the observations before and early in the flare that begins at 17:21 UT (SOL2014-09-10T17:45:00). Our results show that the sigmoidal structure and flare ribbons of this active region observed by the Solar Dynamics Observatory/Atmospheric Imaging Assembly can be well reproduced from a Grad–Rubin nonlinear force-free field extrapolation method. Various inverse-S- and inverse-J-shaped magnetic field lines, which surround a coronal flux rope, coincide with the sigmoid as observed in different extreme-ultraviolet wavelengths, including its multithreaded curved ends. Also, the observed distribution of surface currents in the magnetic polarity where it was not prescribed is well reproduced. This validates our numerical implementation and setup of the Grad–Rubin method. The modeled double inverse-J-shaped quasi-separatrix layer (QSL) footprints match the observed flare ribbons during the rising phase of the flare, including their hooked parts. The spiral-like shape of the latter may be related to a complex pre-eruptive flux rope with more than one turn of twist, as obtained in the model. These ribbon-associated flux-rope QSL footprints are consistent with the new standard flare model in 3D, with the presence of a hyperbolic flux tube located below an inverse-teardrop-shaped coronal QSL. This is a new step forward forecasting the locations of reconnection and ribbons in solar flares and the geometrical properties of eruptive flux ropes.

  12. Using electrical and optical tweezers to facilitate studies of molecular motors.

    PubMed

    Arsenault, Mark E; Sun, Yujie; Bau, Haim H; Goldman, Yale E

    2009-06-28

    Dielectrophoresis was used to stretch and suspend actin filaments across a trench etched between two electrodes patterned on a glass slide. Optical tweezers were used to bring a motor protein-coated bead into close proximity to a pre-selected, suspended actin filament, facilitating the attachment of the myosin-coated bead to the filament. The clearance beneath the filament allowed the bead to move freely along and around its filamentous track, unhindered by solid surfaces. Using defocused images, the three-dimensional position of the bead was tracked as a function of time to obtain its trajectory. Experiments were carried out with myosin V and myosin X. Both motor proteins followed left-handed helical paths with the myosin X motor exhibiting a shorter pitch than the myosin V. The combined use of electrostatic and optical tweezers facilitates the preparation of motility assays with suspended tracks. Variants of this technique will enable higher complexity experiments in vitro to better understand the behavior of motors in cells. PMID:19506758

  13. Optical tweezers as a tool for the functional analysis of neuronal cell membrane receptors

    NASA Astrophysics Data System (ADS)

    Zahn, Martin; Goetz, Bernhard; Faissner, Andreas; Seeger, Stefan

    1997-12-01

    Recognition molecules play important regulatory roles during pattern formation of the nervous system. We here show that optical tweezers can successfully be used to functionally and quantitatively compare neuron interactions with glycoproteins of the extracellular matrix. We measured the forces of interactions between tenascin-C, laminin-1 and fibronectin coated polystyrol beads and the cell membranes of different nervous cell-types. This was achieved by applying the optical tweezers as picotensometer to pull the adhering beads with varying axial forces. To this aim, the minimal laser powers for capturing polystyrene beads in different solutions were measured. With the corresponding Archimedes Forces the acting forces in the range of pN were calculated. The glycoproteins showed significantly different behavior. Specific binding was shown by antibody experiments, in which the binding forces were significantly reduced for the corresponding antigens but not for the other glycoproteins. Together with experiments concerning the moving within the plane of the membrane and the cleavage with glycosyl-phosphatidyl-inositol-anchors specific phospholipase-C we suggest that these glycoproteins interact with neurons by different mechanisms.

  14. Optical tweezers as a tool for the functional analysis of neuronal cell membrane receptors

    NASA Astrophysics Data System (ADS)

    Zahn, Martin; Goetz, Bernhard; Faissner, Andreas; Seeger, Stefan

    1998-01-01

    Recognition molecules play important regulatory roles during pattern formation of the nervous system. We here show that optical tweezers can successfully be used to functionally and quantitatively compare neuron interactions with glycoproteins of the extracellular matrix. We measured the forces of interactions between tenascin-C, laminin-1 and fibronectin coated polystyrol beads and the cell membranes of different nervous cell-types. This was achieved by applying the optical tweezers as picotensometer to pull the adhering beads with varying axial forces. To this aim, the minimal laser powers for capturing polystyrene beads in different solutions were measured. With the corresponding Archimedes Forces the acting forces in the range of pN were calculated. The glycoproteins showed significantly different behavior. Specific binding was shown by antibody experiments, in which the binding forces were significantly reduced for the corresponding antigens but not for the other glycoproteins. Together with experiments concerning the moving within the plane of the membrane and the cleavage with glycosyl-phosphatidyl-inositol-anchors specific phospholipase-C we suggest that these glycoproteins interact with neurons by different mechanisms.

  15. Application of optical tweezers and excimer laser to study protoplast fusion

    NASA Astrophysics Data System (ADS)

    Kantawang, Titirat; Samipak, Sompid; Limtrakul, Jumras; Chattham, Nattaporn

    2015-07-01

    Protoplast fusion is a physical phenomenon that two protoplasts come in contact and fuse together. Doing so, it is possible to combine specific genes from one protoplast to another during fusion such as drought resistance and disease resistance. There are a few possible methods to induce protoplast fusion, for example, electrofusion and chemical fusion. In this study, chemical fusion was performed with laser applied as an external force to enhance rate of fusion and observed under a microscope. Optical tweezers (1064 nm with 100X objective N.A. 1.3) and excimer laser (308 nm LMU-40X-UVB objective) were set with a Nikon Ti-U inverted microscope. Samples were prepared by soaking in hypertonic solution in order to induce cell plasmolysis. Elodea Canadensis and Allium cepa plasmolysed leaves were cut and observed under microscope. Concentration of solution was varied to induce difference turgor pressures on protoplasts pushing at cell wall. Free protoplasts in solution were trapped by optical tweezers to study the effect of Polyethylene glycol (PEG) solution. PEG was diluted by Ca+ solution during the process to induced protoplast cell contact and fusion. Possibility of protoplast fusion by excimer laser was investigated and found possible. Here we report a novel tool for plant cell fusion using excimer laser. Plant growth after cell fusion is currently conducted.

  16. Crosstalk elimination in the detection of dual-beam optical tweezers by spatial filtering

    SciTech Connect

    Ott, Dino; Oddershede, Lene B.; Reihani, S. Nader S.

    2014-05-15

    In dual-beam optical tweezers, the accuracy of position and force measurements is often compromised by crosstalk between the two detected signals, this crosstalk leading to systematic and significant errors on the measured forces and distances. This is true both for dual-beam optical traps where the splitting of the two traps is done by polarization optics and for dual optical traps constructed by other methods, e.g., holographic tweezers. If the two traps are orthogonally polarized, most often crosstalk is minimized by inserting polarization optics in front of the detector; however, this method is not perfect because of the de-polarization of the trapping beam introduced by the required high numerical aperture optics. Here we present a simple and easy-to-implement method to efficiently eliminate crosstalk. The method is based on spatial filtering by simply inserting a pinhole at the correct position and is highly compatible with standard back focal plane photodiode based detection of position and force. Our spatial filtering method reduces crosstalk up to five times better than polarization filtering alone. The effectiveness is dependent on pinhole size and distance between the traps and is here quantified experimentally and reproduced by theoretical modeling. The method here proposed will improve the accuracy of force-distance measurements, e.g., of single molecules, performed by dual-beam optical traps and hence give much more scientific value for the experimental efforts.

  17. A novel single fiber optical tweezers based on light-induced thermal effect

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Liu, Zhihai; Liang, Peibo; Zhang, Yaxun; Zhao, Enming; Yang, Jun; Yuan, Libo

    2015-07-01

    We present and demonstrate a novel single fiber optical tweezers which can trap and launch (clean) a target polystyrene (PS) microsphere (diameter~10μm) with independent control by using two wavelengths beams: 980nm and 1480nm. We employ 980nm laser beam to trap the target PS microsphere by molding the fiber tip into a special tapered-shape; and we employ 1480nm laser beam to launch the trapped PS microsphere with a certain velocity by using the thermophoresis force generated from the thermal effect due to the high absorption of the 1480nm laser beams in water. When the launching force is smaller than the trapping force, the PS microsphere will be trapped near the fiber tip, and the launching force will blow away other PS microspheres in the workspace realizing the cleaning function; When the launching force is larger than the trapping force, the trapped PS microsphere will be launched away from the fiber tip with a certain velocity and towards a certain direction, realizing the launching function. This PS microsphere launching and cleaning functions expanded new features of single fiber optical tweezers, providing for the possibility of more practical applications in the micro manipulation research fields.

  18. Thermal tweezers for manipulation of adatoms and nanoparticles on surfaces heated by interfering laser pulses

    SciTech Connect

    Mason, Daniel R.; Gramotnev, Dmitri K.; Gramotnev, Galina

    2008-09-15

    We conduct the detailed numerical investigation of a nanomanipulation and nanofabrication technique--thermal tweezers with dynamic evolution of surface temperature, caused by absorption of interfering laser pulses in a thin metal film or any other absorbing surface. This technique uses random Brownian forces in the presence of strong temperature modulation (surface thermophoresis) for effective manipulation of particles/adatoms with nanoscale resolution. Substantial redistribution of particles on the surface is shown to occur with the typical size of the obtained pattern elements of {approx}100 nm, which is significantly smaller than the wavelength of the incident pulses used (532 nm). It is also demonstrated that thermal tweezers based on surface thermophoresis of particles/adatoms are much more effective in achieving permanent high maximum-to-minimum concentration ratios than bulk thermophoresis, which is explained by the interaction of diffusing particles with the periodic lattice potential on the surface. Typically required pulse regimes including pulse lengths and energies are also determined. The approach is applicable for reproducing any holographically achievable surface patterns, and can thus be used for engineering properties of surfaces including nanopatterning and design of surface metamaterials.

  19. In situ microparticle analysis of marine phytoplankton cells with infrared laser-based optical tweezers

    NASA Astrophysics Data System (ADS)

    Sonek, G. J.; Liu, Y.; Iturriaga, R. H.

    1995-11-01

    We describe the application of infrared optical tweezers to the in situ microparticle analysis of marine phytoplankton cells. A Nd:YAG laser (lambda=3D 1064 nm) trap is used to confine and manipulate single Nannochloris and Synechococcus cells in an enriched seawater medium while spectral fluorescence and Lorenz-Mie backscatter signals are simultaneously acquired under a variety of excitation and trapping conditions. Variations in the measured fluorescence intensities of chlorophyll a (Chl a) and phycoerythrin pigments in phytoplankton cells are observed. These variations are related, in part, to basic intrasample variability, but they also indicate that increasing ultraviolet-exposure time and infrared trapping power may have short-term effects on cellular physiology that are related to Chl a photobleaching and laser-induced heating, respectively. The use of optical tweezers to study the factors that affect marine cell physiology and the processes of absorption, scattering, and attenuation by individual cells, organisms, and particulate matter that contribute to optical closure on a microscopic scale are also described. (c)1995 Optical Society of America

  20. Analysis of cell mechanics in single vinculin-deficient cells using a magnetic tweezer

    NASA Technical Reports Server (NTRS)

    Alenghat, F. J.; Fabry, B.; Tsai, K. Y.; Goldmann, W. H.; Ingber, D. E.

    2000-01-01

    A magnetic tweezer was constructed to apply controlled tensional forces (10 pN to greater than 1 nN) to transmembrane receptors via bound ligand-coated microbeadswhile optically measuring lateral bead displacements within individual cells. Use of this system with wild-type F9 embryonic carcinoma cells and cells from a vinculin knockout mouse F9 Vin (-/-) revealed much larger differences in the stiffness of the transmembrane integrin linkages to the cytoskeleton than previously reported using related techniques that measured average mechanical properties of large cell populations. The mechanical properties measured varied widely among cells, exhibiting an approximately log-normal distribution. The median lateral bead displacement was 2-fold larger in F9 Vin (-/-) cells compared to wild-type cells whereas the arithmetic mean displacement only increased by 37%. We conclude that vinculin serves a greater mechanical role in cells than previously reported and that this magnetic tweezer device may be useful for probing the molecular basis of cell mechanics within single cells. Copyright 2000 Academic Press.

