Sample records for forecast system version

  1. Forecasting Wind and Solar Generation: Improving System Operations, Greening the Grid (Spanish Version)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Tian; Chernyakhovskiy, Ilya; Brancucci Martinez-Anido, Carlo

    This document is the Spanish version of 'Greening the Grid- Forecasting Wind and Solar Generation Improving System Operations'. It discusses improving system operations with forecasting with and solar generation. By integrating variable renewable energy (VRE) forecasts into system operations, power system operators can anticipate up- and down-ramps in VRE generation in order to cost-effectively balance load and generation in intra-day and day-ahead scheduling. This leads to reduced fuel costs, improved system reliability, and maximum use of renewable resources.

  2. Economic Impact Forecast System (EIFS). Version 2.0. Users Manual. Supplement II. European Economic Impact Forecast System (EEIFS), Phase 1, (FRG/EIFS Pilot Model).

    DTIC Science & Technology

    1982-05-01

    Chmpip. tL : Construction engineering Research Laboratory ; available from NTIS. 1982. 71 p. (Technical report / Construction Engineering Researsh ...AD-Al17 661 CONSTRUCTION ENGINEERING RESEARCH LAB (ARMY) CHAMPAIGN IL F/G 5/3 ECONOMIC IMPACT FORECAST SYSTEM (EIFS). VERSION 2.0. USERS MANU--ETC(u...CONSTRUCTION ENGINEERING RESEARCH LABORATORY 4A762720A896-C-004 P.O. BOX 4005, CHAMPAIGN, IL 61820 I. CONTROLLING OFFICE NAME AND ADDRESS It. REPORT

  3. The Implementation of NEMS GFS Aerosol Component (NGAC) Version 1.0 for Global Dust Forecasting at NOAA NCEP

    NASA Technical Reports Server (NTRS)

    Lu, Cheng-Hsuan; Da Silva, Arlindo M.; Wang, Jun; Moorthi, Shrinivas; Chin, Mian; Colarco, Peter; Tang, Youhua; Bhattacharjee, Partha S.; Chen, Shen-Po; Chuang, Hui-Ya; hide

    2016-01-01

    The NOAA National Centers for Environmental Prediction (NCEP) implemented the NOAA Environmental Modeling System (NEMS) Global Forecast System (GFS) Aerosol Component (NGAC) for global dust forecasting in collaboration with NASA Goddard Space Flight Center (GSFC). NGAC Version 1.0 has been providing 5-day dust forecasts at 1deg x 1deg resolution on a global scale, once per day at 00:00 Coordinated Universal Time (UTC), since September 2012. This is the first global system capable of interactive atmosphere aerosol forecasting at NCEP. The implementation of NGAC V1.0 reflects an effective and efficient transitioning of NASA research advances to NCEP operations, paving the way for NCEP to provide global aerosol products serving a wide range of stakeholders, as well as to allow the effects of aerosols on weather forecasts and climate prediction to be considered.

  4. Seasonal scale water deficit forecasting in Africa and the Middle East using NASA's Land Information System (LIS)

    NASA Astrophysics Data System (ADS)

    Shukla, Shraddhanand; Arsenault, Kristi R.; Getirana, Augusto; Kumar, Sujay V.; Roningen, Jeanne; Zaitchik, Ben; McNally, Amy; Koster, Randal D.; Peters-Lidard, Christa

    2017-04-01

    Drought and water scarcity are among the important issues facing several regions within Africa and the Middle East. A seamless and effective monitoring and early warning system is needed by regional/national stakeholders. Such system should support a proactive drought management approach and mitigate the socio-economic losses up to the extent possible. In this presentation, we report on the ongoing development and validation of a seasonal scale water deficit forecasting system based on NASA's Land Information System (LIS) and seasonal climate forecasts. First, our presentation will focus on the implementation and validation of the LIS models used for drought and water availability monitoring in the region. The second part will focus on evaluating drought and water availability forecasts. Finally, details will be provided of our ongoing collaboration with end-user partners in the region (e.g., USAID's Famine Early Warning Systems Network, FEWS NET), on formulating meaningful early warning indicators, effective communication and seamless dissemination of the monitoring and forecasting products through NASA's web-services. The water deficit forecasting system thus far incorporates NOAA's Noah land surface model (LSM), version 3.3, the Variable Infiltration Capacity (VIC) model, version 4.12, NASA GMAO's Catchment LSM, and the Noah Multi-Physics (MP) LSM (the latter two incorporate prognostic water table schemes). In addition, the LSMs' surface and subsurface runoff are routed through the Hydrological Modeling and Analysis Platform (HyMAP) to simulate surface water dynamics. The LSMs are driven by NASA/GMAO's Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2), and the USGS and UCSB Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) daily rainfall dataset. The LIS software framework integrates these forcing datasets and drives the four LSMs and HyMAP. The Land Verification Toolkit (LVT) is used for the evaluation of the LSMs, as it provides model ensemble metrics and the ability to compare against a variety of remotely sensed measurements, like different evapotranspiration (ET) and soil moisture products, and other reanalysis datasets that are available for this region. Comparison of the models' energy and hydrological budgets will be shown for this region (and sub-basin level, e.g., Blue Nile River) and time period (1981-2015), along with evaluating ET, streamflow, groundwater storage and soil moisture, using evaluation metrics (e.g., anomaly correlation, RMSE, etc.). The system uses seasonal climate forecasts from NASA's GMAO (the Goddard Earth Observing System Model, version 5) and NCEP's Climate Forecast System, version 2, and it produces forecasts of soil moisture, ET and streamflow out to 6 months in the future. Forecasts of those variables are formulated in terms of indicators to provide forecasts of drought and water availability in the region.

  5. Recent developments of DMI's operational system: Coupled Ecosystem-Circulation-and SPM model.

    NASA Astrophysics Data System (ADS)

    Murawski, Jens; Tian, Tian; Dobrynin, Mikhail

    2010-05-01

    ECOOP is a pan- European project with 72 partners from 29 countries around the Baltic Sea, the North Sea, the Iberia-Biscay-Ireland region, the Mediterranean Sea and the Black Sea. The project aims at the development and the integration of the different coastal and regional observation and forecasting systems. The Danish Meteorological Institute DMI coordinates the project and is responsible for the Baltic Sea regional forecasting System. Over the project period, the Baltic Sea system was developed from a purely hydro dynamical model (version V1), running operationally since summer 2009, to a coupled model platform (version V2), including model components for the simulation of suspended particles, data assimilation and ecosystem variables. The ECOOP V2 model is currently tested and validated, and will replace the V1 version soon. The coupled biogeochemical- and circulation model runs operationally since November 2009. The daily forecasts are presented at DMI's homepage http:/ocean.dmi.dk. The presentation includes a short description of the ECOOP forecasting system, discusses the model results and shows the outcome of the model validation.

  6. Evaluation of precipitation forecasts from 3D-Var and hybrid GSI-based system during Indian summer monsoon 2015

    NASA Astrophysics Data System (ADS)

    Singh, Sanjeev Kumar; Prasad, V. S.

    2018-02-01

    This paper presents a systematic investigation of medium-range rainfall forecasts from two versions of the National Centre for Medium Range Weather Forecasting (NCMRWF)-Global Forecast System based on three-dimensional variational (3D-Var) and hybrid analysis system namely, NGFS and HNGFS, respectively, during Indian summer monsoon (June-September) 2015. The NGFS uses gridpoint statistical interpolation (GSI) 3D-Var data assimilation system, whereas HNGFS uses hybrid 3D ensemble-variational scheme. The analysis includes the evaluation of rainfall fields and comparisons of rainfall using statistical score such as mean precipitation, bias, correlation coefficient, root mean square error and forecast improvement factor. In addition to these, categorical scores like Peirce skill score and bias score are also computed to describe particular aspects of forecasts performance. The comparison results of mean precipitation reveal that both the versions of model produced similar large-scale feature of Indian summer monsoon rainfall for day-1 through day-5 forecasts. The inclusion of fully flow-dependent background error covariance significantly improved the wet biases in HNGFS over the Indian Ocean. The forecast improvement factor and Peirce skill score in the HNGFS have also found better than NGFS for day-1 through day-5 forecasts.

  7. Global Ocean Forecast System (GOFS) Version 2.6. User’s Manual

    DTIC Science & Technology

    2010-03-31

    odimens.D, which takes the rivers.dat flow levels, inputs an SST and sea surface salinity (SSS) climatology from GDEM , and outputs the orivs_1.D...Center for Medium-range Weather Forecast GB GigaByte GDEM Global Digital Elevation Map GOFS Global Ocean Forecast System HPCMP High Performance

  8. Using Climate Regionalization to Understand Climate Forecast System Version 2 (CFSv2) Precipitation Performance for the Conterminous United States (CONUS)

    NASA Technical Reports Server (NTRS)

    Regonda, Satish K.; Zaitchik, Benjamin F.; Badr, Hamada S.; Rodell, Matthew

    2016-01-01

    Dynamically based seasonal forecasts are prone to systematic spatial biases due to imperfections in the underlying global climate model (GCM). This can result in low-forecast skill when the GCM misplaces teleconnections or fails to resolve geographic barriers, even if the prediction of large-scale dynamics is accurate. To characterize and address this issue, this study applies objective climate regionalization to identify discrepancies between the Climate Forecast SystemVersion 2 (CFSv2) and precipitation observations across the Contiguous United States (CONUS). Regionalization shows that CFSv2 1 month forecasts capture the general spatial character of warm season precipitation variability but that forecast regions systematically differ from observation in some transition zones. CFSv2 predictive skill for these misclassified areas is systematically reduced relative to correctly regionalized areas and CONUS as a whole. In these incorrectly regionalized areas, higher skill can be obtained by using a regional-scale forecast in place of the local grid cell prediction.

  9. Evaluating the improvements of the BOLAM meteorological model operational at ISPRA: A case study approach - preliminary results

    NASA Astrophysics Data System (ADS)

    Mariani, S.; Casaioli, M.; Lastoria, B.; Accadia, C.; Flavoni, S.

    2009-04-01

    The Institute for Environmental Protection and Research - ISPRA (former Agency for Environmental Protection and Technical Services - APAT) runs operationally since 2000 an integrated meteo-marine forecasting chain, named the Hydro-Meteo-Marine Forecasting System (Sistema Idro-Meteo-Mare - SIMM), formed by a cascade of four numerical models, telescoping from the Mediterranean basin to the Venice Lagoon, and initialized by means of analyses and forecasts from the European Centre for Medium-Range Weather Forecasts (ECMWF). The operational integrated system consists of a meteorological model, the parallel verision of BOlogna Limited Area Model (BOLAM), coupled over the Mediterranean sea with a WAve Model (WAM), a high-resolution shallow-water model of the Adriatic and Ionian Sea, namely the Princeton Ocean Model (POM), and a finite-element version of the same model (VL-FEM) on the Venice Lagoon, aimed to forecast the acqua alta events. Recently, the physically based, fully distributed, rainfall-runoff TOPographic Kinematic APproximation and Integration (TOPKAPI) model has been integrated into the system, coupled to BOLAM, over two river basins, located in the central and northeastern part of Italy, respectively. However, at the present time, this latter part of the forecasting chain is not operational and it is used in a research configuration. BOLAM was originally implemented in 2000 onto the Quadrics parallel supercomputer (and for this reason referred to as QBOLAM, as well) and only at the end of 2006 it was ported (together with the other operational marine models of the forecasting chain) onto the Silicon Graphics Inc. (SGI) Altix 8-processor machine. In particular, due to the Quadrics implementation, the Kuo scheme was formerly implemented into QBOLAM for the cumulus convection parameterization. On the contrary, when porting SIMM onto the Altix Linux cluster, it was achievable to implement into QBOLAM the more advanced convection parameterization by Kain and Fritsch. A fully updated serial version of the BOLAM code has been recently acquired. Code improvements include a more precise advection scheme (Weighted Average Flux); explicit advection of five hydrometeors, and state-of-the-art parameterization schemes for radiation, convection, boundary layer turbulence and soil processes (also with possible choice among different available schemes). The operational implementation of the new code into the SIMM model chain, which requires the development of a parallel version, will be achieved during 2009. In view of this goal, the comparative verification of the different model versions' skill represents a fundamental task. On this purpose, it has been decided to evaluate the performance improvement of the new BOLAM code (in the available serial version, hereinafter BOLAM 2007) with respect to the version with the Kain-Fritsch scheme (hereinafter KF version) and to the older one employing the Kuo scheme (hereinafter Kuo version). In the present work, verification of precipitation forecasts from the three BOLAM versions is carried on in a case study approach. The intense rainfall episode occurred on 10th - 17th December 2008 over Italy has been considered. This event produced indeed severe damages in Rome and its surrounding areas. Objective and subjective verification methods have been employed in order to evaluate model performance against an observational dataset including rain gauge observations and satellite imagery. Subjective comparison of observed and forecast precipitation fields is suitable to give an overall description of the forecast quality. Spatial errors (e.g., shifting and pattern errors) and rainfall volume error can be assessed quantitatively by means of object-oriented methods. By comparing satellite images with model forecast fields, it is possible to investigate the differences between the evolution of the observed weather system and the predicted ones, and its sensitivity to the improvements in the model code. Finally, the error in forecasting the cyclone evolution can be tentatively related with the precipitation forecast error.

  10. GloFAS-Seasonal: Operational Seasonal Ensemble River Flow Forecasts at the Global Scale

    NASA Astrophysics Data System (ADS)

    Emerton, Rebecca; Zsoter, Ervin; Smith, Paul; Salamon, Peter

    2017-04-01

    Seasonal hydrological forecasting has potential benefits for many sectors, including agriculture, water resources management and humanitarian aid. At present, no global scale seasonal hydrological forecasting system exists operationally; although smaller scale systems have begun to emerge around the globe over the past decade, a system providing consistent global scale seasonal forecasts would be of great benefit in regions where no other forecasting system exists, and to organisations operating at the global scale, such as disaster relief. We present here a new operational global ensemble seasonal hydrological forecast, currently under development at ECMWF as part of the Global Flood Awareness System (GloFAS). The proposed system, which builds upon the current version of GloFAS, takes the long-range forecasts from the ECMWF System4 ensemble seasonal forecast system (which incorporates the HTESSEL land surface scheme) and uses this runoff as input to the Lisflood routing model, producing a seasonal river flow forecast out to 4 months lead time, for the global river network. The seasonal forecasts will be evaluated using the global river discharge reanalysis, and observations where available, to determine the potential value of the forecasts across the globe. The seasonal forecasts will be presented as a new layer in the GloFAS interface, which will provide a global map of river catchments, indicating whether the catchment-averaged discharge forecast is showing abnormally high or low flows during the 4-month lead time. Each catchment will display the corresponding forecast as an ensemble hydrograph of the weekly-averaged discharge forecast out to 4 months, with percentile thresholds shown for comparison with the discharge climatology. The forecast visualisation is based on a combination of the current medium-range GloFAS forecasts and the operational EFAS (European Flood Awareness System) seasonal outlook, and aims to effectively communicate the nature of a seasonal outlook while providing useful information to users and partners. We demonstrate the first version of an operational GloFAS seasonal outlook, outlining the model set-up and presenting a first look at the seasonal forecasts that will be displayed in the GloFAS interface, and discuss the initial results of the forecast evaluation.

  11. Assimilation of Quality Controlled AIRS Temperature Profiles using the NCEP GFS

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Reale, Oreste; Iredell, Lena; Rosenberg, Robert

    2013-01-01

    We have previously conducted a number of data assimilation experiments using AIRS Version-5 quality controlled temperature profiles as a step toward finding an optimum balance of spatial coverage and sounding accuracy with regard to improving forecast skill. The data assimilation and forecast system we used was the Goddard Earth Observing System Model , Version-5 (GEOS-5) Data Assimilation System (DAS), which represents a combination of the NASA GEOS-5 forecast model with the National Centers for Environmental Prediction (NCEP) operational Grid Point Statistical Interpolation (GSI) global analysis scheme. All analyses and forecasts were run at a 0.5deg x 0.625deg spatial resolution. Data assimilation experiments were conducted in four different seasons, each in a different year. Three different sets of data assimilation experiments were run during each time period: Control; AIRS T(p); and AIRS Radiance. In the "Control" analysis, all the data used operationally by NCEP was assimilated, but no AIRS data was assimilated. Radiances from the Aqua AMSU-A instrument were also assimilated operationally by NCEP and are included in the "Control". The AIRS Radiance assimilation adds AIRS observed radiance observations for a select set of channels to the data set being assimilated, as done operationally by NCEP. In the AIRS T(p) assimilation, all information used in the Control was assimilated as well as Quality Controlled AIRS Version-5 temperature profiles, i.e., AIRS T(p) information was substituted for AIRS radiance information. The AIRS Version-5 temperature profiles were presented to the GSI analysis as rawinsonde profiles, assimilated down to a case-by-case appropriate pressure level p(sub best) determined using the Quality Control procedure. Version-5 also determines case-by-case, level-by-level error estimates of the temperature profiles, which were used as the uncertainty of each temperature measurement. These experiments using GEOS-5 have shown that forecasts resulting from analyses using the AIRS T(p) assimilation system were superior to those from the Radiance assimilation system, both with regard to global 7 day forecast skill and also the ability to predict storm tracks and intensity.

  12. Assessment of Forecast Sensitivity to Observation and Its Application to Satellite Radiances

    NASA Astrophysics Data System (ADS)

    Ide, K.

    2017-12-01

    The Forecast sensitivity to observation provides practical and useful metric for the assessment of observation impact without conducting computationally intensive data denial experiments. Quite often complex data assimilation systems use a simplified version of the forecast sensitivity formulation based on ensembles. In this talk, we first present the comparison of forecast sensitivity for 4DVar, Hybrid-4DEnVar, and 4DEnKF with or without such simplifications using a highly nonlinear model. We then present the results of ensemble forecast sensitivity to satellite radiance observations for Hybrid-4DEnVart using NOAA's Global Forecast System.

  13. Evaluation of snow modeling with Noah and Noah-MP land surface models in NCEP GFS/CFS system

    NASA Astrophysics Data System (ADS)

    Dong, J.; Ek, M. B.; Wei, H.; Meng, J.

    2017-12-01

    Land surface serves as lower boundary forcing in global forecast system (GFS) and climate forecast system (CFS), simulating interactions between land and the atmosphere. Understanding the underlying land model physics is a key to improving weather and seasonal prediction skills. With the upgrades in land model physics (e.g., release of newer versions of a land model), different land initializations, changes in parameterization schemes used in the land model (e.g., land physical parametrization options), and how the land impact is handled (e.g., physics ensemble approach), it always prompts the necessity that climate prediction experiments need to be re-conducted to examine its impact. The current NASA LIS (version 7) integrates NOAA operational land surface and hydrological models (NCEP's Noah, versions from 2.7.1 to 3.6 and the future Noah-MP), high-resolution satellite and observational data, and land DA tools. The newer versions of the Noah LSM used in operational models have a variety of enhancements compared to older versions, where the Noah-MP allows for different physics parameterization options and the choice could have large impact on physical processes underlying seasonal predictions. These impacts need to be reexamined before implemented into NCEP operational systems. A set of offline numerical experiments driven by the GFS forecast forcing have been conducted to evaluate the impact of snow modeling with daily Global Historical Climatology Network (GHCN).

  14. GEOS S2S-2_1 File Specification: GMAO Seasonal and Sub-Seasonal Forecast Output

    NASA Technical Reports Server (NTRS)

    Kovach, Robin M.; Marshak, Jelena; Molod, Andrea; Nakada, Kazumi

    2018-01-01

    The NASA GMAO seasonal (9 months) and subseasonal (45 days) forecasts are produced with the Goddard Earth Observing System (GEOS) Atmosphere-Ocean General Circulation Model and Data Assimilation System Version S2S-2_1. The new system replaces version S2S-1.0 described in Borovikov et al (2017), and includes upgrades to many components of the system. The atmospheric model includes an upgrade from a pre-MERRA-2 version running on a latitude-longitude grid at approx. 1 degree resolution to a current version running on a cubed sphere grid at approximately 1/2 degree resolution. The important developments are related to the dynamical core (Putman et al., 2011), the moist physics (''two-moment microphysics'' of Barahona et al., 2014) and the cryosphere (Cullather et al., 2014). As in the previous GMAO S2S system, the land model is that of Koster et al (2000). GMAO S2S-2_1 now includes the Goddard Chemistry Aerosol Radiation and Transport (GOCART, Colarco et al., 2010) single moment interactive aerosol model that includes predictive aerosols including dust, sea salt and several species of carbon and sulfate. The previous version of GMAO S2S specified aerosol amounts from climatology, which were used to inform the atmospheric radiation only. The ocean model includes an upgrade from MOM4 to MOM5 (Griffies 2012), and continues to be run on the tripolar grid at approximately 1/2 degree resolution in the tropics with 40 vertical levels. As in S2S-1.0, the sea ice model is from the Los Alamos Sea Ice model (CICE4, Hunke and Lipscomb 2010). The Ocean Data Assimilation System (ODAS) has been upgraded from the one described in Borovikov et al., 2017 to one that uses a modified version of the Penny, 2014 Local Ensemble Transform Kalman Filter (LETKF), and now assimilates along-track altimetry. The ODAS also does a nudging to MERRA-2 SST and sea ice boundary conditions. The atmospheric data assimilation fields used to constrain the atmosphere in the ODAS have been upgraded from MERRA to a MERRA-2 like system. The system is initialized using a MERRA-2-like atmospheric reanalysis (Gelaro et al. 2017) and the GMAO S2S-2_1 ocean analysis. Additional ensemble members for forecasts are produced with initial states at 5-day intervals, with additional members based on perturbations of the atmospheric and ocean states. Both subseasonal and seasonal forecasts are submitted to the National MultiModel Ensemble (NMME) project, and are part of the US/Canada multimodel seasonal forecasts (http://www.cpc.ncep.noaa.gov/products/NMME/). A large suite of retrospective forecasts (''hindcasts'') have been completed, and contribute to the calculation of the model's baseline climatology and drift, anomalies from which are the basis of the seasonal forecasts.

  15. Drought Monitoring and Forecasting Using the Princeton/U Washington National Hydrologic Forecasting System

    NASA Astrophysics Data System (ADS)

    Wood, E. F.; Yuan, X.; Roundy, J. K.; Lettenmaier, D. P.; Mo, K. C.; Xia, Y.; Ek, M. B.

    2011-12-01

    Extreme hydrologic events in the form of droughts or floods are a significant source of social and economic damage in many parts of the world. Having sufficient warning of extreme events allows managers to prepare for and reduce the severity of their impacts. A hydrologic forecast system can give seasonal predictions that can be used by mangers to make better decisions; however there is still much uncertainty associated with such a system. Therefore it is important to understand the forecast skill of the system before transitioning to operational usage. Seasonal reforecasts (1982 - 2010) from the NCEP Climate Forecast System (both version 1 (CFS) and version 2 (CFSv2), Climate Prediction Center (CPC) outlooks and the European Seasonal Interannual Prediction (EUROSIP) system, are assessed for forecasting skill in drought prediction across the U.S., both singularly and as a multi-model system The Princeton/U Washington national hydrologic monitoring and forecast system is being implemented at NCEP/EMC via their Climate Test Bed as the experimental hydrological forecast system to support U.S. operational drought prediction. Using our system, the seasonal forecasts are biased corrected, downscaled and used to drive the Variable Infiltration Capacity (VIC) land surface model to give seasonal forecasts of hydrologic variables with lead times of up to six months. Results are presented for a number of events, with particular focus on the Apalachicola-Chattahoochee-Flint (ACF) River Basin in the South Eastern United States, which has experienced a number of severe droughts in recent years and is a pilot study basin for the National Integrated Drought Information System (NIDIS). The performance of the VIC land surface model is evaluated using observational forcing when compared to observed streamflow. The effectiveness of the forecast system to predict streamflow and soil moisture is evaluated when compared with observed streamflow and modeled soil moisture driven by observed atmospheric forcing. The forecast skills from the dynamical seasonal models (CFSv1, CFSv2, EUROSIP) and CPC are also compared with forecasts based on the Ensemble Streamflow Prediction (ESP) method, which uses initial conditions and historical forcings to generate seasonal forecasts. The skill of the system to predict drought, drought recovery and related hydrological conditions such as low-flows is assessed, along with quantified uncertainty.

  16. ADAS Update and Maintainability

    NASA Technical Reports Server (NTRS)

    Watson, Leela R.

    2010-01-01

    Since 2000, both the National Weather Service Melbourne (NWS MLB) and the Spaceflight Meteorology Group (SMG) have used a local data integration system (LOIS) as part of their forecast and warning operations. The original LOIS was developed by the Applied Meteorology Unit (AMU) in 1998 (Manobianco and Case 1998) and has undergone subsequent improvements. Each has benefited from three-dimensional (3-D) analyses that are delivered to forecasters every 15 minutes across the peninsula of Florida. The intent is to generate products that enhance short-range weather forecasts issued in support of NWS MLB and SMG operational requirements within East Central Florida. The current LDIS uses the Advanced Regional Prediction System (ARPS) Data Analysis System (AD AS) package as its core, which integrates a wide variety of national, regional, and local observational data sets. It assimilates all available real-time data within its domain and is run at a finer spatial and temporal resolution than current national or regional-scale analysis packages. As such, it provides local forecasters with a more comprehensive understanding of evolving fine-scale weather features. Over the years, the LDIS has become problematic to maintain since it depends on AMU-developed shell scripts that were written for an earlier version of the ADAS software. The goals of this task were to update the NWS MLB/SMG LDIS with the latest version of ADAS, incorporate new sources of observational data, and upgrade and modify the AMU-developed shell scripts written to govern the system. In addition, the previously developed ADAS graphical user interface (GUI) was updated. Operationally, these upgrades will result in more accurate depictions of the current local environment to help with short-range weather forecasting applications, while also offering an improved initialization for local versions of the Weather Research and Forecasting (WRF) model used by both groups.

  17. The implementation of NEMS GFS Aerosol Component (NGAC) Version 1.0 for global dust forecasting at NOAA/NCEP

    PubMed Central

    Lu, Cheng-Hsuan; da Silva, Arlindo; Wang, Jun; Moorthi, Shrinivas; Chin, Mian; Colarco, Peter; Tang, Youhua; Bhattacharjee, Partha S.; Chen, Shen-Po; Chuang, Hui-Ya; Juang, Hann-Ming Henry; McQueen, Jeffery; Iredell, Mark

    2018-01-01

    The NOAA National Centers for Environmental Prediction (NCEP) implemented NEMS GFS Aerosol Component (NGAC) for global dust forecasting in collaboration with NASA Goddard Space Flight Center (GSFC). NGAC Version 1.0 has been providing 5 day dust forecasts at 1°×1° resolution on a global scale, once per day at 00:00 Coordinated Universal Time (UTC), since September 2012. This is the first global system capable of interactive atmosphere aerosol forecasting at NCEP. The implementation of NGAC V1.0 reflects an effective and efficient transitioning of NASA research advances to NCEP operations, paving the way for NCEP to provide global aerosol products serving a wide range of stakeholders as well as to allow the effects of aerosols on weather forecasts and climate prediction to be considered. PMID:29652411

  18. The implementation of NEMS GFS Aerosol Component (NGAC) Version 1.0 for global dust forecasting at NOAA/NCEP.

    PubMed

    Lu, Cheng-Hsuan; da Silva, Arlindo; Wang, Jun; Moorthi, Shrinivas; Chin, Mian; Colarco, Peter; Tang, Youhua; Bhattacharjee, Partha S; Chen, Shen-Po; Chuang, Hui-Ya; Juang, Hann-Ming Henry; McQueen, Jeffery; Iredell, Mark

    2016-01-01

    The NOAA National Centers for Environmental Prediction (NCEP) implemented NEMS GFS Aerosol Component (NGAC) for global dust forecasting in collaboration with NASA Goddard Space Flight Center (GSFC). NGAC Version 1.0 has been providing 5 day dust forecasts at 1°×1° resolution on a global scale, once per day at 00:00 Coordinated Universal Time (UTC), since September 2012. This is the first global system capable of interactive atmosphere aerosol forecasting at NCEP. The implementation of NGAC V1.0 reflects an effective and efficient transitioning of NASA research advances to NCEP operations, paving the way for NCEP to provide global aerosol products serving a wide range of stakeholders as well as to allow the effects of aerosols on weather forecasts and climate prediction to be considered.

  19. GEOS S2S-2_1: GMAO's New High Resolution Seasonal Prediction System

    NASA Technical Reports Server (NTRS)

    Molod, Andrea; Akella, Santha; Andrews, Lauren; Barahona, Donifan; Borovikov, Anna; Chang, Yehui; Cullather, Richard; Hackert, Eric; Kovach, Robin; Koster, Randal; hide

    2017-01-01

    A new version of the modeling and analysis system used to produce sub-seasonal to seasonal forecasts has just been released by the NASA Goddard Global Modeling and Assimilation Office. The new version runs at higher atmospheric resolution (approximately 12 degree globally), contains a substantially improved model description of the cryosphere, and includes additional interactive earth system model components (aerosol model). In addition, the Ocean data assimilation system has been replaced with a Local Ensemble Transform Kalman Filter. Here will describe the new system, along with the plans for the future (GEOS S2S-3_0) which will include a higher resolution ocean model and more interactive earth system model components (interactive vegetation, biomass burning from fires). We will also present results from a free-running coupled simulation with the new system and results from a series of retrospective seasonal forecasts. Results from retrospective forecasts show significant improvements in surface temperatures over much of the northern hemisphere and a much improved prediction of sea ice extent in both hemispheres. The precipitation forecast skill is comparable to previous S2S systems, and the only trade off is an increased double ITCZ, which is expected as we go to higher atmospheric resolution.

  20. GEOS S2S-2_1: The GMAO new high resolution Seasonal Prediction System

    NASA Astrophysics Data System (ADS)

    Molod, A.; Vikhliaev, Y. V.; Hackert, E. C.; Kovach, R. M.; Zhao, B.; Cullather, R. I.; Marshak, J.; Borovikov, A.; Li, Z.; Barahona, D.; Andrews, L. C.; Chang, Y.; Schubert, S. D.; Koster, R. D.; Suarez, M.; Akella, S.

    2017-12-01

    A new version of the modeling and analysis system used to produce subseasonalto seasonal forecasts has just been released by the NASA/Goddard GlobalModeling and Assimilation Office. The new version runs at higher atmospheric resolution (approximately 1/2 degree globally), contains a subtantially improvedmodel description of the cryosphere, and includes additional interactive earth system model components (aerosol model). In addition, the Ocean data assimilationsystem has been replaced with a Local Ensemble Transform Kalman Filter.Here will describe the new system, along with the plans for the future (GEOS S2S-3_0) which will include a higher resolution ocean model and more interactive earth system model components (interactive vegetation, biomass burning from fires). We will alsopresent results from a free-running coupled simulation with the new system and resultsfrom a series of retrospective seasonal forecasts.Results from retrospective forecasts show significant improvements in surface temperaturesover much of the northern hemisphere and a much improved prediction of sea ice extent in bothhemispheres. The precipitation forecast skill is comparable to previous S2S systems, andthe only tradeoff is an increased "double ITCZ", which is expected as we go to higher atmospheric resolution.

  1. Climate Forecast System

    Science.gov Websites

    Skip Navigation Links www.nws.noaa.gov NOAA logo - Click to go to the NOAA home page National Weather Service NWS logo - Click to go to the NWS home page Climate Forecast System Home News Organization Search : Go Search Go CFS Home CFS version 2 News Documentation Downloads Reanalysis CFSv2 at CPC CFS

  2. Development of the GEM-MACH-FireWork System: An Air Quality Model with On-line Wildfire Emissions within the Canadian Operational Air Quality Forecast System

    NASA Astrophysics Data System (ADS)

    Pavlovic, Radenko; Chen, Jack; Beaulieu, Paul-Andre; Anselmp, David; Gravel, Sylvie; Moran, Mike; Menard, Sylvain; Davignon, Didier

    2014-05-01

    A wildfire emissions processing system has been developed to incorporate near-real-time emissions from wildfires and large prescribed burns into Environment Canada's real-time GEM-MACH air quality (AQ) forecast system. Since the GEM-MACH forecast domain covers Canada and most of the U.S.A., including Alaska, fire location information is needed for both of these large countries. During AQ model runs, emissions from individual fire sources are injected into elevated model layers based on plume-rise calculations and then transport and chemistry calculations are performed. This "on the fly" approach to the insertion of the fire emissions provides flexibility and efficiency since on-line meteorology is used and computational overhead in emissions pre-processing is reduced. GEM-MACH-FireWork, an experimental wildfire version of GEM-MACH, was run in real-time mode for the summers of 2012 and 2013 in parallel with the normal operational version. 48-hour forecasts were generated every 12 hours (at 00 and 12 UTC). Noticeable improvements in the AQ forecasts for PM2.5 were seen in numerous regions where fire activity was high. Case studies evaluating model performance for specific regions and computed objective scores will be included in this presentation. Using the lessons learned from the last two summers, Environment Canada will continue to work towards the goal of incorporating near-real-time intermittent wildfire emissions into the operational air quality forecast system.

  3. Air Quality Forecasts Using the NASA GEOS Model

    NASA Technical Reports Server (NTRS)

    Keller, Christoph A.; Knowland, K. Emma; Nielsen, Jon E.; Orbe, Clara; Ott, Lesley; Pawson, Steven; Saunders, Emily; Duncan, Bryan; Follette-Cook, Melanie; Liu, Junhua; hide

    2018-01-01

    We provide an introduction to a new high-resolution (0.25 degree) global composition forecast produced by NASA's Global Modeling and Assimilation office. The NASA Goddard Earth Observing System version 5 (GEOS-5) model has been expanded to provide global near-real-time forecasts of atmospheric composition at a horizontal resolution of 0.25 degrees (25 km). Previously, this combination of detailed chemistry and resolution was only provided by regional models. This system combines the operational GEOS-5 weather forecasting model with the state-of-the-science GEOS-Chem chemistry module (version 11) to provide detailed chemical analysis of a wide range of air pollutants such as ozone, carbon monoxide, nitrogen oxides, and fine particulate matter (PM2.5). The resolution of the forecasts is the highest resolution compared to current, publically-available global composition forecasts. Evaluation and validation of modeled trace gases and aerosols compared to surface and satellite observations will be presented for constituents relative to health air quality standards. Comparisons of modeled trace gases and aerosols against satellite observations show that the model produces realistic concentrations of atmospheric constituents in the free troposphere. Model comparisons against surface observations highlight the model's capability to capture the diurnal variability of air pollutants under a variety of meteorological conditions. The GEOS-5 composition forecasting system offers a new tool for scientists and the public health community, and is being developed jointly with several government and non-profit partners. Potential applications include air quality warnings, flight campaign planning and exposure studies using the archived analysis fields.

  4. Global Real-Time Ocean Forecast System

    Science.gov Websites

    services. Marine Modeling and Analysis Branch Logo Click here to go to the MMAB home page Global Real-Time 17 Oct 2017 at 0Z, the Global RTOFS model has been upgraded to version 1.1.2. Changes include: The ). The global operational Real-Time Ocean Forecast System (Global RTOFS) at the National Centers for

  5. National Centers for Environmental Prediction

    Science.gov Websites

    Operational Forecast Graphics Experimental Forecast Graphics Verification and Diagnostics Model Configuration consists of the following components: - The NOAA Environmental Modeling System (NEMS) version of the Non updates for the 12 km parent domain and the 3 km CONUS/Alaska nests. The non-cycled nests (Hawaii, Puerto

  6. A new method for determining the optimal lagged ensemble

    PubMed Central

    DelSole, T.; Tippett, M. K.; Pegion, K.

    2017-01-01

    Abstract We propose a general methodology for determining the lagged ensemble that minimizes the mean square forecast error. The MSE of a lagged ensemble is shown to depend only on a quantity called the cross‐lead error covariance matrix, which can be estimated from a short hindcast data set and parameterized in terms of analytic functions of time. The resulting parameterization allows the skill of forecasts to be evaluated for an arbitrary ensemble size and initialization frequency. Remarkably, the parameterization also can estimate the MSE of a burst ensemble simply by taking the limit of an infinitely small interval between initialization times. This methodology is applied to forecasts of the Madden Julian Oscillation (MJO) from version 2 of the Climate Forecast System version 2 (CFSv2). For leads greater than a week, little improvement is found in the MJO forecast skill when ensembles larger than 5 days are used or initializations greater than 4 times per day. We find that if the initialization frequency is too infrequent, important structures of the lagged error covariance matrix are lost. Lastly, we demonstrate that the forecast error at leads ≥10 days can be reduced by optimally weighting the lagged ensemble members. The weights are shown to depend only on the cross‐lead error covariance matrix. While the methodology developed here is applied to CFSv2, the technique can be easily adapted to other forecast systems. PMID:28580050

  7. Understanding the land-atmospheric interaction in drought forecast from CFSv2 for the 2011 Texas and 2012 Upper Midwest US droughts

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Roundy, J. K.; Ek, M. B.; Wood, E. F.