  1. Laser scanning confocal microscopy and laser tweezers based experiments to understand dentine-bacteria interactions

    NASA Astrophysics Data System (ADS)

    Peng, Sum Chee; Mohanty, Samarendra; Gupta, P. K.; Kishen, Anil

    2007-02-01

    Failure of endodontic treatment is commonly due to Enterococcal infection. In this study influence of chemical treatments of type-I collagen membrane by chemical agents commonly used in endodontic treatment on Enterococcus faecalis cell adherence was evaluated. In order to determine the change in number of adhering bacteria after chemical treatment, confocal laser scanning microscopy was used. For this, overnight culture of E faecalis in All Culture broth was applied to chemically treated type-I collagen membrane. It was found that Ca(OH) II treated groups had statistically significant (p value=0.05) increase in population of bacteria adherence. The change in adhesion force between bacteria and collagen was determined by using optical tweezers (1064 nm). For this experiment, Type-I collagen membrane was soaked for 5 mins in a media that contained 50% all culture media and 50% saturated Ca(OH) II . The membrane was spread on the coverslip, on which diluted bacterial suspension was added. The force of laser tweezers on the bacteria was estimated at different trap power levels using viscous drag method and trapping stiffness was calculated using Equipartition theorem method. Presence of Ca(OH) II was found to increase the cell-substrate adherence force from 0.38pN to >2.1pN. Together, these experiments show that it was highly probable that the increase in adherence to collagen was due to a stronger adhesion in the presence of Ca (OH) II.

  2. In situ calibrating optical tweezers with sinusoidal-wave drag force method

    NASA Astrophysics Data System (ADS)

    Li, Di; Zhou, Jin-Hua; Hu, Xin-Yao; Zhong, Min-Cheng; Gong, Lei; Wang, Zi-Qiang; Wang, Hao-Wei; Li, Yin-Mei

    2015-11-01

    We introduce a corrected sinusoidal-wave drag force method (SDFM) into optical tweezers to calibrate the trapping stiffness of the optical trap and conversion factor (CF) of photodetectors. First, the theoretical analysis and experimental result demonstrate that the correction of SDFM is necessary, especially the error of no correction is up to 11.25% for a bead of 5 μm in diameter. Second, the simulation results demonstrate that the SDFM has a better performance in the calibration of optical tweezers than the triangular-wave drag force method (TDFM) and power spectrum density method (PSDM) at the same signal-to-noise ratio or trapping stiffness. Third, in experiments, the experimental standard deviations of calibration of trapping stiffness and CF with the SDFM are about less than 50% of TDFM and PSDM especially at low laser power. Finally, the experiments of stretching DNA verify that the in situ calibration with the SDFM improves the measurement stability and accuracy. Project supported by the National Natural Science Foundation of China (Grant Nos. 11302220, 11374292, and 31100555) and the National Basic Research Program of China (Grant No. 2011CB910402).

  3. Luminescent nanoparticle trapping with far-field optical fiber-tip tweezers.

    PubMed

    Decombe, Jean-Baptiste; Valdivia-Valero, Francisco J; Dantelle, Géraldine; Leménager, Godefroy; Gacoin, Thierry; Colas des Francs, Gérard; Huant, Serge; Fick, Jochen

    2016-03-01

    We report stable and reproducible trapping of luminescent dielectric YAG:Ce(3+) nanoparticles with sizes down to 60 nm using far-field dual fiber tip optical tweezers. The particles are synthesized by a specific glycothermal route followed by an original protected annealing step, resulting in significantly enhanced photostability. The tweezers properties are analyzed by studying the trapped particles residual Brownian motion using video or reflected signal records. The trapping potential is harmonic in the transverse direction to the fiber axis, but reveals interference fringes in the axial direction. Large trapping stiffness of 35 and 2 pN μm(-1) W(-1) is measured for a fiber tip-to-tip distance of 3 μm and 300 nm and 60 nm particles, respectively. The forces acting on the nanoparticles are discussed within the dipolar approximation (gradient and scattering force contributions) or exact calculations using the Maxwell Stress Tensor formalism. Prospects for trapping even smaller particles are discussed. PMID:26883602

  4. Holographic optical tweezers: microassembling of shape-complementary 2PP building blocks

    NASA Astrophysics Data System (ADS)

    Ksouri, Sarah Isabelle; Mattern, Manuel; Köhler, Jannis; Aumann, Andreas; Zyla, Gordon; Ostendorf, Andreas

    2014-09-01

    Based on an ongoing trend in miniaturization and due to the increased complexity in MEMS-technology new methods of assembly need to be developed. Recent developments show that particularly optical forces are suitable to meet the requirements. The unique advantages of optical tweezers (OT) are attractive due to their contactless and precise manipulation forces. Spherical as well as non-spherical shaped pre-forms can already be assembled arbitrarily by using appropriate beam profiles generated by a spatial light modulator (SLM), resulting in a so called holographic optical tweezer (HOT) setup. For the fabrication of shape-complementary pre-forms, a two-photon-polymerization (2PP) process is implemented. The purpose of the process combination of 2PP and HOT is the development of an optical microprocessing platform for assembling arbitrary building blocks. Here, the optimization of the 2PP and HOT processes is described in order to allow the fabrication and 3D assembling of interlocking components. Results include the analysis of the dependence of low and high qualities of 2PP microstructures and their manufacturing accuracy for further HOT assembling processes. Besides, the applied detachable interlocking connections of the 2PP building blocks are visualized by an application example. In the long-term a full optical assembly method without applying any mechanical forces can thus be realized.

  5. Auto- and cross-power spectral analysis of dual trap optical tweezer experiments using Bayesian inference

    NASA Astrophysics Data System (ADS)

    von Hansen, Yann; Mehlich, Alexander; Pelz, Benjamin; Rief, Matthias; Netz, Roland R.

    2012-09-01

    The thermal fluctuations of micron-sized beads in dual trap optical tweezer experiments contain complete dynamic information about the viscoelastic properties of the embedding medium and—if present—macromolecular constructs connecting the two beads. To quantitatively interpret the spectral properties of the measured signals, a detailed understanding of the instrumental characteristics is required. To this end, we present a theoretical description of the signal processing in a typical dual trap optical tweezer experiment accounting for polarization crosstalk and instrumental noise and discuss the effect of finite statistics. To infer the unknown parameters from experimental data, a maximum likelihood method based on the statistical properties of the stochastic signals is derived. In a first step, the method can be used for calibration purposes: We propose a scheme involving three consecutive measurements (both traps empty, first one occupied and second empty, and vice versa), by which all instrumental and physical parameters of the setup are determined. We test our approach for a simple model system, namely a pair of unconnected, but hydrodynamically interacting spheres. The comparison to theoretical predictions based on instantaneous as well as retarded hydrodynamics emphasizes the importance of hydrodynamic retardation effects due to vorticity diffusion in the fluid. For more complex experimental scenarios, where macromolecular constructs are tethered between the two beads, the same maximum likelihood method in conjunction with dynamic deconvolution theory will in a second step allow one to determine the viscoelastic properties of the tethered element connecting the two beads.

  6. Counter-propagating dual-trap optical tweezers based on linear momentum conservation

    SciTech Connect

    Ribezzi-Crivellari, M.; Huguet, J. M.; Ritort, F.

    2013-04-15

    We present a dual-trap optical tweezers setup which directly measures forces using linear momentum conservation. The setup uses a counter-propagating geometry, which allows momentum measurement on each beam separately. The experimental advantages of this setup include low drift due to all-optical manipulation, and a robust calibration (independent of the features of the trapped object or buffer medium) due to the force measurement method. Although this design does not attain the high-resolution of some co-propagating setups, we show that it can be used to perform different single molecule measurements: fluctuation-based molecular stiffness characterization at different forces and hopping experiments on molecular hairpins. Remarkably, in our setup it is possible to manipulate very short tethers (such as molecular hairpins with short handles) down to the limit where beads are almost in contact. The setup is used to illustrate a novel method for measuring the stiffness of optical traps and tethers on the basis of equilibrium force fluctuations, i.e., without the need of measuring the force vs molecular extension curve. This method is of general interest for dual trap optical tweezers setups and can be extended to setups which do not directly measure forces.

  7. Optical tweezers and non-ratiometric fluorescent-dye-based studies of respiration in sperm mitochondria

    NASA Astrophysics Data System (ADS)

    Chen, Timothy; Shi, Linda Z.; Zhu, Qingyuan; Chandsawangbhuwana, Charlie; Berns, Michael W.

    2011-04-01

    The purpose of this study is to investigate how the mitochondrial membrane potential affects sperm motility using laser tweezers and a non-ratiometric fluorescent probe, DiOC6(3). A 1064 nm Nd:YVO4 continuous wave laser was used to trap motile sperm at a power of 450 mW in the trap spot. Using customized tracking software, the curvilinear velocity (VCL) and the escape force from the laser tweezers were measured. Human (Homo sapiens), dog (Canis lupis familiaris) and drill (Mandrillus leucophaeus) sperm were treated with DiOC6(3) to measure the membrane potential in the mitochondria-rich sperm midpieces. Sperm from all three species exhibited an increase in fluorescence when treated with the DiOC6(3). When a cyanide inhibitor (CCCP) of aerobic respiration was applied, sperm of all three species exhibited a reduction in fluorescence to pre-dye levels. With respect to VCL and escape force, the CCCP had no effect on dog or human sperm, suggesting a major reliance upon anaerobic respiration (glycolysis) for ATP in these two species. Based on the preliminary study on drill sperm, CCCP caused a drop in the VCL, suggesting potential reliance on both glycolysis and aerobic respiration for motility. The results demonstrate that optical trapping in combination with DiOC6(3) is an effective way to study sperm motility and energetics.

  8. Application of laser tweezers Raman spectroscopy techniques to the monitoring of single cell response to stimuli

    NASA Astrophysics Data System (ADS)

    Chan, James W.; Liu, Rui; Matthews, Dennis L.

    2012-06-01

    Laser tweezers Raman spectroscopy (LTRS) combines optical trapping with micro-Raman spectroscopy to enable label-free biochemical analysis of individual cells and small biological particles in suspension. The integration of the two technologies greatly simplifies the sample preparation and handling of suspension cells for spectroscopic analysis in physiologically meaningful conditions. In our group, LTRS has been used to study the effects of external perturbations, both chemical and mechanical, on the biochemistry of the cell. Single cell dynamics can be studied by performing longitudinal studies to continuously monitor the response of the cell as it interacts with its environment. The ability to carry out these measurements in-vitro makes LTRS an attractive tool for many biomedical applications. Here, we discuss the use of LTRS to study the response of cancer cells to chemotherapeutics and bacteria cells to antibiotics and show that the life cycle and apoptosis of the cells can be detected. These results show the promise of LTRS for drug discovery/screening, antibiotic susceptibility testing, and chemotherapy response monitoring applications. In separate experiments, we study the response of red blood cells to the mechanical forces imposed on the cell by the optical tweezers. A laser power dependent deoxygenation of the red blood cell in the single beam trap is reported. Normal, sickle cell, and fetal red blood cells have a different behavior that enables the discrimination of the cell types based on this mechanochemical response. These results show the potential utility of LTRS for diagnosing and studying red blood cell diseases.

  9. A study of red blood cell deformability in diabetic retinopathy using optical tweezers

    NASA Astrophysics Data System (ADS)

    Smart, Thomas J.; Richards, Christopher J.; Bhatnagar, Rhythm; Pavesio, Carlos; Agrawal, Rupesh; Jones, Philip H.

    2015-08-01

    Diabetic retinopathy (DR) is a microvascular complication of diabetes mellitus (DM) in which high blood sugar levels cause swelling, leaking and occlusions in the blood vessels of the retina, often resulting in a loss of sight. The microvascular system requires red blood cells (RBCs) to undergo significant cellular deformation in order to pass through vessels whose diameters are significantly smaller than their own. There is evidence to suggest that DM impairs the deformability of RBCs, and this loss of deformability has been associated with diabetic kidney disease (or nephropathy) - another microvascular complication of DM. However, it remains unclear whether reduced deformability of RBCs correlates with the presence of DR. Here we present an investigation into the deformability of RBCs in patients with diabetic retinopathy using optical tweezers. To extract a value for the deformability of RBCs we use a dual-trap optical tweezers set-up to stretch individual RBCs. RBCs are trapped directly (i.e. without micro-bead handles), so rotate to assume a `side-on' orientation. Video microscopy is used to record the deformation events, and shape analysis software is used to determine parameters such as initial and maximum RBC length, allowing us to calculate the deformability for each RBC. A small decrease in deformability of diabetes cells subject to this stretching protocol is observed when compared to control cells. We also report on initial results on three dimensional imaging of individual RBCs using defocussing microscopy.