    2015-12-01

    Prediction and thus preparedness in advance of hydrological extremes, such as drought and flood events, is crucial for proactively reducing their social and economic impacts. In the summers of 2011 Texas, and 2012 the Upper Midwest, experienced intense droughts that affected crops and the food market in the US. It is expected that seasonal forecasts with sufficient skill would reduce the negative impacts through planning and preparation. However, the forecast skill from models such as Climate Forecast System Version 2 (CFSv2) from National Centers for Environmental Prediction (NCEP) is low over the US, especially during the warm season (Jun - Sep), which restricts their practical use for drought prediction. This study analyzes the processes that lead to premature termination of 2011 and 2012 US summer droughts in CFSv2 forecast resulting in its low forecast skill. Using the North American Land Data Assimilation System version 2 (NLDAS2) and Climate Forecast System Reanalysis (CFSR) as references, this study investigates the forecast skills of CFSv2 initialized at 00, 06, 12, 18z from May 15 - 31 (leads out to September) for each event in terms of land-atmosphere interaction, through a recently developed Coupling Drought Index (CDI), which is based on the Convective Triggering Potential-Humidity Index-soil moisture (CTP-HI-SM) classification of four climate regimes: wet coupling, dry coupling, transitional and atmospherically controlled. A recycling model is used to trace the moisture sources in the CFSv2 forecasts of anomalous precipitation, which lead to the breakdown of drought conditions and a lack of drought forecasting skills. This is then compared with tracing the moisture source in CFSR with the same recycling model, which is used as the verification for the same periods. This helps to identify the parameterization that triggered precipitation in CFSv2 during 2011 and 2012 summer in the US thus has the potential to improve the forecast skill of CSFv2.

  8. A Prototype Regional GSI-based EnKF-Variational Hybrid Data Assimilation System for the Rapid Refresh Forecasting System: Dual-Resolution Implementation and Testing Results

    NASA Astrophysics Data System (ADS)

    Pan, Yujie; Xue, Ming; Zhu, Kefeng; Wang, Mingjun

    2018-05-01

    A dual-resolution (DR) version of a regional ensemble Kalman filter (EnKF)-3D ensemble variational (3DEnVar) coupled hybrid data assimilation system is implemented as a prototype for the operational Rapid Refresh forecasting system. The DR 3DEnVar system combines a high-resolution (HR) deterministic background forecast with lower-resolution (LR) EnKF ensemble perturbations used for flow-dependent background error covariance to produce a HR analysis. The computational cost is substantially reduced by running the ensemble forecasts and EnKF analyses at LR. The DR 3DEnVar system is tested with 3-h cycles over a 9-day period using a 40/˜13-km grid spacing combination. The HR forecasts from the DR hybrid analyses are compared with forecasts launched from HR Gridpoint Statistical Interpolation (GSI) 3D variational (3DVar) analyses, and single LR hybrid analyses interpolated to the HR grid. With the DR 3DEnVar system, a 90% weight for the ensemble covariance yields the lowest forecast errors and the DR hybrid system clearly outperforms the HR GSI 3DVar. Humidity and wind forecasts are also better than those launched from interpolated LR hybrid analyses, but the temperature forecasts are slightly worse. The humidity forecasts are improved most. For precipitation forecasts, the DR 3DEnVar always outperforms HR GSI 3DVar. It also outperforms the LR 3DEnVar, except for the initial forecast period and lower thresholds.

  9. Air Quality Forecasts Using the NASA GEOS Model: A Unified Tool from Local to Global Scales

    NASA Technical Reports Server (NTRS)

    Knowland, E. Emma; Keller, Christoph; Nielsen, J. Eric; Orbe, Clara; Ott, Lesley; Pawson, Steven; Saunders, Emily; Duncan, Bryan; Cook, Melanie; Liu, Junhua; hide

    2017-01-01

    We provide an introduction to a new high-resolution (0.25 degree) global composition forecast produced by NASA's Global Modeling and Assimilation office. The NASA Goddard Earth Observing System version 5 (GEOS-5) model has been expanded to provide global near-real-time forecasts of atmospheric composition at a horizontal resolution of 0.25 degrees (approximately 25 km). Previously, this combination of detailed chemistry and resolution was only provided by regional models. This system combines the operational GEOS-5 weather forecasting model with the state-of-the-science GEOS-Chem chemistry module (version 11) to provide detailed chemical analysis of a wide range of air pollutants such as ozone, carbon monoxide, nitrogen oxides, and fine particulate matter (PM2.5). The resolution of the forecasts is the highest resolution compared to current, publically-available global composition forecasts. Evaluation and validation of modeled trace gases and aerosols compared to surface and satellite observations will be presented for constituents relative to health air quality standards. Comparisons of modeled trace gases and aerosols against satellite observations show that the model produces realistic concentrations of atmospheric constituents in the free troposphere. Model comparisons against surface observations highlight the model's capability to capture the diurnal variability of air pollutants under a variety of meteorological conditions. The GEOS-5 composition forecasting system offers a new tool for scientists and the public health community, and is being developed jointly with several government and non-profit partners. Potential applications include air quality warnings, flight campaign planning and exposure studies using the archived analysis fields.

  10. Evaluation of the Plant-Craig stochastic convection scheme in an ensemble forecasting system

    NASA Astrophysics Data System (ADS)

    Keane, R. J.; Plant, R. S.; Tennant, W. J.

    2015-12-01

    The Plant-Craig stochastic convection parameterization (version 2.0) is implemented in the Met Office Regional Ensemble Prediction System (MOGREPS-R) and is assessed in comparison with the standard convection scheme with a simple stochastic element only, from random parameter variation. A set of 34 ensemble forecasts, each with 24 members, is considered, over the month of July 2009. Deterministic and probabilistic measures of the precipitation forecasts are assessed. The Plant-Craig parameterization is found to improve probabilistic forecast measures, particularly the results for lower precipitation thresholds. The impact on deterministic forecasts at the grid scale is neutral, although the Plant-Craig scheme does deliver improvements when forecasts are made over larger areas. The improvements found are greater in conditions of relatively weak synoptic forcing, for which convective precipitation is likely to be less predictable.

  11. Status of the NASA GMAO Observing System Simulation Experiment

    NASA Technical Reports Server (NTRS)

    Prive, Nikki C.; Errico, Ronald M.

    2014-01-01

    An Observing System Simulation Experiment (OSSE) is a pure modeling study used when actual observations are too expensive or difficult to obtain. OSSEs are valuable tools for determining the potential impact of new observing systems on numerical weather forecasts and for evaluation of data assimilation systems (DAS). An OSSE has been developed at the NASA Global Modeling and Assimilation Office (GMAO, Errico et al 2013). The GMAO OSSE uses a 13-month integration of the European Centre for Medium- Range Weather Forecasts 2005 operational model at T511/L91 resolution for the Nature Run (NR). Synthetic observations have been updated so that they are based on real observations during the summer of 2013. The emulated observation types include AMSU-A, MHS, IASI, AIRS, and HIRS4 radiance data, GPS-RO, and conventional types including aircraft, rawinsonde, profiler, surface, and satellite winds. The synthetic satellite wind observations are colocated with the NR cloud fields, and the rawinsondes are advected during ascent using the NR wind fields. Data counts for the synthetic observations are matched as closely as possible to real data counts, as shown in Figure 2. Errors are added to the synthetic observations to emulate representativeness and instrument errors. The synthetic errors are calibrated so that the statistics of observation innovation and analysis increments in the OSSE are similar to the same statistics for assimilation of real observations, in an iterative method described by Errico et al (2013). The standard deviations of observation minus forecast (xo-H(xb)) are compared for the OSSE and real data in Figure 3. The synthetic errors include both random, uncorrelated errors, and an additional correlated error component for some observational types. Vertically correlated errors are included for conventional sounding data and GPS-RO, and channel correlated errors are introduced to AIRS and IASI (Figure 4). HIRS, AMSU-A, and MHS have a component of horizontally correlated error. The forecast model used by the GMAO OSSE is the Goddard Earth Observing System Model, Version 5 (GEOS-5) with Gridpoint Statistical Interpolation (GSI) DAS. The model version has been updated to v. 5.13.3, corresponding to the current operational model. Forecasts are run on a cube-sphere grid with 180 points along each edge of the cube (approximately 0.5 degree horizontal resolution) with 72 vertical levels. The DAS is cycled at 6-hour intervals, with 240 hour forecasts launched daily at 0000 UTC. Evaluation of the forecasting skill for July and August is currently underway. Prior versions of the GMAO OSSE have been found to have greater forecasting skill than real world forecasts. It is anticipated that similar forecast skill will be found in the updated OSSE.

  12. Evaluation of the Plant-Craig stochastic convection scheme (v2.0) in the ensemble forecasting system MOGREPS-R (24 km) based on the Unified Model (v7.3)

    NASA Astrophysics Data System (ADS)

    Keane, Richard J.; Plant, Robert S.; Tennant, Warren J.

    2016-05-01

    The Plant-Craig stochastic convection parameterization (version 2.0) is implemented in the Met Office Regional Ensemble Prediction System (MOGREPS-R) and is assessed in comparison with the standard convection scheme with a simple stochastic scheme only, from random parameter variation. A set of 34 ensemble forecasts, each with 24 members, is considered, over the month of July 2009. Deterministic and probabilistic measures of the precipitation forecasts are assessed. The Plant-Craig parameterization is found to improve probabilistic forecast measures, particularly the results for lower precipitation thresholds. The impact on deterministic forecasts at the grid scale is neutral, although the Plant-Craig scheme does deliver improvements when forecasts are made over larger areas. The improvements found are greater in conditions of relatively weak synoptic forcing, for which convective precipitation is likely to be less predictable.

  13. Improving Forecast Skill by Assimilation of Quality Controlled AIRS Version 5 Temperature Soundings

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Reale, Oreste

    2009-01-01

    The AIRS Science Team Version 5 retrieval algorithm has been finalized and is now operational at the Goddard DAAC in the processing (and reprocessing) of all AIRS data. The AIRS Science Team Version 5 retrieval algorithm contains two significant improvements over Version 4: 1) Improved physics allows for use of AIRS observations in the entire 4.3 micron CO2 absorption band in the retrieval of temperature profile T(p) during both day and night. Tropospheric sounding 15 micron CO2 observations are now used primarily in the generation of cloud cleared radiances R(sub i). This approach allows for the generation of accurate values of R(sub i) and T(p) under most cloud conditions. 2) Another very significant improvement in Version 5 is the ability to generate accurate case-by-case, level-by-level error estimates for the atmospheric temperature profile, as well as for channel-by-channel error estimates for R(sub i). These error estimates are used for Quality Control of the retrieved products. We have conducted forecast impact experiments assimilating AIRS temperature profiles with different levels of Quality Control using the NASA GEOS-5 data assimilation system. Assimilation of Quality Controlled T(p) resulted in significantly improved forecast skill compared to that obtained from analyses obtained when all data used operationally by NCEP, except for AIRS data, is assimilated. We also conducted an experiment assimilating AIRS radiances uncontaminated by clouds, as done operationally by ECMWF and NCEP. Forecast resulting from assimilated AIRS radiances were of poorer quality than those obtained assimilating AIRS temperatures.

  14. COMPUTATIONAL ASPECTS OF THE AIR QUALITY FORECASTING VERSION OF CMAQ (CMAQ-F)

    EPA Science Inventory

    The air quality forecast version of the Community Modeling Air Quality (CMAQ) model (CMAQ-F) was developed from the public release version of CMAQ (available from http://www.cmascenter.org), and is running operationally at the National Weather Service's National Centers for Envir...

  15. SASS wind forecast impact studies using the GLAS and NEPRF systems: Preliminary conclusions

    NASA Technical Reports Server (NTRS)

    Kalnay, E.; Atlas, R.; Baker, W. E.; Duffy, D.; Halem, M.; Helfand, M.

    1984-01-01

    For this project, a version of the GLAS Analysis/Forecast System was developed that includes an objective dealiasing scheme as an integral part of the analysis cycle. With this system the (100 sq km) binned SASS wind data generated by S. Peteherych of AER, Canada corresponding of the period 0000 GMT 7 September 1978 to 1200 GMT 13 September 1978 was objectively dealiased. The dealiased wind fields have been requested and received by JPL, NMC and the British Meteorological Office. The first 3.5 days of objectively dealiased fields were subjectively enhanced on the McIDAS system. Approximately 20% of the wind directions were modified, and of these, about 70% were changed by less than 90 deg. Two SASS forecast impact studies, were performed using the dealiased fields, with the GLAS and the NEPRF (Navy Environmental Prediction Research Facility) analysis/forecast systems.

  16. Regional Precipitation Forecast with Atmospheric InfraRed Sounder (AIRS) Profile Assimilation

    NASA Technical Reports Server (NTRS)

    Chou, S.-H.; Zavodsky, B. T.; Jedloved, G. J.

    2010-01-01

    Advanced technology in hyperspectral sensors such as the Atmospheric InfraRed Sounder (AIRS; Aumann et al. 2003) on NASA's polar orbiting Aqua satellite retrieve higher vertical resolution thermodynamic profiles than their predecessors due to increased spectral resolution. Although these capabilities do not replace the robust vertical resolution provided by radiosondes, they can serve as a complement to radiosondes in both space and time. These retrieved soundings can have a significant impact on weather forecasts if properly assimilated into prediction models. Several recent studies have evaluated the performance of specific operational weather forecast models when AIRS data are included in the assimilation process. LeMarshall et al. (2006) concluded that AIRS radiances significantly improved 500 hPa anomaly correlations in medium-range forecasts of the Global Forecast System (GFS) model. McCarty et al. (2009) demonstrated similar forecast improvement in 0-48 hour forecasts in an offline version of the operational North American Mesoscale (NAM) model when AIRS radiances were assimilated at the regional scale. Reale et al. (2008) showed improvements to Northern Hemisphere 500 hPa height anomaly correlations in NASA's Goddard Earth Observing System Model, Version 5 (GEOS-5) global system with the inclusion of partly cloudy AIRS temperature profiles. Singh et al. (2008) assimilated AIRS temperature and moisture profiles into a regional modeling system for a study of a heavy rainfall event during the summer monsoon season in Mumbai, India. This paper describes an approach to assimilate AIRS temperature and moisture profiles into a regional configuration of the Advanced Research Weather Research and Forecasting (WRF-ARW) model using its three-dimensional variational (3DVAR) assimilation system (WRF-Var; Barker et al. 2004). Section 2 describes the AIRS instrument and how the quality indicators are used to intelligently select the highest-quality data for assimilation. Section 3 presents an overall precipitation improvement with AIRS assimilation during a 37-day case study period, and Section 4 focuses on a single case study to further investigate the meteorological impact of AIRS profiles on synoptic scale models. Finally, Section 5 provides a summary of the paper.

  17. Variational assimilation of VAS data into the mass model

    NASA Technical Reports Server (NTRS)

    Cram, J. M.; Kaplan, M. L.

    1984-01-01

    Experiments are reported in which VAS data at 1200, 1500, and 1800 GMT 20 July 1981 were assimilated using both the adiabatic and full physics version of the Mesoscale Atmospheric Simulation System (MASS). A nonassimilation forecast is compared with forecasts assimilating temperature gradients only and forecasts assimilating both temperature and humidity gradients. The effects of successive vs single assimilations are also examined. It is noted that the greatest improvements to the forecast resulted when the VAS data resolved the mesoscale structure of the temperature and relative humidity fields. When this structure was assimilated into MASS, the ensuing simulations more clearly defined a mesoscale structure in the developing instabilities.

  18. Evaluation of weather forecast systems for storm surge modeling in the Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Garzon, Juan L.; Ferreira, Celso M.; Padilla-Hernandez, Roberto

    2018-01-01

    Accurate forecast of sea-level heights in coastal areas depends, among other factors, upon a reliable coupling of a meteorological forecast system to a hydrodynamic and wave system. This study evaluates the predictive skills of the coupled circulation and wind-wave model system (ADCIRC+SWAN) for simulating storm tides in the Chesapeake Bay, forced by six different products: (1) Global Forecast System (GFS), (2) Climate Forecast System (CFS) version 2, (3) North American Mesoscale Forecast System (NAM), (4) Rapid Refresh (RAP), (5) European Center for Medium-Range Weather Forecasts (ECMWF), and (6) the Atlantic hurricane database (HURDAT2). This evaluation is based on the hindcasting of four events: Irene (2011), Sandy (2012), Joaquin (2015), and Jonas (2016). By comparing the simulated water levels to observations at 13 monitoring stations, we have found that the ADCIR+SWAN System forced by the following: (1) the HURDAT2-based system exhibited the weakest statistical skills owing to a noteworthy overprediction of the simulated wind speed; (2) the ECMWF, RAP, and NAM products captured the moment of the peak and moderately its magnitude during all storms, with a correlation coefficient ranging between 0.98 and 0.77; (3) the CFS system exhibited the worst averaged root-mean-square difference (excepting HURDAT2); (4) the GFS system (the lowest horizontal resolution product tested) resulted in a clear underprediction of the maximum water elevation. Overall, the simulations forced by NAM and ECMWF systems induced the most accurate results best accuracy to support water level forecasting in the Chesapeake Bay during both tropical and extra-tropical storms.

  19. Performance and Quality Assessment of the Forthcoming Copernicus Marine Service Global Ocean Monitoring and Forecasting Real-Time System

    NASA Astrophysics Data System (ADS)

    Lellouche, J. M.; Le Galloudec, O.; Greiner, E.; Garric, G.; Regnier, C.; Drillet, Y.

    2016-02-01

    Mercator Ocean currently delivers in real-time daily services (weekly analyses and daily forecast) with a global 1/12° high resolution system. The model component is the NEMO platform driven at the surface by the IFS ECMWF atmospheric analyses and forecasts. Observations are assimilated by means of a reduced-order Kalman filter with a 3D multivariate modal decomposition of the forecast error. It includes an adaptive-error estimate and a localization algorithm. Along track altimeter data, satellite Sea Surface Temperature and in situ temperature and salinity vertical profiles are jointly assimilated to estimate the initial conditions for numerical ocean forecasting. A 3D-Var scheme provides a correction for the slowly-evolving large-scale biases in temperature and salinity.Since May 2015, Mercator Ocean opened the Copernicus Marine Service (CMS) and is in charge of the global ocean analyses and forecast, at eddy resolving resolution. In this context, R&D activities have been conducted at Mercator Ocean these last years in order to improve the real-time 1/12° global system for the next CMS version in 2016. The ocean/sea-ice model and the assimilation scheme benefit among others from the following improvements: large-scale and objective correction of atmospheric quantities with satellite data, new Mean Dynamic Topography taking into account the last version of GOCE geoid, new adaptive tuning of some observational errors, new Quality Control on the assimilated temperature and salinity vertical profiles based on dynamic height criteria, assimilation of satellite sea-ice concentration, new freshwater runoff from ice sheets melting …This presentation doesn't focus on the impact of each update, but rather on the overall behavior of the system integrating all updates. This assessment reports on the products quality improvements, highlighting the level of performance and the reliability of the new system.

  20. Hybrid forecasting of chaotic processes: Using machine learning in conjunction with a knowledge-based model

    NASA Astrophysics Data System (ADS)

    Pathak, Jaideep; Wikner, Alexander; Fussell, Rebeckah; Chandra, Sarthak; Hunt, Brian R.; Girvan, Michelle; Ott, Edward

    2018-04-01

    A model-based approach to forecasting chaotic dynamical systems utilizes knowledge of the mechanistic processes governing the dynamics to build an approximate mathematical model of the system. In contrast, machine learning techniques have demonstrated promising results for forecasting chaotic systems purely from past time series measurements of system state variables (training data), without prior knowledge of the system dynamics. The motivation for this paper is the potential of machine learning for filling in the gaps in our underlying mechanistic knowledge that cause widely-used knowledge-based models to be inaccurate. Thus, we here propose a general method that leverages the advantages of these two approaches by combining a knowledge-based model and a machine learning technique to build a hybrid forecasting scheme. Potential applications for such an approach are numerous (e.g., improving weather forecasting). We demonstrate and test the utility of this approach using a particular illustrative version of a machine learning known as reservoir computing, and we apply the resulting hybrid forecaster to a low-dimensional chaotic system, as well as to a high-dimensional spatiotemporal chaotic system. These tests yield extremely promising results in that our hybrid technique is able to accurately predict for a much longer period of time than either its machine-learning component or its model-based component alone.

  1. Improving Regional Forecast by Assimilating Atmospheric InfraRed Sounder (AIRS) Profiles into WRF Model

    NASA Technical Reports Server (NTRS)

    Chou, Shih-Hung; Zavodsky, Brad; Jedlovec, Gary J.

    2009-01-01

    In data sparse regions, remotely-sensed observations can be used to improve analyses and produce improved forecasts. One such source comes from the Atmospheric InfraRed Sounder (AIRS), which together with the Advanced Microwave Sounding Unit (AMSU), represents one of the most advanced space-based atmospheric sounding systems. The purpose of this paper is to describe a procedure to optimally assimilate high resolution AIRS profile data into a regional configuration of the Advanced Research WRF (ARW) version 2.2 using WRF-Var. The paper focuses on development of background error covariances for the regional domain and background type, and an optimal methodology for ingesting AIRS temperature and moisture profiles as separate overland and overwater retrievals with different error characteristics. The AIRS thermodynamic profiles are derived from the version 5.0 Earth Observing System (EOS) science team retrieval algorithm and contain information about the quality of each temperature layer. The quality indicators were used to select the highest quality temperature and moisture data for each profile location and pressure level. The analyses were then used to conduct a month-long series of regional forecasts over the continental U.S. The long-term impacts of AIRS profiles on forecast were assessed against verifying NAM analyses and stage IV precipitation data.

  2. Building the Sun4Cast System: Improvements in Solar Power Forecasting

    DOE PAGES

    Haupt, Sue Ellen; Kosovic, Branko; Jensen, Tara; ...

    2017-06-16

    The Sun4Cast System results from a research-to-operations project built on a value chain approach, and benefiting electric utilities’ customers, society, and the environment by improving state-of-the-science solar power forecasting capabilities. As integration of solar power into the national electric grid rapidly increases, it becomes imperative to improve forecasting of this highly variable renewable resource. Thus, a team of researchers from public, private, and academic sectors partnered to develop and assess a new solar power forecasting system, Sun4Cast. The partnership focused on improving decision-making for utilities and independent system operators, ultimately resulting in improved grid stability and cost savings for consumers.more » The project followed a value chain approach to determine key research and technology needs to reach desired results. Sun4Cast integrates various forecasting technologies across a spectrum of temporal and spatial scales to predict surface solar irradiance. Anchoring the system is WRF-Solar, a version of the Weather Research and Forecasting (WRF) numerical weather prediction (NWP) model optimized for solar irradiance prediction. Forecasts from multiple NWP models are blended via the Dynamic Integrated Forecast (DICast) System, the basis of the system beyond about 6 h. For short-range (0-6 h) forecasts, Sun4Cast leverages several observation-based nowcasting technologies. These technologies are blended via the Nowcasting Expert System Integrator (NESI). The NESI and DICast systems are subsequently blended to produce short to mid-term irradiance forecasts for solar array locations. The irradiance forecasts are translated into power with uncertainties quantified using an analog ensemble approach, and are provided to the industry partners for real-time decision-making. The Sun4Cast system ran operationally throughout 2015 and results were assessed. As a result, this paper analyzes the collaborative design process, discusses the project results, and provides recommendations for best-practice solar forecasting.« less

  3. Building the Sun4Cast System: Improvements in Solar Power Forecasting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haupt, Sue Ellen; Kosovic, Branko; Jensen, Tara

    The Sun4Cast System results from a research-to-operations project built on a value chain approach, and benefiting electric utilities’ customers, society, and the environment by improving state-of-the-science solar power forecasting capabilities. As integration of solar power into the national electric grid rapidly increases, it becomes imperative to improve forecasting of this highly variable renewable resource. Thus, a team of researchers from public, private, and academic sectors partnered to develop and assess a new solar power forecasting system, Sun4Cast. The partnership focused on improving decision-making for utilities and independent system operators, ultimately resulting in improved grid stability and cost savings for consumers.more » The project followed a value chain approach to determine key research and technology needs to reach desired results. Sun4Cast integrates various forecasting technologies across a spectrum of temporal and spatial scales to predict surface solar irradiance. Anchoring the system is WRF-Solar, a version of the Weather Research and Forecasting (WRF) numerical weather prediction (NWP) model optimized for solar irradiance prediction. Forecasts from multiple NWP models are blended via the Dynamic Integrated Forecast (DICast) System, the basis of the system beyond about 6 h. For short-range (0-6 h) forecasts, Sun4Cast leverages several observation-based nowcasting technologies. These technologies are blended via the Nowcasting Expert System Integrator (NESI). The NESI and DICast systems are subsequently blended to produce short to mid-term irradiance forecasts for solar array locations. The irradiance forecasts are translated into power with uncertainties quantified using an analog ensemble approach, and are provided to the industry partners for real-time decision-making. The Sun4Cast system ran operationally throughout 2015 and results were assessed. As a result, this paper analyzes the collaborative design process, discusses the project results, and provides recommendations for best-practice solar forecasting.« less

  4. Improvements and Lingering Challenges with Modeling Low-Level Winds Over Complex Terrain during the Wind Forecast Improvement Project 2

    NASA Astrophysics Data System (ADS)

    Olson, J.; Kenyon, J.; Brown, J. M.; Angevine, W. M.; Marquis, M.; Pichugina, Y. L.; Choukulkar, A.; Bonin, T.; Banta, R. M.; Bianco, L.; Djalalova, I.; McCaffrey, K.; Wilczak, J. M.; Lantz, K. O.; Long, C. N.; Redfern, S.; McCaa, J. R.; Stoelinga, M.; Grimit, E.; Cline, J.; Shaw, W. J.; Lundquist, J. K.; Lundquist, K. A.; Kosovic, B.; Berg, L. K.; Kotamarthi, V. R.; Sharp, J.; Jiménez, P.

    2017-12-01

    The Rapid Refresh (RAP) and High-Resolution Rapid Refresh (HRRR) are NOAA real-time operational hourly updating forecast systems run at 13- and 3-km grid spacing, respectively. Both systems use the Advanced Research version of the Weather Research and Forecasting (WRF-ARW) as the model component of the forecast system. During the second installment of the Wind Forecast Improvement Project (WFIP 2), the RAP/HRRR have been targeted for the improvement of low-level wind forecasts in the complex terrain within the Columbia River Basin (CRB), which requires much finer grid spacing to resolve important terrain peaks in the Cascade Mountains as well as the Columbia River Gorge. Therefore, this project provides a unique opportunity to test and develop the RAP/HRRR physics suite within a very high-resolution nest (Δx = 750 m) over the northwestern US. Special effort is made to incorporate scale-aware aspects into the model physical parameterizations to improve RAP/HRRR wind forecasts for any application at any grid spacing. Many wind profiling and scanning instruments have been deployed in the CRB in support the WFIP 2 field project, which spanned 01 October 2015 to 31 March 2017. During the project, several forecast error modes were identified, such as: (1) too-shallow cold pools during the cool season, which can mix-out more frequently than observed and (2) the low wind speed bias in thermal trough-induced gap flows during the warm season. Development has been focused on the column-based turbulent mixing scheme to improve upon these biases, but investigating the effects of horizontal (and 3D) mixing has also helped improve some of the common forecast failure modes. This presentation will highlight the testing and development of various model components, showing the improvements over original versions for temperature and wind profiles. Examples of case studies and retrospective periods will be presented to illustrate the improvements. We will demonstrate that the improvements made in WFIP 2 will be extendable to other regions, complex or flat terrain. Ongoing and future challenges in RAP/HRRR physics development will be touched upon.

  5. Performance Improvements of the CYCOFOS Flow Model

    NASA Astrophysics Data System (ADS)

    Radhakrishnan, Hari; Moulitsas, Irene; Syrakos, Alexandros; Zodiatis, George; Nikolaides, Andreas; Hayes, Daniel; Georgiou, Georgios C.

    2013-04-01

    The CYCOFOS-Cyprus Coastal Ocean Forecasting and Observing System has been operational since early 2002, providing daily sea current, temperature, salinity and sea level forecasting data for the next 4 and 10 days to end-users in the Levantine Basin, necessary for operational application in marine safety, particularly concerning oil spills and floating objects predictions. CYCOFOS flow model, similar to most of the coastal and sub-regional operational hydrodynamic forecasting systems of the MONGOOS-Mediterranean Oceanographic Network for Global Ocean Observing System is based on the POM-Princeton Ocean Model. CYCOFOS is nested with the MyOcean Mediterranean regional forecasting data and with SKIRON and ECMWF for surface forcing. The increasing demand for higher and higher resolution data to meet coastal and offshore downstream applications motivated the parallelization of the CYCOFOS POM model. This development was carried out in the frame of the IPcycofos project, funded by the Cyprus Research Promotion Foundation. The parallel processing provides a viable solution to satisfy these demands without sacrificing accuracy or omitting any physical phenomena. Prior to IPcycofos project, there are been several attempts to parallelise the POM, as for example the MP-POM. The existing parallel code models rely on the use of specific outdated hardware architectures and associated software. The objective of the IPcycofos project is to produce an operational parallel version of the CYCOFOS POM code that can replicate the results of the serial version of the POM code used in CYCOFOS. The parallelization of the CYCOFOS POM model use Message Passing Interface-MPI, implemented on commodity computing clusters running open source software and not depending on any specialized vendor hardware. The parallel CYCOFOS POM code constructed in a modular fashion, allowing a fast re-locatable downscaled implementation. The MPI takes advantage of the Cartesian nature of the POM mesh, and use the built-in functionality of MPI routines to split the mesh, using a weighting scheme, along longitude and latitude among the processors. Each server processor work on the model based on domain decomposition techniques. The new parallel CYCOFOS POM code has been benchmarked against the serial POM version of CYCOFOS for speed, accuracy, and resolution and the results are more than satisfactory. With a higher resolution CYCOFOS Levantine model domain the forecasts need much less time than the serial CYCOFOS POM coarser version, both with identical accuracy.

  6. Enviro-HIRLAM online integrated meteorology-chemistry modelling system: strategy, methodology, developments and applications (v7.2)

    NASA Astrophysics Data System (ADS)

    Baklanov, Alexander; Smith Korsholm, Ulrik; Nuterman, Roman; Mahura, Alexander; Pagh Nielsen, Kristian; Hansen Sass, Bent; Rasmussen, Alix; Zakey, Ashraf; Kaas, Eigil; Kurganskiy, Alexander; Sørensen, Brian; González-Aparicio, Iratxe

    2017-08-01

    The Environment - High Resolution Limited Area Model (Enviro-HIRLAM) is developed as a fully online integrated numerical weather prediction (NWP) and atmospheric chemical transport (ACT) model for research and forecasting of joint meteorological, chemical and biological weather. The integrated modelling system is developed by the Danish Meteorological Institute (DMI) in collaboration with several European universities. It is the baseline system in the HIRLAM Chemical Branch and used in several countries and different applications. The development was initiated at DMI more than 15 years ago. The model is based on the HIRLAM NWP model with online integrated pollutant transport and dispersion, chemistry, aerosol dynamics, deposition and atmospheric composition feedbacks. To make the model suitable for chemical weather forecasting in urban areas, the meteorological part was improved by implementation of urban parameterisations. The dynamical core was improved by implementing a locally mass-conserving semi-Lagrangian numerical advection scheme, which improves forecast accuracy and model performance. The current version (7.2), in comparison with previous versions, has a more advanced and cost-efficient chemistry, aerosol multi-compound approach, aerosol feedbacks (direct and semi-direct) on radiation and (first and second indirect effects) on cloud microphysics. Since 2004, the Enviro-HIRLAM has been used for different studies, including operational pollen forecasting for Denmark since 2009 and operational forecasting atmospheric composition with downscaling for China since 2017. Following the main research and development strategy, further model developments will be extended towards the new NWP platform - HARMONIE. Different aspects of online coupling methodology, research strategy and possible applications of the modelling system, and fit-for-purpose model configurations for the meteorological and air quality communities are discussed.

  7. Data Assimilation Experiments using Quality Controlled AIRS Version 5 Temperature Soundings

    NASA Technical Reports Server (NTRS)

    SUsskind, Joel

    2008-01-01

    The AIRS Science Team Version 5 retrieval algorithm has been finalized and is now operational at the Goddard DAAC in the processing (and reprocessing) of all AIRS data. The AIRS Science Team Version 5 retrieval algorithm contains two significant improvements over Version 4: 1) Improved physics allows for use of AIRS observations in the entire 4.3 pm C02 absorption band in the retrieval of temperature profile T(p) during both day and night. Tropospheric sounding 15 pm C02 observations are now used primarily in the generation of cloud cleared radiances Ri. This approach allows for the generation of accurate values of Ri and T(p) under most cloud conditions. 2) Another very significant improvement in Version 5 is the ability to generate accurate case-by-case, level-by-level error estimates for the atmospheric temperature profile, as well as for channel-by- channel error estimates for Ri. These error estimates are used for quality control of the retrieved products. We have conducted forecast impact experiments assimilating AIRS temperature profiles with different levels of quality control using the NASA GEOS-5 data assimilation system. Assimilation of quality controlled T(p) resulted in significantly improved forecast skill compared to that obtained from analyses obtained when all data used operationally by NCEP, except for AIRS data, is assimilated. We also conducted an experiment assimilating AIRS radiances uncontaminated by clouds, as done Operationally by ECMWF and NCEP. Forecasts resulting from assimilated AIRS radiances were of poorer quality than those obtained assimilating AIRS temperatures.

  8. Using Satellite Data and Land Surface Models to Monitor and Forecast Drought Conditions in Africa and Middle East

    NASA Astrophysics Data System (ADS)

    Arsenault, K. R.; Shukla, S.; Getirana, A.; Peters-Lidard, C. D.; Kumar, S.; McNally, A.; Zaitchik, B. F.; Badr, H. S.; Funk, C. C.; Koster, R. D.; Narapusetty, B.; Jung, H. C.; Roningen, J. M.

    2017-12-01

    Drought and water scarcity are among the important issues facing several regions within Africa and the Middle East. In addition, these regions typically have sparse ground-based data networks, where sometimes remotely sensed observations may be the only data available. Long-term satellite records can help with determining historic and current drought conditions. In recent years, several new satellites have come on-line that monitor different hydrological variables, including soil moisture and terrestrial water storage. Though these recent data records may be considered too short for the use in identifying major droughts, they do provide additional information that can better characterize where water deficits may occur. We utilize recent satellite data records of Gravity Recovery and Climate Experiment (GRACE) terrestrial water storage (TWS) and the European Space Agency's Advanced Scatterometer (ASCAT) soil moisture retrievals. Combining these records with land surface models (LSMs), NASA's Catchment and the Noah Multi-Physics (MP), is aimed at improving the land model states and initialization for seasonal drought forecasts. The LSMs' total runoff is routed through the Hydrological Modeling and Analysis Platform (HyMAP) to simulate surface water dynamics, which can provide an additional means of validation against in situ streamflow data. The NASA Land Information System (LIS) software framework drives the LSMs and HyMAP and also supports the capability to assimilate these satellite retrievals, such as soil moisture and TWS. The LSMs are driven for 30+ years with NASA's Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2), and the USGS/UCSB Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS) rainfall dataset. The seasonal water deficit forecasts are generated using downscaled and bias-corrected versions of NASA's Goddard Earth Observing System Model (GEOS-5), and NOAA's Climate Forecast System (CFSv2) forecasts. These combined satellite and model records and forecasts are intended for use in different decision support tools, like the Famine Early Warning Systems Network (FEWS NET) and the Middle East-North Africa (MENA) Regional Drought Management System, for aiding and forecasting in water and food insecure regions.

  9. Developing the E-Delphi System: A Web-Based Forecasting Tool for Educational Research.

    ERIC Educational Resources Information Center

    Chou, Chien

    2002-01-01

    Discusses use of the Delphi technique and describes the development of an electronic version, called e-Delphi, in which questionnaire construction and communication with panel members was accomplished using the Web. Explains system function and interface and discusses evaluation of the e-Delphi system. (Author/LRW)

  10. Improving Subtropical Boundary Layer Cloudiness in the 2011 NCEP GFS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fletcher, J. K.; Bretherton, Christopher S.; Xiao, Heng

    2014-09-23

    The current operational version of National Centers for Environmental Prediction (NCEP) Global Forecasting System (GFS) shows significant low cloud bias. These biases also appear in the Coupled Forecast System (CFS), which is developed from the GFS. These low cloud biases degrade seasonal and longer climate forecasts, particularly of short-wave cloud radiative forcing, and affect predicted sea surface temperature. Reducing this bias in the GFS will aid the development of future CFS versions and contributes to NCEP's goal of unified weather and climate modelling. Changes are made to the shallow convection and planetary boundary layer parameterisations to make them more consistentmore » with current knowledge of these processes and to reduce the low cloud bias. These changes are tested in a single-column version of GFS and in global simulations with GFS coupled to a dynamical ocean model. In the single-column model, we focus on changing parameters that set the following: the strength of shallow cumulus lateral entrainment, the conversion of updraught liquid water to precipitation and grid-scale condensate, shallow cumulus cloud top, and the effect of shallow convection in stratocumulus environments. Results show that these changes improve the single-column simulations when compared to large eddy simulations, in particular through decreasing the precipitation efficiency of boundary layer clouds. These changes, combined with a few other model improvements, also reduce boundary layer cloud and albedo biases in global coupled simulations.« less

  11. A framework for nowcasting and forecasting of rainfall-triggered landslide activity using remotely sensed data

    NASA Astrophysics Data System (ADS)

    Kirschbaum, Dalia; Stanley, Thomas

    2016-04-01

    Remote sensing data offers the unique perspective to provide situational awareness of hydrometeorological hazards over large areas in a way that is impossible to achieve with in situ data. Recent work has shown that rainfall-triggered landslides, while typically local hazards that occupy small spatial areas, can be approximated over regional or global scales in near real-time. This work presents a regional and global approach to approximating potential landslide activity using the landslide hazard assessment for situational awareness (LHASA) model. This system couples remote sensing data, including Global Precipitation Measurement rainfall data, Shuttle Radar Topography Mission and other surface variables to estimate where and when landslide activity may be likely. This system also evaluates the effectiveness of quantitative precipitation estimates from the Goddard Earth Observing System Model, Version 5 to provide a 24 forecast of potential landslide activity. Preliminary results of the LHASA model and implications for are presented for a regional version of this system in Central America as well as a prototype global approach.

  12. First Assessment of Itaipu Dam Ensemble Inflow Forecasting System

    NASA Astrophysics Data System (ADS)

    Mainardi Fan, Fernando; Machado Vieira Lisboa, Auder; Gomes Villa Trinidad, Giovanni; Rógenes Monteiro Pontes, Paulo; Collischonn, Walter; Tucci, Carlos; Costa Buarque, Diogo

    2017-04-01

    Inflow forecasting for Hydropower Plants (HPP) Dams is one of the prominent uses for hydrological forecasts. A very important HPP in terms of energy generation for South America is the Itaipu Dam, located in the Paraná River, between Brazil and Paraguay countries, with a drainage area of 820.000km2. In this work, we present the development of an ensemble forecasting system for Itaipu, operational since November 2015. The system is based in the MGB-IPH hydrological model, includes hydrodynamics simulations of the main river, and is run every day morning forced by seven different rainfall forecasts: (i) CPTEC-ETA 15km; (ii) CPTEC-BRAMS 5km; (iii) SIMEPAR WRF Ferrier; (iv) SIMEPAR WRF Lin; (v) SIMEPAR WRF Morrison; (vi) SIMEPAR WRF WDM6; (vii) SIMEPAR MEDIAN. The last one (vii) corresponds to the median value of SIMEPAR WRF model versions (iii to vi) rainfall forecasts. Besides the developed system, the "traditional" method for inflow forecasting generation for the Itaipu Dam is also run every day. This traditional method consists in the approximation of the future inflow based on the discharge tendency of upstream telemetric gauges. Nowadays, after all the forecasts are run, the hydrology team of Itaipu develop a consensus forecast, based on all obtained results, which is the one used for the Itaipu HPP Dam operation. After one year of operation a first evaluation of the Ensemble Forecasting System was conducted. Results show that the system performs satisfactory for rising flows up to five days lead time. However, some false alarms were also issued by most ensemble members in some cases. And not in all cases the system performed better than the traditional method, especially during hydrograph recessions. In terms of meteorological forecasts, some members usage are being discontinued. In terms of the hydrodynamics representation, it seems that a better information of rivers cross section could improve hydrographs recession curves forecasts. Those opportunities for improvements are currently being addressed in the system next update.

  13. Subseasonal forecast skills and biases of global summer monsoons in the NCEP Climate Forecast System version 2

    NASA Astrophysics Data System (ADS)

    Liu, Xiangwen; Yang, Song; Li, Qiaoping; Kumar, Arun; Weaver, Scott; Liu, Shi

    2014-03-01

    Subseasonal forecast skills and biases of global summer monsoons are diagnosed using daily data from the hindcasts of 45-day integrations by the NCEP Climate Forecast System version 2. Predictions for subseasonal variability of zonal wind and precipitation are generally more skillful over the Asian and Australian monsoon regions than other monsoon regions. Climatologically, forecasts for the variations of dynamical monsoon indices have high skills at leads of about 2 weeks. However, apparent interannual differences exist, with high skills up to 5 weeks in exceptional cases. Comparisons for the relationships of monsoon indices with atmospheric circulation and precipitation patterns between skillful and unskillful forecasts indicate that skills for subseasonal variability of a monsoon index depend partially on the degree to which the observed variability of the index attributes to the variation of large-scale circulation. Thus, predictions are often more skillful when the index is closely linked to atmospheric circulation over a broad region than over a regional and narrow range. It is also revealed that, the subseasonal variations of biases of winds, precipitation, and surface temperature over various monsoon regions are captured by a first mode with seasonally independent biases and a second mode with apparent phase transition of biases during summer. The first mode indicates the dominance of overall weaker-than-observed summer monsoons over major monsoon regions. However, at certain stages of monsoon evolution, these underestimations are regionally offset or intensified by the time evolving biases portrayed by the second mode. This feature may be partially related to factors such as the shifts of subtropical highs and intertropical convergence zones, the reversal of biases of surface temperature over some monsoon regions, and the transition of regional circulation system. The significant geographical differences in bias growth with increasing lead time reflect the distinctions of initial memory capability of the climate system over different monsoon regions.

  14. Spectral Analysis of Forecast Error Investigated with an Observing System Simulation Experiment

    NASA Technical Reports Server (NTRS)

    Prive, N. C.; Errico, Ronald M.

    2015-01-01

    The spectra of analysis and forecast error are examined using the observing system simulation experiment (OSSE) framework developed at the National Aeronautics and Space Administration Global Modeling and Assimilation Office (NASAGMAO). A global numerical weather prediction model, the Global Earth Observing System version 5 (GEOS-5) with Gridpoint Statistical Interpolation (GSI) data assimilation, is cycled for two months with once-daily forecasts to 336 hours to generate a control case. Verification of forecast errors using the Nature Run as truth is compared with verification of forecast errors using self-analysis; significant underestimation of forecast errors is seen using self-analysis verification for up to 48 hours. Likewise, self analysis verification significantly overestimates the error growth rates of the early forecast, as well as mischaracterizing the spatial scales at which the strongest growth occurs. The Nature Run-verified error variances exhibit a complicated progression of growth, particularly for low wave number errors. In a second experiment, cycling of the model and data assimilation over the same period is repeated, but using synthetic observations with different explicitly added observation errors having the same error variances as the control experiment, thus creating a different realization of the control. The forecast errors of the two experiments become more correlated during the early forecast period, with correlations increasing for up to 72 hours before beginning to decrease.

  15. The Impact of British Airways Wind Observations on the Goddard Earth Observing System Analyses and Forecasts

    NASA Technical Reports Server (NTRS)

    Rukhovets, Leonid; Sienkiewicz, M.; Tenenbaum, J.; Kondratyeva, Y.; Owens, T.; Oztunali, M.; Atlas, Robert (Technical Monitor)

    2001-01-01

    British Airways flight data recorders can provide valuable meteorological information, but they are not available in real-time on the Global Telecommunication System. Information from the flight recorders was used in the Global Aircraft Data Set (GADS) experiment as independent observations to estimate errors in wind analyses produced by major operational centers. The GADS impact on the Goddard Earth Observing System Data Assimilation System (GEOS DAS) analyses was investigated using GEOS-1 DAS version. Recently, a new Data Assimilation System (fvDAS) has been developed at the Data Assimilation Office, NASA Goddard. Using fvDAS , the, GADS impact on analyses and forecasts was investigated. It was shown the GADS data intensify wind speed analyses of jet streams for some cases. Five-day forecast anomaly correlations and root mean squares were calculated for 300, 500 hPa and SLP for six different areas: Northern and Southern Hemispheres, North America, Europe, Asia, USA These scores were obtained as averages over 21 forecasts from January 1998. Comparisons with scores for control experiments without GADS showed a positive impact of the GADS data on forecasts beyond 2-3 days for all levels at the most areas.

  16. The development and evaluation of a hydrological seasonal forecast system prototype for predicting spring flood volumes in Swedish rivers

    NASA Astrophysics Data System (ADS)

    Foster, Kean; Bertacchi Uvo, Cintia; Olsson, Jonas

    2018-05-01

    Hydropower makes up nearly half of Sweden's electrical energy production. However, the distribution of the water resources is not aligned with demand, as most of the inflows to the reservoirs occur during the spring flood period. This means that carefully planned reservoir management is required to help redistribute water resources to ensure optimal production and accurate forecasts of the spring flood volume (SFV) is essential for this. The current operational SFV forecasts use a historical ensemble approach where the HBV model is forced with historical observations of precipitation and temperature. In this work we develop and test a multi-model prototype, building on previous work, and evaluate its ability to forecast the SFV in 84 sub-basins in northern Sweden. The hypothesis explored in this work is that a multi-model seasonal forecast system incorporating different modelling approaches is generally more skilful at forecasting the SFV in snow dominated regions than a forecast system that utilises only one approach. The testing is done using cross-validated hindcasts for the period 1981-2015 and the results are evaluated against both climatology and the current system to determine skill. Both the multi-model methods considered showed skill over the reference forecasts. The version that combined the historical modelling chain, dynamical modelling chain, and statistical modelling chain performed better than the other and was chosen for the prototype. The prototype was able to outperform the current operational system 57 % of the time on average and reduce the error in the SFV by ˜ 6 % across all sub-basins and forecast dates.

  17. Seasonal forecasting of groundwater levels in natural aquifers in the United Kingdom

    NASA Astrophysics Data System (ADS)

    Mackay, Jonathan; Jackson, Christopher; Pachocka, Magdalena; Brookshaw, Anca; Scaife, Adam

    2014-05-01

    Groundwater aquifers comprise the world's largest freshwater resource and provide resilience to climate extremes which could become more frequent under future climate changes. Prolonged dry conditions can induce groundwater drought, often characterised by significantly low groundwater levels which may persist for months to years. In contrast, lasting wet conditions can result in anomalously high groundwater levels which result in flooding, potentially at large economic cost. Using computational models to produce groundwater level forecasts allows appropriate management strategies to be considered in advance of extreme events. The majority of groundwater level forecasting studies to date use data-based models, which exploit the long response time of groundwater levels to meteorological drivers and make forecasts based only on the current state of the system. Instead, seasonal meteorological forecasts can be used to drive hydrological models and simulate groundwater levels months into the future. Such approaches have not been used in the past due to a lack of skill in these long-range forecast products. However systems such as the latest version of the Met Office Global Seasonal Forecast System (GloSea5) are now showing increased skill up to a 3-month lead time. We demonstrate the first groundwater level ensemble forecasting system using a multi-member ensemble of hindcasts from GloSea5 between 1996 and 2009 to force 21 simple lumped conceptual groundwater models covering most of the UK's major aquifers. We present the results from this hindcasting study and demonstrate that the system can be used to forecast groundwater levels with some skill up to three months into the future.

  18. Long-Lead Prediction of the 2015 Fire and Haze Episode in Indonesia

    NASA Astrophysics Data System (ADS)

    Shawki, Dilshad; Field, Robert D.; Tippett, Michael K.; Saharjo, Bambang Hero; Albar, Israr; Atmoko, Dwi; Voulgarakis, Apostolos

    2017-10-01

    We conducted a case study of National Centers for Environmental Prediction Climate Forecast System version 2 seasonal model forecast performance over Indonesia in predicting the dry conditions in 2015 that led to severe fire, in comparison to the non-El Niño dry season conditions of 2016. Forecasts of the Drought Code (DC) component of Indonesia's Fire Danger Rating System were examined across the entire equatorial Asia region and for the primary burning regions within it. Our results show that early warning lead times of high observed DC in September and October 2015 varied considerably for different regions. High DC over Southern Kalimantan and Southern New Guinea were predicted with 180 day lead times, whereas Southern Sumatra had lead times of up to only 60 days, which we attribute to the absence in the forecasts of an eastward decrease in Indian Ocean sea surface temperatures. This case study provides the starting point for longer-term evaluation of seasonal fire danger rating forecasts over Indonesia.

  19. Impact of Interactive Aerosol on the African Easterly Jet in the NASA GEOS-5 Global Forecasting System

    NASA Technical Reports Server (NTRS)

    Reale, O.; Lau, K. M.; da Silva, A.

    2010-01-01

    The real-time treatment of interactive realistically varying aerosol in a global operational forecasting system, as opposed to prescribed (fixed or climatologically varying) aerosols, is a very difficult challenge that only recently begins to be addressed. Experiment results from a recent version of the NASA GEOS-5 forecasting system, inclusive of interactive aerosol treatment, are presented in this work. Four sets of 30 5-day forecasts are initialized from a high quality set of analyses previously produced and documented to cover the period from 15 August to 16 September 2006, which corresponds to the NASA African Monsoon Multidisciplinary Analysis (NAMMA) observing campaign. The four forecast sets are at two different horizontal resolutions and with and without interactive aerosol treatment. The net impact of aerosol, at times in which there is a strong dust outbreak, is a temperature increase at the dust level and decrease in the near-surface levels, in complete agreement with previous observational and modeling studies. Moreover, forecasts in which interactive aerosols are included depict an African Easterly (AEJ) at slightly higher elevation, and slightly displace northward, with respect to the forecasts in which aerosols are not include. The shift in the AEJ position goes in the direction of observations and agrees with previous results.

  20. Long-range forecast of all India summer monsoon rainfall using adaptive neuro-fuzzy inference system: skill comparison with CFSv2 model simulation and real-time forecast for the year 2015

    NASA Astrophysics Data System (ADS)

    Chaudhuri, S.; Das, D.; Goswami, S.; Das, S. K.

    2016-11-01

    All India summer monsoon rainfall (AISMR) characteristics play a vital role for the policy planning and national economy of the country. In view of the significant impact of monsoon system on regional as well as global climate systems, accurate prediction of summer monsoon rainfall has become a challenge. The objective of this study is to develop an adaptive neuro-fuzzy inference system (ANFIS) for long range forecast of AISMR. The NCEP/NCAR reanalysis data of temperature, zonal and meridional wind at different pressure levels have been taken to construct the input matrix of ANFIS. The membership of the input parameters for AISMR as high, medium or low is estimated with trapezoidal membership function. The fuzzified standardized input parameters and the de-fuzzified target output are trained with artificial neural network models. The forecast of AISMR with ANFIS is compared with non-hybrid multi-layer perceptron model (MLP), radial basis functions network (RBFN) and multiple linear regression (MLR) models. The forecast error analyses of the models reveal that ANFIS provides the best forecast of AISMR with minimum prediction error of 0.076, whereas the errors with MLP, RBFN and MLR models are 0.22, 0.18 and 0.73 respectively. During validation with observations, ANFIS shows its potency over the said comparative models. Performance of the ANFIS model is verified through different statistical skill scores, which also confirms the aptitude of ANFIS in forecasting AISMR. The forecast skill of ANFIS is also observed to be better than Climate Forecast System version 2. The real-time forecast with ANFIS shows possibility of deficit (65-75 cm) AISMR in the year 2015.

  1. Unmanned Aircraft System (UAS) service demand 2015 - 2035 : literature review & projections of future usage, technical report, version 1.0 - February 2014

    DOT National Transportation Integrated Search

    2014-02-01

    This report assesses opportunities, risks, and challenges attendant to future development and deployment of UAS within the National Airspace System (NAS) affecting UAS forecast growth from 2015 to 2035. Analysis of four key areas is performed: techno...

  2. Validation of the CME Geomagnetic Forecast Alerts Under the COMESEP Alert System

    NASA Astrophysics Data System (ADS)

    Dumbović, Mateja; Srivastava, Nandita; Rao, Yamini K.; Vršnak, Bojan; Devos, Andy; Rodriguez, Luciano

    2017-08-01

    Under the European Union 7th Framework Programme (EU FP7) project Coronal Mass Ejections and Solar Energetic Particles (COMESEP, http://comesep.aeronomy.be), an automated space weather alert system has been developed to forecast solar energetic particles (SEP) and coronal mass ejection (CME) risk levels at Earth. The COMESEP alert system uses the automated detection tool called Computer Aided CME Tracking (CACTus) to detect potentially threatening CMEs, a drag-based model (DBM) to predict their arrival, and a CME geoeffectiveness tool (CGFT) to predict their geomagnetic impact. Whenever CACTus detects a halo or partial halo CME and issues an alert, the DBM calculates its arrival time at Earth and the CGFT calculates its geomagnetic risk level. The geomagnetic risk level is calculated based on an estimation of the CME arrival probability and its likely geoeffectiveness, as well as an estimate of the geomagnetic storm duration. We present the evaluation of the CME risk level forecast with the COMESEP alert system based on a study of geoeffective CMEs observed during 2014. The validation of the forecast tool is made by comparing the forecasts with observations. In addition, we test the success rate of the automatic forecasts (without human intervention) against the forecasts with human intervention using advanced versions of the DBM and CGFT (independent tools available at the Hvar Observatory website, http://oh.geof.unizg.hr). The results indicate that the success rate of the forecast in its current form is unacceptably low for a realistic operation system. Human intervention improves the forecast, but the false-alarm rate remains unacceptably high. We discuss these results and their implications for possible improvement of the COMESEP alert system.

  3. An Enhanced Convective Forecast (ECF) for the New York TRACON Area

    NASA Technical Reports Server (NTRS)

    Wheeler, Mark; Stobie, James; Gillen, Robert; Jedlovec, Gary; Sims, Danny

    2008-01-01

    In an effort to relieve summer-time congestion in the NY Terminal Radar Approach Control (TRACON) area, the FAA is testing an enhanced convective forecast (ECF) product. The test began in June 2008 and is scheduled to run through early September. The ECF is updated every two hours, right before the Air Traffic Control System Command Center (ATCSCC) national planning telcon. It is intended to be used by traffic managers throughout the National Airspace System (NAS) and airlines dispatchers to supplement information from the Collaborative Convective Forecast Product (CCFP) and the Corridor Integrated Weather System (CIWS). The ECF begins where the current CIWS forecast ends at 2 hours and extends out to 12 hours. Unlike the CCFP it is a detailed deterministic forecast with no aerial coverage limits. It is created by an ENSCO forecaster using a variety of guidance products including, the Weather Research and Forecast (WRF) model. This is the same version of the WRF that ENSCO runs over the Florida peninsula in support of launch operations at the Kennedy Space Center. For this project, the WRF model domain has been shifted to the Northeastern US. Several products from the NASA SPoRT group are also used by the ENSCO forecaster. In this paper we will provide examples of the ECF products and discuss individual cases of traffic management actions using ECF guidance.

  4. Improving Navigation information for the Rotterdam Harbour access through a 3D Model and HF radar

    NASA Astrophysics Data System (ADS)

    Schroevers, Marinus

    2015-04-01

    The Port of Rotterdam is one of the largest harbours in the world and a gateway to Europe. For the access to Rotterdam harbour, information on hydrodynamic and meteorological conditions is of vital importance for safe and swift navigation. This information focuses on the deep navigation channel in the shallow foreshore, which accommodates large seagoing vessels. Due to a large seaward extension of the Port of Rotterdam area in 2011, current patterns have changed. A re-evaluation of the information needed, showed a need for an improved accuracy of the cross channel currents and swell, and an extended forecast horizon. To obtain this, new information system was designed based on a three dimensional hydrodynamic model which produces a 72 hour forecast. Furthermore, the system will assimilate HF radars surface current to optimize the short term forecast. The project has started in 2013 by specifying data needed from the HF radar. At the same time (temporary) buoys were deployed to monitor vertical current profiles. The HF radar will be operational in July 2015, while the model development starts beginning 2015. A pre operational version of the system is presently planned for the end of 2016. A full operational version which assimilates the HF radar data is planned for 2017.

  5. Forecast cooling of the Atlantic subpolar gyre and associated impacts.

    PubMed

    Hermanson, Leon; Eade, Rosie; Robinson, Niall H; Dunstone, Nick J; Andrews, Martin B; Knight, Jeff R; Scaife, Adam A; Smith, Doug M

    2014-07-28

    Decadal variability in the North Atlantic and its subpolar gyre (SPG) has been shown to be predictable in climate models initialized with the concurrent ocean state. Numerous impacts over ocean and land have also been identified. Here we use three versions of the Met Office Decadal Prediction System to provide a multimodel ensemble forecast of the SPG and related impacts. The recent cooling trend in the SPG is predicted to continue in the next 5 years due to a decrease in the SPG heat convergence related to a slowdown of the Atlantic Meridional Overturning Circulation. We present evidence that the ensemble forecast is able to skilfully predict these quantities over recent decades. We also investigate the ability of the forecast to predict impacts on surface temperature, pressure, precipitation, and Atlantic tropical storms and compare the forecast to recent boreal summer climate.

  6. How well can the observed Arctic sea ice summer retreat and winter advance be represented in the NCEP Climate Forecast System version 2?

    NASA Astrophysics Data System (ADS)

    Collow, Thomas W.; Wang, Wanqiu; Kumar, Arun; Zhang, Jinlun

    2017-09-01

    The capability of a numerical model to simulate the statistical characteristics of the summer sea ice date of retreat (DOR) and the winter date of advance (DOA) is investigated using sea ice concentration output from the Climate Forecast System Version 2 model (CFSv2). Two model configurations are tested, the operational setting (CFSv2CFSR) which uses initial data from the Climate Forecast System Reanalysis, and a modified version (CFSv2PIOMp) which ingests sea ice thickness initialization data from the Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS) and includes physics modifications for a more realistic representation of heat fluxes at the sea ice top and bottom. First, a method to define DOR and DOA is presented. Then, DOR and DOA are determined from the model simulations and observational sea ice concentration from the National Aeronautics and Space Administration (NASA). Means, trends, and detrended standard deviations of DOR and DOA are compared, along with DOR/DOA rates in the Arctic Ocean. It is found that the statistics are generally similar between the model and observations, although some regional biases exist. In addition, regions of new ice retreat in recent years are represented well in CFSv2PIOMp over the Arctic Ocean, in terms of both spatial extent and timing. Overall, CFSv2PIOMp shows a reduction in error throughout the Arctic. Based on results, it is concluded that the model produces a reasonable representation of the climatology and variability statistics of DOR and DOA in most regions. This assessment serves as a prerequisite for future predictability experiments.

  7. Maintaining a Local Data Integration System in Support of Weather Forecast Operations

    NASA Technical Reports Server (NTRS)

    Watson, Leela R.; Blottman, Peter F.; Sharp, David W.; Hoeth, Brian

    2010-01-01

    Since 2000, both the National Weather Service in Melbourne, FL (NWS MLB) and the Spaceflight Meteorology Group (SMG) have used a local data integration system (LDIS) as part of their forecast and warning operations. Each has benefited from 3-dimensional analyses that are delivered to forecasters every 15 minutes across the peninsula of Florida. The intent is to generate products that enhance short-range weather forecasts issued in support of NWS MLB and SMG operational requirements within East Central Florida. The current LDIS uses the Advanced Regional Prediction System (ARPS) Data Analysis System (ADAS) package as its core, which integrates a wide variety of national, regional, and local observational data sets. It assimilates all available real-time data within its domain and is run at a finer spatial and temporal resolution than current national- or regional-scale analysis packages. As such, it provides local forecasters with a more comprehensive and complete understanding of evolving fine-scale weather features. Recent efforts have been undertaken to update the LDIS through the formal tasking process of NASA's Applied Meteorology Unit. The goals include upgrading LDIS with the latest version of ADAS, incorporating new sources of observational data, and making adjustments to shell scripts written to govern the system. A series of scripts run a complete modeling system consisting of the preprocessing step, the main model integration, and the post-processing step. The preprocessing step prepares the terrain, surface characteristics data sets, and the objective analysis for model initialization. Data ingested through ADAS include (but are not limited to) Level II Weather Surveillance Radar- 1988 Doppler (WSR-88D) data from six Florida radars, Geostationary Operational Environmental Satellites (GOES) visible and infrared satellite imagery, surface and upper air observations throughout Florida from NOAA's Earth System Research Laboratory/Global Systems Division/Meteorological Assimilation Data Ingest System (MADIS), as well as the Kennedy Space Center ICape Canaveral Air Force Station wind tower network. The scripts provide NWS MLB and SMG with several options for setting a desirable runtime configuration of the LDIS to account for adjustments in grid spacing, domain location, choice of observational data sources, and selection of background model fields, among others. The utility of an improved LDIS will be demonstrated through postanalysis warm and cool season case studies that compare high-resolution model output with and without the ADAS analyses. Operationally, these upgrades will result in more accurate depictions of the current local environment to help with short-range weather forecasting applications, while also offering an improved initialization for local versions of the Weather Research and Forecasting model.

  8. Development and implementation of a remote-sensing and in situ data-assimilating version of CMAQ for operational PM2.5 forecasting. Part 1: MODIS aerosol optical depth (AOD) data-assimilation design and testing.

    PubMed

    McHenry, John N; Vukovich, Jeffery M; Hsu, N Christina

    2015-12-01

    This two-part paper reports on the development, implementation, and improvement of a version of the Community Multi-Scale Air Quality (CMAQ) model that assimilates real-time remotely-sensed aerosol optical depth (AOD) information and ground-based PM2.5 monitor data in routine prognostic application. The model is being used by operational air quality forecasters to help guide their daily issuance of state or local-agency-based air quality alerts (e.g. action days, health advisories). Part 1 describes the development and testing of the initial assimilation capability, which was implemented offline in partnership with NASA and the Visibility Improvement State and Tribal Association of the Southeast (VISTAS) Regional Planning Organization (RPO). In the initial effort, MODIS-derived aerosol optical depth (AOD) data are input into a variational data-assimilation scheme using both the traditional Dark Target and relatively new "Deep Blue" retrieval methods. Evaluation of the developmental offline version, reported in Part 1 here, showed sufficient promise to implement the capability within the online, prognostic operational model described in Part 2. In Part 2, the addition of real-time surface PM2.5 monitoring data to improve the assimilation and an initial evaluation of the prognostic modeling system across the continental United States (CONUS) is presented. Air quality forecasts are now routinely used to understand when air pollution may reach unhealthy levels. For the first time, an operational air quality forecast model that includes the assimilation of remotely-sensed aerosol optical depth and ground based PM2.5 observations is being used. The assimilation enables quantifiable improvements in model forecast skill, which improves confidence in the accuracy of the officially-issued forecasts. This helps air quality stakeholders be more effective in taking mitigating actions (reducing power consumption, ride-sharing, etc.) and avoiding exposures that could otherwise result in more serious air quality episodes or more deleterious health effects.

  9. Ensemble-based flash-flood modelling: Taking into account hydrodynamic parameters and initial soil moisture uncertainties

    NASA Astrophysics Data System (ADS)

    Edouard, Simon; Vincendon, Béatrice; Ducrocq, Véronique

    2018-05-01

    Intense precipitation events in the Mediterranean often lead to devastating flash floods (FF). FF modelling is affected by several kinds of uncertainties and Hydrological Ensemble Prediction Systems (HEPS) are designed to take those uncertainties into account. The major source of uncertainty comes from rainfall forcing and convective-scale meteorological ensemble prediction systems can manage it for forecasting purpose. But other sources are related to the hydrological modelling part of the HEPS. This study focuses on the uncertainties arising from the hydrological model parameters and initial soil moisture with aim to design an ensemble-based version of an hydrological model dedicated to Mediterranean fast responding rivers simulations, the ISBA-TOP coupled system. The first step consists in identifying the parameters that have the strongest influence on FF simulations by assuming perfect precipitation. A sensitivity study is carried out first using a synthetic framework and then for several real events and several catchments. Perturbation methods varying the most sensitive parameters as well as initial soil moisture allow designing an ensemble-based version of ISBA-TOP. The first results of this system on some real events are presented. The direct perspective of this work will be to drive this ensemble-based version with the members of a convective-scale meteorological ensemble prediction system to design a complete HEPS for FF forecasting.

  10. Seasonal scale water deficit forecasting in Africa and the Middle East using NASA's Land Information System (LIS)

    NASA Astrophysics Data System (ADS)

    Peters-Lidard, C. D.; Arsenault, K. R.; Shukla, S.; Getirana, A.; McNally, A.; Koster, R. D.; Zaitchik, B. F.; Badr, H. S.; Roningen, J. M.; Kumar, S.; Funk, C. C.

    2017-12-01

    A seamless and effective water deficit monitoring and early warning system is critical for assessing food security in Africa and the Middle East. In this presentation, we report on the ongoing development and validation of a seasonal scale water deficit forecasting system based on NASA's Land Information System (LIS) and seasonal climate forecasts. First, our presentation will focus on the implementation and validation of drought and water availability monitoring products in the region. Next, it will focus on evaluating drought and water availability forecasts. Finally, details will be provided of our ongoing collaboration with end-user partners in the region (e.g., USAID's Famine Early Warning Systems Network, FEWS NET), on formulating meaningful early warning indicators, effective communication and seamless dissemination of the products through NASA's web-services. The water deficit forecasting system thus far incorporates NASA GMAO's Catchment and the Noah Multi-Physics (MP) LSMs. In addition, the LSMs' surface and subsurface runoff are routed through the Hydrological Modeling and Analysis Platform (HyMAP) to simulate surface water dynamics. To establish a climatology from 1981-2015, the two LSMs are driven by NASA/GMAO's Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2), and the USGS and UCSB Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) daily rainfall dataset. Comparison of the models' energy and hydrological budgets with independent observations suggests that major droughts are well-reflected in the climatology. The system uses seasonal climate forecasts from NASA's GEOS-5 (the Goddard Earth Observing System Model-5) and NCEP's Climate Forecast System-2, and it produces forecasts of soil moisture, ET and streamflow out to 6 months in the future. Forecasts of those variables are formulated in terms of indicators to provide forecasts of drought and water availability in the region. Current work suggests that for the Blue Nile basin, (1) the combination of GEOS-5 and CFSv2 is equivalent in skill to the full North American Multimodel Ensemble (NMME); and (2) the seasonal water deficit forecasting system skill for both soil moisture and streamflow anomalies is greater than the standard Ensemble Streamflow Prediction (ESP) approach.

  11. Standard Port-Visit Cost Forecasting Model for U.S. Navy Husbanding Contracts

    DTIC Science & Technology

    2009-12-01

    Protocol (HTTP) server.35 2. MySQL . An open-source database.36 3. PHP . A common scripting language used for Web development.37 E. IMPLEMENTATION OF...Inc. (2009). MySQL Community Server (Version 5.1) [Software]. Available from http://dev.mysql.com/downloads/ 37 The PHP Group (2009). PHP (Version...Logistics Services MySQL My Structured Query Language NAVSUP Navy Supply Systems Command NC Non-Contract Items NPS Naval Postgraduate

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tribbia, Joseph

    NCAR brought the latest version of the Community Earth System Model (version 1, CESM1) into the mix of models in the NMME effort. This new version uses our newest atmospheric model CAM5 and produces a coupled climate and ENSO that are generally as good or better than those of the Community Climate System Model version 4 (CCSM4). Compared to CCSM4, the new coupled model has a superior climate response with respect to low clouds in both the subtropical stratus regimes and the Arctic. However, CESM1 has been run to date using a prognostic aerosol model that more than doubles itsmore » computational cost. We are currently evaluating a version of the new model using prescribed aerosols and expect it will be ready for integrations in summer 2012. Because of this NCAR has not been able to complete the hindcast integrations using the NCAR loosely-coupled ensemble Kalman filter assimilation method nor has it contributed to the current (Stage I) NMME operational utilization. The expectation is that this model will be included in the NMME in late 2012 or early 2013. The initialization method will utilize the Ensemble Kalman Filter Assimilation methods developed at NCAR using the Data Assimilation Research Testbed (DART) in conjunction with Jeff Anderson’s team in CISL. This methodology has been used in our decadal prediction contributions to CMIP5. During the course of this project, NCAR has setup and performed all the needed hindcast and forecast simulations and provide the requested fields to our collaborators. In addition, NCAR researchers have participated fully in research themes (i) and (ii). Specifically, i) we have begun to evaluate and optimize our system in hindcast mode, focusing on the optimal number of ensemble members, methodologies to recalibrate individual dynamical models, and accessing our forecasts across multiple time scales, i.e., beyond two weeks, and ii) we have begun investigation of the role of different ocean initial conditions in seasonal forecasts. The completion of the calibration hindcasts for Seasonal to Interannual (SI) predictions and the maintenance of the data archive associated with the NCAR portion of this effort has been the responsibility of the Project Scientist I (Alicia Karspeck) that was partially supported on this project.« less

  13. The Role of the AMOC in Forecast Cooling of the Atlantic Subpolar Gyre and Its Associated Impacts

    NASA Astrophysics Data System (ADS)

    Eade, R.; Hermanson, L.; Robinson, N.; Dunstone, N.; Andrews, M.; Knight, J.; Scaife, A. A.; Smith, D.

    2014-12-01

    Decadal variability in the North Atlantic and its subpolar gyre (SPG) has been shown to be predictable in climate models initialized with the concurrent ocean state. Numerous impacts over ocean and land have also been identified. Here we use three versions of the Met Office Decadal Prediction System to provide a multimodel ensemble forecast of the SPG and related impacts. The recent cooling trend in the SPG is predicted to continue in the next 5 years due to a decrease in the SPG heat convergence related to a slowdown of the Atlantic Meridional Overturning Circulation. We present evidence that the ensemble forecast is able to skilfully predict these quantities over recent decades. We also investigate the ability of the forecast to predict impacts on surface temperature, pressure, precipitation, and Atlantic tropical storms and compare the forecast to recent boreal summer climate.

  14. Forecast cooling of the Atlantic subpolar gyre and associated impacts

    PubMed Central

    Hermanson, Leon; Eade, Rosie; Robinson, Niall H; Dunstone, Nick J; Andrews, Martin B; Knight, Jeff R; Scaife, Adam A; Smith, Doug M

    2014-01-01

    Decadal variability in the North Atlantic and its subpolar gyre (SPG) has been shown to be predictable in climate models initialized with the concurrent ocean state. Numerous impacts over ocean and land have also been identified. Here we use three versions of the Met Office Decadal Prediction System to provide a multimodel ensemble forecast of the SPG and related impacts. The recent cooling trend in the SPG is predicted to continue in the next 5 years due to a decrease in the SPG heat convergence related to a slowdown of the Atlantic Meridional Overturning Circulation. We present evidence that the ensemble forecast is able to skilfully predict these quantities over recent decades. We also investigate the ability of the forecast to predict impacts on surface temperature, pressure, precipitation, and Atlantic tropical storms and compare the forecast to recent boreal summer climate. PMID:25821269

  15. New Developments in Wildfire Pollution Forecasting at the Canadian Meteorological Centre

    NASA Astrophysics Data System (ADS)

    Pavlovic, Radenko; Chen, Jack; Munoz-Alpizar, Rodrigo; Davignon, Didier; Beaulieu, Paul-Andre; Landry, Hugo; Menard, Sylvain; Gravel, Sylvie; Moran, Michael

    2017-04-01

    Environment and Climate Change Canada's air quality forecast system with near-real-time wildfire emissions, named FireWork, was developed in 2012 and has been run by the Canadian Meteorological Centre Operations division (CMCO) since 2013. In June 2016 this system was upgraded to operational status and wildfire smoke forecasts for North America are now available to the general public. FireWork's ability to model the transport and diffusion of wildfire smoke plumes has proved to be valuable to regional air quality forecasters and emergency first responders. Some of the most challenging issues with wildfire pollution modelling concern the production of wildfire emission estimates and near-source dispersion within the air quality model. As a consequence, FireWork is undergoing constant development. During the massive Fort McMurray wildfire event in western Canada in May 2016, for example, different wildfire emissions processing approaches and wildfire emissions injection and dispersion schemes were tested within the air quality model. Work on various FireWork components will continue in order to deliver a new operational version of the forecasting system for the 2017 wildfire season. Some of the proposed improvements will be shown in this presentation along with current and planned FireWork post-processing products.

  16. Reforecasting the ENSO Events in the Past Fifty-Seven Years (1958-2014)

    NASA Astrophysics Data System (ADS)

    Huang, B.; Shin, C. S.; Shukla, J.; Marx, L.; Balmaseda, M.; Halder, S.; Dirmeyer, P.; Kinter, J. L.

    2016-12-01

    A set of ensemble seasonal reforecasts for 1958-2014 is conducted using the National Centers for Environmental Prediction (NCEP) Climate Forecast System, version 2 (CFSv2), initialized with observation-based ocean, atmosphere, land and sea ice reanalyses, including the Eu­ropean Centre for Medium-Range Weather Forecasts (ECMWF) global ocean reanalysis version 4, the ERA-40 atmospheric reanalysis, the NCEP CFS Reanalysis for atmosphere, land and sea ice, and the NASA Global Land Data Assimilation System reanalysis version 2.0 for land. The purpose is to examine a long and continuous seasonal reforecast dataset from a modern seasonal forecast system to be used by the research community. In comparison with other current reforecasts, this dataset allows us to evaluate the degree to which El Niño and Southern Oscillation (ENSO) events can be predicted, using a larger sample of events. Furthermore, we can directly compare the predictability of the ENSO events in 1960s-70s with the more widely studied ENSO events occurring since the 1980s to examine the state-of-the-art seasonal forecast system's capability at different phases of global climate change and multidecadal variability. A major concern is whether the seasonal reforecasts before 1979 have useful skill when there were fewer ocean observations. Our preliminary examination of the reforecasts shows that, although the reforecasts have lower skill in predicting the SST anomalies in the North Pacific and North Atlantic before 1979, the prediction skill of the ENSO onset and development for 1958-1978 is comparable to that for 1979-2014. The skill of the earlier predictions declines faster in the ENSO decaying phase because the reforecasts initialized after the summer season persistently predict lingering wind and SST anomalies in the eastern equatorial Pacific during the decaying phase of several major ENSO events in the 1960s-70s. Since the 1980s, the reforecasts initialized in fall overestimate the peak SST anomalies in strong El Niño events. Both facts imply that the model air-sea feedback is overly active in the eastern Pacific before ENSO termination, likely induced by the model warm bias in the eastern Pacific during boreal winter and spring.