  10. A combined double-tweezers and wavelength-tunable laser nanosurgery microscope

    NASA Astrophysics Data System (ADS)

    Zhu, Qingyuan; Parsa, Shahab; Shi, Linda Z.; Harsono, Marcellinus; Wakida, Nicole M.; Berns, Michael W.

    2009-08-01

    In two previous studies we have conducted combined laser subcellular microsurgery and optical trapping on chromosomes in living cells1, 2. In the latter study we used two separate microscopes, one for the trap and one for the laser scissors, thus requiring that we move the cell specimen between microscopes and relocate the irradiated cells. In the former paper we combined the 1064 nm laser trap and the 532 nm laser scissors into one microscope. However, in neither study did we have multiple traps allowing for more flexibility in application of the trapping force. In the present paper we describe a combined laser scissors and tweezers microscope that (1) has two trapping beams (both moveable via rapid scanning mirrors (FSM- 300, Newport Corp.), (2) uses a short pulsed tunable 200 fs 710-990 nm Ti:Sapphire laser for laser microsurgery, and (3) also has the option to use a 337 nm 4 ns UV laser for subcellular surgery. The two laser tweezers and either of the laser ablation beams can be used in a cell surgery experiment. The system is integrated into the robotic-controlled RoboLase system3. Experiments on mitotic chromosomes of rat kangaroo PTK2 cells are described.

  11. Measurement of particle motion in optical tweezers embedded in a Sagnac interferometer.

    PubMed

    Galinskiy, Ivan; Isaksson, Oscar; Salgado, Israel Rebolledo; Hautefeuille, Mathieu; Mehlig, Bernhard; Hanstorp, Dag

    2015-10-19

    We have constructed a counterpropagating optical tweezers setup embedded in a Sagnac interferometer in order to increase the sensitivity of position tracking for particles in the geometrical optics regime. Enhanced position determination using a Sagnac interferometer has previously been described theoretically by Taylor et al. [Journal of Optics 13, 044014 (2011)] for Rayleigh-regime particles trapped in an antinode of a standing wave. We have extended their theory to a case of arbitrarily-sized particles trapped with orthogonally-polarized counter-propagating beams. The working distance of the setup was sufficiently long to optically induce particle oscillations orthogonally to the axis of the tweezers with an auxiliary laser beam. Using these oscillations as a reference, we have experimentally shown that Sagnac-enhanced back focal plane interferometry is capable of providing an improvement of more than 5 times in the signal-to-background ratio, corresponding to a more than 30-fold improvement of the signal-to-noise ratio. The experimental results obtained are consistent with our theoretical predictions. In the experimental setup, we used a method of optical levitator-assisted liquid droplet delivery in air based on commercial inkjet technology, with a novel method to precisely control the size of droplets. PMID:26480368

  12. Natural user interface as a supplement of the holographic Raman tweezers

    NASA Astrophysics Data System (ADS)

    Tomori, Zoltan; Kanka, Jan; Kesa, Peter; Jakl, Petr; Sery, Mojmir; Bernatova, Silvie; Antalik, Marian; Zemánek, Pavel

    2014-09-01

    Holographic Raman tweezers (HRT) manipulates with microobjects by controlling the positions of multiple optical traps via the mouse or joystick. Several attempts have appeared recently to exploit touch tablets, 2D cameras or Kinect game console instead. We proposed a multimodal "Natural User Interface" (NUI) approach integrating hands tracking, gestures recognition, eye tracking and speech recognition. For this purpose we exploited "Leap Motion" and "MyGaze" low-cost sensors and a simple speech recognition program "Tazti". We developed own NUI software which processes signals from the sensors and sends the control commands to HRT which subsequently controls the positions of trapping beams, micropositioning stage and the acquisition system of Raman spectra. System allows various modes of operation proper for specific tasks. Virtual tools (called "pin" and "tweezers") serving for the manipulation with particles are displayed on the transparent "overlay" window above the live camera image. Eye tracker identifies the position of the observed particle and uses it for the autofocus. Laser trap manipulation navigated by the dominant hand can be combined with the gestures recognition of the secondary hand. Speech commands recognition is useful if both hands are busy. Proposed methods make manual control of HRT more efficient and they are also a good platform for its future semi-automated and fully automated work.

  13. Chemotaxis study using optical tweezers to observe the strength and directionality of forces of Leishmania amazonensis

    NASA Astrophysics Data System (ADS)

    Pozzo, Liliana d. Y.; Fontes, Adriana; de Thomaz, André A.; Barbosa, Luiz C.; Ayres, Diana C.; Giorgio, Selma; Cesar, Carlos L.

    2006-08-01

    The displacements of a dielectric microspheres trapped by an optical tweezers (OT) can be used as a force transducer for mechanical measurements in life sciences. This system can measure forces on the 50 femto Newtons to 200 pico Newtons range, of the same order of magnitude of a typical forces induced by flagellar motion. The process in which living microorganisms search for food and run away from poison chemicals is known is chemotaxy. Optical tweezers can be used to obtain a better understanding of chemotaxy by observing the force response of the microorganism when placed in a gradient of attractors and or repelling chemicals. This report shows such observations for the protozoa Leishmania amazomenzis, responsible for the leishmaniasis, a serious tropical disease. We used a quadrant detector to monitor the movement of the protozoa for different chemicals gradient. This way we have been able to observe both the force strength and its directionality. The characterization of the chemotaxis of these parasites can help to understand the infection mechanics and improve the diagnosis and the treatments employed for this disease.

  14. Grasp and force based taxonomy of split-hook prosthetic terminal devices.

    PubMed

    Belter, Joseph T; Reynolds, Bo C; Dollar, Aaron M

    2014-01-01

    In this paper, we analyze the use of the body-powered split-hook prosthetic terminal device, which is the most commonly used upper-limb prosthesis. We developed two taxonomies of split-hook use, one on grasp shape and one on force exertion, illustrating the functional capabilities and use cases of the device. Video captured from an amputee using a body-powered split-hook during a number of common activities was used to lend weight to the completeness of the classifications. These taxonomies serve to establish a common language and means of comparing the types of grasps achievable by simple terminal devices to those of advanced myoelectric terminal devices or even human hands. The first taxonomy categorizes the grasp type based on the contacts with the environment while the second is categorized by the method and limitation of force exertion. We discuss the difference between grasps capable of holding objects compared to those that are capable of acquiring objects and the importance of non-prehensile uses of the split-hook. The classification schemes lay the groundwork for further detailed study of split-hook use, and the discussion of the use cases described may help guide terminal device developers to create improved prostheses.

  15. Differential growth at the apical hook: all roads lead to auxin

    PubMed Central

    Abbas, Mohamad; Alabadí, David; Blázquez, Miguel A.

    2013-01-01

    The apical hook is a developmentally regulated structure that appears in dicotyledonous seedlings when seeds germinate buried in the soil. It protects the shoot apical meristem and cotyledons from damage while the seedling is pushing upwards seeking for light, and it is formed by differential cell expansion between both sides of the upper part of the hypocotyl. Its apparent simplicity and the fact that it is dispensable when seedlings are grown in vitro have converted the apical hook in one of the favorite experimental models to study the regulation of differential growth. The involvement of hormones –especially auxin—in this process was manifested already in the early studies. Remarkably, a gradient of this hormone across the hook curvature is instrumental to complete its development, similar to what has been proposed for other processes involving the bending of an organ, such as tropic responses. In agreement with this, other hormones—mainly gibberellins and ethylene—and the light, regulate in a timely and interconnected manner the auxin gradient to promote hook development and its opening, respectively. Here, we review the latest findings obtained mainly with the apical hook of Arabidopsis thaliana, paying special attention to the molecular mechanisms for the cross-regulation between the different hormone signaling pathways that underlie this developmental process. PMID:24204373

  16. No evidence of sperm conjugate formation in an Australian mouse bearing sperm with three hooks

    PubMed Central

    Firman, Renée C; Bentley, Blair; Bowman, Faye; Marchant, Fernando García-Solís; Parthenay, Jahmila; Sawyer, Jessica; Stewart, Tom; O'Shea, James E

    2013-01-01

    Sperm conjugation occurs when two or more sperm physically unite for motility or transport through the female reproductive tract. In many muroid rodent species, sperm conjugates have been shown to form by a single, conspicuous apical hook located on the sperm head. These sperm “trains” have been reported to be highly variable in size and, despite all the heads pointing in roughly the same direction, exhibit a relatively disordered arrangement. In some species, sperm “trains” have been shown to enhance sperm swimming speed, and thus have been suggested to be advantageous in sperm competition. Here, we assessed the behavior of sperm in the sandy inland mouse (Pseudomys hermannsburgensis), a muroid rodent that bears sperm with three apical hooks. First, we accrued genetic evidence of multiple paternity within “wild” litters to unequivocally show that sperm competition does occur in this species. Following this we utilized both in vitro and in vivo methodologies to determine whether sandy inland mouse sperm conjugate to form motile trains. Our observations of in vitro preparations of active sperm revealed that sandy inland mouse sperm exhibit rapid, progressive motility as individual cells only. Similarly, histological sections of the reproductive tracts of mated females revealed no in vivo evidence of sperm conjugate formation. We conclude that the unique, three-hooked morphology of the sandy inland mouse sperm does not facilitate the formation of motile conjugates, and discuss our findings in relation to the different hypotheses for the evolution of the muroid rodent hook/s. PMID:23919134

  17. The influence of pornography on sexual scripts and hooking up among emerging adults in college.

    PubMed

    Braithwaite, Scott R; Coulson, Gwen; Keddington, Krista; Fincham, Frank D

    2015-01-01

    The explosive growth in access to the Internet has led to a commensurate increase in the availability, anonymity, and affordability of pornography. An emerging body of research has shown associations between pornography and certain behaviors and attitudes; yet, how pornography actually influences these outcomes has not been documented. In two studies (Study 1 N = 969; Study 2 N = 992) we examined the hypothesis that pornography influences potentially risky sexual behavior (hooking up) among emerging adults via sexual scripts. Our results demonstrate that more frequent viewing of pornography is associated with a higher incidence of hooking up and a higher number of unique hook up partners. We replicated these effects both cross-sectionally and longitudinally while accounting for the stability of hook ups over the course of an academic semester. We also demonstrated that more frequent viewing of pornography is associated with having had more previous sexual partners of all types, more one occasion sexual partners ("one night stands"), and plans to have a higher number of sexual partners in the future. Finally, we provided evidence that more permissive sexual scripts mediated the association between more frequent pornography viewing and hooking up. We discuss these findings with an eye toward mitigating potential personal and public health risks among emerging adults. PMID:25239659

  18. Grasp and force based taxonomy of split-hook prosthetic terminal devices.

    PubMed

    Belter, Joseph T; Reynolds, Bo C; Dollar, Aaron M

    2014-01-01

    In this paper, we analyze the use of the body-powered split-hook prosthetic terminal device, which is the most commonly used upper-limb prosthesis. We developed two taxonomies of split-hook use, one on grasp shape and one on force exertion, illustrating the functional capabilities and use cases of the device. Video captured from an amputee using a body-powered split-hook during a number of common activities was used to lend weight to the completeness of the classifications. These taxonomies serve to establish a common language and means of comparing the types of grasps achievable by simple terminal devices to those of advanced myoelectric terminal devices or even human hands. The first taxonomy categorizes the grasp type based on the contacts with the environment while the second is categorized by the method and limitation of force exertion. We discuss the difference between grasps capable of holding objects compared to those that are capable of acquiring objects and the importance of non-prehensile uses of the split-hook. The classification schemes lay the groundwork for further detailed study of split-hook use, and the discussion of the use cases described may help guide terminal device developers to create improved prostheses. PMID:25571512

  19. The influence of pornography on sexual scripts and hooking up among emerging adults in college.

    PubMed

    Braithwaite, Scott R; Coulson, Gwen; Keddington, Krista; Fincham, Frank D

    2015-01-01

    The explosive growth in access to the Internet has led to a commensurate increase in the availability, anonymity, and affordability of pornography. An emerging body of research has shown associations between pornography and certain behaviors and attitudes; yet, how pornography actually influences these outcomes has not been documented. In two studies (Study 1 N = 969; Study 2 N = 992) we examined the hypothesis that pornography influences potentially risky sexual behavior (hooking up) among emerging adults via sexual scripts. Our results demonstrate that more frequent viewing of pornography is associated with a higher incidence of hooking up and a higher number of unique hook up partners. We replicated these effects both cross-sectionally and longitudinally while accounting for the stability of hook ups over the course of an academic semester. We also demonstrated that more frequent viewing of pornography is associated with having had more previous sexual partners of all types, more one occasion sexual partners ("one night stands"), and plans to have a higher number of sexual partners in the future. Finally, we provided evidence that more permissive sexual scripts mediated the association between more frequent pornography viewing and hooking up. We discuss these findings with an eye toward mitigating potential personal and public health risks among emerging adults.

  20. Optical trapping of a spherically symmetric sphere in the ray-optics regime: a model for optical tweezers upon cells.

    PubMed

    Chang, Yi-Ren; Hsu, Long; Chi, Sien

    2006-06-01

    Since their invention in 1986, optical tweezers have become a popular manipulation and force measurement tool in cellular and molecular biology. However, until recently there has not been a sophisticated model for optical tweezers on trapping cells in the ray-optics regime. We present a model for optical tweezers to calculate the optical force upon a spherically symmetric multilayer sphere representing a common biological cell. A numerical simulation of this model shows that not only is the magnitude of the optical force upon a Chinese hamster ovary cell significantly three times smaller than that upon a polystyrene bead of the same size, but the distribution of the optical force upon a cell is also much different from that upon a uniform particle, and there is a 30% difference in the optical trapping stiffness of these two cases. Furthermore, under a small variant condition for the refractive indices of any adjacent layers of the sphere, this model provides a simple approximation to calculate the optical force and the stiffness of an optical tweezers system. PMID:16724154

  1. Optical trapping of a spherically symmetric sphere in the ray-optics regime: a model for optical tweezers upon cells

    SciTech Connect

    Chang Yiren; Hsu Long; Chi Sien

    2006-06-01

    Since their invention in 1986, optical tweezers have become a popular manipulation and force measurement tool in cellular and molecular biology. However, until recently there has not been a sophisticated model for optical tweezers on trapping cells in the ray-optics regime. We present a model for optical tweezers to calculate the optical force upon a spherically symmetric multilayer sphere representing a common biological cell. A numerical simulation of this model shows that not only is the magnitude of the optical force upon a Chinese hamster ovary cell significantly three times smaller than that upon a polystyrene bead of the same size, but the distribution of the optical force upon a cell is also much different from that upon a uniform particle, and there is a 30% difference in the optical trapping stiffness of these two cases. Furthermore, under a small variant condition for the refractive indices of any adjacent layers of the sphere, this model provides a simple approximation to calculate the optical force and the stiffness of an optical tweezers system.

  2. Responsive supramolecular polymers based on the bis[alkynylplatinum(II)] terpyridine molecular tweezer/arene recognition motif.

    PubMed

    Tian, Yu-Kui; Shi, Yong-Gang; Yang, Zhi-Shuai; Wang, Feng

    2014-06-10

    Supramolecular polymers are constructed based on the novel bis[alkynylplatinum(II)] terpyridine molecular tweezer/pyrene recognition motif. Successive addition of anthracene as the diene and cyano-functionalized dienophile triggers the reversible supramolecular polymerization process, thus advancing the concept of utilizing Diels-Alder chemistry to access stimuli-responsive materials in compartmentalized systems.

  3. Physiological response to hooking stress in hatchery and wild rainbow trout (Salmo gairdneri)

    USGS Publications Warehouse

    Wydoski, R.S.; Wedemeyer, G.A.; Nelson, N. C.

    1976-01-01

    This study evaluated the physiological response of rainbow trout to hooking stress after being played under standardized conditions (0–5 min) and estimated the time needed for recovery (to 72 h). Plasma osmolality and chloride measurements were used to evaluate osmoregulatory disturbances and gill ion-exchange function, and plasma glucose was used as an index of the generalized nonspecific physiological stress response. Hooking stress caused more severe blood chemistry differences in hatchery fish than in wild trout. Also, hooking stress imposed a greater stress on larger than on smaller hatchery rainbow trout. Higher water temperatures aggravated the delayed hyperglycemia and hyperchloremia in both hatchery and wild trout but only about 3 days were needed for recovery at 4, 10, or 20 C.

  4. CRAFTING THE MICROWORLD: HOW ROBERT HOOKE CONSTRUCTED KNOWLEDGE ABOUT SMALL THINGS.

    PubMed

    Lawson, Ian

    2016-03-20

    This paper investigates the way in which Robert Hooke constructed his microscopical observations. His Micrographia is justifiably famous for its detailed engravings, which communicated Hooke's observations of tiny nature to his readers, but less attention has been paid to how he went about making the observations themselves. In this paper I explore the relationship between the materiality of his instrument and the epistemic images he produced. Behind the pictures lies an array of hidden materials, and the craft knowledge it took to manipulate them. By investigating the often counter-theoretical and conflicting practices of his ingenious microscope use, I demonstrate the way in which Hooke crafted the microworld for his readers, giving insight into how early modern microscopy was understood by its practitioners and audience. PMID:27017680

  5. The discovery of microorganisms by Robert Hooke and Antoni Van Leeuwenhoek, fellows of the Royal Society.

    PubMed

    Gest, Howard

    2004-05-01

    The existence of microscopic organisms was discovered during the period 1665-83 by two Fellows of The Royal Society, Robert Hooke and Antoni van Leeuwenhoek. In Micrographia (1665), Hooke presented the first published depiction of a microganism, the microfungus Mucor. Later, Leeuwenhoek observed and described microscopic protozoa and bacteria. These important revelations were made possible by the ingenuity of Hooke and Leeuwenhoek in fabricating and using simple microscopes that magnified objects from about 25-fold to 250-fold. After a lapse of more than 150 years, microscopy became the backbone of our understanding of the roles of microbes in the causation of infectious diseases and the recycling of chemical elements in the biosphere. PMID:15209075

  6. Toward a more complete understanding of reactions to hooking up among college women.

    PubMed

    Owen, Jesse; Quirk, Kelley; Fincham, Frank

    2014-01-01

    Hooking up, a relatively common behavior among young adults, refers to a casual sexual encounter, ranging from kissing to sexual intercourse, without an expectation of ongoing physical encounters or relational commitment. Reactions to hooking up have examined psychosocial outcomes as a proxy for specific reactions. The present study examined the reactions of 190 college women, with a specific focus on the effect of hooking up on their social/peer network, their sexual/romantic sense of self, and their academic performance. Results demonstrated large positive effects for sexual/romantic reactions and social/academic engagement reactions in comparison with negative personal reactions. In addition, higher ratings of anxious attachment, loneliness, and relational/intimacy sex motives were related to less positive reactions, highlighting the importance of attachment and motivations behind hookup experiences. Implications for educational practice and future research are offered.

  7. The discovery of microorganisms by Robert Hooke and Antoni Van Leeuwenhoek, fellows of the Royal Society.

    PubMed

    Gest, Howard

    2004-05-01

    The existence of microscopic organisms was discovered during the period 1665-83 by two Fellows of The Royal Society, Robert Hooke and Antoni van Leeuwenhoek. In Micrographia (1665), Hooke presented the first published depiction of a microganism, the microfungus Mucor. Later, Leeuwenhoek observed and described microscopic protozoa and bacteria. These important revelations were made possible by the ingenuity of Hooke and Leeuwenhoek in fabricating and using simple microscopes that magnified objects from about 25-fold to 250-fold. After a lapse of more than 150 years, microscopy became the backbone of our understanding of the roles of microbes in the causation of infectious diseases and the recycling of chemical elements in the biosphere.

  8. Repositioning of premaxilla in bilateral cleft lip and palate using a "J-hook headgear".

    PubMed

    Kecik, Defne; Enacar, Ayhan

    2006-11-01

    The purpose of this clinical approach is to present the successful treatment of the severely protruded and extruded premaxilla with high-pull J-hook headgear. Two patients with bilateral cleft lip and palate deformity and a protruding and extruding premaxilla causing a deep bite were treated with high-pull J-hook headgear and fixed orthodontic appliances. The lateral cephalometric measurements before and after orthodontic treatment were evaluated with Ricketts analysis. The premaxillae of the two patients were repositioned, correcting the deep overbite and overjet and a well-functioning occlusion was attained. The repositioning of an inferiorly positioned and protruded premaxilla with J-hook headgear is an alternative treatment approach compared to other treatment modalities.

  9. CRAFTING THE MICROWORLD: HOW ROBERT HOOKE CONSTRUCTED KNOWLEDGE ABOUT SMALL THINGS.

    PubMed

    Lawson, Ian

    2016-03-20

    This paper investigates the way in which Robert Hooke constructed his microscopical observations. His Micrographia is justifiably famous for its detailed engravings, which communicated Hooke's observations of tiny nature to his readers, but less attention has been paid to how he went about making the observations themselves. In this paper I explore the relationship between the materiality of his instrument and the epistemic images he produced. Behind the pictures lies an array of hidden materials, and the craft knowledge it took to manipulate them. By investigating the often counter-theoretical and conflicting practices of his ingenious microscope use, I demonstrate the way in which Hooke crafted the microworld for his readers, giving insight into how early modern microscopy was understood by its practitioners and audience.

  10. Detection of isolated hook fractures 36 months after implantation of the Ancure endograft: a cautionary note.

    PubMed

    Najibi, S; Steinberg, J; Katzen, B T; Zemel, G; Lin, P H; Weiss, V J; Lumsden, A B; Chaikof, E L

    2001-08-01

    Two cases of delayed (36-month) Ancure hook fracture are reported in patients who experienced a decrease in aneurysm size and no evidence of endoleak. Both devices used redesigned hooks and are otherwise identical to those devices currently used in clinical practice. Notably, hook fractures were not visualized on all abdominal radiographic views, nor were they noted on the final "institutional" report by the reviewing radiologist. Careful clinical follow-up with multiple-view abdominal radiographs remains essential for all patients treated with an endovascular graft, with particular attention directed to the integrity of the metal components. The broader clinical significance of this observation with respect to the Ancure endograft remains to be defined. PMID:11496291

  11. Simultaneous Multiple Preoperative Localizations of Small Pulmonary Lesions Using a Short Hook Wire and Suture System

    SciTech Connect

    Iguchi, Toshihiro Hiraki, Takao Gobara, Hideo Fujiwara, Hiroyasu Matsui, Yusuke; Sugimoto, Seiichiro Toyooka, Shinichi Oto, Takahiro Miyoshi, Shinichiro; Kanazawa, Susumu

    2015-08-15

    PurposeThe aim of the study was to retrospectively evaluate simultaneous multiple hook wire placement outcomes before video-assisted thoracoscopic surgery (VATS).Materials and MethodsThirty-eight procedures were performed on 35 patients (13 men and 22 women; mean age, 59.9 years) with 80 lung lesions (mean diameter 7.9 mm) who underwent simultaneous multiple hook wire placements for preoperative localizations. The primary endpoints were technical success, complications, procedure duration, and VATS outcome; secondary endpoints included comparisons between technical success rates, complication rates, and procedure durations of the 238 single-placement procedures performed. Complications were also evaluated.ResultsIn 35 procedures including 74 lesions, multiple hook wire placements were technically successful; in the remaining three procedures, the second target placement was aborted because of massive pneumothorax after the first placement. Although complications occurred in 34 procedures, no grade 3 or above adverse event was observed. The mean procedure duration was 36.4 ± 11.8 min. Three hook wires dislodged during patient transport to the surgical suite. Seventy-four successfully marked lesions were resected. Six lesions without hook wires were successfully resected after detection by palpation with an additional mini-thoracotomy or using subtle pleural changes as a guide. The complication rates and procedure durations of multiple-placement procedures were significantly higher (P = 0.04) and longer (P < 0.001) than those in the single-placement group, respectively, while the technical success rate was not significantly different (P = 0.051).ConclusionsSimultaneous multiple hook wire placements before VATS were clinically feasible, but increased the complication rate and lengthened the procedure time.