  17. Validation of the CME Geomagnetic forecast alerts under COMESEP alert system

    NASA Astrophysics Data System (ADS)

    Dumbovic, Mateja; Srivastava, Nandita; Khodia, Yamini; Vršnak, Bojan; Devos, Andy; Rodriguez, Luciano

    2017-04-01

    An automated space weather alert system has been developed under the EU FP7 project COMESEP (COronal Mass Ejections and Solar Energetic Particles: http://comesep.aeronomy.be) to forecast solar energetic particles (SEP) and coronal mass ejection (CME) risk levels at Earth. COMESEP alert system uses automated detection tool CACTus to detect potentially threatening CMEs, drag-based model (DBM) to predict their arrival and CME geo-effectiveness tool (CGFT) to predict their geomagnetic impact. Whenever CACTus detects a halo or partial halo CME and issues an alert, DBM calculates its arrival time at Earth and CGFT calculates its geomagnetic risk level. Geomagnetic risk level is calculated based on an estimation of the CME arrival probability and its likely geo-effectiveness, as well as an estimate of the geomagnetic-storm duration. We present the evaluation of the CME risk level forecast with COMESEP alert system based on a study of geo-effective CMEs observed during 2014. The validation of the forecast tool is done by comparing the forecasts with observations. In addition, we test the success rate of the automatic forecasts (without human intervention) against the forecasts with human intervention using advanced versions of DBM and CGFT (self standing tools available at Hvar Observatory website: http://oh.geof.unizg.hr). The results implicate that the success rate of the forecast is higher with human intervention and using more advanced tools. This work has received funding from the European Commission FP7 Project COMESEP (263252). We acknowledge the support of Croatian Science Foundation under the project 6212 „Solar and Stellar Variability".

  18. Weather and seasonal climate prediction for South America using a multi-model superensemble

    NASA Astrophysics Data System (ADS)

    Chaves, Rosane R.; Ross, Robert S.; Krishnamurti, T. N.

    2005-11-01

    This work examines the feasibility of weather and seasonal climate predictions for South America using the multi-model synthetic superensemble approach for climate, and the multi-model conventional superensemble approach for numerical weather prediction, both developed at Florida State University (FSU). The effect on seasonal climate forecasts of the number of models used in the synthetic superensemble is investigated. It is shown that the synthetic superensemble approach for climate and the conventional superensemble approach for numerical weather prediction can reduce the errors over South America in seasonal climate prediction and numerical weather prediction.For climate prediction, a suite of 13 models is used. The forecast lead-time is 1 month for the climate forecasts, which consist of precipitation and surface temperature forecasts. The multi-model ensemble is comprised of four versions of the FSU-Coupled Ocean-Atmosphere Model, seven models from the Development of a European Multi-model Ensemble System for Seasonal to Interannual Prediction (DEMETER), a version of the Community Climate Model (CCM3), and a version of the predictive Ocean Atmosphere Model for Australia (POAMA). The results show that conditions over South America are appropriately simulated by the Florida State University Synthetic Superensemble (FSUSSE) in comparison to observations and that the skill of this approach increases with the use of additional models in the ensemble. When compared to observations, the forecasts are generally better than those from both a single climate model and the multi-model ensemble mean, for the variables tested in this study.For numerical weather prediction, the conventional Florida State University Superensemble (FSUSE) is used to predict the mass and motion fields over South America. Predictions of mean sea level pressure, 500 hPa geopotential height, and 850 hPa wind are made with a multi-model superensemble comprised of six global models for the period January, February, and December of 2000. The six global models are from the following forecast centers: FSU, Bureau of Meteorology Research Center (BMRC), Japan Meteorological Agency (JMA), National Centers for Environmental Prediction (NCEP), Naval Research Laboratory (NRL), and Recherche en Prevision Numerique (RPN). Predictions of precipitation are made for the period January, February, and December of 2001 with a multi-analysis-multi-model superensemble where, in addition to the six forecast models just mentioned, five additional versions of the FSU model are used in the ensemble, each with a different initialization (analysis) based on different physical initialization procedures. On the basis of observations, the results show that the FSUSE provides the best forecasts of the mass and motion field variables to forecast day 5, when compared to both the models comprising the ensemble and the multi-model ensemble mean during the wet season of December-February over South America. Individual case studies show that the FSUSE provides excellent predictions of rainfall for particular synoptic events to forecast day 3. Copyright

  19. Seasonal prediction and predictability of Eurasian spring snow water equivalent in NCEP Climate Forecast System version 2 reforecasts

    NASA Astrophysics Data System (ADS)

    He, Qiong; Zuo, Zhiyan; Zhang, Renhe; Zhang, Ruonan

    2018-01-01

    The spring snow water equivalent (SWE) over Eurasia plays an important role in East Asian and Indian monsoon rainfall. This study evaluates the seasonal prediction capability of NCEP Climate Forecast System version 2 (CFSv2) retrospective forecasts (1983-2010) for the Eurasian spring SWE. The results demonstrate that CFSv2 is able to represent the climatological distribution of the observed Eurasian spring SWE with a lead time of 1-3 months, with the maximum SWE occurring over western Siberia and Northeastern Europe. For a longer lead time, the SWE is exaggerated in CFSv2 because the start of snow ablation in CFSv2 lags behind that of the observation, and the simulated snowmelt rate is less than that in the observation. Generally, CFSv2 can simulate the interannual variations of the Eurasian spring SWE 1-5 months ahead of time but with an exaggerated magnitude. Additionally, the downtrend in CFSv2 is also overestimated. Because the initial conditions (ICs) are related to the corresponding simulation results significantly, the robust interannual variability and the downtrend in the ICs are most likely the causes for these biases. Moreover, CFSv2 exhibits a high potential predictability for the Eurasian spring SWE, especially the spring SWE over Siberia, with a lead time of 1-5 months. For forecasts with lead times longer than 5 months, the model predictability gradually decreases mainly due to the rapid decrease in the model signal.

  20. Oceanic ensemble forecasting in the Gulf of Mexico: An application to the case of the Deep Water Horizon oil spill

    NASA Astrophysics Data System (ADS)

    Khade, Vikram; Kurian, Jaison; Chang, Ping; Szunyogh, Istvan; Thyng, Kristen; Montuoro, Raffaele

    2017-05-01

    This paper demonstrates the potential of ocean ensemble forecasting in the Gulf of Mexico (GoM). The Bred Vector (BV) technique with one week rescaling frequency is implemented on a 9 km resolution version of the Regional Ocean Modelling System (ROMS). Numerical experiments are carried out by using the HYCOM analysis products to define the initial conditions and the lateral boundary conditions. The growth rates of the forecast uncertainty are estimated to be about 10% of initial amplitude per week. By carrying out ensemble forecast experiments with and without perturbed surface forcing, it is demonstrated that in the coastal regions accounting for uncertainties in the atmospheric forcing is more important than accounting for uncertainties in the ocean initial conditions. In the Loop Current region, the initial condition uncertainties, are the dominant source of the forecast uncertainty. The root-mean-square error of the Lagrangian track forecasts at the 15-day forecast lead time can be reduced by about 10 - 50 km using the ensemble mean Eulerian forecast of the oceanic flow for the computation of the tracks, instead of the single-initial-condition Eulerian forecast.

  1. Configuring the HYSPLIT Model for National Weather Service Forecast Office and Spaceflight Meteorology Group Applications

    NASA Technical Reports Server (NTRS)

    Dreher, Joseph G.

    2009-01-01

    For expedience in delivering dispersion guidance in the diversity of operational situations, National Weather Service Melbourne (MLB) and Spaceflight Meteorology Group (SMG) are becoming increasingly reliant on the PC-based version of the HYSPLIT model run through a graphical user interface (GUI). While the GUI offers unique advantages when compared to traditional methods, it is difficult for forecasters to run and manage in an operational environment. To alleviate the difficulty in providing scheduled real-time trajectory and concentration guidance, the Applied Meteorology Unit (AMU) configured a Linux version of the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) (HYSPLIT) model that ingests the National Centers for Environmental Prediction (NCEP) guidance, such as the North American Mesoscale (NAM) and the Rapid Update Cycle (RUC) models. The AMU configured the HYSPLIT system to automatically download the NCEP model products, convert the meteorological grids into HYSPLIT binary format, run the model from several pre-selected latitude/longitude sites, and post-process the data to create output graphics. In addition, the AMU configured several software programs to convert local Weather Research and Forecast (WRF) model output into HYSPLIT format.

  2. Validation of Seasonal Forecast of Indian Summer Monsoon Rainfall

    NASA Astrophysics Data System (ADS)

    Das, Sukanta Kumar; Deb, Sanjib Kumar; Kishtawal, C. M.; Pal, Pradip Kumar

    2015-06-01

    The experimental seasonal forecast of Indian summer monsoon (ISM) rainfall during June through September using Community Atmosphere Model (CAM) version 3 has been carried out at the Space Applications Centre Ahmedabad since 2009. The forecasts, based on a number of ensemble members (ten minimum) of CAM, are generated in several phases and updated on regular basis. On completion of 5 years of experimental seasonal forecasts in operational mode, it is required that the overall validation or correctness of the forecast system is quantified and that the scope is assessed for further improvements of the forecast over time, if any. The ensemble model climatology generated by a set of 20 identical CAM simulations is considered as the model control simulation. The performance of the forecast has been evaluated by assuming the control simulation as the model reference. The forecast improvement factor shows positive improvements, with higher values for the recent forecasted years as compared to the control experiment over the Indian landmass. The Taylor diagram representation of the Pearson correlation coefficient (PCC), standard deviation and centered root mean square difference has been used to demonstrate the best PCC, in the order of 0.74-0.79, recorded for the seasonal forecast made during 2013. Further, the bias score of different phases of experiment revealed the fact that the ISM rainfall forecast is affected by overestimation in predicting the low rain-rate (less than 7 mm/day), but by underestimation in the medium and high rain-rate (higher than 11 mm/day). Overall, the analysis shows significant improvement of the ISM forecast over the last 5 years, viz. 2009-2013, due to several important modifications that have been implemented in the forecast system. The validation exercise has also pointed out a number of shortcomings in the forecast system; these will be addressed in the upcoming years of experiments to improve the quality of the ISM prediction.

  3. NFDRSPC: The National Fire-Danger Rating System on a Personal Computer

    Treesearch

    Bryan G. Donaldson; James T. Paul

    1990-01-01

    This user's guide is an introductory manual for using the 1988 version (Burgan 1988) of the National Fire-Danger Rating System on an IBM PC or compatible computer. NFDRSPC is a window-oriented, interactive computer program that processes observed and forecast weather with fuels data to produce NFDRS indices. Other program features include user-designed display...

  4. The Brazilian developments on the Regional Atmospheric Modeling System (BRAMS 5.2): an integrated environmental model tuned for tropical areas

    NASA Astrophysics Data System (ADS)

    Freitas, Saulo R.; Panetta, Jairo; Longo, Karla M.; Rodrigues, Luiz F.; Moreira, Demerval S.; Rosário, Nilton E.; Silva Dias, Pedro L.; Silva Dias, Maria A. F.; Souza, Enio P.; Freitas, Edmilson D.; Longo, Marcos; Frassoni, Ariane; Fazenda, Alvaro L.; Silva, Cláudio M. Santos e.; Pavani, Cláudio A. B.; Eiras, Denis; França, Daniela A.; Massaru, Daniel; Silva, Fernanda B.; Santos, Fernando C.; Pereira, Gabriel; Camponogara, Gláuber; Ferrada, Gonzalo A.; Campos Velho, Haroldo F.; Menezes, Isilda; Freire, Julliana L.; Alonso, Marcelo F.; Gácita, Madeleine S.; Zarzur, Maurício; Fonseca, Rafael M.; Lima, Rafael S.; Siqueira, Ricardo A.; Braz, Rodrigo; Tomita, Simone; Oliveira, Valter; Martins, Leila D.

    2017-01-01

    We present a new version of the Brazilian developments on the Regional Atmospheric Modeling System (BRAMS), in which different previous versions for weather, chemistry, and carbon cycle were unified in a single integrated modeling system software. This new version also has a new set of state-of-the-art physical parameterizations and greater computational parallel and memory usage efficiency. The description of the main model features includes several examples illustrating the quality of the transport scheme for scalars, radiative fluxes on surface, and model simulation of rainfall systems over South America at different spatial resolutions using a scale aware convective parameterization. Additionally, the simulation of the diurnal cycle of the convection and carbon dioxide concentration over the Amazon Basin, as well as carbon dioxide fluxes from biogenic processes over a large portion of South America, are shown. Atmospheric chemistry examples show the model performance in simulating near-surface carbon monoxide and ozone in the Amazon Basin and the megacity of Rio de Janeiro. For tracer transport and dispersion, the model capabilities to simulate the volcanic ash 3-D redistribution associated with the eruption of a Chilean volcano are demonstrated. The gain of computational efficiency is described in some detail. BRAMS has been applied for research and operational forecasting mainly in South America. Model results from the operational weather forecast of BRAMS on 5 km grid spacing in the Center for Weather Forecasting and Climate Studies, INPE/Brazil, since 2013 are used to quantify the model skill of near-surface variables and rainfall. The scores show the reliability of BRAMS for the tropical and subtropical areas of South America. Requirements for keeping this modeling system competitive regarding both its functionalities and skills are discussed. Finally, we highlight the relevant contribution of this work to building a South American community of model developers.

  5. The Brazilian Developments on the Regional Atmospheric Modeling System (BRAMS 5.2): An Integrated Environmental Model Tuned for Tropical Areas

    NASA Technical Reports Server (NTRS)

    Freitas, Saulo R.; Panetta, Jairo; Longo, Karla M.; Rodrigues, Luiz F.; Moreira, Demerval S.; Rosario, Nilton E.; Silva Dias, Pedro L.; Silva Dias, Maria A. F.; Souza, Enio P.; Freitas, Edmilson D.; hide

    2017-01-01

    We present a new version of the Brazilian developments on the Regional Atmospheric Modeling System where different previous versions for weather, chemistry and carbon cycle were unified in a single integrated software system. The new version also has a new set of state-of-the-art physical parameterizations and greater computational parallel and memory usage efficiency. Together with the description of the main features are examples of the quality of the transport scheme for scalars, radiative fluxes on surface and model simulation of rainfall systems over South America in different spatial resolutions using a scale-aware convective parameterization. Besides, the simulation of the diurnal cycle of the convection and carbon dioxide concentration over the Amazon Basin, as well as carbon dioxide fluxes from biogenic processes over a large portion of South America are shown. Atmospheric chemistry examples present model performance in simulating near-surface carbon monoxide and ozone in Amazon Basin and Rio de Janeiro megacity. For tracer transport and dispersion, it is demonstrated the model capabilities to simulate the volcanic ash 3-d redistribution associated with the eruption of a Chilean volcano. Then, the gain of computational efficiency is described with some details. BRAMS has been applied for research and operational forecasting mainly in South America. Model results from the operational weather forecast of BRAMS on 5 km grid spacing in the Center for Weather Forecasting and Climate Studies, INPE/Brazil, since 2013 are used to quantify the model skill of near surface variables and rainfall. The scores show the reliability of BRAMS for the tropical and subtropical areas of South America. Requirements for keeping this modeling system competitive regarding on its functionalities and skills are discussed. At last, we highlight the relevant contribution of this work on the building up of a South American community of model developers.

  6. A Research on Development of The Multi-mode Flood Forecasting System Version Management

    NASA Astrophysics Data System (ADS)

    Shen, J.-C.; Chang, C. H.; Lien, H. C.; Wu, S. J.; Horng, M. J.

    2009-04-01

    With the global economy and technological development, the degree of urbanization and population density relative to raise. At the same time, a natural buffer space and resources year after year, the situation has been weakened, not only lead to potential environmental disasters, more and more serious, disaster caused by the economy, loss of natural environment at all levels has been expanded. In view of this, the active participation of all countries in the world cross-sectoral integration of disaster prevention technology research and development, in addition, the specialized field of disaster prevention technology, science and technology development, network integration technology, high-speed data transmission and information to support the establishment of mechanisms for disaster management The decision-making and cross-border global disaster information network building and other related technologies, has become the international anti-disaster science and technology development trends, this trend. Naturally a few years in Taiwan, people's lives and property losses caused by many problems related to natural disaster prevention and disaster prevention and the establishment of applications has become a very important. For FEWS_Taiwan, flood warning system developed by the Delft Hydraulics and introduced the Water Resources Agency (WRA), it provides those functionalities for users to modify contents to add the basins, regions, data sources, models and etc. Despite this advantage, version differences due to different users or different teams yet bring about the difficulties on synchronization and integration.At the same time in different research teams will also add different modes of meteorological and hydrological data. From the government perspective of WRA, the need to plan standard operation procedures for system integration demands that the effort for version control due to version differences must be cost down or yet canceled out. As for FEWS_Taiwan, this paper proposed the feasible avenues and solutions to smoothly integrate different configurations from different teams. In the current system has been completed by 20 of Taiwan's main rivers in the building of the basic structure of the flood forecasting. And regular updating of the relevant parameters, using the new survey results, in order to have a better flood forecasting results.

  7. Monitoring the performance of the next Climate Forecast System version 3, throughout its development stage at EMC/NCEP

    NASA Astrophysics Data System (ADS)

    Peña, M.; Saha, S.; Wu, X.; Wang, J.; Tripp, P.; Moorthi, S.; Bhattacharjee, P.

    2016-12-01

    The next version of the operational Climate Forecast System (version 3, CFSv3) will be a fully coupled six-components system with diverse applications to earth system modeling, including weather and climate predictions. This system will couple the earth's atmosphere, land, ocean, sea-ice, waves and aerosols for both data assimilation and modeling. It will also use the NOAA Environmental Modeling System (NEMS) software super structure to couple these components. The CFSv3 is part of the next Unified Global Coupled System (UGCS), which will unify the global prediction systems that are now operational at NCEP. The UGCS is being developed through the efforts of dedicated research and engineering teams and through coordination across many CPO/MAPP and NGGPS groups. During this development phase, the UGCS is being tested for seasonal purposes and undergoes frequent revisions. Each new revision is evaluated to quickly discover, isolate and solve problems that negatively impact its performance. In the UGCS-seasonal model, components (e.g., ocean, sea-ice, atmosphere, etc.) are coupled through a NEMS-based "mediator". In this numerical infrastructure, model diagnostics and forecast validation are carried out, both component by component, and as a whole. The next stage, model optimization, will require enhanced performance diagnostics tools to help prioritize areas of numerical improvements. After the technical development of the UGCS-seasonal is completed, it will become the first realization of the CFSv3. All future development of this system will be carried out by the climate team at NCEP, in scientific collaboration with the groups that developed the individual components, as well as the climate community. A unique challenge to evaluate this unified weather-climate system is the large number of variables, which evolve over a wide range of temporal and spatial scales. A small set of performance measures and scorecard displays are been created, and collaboration and software contributions from research and operational centers are being incorporated. A status of the CFSv3/UGCS-seasonal development and examples of its performance and measuring tools will be presented.

  8. Japan Meteorological Agency/Meteorological Research Institute-Coupled Prediction System version 2 (JMA/MRI-CPS2): atmosphere-land-ocean-sea ice coupled prediction system for operational seasonal forecasting

    NASA Astrophysics Data System (ADS)

    Takaya, Yuhei; Hirahara, Shoji; Yasuda, Tamaki; Matsueda, Satoko; Toyoda, Takahiro; Fujii, Yosuke; Sugimoto, Hiroyuki; Matsukawa, Chihiro; Ishikawa, Ichiro; Mori, Hirotoshi; Nagasawa, Ryoji; Kubo, Yutaro; Adachi, Noriyuki; Yamanaka, Goro; Kuragano, Tsurane; Shimpo, Akihiko; Maeda, Shuhei; Ose, Tomoaki

    2018-02-01

    This paper describes the Japan Meteorological Agency/Meteorological Research Institute-Coupled Prediction System version 2 (JMA/MRI-CPS2), which was put into operation in June 2015 for the purpose of performing seasonal predictions. JMA/MRI-CPS2 has various upgrades from its predecessor, JMA/MRI-CPS1, including improved resolution and physics in its atmospheric and oceanic components, introduction of an interactive sea-ice model and realistic initialization of its land component. Verification of extensive re-forecasts covering a 30-year period (1981-2010) demonstrates that JMA/MRI-CPS2 possesses improved seasonal predictive skills for both atmospheric and oceanic interannual variability as well as key coupled variability such as the El Niño-Southern Oscillation (ENSO). For ENSO prediction, the new system better represents the forecast uncertainty and transition/duration of ENSO phases. Our analysis suggests that the enhanced predictive skills are attributable to incremental improvements resulting from all of the changes, as is apparent in the beneficial effects of sea-ice coupling and land initialization on 2-m temperature predictions. JMA/MRI-CPS2 is capable of reasonably representing the seasonal cycle and secular trends of sea ice. The sea-ice coupling remarkably enhances the predictive capability for the Arctic 2-m temperature, indicating the importance of this factor, particularly for seasonal predictions in the Arctic region.

  9. Development of On-line Wildfire Emissions for the Operational Canadian Air Quality Forecast System

    NASA Astrophysics Data System (ADS)

    Pavlovic, R.; Menard, S.; Chen, J.; Anselmo, D.; Paul-Andre, B.; Gravel, S.; Moran, M. D.; Davignon, D.

    2013-12-01

    An emissions processing system has been developed to incorporate near-real-time emissions from wildfires and large prescribed burns into Environment Canada's real-time GEM-MACH air quality (AQ) forecast system. Since the GEM-MACH forecast domain covers Canada and most of the USA, including Alaska, fire location information is needed for both of these large countries. Near-real-time satellite data are obtained and processed separately for the two countries for organizational reasons. Fire location and fuel consumption data for Canada are provided by the Canadian Forest Service's Canadian Wild Fire Information System (CWFIS) while fire location and emissions data for the U.S. are provided by the SMARTFIRE (Satellite Mapping Automated Reanalysis Tool for Fire Incident Reconciliation) system via the on-line BlueSky Gateway. During AQ model runs, emissions from individual fire sources are injected into elevated model layers based on plume-rise calculations and then transport and chemistry calculations are performed. This 'on the fly' approach to the insertion of emissions provides greater flexibility since on-line meteorology is used and reduces computational overhead in emission pre-processing. An experimental wildfire version of GEM-MACH was run in real-time mode for the summers of 2012 and 2013. 48-hour forecasts were generated every 12 hours (at 00 and 12 UTC). Noticeable improvements in the AQ forecasts for PM2.5 were seen in numerous regions where fire activity was high. Case studies evaluating model performance for specific regions, computed objective scores, and subjective evaluations by AQ forecasters will be included in this presentation. Using the lessons learned from the last two summers, Environment Canada will continue to work towards the goal of incorporating near-real-time intermittent wildfire emissions within the operational air quality forecast system.

  10. Development and Implementation of Dynamic Scripts to Execute Cycled GSI/WRF Forecasts

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley; Srikishen, Jayanthi; Berndt, Emily; Li, Xuanli; Watson, Leela

    2014-01-01

    The Weather Research and Forecasting (WRF) numerical weather prediction (NWP) model and Gridpoint Statistical Interpolation (GSI) data assimilation (DA) are the operational systems that make up the North American Mesoscale (NAM) model and the NAM Data Assimilation System (NDAS) analysis used by National Weather Service forecasters. The Developmental Testbed Center (DTC) manages and distributes the code for the WRF and GSI, but it is up to individual researchers to link the systems together and write scripts to run the systems, which can take considerable time for those not familiar with the code. The objective of this project is to develop and disseminate a set of dynamic scripts that mimic the unique cycling configuration of the operational NAM to enable researchers to develop new modeling and data assimilation techniques that can be easily transferred to operations. The current version of the SPoRT GSI/WRF Scripts (v3.0.1) is compatible with WRF v3.3 and GSI v3.0.

  11. Projected Applications of a ``Climate in a Box'' Computing System at the NASA Short-term Prediction Research and Transition (SPoRT) Center

    NASA Astrophysics Data System (ADS)

    Jedlovec, G.; Molthan, A.; Zavodsky, B.; Case, J.; Lafontaine, F.

    2010-12-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center focuses on the transition of unique observations and research capabilities to the operational weather community, with a goal of improving short-term forecasts on a regional scale. Advances in research computing have lead to “Climate in a Box” systems, with hardware configurations capable of producing high resolution, near real-time weather forecasts, but with footprints, power, and cooling requirements that are comparable to desktop systems. The SPoRT Center has developed several capabilities for incorporating unique NASA research capabilities and observations with real-time weather forecasts. Planned utilization includes the development of a fully-cycled data assimilation system used to drive 36-48 hour forecasts produced by the NASA Unified version of the Weather Research and Forecasting (WRF) model (NU-WRF). The horsepower provided by the “Climate in a Box” system is expected to facilitate the assimilation of vertical profiles of temperature and moisture provided by the Atmospheric Infrared Sounder (AIRS) aboard the NASA Aqua satellite. In addition, the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments aboard NASA’s Aqua and Terra satellites provide high-resolution sea surface temperatures and vegetation characteristics. The development of MODIS normalized difference vegetation index (NVDI) composites for use within the NASA Land Information System (LIS) will assist in the characterization of vegetation, and subsequently the surface albedo and processes related to soil moisture. Through application of satellite simulators, NASA satellite instruments can be used to examine forecast model errors in cloud cover and other characteristics. Through the aforementioned application of the “Climate in a Box” system and NU-WRF capabilities, an end goal is the establishment of a real-time forecast system that fully integrates modeling and analysis capabilities developed within the NASA SPoRT Center, with benefits provided to the operational forecasting community.

  12. Projected Applications of a "Climate in a Box" Computing System at the NASA Short-Term Prediction Research and Transition (SPoRT) Center

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary J.; Molthan, Andrew L.; Zavodsky, Bradley; Case, Jonathan L.; LaFontaine, Frank J.

    2010-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center focuses on the transition of unique observations and research capabilities to the operational weather community, with a goal of improving short-term forecasts on a regional scale. Advances in research computing have lead to "Climate in a Box" systems, with hardware configurations capable of producing high resolution, near real-time weather forecasts, but with footprints, power, and cooling requirements that are comparable to desktop systems. The SPoRT Center has developed several capabilities for incorporating unique NASA research capabilities and observations with real-time weather forecasts. Planned utilization includes the development of a fully-cycled data assimilation system used to drive 36-48 hour forecasts produced by the NASA Unified version of the Weather Research and Forecasting (WRF) model (NU-WRF). The horsepower provided by the "Climate in a Box" system is expected to facilitate the assimilation of vertical profiles of temperature and moisture provided by the Atmospheric Infrared Sounder (AIRS) aboard the NASA Aqua satellite. In addition, the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments aboard NASA s Aqua and Terra satellites provide high-resolution sea surface temperatures and vegetation characteristics. The development of MODIS normalized difference vegetation index (NVDI) composites for use within the NASA Land Information System (LIS) will assist in the characterization of vegetation, and subsequently the surface albedo and processes related to soil moisture. Through application of satellite simulators, NASA satellite instruments can be used to examine forecast model errors in cloud cover and other characteristics. Through the aforementioned application of the "Climate in a Box" system and NU-WRF capabilities, an end goal is the establishment of a real-time forecast system that fully integrates modeling and analysis capabilities developed within the NASA SPoRT Center, with benefits provided to the operational forecasting community.

  13. Solar Storm GIC Forecasting: Solar Shield Extension Development of the End-User Forecasting System Requirements

    NASA Technical Reports Server (NTRS)

    Pulkkinen, A.; Mahmood, S.; Ngwira, C.; Balch, C.; Lordan, R.; Fugate, D.; Jacobs, W.; Honkonen, I.

    2015-01-01

    A NASA Goddard Space Flight Center Heliophysics Science Division-led team that includes NOAA Space Weather Prediction Center, the Catholic University of America, Electric Power Research Institute (EPRI), and Electric Research and Management, Inc., recently partnered with the Department of Homeland Security (DHS) Science and Technology Directorate (S&T) to better understand the impact of Geomagnetically Induced Currents (GIC) on the electric power industry. This effort builds on a previous NASA-sponsored Applied Sciences Program for predicting GIC, known as Solar Shield. The focus of the new DHS S&T funded effort is to revise and extend the existing Solar Shield system to enhance its forecasting capability and provide tailored, timely, actionable information for electric utility decision makers. To enhance the forecasting capabilities of the new Solar Shield, a key undertaking is to extend the prediction system coverage across Contiguous United States (CONUS), as the previous version was only applicable to high latitudes. The team also leverages the latest enhancements in space weather modeling capacity residing at Community Coordinated Modeling Center to increase the Technological Readiness Level, or Applications Readiness Level of the system http://www.nasa.gov/sites/default/files/files/ExpandedARLDefinitions4813.pdf.

  14. Hydrologic ensembles based on convection-permitting precipitation nowcasts for flash flood warnings

    NASA Astrophysics Data System (ADS)

    Demargne, Julie; Javelle, Pierre; Organde, Didier; de Saint Aubin, Céline; Ramos, Maria-Helena

    2017-04-01

    In order to better anticipate flash flood events and provide timely warnings to communities at risk, the French national service in charge of flood forecasting (SCHAPI) is implementing a national flash flood warning system for small-to-medium ungauged basins. Based on a discharge-threshold flood warning method called AIGA (Javelle et al. 2014), the current version of the system runs a simplified hourly distributed hydrologic model with operational radar-gauge QPE grids from Météo-France at a 1-km2 resolution every 15 minutes. This produces real-time peak discharge estimates along the river network, which are subsequently compared to regionalized flood frequency estimates to provide warnings according to the AIGA-estimated return period of the ongoing event. To further extend the effective warning lead time while accounting for hydrometeorological uncertainties, the flash flood warning system is being enhanced to include Météo-France's AROME-NWC high-resolution precipitation nowcasts as time-lagged ensembles and multiple sets of hydrological regionalized parameters. The operational deterministic precipitation forecasts, from the nowcasting version of the AROME convection-permitting model (Auger et al. 2015), were provided at a 2.5-km resolution for a 6-hr forecast horizon for 9 significant rain events from September 2014 to June 2016. The time-lagged approach is a practical choice of accounting for the atmospheric forecast uncertainty when no extensive forecast archive is available for statistical modelling. The evaluation on 781 French basins showed significant improvements in terms of flash flood event detection and effective warning lead-time, compared to warnings from the current AIGA setup (without any future precipitation). We also discuss how to effectively communicate verification information to help determine decision-relevant warning thresholds for flood magnitude and probability. Javelle, P., Demargne, J., Defrance, D., Arnaud, P., 2014. Evaluating flash flood warnings at ungauged locations using post-event surveys: a case study with the AIGA warning system. Hydrological Sciences Journal, doi: 10.1080/02626667.2014.923970 Auger, L., Dupont, O., Hagelin, S., Brousseau, P., Brovelli, P., 2015. AROME-NWC: a new nowcasting tool based on an operational mesoscale forecasting system. Quarterly Journal of the Royal Meteorological Society, 141: 1603-1611, doi:10.1002/qj.2463

  15. The MIT Integrated Global System Model: A facility for Assessing and Communicating Climate Change Uncertainty (Invited)

    NASA Astrophysics Data System (ADS)

    Prinn, R. G.

    2013-12-01

    The world is facing major challenges that create tensions between human development and environmental sustenance. In facing these challenges, computer models are invaluable tools for addressing the need for probabilistic approaches to forecasting. To illustrate this, I use the MIT Integrated Global System Model framework (IGSM; http://globalchange.mit.edu ). The IGSM consists of a set of coupled sub-models of global economic and technological development and resultant emissions, and physical, dynamical and chemical processes in the atmosphere, land, ocean and ecosystems (natural and managed). Some of the sub-models have both complex and simplified versions available, with the choice of which version to use being guided by the questions being addressed. Some sub-models (e.g.urban air pollution) are reduced forms of complex ones created by probabilistic collocation with polynomial chaos bases. Given the significant uncertainties in the model components, it is highly desirable that forecasts be probabilistic. We achieve this by running 400-member ensembles (Latin hypercube sampling) with different choices for key uncertain variables and processes within the human and natural system model components (pdfs of inputs estimated by model-observation comparisons, literature surveys, or expert elicitation). The IGSM has recently been used for probabilistic forecasts of climate, each using 400-member ensembles: one ensemble assumes no explicit climate mitigation policy and others assume increasingly stringent policies involving stabilization of greenhouse gases at various levels. These forecasts indicate clearly that the greatest effect of these policies is to lower the probability of extreme changes. The value of such probability analyses for policy decision-making lies in their ability to compare relative (not just absolute) risks of various policies, which are less affected by the earth system model uncertainties. Given the uncertainties in forecasts, it is also clear that we need to evaluate policies based on their ability to lower risk, and to re-evaluate decisions over time as new knowledge is gained. Reference: R. G. Prinn, Development and Application of Earth System Models, Proceedings, National Academy of Science, June 15, 2012, http://www.pnas.org/cgi/doi/10.1073/pnas.1107470109.

  16. Toward Sub-seasonal to Seasonal Arctic Sea Ice Forecasting Using the Regional Arctic System Model (RASM)

    NASA Astrophysics Data System (ADS)

    Kamal, S.; Maslowski, W.; Roberts, A.; Osinski, R.; Cassano, J. J.; Seefeldt, M. W.

    2017-12-01

    The Regional Arctic system model has been developed and used to advance the current state of Arctic modeling and increase the skill of sea ice forecast. RASM is a fully coupled, limited-area model that includes the atmosphere, ocean, sea ice, land hydrology and runoff routing components and the flux coupler to exchange information among them. Boundary conditions are derived from NCEP Climate Forecasting System Reanalyses (CFSR) or Era Iterim (ERA-I) for hindcast simulations or from NCEP Coupled Forecast System Model version 2 (CFSv2) for seasonal forecasts. We have used RASM to produce sea ice forecasts for September 2016 and 2017, in contribution to the Sea Ice Outlook (SIO) of the Sea Ice Prediction Network (SIPN). Each year, we produced three SIOs for the September minimum, initialized on June 1, July 1 and August 1. In 2016, predictions used a simple linear regression model to correct for systematic biases and included the mean September sea ice extent, the daily minimum and the week of the minimum. In 2017, we produced a 12-member ensemble on June 1 and July 1, and 28-member ensemble August 1. The predictions of September 2017 included the pan-Arctic and regional Alaskan sea ice extent, daily and monthly mean pan-Arctic maps of sea ice probability, concentration and thickness. No bias correction was applied to the 2017 forecasts. Finally, we will also discuss future plans for RASM forecasts, which include increased resolution for model components, ecosystem predictions with marine biogeochemistry extensions (mBGC) to the ocean and sea ice components, and feasibility of optional boundary conditions using the Navy Global Environmental Model (NAVGEM).

  17. Verification of Ensemble Forecasts for the New York City Operations Support Tool

    NASA Astrophysics Data System (ADS)

    Day, G.; Schaake, J. C.; Thiemann, M.; Draijer, S.; Wang, L.

    2012-12-01

    The New York City water supply system operated by the Department of Environmental Protection (DEP) serves nine million people. It covers 2,000 square miles of portions of the Catskill, Delaware, and Croton watersheds, and it includes nineteen reservoirs and three controlled lakes. DEP is developing an Operations Support Tool (OST) to support its water supply operations and planning activities. OST includes historical and real-time data, a model of the water supply system complete with operating rules, and lake water quality models developed to evaluate alternatives for managing turbidity in the New York City Catskill reservoirs. OST will enable DEP to manage turbidity in its unfiltered system while satisfying its primary objective of meeting the City's water supply needs, in addition to considering secondary objectives of maintaining ecological flows, supporting fishery and recreation releases, and mitigating downstream flood peaks. The current version of OST relies on statistical forecasts of flows in the system based on recent observed flows. To improve short-term decision making, plans are being made to transition to National Weather Service (NWS) ensemble forecasts based on hydrologic models that account for short-term weather forecast skill, longer-term climate information, as well as the hydrologic state of the watersheds and recent observed flows. To ensure that the ensemble forecasts are unbiased and that the ensemble spread reflects the actual uncertainty of the forecasts, a statistical model has been developed to post-process the NWS ensemble forecasts to account for hydrologic model error as well as any inherent bias and uncertainty in initial model states, meteorological data and forecasts. The post-processor is designed to produce adjusted ensemble forecasts that are consistent with the DEP historical flow sequences that were used to develop the system operating rules. A set of historical hindcasts that is representative of the real-time ensemble forecasts is needed to verify that the post-processed forecasts are unbiased, statistically reliable, and preserve the skill inherent in the "raw" NWS ensemble forecasts. A verification procedure and set of metrics will be presented that provide an objective assessment of ensemble forecasts. The procedure will be applied to both raw ensemble hindcasts and to post-processed ensemble hindcasts. The verification metrics will be used to validate proper functioning of the post-processor and to provide a benchmark for comparison of different types of forecasts. For example, current NWS ensemble forecasts are based on climatology, using each historical year to generate a forecast trace. The NWS Hydrologic Ensemble Forecast System (HEFS) under development will utilize output from both the National Oceanic Atmospheric Administration (NOAA) Global Ensemble Forecast System (GEFS) and the Climate Forecast System (CFS). Incorporating short-term meteorological forecasts and longer-term climate forecast information should provide sharper, more accurate forecasts. Hindcasts from HEFS will enable New York City to generate verification results to validate the new forecasts and further fine-tune system operating rules. Project verification results will be presented for different watersheds across a range of seasons, lead times, and flow levels to assess the quality of the current ensemble forecasts.