  12. Removal of a sex toy under general anaesthesia using a bimanual-technique and Magill’s forceps: A case report

    PubMed Central

    Obinwa, Obinna; Robertson, Ian; Stokes, Maurice

    2015-01-01

    Introduction Phallic objects may cause large bowel obstruction if not promptly removed. A bi-manual technique with the aid of a Magill’s forceps is presented here. Presentation of case A 68-year-old man presented to the emergency department with severe lower abdominal discomfort, distension and inability to pass urine, flatus or bowel motions. He had inserted a phallic object in the rectum 10 hours prior to presentation and had been unable to remove same. Abdominal examination was remarkable for distension with tenderness also elicited suprapubically and in the left iliac fossa. The foreign body was barely palpable per rectum. Plain radiographs showed prominent left-sided colonic segments. Following the trial of a manual attempt at removal in the emergency department, a decision was made to remove this under anaesthesia due to worsening symptoms. The phallic object was successfully removed under general anaesthesia using bi-manual manipulation assisted by a pair of Magill’s forceps. Discussion The method of removal of phallic objects varies from one individual case to another. In the presence of obstruction, a quick decision must be made for removal under general anaesthesia and the patient will also need to be consented for laparotomy. Previous literature described a “cork-in-bottle” technique using myomectomy screws as well as use of single-incision laparoscopic surgery (SILS) ports for removal of phallic objects. Conclusion Extraction of phallic objects requires ingenuity. We describe another minimally invasive technique of removal that adds to the literature, thereby limiting the need for laparotomy and open removal of foreign bodies. PMID:26322821

  13. 78 FR 23864 - Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Cod by Catcher/Processors Using Hook...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-23

    ... harvest specifications for groundfish of the GOA (78 FR 13162, February 26, 2013). In accordance with Sec... Economic Zone Off Alaska; Pacific Cod by Catcher/Processors Using Hook-and-line Gear in the Western... directed fishing for Pacific cod by catcher/processors (C/Ps) using hook-and-line gear in the...

  14. 33 CFR 334.102 - Sandy Hook Bay, Naval Weapons Station EARLE, Piers and Terminal Channel, restricted area...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Sandy Hook Bay, Naval Weapons... DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.102 Sandy Hook Bay, Naval Weapons Station EARLE, Piers..., shall be enforced by the Commanding Officer, Naval Weapons Station Earle, and/or other persons...

  15. 33 CFR 334.102 - Sandy Hook Bay, Naval Weapons Station EARLE, Piers and Terminal Channel, restricted area...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Sandy Hook Bay, Naval Weapons... DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.102 Sandy Hook Bay, Naval Weapons Station EARLE, Piers..., shall be enforced by the Commanding Officer, Naval Weapons Station Earle, and/or other persons...

  16. 33 CFR 334.102 - Sandy Hook Bay, Naval Weapons Station EARLE, Piers and Terminal Channel, restricted area...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Sandy Hook Bay, Naval Weapons... DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.102 Sandy Hook Bay, Naval Weapons Station EARLE, Piers..., shall be enforced by the Commanding Officer, Naval Weapons Station Earle, and/or other persons...

  17. 33 CFR 334.102 - Sandy Hook Bay, Naval Weapons Station EARLE, Piers and Terminal Channel, restricted area...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Sandy Hook Bay, Naval Weapons... DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.102 Sandy Hook Bay, Naval Weapons Station EARLE, Piers..., shall be enforced by the Commanding Officer, Naval Weapons Station Earle, and/or other persons...

  18. 78 FR 25004 - Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Cod by Catcher Vessels Using Hook...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-29

    ... specifications for groundfish of the GOA (78 FR 13162, February 26, 2013). In accordance with Sec. 679.20(d)(1)(i... Economic Zone Off Alaska; Pacific Cod by Catcher Vessels Using Hook-and-Line Gear in the Western Regulatory... directed fishing for Pacific cod by catcher vessels (CVs) using hook-and-line gear in the...

  19. 77 FR 20571 - Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Cod by Catcher Vessels Using Hook...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-05

    ... groundfish of the GOA (77 FR 15194, March 14, 2012). In accordance with Sec. 679.20(d)(1)(i), the... Economic Zone Off Alaska; Pacific Cod by Catcher Vessels Using Hook-and-Line Gear in the Western Regulatory... directed fishing for Pacific cod by catcher vessels (CVs) using hook-and-line gear in the...

  20. The hooked element in the pes of turtles (Testudines): a global approach to exploring primary and secondary homology

    PubMed Central

    Joyce, Walter G; Werneburg, Ingmar; Lyson, Tyler R

    2013-01-01

    The hooked element in the pes of turtles was historically identified by most palaeontologists and embryologists as a modified fifth metatarsal, and often used as evidence to unite turtles with other reptiles with a hooked element. Some recent embryological studies, however, revealed that this element might represent an enlarged fifth distal tarsal. We herein provide extensive new myological and developmental observations on the hooked element of turtles, and re-evaluate its primary and secondary homology using all available lines of evidence. Digital count and timing of development are uninformative. However, extensive myological, embryological and topological data are consistent with the hypothesis that the hooked element of turtles represents a fusion of the fifth distal tarsal with the fifth metatarsal, but that the fifth distal tarsal dominates the hooked element in pleurodiran turtles, whereas the fifth metatarsal dominates the hooked element of cryptodiran turtles. The term ‘ansulate bone’ is proposed to refer to hooked elements that result from the fusion of these two bones. The available phylogenetic and fossil data are currently insufficient to clarify the secondary homology of hooked elements within Reptilia. PMID:24102560

  1. 33 CFR 334.102 - Sandy Hook Bay, Naval Weapons Station EARLE, Piers and Terminal Channel, restricted area...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Sandy Hook Bay, Naval Weapons... DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.102 Sandy Hook Bay, Naval Weapons Station EARLE, Piers..., shall be enforced by the Commanding Officer, Naval Weapons Station Earle, and/or other persons...

  2. The hooked element in the pes of turtles (Testudines): a global approach to exploring primary and secondary homology.

    PubMed

    Joyce, Walter G; Werneburg, Ingmar; Lyson, Tyler R

    2013-11-01

    The hooked element in the pes of turtles was historically identified by most palaeontologists and embryologists as a modified fifth metatarsal, and often used as evidence to unite turtles with other reptiles with a hooked element. Some recent embryological studies, however, revealed that this element might represent an enlarged fifth distal tarsal. We herein provide extensive new myological and developmental observations on the hooked element of turtles, and re-evaluate its primary and secondary homology using all available lines of evidence. Digital count and timing of development are uninformative. However, extensive myological, embryological and topological data are consistent with the hypothesis that the hooked element of turtles represents a fusion of the fifth distal tarsal with the fifth metatarsal, but that the fifth distal tarsal dominates the hooked element in pleurodiran turtles, whereas the fifth metatarsal dominates the hooked element of cryptodiran turtles. The term 'ansulate bone' is proposed to refer to hooked elements that result from the fusion of these two bones. The available phylogenetic and fossil data are currently insufficient to clarify the secondary homology of hooked elements within Reptilia. PMID:24102560

  3. Energy Landscape of Alginate-Epimerase Interactions Assessed by Optical Tweezers and Atomic Force Microscopy.

    PubMed

    Håti, Armend Gazmeno; Aachmann, Finn Lillelund; Stokke, Bjørn Torger; Skjåk-Bræk, Gudmund; Sletmoen, Marit

    2015-01-01

    Mannuronan C-5 epimerases are a family of enzymes that catalyze epimerization of alginates at the polymer level. This group of enzymes thus enables the tailor-making of various alginate residue sequences to attain various functional properties, e.g. viscosity, gelation and ion binding. Here, the interactions between epimerases AlgE4 and AlgE6 and alginate substrates as well as epimerization products were determined. The interactions of the various epimerase-polysaccharide pairs were determined over an extended range of force loading rates by the combined use of optical tweezers and atomic force microscopy. When studying systems that in nature are not subjected to external forces the access to observations obtained at low loading rates, as provided by optical tweezers, is a great advantage since the low loading rate region for these systems reflect the properties of the rate limiting energy barrier. The AlgE epimerases have a modular structure comprising both A and R modules, and the role of each of these modules in the epimerization process were examined through studies of the A- module of AlgE6, AlgE6A. Dynamic strength spectra obtained through combination of atomic force microscopy and the optical tweezers revealed the existence of two energy barriers in the alginate-epimerase complexes, of which one was not revealed in previous AFM based studies of these complexes. Furthermore, based on these spectra estimates of the locations of energy transition states (xβ), lifetimes in the absence of external perturbation (τ0) and free energies (ΔG#) were determined for the different epimerase-alginate complexes. This is the first determination of ΔG# for these complexes. The values determined were up to 8 kBT for the outer barrier, and smaller values for the inner barriers. The size of the free energies determined are consistent with the interpretation that the enzyme and substrate are thus not tightly locked at all times but are able to relocate. Together with the

  4. Energy Landscape of Alginate-Epimerase Interactions Assessed by Optical Tweezers and Atomic Force Microscopy

    PubMed Central

    Håti, Armend Gazmeno; Aachmann, Finn Lillelund; Stokke, Bjørn Torger; Skjåk-Bræk, Gudmund; Sletmoen, Marit

    2015-01-01

    Mannuronan C-5 epimerases are a family of enzymes that catalyze epimerization of alginates at the polymer level. This group of enzymes thus enables the tailor-making of various alginate residue sequences to attain various functional properties, e.g. viscosity, gelation and ion binding. Here, the interactions between epimerases AlgE4 and AlgE6 and alginate substrates as well as epimerization products were determined. The interactions of the various epimerase–polysaccharide pairs were determined over an extended range of force loading rates by the combined use of optical tweezers and atomic force microscopy. When studying systems that in nature are not subjected to external forces the access to observations obtained at low loading rates, as provided by optical tweezers, is a great advantage since the low loading rate region for these systems reflect the properties of the rate limiting energy barrier. The AlgE epimerases have a modular structure comprising both A and R modules, and the role of each of these modules in the epimerization process were examined through studies of the A- module of AlgE6, AlgE6A. Dynamic strength spectra obtained through combination of atomic force microscopy and the optical tweezers revealed the existence of two energy barriers in the alginate-epimerase complexes, of which one was not revealed in previous AFM based studies of these complexes. Furthermore, based on these spectra estimates of the locations of energy transition states (xβ), lifetimes in the absence of external perturbation (τ0) and free energies (ΔG#) were determined for the different epimerase–alginate complexes. This is the first determination of ΔG# for these complexes. The values determined were up to 8 kBT for the outer barrier, and smaller values for the inner barriers. The size of the free energies determined are consistent with the interpretation that the enzyme and substrate are thus not tightly locked at all times but are able to relocate. Together with the

  5. Anterior cruciate ligament rupture secondary to a 'heel hook': a dangerous martial arts technique.

    PubMed

    Baker, Joseph F; Devitt, Brian M; Moran, Ray

    2010-01-01

    The 'heel hook' is a type of knee lock used in some forms of martial arts to stress the knee and cause opponent to concede defeat. While the knee is in a flexed and valgus disposition, an internal rotation force is applied to the tibia. Reports are lacking on serious knee trauma as a result of this technique. We report the case of a 32-year-old Mixed Martial Arts exponent who sustained complete anterior cruciate ligament rupture and an medial collateral ligament injury from the use of a 'heel hook'. PMID:19629437

  6. Anterior cruciate ligament rupture secondary to a 'heel hook': a dangerous martial arts technique.

    PubMed

    Baker, Joseph F; Devitt, Brian M; Moran, Ray

    2010-01-01

    The 'heel hook' is a type of knee lock used in some forms of martial arts to stress the knee and cause opponent to concede defeat. While the knee is in a flexed and valgus disposition, an internal rotation force is applied to the tibia. Reports are lacking on serious knee trauma as a result of this technique. We report the case of a 32-year-old Mixed Martial Arts exponent who sustained complete anterior cruciate ligament rupture and an medial collateral ligament injury from the use of a 'heel hook'.

  7. Automation Hooks Architecture for Flexible Test Orchestration - Concept Development and Validation

    NASA Technical Reports Server (NTRS)

    Lansdowne, C. A.; Maclean, John R.; Winton, Chris; McCartney, Pat

    2011-01-01

    The Automation Hooks Architecture Trade Study for Flexible Test Orchestration sought a standardized data-driven alternative to conventional automated test programming interfaces. The study recommended composing the interface using multicast DNS (mDNS/SD) service discovery, Representational State Transfer (Restful) Web Services, and Automatic Test Markup Language (ATML). We describe additional efforts to rapidly mature the Automation Hooks Architecture candidate interface definition by validating it in a broad spectrum of applications. These activities have allowed us to further refine our concepts and provide observations directed toward objectives of economy, scalability, versatility, performance, severability, maintainability, scriptability and others.

  8. Characterization of the mechanical properties of HL-1 cardiomyocytes with high throughput magnetic tweezers

    SciTech Connect

    Chen, La; Maybeck, Vanessa; Offenhäusser, Andreas; Krause, Hans-Joachim

    2015-08-03

    We characterized the mechanical properties of cardiomyocyte-like HL-1 cells using our recently developed multi-pole magnetic tweezers. With the optimized design, both high force and high throughput are achieved at the same time. Force up to 100 pN can be applied on a 1 μm diameter superparamagnetic bead in a workspace with 60 μm radius, which is encircled symmetrically by 3 sharp magnetic tips. By adjusting the coil currents, both the strength and direction of force can be controlled. The result shows that both viscosity and shear elastic modulus of HL-1 cells exhibit an approximately log-normal distribution. The cells became stiffer as they matured, consistent with a transition from proliferating cells to contractile muscle tissue. Moreover, the mechanical properties of HL-1 cells show high heterogeneity, which agrees well with their physiological structure.

  9. Floating electrode optoelectronic tweezers: Light-driven dielectrophoretic droplet manipulation in electrically insulating oil medium

    NASA Astrophysics Data System (ADS)

    Park, Sungyong; Pan, Chenlu; Wu, Ting-Hsiang; Kloss, Christoph; Kalim, Sheraz; Callahan, Caitlin E.; Teitell, Michael; Chiou, Eric P. Y.

    2008-04-01

    We report an optical actuation mechanism, floating electrode optoelectronic tweezers (FEOET). FEOET enables light-driven transport of aqueous droplets immersed in electrically insulating oil on a featureless photoconductive glass layer with direct optical images. We demonstrate that a 681μm de-ionized water droplet immersed in corn oil medium is actuated by a 3.21μW laser beam with an average intensity as low as 4.08μW/mm2 at a maximum speed of 85.1μm/s on a FEOET device. FEOET provides a promising platform for massively parallel droplet manipulation with optical images on low cost, silicon-coated glass. The FEOET device structure, fabrication, working principle, numerical simulations, and operational results are presented in this letter.

  10. Force versus position profiles of HeLa cells trapped in phototransistor-based optoelectronic tweezers

    NASA Astrophysics Data System (ADS)

    Neale, Steven L.; Ohta, Aaron T.; Hsu, Hsan-Yin; Valley, Justin K.; Jamshidi, Arash; Wu, Ming C.

    2009-02-01

    Phototransistor-based Optoelectronic Tweezers (Ph-OET) enables optical manipulation of microscopic particles in physiological buffer solutions by creating electrical field gradients around them. A spatial light pattern is created by a DMD based projector focused through a microscope objective onto the phototransistor. In this paper we look into what differences there are in the trap stiffness profiles of HeLa cells trapped by Ph-OET compared to previous a-Si based OET devices. We find that the minimum trap size for a HeLa cell using a phototransistor with pixel pitch 10.35μm is 24.06μm in diameter which can move cells at 20μms-1 giving a trap stiffness of 8.38 x 10-7 Nm-1.

  11. Studies of cochlear outer hair cell membrane mechanics using optical tweezers

    NASA Astrophysics Data System (ADS)

    Murdock, David R.; Ermilov, Sergey A.; Brownell, William E.; Anvari, Bahman

    2003-06-01

    An optical tweezers system was used to study the mechanical characteristics of outer hair cell (OHC) and human embryonic kidney (HEK) cell plasma membranes. The effect of the cationic amphipath chlorpromazine (CPZ) on the equilibrium tethering force, (Feq) force relaxation time constant,(τ) and effective membrane viscosity (ηeff) was measured. The Feq for the OHC lateral wall plasma membrane was ~60 pN and was unchanged by addition of CPZ. A significantly greater τ value was observed in CPZ-treated OHCs (30.5 +/- 12.6 s) than in control OHCs (19.0 +/- 13.2 s). The Feq and τ values for control HEK cells were >60% lower than the respective OHC values but increased by ~3 times following CPZ addition. Effective viscosity ranged between 1.49-1.81 pN•s/μm for CPZ-treated OHCs. This represents a decrease from reported control OHC membrane viscosities.

  12. Effect of ionic strength on electrically evoked membrane tether force: an optical tweezers study

    NASA Astrophysics Data System (ADS)

    Qian, Feng; Brownell, William E.; Anvari, Bahman

    2004-10-01

    We have investigated the effect of ionic strength on electrically evoked membrane tether force using optical tweezers. Membrane tethers from cochlear outer hair cells (OHCs) and human embryonic kidney (HEK) cells exhibited mechanical response to applied voltage stimuli over a wide frequency range. The electrically evoked variations in the tether force were probed by an optically-trapped microsphere, the image of which was projected on a quadrant photodiode for dynamic measurement of its displacements. Compared to normal saline (140mM NaCl), low ionic-strength solution (10mM NaCl) blocked the electrically evoked tether force for both OHCs and HEK cells. As the Debye length for membrane bilayer was estimated to increase from approximately 0.75nm to 1.88nm, the internal repulsive pressure of the membrane tethers rose consequently, resulting in the enlargement in the equilibrium tether diameter and the decrease in the tether force.

  13. Tuning the size and configuration of nanocarbon microcapsules: aqueous method using optical tweezers

    PubMed Central

    Frusawa, Hiroshi; Matsumoto, Youei

    2014-01-01

    To date, optical manipulation techniques for aqueous dispersions have been developed that deposit and/or transport nanoparticles not only for fundamental studies of colloidal dynamics, but also for either creating photonic devices or allowing accurate control of liquids on micron scales. Here, we report that optical tweezers (OT) system is able to direct three-dimensional assembly of graphene, graphite, and carbon nanotubes (CNT) into microcapsules of hollow spheres. The OT technique facilitates both to visualize the elasticity of a CNT microcapsule and to arrange a triplet of identical graphene microcapsules in aqueous media. Furthermore, the similarity of swelling courses has been found over a range of experimental parameters such as nanocarbon species, the power of the incident light, and the suspension density. Thanks to the universality in evolutions of rescaled capsule size, we can precisely control the size of various nanocarbon microcapsules by adjusting the duration time of laser emission. PMID:24509866

  14. Rapid feedback control and stabilization of an optical tweezers with a budget microcontroller

    NASA Astrophysics Data System (ADS)

    Nino, Daniel; Wang, Haowei; Milstein, Joshua N.

    2014-09-01

    Laboratories ranging the scientific disciplines employ feedback control to regulate variables within their experiments, from the flow of liquids within a microfluidic device to the temperature within a cell incubator. We have built an inexpensive, yet fast and rapidly deployed, feedback control system that is straightforward and flexible to implement from a commercially available Arduino Due microcontroller. This is in comparison with the complex, time-consuming and often expensive electronics that are commonly implemented. As an example of its utility, we apply our feedback controller to the task of stabilizing the main trapping laser of an optical tweezers. The feedback controller, which is inexpensive yet fast and rapidly deployed, was implemented from hacking an open source Arduino Due microcontroller. Our microcontroller based feedback system can stabilize the laser intensity to a few tenths of a per cent at 200 kHz, which is an order of magnitude better than the laser's base specifications, illustrating the utility of these devices.

  15. Robert Feulgen Prize Lecture. Laser tweezers and multiphoton microscopes in life sciences.

    PubMed

    König, K

    2000-08-01

    Near infrared (NIR) laser microscopy enables optical micromanipulation, piconewton force determination, and sensitive fluorescence studies by laser tweezers. Otherwise, fluorescence images with high spatial and temporal resolution of living cells and tissues can be obtained via non-resonant fluorophore excitation with multiphoton NIR laser scanning microscopes. Furthermore, NIR femtosecond laser pulses at TW/cm2 intensities can be used to realize non-invasive contact-free surgery of nanometer-sized structures within living cells and tissues. Applications of these novel versatile NIR laser-based tools for the determination of motility forces, coenzyme and chlorophyll imaging, three-dimensional multigene detection, non-invasive optical sectioning of tissues ("optical biopsy"), functional protein imaging, and nanosurgery of chromosomes are described.

  16. Evaluating the toxic effect of an antimicrobial agent on single bacterial cells with optical tweezers

    PubMed Central

    Samadi, Akbar; Zhang, Chensong; Chen, Joseph; Reihani, S. N. S.; Chen, Zhigang

    2014-01-01

    We implement an optical tweezers technique to assess the effects of chemical agents on single bacterial cells. As a proof of principle, the viability of a trapped Escherichia coli bacterium is determined by monitoring its flagellar motility in the presence of varying concentrations of ethyl alcohol. We show that the “killing time” of the bacterium can be effectively identified from the correlation statistics of the positional time series recorded from the trap, while direct quantification from the time series or associated power spectra is intractable. Our results, which minimize the lethal effects of bacterial photodamage, are consistent with previous reports of ethanol toxicity that used conventional culture-based methods. This approach can be adapted to study other pairwise combinations of drugs and motile bacteria, especially to measure the response times of single cells with better precision. PMID:25657879

  17. Microfluidic platform combining droplets and magnetic tweezers: application to HER2 expression in cancer diagnosis

    PubMed Central

    Ferraro, Davide; Champ, Jérôme; Teste, Bruno; Serra, Marco; Malaquin, Laurent; Viovy, Jean-Louis; de Cremoux, Patricia; Descroix, Stephanie

    2016-01-01

    The development of precision medicine, together with the multiplication of targeted therapies and associated molecular biomarkers, call for major progress in genetic analysis methods, allowing increased multiplexing and the implementation of more complex decision trees, without cost increase or loss of robustness. We present a platform combining droplet microfluidics and magnetic tweezers, performing RNA purification, reverse transcription and amplification in a fully automated and programmable way, in droplets of 250nL directly sampled from a microtiter-plate. This platform decreases sample consumption about 100 fold as compared to current robotized platforms and it reduces human manipulations and contamination risk. The platform’s performance was first evaluated on cell lines, showing robust operation on RNA quantities corresponding to less than one cell, and then clinically validated with a cohort of 21 breast cancer samples, for the determination of their HER2 expression status, in a blind comparison with an established routine clinical analysis. PMID:27157697

  18. Measurement of PLGA-NP interaction with single smooth muscle cells using optical tweezers

    NASA Astrophysics Data System (ADS)

    Gu, Ling; Mondal, Argha; Homayoni, Homa; Nguyen, Kytai; Mohanty, Samarendra

    2012-10-01

    For intervention of cardiovascular diseases, biodegradable and biocompatible, poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NP) are emerging as agents of choice for controlled and targeted drug delivery. Therefore development of PLGA-NP with optimal physico-chemical properties will allow efficient binding and thus delivery of drug to targeted cells under various patho-physiological conditions. The force kinetics and its dependence on size of the NPs will be crucial for designing the NPs. Since optical tweezers allow non-contact, highly sensitive force measurement with high spatial and temporal resolution, we utilized it for studying interaction forces between magnetic PLGA nanoparticles with smooth muscle cells (SMC). In order to investigate effect of size, interaction force for 200 to 1100nm PLGA NP was measured. For similar interaction duration, the force was found to be higher with increase in size. The rupture force was found to depend on time of interaction of SMC with NPs.