  18. Improving medium-range and seasonal hydroclimate forecasts in the southeast USA

    NASA Astrophysics Data System (ADS)

    Tian, Di

    Accurate hydro-climate forecasts are important for decision making by water managers, agricultural producers, and other stake holders. Numerical weather prediction models and general circulation models may have potential for improving hydro-climate forecasts at different scales. In this study, forecast analogs of the Global Forecast System (GFS) and Global Ensemble Forecast System (GEFS) based on different approaches were evaluated for medium-range reference evapotranspiration (ETo), irrigation scheduling, and urban water demand forecasts in the southeast United States; the Climate Forecast System version 2 (CFSv2) and the North American national multi-model ensemble (NMME) were statistically downscaled for seasonal forecasts of ETo, precipitation (P) and 2-m temperature (T2M) at the regional level. The GFS mean temperature (Tmean), relative humidity, and wind speed (Wind) reforecasts combined with the climatology of Reanalysis 2 solar radiation (Rs) produced higher skill than using the direct GFS output only. Constructed analogs showed slightly higher skill than natural analogs for deterministic forecasts. Both irrigation scheduling driven by the GEFS-based ETo forecasts and GEFS-based ETo forecast skill were generally positive up to one week throughout the year. The GEFS improved ETo forecast skill compared to the GFS. The GEFS-based analog forecasts for the input variables of an operational urban water demand model were skillful when applied in the Tampa Bay area. The modified operational models driven by GEFS analog forecasts showed higher forecast skill than the operational model based on persistence. The results for CFSv2 seasonal forecasts showed maximum temperature (Tmax) and Rs had the greatest influence on ETo. The downscaled Tmax showed the highest predictability, followed by Tmean, Tmin, Rs, and Wind. The CFSv2 model could better predict ETo in cold seasons during El Nino Southern Oscillation (ENSO) events only when the forecast initial condition was in ENSO. Downscaled P and T2M forecasts were produced by directly downscaling the NMME P and T2M output or indirectly using the NMME forecasts of Nino3.4 sea surface temperatures to predict local-scale P and T2M. The indirect method generally showed the highest forecast skill which occurs in cold seasons. The bias-corrected NMME ensemble forecast skill did not outperform the best single model.

  19. Mission and Assets Database

    NASA Technical Reports Server (NTRS)

    Baldwin, John; Zendejas, Silvino; Gutheinz, Sandy; Borden, Chester; Wang, Yeou-Fang

    2009-01-01

    Mission and Assets Database (MADB) Version 1.0 is an SQL database system with a Web user interface to centralize information. The database stores flight project support resource requirements, view periods, antenna information, schedule, and forecast results for use in mid-range and long-term planning of Deep Space Network (DSN) assets.

  20. Development and Implementation of Dynamic Scripts to Support Local Model Verification at National Weather Service Weather Forecast Offices

    NASA Technical Reports Server (NTRS)

    Zavordsky, Bradley; Case, Jonathan L.; Gotway, John H.; White, Kristopher; Medlin, Jeffrey; Wood, Lance; Radell, Dave

    2014-01-01

    Local modeling with a customized configuration is conducted at National Weather Service (NWS) Weather Forecast Offices (WFOs) to produce high-resolution numerical forecasts that can better simulate local weather phenomena and complement larger scale global and regional models. The advent of the Environmental Modeling System (EMS), which provides a pre-compiled version of the Weather Research and Forecasting (WRF) model and wrapper Perl scripts, has enabled forecasters to easily configure and execute the WRF model on local workstations. NWS WFOs often use EMS output to help in forecasting highly localized, mesoscale features such as convective initiation, the timing and inland extent of lake effect snow bands, lake and sea breezes, and topographically-modified winds. However, quantitatively evaluating model performance to determine errors and biases still proves to be one of the challenges in running a local model. Developed at the National Center for Atmospheric Research (NCAR), the Model Evaluation Tools (MET) verification software makes performing these types of quantitative analyses easier, but operational forecasters do not generally have time to familiarize themselves with navigating the sometimes complex configurations associated with the MET tools. To assist forecasters in running a subset of MET programs and capabilities, the Short-term Prediction Research and Transition (SPoRT) Center has developed and transitioned a set of dynamic, easily configurable Perl scripts to collaborating NWS WFOs. The objective of these scripts is to provide SPoRT collaborating partners in the NWS with the ability to evaluate the skill of their local EMS model runs in near real time with little prior knowledge of the MET package. The ultimate goal is to make these verification scripts available to the broader NWS community in a future version of the EMS software. This paper provides an overview of the SPoRT MET scripts, instructions for how the scripts are run, and example use cases.

  1. Data Assimilation Experiments using Quality Controlled AIRS Version 5 Temperature Soundings

    NASA Technical Reports Server (NTRS)

    Susskind, Joel

    2008-01-01

    The AIRS Science Team Version 5 retrieval algorithm has been finalized and is now operational at the Goddard DAAC in the processing (and reprocessing) of all AlRS data. Version 5 contains accurate case-by-case error estimates for most derived products, which are also used for quality control. We have conducted forecast impact experiments assimilating AlRS quality controlled temperature profiles using the NASA GEOS-5 data assimilation system, consisting of the NCEP GSI analysis coupled with the NASA FVGCM. Assimilation of quality controlled temperature profiles resulted in significantly improved forecast skill in both the Northern Hemisphere and Southern Hemisphere Extra-Tropics, compared to that obtained from analyses obtained when all data used operationally by NCEP except for AlRS data is assimilated. Experiments using different Quality Control thresholds for assimilation of AlRS temperature retrievals showed that a medium quality control threshold performed better than a tighter threshold, which provided better overall sounding accuracy; or a looser threshold, which provided better spatial coverage of accepted soundings. We are conducting more experiments to further optimize this balance of spatial coverage and sounding accuracy from the data assimilation perspective. In all cases, temperature soundings were assimilated well below cloud level in partially cloudy cases. The positive impact of assimilating AlRS derived atmospheric temperatures all but vanished when only AIRS stratospheric temperatures were assimilated. Forecast skill resulting from assimilation of AlRS radiances uncontaminated by clouds, instead of AlRS temperature soundings, was only slightly better than that resulting from assimilation of only stratospheric AlRS temperatures. This reduction in forecast skill is most likely the result of significant loss of tropospheric information when only AIRS radiances unaffected by clouds are used in the data assimilation process.

  2. Evaluation of the synoptic and mesoscale predictive capabilities of a mesoscale atmospheric simulation system

    NASA Technical Reports Server (NTRS)

    Koch, S. E.; Skillman, W. C.; Kocin, P. J.; Wetzel, P. J.; Brill, K.; Keyser, D. A.; Mccumber, M. C.

    1983-01-01

    The overall performance characteristics of a limited area, hydrostatic, fine (52 km) mesh, primitive equation, numerical weather prediction model are determined in anticipation of satellite data assimilations with the model. The synoptic and mesoscale predictive capabilities of version 2.0 of this model, the Mesoscale Atmospheric Simulation System (MASS 2.0), were evaluated. The two part study is based on a sample of approximately thirty 12h and 24h forecasts of atmospheric flow patterns during spring and early summer. The synoptic scale evaluation results benchmark the performance of MASS 2.0 against that of an operational, synoptic scale weather prediction model, the Limited area Fine Mesh (LFM). The large sample allows for the calculation of statistically significant measures of forecast accuracy and the determination of systematic model errors. The synoptic scale benchmark is required before unsmoothed mesoscale forecast fields can be seriously considered.

  3. Toward Seasonal Forecasting of Global Droughts: Evaluation over USA and Africa

    NASA Astrophysics Data System (ADS)

    Wood, Eric; Yuan, Xing; Roundy, Joshua; Sheffield, Justin; Pan, Ming

    2013-04-01

    Extreme hydrologic events in the form of droughts are significant sources of social and economic damage. In the United States according to the National Climatic Data Center, the losses from drought exceed US210 billion during 1980-2011, and account for about 24% of all losses from major weather disasters. Internationally, especially for the developing world, drought has had devastating impacts on local populations through food insecurity and famine. Providing reliable drought forecasts with sufficient early warning will help the governments to move from the management of drought crises to the management of drought risk. After working on drought monitoring and forecasting over the USA for over 10 years, the Princeton land surface hydrology group is now developing a global drought monitoring and forecasting system using a dynamical seasonal climate-hydrologic LSM-model (CHM) approach. Currently there is an active debate on the merits of the CHM-based seasonal hydrologic forecasts as compared to Ensemble Streamflow Prediction (ESP). We use NCEP's operational forecast system, the Climate Forecast System version 2 (CFSv2) and its previous version CFSv1, to investigate the value of seasonal climate model forecasts by conducting a set of 27-year seasonal hydrologic hindcasts over the USA. Through Bayesian downscaling, climate models have higher squared correlation (R2) and smaller error than ESP for monthly precipitation averaged over major river basins across the USA, and the forecasts conditional on ENSO show further improvements (out to four months) over river basins in the southern USA. All three approaches have plausible predictions of soil moisture drought frequency over central USA out to six months because of strong soil moisture memory, and seasonal climate models provide better results over central and eastern USA. The R2 of drought extent is higher for arid basins and for the forecasts initiated during dry seasons, but significant improvements from CFSv2 occur in different seasons for different basins. The R2 of drought severity accumulated over USA is higher during winter, and climate models present added value especially at long leads. For countries with sparse networks and weak reporting systems, remote sensing observations can provide the realtime data for the monitoring of drought. More importantly, these datasets are now available for at least a decade, which allows for estimating a climatology against which current conditions can be compared. Based on our established experimental African Drought Monitor (ADM) (see http://hydrology.princeton.edu/~nchaney/ADM_ML), we use the downscaled CFSv2 climate forcings to drive the re-calibrated VIC model and produce 6-month, 20-member ensemble hydrologic forecasts over Africa starting on the 1st of each calendar month during 1982-2007. Our CHM-based seasonal hydrologic forecasts are now being analyzed for its skill in predicting short-term soil moisture droughts over Africa. Besides relying on a single seasonal climate model or a single drought index, preliminary forecast results will be presented using multiple seasonal climate models based on the NOAA-supported National Multi-Model Ensemble (NMME) project, and with multiple drought indices. Results will be presented for the USA NIDIS test beds such as Southeast US and Colorado NIDIS (National Integrated Drought Information System) test beds, and potentially for other regions of the globe.

  4. Optimization of Evaporative Demand Models for Seasonal Drought Forecasting

    NASA Astrophysics Data System (ADS)

    McEvoy, D.; Huntington, J. L.; Hobbins, M.

    2015-12-01

    Providing reliable seasonal drought forecasts continues to pose a major challenge for scientists, end-users, and the water resources and agricultural communities. Precipitation (Prcp) forecasts beyond weather time scales are largely unreliable, so exploring new avenues to improve seasonal drought prediction is necessary to move towards applications and decision-making based on seasonal forecasts. A recent study has shown that evaporative demand (E0) anomaly forecasts from the Climate Forecast System Version 2 (CFSv2) are consistently more skillful than Prcp anomaly forecasts during drought events over CONUS, and E0 drought forecasts may be particularly useful during the growing season in the farming belts of the central and Midwestern CONUS. For this recent study, we used CFSv2 reforecasts to assess the skill of E0 and of its individual drivers (temperature, humidity, wind speed, and solar radiation), using the American Society for Civil Engineers Standardized Reference Evapotranspiration (ET0) Equation. Moderate skill was found in ET0, temperature, and humidity, with lesser skill in solar radiation, and no skill in wind. Therefore, forecasts of E0 based on models with no wind or solar radiation inputs may prove to be more skillful than the ASCE ET0. For this presentation we evaluate CFSv2 E0 reforecasts (1982-2009) from three different E0 models: (1) ASCE ET0; (2) Hargreaves and Samani (ET-HS), which is estimated from maximum and minimum temperature alone; and (3) Valiantzas (ET-V), which is a modified version of the Penman method for use when wind speed data are not available (or of poor quality) and is driven only by temperature, humidity, and solar radiation. The University of Idaho's gridded meteorological data (METDATA) were used as observations to evaluate CFSv2 and also to determine if ET0, ET-HS, and ET-V identify similar historical drought periods. We focus specifically on CFSv2 lead times of one, two, and three months, and season one forecasts; which are time scales with moderate skill and are more likely to be used in hydro-climatic applications and decision-making.

  5. Examples of data assimilation in mesoscale models

    NASA Technical Reports Server (NTRS)

    Carr, Fred; Zack, John; Schmidt, Jerry; Snook, John; Benjamin, Stan; Stauffer, David

    1993-01-01

    The keynote address was the problem of physical initialization of mesoscale models. The classic purpose of physical or diabatic initialization is to reduce or eliminate the spin-up error caused by the lack, at the initial time, of the fully developed vertical circulations required to support regions of large rainfall rates. However, even if a model has no spin-up problem, imposition of observed moisture and heating rate information during assimilation can improve quantitative precipitation forecasts, especially early in the forecast. The two key issues in physical initialization are the choice of assimilating technique and sources of hydrologic/hydrometeor data. Another example of data assimilation in mesoscale models was presented in a series of meso-beta scale model experiments with and 11 km version of the MASS model designed to investigate the sensitivity of convective initiation forced by thermally direct circulations resulting from differential surface heating to four dimensional assimilation of surface and radar data. The results of these simulations underscore the need to accurately initialize and simulate grid and sub-grid scale clouds in meso- beta scale models. The status of the application of the CSU-RAMS mesoscale model by the NOAA Forecast Systems Lab for producing real-time forecasts with 10-60 km mesh resolutions over (4000 km)(exp 2) domains for use by the aviation community was reported. Either MAPS or LAPS model data are used to initialize the RAMS model on a 12-h cycle. The use of MAPS (Mesoscale Analysis and Prediction System) model was discussed. Also discussed was the mesobeta-scale data assimilation using a triply-nested nonhydrostatic version of the MM5 model.

  6. An Overview of the National Weather Service National Water Model

    NASA Astrophysics Data System (ADS)

    Cosgrove, B.; Gochis, D.; Clark, E. P.; Cui, Z.; Dugger, A. L.; Feng, X.; Karsten, L. R.; Khan, S.; Kitzmiller, D.; Lee, H. S.; Liu, Y.; McCreight, J. L.; Newman, A. J.; Oubeidillah, A.; Pan, L.; Pham, C.; Salas, F.; Sampson, K. M.; Sood, G.; Wood, A.; Yates, D. N.; Yu, W.

    2016-12-01

    The National Weather Service (NWS) Office of Water Prediction (OWP), in conjunction with the National Center for Atmospheric Research (NCAR) and the NWS National Centers for Environmental Prediction (NCEP) recently implemented version 1.0 of the National Water Model (NWM) into operations. This model is an hourly cycling uncoupled analysis and forecast system that provides streamflow for 2.7 million river reaches and other hydrologic information on 1km and 250m grids. It will provide complementary hydrologic guidance at current NWS river forecast locations and significantly expand guidance coverage and type in underserved locations. The core of this system is the NCAR-supported community Weather Research and Forecasting (WRF)-Hydro hydrologic model. It ingests forcing from a variety of sources including Multi-Sensor Multi-Radar (MRMS) radar-gauge observed precipitation data and High Resolution Rapid Refresh (HRRR), Rapid Refresh (RAP), Global Forecast System (GFS) and Climate Forecast System (CFS) forecast data. WRF-Hydro is configured to use the Noah-Multi Parameterization (Noah-MP) Land Surface Model (LSM) to simulate land surface processes. Separate water routing modules perform diffusive wave surface routing and saturated subsurface flow routing on a 250m grid, and Muskingum-Cunge channel routing down National Hydrogaphy Dataset Plus V2 (NHDPlusV2) stream reaches. River analyses and forecasts are provided across a domain encompassing the Continental United States (CONUS) and hydrologically contributing areas, while land surface output is available on a larger domain that extends beyond the CONUS into Canada and Mexico (roughly from latitude 19N to 58N). The system includes an analysis and assimilation configuration along with three forecast configurations. These include a short-range 15 hour deterministic forecast, a medium-Range 10 day deterministic forecast and a long-range 30 day 16-member ensemble forecast. United Sates Geologic Survey (USGS) streamflow observations are assimilated into the analysis and assimilation configuration, and all four configurations benefit from the inclusion of 1,260 reservoirs. An overview of the National Water Model will be given, along with information on ongoing evaluation activities and plans for future NWM enhancements.

  7. Evaluation of the CFSv2 CMIP5 decadal predictions

    NASA Astrophysics Data System (ADS)

    Bombardi, Rodrigo J.; Zhu, Jieshun; Marx, Lawrence; Huang, Bohua; Chen, Hua; Lu, Jian; Krishnamurthy, Lakshmi; Krishnamurthy, V.; Colfescu, Ioana; Kinter, James L.; Kumar, Arun; Hu, Zeng-Zhen; Moorthi, Shrinivas; Tripp, Patrick; Wu, Xingren; Schneider, Edwin K.

    2015-01-01

    Retrospective decadal forecasts were undertaken using the Climate Forecast System version 2 (CFSv2) as part of Coupled Model Intercomparison Project 5. Decadal forecasts were performed separately by the National Center for Environmental Prediction (NCEP) and by the Center for Ocean-Land-Atmosphere Studies (COLA), with the centers using two different analyses for the ocean initial conditions the NCEP Climate Forecast System Reanalysis (CFSR) and the NEMOVAR-COMBINE analysis. COLA also examined the sensitivity to the inclusion of forcing by specified volcanic aerosols. Biases in the CFSv2 for both sets of initial conditions include cold midlatitude sea surface temperatures, and rapid melting of sea ice associated with warm polar oceans. Forecasts from the NEMOVAR-COMBINE analysis showed strong weakening of the Atlantic Meridional Overturning Circulation (AMOC), eventually approaching the weaker AMOC associated with CFSR. The decadal forecasts showed high predictive skill over the Indian, the western Pacific, and the Atlantic Oceans and low skill over the central and eastern Pacific. The volcanic forcing shows only small regional differences in predictability of surface temperature at 2m (T2m) in comparison to forecasts without volcanic forcing, especially over the Indian Ocean. An ocean heat content (OHC) budget analysis showed that the OHC has substantial memory, indicating potential for the decadal predictability of T2m; however, the model has a systematic drift in global mean OHC. The results suggest that the reduction of model biases may be the most productive path towards improving the model's decadal forecasts.

  8. Surface Pressure Dependencies in the GEOS-Chem-Adjoint System and the Impact of the GEOS-5 Surface Pressure on CO2 Model Forecast

    NASA Technical Reports Server (NTRS)

    Lee, Meemong; Weidner, Richard

    2016-01-01

    In the GEOS-Chem Adjoint (GCA) system, the total (wet) surface pressure of the GEOS meteorology is employed as dry surface pressure, ignoring the presence of water vapor. The Jet Propulsion Laboratory (JPL) Carbon Monitoring System (CMS) research team has been evaluating the impact of the above discrepancy on the CO2 model forecast and the CO2 flux inversion. The JPL CMS research utilizes a multi-mission assimilation framework developed by the Multi-Mission Observation Operator (M2O2) research team at JPL extending the GCA system. The GCA-M2O2 framework facilitates mission-generic 3D and 4D-variational assimilations streamlining the interfaces to the satellite data products and prior emission inventories. The GCA-M2O2 framework currently integrates the GCA system version 35h and provides a dry surface pressure setup to allow the CO2 model forecast to be performed with the GEOS-5 surface pressure directly or after converting it to dry surface pressure.

  9. Surface Pressure Dependencies in the Geos-Chem-Adjoint System and the Impact of the GEOS-5 Surface Pressure on CO2 Model Forecast

    NASA Technical Reports Server (NTRS)

    Lee, Meemong; Weidner, Richard

    2016-01-01

    In the GEOS-Chem Adjoint (GCA) system, the total (wet) surface pressure of the GEOS meteorology is employed as dry surface pressure, ignoring the presence of water vapor. The Jet Propulsion Laboratory (JPL) Carbon Monitoring System (CMS) research team has been evaluating the impact of the above discrepancy on the CO2 model forecast and the CO2 flux inversion. The JPL CMS research utilizes a multi-mission assimilation framework developed by the Multi-Mission Observation Operator (M2O2) research team at JPL extending the GCA system. The GCA-M2O2 framework facilitates mission-generic 3D and 4D-variational assimilations streamlining the interfaces to the satellite data products and prior emission inventories. The GCA-M2O2 framework currently integrates the GCA system version 35h and provides a dry surface pressure setup to allow the CO2 model forecast to be performed with the GEOS-5 surface pressure directly or after converting it to dry surface pressure.

  10. An Assessment of the Subseasonal Forecast Performance in the Extended Global Ensemble Forecast System (GEFS)

    NASA Astrophysics Data System (ADS)

    Sinsky, E.; Zhu, Y.; Li, W.; Guan, H.; Melhauser, C.

    2017-12-01

    Optimal forecast quality is crucial for the preservation of life and property. Improving monthly forecast performance over both the tropics and extra-tropics requires attention to various physical aspects such as the representation of the underlying SST, model physics and the representation of the model physics uncertainty for an ensemble forecast system. This work focuses on the impact of stochastic physics, SST and the convection scheme on forecast performance for the sub-seasonal scale over the tropics and extra-tropics with emphasis on the Madden-Julian Oscillation (MJO). A 2-year period is evaluated using the National Centers for Environmental Prediction (NCEP) Global Ensemble Forecast System (GEFS). Three experiments with different configurations than the operational GEFS were performed to illustrate the impact of the stochastic physics, SST and convection scheme. These experiments are compared against a control experiment (CTL) which consists of the operational GEFS but its integration is extended from 16 to 35 days. The three configurations are: 1) SPs, which uses a Stochastically Perturbed Physics Tendencies (SPPT), Stochastic Perturbed Humidity (SHUM) and Stochastic Kinetic Energy Backscatter (SKEB); 2) SPs+SST_bc, which uses a combination of SPs and a bias-corrected forecast SST from the NCEP Climate Forecast System Version 2 (CFSv2); and 3) SPs+SST_bc+SA_CV, which combines SPs, a bias-corrected forecast SST and a scale aware convection scheme. When comparing to the CTL experiment, SPs shows substantial improvement. The MJO skill has improved by about 4 lead days during the 2-year period. Improvement is also seen over the extra-tropics due to the updated stochastic physics, where there is a 3.1% and a 4.2% improvement during weeks 3 and 4 over the northern hemisphere and southern hemisphere, respectively. Improvement is also seen when the bias-corrected CFSv2 SST is combined with SPs. Additionally, forecast performance enhances when the scale aware convection scheme (SPs+SST_bc+SA_CV) is added, especially over the tropics. Among the three experiments, the SPs+SST_bc+SA_CV is the best configuration in MJO forecast skill.

  11. Recent Theoretical Advances in Analysis of AIRS/AMSU Sounding Data

    NASA Technical Reports Server (NTRS)

    Susskind, Joel

    2007-01-01

    AIRS was launched on EOS Aqua on May 4,2002, together with AMSU-A and HSB, to form a next generation polar orbiting infrared and microwave atmospheric sounding system. This paper describes the AIRS Science Team Version 5.0 retrieval algorithm. Starting in early 2007, the Goddard DAAC will use this algorithm to analyze near real time AIRS/AMSU observations. These products are then made available to the scientific community for research purposes. The products include twice daily measurements of the Earth's three dimensional global temperature, water vapor, and ozone distribution as well as cloud cover. In addition, accurate twice daily measurements of the earth's land and ocean temperatures are derived and reported. Scientists use this important set of observations for two major applications. They provide important information for climate studies of global and regional variability and trends of different aspects of the earth's atmosphere. They also provide information for researchers to improve the skill of weather forecasting. A very important new product of the AIRS Version 5 algorithm is accurate case-by-case error estimates of the retrieved products. This heightens their utility for use in both weather and climate applications. These error estimates are also used directly for quality control of the retrieved products. Version 5 also allows for accurate quality controlled AIRS only retrievals, called "Version 5 AO retrievals" which can be used as a backup methodology if AMSU fails. Examples of the accuracy of error estimates and quality controlled retrieval products of the AIRS/AMSU Version 5 and Version 5 AO algorithms are given, and shown to be significantly better than the previously used Version 4 algorithm. Assimilation of Version 5 retrievals are also shown to significantly improve forecast skill, especially when the case-by-case error estimates are utilized in the data assimilation process.

  12. Short-range ensemble predictions based on convection perturbations in the Eta Model for the Serra do Mar region in Brazil

    NASA Astrophysics Data System (ADS)

    Bustamante, J. F. F.; Chou, S. C.; Gomes, J. L.

    2009-04-01

    The Southeast Brazil, in the coastal and mountain region called Serra do Mar, between Sao Paulo and Rio de Janeiro, is subject to frequent events of landslides and floods. The Eta Model has been producing good quality forecasts over South America at about 40-km horizontal resolution. For that type of hazards, however, more detailed and probabilistic information on the risks should be provided with the forecasts. Thus, a short-range ensemble prediction system (SREPS) based on the Eta Model is being constructed. Ensemble members derived from perturbed initial and lateral boundary conditions did not provide enough spread for the forecasts. Members with model physics perturbation are being included and tested. The objective of this work is to construct more members for the Eta SREPS by adding physics perturbed members. The Eta Model is configured at 10-km resolution and 38 layers in the vertical. The domain covered is most of Southeast Brazil, centered over the Serra do Mar region. The constructed members comprise variations of the cumulus parameterization Betts-Miller-Janjic (BMJ) and Kain-Fritsch (KF) schemes. Three members were constructed from the BMJ scheme by varying the deficit of saturation pressure profile over land and sea, and 2 members of the KF scheme were included using the standard KF and a momentum flux added to KF scheme version. One of the runs with BMJ scheme is the control run as it was used for the initial condition perturbation SREPS. The forecasts were tested for 6 cases of South America Convergence Zone (SACZ) events. The SACZ is a common summer season feature of Southern Hemisphere that causes persistent rain for a few days over the Southeast Brazil and it frequently organizes over Serra do Mar region. These events are particularly interesting because of the persistent rains that can accumulate large amounts and cause generalized landslides and death. With respect to precipitation, the KF scheme versions have shown to be able to reach the larger precipitation peaks of the events. On the other hand, for predicted 850-hPa temperature, the KF scheme versions produce positive bias and BMJ versions produce negative bias. Therefore, the ensemble mean forecast of 850-hPa temperature of this SREPS exhibits smaller error than the control member. Specific humidity shows smaller bias in the KF scheme. In general, the ensemble mean produced forecasts closer to the observations than the control run.

  13. NWS Offshore Marine Forecasts by Zone

    Science.gov Websites

    Beach Hazards Rip Currents Hypothermia Hurricanes Thunderstorms Lightning Coastal Flooding Tsunamis 406 page is also available in a text version. Similar webpages for Coastal/Great Lakes Forecasts by Zone

  14. Application of Hydrometeorological Information for Short-term and Long-term Water Resources Management over Ungauged Basin in Korea

    NASA Astrophysics Data System (ADS)

    Kim, Ji-in; Ryu, Kyongsik; Suh, Ae-sook

    2016-04-01

    In 2014, three major governmental organizations that are Korea Meteorological Administration (KMA), K-water, and Korea Rural Community Corporation have been established the Hydrometeorological Cooperation Center (HCC) to accomplish more effective water management for scarcely gauged river basins, where data are uncertain or non-consistent. To manage the optimal drought and flood control over the ungauged river, HCC aims to interconnect between weather observations and forecasting information, and hydrological model over sparse regions with limited observations sites in Korean peninsula. In this study, long-term forecasting ensemble models so called Global Seasonal forecast system version 5 (GloSea5): a high-resolution seasonal forecast system, provided by KMA was used in order to produce drought outlook. Glosea5 ensemble model prediction provides predicted drought information for 1 and 3 months ahead with drought index including Standardized Precipitation Index (SPI3) and Palmer Drought Severity Index (PDSI). Also, Global Precipitation Measurement and Global Climate Observation Measurement - Water1 satellites data products are used to estimate rainfall and soil moisture contents over the ungauged region.

  15. Evaluating the applicability of using daily forecasts from seasonal prediction systems (SPSs) for agriculture: a case study of Nepal's Terai with the NCEP CFSv2

    NASA Astrophysics Data System (ADS)

    Jha, Prakash K.; Athanasiadis, Panos; Gualdi, Silvio; Trabucco, Antonio; Mereu, Valentina; Shelia, Vakhtang; Hoogenboom, Gerrit

    2018-03-01

    Ensemble forecasts from dynamic seasonal prediction systems (SPSs) have the potential to improve decision-making for crop management to help cope with interannual weather variability. Because the reliability of crop yield predictions based on seasonal weather forecasts depends on the quality of the forecasts, it is essential to evaluate forecasts prior to agricultural applications. This study analyses the potential of Climate Forecast System version 2 (CFSv2) in predicting the Indian summer monsoon (ISM) for producing meteorological variables relevant to crop modeling. The focus area was Nepal's Terai region, and the local hindcasts were compared with weather station and reanalysis data. The results showed that the CFSv2 model accurately predicts monthly anomalies of daily maximum and minimum air temperature (Tmax and Tmin) as well as incoming total surface solar radiation (Srad). However, the daily climatologies of the respective CFSv2 hindcasts exhibit significant systematic biases compared to weather station data. The CFSv2 is less capable of predicting monthly precipitation anomalies and simulating the respective intra-seasonal variability over the growing season. Nevertheless, the observed daily climatologies of precipitation fall within the ensemble spread of the respective daily climatologies of CFSv2 hindcasts. These limitations in the CFSv2 seasonal forecasts, primarily in precipitation, restrict the potential application for predicting the interannual variability of crop yield associated with weather variability. Despite these limitations, ensemble averaging of the simulated yield using all CFSv2 members after applying bias correction may lead to satisfactory yield predictions.

  16. Student Activities in Meteorology: SAM. Version 2.

    ERIC Educational Resources Information Center

    Meier, Beverly L.; Passarelli, Elisa

    The task of providing hands-on as well as minds-on activities for students in science is one of concern to many scientists and educators. In an effort to inspire student interest in science and technology, scientists from the Forecast Systems Laboratory, a laboratory within the National Oceanic and Atmospheric Administration's (NOAA) Environmental…

  17. Assessment of the contribution of traffic emissions to the mobile vehicle measured PM2.5 concentration by means of WRF-CMAQ simulations.

    DOT National Transportation Integrated Search

    2012-03-01

    The Alaska adapted version of the Weather Research and Forecasting and the Community Modeling and Analysis Quality (WRF-CMAQ) modeling : systems was used to assess the contribution of traffic to the PM2.5-concentration in the Fairbanks nonattainment ...

  18. Performance and quality assessment of the recent updated CMEMS global ocean monitoring and forecasting real-time system

    NASA Astrophysics Data System (ADS)

    Le Galloudec, Olivier; Lellouche, Jean-Michel; Greiner, Eric; Garric, Gilles; Régnier, Charly; Drévillon, Marie; Drillet, Yann

    2017-04-01

    Since May 2015, Mercator Ocean opened the Copernicus Marine Environment and Monitoring Service (CMEMS) and is in charge of the global eddy resolving ocean analyses and forecast. In this context, Mercator Ocean currently delivers in real-time daily services (weekly analyses and daily forecast) with a global 1/12° high resolution system. The model component is the NEMO platform driven at the surface by the IFS ECMWF atmospheric analyses and forecasts. Observations are assimilated by means of a reduced-order Kalman filter with a 3D multivariate modal decomposition of the forecast error. It includes an adaptive-error estimate and a localization algorithm. Along track altimeter data, satellite Sea Surface Temperature and in situ temperature and salinity vertical profiles are jointly assimilated to estimate the initial conditions for numerical ocean forecasting. A 3D-Var scheme provides a correction for the slowly-evolving large-scale biases in temperature and salinity. R&D activities have been conducted at Mercator Ocean these last years to improve the real-time 1/12° global system for recent updated CMEMS version in 2016. The ocean/sea-ice model and the assimilation scheme benefited of the following improvements: large-scale and objective correction of atmospheric quantities with satellite data, new Mean Dynamic Topography taking into account the last version of GOCE geoid, new adaptive tuning of some observational errors, new Quality Control on the assimilated temperature and salinity vertical profiles based on dynamic height criteria, assimilation of satellite sea-ice concentration, new freshwater runoff from ice sheets melting, … This presentation will show the impact of some updates separately, with a particular focus on adaptive tuning experiments of satellite Sea Level Anomaly (SLA) and Sea Surface Temperature (SST) observations errors. For the SLA, the a priori prescribed observation error is globally greatly reduced. The median value of the error changed from 5cm to 2.5cm in a few assimilation cycles. For the SST, we chose to maintain the median value of the error to 0.4°C. The spatial distribution of the SST error follows the model physics and atmospheric variability. Either for SLA or SST, we improve the performances of the system using this adaptive tuning. The overall behavior of the system integrating all updates reporting on the products quality improvements will be also discussed, highlighting the level of performance and the reliability of the new system.

  19. OceanNOMADS: Real-time and retrospective access to operational U.S. ocean prediction products

    NASA Astrophysics Data System (ADS)

    Harding, J. M.; Cross, S. L.; Bub, F.; Ji, M.

    2011-12-01

    The National Oceanic and Atmospheric Administration (NOAA) National Operational Model Archive and Distribution System (NOMADS) provides both real-time and archived atmospheric model output from servers at the National Centers for Environmental Prediction (NCEP) and National Climatic Data Center (NCDC) respectively (http://nomads.ncep.noaa.gov/txt_descriptions/marRutledge-1.pdf). The NOAA National Ocean Data Center (NODC) with NCEP is developing a complementary capability called OceanNOMADS for operational ocean prediction models. An NCEP ftp server currently provides real-time ocean forecast output (http://www.opc.ncep.noaa.gov/newNCOM/NCOM_currents.shtml) with retrospective access through NODC. A joint effort between the Northern Gulf Institute (NGI; a NOAA Cooperative Institute) and the NOAA National Coastal Data Development Center (NCDDC; a division of NODC) created the developmental version of the retrospective OceanNOMADS capability (http://www.northerngulfinstitute.org/edac/ocean_nomads.php) under the NGI Ecosystem Data Assembly Center (EDAC) project (http://www.northerngulfinstitute.org/edac/). Complementary funding support for the developmental OceanNOMADS from U.S. Integrated Ocean Observing System (IOOS) through the Southeastern University Research Association (SURA) Model Testbed (http://testbed.sura.org/) this past year provided NODC the analogue that facilitated the creation of an NCDDC production version of OceanNOMADS (http://www.ncddc.noaa.gov/ocean-nomads/). Access tool development and storage of initial archival data sets occur on the NGI/NCDDC developmental servers with transition to NODC/NCCDC production servers as the model archives mature and operational space and distribution capability grow. Navy operational global ocean forecast subsets for U.S waters comprise the initial ocean prediction fields resident on the NCDDC production server. The NGI/NCDDC developmental server currently includes the Naval Research Laboratory Inter-America Seas Nowcast/Forecast System over the Gulf of Mexico from 2004-Mar 2011, the operational Naval Oceanographic Office (NAVOCEANO) regional USEast ocean nowcast/forecast system from early 2009 to present, and the NAVOCEANO operational regional AMSEAS (Gulf of Mexico/Caribbean) ocean nowcast/forecast system from its inception 25 June 2010 to present. AMSEAS provided one of the real-time ocean forecast products accessed by NOAA's Office of Response and Restoration from the NGI/NCDDC developmental OceanNOMADS during the Deep Water Horizon oil spill last year. The developmental server also includes archived, real-time Navy coastal forecast products off coastal Japan in support of U.S./Japanese joint efforts following the 2011 tsunami. Real-time NAVOCEANO output from regional prediction systems off Southern California and around Hawaii, currently available on the NCEP ftp server, are scheduled for archival on the developmental OceanNOMADS by late 2011 along with the next generation Navy/NOAA global ocean prediction output. Accession and archival of additional regions is planned as server capacities increase.

  20. Sea Ice Outlook for September 2015 June Report - NASA Global Modeling and Assimilation Office

    NASA Technical Reports Server (NTRS)

    Cullather, Richard I.; Keppenne, Christian L.; Marshak, Jelena; Pawson, Steven; Schubert, Siegfried D.; Suarez, Max J.; Vernieres, Guillaume; Zhao, Bin

    2015-01-01

    The recent decline in perennial sea ice cover in Arctic Ocean is a topic of enormous scientific interest and has relevance to a broad variety of scientific disciplines and human endeavors including biological and physical oceanography, atmospheric circulation, high latitude ecology, the sustainability of indigenous communities, commerce, and resource exploration. A credible seasonal prediction of sea ice extent would be of substantial use to many of the stakeholders in these fields and may also reveal details on the physical processes that result in the current trends in the ice cover. Forecasts are challenging due in part to limitations in the polar observing network, the large variability in the climate system, and an incomplete knowledge of the significant processes. Nevertheless it is a useful to understand the current capabilities of high latitude seasonal forecasting and identify areas where such forecasts may be improved. Since 2008 the Arctic Research Consortium of the United States (ARCUS) has conducted a seasonal forecasting contest in which the average Arctic sea ice extent for the month of September (the month of the annual extent minimum) is predicted from available forecasts in early June, July, and August. The competition is known as the Sea Ice Outlook (SIO) but recently came under the auspices of the Sea Ice Prediction Network (SIPN), and multi-agency funded project to evaluate the SIO. The forecasts are submitted based on modeling, statistical, and heuristic methods. Forecasts of Arctic sea ice extent from the GMAO are derived from seasonal prediction system of the NASA Goddard Earth Observing System model, version 5 (GEOS 5) coupled atmosphere and ocean general circulation model (AOGCM). The projections are made in order to understand the relative skill of the forecasting system and to determine the effects of future improvements to the system. This years prediction is for a September average Arctic ice extent of 5.030.41 million km2.