  19. Simultaneous detection of rotational and translational motion in optical tweezers by measurement of backscattered intensity.

    PubMed

    Roy, Basudev; Bera, Sudipta K; Banerjee, Ayan

    2014-06-01

    We describe a simple yet powerful technique of simultaneously measuring both translational and rotational motion of mesoscopic particles in optical tweezers by measuring the backscattered intensity on a quadrant photodiode (QPD). While the measurement of translational motion by taking the difference of the backscattered intensity incident on adjacent quadrants of a QPD is well known, we demonstrate that rotational motion can be measured very precisely by taking the difference between the diagonal quadrants. The latter measurement eliminates the translational component entirely and leads to a detection sensitivity of around 50 mdeg at S/N of 2 for angular motion of a driven microrod. The technique is also able to resolve the translational and rotational Brownian motion components of the microrod in an unperturbed trap and can be very useful in measuring translation-rotation coupling of micro-objects induced by hydrodynamic interactions.

  20. Micro-particle manipulation by single beam acoustic tweezers based on hydrothermal PZT thick film

    PubMed Central

    Zhu, Benpeng; Xu, Jiong; Li, Ying; Wang, Tian; Xiong, Ke; Lee, Changyang; Yang, Xiaofei; Shiiba, Michihisa; Takeuchi, Shinichi; Zhou, Qifa; Shung, K. Kirk

    2016-01-01

    Single-beam acoustic tweezers (SBAT), used in laboratory-on-a-chip (LOC) device has promising implications for an individual micro-particle contactless manipulation. In this study, a freestanding hydrothermal PZT thick film with excellent piezoelectric property (d33 = 270pC/N and kt = 0.51) was employed for SBAT applications and a press-focusing technology was introduced. The obtained SBAT, acting at an operational frequency of 50MHz, a low f-number (∼0.9), demonstrated the capability to trap and manipulate a micro-particle sized 10μm in the distilled water. These results suggest that such a device has great potential as a manipulator for a wide range of biomedical and chemical science applications. PMID:27014504

  1. Custom-Built Optical Tweezers for Locally Probing the Viscoelastic Properties of Cancer Cells

    NASA Astrophysics Data System (ADS)

    Tavano, Federica; Bonin, Serena; Pinato, Giulietta; Stanta, Giorgio; Cojoc, Dan

    2011-07-01

    We report a home built optical tweezers setup to investigate the mechanism of the membrane tether formation from single cells in vitro. Using an optically trapped microbead as probe, we have determined the force-elongation curve during tether formation and extracted several parameters characterizing the viscoelastic behavior of the cell membrane: tether stiffness, force, and viscosity. Breast cancer MDA-MB-231 cells have been studied in two different conditions, at room and physiological temperatures, showing a strong temperature dependence of the visoelastic properties of the cell membrane. To get detailed inside information about the tether formation mechanism we have extended the analysis of the force-elongation curves fitting them with a Kelvin model. These preliminary results are part of a larger project of whose goal is to compare the viscoelastic properties of several types of cancer cell lines, characterized by different aggressiveness and metastatic potential.

  2. Optically-driven red blood cell rotor in linearly polarized laser tweezers

    NASA Astrophysics Data System (ADS)

    Khan, Manas; Mohanty, Samarendra K.; Sood, A. K.

    2005-11-01

    We have constructed a dual trap optical tweezers set-up around an inverted microscope where both the traps can be independently controlled and manipulated in all the three dimensions. Here we report our observations on rotation of red blood cells (RBCs) in a linearly polarized optical trap. Red blood cells deform and become twisted in hypertonic phosphate buffer saline and when trapped, experience an unbalanced radiation pressure force. The torque generated from the unbalanced force causes the trapped RBC to rotate. Addition of Ca^{++} ions in the solution, keeping the osmolarity same, makes the cell membranes stiffer and the cells deform less. Thus the speed of rotation of the red blood cells can be controlled, as less deformation and in turn less asymmetry in shape produces less torque under the radiation pressure resulting in slower rotation at the same laser power.

  3. Micro-rheology on (polymer-grafted) colloids using optical tweezers.

    PubMed

    Gutsche, C; Elmahdy, M M; Kegler, K; Semenov, I; Stangner, T; Otto, O; Ueberschär, O; Keyser, U F; Krueger, M; Rauscher, M; Weeber, R; Harting, J; Kim, Y W; Lobaskin, V; Netz, R R; Kremer, F

    2011-05-11

    Optical tweezers are experimental tools with extraordinary resolution in positioning (± 1 nm) a micron-sized colloid and in the measurement of forces (± 50 fN) acting on it-without any mechanical contact. This enables one to carry out a multitude of novel experiments in nano- and microfluidics, of which the following will be presented in this review: (i) forces within single pairs of colloids in media of varying concentration and valency of the surrounding ionic solution, (ii) measurements of the electrophoretic mobility of single colloids in different solvents (concentration, valency of the ionic solution and pH), (iii) similar experiments as in (i) with DNA-grafted colloids, (iv) the nonlinear response of single DNA-grafted colloids in shear flow and (v) the drag force on single colloids pulled through a polymer solution. The experiments will be described in detail and their analysis discussed.

  4. Trehalose facilitates DNA melting: a single-molecule optical tweezers study.

    PubMed

    Bezrukavnikov, Sergey; Mashaghi, Alireza; van Wijk, Roeland J; Gu, Chan; Yang, Li Jiang; Gao, Yi Qin; Tans, Sander J

    2014-10-01

    Using optical tweezers, here we show that the overstretching transition force of double-stranded DNA (dsDNA) is lowered significantly by the addition of the disaccharide trehalose as well as certain polyol osmolytes. This effect is found to depend linearly on the logarithm of the trehalose concentration. We propose an entropic driving mechanism for the experimentally observed destabilization of dsDNA that is rooted in the higher affinity of the DNA bases for trehalose than for water, which promotes base exposure and DNA melting. Molecular dynamics simulation reveals the direct interaction of trehalose with nucleobases. Experiments with other osmolytes confirm that the extent of dsDNA destabilization is governed by the ratio between polar and apolar fractions of an osmolyte.

  5. Robert Feulgen Prize Lecture. Laser tweezers and multiphoton microscopes in life sciences.

    PubMed

    König, K

    2000-08-01

    Near infrared (NIR) laser microscopy enables optical micromanipulation, piconewton force determination, and sensitive fluorescence studies by laser tweezers. Otherwise, fluorescence images with high spatial and temporal resolution of living cells and tissues can be obtained via non-resonant fluorophore excitation with multiphoton NIR laser scanning microscopes. Furthermore, NIR femtosecond laser pulses at TW/cm2 intensities can be used to realize non-invasive contact-free surgery of nanometer-sized structures within living cells and tissues. Applications of these novel versatile NIR laser-based tools for the determination of motility forces, coenzyme and chlorophyll imaging, three-dimensional multigene detection, non-invasive optical sectioning of tissues ("optical biopsy"), functional protein imaging, and nanosurgery of chromosomes are described. PMID:11052257

  6. Freely orbiting magnetic tweezers to directly monitor changes in the twist of nucleic acids

    PubMed Central

    Lipfert, Jan; Wiggin, Matthew; Kerssemakers, Jacob W.J.; Pedaci, Francesco; Dekker, Nynke H.

    2011-01-01

    The double-stranded nature of DNA links its replication, transcription and repair to rotational motion and torsional strain. Magnetic tweezers (MT) are a powerful single-molecule technique to apply both forces and torques to individual DNA or RNA molecules. However, conventional MT do not track rotational motion directly and constrain the free rotation of the nucleic acid tether. Here we present freely orbiting MT (FOMT) that allow the measurement of equilibrium fluctuations and changes in the twist of tethered nucleic acid molecules. Using a precisely aligned vertically oriented magnetic field, FOMT enable tracking of the rotation angle from straight forward (x,y)-position tracking and permits the application of calibrated stretching forces, without biasing the tether's free rotation. We utilize FOMT to measure the force-dependent torsional stiffness of DNA from equilibrium rotational fluctuations and to follow the assembly of recombination protein A filaments on DNA. PMID:21863006

  7. Measurement of the microscopic viscosities of microfluids with a dynamic optical tweezers system

    PubMed Central

    Zhang, Yuquan; Wu, Xiaojing; Wang, Yijia; Zhu, Siwei; Gao, Bruce Z; Yuan, X-C

    2016-01-01

    Viscosity coefficients of microfluids—Newtonian and non-Newtonian—were explored through the rotational motion of a particle trapped by optical tweezers in a microflute. Unlike conventional methods based on viscometers, our microfluidic system employs samples of less than 30 µl to complete a measurement. Viscosity coefficients of ethanol and fetal bovine serum, as typical examples of Newtonian and non-Newtonian fluids, were obtained experimentally, and found to be in excellent agreement with theoretical predictions. Additionally, a practical application to a DNA solution with incremental ethidium bromide content was employed and the results are consistent with clinical data, indicating that our system provides a potentially important complementary tool for use in such biological and medical applications. PMID:27087769

  8. Characterization of the mechanical properties of HL-1 cardiomyocytes with high throughput magnetic tweezers

    NASA Astrophysics Data System (ADS)

    Chen, La; Maybeck, Vanessa; Offenhäusser, Andreas; Krause, Hans-Joachim

    2015-08-01

    We characterized the mechanical properties of cardiomyocyte-like HL-1 cells using our recently developed multi-pole magnetic tweezers. With the optimized design, both high force and high throughput are achieved at the same time. Force up to 100 pN can be applied on a 1 μm diameter superparamagnetic bead in a workspace with 60 μm radius, which is encircled symmetrically by 3 sharp magnetic tips. By adjusting the coil currents, both the strength and direction of force can be controlled. The result shows that both viscosity and shear elastic modulus of HL-1 cells exhibit an approximately log-normal distribution. The cells became stiffer as they matured, consistent with a transition from proliferating cells to contractile muscle tissue. Moreover, the mechanical properties of HL-1 cells show high heterogeneity, which agrees well with their physiological structure.

  9. Calibrating oscillation response of a piezo-stage using optical tweezers.

    PubMed

    Zhou, Jin-Hua; Li, Di; Hu, Xin-Yao; Zhong, Min-Cheng; Wang, Zi-Qiang; Gong, Lei; Liu, Wei-Wei; Li, Yin-Mei

    2015-09-21

    In optical tweezers, a piezo-stage (PZT) is widely used to precisely position samples for force clamp, calibrating optical trap and stretching DNA. For a trapped bead in solution, the oscillation response of PZT is vital for all kinds of applications. A coupling ratio, actual amplitude to nominal amplitude, can be calibrated by power spectral density during sinusoidal oscillations. With oscillation frequency increasing, coupling ratio decreases in both x- and y-directions, which is also confirmed by the calibration with light scattering of scanning two aligned beads on slide. Those oscillation responses are related with deformability of chamber and the intrinsic characteristics of PZT. If we take nominal amplitude as actual amplitude for sinusoidal oscillations at 50 Hz, the amplitude is overestimated ~2 times in x-direction and ~3 times in y-direction. That will lead to huge errors for subsequent calibrations.

  10. Evaluating cell matrix mechanics using an integrated nonlinear optical tweezer-confocal imaging system

    NASA Astrophysics Data System (ADS)

    Peng, Berney; Alonzo, Carlo A. C.; Xia, Lawrence; Speroni, Lucia; Georgakoudi, Irene; Soto, Ana M.; Sonnenschein, Carlos; Cronin-Golomb, Mark

    2013-09-01

    Biomechanics plays a central role in breast epithelial morphogenesis. In this study we have used 3D cultures in which normal breast epithelial cells are able to organize into rounded acini and tubular ducts, the main structures found in the breast tissue. We have identified fiber organization as a main determinant of ductal organization. While bulk rheological properties of the matrix seem to play a negligible role in determining the proportion of acini versus ducts, local changes may be pivotal in shape determination. As such, the ability to make microscale rheology measurements coupled with simultaneous optical imaging in 3D cultures can be critical to assess the biomechanical factors underlying epithelial morphogenesis. This paper describes the inclusion of optical tweezers based microrheology in a microscope that had been designed for nonlinear optical imaging of collagen networks in ECM. We propose two microrheology methods and show preliminary results using a gelatin hydrogel and collagen/Matrigel 3D cultures containing mammary gland epithelial cells.

  11. Microfluidic platform combining droplets and magnetic tweezers: application to HER2 expression in cancer diagnosis

    NASA Astrophysics Data System (ADS)

    Ferraro, Davide; Champ, Jérôme; Teste, Bruno; Serra, Marco; Malaquin, Laurent; Viovy, Jean-Louis; de Cremoux, Patricia; Descroix, Stephanie

    2016-05-01

    The development of precision medicine, together with the multiplication of targeted therapies and associated molecular biomarkers, call for major progress in genetic analysis methods, allowing increased multiplexing and the implementation of more complex decision trees, without cost increase or loss of robustness. We present a platform combining droplet microfluidics and magnetic tweezers, performing RNA purification, reverse transcription and amplification in a fully automated and programmable way, in droplets of 250nL directly sampled from a microtiter-plate. This platform decreases sample consumption about 100 fold as compared to current robotized platforms and it reduces human manipulations and contamination risk. The platform’s performance was first evaluated on cell lines, showing robust operation on RNA quantities corresponding to less than one cell, and then clinically validated with a cohort of 21 breast cancer samples, for the determination of their HER2 expression status, in a blind comparison with an established routine clinical analysis.

  12. Tuning the size and configuration of nanocarbon microcapsules: aqueous method using optical tweezers

    NASA Astrophysics Data System (ADS)

    Frusawa, Hiroshi; Matsumoto, Youei

    2014-02-01

    To date, optical manipulation techniques for aqueous dispersions have been developed that deposit and/or transport nanoparticles not only for fundamental studies of colloidal dynamics, but also for either creating photonic devices or allowing accurate control of liquids on micron scales. Here, we report that optical tweezers (OT) system is able to direct three-dimensional assembly of graphene, graphite, and carbon nanotubes (CNT) into microcapsules of hollow spheres. The OT technique facilitates both to visualize the elasticity of a CNT microcapsule and to arrange a triplet of identical graphene microcapsules in aqueous media. Furthermore, the similarity of swelling courses has been found over a range of experimental parameters such as nanocarbon species, the power of the incident light, and the suspension density. Thanks to the universality in evolutions of rescaled capsule size, we can precisely control the size of various nanocarbon microcapsules by adjusting the duration time of laser emission.

  13. Optical tweezers assisted imaging of the Z-ring in Escherichia coli: measuring its radial width

    NASA Astrophysics Data System (ADS)

    Carmon, G.; Kumar, P.; Feingold, M.

    2014-01-01

    Using single-beam, oscillating optical tweezers we can trap and rotate rod-shaped bacterial cells with respect to the optical axis. This technique allows imaging fluorescently labeled three-dimensional sub-cellular structures from different, optimized viewpoints. To illustrate our method we measure D, the radial width of the Z-ring in unconstricted Escherichia coli. We use cells that express FtsZ-GFP and have their cytoplasmic membrane stained with FM4-64. In a vertically oriented cell, both the Z-ring and the cytoplasmic membrane images appear as symmetric circular structures that lend themselves to quantitative analysis. We found that D ≅ 100 nm, much larger than expected.

  14. Identification of volume phase transition of a single microgel particle using optical tweezers

    NASA Astrophysics Data System (ADS)

    Karthickeyan, D.; Gupta, Deepak K.; Tata, B. V. R.

    2016-10-01

    Poly (N-isopropyl acrylamide-co-acrylic acid) (PNIPAM-co-Aac) microgel particles are pH responsive and exhibit volume phase transition (VPT) upon variation of pH. Dynamic light scattering (DLS) is used conventionally to identify VPT and requires a dilute suspension with particle concentration ˜107 particles cm-3 and if particles are polydisperse in nature, DLS data interpretation is relatively difficult. Here we show that optical tweezers allow one to measure the VPT of a single microgel particle by measuring the optical trap stiffness, κ of trapped particle as a function of pH. We report here a sudden change in κ at VPT, which is shown to arise from a sudden decrease in particle diameter with a concomitant increase in the refractive index of the particle at VPT.

  15. Nucleosome assembly depends on the torsion in the DNA molecule: a magnetic tweezers study.

    PubMed

    Gupta, Pooja; Zlatanova, Jordanka; Tomschik, Miroslav

    2009-12-16

    We have used magnetic tweezers to study nucleosome assembly on topologically constrained DNA molecules. Assembly was achieved using chicken erythrocyte core histones and histone chaperone protein Nap1 under constant low force. We have observed only partial assembly when the DNA was topologically constrained and much more complete assembly on unconstrained (nicked) DNA tethers. To verify our hypothesis that the lack of full nucleosome assembly on topologically constrained tethers was due to compensatory accumulation of positive supercoiling in the rest of the template, we carried out experiments in which we mechanically relieved the positive supercoiling by rotating the external magnetic field at certain time points of the assembly process. Indeed, such rotation did lead to the same nucleosome saturation level as in the case of nicked tethers. We conclude that levels of positive supercoiling in the range of 0.025-0.051 (most probably in the form of twist) stall the nucleosome assembly process.

  16. Micro-particle manipulation by single beam acoustic tweezers based on hydrothermal PZT thick film

    NASA Astrophysics Data System (ADS)

    Zhu, Benpeng; Xu, Jiong; Li, Ying; Wang, Tian; Xiong, Ke; Lee, Changyang; Yang, Xiaofei; Shiiba, Michihisa; Takeuchi, Shinichi; Zhou, Qifa; Shung, K. Kirk

    2016-03-01

    Single-beam acoustic tweezers (SBAT), used in laboratory-on-a-chip (LOC) device has promising implications for an individual micro-particle contactless manipulation. In this study, a freestanding hydrothermal PZT thick film with excellent piezoelectric property (d33 = 270pC/N and kt = 0.51) was employed for SBAT applications and a press-focusing technology was introduced. The obtained SBAT, acting at an operational frequency of 50MHz, a low f-number (˜0.9), demonstrated the capability to trap and manipulate a micro-particle sized 10μm in the distilled water. These results suggest that such a device has great potential as a manipulator for a wide range of biomedical and chemical science applications.

  17. Protection of primary neurons and mouse brain from Alzheimer’s pathology by molecular tweezers

    PubMed Central

    Attar, Aida; Ripoli, Cristian; Riccardi, Elisa; Maiti, Panchanan; Li Puma, Domenica D.; Liu, Tingyu; Hayes, Jane; Jones, Mychica R.; Lichti-Kaiser, Kristin; Yang, Fusheng; Gale, Greg D.; Tseng, Chi-hong; Tan, Miao; Xie, Cui-Wei; Straudinger, Jeffrey L.; Klärner, Frank-Gerrit; Schrader, Thomas; Frautschy, Sally A.; Grassi, Claudio

    2012-01-01

    Alzheimer’s disease is a devastating cureless neurodegenerative disorder affecting >35 million people worldwide. The disease is caused by toxic oligomers and aggregates of amyloid β protein and the microtubule-associated protein tau. Recently, the Lys-specific molecular tweezer CLR01 has been shown to inhibit aggregation and toxicity of multiple amyloidogenic proteins, including amyloid β protein and tau, by disrupting key interactions involved in the assembly process. Following up on these encouraging findings, here, we asked whether CLR01 could protect primary neurons from Alzheimer’s disease-associated synaptotoxicity and reduce Alzheimer’s disease–like pathology in vivo. Using cell culture and brain slices, we found that CLR01 effectively inhibited synaptotoxicity induced by the 42-residue isoform of amyloid β protein, including ∼80% inhibition of changes in dendritic spines density and long-term potentiation and complete inhibition of changes in basal synaptic activity. Using a radiolabelled version of the compound, we found that CLR01 crossed the mouse blood–brain barrier at ∼2% of blood levels. Treatment of 15-month-old triple-transgenic mice for 1 month with CLR01 resulted in a decrease in brain amyloid β protein aggregates, hyperphosphorylated tau and microglia load as observed by immunohistochemistry. Importantly, no signs of toxicity were observed in the treated mice, and CLR01 treatment did not affect the amyloidogenic processing of amyloid β protein precursor. Examining induction or inhibition of the cytochrome P450 metabolism system by CLR01 revealed minimal interaction. Together, these data suggest that CLR01 is safe for use at concentrations well above those showing efficacy in mice. The efficacy and toxicity results support a process-specific mechanism of action of molecular tweezers and suggest that these are promising compounds for developing disease-modifying therapy for Alzheimer’s disease and related disorders. PMID

  18. Optoelectronic tweezers for the measurement of the relative stiffness of erythrocytes

    NASA Astrophysics Data System (ADS)

    Neale, Steven L.; Mody, Nimesh; Selman, Colin; Cooper, Jonathan M.

    2012-10-01

    In this paper we describe the first use of Optoelectronic Tweezers (OET), an optically controlled micromanipulation method, to measure the relative stiffness of erythrocytes in mice. Cell stiffness is an important measure of cell health and in the case of erythrocytes, the most elastic cells in the body, an increase in cell stiffness can indicate pathologies such as type II diabetes mellitus or hypertension (high blood pressure). OET uses a photoconductive device to convert an optical pattern into and electrical pattern. The electrical fields will create a dipole within any polarisable particles in the device, such as cells, and non-uniformities of the field can be used to place unequal forces onto each side of the dipole thus moving the particle. In areas of the device where there are no field gradients, areas of constant illumination, the force on each side of the dipole will be equal, keeping the cell stationary, but as there are opposing forces on each side of the cell it will be stretched. The force each cell will experience will differ slightly so the stretching will depend on the cells polarisability as well as its stiffness. Because of this a relative stiffness rather than absolute stiffness is measured. We show that with standard conditions (20Vpp, 1.5MHz, 10mSm-1 medium conductivity) the cell's diameter changes by around 10% for healthy mouse erythrocytes and we show that due to the low light intensities required for OET, relative to conventional optical tweezers, multiple cells can be measured simultaneously.

  19. Spirochaete flagella hook proteins self-catalyse a lysinoalanine covalent crosslink for motility.

    PubMed

    Miller, Michael R; Miller, Kelly A; Bian, Jiang; James, Milinda E; Zhang, Sheng; Lynch, Michael J; Callery, Patrick S; Hettick, Justin M; Cockburn, Andrew; Liu, Jun; Li, Chunhao; Crane, Brian R; Charon, Nyles W

    2016-01-01

    Spirochaetes are bacteria responsible for several serious diseases, including Lyme disease (Borrelia burgdorferi), syphilis (Treponema pallidum) and leptospirosis (Leptospira interrogans), and contribute to periodontal diseases (Treponema denticola)(1). These spirochaetes employ an unusual form of flagella-based motility necessary for pathogenicity; indeed, spirochaete flagella (periplasmic flagella) reside and rotate within the periplasmic space(2-11). The universal joint or hook that links the rotary motor to the filament is composed of ∼120-130 FlgE proteins, which in spirochaetes form an unusually stable, high-molecular-weight complex(9,12-17). In other bacteria, the hook can be readily dissociated by treatments such as heat(18). In contrast, spirochaete hooks are resistant to these treatments, and several lines of evidence indicate that the high-molecular-weight complex is the consequence of covalent crosslinking(12,13,17). Here, we show that T. denticola FlgE self-catalyses an interpeptide crosslinking reaction between conserved lysine and cysteine, resulting in the formation of an unusual lysinoalanine adduct that polymerizes the hook subunits. Lysinoalanine crosslinks are not needed for flagellar assembly, but they are required for cell motility and hence infection. The self-catalytic nature of FlgE crosslinking has important implications for protein engineering, and its sensitivity to chemical inhibitors provides a new avenue for the development of antimicrobials targeting spirochaetes. PMID:27670115

  20. 77 FR 32131 - Prime Hook National Wildlife Refuge, Sussex County, DE; Draft Comprehensive Conservation Plan and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-31

    ... media, via our project mailing list, and on our regional planning Web site: http://www.fws.gov/northeast... process for Prime Hook NWR. We started this process through a notice in the Federal Register (70 FR 60365..., 2011, we issued a second notice in the Federal Register (76 FR 26751) announcing we were preparing...