  1. Assessment of seasonal soil moisture forecasts over Southern South America with emphasis on dry and wet events

    NASA Astrophysics Data System (ADS)

    Spennemann, Pablo; Rivera, Juan Antonio; Osman, Marisol; Saulo, Celeste; Penalba, Olga

    2017-04-01

    The importance of forecasting extreme wet and dry conditions from weeks to months in advance relies on the need to prevent considerable socio-economic losses, mainly in regions of large populations and where agriculture is a key value for the economies, like Southern South America (SSA). Therefore, to improve the understanding of the performance and uncertainties of seasonal soil moisture and precipitation forecasts over SSA, this study aims to: 1) perform a general assessment of the Climate Forecast System version-2 (CFSv2) soil moisture and precipitation forecasts; and 2) evaluate the CFSv2 ability to represent an extreme drought event merging observations with forecasted Standardized Precipitation Index (SPI) and the Standardized Soil Moisture Anomalies (SSMA) based on GLDAS-2.0 simulations. Results show that both SPI and SSMA forecast skill are regionally and seasonally dependent. In general a fast degradation of the forecasts skill is observed as the lead time increases with no significant metrics for forecast lead times longer than 2 months. Based on the assessment of the 2008-2009 extreme drought event it is evident that the CFSv2 forecasts have limitations regarding the identification of drought onset, duration, severity and demise, considering both meteorological (SPI) and agricultural (SSMA) drought conditions. These results have some implications upon the use of seasonal forecasts to assist agricultural practices in SSA, given that forecast skill is still too low to be useful for lead times longer than 2 months.

  2. Verification of Weather Running Estimate-Nowcast (WRE-N) Forecasts Using a Spatial-Categorical Method

    DTIC Science & Technology

    2017-07-01

    forecasts and observations on a common grid, which enables the application a number of different spatial verification methods that reveal various...forecasts of continuous meteorological variables using categorical and object-based methods . White Sands Missile Range (NM): Army Research Laboratory (US... Research version of the Weather Research and Forecasting Model adapted for generating short-range nowcasts and gridded observations produced by the

  3. Canadian Operational Air Quality Forecasting Systems: Status, Recent Progress, and Challenges

    NASA Astrophysics Data System (ADS)

    Pavlovic, Radenko; Davignon, Didier; Ménard, Sylvain; Munoz-Alpizar, Rodrigo; Landry, Hugo; Beaulieu, Paul-André; Gilbert, Samuel; Moran, Michael; Chen, Jack

    2017-04-01

    ECCC's Canadian Meteorological Centre Operations (CMCO) division runs a number of operational air quality (AQ)-related systems that revolve around the Regional Air Quality Deterministic Prediction System (RAQDPS). The RAQDPS generates 48-hour AQ forecasts and outputs hourly concentration fields of O3, PM2.5, NO2, and other pollutants twice daily on a North-American domain with 10-km horizontal grid spacing and 80 vertical levels. A closely related AQ forecast system with near-real-time wildfire emissions, known as FireWork, has been run by CMCO during the Canadian wildfire season (April to October) since 2014. This system became operational in June 2016. The CMCO`s operational AQ forecast systems also benefit from several support systems, such as a statistical post-processing model called UMOS-AQ that is applied to enhance forecast reliability at point locations with AQ monitors. The Regional Deterministic Air Quality Analysis (RDAQA) system has also been connected to the RAQDPS since February 2013, and hourly surface objective analyses are now available for O3, PM2.5, NO2, PM10, SO2 and, indirectly, the Canadian Air Quality Health Index. As of June 2015, another version of the RDAQA has been connected to FireWork (RDAQA-FW). For verification purposes, CMCO developed a third support system called Verification for Air QUality Models (VAQUM), which has a geospatial relational database core and which enables continuous monitoring of the AQ forecast systems' performance. Urban environments are particularly subject to AQ pollution. In order to improve the services offered, ECCC has recently been investing efforts to develop a high resolution air quality prediction capability for urban areas in Canada. In this presentation, a comprehensive description of the ECCC AQ systems will be provided, along with a discussion on AQ systems performance. Recent improvements, current challenges, and future directions of the Canadian operational AQ program will also be discussed.

  4. Assimilating Tropospheric Airborne Meteorological Data Reporting (TAMDAR) Observations and the Relative Value of Other Observation Types

    DTIC Science & Technology

    2014-08-01

    Using real-time weather data from an unmanned aircraft system to support the advanced research version of the weather research and forecast model... system that is used to transmit some MDCRS observations, the Aircraft Communications Addressing and Reporting System (ACARS). A new network of aircraft ...Technical Analysis and Applications Center, and AirDat LLC developed a modified TAMDAR sensor referred to as TAMDAR- Unmanned Aerial System (TAMDAR-U) for

  5. Relative effects of statistical preprocessing and postprocessing on a regional hydrological ensemble prediction system

    NASA Astrophysics Data System (ADS)

    Sharma, Sanjib; Siddique, Ridwan; Reed, Seann; Ahnert, Peter; Mendoza, Pablo; Mejia, Alfonso

    2018-03-01

    The relative roles of statistical weather preprocessing and streamflow postprocessing in hydrological ensemble forecasting at short- to medium-range forecast lead times (day 1-7) are investigated. For this purpose, a regional hydrologic ensemble prediction system (RHEPS) is developed and implemented. The RHEPS is comprised of the following components: (i) hydrometeorological observations (multisensor precipitation estimates, gridded surface temperature, and gauged streamflow); (ii) weather ensemble forecasts (precipitation and near-surface temperature) from the National Centers for Environmental Prediction 11-member Global Ensemble Forecast System Reforecast version 2 (GEFSRv2); (iii) NOAA's Hydrology Laboratory-Research Distributed Hydrologic Model (HL-RDHM); (iv) heteroscedastic censored logistic regression (HCLR) as the statistical preprocessor; (v) two statistical postprocessors, an autoregressive model with a single exogenous variable (ARX(1,1)) and quantile regression (QR); and (vi) a comprehensive verification strategy. To implement the RHEPS, 1 to 7 days weather forecasts from the GEFSRv2 are used to force HL-RDHM and generate raw ensemble streamflow forecasts. Forecasting experiments are conducted in four nested basins in the US Middle Atlantic region, ranging in size from 381 to 12 362 km2. Results show that the HCLR preprocessed ensemble precipitation forecasts have greater skill than the raw forecasts. These improvements are more noticeable in the warm season at the longer lead times (> 3 days). Both postprocessors, ARX(1,1) and QR, show gains in skill relative to the raw ensemble streamflow forecasts, particularly in the cool season, but QR outperforms ARX(1,1). The scenarios that implement preprocessing and postprocessing separately tend to perform similarly, although the postprocessing-alone scenario is often more effective. The scenario involving both preprocessing and postprocessing consistently outperforms the other scenarios. In some cases, however, the differences between this scenario and the scenario with postprocessing alone are not as significant. We conclude that implementing both preprocessing and postprocessing ensures the most skill improvements, but postprocessing alone can often be a competitive alternative.

  6. An operational global ocean forecast system and its applications

    NASA Astrophysics Data System (ADS)

    Mehra, A.; Tolman, H. L.; Rivin, I.; Rajan, B.; Spindler, T.; Garraffo, Z. D.; Kim, H.

    2012-12-01

    A global Real-Time Ocean Forecast System (RTOFS) was implemented in operations at NCEP/NWS/NOAA on 10/25/2011. This system is based on an eddy resolving 1/12 degree global HYCOM (HYbrid Coordinates Ocean Model) and is part of a larger national backbone capability of ocean modeling at NWS in strong partnership with US Navy. The forecast system is run once a day and produces a 6 day long forecast using the daily initialization fields produced at NAVOCEANO using NCODA (Navy Coupled Ocean Data Assimilation), a 3D multi-variate data assimilation methodology. As configured within RTOFS, HYCOM has a horizontal equatorial resolution of 0.08 degrees or ~9 km. The HYCOM grid is on a Mercator projection from 78.64 S to 47 N and north of this it employs an Arctic dipole patch where the poles are shifted over land to avoid a singularity at the North Pole. This gives a mid-latitude (polar) horizontal resolution of approximately 7 km (3.5 km). The coastline is fixed at 10 m isobath with open Bering Straits. This version employs 32 hybrid vertical coordinate surfaces with potential density referenced to 2000 m. Vertical coordinates can be isopycnals, often best for resolving deep water masses, levels of equal pressure (fixed depths), best for the well mixed unstratified upper ocean and sigma-levels (terrain-following), often the best choice in shallow water. The dynamic ocean model is coupled to a thermodynamic energy loan ice model and uses a non-slab mixed layer formulation. The forecast system is forced with 3-hourly momentum, radiation and precipitation fluxes from the operational Global Forecast System (GFS) fields. Results include global sea surface height and three dimensional fields of temperature, salinity, density and velocity fields used for validation and evaluation against available observations. Several downstream applications of this forecast system will also be discussed which include search and rescue operations at US Coast Guard, navigation safety information provided by OPC using real time ocean model guidance from Global RTOFS surface ocean currents, operational guidance on radionuclide dispersion near Fukushima using 3D tracers, boundary conditions for various operational coastal ocean forecast systems (COFS) run by NOS etc.

  7. The ALADIN System and its canonical model configurations AROME CY41T1 and ALARO CY40T1

    NASA Astrophysics Data System (ADS)

    Termonia, Piet; Fischer, Claude; Bazile, Eric; Bouyssel, François; Brožková, Radmila; Bénard, Pierre; Bochenek, Bogdan; Degrauwe, Daan; Derková, Mariá; El Khatib, Ryad; Hamdi, Rafiq; Mašek, Ján; Pottier, Patricia; Pristov, Neva; Seity, Yann; Smolíková, Petra; Španiel, Oldřich; Tudor, Martina; Wang, Yong; Wittmann, Christoph; Joly, Alain

    2018-01-01

    The ALADIN System is a numerical weather prediction (NWP) system developed by the international ALADIN consortium for operational weather forecasting and research purposes. It is based on a code that is shared with the global model IFS of the ECMWF and the ARPEGE model of Météo-France. Today, this system can be used to provide a multitude of high-resolution limited-area model (LAM) configurations. A few configurations are thoroughly validated and prepared to be used for the operational weather forecasting in the 16 partner institutes of this consortium. These configurations are called the ALADIN canonical model configurations (CMCs). There are currently three CMCs: the ALADIN baseline CMC, the AROME CMC and the ALARO CMC. Other configurations are possible for research, such as process studies and climate simulations. The purpose of this paper is (i) to define the ALADIN System in relation to the global counterparts IFS and ARPEGE, (ii) to explain the notion of the CMCs, (iii) to document their most recent versions, and (iv) to illustrate the process of the validation and the porting of these configurations to the operational forecast suites of the partner institutes of the ALADIN consortium. This paper is restricted to the forecast model only; data assimilation techniques and postprocessing techniques are part of the ALADIN System but they are not discussed here.

  8. Improving Forecast Skill by Assimilation of AIRS Temperature Soundings

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Reale, Oreste

    2010-01-01

    AIRS was launched on EOS Aqua on May 4, 2002, together with AMSU-A and HSB, to form a next generation polar orbiting infrared and microwave atmospheric sounding system. The primary products of AIRS/AMSU-A are twice daily global fields of atmospheric temperature-humidity profiles, ozone profiles, sea/land surface skin temperature, and cloud related parameters including OLR. The AIRS Version 5 retrieval algorithm, is now being used operationally at the Goddard DISC in the routine generation of geophysical parameters derived from AIRS/AMSU data. A major innovation in Version 5 is the ability to generate case-by-case level-by-level error estimates delta T(p) for retrieved quantities and the use of these error estimates for Quality Control. We conducted a number of data assimilation experiments using the NASA GEOS-5 Data Assimilation System as a step toward finding an optimum balance of spatial coverage and sounding accuracy with regard to improving forecast skill. The model was run at a horizontal resolution of 0.5 deg. latitude X 0.67 deg longitude with 72 vertical levels. These experiments were run during four different seasons, each using a different year. The AIRS temperature profiles were presented to the GEOS-5 analysis as rawinsonde profiles, and the profile error estimates delta (p) were used as the uncertainty for each measurement in the data assimilation process. We compared forecasts analyses generated from the analyses done by assimilation of AIRS temperature profiles with three different sets of thresholds; Standard, Medium, and Tight. Assimilation of Quality Controlled AIRS temperature profiles significantly improve 5-7 day forecast skill compared to that obtained without the benefit of AIRS data in all of the cases studied. In addition, assimilation of Quality Controlled AIRS temperature soundings performs better than assimilation of AIRS observed radiances. Based on the experiments shown, Tight Quality Control of AIRS temperature profile performs best on the average from the perspective of improving Global 7 day forecast skill.

  9. Multi-centennial upper-ocean heat content reconstruction using online data assimilation

    NASA Astrophysics Data System (ADS)

    Perkins, W. A.; Hakim, G. J.

    2017-12-01

    The Last Millennium Reanalysis (LMR) provides an advanced paleoclimate ensemble data assimilation framework for multi-variate climate field reconstructions over the Common Era. Although reconstructions in this framework with full Earth system models remain prohibitively expensive, recent work has shown improved ensemble reconstruction validation using computationally inexpensive linear inverse models (LIMs). Here we leverage these techniques in pursuit of a new multi-centennial field reconstruction of upper-ocean heat content (OHC), synthesizing model dynamics with observational constraints from proxy records. OHC is an important indicator of internal climate variability and responds to planetary energy imbalances. Therefore, a consistent extension of the OHC record in time will help inform aspects of low-frequency climate variability. We use the Community Climate System Model version 4 (CCSM4) and Max Planck Institute (MPI) last millennium simulations to derive the LIMs, and the PAGES2K v.2.0 proxy database to perform annually resolved reconstructions of upper-OHC, surface air temperature, and wind stress over the last 500 years. Annual OHC reconstructions and uncertainties for both the global mean and regional basins are compared against observational and reanalysis data. We then investigate differences in dynamical behavior at decadal and longer time scales between the reconstruction and simulations in the last-millennium Coupled Model Intercomparison Project version 5 (CMIP5). Preliminary investigation of 1-year forecast skill for an OHC-only LIM shows largely positive spatial grid point local anomaly correlations (LAC) with a global average LAC of 0.37. Compared to 1-year OHC persistence forecast LAC (global average LAC of 0.30), the LIM outperforms the persistence forecasts in the tropical Indo-Pacific region, the equatorial Atlantic, and in certain regions near the Antarctic Circumpolar Current. In other regions, the forecast correlations are less than the persistence case but still positive overall.

  10. A stochastic multicloud convective parameterization in the NCEP Climate Forecast System (CFSv2) : implementation and calibration.

    NASA Astrophysics Data System (ADS)

    Goswami, B. B.; Khouider, B.; Krishna, R. P. M.; Mukhopadhyay, P.; Majda, A.

    2017-12-01

    A stochastic multicloud (SMCM) cumulus parameterization is implemented in the National Centres for Environmental Predictions (NCEP) Climate Forecast System version 2 (CFSv2) model, named as the CFSsmcm model. We present here results from a systematic attempt to understand the CFSsmcm model's sensitivity to the SMCM parameters. To asses the model-sentivity to the different SMCM parameters, we have analized a set of 14 5-year long climate simulations produced by the CFSsmcm model. The model is found to be resilient to minor changes in the parameter values. The middle tropospheric dryness (MTD) and the stratiform cloud decay timescale are found to be most crucial parameters in the SMCM formulation in the CFSsmcm model.

  11. Relating anomaly correlation to lead time: Clustering analysis of CFSv2 forecasts of summer precipitation in China

    NASA Astrophysics Data System (ADS)

    Zhao, Tongtiegang; Liu, Pan; Zhang, Yongyong; Ruan, Chengqing

    2017-09-01

    Global climate model (GCM) forecasts are an integral part of long-range hydroclimatic forecasting. We propose to use clustering to explore anomaly correlation, which indicates the performance of raw GCM forecasts, in the three-dimensional space of latitude, longitude, and initialization time. Focusing on a certain period of the year, correlations for forecasts initialized at different preceding periods form a vector. The vectors of anomaly correlation across different GCM grid cells are clustered to reveal how GCM forecasts perform as time progresses. Through the case study of Climate Forecast System Version 2 (CFSv2) forecasts of summer precipitation in China, we observe that the correlation at a certain cell oscillates with lead time and can become negative. The use of clustering reveals two meaningful patterns that characterize the relationship between anomaly correlation and lead time. For some grid cells in Central and Southwest China, CFSv2 forecasts exhibit positive correlations with observations and they tend to improve as time progresses. This result suggests that CFSv2 forecasts tend to capture the summer precipitation induced by the East Asian monsoon and the South Asian monsoon. It also indicates that CFSv2 forecasts can potentially be applied to improving hydrological forecasts in these regions. For some other cells, the correlations are generally close to zero at different lead times. This outcome implies that CFSv2 forecasts still have plenty of room for further improvement. The robustness of the patterns has been tested using both hierarchical clustering and k-means clustering and examined with the Silhouette score.

  12. Improving Precipitation Forcings for the National Water Model

    NASA Astrophysics Data System (ADS)

    Fall, G. M.; Zhang, Z.; Miller, D.; Kitzmiller, D.; Patrick, N.; Sparrow, K.; Olheiser, C.; Szeliga, T.

    2017-12-01

    The National Weather Service's Office of Water Prediction (NWS/OWP) produces operational hydrologic products, many of which are generated by the National Water Model (NWM). NWM analysis cycles (also known as "near-real-time" or "update" cycles) are of key importance, since the land surface states and fluxes they produce are used to initialize all forecast cycles. Among all forcing fields (which include precipitation, temperature, humidity, radiation, and wind), precipitation is particularly important. Currently, NWM precipitation forcings for analysis cycles are generated by combining hourly radar-derived precipitation products from the Multi-Radar, Multi-Sensor (MRMS) system with short-term quantitative precipitation forecasts (QPF) from the Rapid Refresh (RAP) and High Resolution Rapid Refresh (HRRR) systems. Short term QPF is used in analysis cycles to fill coverage gaps in MRMS products, and its inclusion is necessary due to the short latency associated with NWM analysis cycles relative to the availability of other operational precipitation analyses. This presentation will describe the methodology used to remove QPF bias and to spatially merge MRMS, HRRR, and RAP into hourly forcing inputs for NWM version 2.0, expected to enter into operations in late 2018. The accuracy of version 2.0 precipitation forcings relative to reference data sources, and the degree to which these forcings will represent an improvement over those used to drive the previous NWM version (1.2), will be described.

  13. The Ensemble Space Weather Modeling System (eSWMS): Status, Capabilities and Challenges

    NASA Astrophysics Data System (ADS)

    Fry, C. D.; Eccles, J. V.; Reich, J. P.

    2010-12-01

    Marking a milestone in space weather forecasting, the Space Weather Modeling System (SWMS) successfully completed validation testing in advance of operational testing at Air Force Weather Agency’s primary space weather production center. This is the first coupling of stand-alone, physics-based space weather models that are currently in operations at AFWA supporting the warfighter. Significant development effort went into ensuring the component models were portable and scalable while maintaining consistent results across diverse high performance computing platforms. Coupling was accomplished under the Earth System Modeling Framework (ESMF). The coupled space weather models are the Hakamada-Akasofu-Fry version 2 (HAFv2) solar wind model and GAIM1, the ionospheric forecast component of the Global Assimilation of Ionospheric Measurements (GAIM) model. The SWMS was developed by team members from AFWA, Explorations Physics International, Inc. (EXPI) and Space Environment Corporation (SEC). The successful development of the SWMS provides new capabilities beyond enabling extended lead-time, data-driven ionospheric forecasts. These include ingesting diverse data sets at higher resolution, incorporating denser computational grids at finer time steps, and performing probability-based ensemble forecasts. Work of the SWMS development team now focuses on implementing the ensemble-based probability forecast capability by feeding multiple scenarios of 5 days of solar wind forecasts to the GAIM1 model based on the variation of the input fields to the HAFv2 model. The ensemble SWMS (eSWMS) will provide the most-likely space weather scenario with uncertainty estimates for important forecast fields. The eSWMS will allow DoD mission planners to consider the effects of space weather on their systems with more advance warning than is currently possible. The payoff is enhanced, tailored support to the warfighter with improved capabilities, such as point-to-point HF propagation forecasts, single-frequency GPS error corrections, and high cadence, high-resolution Space Situational Awareness (SSA) products. We present the current status of eSWMS, its capabilities, limitations and path of transition to operational use.

  14. An Assessment of the Subseasonal Predictability of Severe Thunderstorm Environments and Activity using the Climate Forecast System Version 2

    NASA Astrophysics Data System (ADS)

    Stepanek, Adam J.

    The prospect for skillful long-term predictions of atmospheric conditions known to directly contribute to the onset and maintenance of severe convective storms remains unclear. A thorough assessment of the capability for a global climate model such as the Climate Forecast System Version 2 (CFSv2) to skillfully represent parameters related to severe weather has the potential to significantly improve medium- to long-range outlooks vital to risk managers. Environmental convective available potential energy (CAPE) and deep-layer vertical wind shear (DLS) can be used to distinguish an atmosphere conducive to severe storms from one supportive of primarily non-severe 'ordinary' convection. As such, this research concentrates on the predictability of CAPE, DLS, and a product of the two parameters (CAPEDLS) by the CFSv2 with a specific focus on the subseasonal timescale. Individual month-long verification periods from the Climate Forecast System reanalysis (CFSR) dataset are measured against a climatological standard using cumulative distribution function (CDF) and area-under-the-CDF (AUCDF) techniques designed mitigate inherent model biases while concurrently assessing the entire distribution of a given parameter in lieu of a threshold-based approach. Similar methods imposed upon the CFS reforecast (CFSRef) and operational CFSv2 allow for comparisons elucidating both spatial and temporal trends in skill using correlation coefficients, proportion correct metrics, Heidke skill score (HSS), and root-mean-square-error (RMSE) statistics. Key results show the CFSv2-based output often demonstrates skill beyond a climatologically-based threshold when the forecast is notably anomalous from the 29-year (1982-2010) mean CFSRef prediction (exceeding one standard deviation at grid point level). CFSRef analysis indicates enhanced skill during the months of April and June (relative to May) and for predictions of DLS. Furthermore, years exhibiting skill in terms of RMSE are shown to possess certain correlations with El Nino-Southern Oscillation conditions from the preceding winter and concurrent Madden Julian Oscillation activity. Applying results gleaned from the CFSRef analysis to the operational CFSv2 (2011-16) indicates predictive skill can be increased by isolating forecasts meeting multiple parameter-based relationships.

  15. Systematic Evaluation of Stochastic Methods in Power System Scheduling and Dispatch with Renewable Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yishen; Zhou, Zhi; Liu, Cong

    2016-08-01

    As more wind power and other renewable resources are being integrated into the electric power grid, the forecast uncertainty brings operational challenges for the power system operators. In this report, different operational strategies for uncertainty management are presented and evaluated. A comprehensive and consistent simulation framework is developed to analyze the performance of different reserve policies and scheduling techniques under uncertainty in wind power. Numerical simulations are conducted on a modified version of the IEEE 118-bus system with a 20% wind penetration level, comparing deterministic, interval, and stochastic unit commitment strategies. The results show that stochastic unit commitment provides amore » reliable schedule without large increases in operational costs. Moreover, decomposition techniques, such as load shift factor and Benders decomposition, can help in overcoming the computational obstacles to stochastic unit commitment and enable the use of a larger scenario set to represent forecast uncertainty. In contrast, deterministic and interval unit commitment tend to give higher system costs as more reserves are being scheduled to address forecast uncertainty. However, these approaches require a much lower computational effort Choosing a proper lower bound for the forecast uncertainty is important for balancing reliability and system operational cost in deterministic and interval unit commitment. Finally, we find that the introduction of zonal reserve requirements improves reliability, but at the expense of higher operational costs.« less

  16. Automated turbulence forecasts for aviation hazards

    NASA Astrophysics Data System (ADS)

    Sharman, R.; Frehlich, R.; Vandenberghe, F.

    2010-09-01

    An operational turbulence forecast system for commercial and aviation use is described that is based on an ensemble of turbulence diagnostics derived from standard NWP model outputs. In the U. S. this forecast product is named GTG (Graphical Turbulence Guidance) and has been described in detail in Sharman et al., WAF 2006. Since turbulence has many sources in the atmosphere, the ensemble approach of combining diagnostics has been shown to provide greater statistical accuracy than the use of a single diagnostic, or of a subgrid tke parameterization. GTG is sponsored by the FAA, and has undergone rigorous accuracy, safety, and usability evaluations. The GTG product is now hosted on NOAA's Aviation Data Service (ADDS), web site (http://aviationweather.gov/), for access by pilots, air traffic controllers, and dispatchers. During this talk the various turbulence diagnostics, their statistical properties, and their relative performance (based on comparisons to observations) will be presented. Importantly, the model output is ɛ1/3 (where ɛ is the eddy dissipation rate), so is aircraft independent. The diagnostics are individually and collectively calibrated so that their PDFs satisfy the expected log normal distribution of ɛ^1/3. Some of the diagnostics try to take into account the role of gravity waves and inertia-gravity waves in the turbulence generation process. Although the current GTG product is based on the RUC forecast model running over the CONUS, it is transitioning to a WRF based product, and in fact WRF-based versions are currently running operationally over Taiwan and has also been implemented for use by the French Navy in climatological studies. Yet another version has been developed which uses GFS model output to provide global turbulence forecasts. Thus the forecast product is available as a postprocessing program for WRF or other model output and provides 3D maps of turbulence likelihood of any region where NWP model data is available. Although the current GTG has been used mainly for large commercial aircraft, since the output is aircraft independent it could readily be scaled to smaller aircraft such as UAVs. Further, the ensemble technique allows the diagnostics to be used to form probabilistic forecasts, in a manner similar to ensemble NWP forecasts.

  17. Different types of drifts in two seasonal forecast systems and their dependence on ENSO

    NASA Astrophysics Data System (ADS)

    Hermanson, L.; Ren, H.-L.; Vellinga, M.; Dunstone, N. D.; Hyder, P.; Ineson, S.; Scaife, A. A.; Smith, D. M.; Thompson, V.; Tian, B.; Williams, K. D.

    2017-11-01

    Seasonal forecasts using coupled ocean-atmosphere climate models are increasingly employed to provide regional climate predictions. For the quality of forecasts to improve, regional biases in climate models must be diagnosed and reduced. The evolution of biases as initialized forecasts drift away from the observations is poorly understood, making it difficult to diagnose the causes of climate model biases. This study uses two seasonal forecast systems to examine drifts in sea surface temperature (SST) and precipitation, and compares them to the long-term bias in the free-running version of each model. Drifts are considered from daily to multi-annual time scales. We define three types of drift according to their relation with the long-term bias in the free-running model: asymptoting, overshooting and inverse drift. We find that precipitation almost always has an asymptoting drift. SST drifts on the other hand, vary between forecasting systems, where one often overshoots and the other often has an inverse drift. We find that some drifts evolve too slowly to have an impact on seasonal forecasts, even though they are important for climate projections. The bias found over the first few days can be very different from that in the free-running model, so although daily weather predictions can sometimes provide useful information on the causes of climate biases, this is not always the case. We also find that the magnitude of equatorial SST drifts, both in the Pacific and other ocean basins, depends on the El Niño Southern Oscillation (ENSO) phase. Averaging over all hindcast years can therefore hide the details of ENSO state dependent drifts and obscure the underlying physical causes. Our results highlight the need to consider biases across a range of timescales in order to understand their causes and develop improved climate models.

  18. Simultaneous calibration of ensemble river flow predictions over an entire range of lead times

    NASA Astrophysics Data System (ADS)

    Hemri, S.; Fundel, F.; Zappa, M.

    2013-10-01

    Probabilistic estimates of future water levels and river discharge are usually simulated with hydrologic models using ensemble weather forecasts as main inputs. As hydrologic models are imperfect and the meteorological ensembles tend to be biased and underdispersed, the ensemble forecasts for river runoff typically are biased and underdispersed, too. Thus, in order to achieve both reliable and sharp predictions statistical postprocessing is required. In this work Bayesian model averaging (BMA) is applied to statistically postprocess ensemble runoff raw forecasts for a catchment in Switzerland, at lead times ranging from 1 to 240 h. The raw forecasts have been obtained using deterministic and ensemble forcing meteorological models with different forecast lead time ranges. First, BMA is applied based on mixtures of univariate normal distributions, subject to the assumption of independence between distinct lead times. Then, the independence assumption is relaxed in order to estimate multivariate runoff forecasts over the entire range of lead times simultaneously, based on a BMA version that uses multivariate normal distributions. Since river runoff is a highly skewed variable, Box-Cox transformations are applied in order to achieve approximate normality. Both univariate and multivariate BMA approaches are able to generate well calibrated probabilistic forecasts that are considerably sharper than climatological forecasts. Additionally, multivariate BMA provides a promising approach for incorporating temporal dependencies into the postprocessed forecasts. Its major advantage against univariate BMA is an increase in reliability when the forecast system is changing due to model availability.

  19. Experiments with a three-dimensional statistical objective analysis scheme using FGGE data

    NASA Technical Reports Server (NTRS)

    Baker, Wayman E.; Bloom, Stephen C.; Woollen, John S.; Nestler, Mark S.; Brin, Eugenia

    1987-01-01

    A three-dimensional (3D), multivariate, statistical objective analysis scheme (referred to as optimum interpolation or OI) has been developed for use in numerical weather prediction studies with the FGGE data. Some novel aspects of the present scheme include: (1) a multivariate surface analysis over the oceans, which employs an Ekman balance instead of the usual geostrophic relationship, to model the pressure-wind error cross correlations, and (2) the capability to use an error correlation function which is geographically dependent. A series of 4-day data assimilation experiments are conducted to examine the importance of some of the key features of the OI in terms of their effects on forecast skill, as well as to compare the forecast skill using the OI with that utilizing a successive correction method (SCM) of analysis developed earlier. For the three cases examined, the forecast skill is found to be rather insensitive to varying the error correlation function geographically. However, significant differences are noted between forecasts from a two-dimensional (2D) version of the OI and those from the 3D OI, with the 3D OI forecasts exhibiting better forecast skill. The 3D OI forecasts are also more accurate than those from the SCM initial conditions. The 3D OI with the multivariate oceanic surface analysis was found to produce forecasts which were slightly more accurate, on the average, than a univariate version.

  20. Deciding the Future: A Forecast of Responsibilities of Secondary Teachers of English, 1970-2000 AD.

    ERIC Educational Resources Information Center

    Farrell, Edmund J.

    This document is a slightly revised version of author's Ph.D. Dissertation, "A Forecast of Responsibilities of Secondary Teachers of English 1970-2000 A.D., with Implications for Teacher Education" (ED 049 253). A study in two parts, Part I presents the need for future planning in education; discusses briefly methodologies for forecasting the…

  1. The Impact of Atmospheric InfraRed Sounder (AIRS) Profiles on Short-term Weather Forecasts

    NASA Technical Reports Server (NTRS)

    Chou, Shih-Hung; Zavodsky, Brad; Jedlovec, Gary J.; Lapenta, William

    2007-01-01

    The Atmospheric Infrared Sounder (AIRS), together with the Advanced Microwave Sounding Unit (AMSU), represents one of the most advanced spacebased atmospheric sounding systems. The combined AlRS/AMSU system provides radiance measurements used to retrieve temperature profiles with an accuracy of 1 K over 1 km layers under both clear and partly cloudy conditions, while the accuracy of the derived humidity profiles is 15% in 2 km layers. Critical to the successful use of AIRS profiles for weather and climate studies is the use of profile quality indicators and error estimates provided with each profile Aside form monitoring changes in Earth's climate, one of the objectives of AIRS is to provide sounding information of sufficient accuracy such that the assimilation of the new observations, especially in data sparse region, will lead to an improvement in weather forecasts. The purpose of this paper is to describe a procedure to optimally assimilate highresolution AIRS profile data in a regional analysis/forecast model. The paper will focus on the impact of AIRS profiles on a rapidly developing east coast storm and will also discuss preliminary results for a 30-day forecast period, simulating a quasi-operation environment. Temperature and moisture profiles were obtained from the prototype version 5.0 EOS science team retrieval algorithm which includes explicit error information for each profile. The error profile information was used to select the highest quality temperature and moisture data for every profile location and pressure level for assimilation into the ARPS Data Analysis System (ADAS). The AIRS-enhanced analyses were used as initial fields for the Weather Research and Forecast (WRF) system used by the SPORT project for regional weather forecast studies. The ADASWRF system will be run on CONUS domain with an emphasis on the east coast. The preliminary assessment of the impact of the AIRS profiles will focus on quality control issues associated with AIRS, intelligent use of the quality indicators, and forecast verification.

  2. Seasonal Predictions with the GEOS GCM

    NASA Technical Reports Server (NTRS)

    Schubert, Siegfried; Chang, Yehui; Suarez, Max

    1999-01-01

    A number of ensembles of seasonal forecasts have recently been completed as part of NASA's Seasonal to Interannual Prediction Project (NSIPP). The focus is on the extratropical response of the atmosphere to observed Surface Sea Temperature (SST) anomalies during boreal winter. The prediction experiments consist of nine forecasts starting from slightly different initial conditions for each year of the 15 year period 1981-95, employing version 2 of the Goddard Earth Observing System (GEOS) atmospheric Global Circulation Models (GCM). The initial conditions are obtained from the NASA GEOS-1 reanalysis data. Comparisons with a companion set of six long-term simulations with observed SST (starting in 1978, so they have no memory of the initial conditions for the periods of interest) are used to assess the relative contributions of the initial conditions and SST anomalies to forecast skill ranging from daily to seasonal time scales. The ensembles are used to isolate the signal, and to assess the nature of the inherent variability (noise) of the forecasts.

  3. Computing and Visualizing the Complex Dynamics of Earthquake Fault Systems: Towards Ensemble Earthquake Forecasting

    NASA Astrophysics Data System (ADS)

    Rundle, J.; Rundle, P.; Donnellan, A.; Li, P.

    2003-12-01

    We consider the problem of the complex dynamics of earthquake fault systems, and whether numerical simulations can be used to define an ensemble forecasting technology similar to that used in weather and climate research. To effectively carry out such a program, we need 1) a topological realistic model to simulate the fault system; 2) data sets to constrain the model parameters through a systematic program of data assimilation; 3) a computational technology making use of modern paradigms of high performance and parallel computing systems; and 4) software to visualize and analyze the results. In particular, we focus attention of a new version of our code Virtual California (version 2001) in which we model all of the major strike slip faults extending throughout California, from the Mexico-California border to the Mendocino Triple Junction. We use the historic data set of earthquakes larger than magnitude M > 6 to define the frictional properties of all 654 fault segments (degrees of freedom) in the model. Previous versions of Virtual California had used only 215 fault segments to model the strike slip faults in southern California. To compute the dynamics and the associated surface deformation, we use message passing as implemented in the MPICH standard distribution on a small Beowulf cluster consisting of 10 cpus. We are also planning to run the code on significantly larger machines so that we can begin to examine much finer spatial scales of resolution, and to assess scaling properties of the code. We present results of simulations both as static images and as mpeg movies, so that the dynamical aspects of the computation can be assessed by the viewer. We also compute a variety of statistics from the simulations, including magnitude-frequency relations, and compare these with data from real fault systems.

  4. Ensemble Flow Forecasts for Risk Based Reservoir Operations of Lake Mendocino in Mendocino County, California: A Framework for Objectively Leveraging Weather and Climate Forecasts in a Decision Support Environment

    NASA Astrophysics Data System (ADS)

    Delaney, C.; Hartman, R. K.; Mendoza, J.; Whitin, B.

    2017-12-01

    Forecast informed reservoir operations (FIRO) is a methodology that incorporates short to mid-range precipitation and flow forecasts to inform the flood operations of reservoirs. The Ensemble Forecast Operations (EFO) alternative is a probabilistic approach of FIRO that incorporates ensemble streamflow predictions (ESPs) made by NOAA's California-Nevada River Forecast Center (CNRFC). With the EFO approach, release decisions are made to manage forecasted risk of reaching critical operational thresholds. A water management model was developed for Lake Mendocino, a 111,000 acre-foot reservoir located near Ukiah, California, to evaluate the viability of the EFO alternative to improve water supply reliability but not increase downstream flood risk. Lake Mendocino is a dual use reservoir, which is owned and operated for flood control by the United States Army Corps of Engineers and is operated for water supply by the Sonoma County Water Agency. Due to recent changes in the operations of an upstream hydroelectric facility, this reservoir has suffered from water supply reliability issues since 2007. The EFO alternative was simulated using a 26-year (1985-2010) ESP hindcast generated by the CNRFC. The ESP hindcast was developed using Global Ensemble Forecast System version 10 precipitation reforecasts processed with the Hydrologic Ensemble Forecast System to generate daily reforecasts of 61 flow ensemble members for a 15-day forecast horizon. Model simulation results demonstrate that the EFO alternative may improve water supply reliability for Lake Mendocino yet not increase flood risk for downstream areas. The developed operations framework can directly leverage improved skill in the second week of the forecast and is extendable into the S2S time domain given the demonstration of improved skill through a reliable reforecast of adequate historical duration and consistent with operationally available numerical weather predictions.

  5. Decomposition of Sources of Errors in Seasonal Streamflow Forecasting over the U.S. Sunbelt

    NASA Technical Reports Server (NTRS)

    Mazrooei, Amirhossein; Sinah, Tusshar; Sankarasubramanian, A.; Kumar, Sujay V.; Peters-Lidard, Christa D.

    2015-01-01

    Seasonal streamflow forecasts, contingent on climate information, can be utilized to ensure water supply for multiple uses including municipal demands, hydroelectric power generation, and for planning agricultural operations. However, uncertainties in the streamflow forecasts pose significant challenges in their utilization in real-time operations. In this study, we systematically decompose various sources of errors in developing seasonal streamflow forecasts from two Land Surface Models (LSMs) (Noah3.2 and CLM2), which are forced with downscaled and disaggregated climate forecasts. In particular, the study quantifies the relative contributions of the sources of errors from LSMs, climate forecasts, and downscaling/disaggregation techniques in developing seasonal streamflow forecast. For this purpose, three month ahead seasonal precipitation forecasts from the ECHAM4.5 general circulation model (GCM) were statistically downscaled from 2.8deg to 1/8deg spatial resolution using principal component regression (PCR) and then temporally disaggregated from monthly to daily time step using kernel-nearest neighbor (K-NN) approach. For other climatic forcings, excluding precipitation, we considered the North American Land Data Assimilation System version 2 (NLDAS-2) hourly climatology over the years 1979 to 2010. Then the selected LSMs were forced with precipitation forecasts and NLDAS-2 hourly climatology to develop retrospective seasonal streamflow forecasts over a period of 20 years (1991-2010). Finally, the performance of LSMs in forecasting streamflow under different schemes was analyzed to quantify the relative contribution of various sources of errors in developing seasonal streamflow forecast. Our results indicate that the most dominant source of errors during winter and fall seasons is the errors due to ECHAM4.5 precipitation forecasts, while temporal disaggregation scheme contributes to maximum errors during summer season.

  6. A domain analysis approach to clear-air turbulence forecasting using high-density in-situ measurements

    NASA Astrophysics Data System (ADS)

    Abernethy, Jennifer A.

    Pilots' ability to avoid clear-air turbulence (CAT) during flight affects the safety of the millions of people who fly commercial airlines and other aircraft, and turbulence costs millions in injuries and aircraft maintenance every year. Forecasting CAT is not straightforward, however; microscale features like the turbulence eddies that affect aircraft (100m) are below the current resolution of operational numerical weather prediction (NWP) models, and the only evidence of CAT episodes, until recently, has been sparse, subjective reports from pilots known as PIREPs. To forecast CAT, researchers use a simple weighted sum of top-performing turbulence indicators derived from NWP model outputs---termed diagnostics---based on their agreement with current PIREPs. However, a new, quantitative source of observation data---high-density measurements made by sensor equipment and software on aircraft, called in-situ measurements---is now available. The main goal of this thesis is to develop new data analysis and processing techniques to apply to the model and new observation data, in order to improve CAT forecasting accuracy. This thesis shows that using in-situ data improves forecasting accuracy and that automated machine learning algorithms such as support vector machines (SVM), logistic regression, and random forests, can match current performance while eliminating almost all hand-tuning. Feature subset selection is paired with the new algorithms to choose diagnostics that predict well as a group rather than individually. Specializing forecasts and choice of diagnostics by geographic region further improves accuracy because of the geographic variation in turbulence sources. This work uses random forests to find climatologically-relevant regions based on these variations and implements a forecasting system testbed which brings these techniques together to rapidly prototype new, regionalized versions of operational CAT forecasting systems.

  7. Evaluation of energy fluxes in the NCEP climate forecast system version 2.0 (CFSv2)

    NASA Astrophysics Data System (ADS)

    Rai, Archana; Saha, Subodh Kumar

    2018-01-01

    The energy fluxes at the surface and top of the atmosphere (TOA) from a long free run by the NCEP climate forecast system version 2.0 (CFSv2) are validated against several observation and reanalysis datasets. This study focuses on the annual mean energy fluxes and tries to link it with the systematic cold biases in the 2 m air temperature, particularly over the land regions. The imbalance in the long term mean global averaged energy fluxes are also evaluated. The global averaged imbalance at the surface and at the TOA is found to be 0.37 and 6.43 Wm-2, respectively. It is shown that CFSv2 overestimates the land surface albedo, particularly over the snow region, which in turn contributes to the cold biases in 2 m air temperature. On the other hand, surface albedo is highly underestimated over the coastal region around Antarctica and that may have contributed to the warm bias over that oceanic region. This study highlights the need for improvements in the parameterization of snow/sea-ice albedo scheme for a realistic simulation of surface temperature and that may have implications on the global energy imbalance in the model.

  8. Korea-United States Air Quality (KORUS-AQ) Campaign

    NASA Technical Reports Server (NTRS)

    Castellanos, Patricia; Da Silva, Arlindo; Longo-De Freitas, Karla

    2017-01-01

    The Korea-United States Air Quality (KORUS-AQ) campaign was an international cooperative field study based out of Osan Air Base, Songtan, South Korea (about 60 kilometers south of Seoul) in April-June 2016. A comprehensive suite of instruments capable of measuring atmospheric composition was deployed around the Korean peninsula on aircrafts, ships, and at ground sites in order to characterize local and transboundary pollution. The NASA Goddard Earth Observing System, version 5 (GEOS-5) forecast model was used for near real time meteorological and aerosol forecasting and flight planning during the KORUS-AQ campaign. Evaluation of GEOS-5 against observations from the campaign will help to identify inaccuracies in the models physical and chemical processes in this region within East Asia and lead to further developments of the modeling system.

  9. Variational Continuous Assimilation of TMI and SSM/I Rain Rates: Impact on GEOS-3 Hurricane Analyses and Forecasts

    NASA Technical Reports Server (NTRS)

    Hou, Arthur Y.; Zhang, Sara Q.; Reale, Oreste

    2003-01-01

    We describe a variational continuous assimilation (VCA) algorithm for assimilating tropical rainfall data using moisture and temperature tendency corrections as the control variable to offset model deficiencies. For rainfall assimilation, model errors are of special concern since model-predicted precipitation is based on parameterized moist physics, which can have substantial systematic errors. This study examines whether a VCA scheme using the forecast model as a weak constraint offers an effective pathway to precipitation assimilation. The particular scheme we exarnine employs a '1+1' dimension precipitation observation operator based on a 6-h integration of a column model of moist physics from the Goddard Earth Observing System (GEOS) global data assimilation system DAS). In earlier studies, we tested a simplified version of this scheme and obtained improved monthly-mean analyses and better short-range forecast skills. This paper describes the full implementation ofthe 1+1D VCA scheme using background and observation error statistics, and examines how it may improve GEOS analyses and forecasts of prominent tropical weather systems such as hurricanes. Parallel assimilation experiments with and without rainfall data for Hurricanes Bonnie and Floyd show that assimilating 6-h TMI and SSM/I surfice rain rates leads to more realistic storm features in the analysis, which, in turn, provide better initial conditions for 5-day storm track prediction and precipitation forecast. These results provide evidence that addressing model deficiencies in moisture tendency may be crucial to making effective use of precipitation information in data assimilation.

  10. Update of global TC simulations using a variable resolution non-hydrostatic model

    NASA Astrophysics Data System (ADS)

    Park, S. H.

    2017-12-01

    Using in a variable resolution meshes in MPAS during 2017 summer., Tropical cyclone (TC) forecasts are simulated. Two physics suite are tested to explore performance and bias of each physics suite for TC forecasting. A WRF physics suite is selected from experience on weather forecasting and CAM (Community Atmosphere Model) physics is taken from a AMIP type climate simulation. Based on the last year results from CAM5 physical parameterization package and comparing with WRF physics, we investigated a issue with intensity bias using updated version of CAM physics (CAM6). We also compared these results with coupled version of TC simulations. During this talk, TC structure will be compared specially around of boundary layer and investigate their relationship between TC intensity and different physics package.

  11. Skillful seasonal predictions of winter precipitation over southern China

    NASA Astrophysics Data System (ADS)

    Lu, Bo; Scaife, Adam A.; Dunstone, Nick; Smith, Doug; Ren, Hong-Li; Liu, Ying; Eade, Rosie

    2017-07-01

    Southern China experiences large year-to-year variability in the amount of winter precipitation, which can result in severe social and economic impacts. In this study, we demonstrate prediction skill of southern China winter precipitation by three operational seasonal prediction models: the operational Global seasonal forecasting system version 5 (GloSea5), the NCEP Climate Forecast System (CFSv2) and the Beijing Climate Center Climate System Model (BCC-CSM1.1m). The correlation scores reach 0.76 and 0.67 in GloSea5 and CFSv2, respectively; and the amplitude of the ensemble mean forecast signal is comparable to the observed variations. The skilful predictions in GloSea5 and CFSv2 mainly benefit from the successful representation of the observed ENSO teleconnection. El Niño weakens the Walker circulation and leads to the strengthening of the subtropical high over the northwestern Pacific. The anti-cyclone then induces anomalous northward flow over the South China Sea and brings water vapor to southern China, resulting in more precipitation. This teleconnection pattern is too weak in BCC-CSM1.1m, which explains its low skill (0.13). Whereas the most skilful forecast system is also able to simulate the influence of the Indian Ocean on southern China precipitation via changes in southwesterly winds over the Bay of Bengal. Finally, we examine the real-time forecast for 2015/16 winter when a strong El Niño event led to the highest rainfall over southern China in recent decades. We find that the GloSea5 system gave good advice as it produced the third wettest southern China in the hindcast, but underestimated the observed amplitude. This is likely due to the underestimation of the Siberian High strength in 2015/2016 winter, which has driven strong convergence over southern China. We conclude that some current seasonal forecast systems can give useful warning of impending extremes. However, there is still need for further model improvement to fully represent the complex dynamics of the region.

  12. Workstation-Based Real-Time Mesoscale Modeling Designed for Weather Support to Operations at the Kennedy Space Center and Cape Canaveral Air Station

    NASA Technical Reports Server (NTRS)

    Manobianco, John; Zack, John W.; Taylor, Gregory E.

    1996-01-01

    This paper describes the capabilities and operational utility of a version of the Mesoscale Atmospheric Simulation System (MASS) that has been developed to support operational weather forecasting at the Kennedy Space Center (KSC) and Cape Canaveral Air Station (CCAS). The implementation of local, mesoscale modeling systems at KSC/CCAS is designed to provide detailed short-range (less than 24 h) forecasts of winds, clouds, and hazardous weather such as thunderstorms. Short-range forecasting is a challenge for daily operations, and manned and unmanned launches since KSC/CCAS is located in central Florida where the weather during the warm season is dominated by mesoscale circulations like the sea breeze. For this application, MASS has been modified to run on a Stardent 3000 workstation. Workstation-based, real-time numerical modeling requires a compromise between the requirement to run the system fast enough so that the output can be used before expiration balanced against the desire to improve the simulations by increasing resolution and using more detailed physical parameterizations. It is now feasible to run high-resolution mesoscale models such as MASS on local workstations to provide timely forecasts at a fraction of the cost required to run these models on mainframe supercomputers. MASS has been running in the Applied Meteorology Unit (AMU) at KSC/CCAS since January 1994 for the purpose of system evaluation. In March 1995, the AMU began sending real-time MASS output to the forecasters and meteorologists at CCAS, Spaceflight Meteorology Group (Johnson Space Center, Houston, Texas), and the National Weather Service (Melbourne, Florida). However, MASS is not yet an operational system. The final decision whether to transition MASS for operational use will depend on a combination of forecaster feedback, the AMU's final evaluation results, and the life-cycle costs of the operational system.

  13. The quality and value of seasonal precipitation forecasts for an early warning of large-scale droughts and floods in West Africa

    NASA Astrophysics Data System (ADS)

    Bliefernicht, Jan; Seidel, Jochen; Salack, Seyni; Waongo, Moussa; Laux, Patrick; Kunstmann, Harald

    2017-04-01

    Seasonal precipitation forecasts are a crucial source of information for an early warning of hydro-meteorological extremes in West Africa. However, the current seasonal forecasting system used by the West African weather services in the framework of the West African Climate Outlook forum (PRESAO) is limited to probabilistic precipitation forecasts of 1-month lead time. To improve this provision, we use an ensemble-based quantile-quantile transformation for bias correction of precipitation forecasts provided by a global seasonal ensemble prediction system, the Climate Forecast System Version 2 (CFS2). The statistical technique eliminates systematic differences between global forecasts and observations with the potential to preserve the signal from the model. The technique has also the advantage that it can be easily implemented at national weather services with low capacities. The statistical technique is used to generate probabilistic forecasts of monthly and seasonal precipitation amount and other precipitation indices useful for an early warning of large-scale drought and floods in West Africa. The evaluation of the statistical technique is done using CFS hindcasts (1982 to 2009) in a cross-validation mode to determine the performance of the precipitation forecasts for several lead times focusing on drought and flood events depicted over the Volta and Niger basins. In addition, operational forecasts provided by PRESAO are analyzed from 1998 to 2015. The precipitation forecasts are compared to low-skill reference forecasts generated from gridded observations (i.e. GPCC, CHIRPS) and a novel in-situ gauge database from national observation networks (see Poster EGU2017-10271). The forecasts are evaluated using state-of-the-art verification techniques to determine specific quality attributes of probabilistic forecasts such as reliability, accuracy and skill. In addition, cost-loss approaches are used to determine the value of probabilistic forecasts for multiple users in warning situations. The outcomes of the hindcasts experiment for the Volta basin illustrate that the statistical technique can clearly improve the CFS precipitation forecasts with the potential to provide skillful and valuable early precipitation warnings for large-scale drought and flood situations several months in ahead. In this presentation we give a detailed overview about the ensemble-based quantile-quantile-transformation, its validation and verification and the possibilities of this technique to complement PRESAO. We also highlight the performance of this technique for extremes such as the Sahel drought in the 80ties and in comparison to the various reference data sets (e.g. CFS2, PRESAO, observational data sets) used in this study.

  14. Combination of synoptical-analogous and dynamical methods to increase skill score of monthly air temperature forecasts over Northern Eurasia

    NASA Astrophysics Data System (ADS)

    Khan, Valentina; Tscepelev, Valery; Vilfand, Roman; Kulikova, Irina; Kruglova, Ekaterina; Tischenko, Vladimir

    2016-04-01

    Long-range forecasts at monthly-seasonal time scale are in great demand of socio-economic sectors for exploiting climate-related risks and opportunities. At the same time, the quality of long-range forecasts is not fully responding to user application necessities. Different approaches, including combination of different prognostic models, are used in forecast centers to increase the prediction skill for specific regions and globally. In the present study, two forecasting methods are considered which are exploited in operational practice of Hydrometeorological Center of Russia. One of them is synoptical-analogous method of forecasting of surface air temperature at monthly scale. Another one is dynamical system based on the global semi-Lagrangian model SL-AV, developed in collaboration of Institute of Numerical Mathematics and Hydrometeorological Centre of Russia. The seasonal version of this model has been used to issue global and regional forecasts at monthly-seasonal time scales. This study presents results of the evaluation of surface air temperature forecasts generated with using above mentioned synoptical-statistical and dynamical models, and their combination to potentially increase skill score over Northern Eurasia. The test sample of operational forecasts is encompassing period from 2010 through 2015. The seasonal and interannual variability of skill scores of these methods has been discussed. It was noticed that the quality of all forecasts is highly dependent on the inertia of macro-circulation processes. The skill scores of forecasts are decreasing during significant alterations of synoptical fields for both dynamical and empirical schemes. Procedure of combination of forecasts from different methods, in some cases, has demonstrated its effectiveness. For this study the support has been provided by Grant of Russian Science Foundation (№14-37-00053).

  15. Features Based Assessments of Warm Season Convective Precipitation Forecasts From the High Resolution Rapid Refresh Model

    NASA Astrophysics Data System (ADS)

    Bytheway, Janice L.

    Forecast models have seen vast improvements in recent years, via increased spatial and temporal resolution, rapid updating, assimilation of more observational data, and continued development and improvement of the representation of the atmosphere. One such model is the High Resolution Rapid Refresh (HRRR) model, a 3 km, hourly-updated, convection-allowing model that has been in development since 2010 and running operationally over the contiguous US since 2014. In 2013, the HRRR became the only US model to assimilate radar reflectivity via diabatic assimilation, a process in which the observed reflectivity is used to induce a latent heating perturbation in the model initial state in order to produce precipitation in those areas where it is indicated by the radar. In order to support the continued development and improvement of the HRRR model with regard to forecasts of convective precipitation, the concept of an assessment is introduced. The assessment process aims to connect model output with observations by first validating model performance then attempting to connect that performance to model assumptions, parameterizations and processes to identify areas for improvement. Observations from remote sensing platforms such as radar and satellite can provide valuable information about three-dimensional storm structure and microphysical properties for use in the assessment, including estimates of surface rainfall, hydrometeor types and size distributions, and column moisture content. A features-based methodology is used to identify warm season convective precipitating objects in the 2013, 2014, and 2015 versions of HRRR precipitation forecasts, Stage IV multisensor precipitation products, and Global Precipitation Measurement (GPM) core satellite observations. Quantitative precipitation forecasts (QPFs) are evaluated for biases in hourly rainfall intensity, total rainfall, and areal coverage in both the US Central Plains (29-49N, 85-105W) and US Mountain West (29-49N, 105-125W). Features identified in the model and Stage IV were tracked through time in order to evaluate forecasts through several hours of the forecast period. The 2013 version of the model was found to produce significantly stronger convective storms than observed, with a slight southerly displacement from the observed storms during the peak hours of convective activity (17-00 UTC). This version of the model also displayed a strong relationship between atmospheric water vapor content and cloud thickness over the central plains. In the 2014 and 2015 versions of the model, storms in the western US were found to be smaller and weaker than the observed, and satellite products (brightness temperatures and reflectivities) simulated using model output indicated that many of the forecast storms contained too much ice above the freezing level. Model upgrades intended to decrease the biases seen in early versions include changes to the reflectivity assimilation, the addition of sub-grid scale cloud parameterizations, changes to the representation of surface processes and the addition of aerosol processes to the microphysics. The effects of these changes are evident in each successive version of the model, with reduced biases in intensity, elimination of the southerly bias, and improved representation of the onset of convection.

  16. Linking seasonal climate forecasts with crop models in Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Capa, Mirian; Ines, Amor; Baethgen, Walter; Rodriguez-Fonseca, Belen; Han, Eunjin; Ruiz-Ramos, Margarita

    2015-04-01

    Translating seasonal climate forecasts into agricultural production forecasts could help to establish early warning systems and to design crop management adaptation strategies that take advantage of favorable conditions or reduce the effect of adverse conditions. In this study, we use seasonal rainfall forecasts and crop models to improve predictability of wheat yield in the Iberian Peninsula (IP). Additionally, we estimate economic margins and production risks associated with extreme scenarios of seasonal rainfall forecast. This study evaluates two methods for disaggregating seasonal climate forecasts into daily weather data: 1) a stochastic weather generator (CondWG), and 2) a forecast tercile resampler (FResampler). Both methods were used to generate 100 (with FResampler) and 110 (with CondWG) weather series/sequences for three scenarios of seasonal rainfall forecasts. Simulated wheat yield is computed with the crop model CERES-wheat (Ritchie and Otter, 1985), which is included in Decision Support System for Agrotechnology Transfer (DSSAT v.4.5, Hoogenboom et al., 2010). Simulations were run at two locations in northeastern Spain where the crop model was calibrated and validated with independent field data. Once simulated yields were obtained, an assessment of farmer's gross margin for different seasonal climate forecasts was accomplished to estimate production risks under different climate scenarios. This methodology allows farmers to assess the benefits and risks of a seasonal weather forecast in IP prior to the crop growing season. The results of this study may have important implications on both, public (agricultural planning) and private (decision support to farmers, insurance companies) sectors. Acknowledgements Research by M. Capa-Morocho has been partly supported by a PICATA predoctoral fellowship of the Moncloa Campus of International Excellence (UCM-UPM) and MULCLIVAR project (CGL2012-38923-C02-02) References Hoogenboom, G. et al., 2010. The Decision Support System for Agrotechnology Transfer (DSSAT).Version 4.5 [CD-ROM].University of Hawaii, Honolulu, Hawaii. Ritchie, J.T., Otter, S., 1985. Description and performanceof CERES-Wheat: a user-oriented wheat yield model. In: ARS Wheat Yield Project. ARS-38.Natl Tech Info Serv, Springfield, Missouri, pp. 159-175.

  17. High Resolution Modeling in Mountainous Terrain for Water Resource Management: AN Extreme Precipitation Event Case Study

    NASA Astrophysics Data System (ADS)

    Masarik, M. T.; Watson, K. A.; Flores, A. N.; Anderson, K.; Tangen, S.

    2016-12-01

    The water resources infrastructure of the Western US is designed to deliver reliable water supply to users and provide recreational opportunities for the public, as well as afford flood control for communities by buffering variability in precipitation and snow storage. Thus water resource management is a balancing act of meeting multiple objectives while trying to anticipate and mitigate natural variability of water supply. Currently, the forecast guidance available to personnel managing resources in mountainous terrain is lacking in two ways: the spatial resolution is too coarse, and there is a gap in the intermediate time range (10-30 days). To address this need we examine the effectiveness of using the Weather Research and Forecasting (WRF) model, a state of the art, regional, numerical weather prediction model, as a means to generate high-resolution weather guidance in the intermediate time range. This presentation will focus on a reanalysis and hindcasting case study of the extreme precipitation and flooding event in the Payette River Basin of Idaho during the period of June 2nd-4th, 2010. For the reanalysis exercise we use NCEP's Climate Forecast System Reanalysis (CFSR) and the North American Regional Reanalysis (NARR) data sets as input boundary conditions to WRF. The model configuration includes a horizontal spatial resolution of 3km in the outer nest, and 1 km in the inner nest, with output temporal resolution of 3 hrs and 1 hr, respectively. The hindcast simulations, which are currently underway, will make use of the NCEP Climate Forecast System Reforecast (CFSRR) data. The current state of these runs will be discussed. Preparations for the second of two components in this project, weekly WRF forecasts during the intense portion of the water year, will be briefly described. These forecasts will use the NCEP Climate Forecast System version 2 (CFSv2) operational forecast data as boundary conditions to provide forecast guidance geared towards water resource managers out to a lead time of 30 days. We are particularly interested in the degree to which there is forecast skill in basinwide precipitation occurrence, departure from climatology, timing, and amount in the intermediate time range.

  18. Effects of multilayer snow scheme on the simulation of snow: Offline Noah and coupled with NCEP CFSv2

    NASA Astrophysics Data System (ADS)

    Saha, Subodh Kumar; Sujith, K.; Pokhrel, Samir; Chaudhari, Hemantkumar S.; Hazra, Anupam

    2017-03-01

    The Noah version 2.7.1 is a moderately complex land surface model (LSM), with a single layer snowpack, combined with vegetation and underlying soil layer. Many previous studies have pointed out biases in the simulation of snow, which may hinder the skill of a forecasting system coupled with the Noah. In order to improve the simulation of snow by the Noah, a multilayer snow scheme (up to a maximum of six layers) is introduced. As Noah is the land surface component of the Climate Forecast System version 2 (CFSv2) of the National Centers for Environmental Prediction (NCEP), the modified Noah is also coupled with the CFSv2. The offline LSM shows large improvements in the simulation of snow depth, snow water equivalent (SWE), and snow cover area during snow season (October to June). CFSv2 with the modified Noah reveals a dramatic improvements in the simulation of snow depth and 2 m air temperature and moderate improvements in SWE. As suggested in the previous diagnostic and sensitivity study, improvements in the simulation of snow by CFSv2 have lead to the reduction in dry bias over the Indian subcontinent (by a maximum of 2 mm d-1). The multilayer snow scheme shows promising results in the simulation of snow as well as Indian summer monsoon rainfall and hence this development may be the part of the future version of the CFS.

  19. Sea Ice in the NCEP Seasonal Forecast System

    NASA Astrophysics Data System (ADS)

    Wu, X.; Saha, S.; Grumbine, R. W.; Bailey, D. A.; Carton, J.; Penny, S. G.

    2017-12-01

    Sea ice is known to play a significant role in the global climate system. For a weather or climate forecast system (CFS), it is important that the realistic distribution of sea ice is represented. Sea ice prediction is challenging; sea ice can form or melt, it can move with wind and/or ocean current; sea ice interacts with both the air above and ocean underneath, it influences by, and has impact on the air and ocean conditions. NCEP has developed coupled CFS (version 2, CFSv2) and also carried out CFS reanalysis (CFSR), which includes a coupled model with the NCEP global forecast system, a land model, an ocean model (GFDL MOM4), and a sea ice model. In this work, we present the NCEP coupled model, the CFSv2 sea ice component that includes a dynamic thermodynamic sea ice model and a simple "assimilation" scheme, how sea ice has been assimilated in CFSR, the characteristics of the sea ice from CFSR and CFSv2, and the improvements of sea ice needed for future seasonal prediction system, part of the Unified Global Coupled System (UGCS), which is being developed and under testing, including sea ice data assimilation with the Local Ensemble Transform Kalman Filter (LETKF). Preliminary results from the UGCS testing will also be presented.

  20. Assimilation of Atmospheric InfraRed Sounder (AIRS) Profiles using WRF-Var

    NASA Technical Reports Server (NTRS)

    Zavodsky, Brad; Jedlovec, Gary J.; Lapenta, William

    2008-01-01

    The Weather Research and Forecasting (WRF) model contains a three-dimensional variational (3DVAR) assimilation system (WRF-Var), which allows a user to join data from multiple sources into one coherent analysis. WRF-Var combines observations with a background field traditionally generated using a previous model forecast through minimization of a cost function. In data sparse regions, remotely-sensed observations may be able to improve analyses and produce improved forecasts. One such source comes from the Atmospheric Infrared Sounder (AIRS), which together with the Advanced Microwave Sounding Unit (AMSU), represents one of the most advanced space-based atmospheric sounding systems. The combined AIRS/AMSU system provides radiance measurements used as input to a sophisticated retrieval scheme which has been shown to produce temperature profiles with an accuracy of 1 K over 1 km layers and humidity profiles with accuracy of 15% in 2 km layers in both clear and partly cloudy conditions. The retrieval algorithm also provides estimates of the accuracy of the retrieved values at each pressure level, allowing the user to select profiles based on the required error tolerances of the application. The purpose of this paper is to describe a procedure to optimally assimilate high-resolution AIRS profile data into a regional configuration of the Advanced Research WRF (ARW) version 2.2 using WRF-Var. The paper focuses on development of background error covariances for the regional domain and background field type using gen_be and an optimal methodology for ingesting AIRS temperature and moisture profiles as separate overland and overwater retrievals with different error characteristics in the WRF-Var. The AIRS thermodynamic profiles are obtained from the version 5.0 Earth Observing System (EOS) science team retrieval algorithm and contain information about the quality of each temperature layer. The quality indicators are used to select the highest quality temperature and moisture data for each profile location and pressure level. Analyses are run to produce quasi-real-time regional weather forecasts over the continental U.S. The preliminary assessment of the impact of the AIRS profiles will focus on intelligent use of the quality indicators, optimized tuning of the WRF-Var, and comparison of analysis soundings to radiosondes.

  1. Real-Time Kennedy Space Center and Cape Canaveral Air Force Station High-Resolution Model Implementation and Verification

    NASA Technical Reports Server (NTRS)

    Shafer, Jaclyn; Watson, Leela R.

    2015-01-01

    NASA's Launch Services Program, Ground Systems Development and Operations, Space Launch System and other programs at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) use the daily and weekly weather forecasts issued by the 45th Weather Squadron (45 WS) as decision tools for their day-to-day and launch operations on the Eastern Range (ER). Examples include determining if they need to limit activities such as vehicle transport to the launch pad, protect people, structures or exposed launch vehicles given a threat of severe weather, or reschedule other critical operations. The 45 WS uses numerical weather prediction models as a guide for these weather forecasts, particularly the Air Force Weather Agency (AFWA) 1.67 km Weather Research and Forecasting (WRF) model. Considering the 45 WS forecasters' and Launch Weather Officers' (LWO) extensive use of the AFWA model, the 45 WS proposed a task at the September 2013 Applied Meteorology Unit (AMU) Tasking Meeting requesting the AMU verify this model. Due to the lack of archived model data available from AFWA, verification is not yet possible. Instead, the AMU proposed to implement and verify the performance of an ER version of the high-resolution WRF Environmental Modeling System (EMS) model configured by the AMU (Watson 2013) in real time. Implementing a real-time version of the ER WRF-EMS would generate a larger database of model output than in the previous AMU task for determining model performance, and allows the AMU more control over and access to the model output archive. The tasking group agreed to this proposal; therefore the AMU implemented the WRF-EMS model on the second of two NASA AMU modeling clusters. The AMU also calculated verification statistics to determine model performance compared to observational data. Finally, the AMU made the model output available on the AMU Advanced Weather Interactive Processing System II (AWIPS II) servers, which allows the 45 WS and AMU staff to customize the model output display on the AMU and Range Weather Operations (RWO) AWIPS II client computers and conduct real-time subjective analyses.

  2. Post-processing through linear regression

    NASA Astrophysics Data System (ADS)

    van Schaeybroeck, B.; Vannitsem, S.

    2011-03-01

    Various post-processing techniques are compared for both deterministic and ensemble forecasts, all based on linear regression between forecast data and observations. In order to evaluate the quality of the regression methods, three criteria are proposed, related to the effective correction of forecast error, the optimal variability of the corrected forecast and multicollinearity. The regression schemes under consideration include the ordinary least-square (OLS) method, a new time-dependent Tikhonov regularization (TDTR) method, the total least-square method, a new geometric-mean regression (GM), a recently introduced error-in-variables (EVMOS) method and, finally, a "best member" OLS method. The advantages and drawbacks of each method are clarified. These techniques are applied in the context of the 63 Lorenz system, whose model version is affected by both initial condition and model errors. For short forecast lead times, the number and choice of predictors plays an important role. Contrarily to the other techniques, GM degrades when the number of predictors increases. At intermediate lead times, linear regression is unable to provide corrections to the forecast and can sometimes degrade the performance (GM and the best member OLS with noise). At long lead times the regression schemes (EVMOS, TDTR) which yield the correct variability and the largest correlation between ensemble error and spread, should be preferred.

  3. Data Assimilation Experiments Using Quality Controlled AIRS Version 5 Temperature Soundings

    NASA Technical Reports Server (NTRS)

    Susskind, Joel

    2009-01-01

    The AIRS Science Team Version 5 retrieval algorithm has been finalized and is now operational at the Goddard DAAC in the processing (and reprocessing) of all AIRS data. The AIRS Science Team Version 5 retrieval algorithm contains a number of significant improvements over Version 4. Two very significant improvements are described briefly below. 1) The AIRS Science Team Radiative Transfer Algorithm (RTA) has now been upgraded to accurately account for effects of non-local thermodynamic equilibrium on the AIRS observations. This allows for use of AIRS observations in the entire 4.3 micron CO2 absorption band in the retrieval algorithm during both day and night. Following theoretical considerations, tropospheric temperature profile information is obtained almost exclusively from clear column radiances in the 4.3 micron CO2 band in the AIRS Version 5 temperature profile retrieval step. These clear column radiances are a derived product that are indicative of radiances AIRS channels would have seen if the field of view were completely clear. Clear column radiances for all channels are determined using tropospheric sounding 15 micron CO2 observations. This approach allows for the generation of accurate values of clear column radiances and T(p) under most cloud conditions. 2) Another very significant improvement in Version 5 is the ability to generate accurate case-by-case, level-by-level error estimates for the atmospheric temperature profile, as well as for channel-by-channel clear column radiances. These error estimates are used for quality control of the retrieved products. Based on error estimate thresholds, each temperature profiles is assigned a characteristic pressure, pg, down to which the profile is characterized as good for use for data assimilation purposes. We have conducted forecast impact experiments assimilating AIRS quality controlled temperature profiles using the NASA GEOS-5 data assimilation system, consisting of the NCEP GSI analysis coupled with the NASA FVGCM, at a spatial resolution of 0.5 deg by 0.5 deg. Assimilation of Quality Controlled AIRS temperature profiles down to pg resulted in significantly improved forecast skill compared to that obtained from experiments when all data used operationally by NCEP, except for AIRS data, is assimilated. These forecasts were also significantly better than to those obtained when AIRS radiances (rather than temperature profiles) are assimilated, which is the way AIRS data is used operationally by NCEP and ECMWF.

  4. Sub-seasonal Predictability of Heavy Precipitation Events: Implication for Real-time Flood Management in Iran

    NASA Astrophysics Data System (ADS)

    Najafi, H.; Shahbazi, A.; Zohrabi, N.; Robertson, A. W.; Mofidi, A.; Massah Bavani, A. R.

    2016-12-01

    Each year, a number of high impact weather events occur worldwide. Since any level of predictability at sub-seasonal to seasonal timescale is highly beneficial to society, international efforts is now on progress to promote reliable Ensemble Prediction Systems for monthly forecasts within the WWRP/WCRP initiative (S2S) project and North American Multi Model Ensemble (NMME). For water resources managers in the face of extreme events, not only can reliable forecasts of high impact weather events prevent catastrophic losses caused by floods but also contribute to benefits gained from hydropower generation and water markets. The aim of this paper is to analyze the predictability of recent severe weather events over Iran. Two recent heavy precipitations are considered as an illustration to examine whether S2S forecasts can be used for developing flood alert systems especially where large cascade of dams are in operation. Both events have caused major damages to cities and infrastructures. The first severe precipitation was is in the early November 2015 when heavy precipitation (more than 50 mm) occurred in 2 days. More recently, up to 300 mm of precipitation is observed within less than a week in April 2016 causing a consequent flash flood. Over some stations, the observed precipitation was even more than the total annual mean precipitation. To analyze the predictive capability, ensemble forecasts from several operational centers including (European Centre for Medium-Range Weather Forecasts (ECMWF) system, Climate Forecast System Version 2 (CFSv2) and Chinese Meteorological Center (CMA) are evaluated. It has been observed that significant changes in precipitation anomalies were likely to be predicted days in advance. The next step will be to conduct thorough analysis based on comparing multi-model outputs over the full hindcast dataset developing real-time high impact weather prediction systems.

  5. Subseasonal to Seasonal Forecasting at NASA in Support of the National Earth System Prediction Capability

    NASA Astrophysics Data System (ADS)

    Considine, D. B.; Pawson, S.; Koster, R. D.; Kovach, R. M.; Vernieres, G.; Schubert, S. D.

    2016-12-01

    NASA has developed and maintains, within the Goddard Modeling and Assimilation Office (GMAO), a seasonal-to-interannual prediction activity in support of the National ESPC, based on the GEOS-5 Atmosphere-Ocean General Circulation Model (AOGCM). This system generates atmospheric, land, and ocean/ice analyses that are used to produce global forecasts. Each month, a 17-member ensemble of forecasts is made, from which various oceanic indices (e.g., El Niño, East Indian Dipole, Atlantic SST anomalies), are computed. Additionally, monthly and seasonal anomalies are computed for several variables from the atmosphere (e.g., 2-meter temperatures, precipitation, geopotential heights), land (drought indices), ocean (subsurface temperature anomalies), and sea ice. These forecasts are provided to the National Multi Model Ensemble (NMME) and the Study of Environmental Arctic Change (SEARCH) sea ice outlook. The quasi-operational nature of this system, with constant generation of products that are shared with the broader community, allows for continual assessment of the impacts of NASA observations on seasonal forecasts - a current example is the altimetry data from the JASON series of satellites. The GMAO's seasonal prediction system is currently being upgraded. Alongside typical enhancements, such as increased spatial resolution and use of more recent model versions with improved representation of physical processes, these developments are designed to enhance the use of NASA observations. One example is the use of aerosol information from NASA's EOS instruments (MODIS). A major motivation is also to include NASA's novel data types, such as soil-moisture from SMAP and other sources of oceanic information (such as salinity). This approach enables NASA to continue contributing to national seasonal forecasting efforts, while simultaneously introducing its novel observing capabilities into the seasonal system in a manner that can demonstrate their systematic impacts on the quality of the products.

  6. Seasonal Prediction with the GEOS GCM

    NASA Technical Reports Server (NTRS)

    Suarez, Max; Schubert, S.; Chang, Y.

    1999-01-01

    A number of ensembles of seasonal forecasts have recently been completed as part of NASA's Seasonal to Interannual Prediction Project (NSIPP). The focus is on the extratropical response of the atmosphere to observed SST anomalies during boreal winter. Each prediction consists of nine forecasts starting from slightly different initial conditions. Forecasts are done for every winter from 1981 to 1995 using Version 2 of the GEOS GCM. Comparisons with six long-term integrations (1978-1995) using the same model are used to separate the contributions of initial and boundary conditions to forecast skill. The forecasts also allow us to isolate the SSt forced response (the signal) from the atmosphere's natural variability (the noise).

  7. THE AGWA – KINEROS2 SUITE OF MODELING TOOLS

    USDA-ARS?s Scientific Manuscript database

    A suite of modeling tools ranging from the event-based KINEROS2 flash-flood forecasting tool to the continuous (K2-O2) KINEROS-OPUS biogeochemistry tool. The KINEROS2 flash flood forecasting tool is being tested with the National Weather Service (NEW) is described. Tne NWS version assimilates Dig...

  8. Use of JPSS ATMS, CrIS, and VIIRS data to Improve Tropical Cyclone Track and Intensity Forecasting

    NASA Astrophysics Data System (ADS)

    Chirokova, G.; Demaria, M.; DeMaria, R.; Knaff, J. A.; Dostalek, J.; Musgrave, K. D.; Beven, J. L.

    2015-12-01

    JPSS data provide unique information that could be critical for the forecasting of tropical cyclone (TC) track and intensity and is currently underutilized. Preliminary results from several TC applications using data from the Advanced Technology Microwave Sounder (ATMS), the Cross-Track Infrared Sounder (CrIS), and the Visible Infrared Imaging Radiometer Suite (VIIRS), carried by the Suomi National Polar-Orbiting Partnership satellite (SNPP), will be discussed. The first group of applications, which includes applications for moisture flux and for eye-detection, aims to improve rapid intensification (RI) forecasts, which is one of the highest priorities within NOAA. The applications could be used by forecasters directly and will also provide additional input to the Rapid Intensification Index (RII), the statistical-dynamical tool for forecasting RI events that is operational at the National Hurricane Center. The moisture flux application uses bias-corrected ATMS-MIRS (Microwave Integrated Retrieval System) and NUCAPS (NOAA Unique CrIS ATMS Processing System), retrievals that provide very accurate temperature and humidity soundings in the TC environment to detect dry air intrusions. The objective automated eye-detection application uses geostationary and VIIRS data in combination with machine learning and computer vision techniques for determining the onset of eye formation which is very important for TC intensity forecast but is usually determined by subjective methods. First version of the algorithm showed very promising results with a 75% success rate. The second group of applications develops tools to better utilize VIIRS data, including day-night band (DNB) imagery, for tropical cyclone forecasting. Disclaimer: The views, opinions, and findings contained in this article are those of the authors and should not be construed as an official National Oceanic and Atmospheric Administration (NOAA) or U.S. Government position, policy, or decision.

  9. The Impact of Cross-track Infrared Sounder (CrIS) Cloud-Cleared Radiances on Hurricane Joaquin (2015) and Matthew (2016) Forecasts

    NASA Astrophysics Data System (ADS)

    Wang, Pei; Li, Jun; Li, Zhenglong; Lim, Agnes H. N.; Li, Jinlong; Schmit, Timothy J.; Goldberg, Mitchell D.

    2017-12-01

    Hyperspectral infrared (IR) sounders provide high vertical resolution atmospheric sounding information that can improve the forecast skill in numerical weather prediction. Commonly, only clear radiances are assimilated, because IR sounder observations are highly affected by clouds. A cloud-clearing (CC) technique, which removes the cloud effects from an IR cloudy field of view (FOV) and derives the cloud-cleared radiances (CCRs) or clear-sky equivalent radiances, can be an alternative yet effective way to take advantage of the thermodynamic information from cloudy skies in data assimilation. This study develops a Visible Infrared Imaging Radiometer Suite (VIIRS)-based CC method for deriving Cross-track Infrared Sounder (CrIS) CCRs under partially cloudy conditions. Due to the lack of absorption bands on VIIRS, two important quality control steps are implemented in the CC process. Validation using VIIRS clear radiances indicates that the CC method can effectively obtain the CrIS CCRs for FOVs with partial cloud cover. To compare the impacts from assimilation of CrIS original radiances and CCRs, three experiments are carried out on two storm cases, Hurricane Joaquin (2015) and Hurricane Matthew (2016), using Gridpoint Statistical Interpolation assimilation system and Weather Research and Forecasting-Advanced Research Version models. At the analysis time, more CrIS observations are assimilated when using CrIS CCRs than with CrIS original radiances. Comparing temperature, specific humidity, and U/V winds with radiosondes indicates that the data impacts are growing larger with longer time forecasts (beyond 72 h forecast). Hurricane track forecasts also show improvements from the assimilation of CrIS CCRs due to better weather system forecasts. The impacts of CCRs on intensity are basically neutral with mixed positive and negative results.

  10. Ocean Model Impact Study for Coupled Hurricane Forecasting: An HFIP Initiative

    NASA Astrophysics Data System (ADS)

    Kim, H. S. S.; Halliwell, G. R., Jr.; Tallapragada, V.; Black, P. G.; Bond, N.; Chen, S.; Cione, J.; Cronin, M. F.; Ginis, I.; Liu, B.; Miller, L.; Jayne, S. R.; Sanabia, E.; Shay, L. K.; Uhlhorn, E.; Zhu, L.

    2016-02-01

    Established in 2009, the NOAA Hurricane Forecast Improvement Project (HFIP) is a ten-year project to promote accelerated improvements hurricane track and intensity forecasts (Gall et al. 2013). The Ocean Model Impact Tiger Team (OMITT) consisting of model developers and research scientists was formed as one of HFIP working groups in December 2014, to evaluate the impact of ocean coupling in tropical cyclone (TC) forecasts. The team investigated the ocean model impact in real cases for Category 3 Hurricane Edouard in 2014, using simulations and observations that were collected for different stages of the hurricane. Two Eastern North Pacific Hurricanes in 2015, Blanca and Dolores, are also of special interest. These two powerful Category 4 storms followed a similar track, however, they produced dramatically different ocean cooling, about 7.2oC for Hurricane Blanca but only about 2.7oC for Hurricane Dolores, and the corresponding intensity changes were negative 40 ms-1 and 20 ms-1, respectively. Two versions of operational HWRF and COAMPS-TC coupled prediction systems are employed in the study. These systems are configured to have 1D and 3D ocean dynamics coupled to the atmosphere. The ocean components are initialized separately with climatology, analysis and nowcast products to evaluate the impact of ocean initialization on hurricane forecasts. Real storm forecast experiments are being designed and performed with different levels of the ocean model complexity and various model configurations to study model sensitivity. In this talk, we report the OMITT activities conducted during the past year, present preliminary results of on-going investigation of air-sea interactions in the simulations, and discuss future plans toward improving coupled TC predictions. Gall, R., J. Franklin, F. Marks, E.N. Rappaport, and F. Toepfer, 2013: THE HURRICANE FORECAST IMPROVEMENT PROJECT. Bull. Amer. Meteor. Soc., 329-343.

  11. Energy Consumption Forecasting Using Semantic-Based Genetic Programming with Local Search Optimizer.

    PubMed

    Castelli, Mauro; Trujillo, Leonardo; Vanneschi, Leonardo

    2015-01-01

    Energy consumption forecasting (ECF) is an important policy issue in today's economies. An accurate ECF has great benefits for electric utilities and both negative and positive errors lead to increased operating costs. The paper proposes a semantic based genetic programming framework to address the ECF problem. In particular, we propose a system that finds (quasi-)perfect solutions with high probability and that generates models able to produce near optimal predictions also on unseen data. The framework blends a recently developed version of genetic programming that integrates semantic genetic operators with a local search method. The main idea in combining semantic genetic programming and a local searcher is to couple the exploration ability of the former with the exploitation ability of the latter. Experimental results confirm the suitability of the proposed method in predicting the energy consumption. In particular, the system produces a lower error with respect to the existing state-of-the art techniques used on the same dataset. More importantly, this case study has shown that including a local searcher in the geometric semantic genetic programming system can speed up the search process and can result in fitter models that are able to produce an accurate forecasting also on unseen data.

  12. Testing a Coupled Global-limited-area Data Assimilation System using Observations from the 2004 Pacific Typhoon Season

    NASA Astrophysics Data System (ADS)

    Holt, C. R.; Szunyogh, I.; Gyarmati, G.; Hoffman, R. N.; Leidner, M.

    2011-12-01

    Tropical cyclone (TC) track and intensity forecasts have improved in recent years due to increased model resolution, improved data assimilation, and the rapid increase in the number of routinely assimilated observations over oceans. The data assimilation approach that has received the most attention in recent years is Ensemble Kalman Filtering (EnKF). The most attractive feature of the EnKF is that it uses a fully flow-dependent estimate of the error statistics, which can have important benefits for the analysis of rapidly developing TCs. We implement the Local Ensemble Transform Kalman Filter algorithm, a vari- ation of the EnKF, on a reduced-resolution version of the National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) model and the NCEP Regional Spectral Model (RSM) to build a coupled global-limited area anal- ysis/forecast system. This is the first time, to our knowledge, that such a system is used for the analysis and forecast of tropical cyclones. We use data from summer 2004 to study eight tropical cyclones in the Northwest Pacific. The benchmark data sets that we use to assess the performance of our system are the NCEP Reanalysis and the NCEP Operational GFS analyses from 2004. These benchmark analyses were both obtained by the Statistical Spectral Interpolation, which was the operational data assimilation system of NCEP in 2004. The GFS Operational analysis assimilated a large number of satellite radiance observations in addition to the observations assimilated in our system. All analyses are verified against the Joint Typhoon Warning Center Best Track data set. The errors are calculated for the position and intensity of the TCs. The global component of the ensemble-based system shows improvement in po- sition analysis over the NCEP Reanalysis, but shows no significant difference from the NCEP operational analysis for most of the storm tracks. The regional com- ponent of our system improves position analysis over all the global analyses. The intensity analyses, measured by the minimum sea level pressure, are of similar quality in all of the analyses. Regional deterministic forecasts started from our analyses are generally not significantly different from those started from the GFS operational analysis. On average, the regional experiments performed better for longer than 48 h sea level pressure forecasts, while the global forecast performed better in predicting the position for longer than 48 h.

  13. 78 FR 26437 - Medicare Program; Prospective Payment System and Consolidated Billing for Skilled Nursing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-06

    ...This proposed rule would update the payment rates used under the prospective payment system (PPS) for skilled nursing facilities (SNFs) for fiscal year (FY) 2014, would revise and rebase the SNF market basket, and would make certain technical and conforming revisions in the regulations text. This proposed rule also includes a proposed policy for reporting the SNF market basket forecast error correction in certain limited circumstances and a proposed new item for the Minimum Data Set (MDS), Version 3.0.

  14. Agroclimate.Org: Tools and Information for a Climate Resilient Agriculture in the Southeast USA

    NASA Astrophysics Data System (ADS)

    Fraisse, C.

    2014-12-01

    AgroClimate (http://agroclimate.org) is a web-based system developed to help the agricultural industry in the southeastern USA reduce risks associated with climate variability and change. It includes climate related information and dynamic application tools that interact with a climate and crop database system. Information available includes climate monitoring and forecasts combined with information about crop management practices that help increase the resiliency of the agricultural industry in the region. Recently we have included smartphone apps in the AgroClimate suite of tools, including irrigation management and crop disease alert systems. Decision support tools available in AgroClimate include: (a) Climate risk: expected (probabilistic) and historical climate information and freeze risk; (b) Crop yield risk: expected yield based on soil type, planting date, and basic management practices for selected commodities and historical county yield databases; (c) Crop diseases: disease risk monitoring and forecasting for strawberry and citrus; (d) Crop development: monitoring and forecasting of growing degree-days and chill accumulation; (e) Drought: monitoring and forecasting of selected drought indices, (f) Footprints: Carbon and water footprint calculators. The system also provides background information about the main drivers of climate variability and basic information about climate change in the Southeast USA. AgroClimate has been widely used as an educational tool by the Cooperative Extension Services in the region and also by producers. It is now being replicated internationally with version implemented in Mozambique and Paraguay.

  15. Introduction to SNPP/VIIRS Flood Mapping Software Version 1.0

    NASA Astrophysics Data System (ADS)

    Li, S.; Sun, D.; Goldberg, M.; Sjoberg, W.; Santek, D.; Hoffman, J.

    2017-12-01

    Near real-time satellite-derived flood maps are invaluable to river forecasters and decision-makers for disaster monitoring and relief efforts. With support from the JPSS (Joint Polar Satellite System) Proving Ground and Risk Reduction (PGRR) Program, flood detection software has been developed using Suomi-NPP/VIIRS (Suomi National Polar-orbiting Partnership/Visible Infrared Imaging Radiometer Suite) imagery to automatically generate near real-time flood maps for National Weather Service (NWS) River Forecast Centers (RFC) in the USA. The software, which is called VIIRS NOAA GMU Flood Version 1.0 (hereafter referred to as VNG Flood V1.0), consists of a series of algorithms that include water detection, cloud shadow removal, terrain shadow removal, minor flood detection, water fraction retrieval, and floodwater determination. The software is designed for flood detection in any land region between 80°S and 80°N, and it has been running routinely with direct broadcast SNPP/VIIRS data at the Space Science and Engineering Center at the University of Wisconsin-Madison (UW/SSEC) and the Geographic Information Network of Alaska at the University of Alaska-Fairbanks (UAF/GINA) since 2014. Near real-time flood maps are distributed via the Unidata Local Data Manager (LDM), reviewed by river forecasters in AWIPS-II (the second generation of the Advanced Weather Interactive Processing System) and applied in flood operations. Initial feedback from operational forecasters on the product accuracy and performance has been largely positive. The software capability has also been extended to areas outside of the USA via a case-driven mode to detect major floods all over the world. Offline validation efforts include the visual inspection of over 10,000 VIIRS false-color composite images, an inter-comparison with MODIS automatic flood products and a quantitative evaluation using Landsat imagery. The steady performance from the 3-year routine process and the promising validation results indicate that VNG Flood V1.0 has a high feasibility for flood detection at the product level.

  16. Integrated Water Vapour Retrieval From Irish GPS Network: Results From Validation With Radiosondes And Microwave Profiler And Assimilation Into HIRLAM 7.2 Operational Forecasting Model

    NASA Astrophysics Data System (ADS)

    Hanafin, J. A.; Whelan, E.; McGrath, R.; Jennings, S. G.; O'Dowd, C.

    2009-12-01

    Retrieval of atmospheric integrated water vapour (IWV) from ground-based GPS receivers and provision of this data product for meteorological applications is the focus of the European EUMETNET GPS water vapour programme. The results presented here are the first from a project to provide such information about the state of the atmosphere around Ireland for climate monitoring and improved numerical weather prediction. Two geodetic reference GPS receivers have been deployed at Valentia Observatory in Co. Kerry and Mace Head Atmospheric Research Station in Co. Galway, Ireland. A system to retrieve column-integrated atmospheric water vapour from the data they provide has been developed. Data quality has been assessed using co-located radiosondes at Valentia and observations from a microwave profiling radiometer at Mace Head. Results from the data processing and comparisons with independent observations will be presented. Water vapour retrievals from such sensors can provide good quality observations at hourly intervals of this essential climate variable for assimilation into numerical nowcast and forecast systems. Previous studies have shown that using these data to constrain initial model conditions can improve the accuracy of precipitation forecasts, particularly for heavy rainfall. The current operational forecast model in use at Met Éireann for the region is the new version 7.2 HIRLAM (High-Resolution Limited Area Model). The effects on the forecast for Ireland have been evaluated by assimilating the data into 48-hour forecast runs of this model and results of this study will also be presented.

  17. Comparison of TRMM 2A25 Products Version 6 and Version 7 with NOAA/NSSL Ground Radar-Based National Mosaic QPE

    NASA Technical Reports Server (NTRS)

    Kirstetter, Pierre-Emmanuel; Hong, Y.; Gourley, J. J.; Schwaller, M.; Petersen, W; Zhang, J.

    2012-01-01

    Characterization of the error associated to satellite rainfall estimates is a necessary component of deterministic and probabilistic frameworks involving spaceborne passive and active microwave measurements for applications ranging from water budget studies to forecasting natural hazards related to extreme rainfall events. We focus here on the error structure of Tropical Rainfall Measurement Mission (TRMM) Precipitation Radar (PR) quantitative precipitation estimation (QPE) at ground. The problem was addressed in a previous paper by comparison of 2A25 version 6 (V6) product with reference values derived from NOAA/NSSL's ground radar-based National Mosaic and QPE system (NMQ/Q2). The primary contribution of this study is to compare the new 2A25 version 7 (V7) products that were recently released as a replacement of V6. This new version is considered superior over land areas. Several aspects of the two versions are compared and quantified including rainfall rate distributions, systematic biases, and random errors. All analyses indicate V7 is an improvement over V6.

  18. IWR-MAIN Water Use Forecasting System. Version 5.1. User’s Manual and System Description

    DTIC Science & Technology

    1987-12-01

    Crosschecks for Input Data 1-68 11-1 Organization of the IWR-MAIN System H-8 11-2 Example of Econometric Demand Model 11-9 11-3 Example of Unit Use Coefficient...Unaccounted (entry does not affect default Loss and free service calculations) Y Conservation Data City Name: Test City USA Fl-Hetp, F2-return to monu, F4...socioeconomic data. 1-11 (1) Internal Growth Models The IWR-MAIN program contains a subroutine called GROWTH which uses econometric growth models based on

  19. Using Real-Time Weather Data from an Unmanned Aircraft System to Support the Advanced Research Version of the Weather Research and Forecast Model

    DTIC Science & Technology

    2012-04-01

    east central region of the domain, the Rio Grande River and Rio Grande valley are captured by the lowest contoured elevation region running NW-to...ARMY CECRLCECRL GP ATTN DR DETSCH HANOVER NH 03755-1290 1 CD USAF ROME LAB TECH CORRIDOR W STE 262 RL SUL 26 ELECTR PKWY BLD 106 GRIFFISS

  20. Designing and implementing a regional urban modeling system using the SLEUTH cellular urban model

    USGS Publications Warehouse

    Jantz, Claire A.; Goetz, Scott J.; Donato, David I.; Claggett, Peter

    2010-01-01

    This paper presents a fine-scale (30 meter resolution) regional land cover modeling system, based on the SLEUTH cellular automata model, that was developed for a 257000 km2 area comprising the Chesapeake Bay drainage basin in the eastern United States. As part of this effort, we developed a new version of the SLEUTH model (SLEUTH-3r), which introduces new functionality and fit metrics that substantially increase the performance and applicability of the model. In addition, we developed methods that expand the capability of SLEUTH to incorporate economic, cultural and policy information, opening up new avenues for the integration of SLEUTH with other land-change models. SLEUTH-3r is also more computationally efficient (by a factor of 5) and uses less memory (reduced 65%) than the original software. With the new version of SLEUTH, we were able to achieve high accuracies at both the aggregate level of 15 sub-regional modeling units and at finer scales. We present forecasts to 2030 of urban development under a current trends scenario across the entire Chesapeake Bay drainage basin, and three alternative scenarios for a sub-region within the Chesapeake Bay watershed to illustrate the new ability of SLEUTH-3r to generate forecasts across a broad range of conditions.

  1. The Impact of the Assimilation of Aquarius Sea Surface Salinity Data in the GEOS Ocean Data Assimilation System

    NASA Technical Reports Server (NTRS)

    Vernieres, Guillaume Rene Jean; Kovach, Robin M.; Keppenne, Christian L.; Akella, Santharam; Brucker, Ludovic; Dinnat, Emmanuel Phillippe

    2014-01-01

    Ocean salinity and temperature differences drive thermohaline circulations. These properties also play a key role in the ocean-atmosphere coupling. With the availability of L-band space-borne observations, it becomes possible to provide global scale sea surface salinity (SSS) distribution. This study analyzes globally the along-track (Level 2) Aquarius SSS retrievals obtained using both passive and active L-band observations. Aquarius alongtrack retrieved SSS are assimilated into the ocean data assimilation component of Version 5 of the Goddard Earth Observing System (GEOS-5) assimilation and forecast model. We present a methodology to correct the large biases and errors apparent in Version 2.0 of the Aquarius SSS retrieval algorithm and map the observed Aquarius SSS retrieval into the ocean models bulk salinity in the topmost layer. The impact of the assimilation of the corrected SSS on the salinity analysis is evaluated by comparisons with insitu salinity observations from Argo. The results show a significant reduction of the global biases and RMS of observations-minus-forecast differences at in-situ locations. The most striking results are found in the tropics and southern latitudes. Our results highlight the complementary role and problems that arise during the assimilation of salinity information from in-situ (Argo) and space-borne surface (SSS) observations

  2. Operational specification and forecasting advances for Dst, LEO thermospheric densities, and aviation radiation dose and dose rate

    NASA Astrophysics Data System (ADS)

    Tobiska, W.; Knipp, D. J.; Burke, W. J.; Bouwer, D.; Bailey, J. J.; Hagan, M. P.; Didkovsky, L. V.; Garrett, H. B.; Bowman, B. R.; Gannon, J. L.; Atwell, W.; Blake, J. B.; Crain, W.; Rice, D.; Schunk, R. W.; Fulgham, J.; Bell, D.; Gersey, B.; Wilkins, R.; Fuschino, R.; Flynn, C.; Cecil, K.; Mertens, C. J.; Xu, X.; Crowley, G.; Reynolds, A.; Azeem, S. I.; Wiley, S.; Holland, M.; Malone, K.

    2013-12-01

    Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. Of the space environment domains that are affected by space weather, the magnetosphere, thermosphere, and even troposphere are key regions that are affected. Space Environment Technologies (SET) has developed and is producing innovative space weather applications. Key operational systems for providing timely information about the effects of space weather on these domains are SET's Magnetosphere Alert and Prediction System (MAPS), LEO Alert and Prediction System (LAPS), and Automated Radiation Measurements for Aviation Safety (ARMAS) system. MAPS provides a forecast Dst index out to 6 days through the data-driven, redundant data stream Anemomilos algorithm. Anemomilos uses observational proxies for the magnitude, location, and velocity of solar ejecta events. This forecast index is used by satellite operations to characterize upcoming geomagnetic storms, for example. LAPS is the SET fully redundant operational system providing recent history, current epoch, and forecast solar and geomagnetic indices for use in operational versions of the JB2008 thermospheric density model. The thermospheric densities produced by that system, driven by the LAPS data, are forecast to 72-hours to provide the global mass densities for satellite operators. ARMAS is a project that has successfully demonstrated the operation of a micro dosimeter on aircraft to capture the real-time radiation environment due to Galactic Cosmic Rays and Solar Energetic Particles. The dose and dose-rates are captured on aircraft, downlinked in real-time via the Iridium satellites, processed on the ground, incorporated into the most recent NAIRAS global radiation climatology data runs, and made available to end users via the web and smart phone apps. ARMAS provides the 'weather' of the radiation environment to improve air-crew and passenger safety. Many of the data products from MAPS, LAPS, and ARMAS are available on the SpaceWx smartphone app for iPhone, iPad, iPod, and Android professional users and public space weather education. We describe recent forecasting advances for moving the space weather information from these automated systems into operational, derivative products for communications, aviation, and satellite operations uses.

  3. Optimization of Coronal Mass Ejection Ensemble Forecasting Using WSA-ENLIL with Coned Model

    DTIC Science & Technology

    2013-03-01

    previous versions by a large margin. The mean absolute forecast error of the median ensemble results was improved by over 43% over the original Coned...for reference for the six extra CMEs. .............................................................................................54 Figure 19...single-shot runs) with the flare location noted for reference for the six extra CMEs

  4. The Use of Factorial Forecasting to Predict Public Response

    ERIC Educational Resources Information Center

    Weiss, David J.

    2012-01-01

    Policies that call for members of the public to change their behavior fail if people don't change; predictions of whether the requisite changes will take place are needed prior to implementation. I propose to solve the prediction problem with Factorial Forecasting, a version of functional measurement methodology that employs group designs. Aspects…

  5. Assimilation of MODIS Dark Target and Deep Blue Observations in the Dust Aerosol Component of NMMB-MONARCH version 1.0

    NASA Technical Reports Server (NTRS)

    Di Tomaso, Enza; Schutgens, Nick A. J.; Jorba, Oriol; Perez Garcia-Pando, Carlos

    2017-01-01

    A data assimilation capability has been built for the NMMB-MONARCH chemical weather prediction system, with a focus on mineral dust, a prominent type of aerosol. An ensemble-based Kalman filter technique (namely the local ensemble transform Kalman filter - LETKF) has been utilized to optimally combine model background and satellite retrievals. Our implementation of the ensemble is based on known uncertainties in the physical parametrizations of the dust emission scheme. Experiments showed that MODIS AOD retrievals using the Dark Target algorithm can help NMMB-MONARCH to better characterize atmospheric dust. This is particularly true for the analysis of the dust outflow in the Sahel region and over the African Atlantic coast. The assimilation of MODIS AOD retrievals based on the Deep Blue algorithm has a further positive impact in the analysis downwind from the strongest dust sources of the Sahara and in the Arabian Peninsula. An analysis-initialized forecast performs better (lower forecast error and higher correlation with observations) than a standard forecast, with the exception of underestimating dust in the long-range Atlantic transport and degradation of the temporal evolution of dust in some regions after day 1. Particularly relevant is the improved forecast over the Sahara throughout the forecast range thanks to the assimilation of Deep Blue retrievals over areas not easily covered by other observational datasets.The present study on mineral dust is a first step towards data assimilation with a complete aerosol prediction system that includes multiple aerosol species.

  6. Assimilation of MODIS Dark Target and Deep Blue observations in the dust aerosol component of NMMB-MONARCH version 1.0

    NASA Astrophysics Data System (ADS)

    Di Tomaso, Enza; Schutgens, Nick A. J.; Jorba, Oriol; Pérez García-Pando, Carlos

    2017-03-01

    A data assimilation capability has been built for the NMMB-MONARCH chemical weather prediction system, with a focus on mineral dust, a prominent type of aerosol. An ensemble-based Kalman filter technique (namely the local ensemble transform Kalman filter - LETKF) has been utilized to optimally combine model background and satellite retrievals. Our implementation of the ensemble is based on known uncertainties in the physical parametrizations of the dust emission scheme. Experiments showed that MODIS AOD retrievals using the Dark Target algorithm can help NMMB-MONARCH to better characterize atmospheric dust. This is particularly true for the analysis of the dust outflow in the Sahel region and over the African Atlantic coast. The assimilation of MODIS AOD retrievals based on the Deep Blue algorithm has a further positive impact in the analysis downwind from the strongest dust sources of the Sahara and in the Arabian Peninsula. An analysis-initialized forecast performs better (lower forecast error and higher correlation with observations) than a standard forecast, with the exception of underestimating dust in the long-range Atlantic transport and degradation of the temporal evolution of dust in some regions after day 1. Particularly relevant is the improved forecast over the Sahara throughout the forecast range thanks to the assimilation of Deep Blue retrievals over areas not easily covered by other observational datasets. The present study on mineral dust is a first step towards data assimilation with a complete aerosol prediction system that includes multiple aerosol species.

  7. Forecasting the mortality rates using Lee-Carter model and Heligman-Pollard model

    NASA Astrophysics Data System (ADS)

    Ibrahim, R. I.; Ngataman, N.; Abrisam, W. N. A. Wan Mohd

    2017-09-01

    Improvement in life expectancies has driven further declines in mortality. The sustained reduction in mortality rates and its systematic underestimation has been attracting the significant interest of researchers in recent years because of its potential impact on population size and structure, social security systems, and (from an actuarial perspective) the life insurance and pensions industry worldwide. Among all forecasting methods, the Lee-Carter model has been widely accepted by the actuarial community and Heligman-Pollard model has been widely used by researchers in modelling and forecasting future mortality. Therefore, this paper only focuses on Lee-Carter model and Heligman-Pollard model. The main objective of this paper is to investigate how accurately these two models will perform using Malaysian data. Since these models involves nonlinear equations that are explicitly difficult to solve, the Matrix Laboratory Version 8.0 (MATLAB 8.0) software will be used to estimate the parameters of the models. Autoregressive Integrated Moving Average (ARIMA) procedure is applied to acquire the forecasted parameters for both models as the forecasted mortality rates are obtained by using all the values of forecasted parameters. To investigate the accuracy of the estimation, the forecasted results will be compared against actual data of mortality rates. The results indicate that both models provide better results for male population. However, for the elderly female population, Heligman-Pollard model seems to underestimate to the mortality rates while Lee-Carter model seems to overestimate to the mortality rates.

  8. An experiment in hurricane track prediction using parallel computing methods

    NASA Technical Reports Server (NTRS)

    Song, Chang G.; Jwo, Jung-Sing; Lakshmivarahan, S.; Dhall, S. K.; Lewis, John M.; Velden, Christopher S.

    1994-01-01

    The barotropic model is used to explore the advantages of parallel processing in deterministic forecasting. We apply this model to the track forecasting of hurricane Elena (1985). In this particular application, solutions to systems of elliptic equations are the essence of the computational mechanics. One set of equations is associated with the decomposition of the wind into irrotational and nondivergent components - this determines the initial nondivergent state. Another set is associated with recovery of the streamfunction from the forecasted vorticity. We demonstrate that direct parallel methods based on accelerated block cyclic reduction (BCR) significantly reduce the computational time required to solve the elliptic equations germane to this decomposition and forecast problem. A 72-h track prediction was made using incremental time steps of 16 min on a network of 3000 grid points nominally separated by 100 km. The prediction took 30 sec on the 8-processor Alliant FX/8 computer. This was a speed-up of 3.7 when compared to the one-processor version. The 72-h prediction of Elena's track was made as the storm moved toward Florida's west coast. Approximately 200 km west of Tampa Bay, Elena executed a dramatic recurvature that ultimately changed its course toward the northwest. Although the barotropic track forecast was unable to capture the hurricane's tight cycloidal looping maneuver, the subsequent northwesterly movement was accurately forecasted as was the location and timing of landfall near Mobile Bay.

  9. Empowering Geoscience with Improved Data Assimilation Using the Data Assimilation Research Testbed "Manhattan" Release.

    NASA Astrophysics Data System (ADS)

    Raeder, K.; Hoar, T. J.; Anderson, J. L.; Collins, N.; Hendricks, J.; Kershaw, H.; Ha, S.; Snyder, C.; Skamarock, W. C.; Mizzi, A. P.; Liu, H.; Liu, J.; Pedatella, N. M.; Karspeck, A. R.; Karol, S. I.; Bitz, C. M.; Zhang, Y.

    2017-12-01

    The capabilities of the Data Assimilation Research Testbed (DART) at NCAR have been significantly expanded with the recent "Manhattan" release. DART is an ensemble Kalman filter based suite of tools, which enables researchers to use data assimilation (DA) without first becoming DA experts. Highlights: significant improvement in efficient ensemble DA for very large models on thousands of processors, direct read and write of model state files in parallel, more control of the DA output for finer-grained analysis, new model interfaces which are useful to a variety of geophysical researchers, new observation forward operators and the ability to use precomputed forward operators from the forecast model. The new model interfaces and example applications include the following: MPAS-A; Model for Prediction Across Scales - Atmosphere is a global, nonhydrostatic, variable-resolution mesh atmospheric model, which facilitates multi-scale analysis and forecasting. The absence of distinct subdomains eliminates problems associated with subdomain boundaries. It demonstrates the ability to consistently produce higher-quality analyses than coarse, uniform meshes do. WRF-Chem; Weather Research and Forecasting + (MOZART) Chemistry model assimilates observations from FRAPPÉ (Front Range Air Pollution and Photochemistry Experiment). WACCM-X; Whole Atmosphere Community Climate Model with thermosphere and ionosphere eXtension assimilates observations of electron density to investigate sudden stratospheric warming. CESM (weakly) coupled assimilation; NCAR's Community Earth System Model is used for assimilation of atmospheric and oceanic observations into their respective components using coupled atmosphere+land+ocean+sea+ice forecasts. CESM2.0; Assimilation in the atmospheric component (CAM, WACCM) of the newly released version is supported. This version contains new and extensively updated components and software environment. CICE; Los Alamos sea ice model (in CESM) is used to assimilate multivariate sea ice concentration observations to constrain the model's ice thickness, concentration, and parameters.

  10. A nested-grid limited-area model for short term weather forecasting

    NASA Technical Reports Server (NTRS)

    Wong, V. C.; Zack, J. W.; Kaplan, M. L.; Coats, G. D.

    1983-01-01

    The present investigation is concerned with a mesoscale atmospheric simulation system (MASS), incorporating the sigma-coordinate primitive equations. The present version of this model (MASS 3.0) has 14 vertical layers, with the upper boundary at 100 mb. There are 128 x 96 grid points in each layer. The earlier version of this model (MASS 2.0) has been described by Kaplan et al. (1982). The current investigation provides a summary of major revisions to that version and a description of the parameterization schemes which are presently included in the model. The planetary boundary layer (PBL) is considered, taking into account aspects of generalized similarity theory and free convection, the surface energy budget, the surface moisture budget, and prognostic equations for the depth h of the PBL. A cloud model is discussed, giving attention to stable precipitation, and cumulus convection.

  11. Meteoroid Environment Modeling: the Meteoroid Engineering Model and Shower Forecasting

    NASA Technical Reports Server (NTRS)

    Moorhead, Althea V.

    2017-01-01

    The meteoroid environment is often divided conceptually into meteor showers plus a sporadic background component. The sporadic complex poses the bulk of the risk to spacecraft, but showers can produce significant short-term enhancements of the meteoroid flux. The Meteoroid Environment Office (MEO) has produced two environment models to handle these cases: the Meteoroid Engineering Model (MEM) and an annual meteor shower forecast. Both MEM and the forecast are used by multiple manned spaceflight projects in their meteoroid risk evaluation, and both tools are being revised to incorporate recent meteor velocity, density, and timing measurements. MEM describes the sporadic meteoroid complex and calculates the flux, speed, and directionality of the meteoroid environment relative to a user-supplied spacecraft trajectory, taking the spacecraft's motion into account. MEM is valid in the inner solar system and offers near-Earth and cis-lunar environments. While the current version of MEM offers a nominal meteoroid environment corresponding to a single meteoroid bulk density, the next version of MEMR3 will offer both flux uncertainties and a density distribution in addition to a revised near-Earth environment. We have updated the near-Earth meteor speed distribution and have made the first determination of uncertainty in this distribution. We have also derived a meteor density distribution from the work of Kikwaya et al. (2011). The annual meteor shower forecast takes the form of a report and data tables that can be used in conjunction with an existing MEM assessment. Fluxes are typically quoted to a constant limiting kinetic energy in order to comport with commonly used ballistic limit equations. For the 2017 annual forecast, the MEO substantially revised the list of showers and their characteristics using 14 years of meteor flux measurements from the Canadian Meteor Orbit Radar (CMOR). Defunct or insignificant showers were removed and the temporal profiles of many showers were improved. In 2016 the MEO also adapted the forecast to the cislunar environment for the first time. We plan to make additional improvements to the model in the next two years using optical meteor flux measurements and mass indices.

  12. NOAA's National Air Quality Prediction and Development of Aerosol and Atmospheric Composition Prediction Components for NGGPS

    NASA Astrophysics Data System (ADS)

    Stajner, I.; McQueen, J.; Lee, P.; Stein, A. F.; Wilczak, J. M.; Upadhayay, S.; daSilva, A.; Lu, C. H.; Grell, G. A.; Pierce, R. B.

    2017-12-01

    NOAA's operational air quality predictions of ozone, fine particulate matter (PM2.5) and wildfire smoke over the United States and airborne dust over the contiguous 48 states are distributed at http://airquality.weather.gov. The National Air Quality Forecast Capability (NAQFC) providing these predictions was updated in June 2017. Ozone and PM2.5 predictions are now produced using the system linking the Community Multiscale Air Quality model (CMAQ) version 5.0.2 with meteorological inputs from the North American Mesoscale Forecast System (NAM) version 4. Predictions of PM2.5 include intermittent dust emissions and wildfire emissions from an updated version of BlueSky system. For the latter, the CMAQ system is initialized by rerunning it over the previous 24 hours to include wildfire emissions at the time when they were observed from the satellites. Post processing to reduce the bias in PM2.5 prediction was updated using the Kalman filter analog (KFAN) technique. Dust related aerosol species at the CMAQ domain lateral boundaries now come from the NEMS Global Aerosol Component (NGAC) v2 predictions. Further development of NAQFC includes testing of CMAQ predictions to 72 hours, Canadian fire emissions data from Environment and Climate Change Canada (ECCC) and the KFAN technique to reduce bias in ozone predictions. NOAA is developing the Next Generation Global Predictions System (NGGPS) with an aerosol and gaseous atmospheric composition component to improve and integrate aerosol and ozone predictions and evaluate their impacts on physics, data assimilation and weather prediction. Efforts are underway to improve cloud microphysics, investigate aerosol effects and include representations of atmospheric composition of varying complexity into NGGPS: from the operational ozone parameterization, GOCART aerosols, with simplified ozone chemistry, to CMAQ chemistry with aerosol modules. We will present progress on community building, planning and development of NGGPS.

  13. Model documentation Natural Gas Transmission and Distribution Model of the National Energy Modeling System. Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-02-26

    The Natural Gas Transmission and Distribution Model (NGTDM) of the National Energy Modeling System is developed and maintained by the Energy Information Administration (EIA), Office of Integrated Analysis and Forecasting. This report documents the archived version of the NGTDM that was used to produce the natural gas forecasts presented in the Annual Energy Outlook 1996, (DOE/EIA-0383(96)). The purpose of this report is to provide a reference document for model analysts, users, and the public that defines the objectives of the model, describes its basic approach, and provides detail on the methodology employed. Previously this report represented Volume I of amore » two-volume set. Volume II reported on model performance, detailing convergence criteria and properties, results of sensitivity testing, comparison of model outputs with the literature and/or other model results, and major unresolved issues.« less

  14. Observation Impacts for Longer Forecast Lead-Times

    NASA Astrophysics Data System (ADS)

    Mahajan, R.; Gelaro, R.; Todling, R.

    2013-12-01

    Observation impact on forecasts evaluated using adjoint-based techniques (e.g. Langland and Baker, 2004) are limited by the validity of the assumptions underlying the forecasting model adjoint. Most applications of this approach have focused on deriving observation impacts on short-range forecasts (e.g. 24-hour) in part to stay well within linearization assumptions. The most widely used measure of observation impact relies on the availability of the analysis for verifying the forecasts. As pointed out by Gelaro et al. (2007), and more recently by Todling (2013), this introduces undesirable correlations in the measure that are likely to affect the resulting assessment of the observing system. Stappers and Barkmeijer (2012) introduced a technique that, in principle, allows extending the validity of tangent linear and corresponding adjoint models to longer lead-times, thereby reducing the correlations in the measures used for observation impact assessments. The methodology provides the means to better represent linearized models by making use of Gaussian quadrature relations to handle various underlying non-linear model trajectories. The formulation is exact for particular bi-linear dynamics; it corresponds to an approximation for general-type nonlinearities and must be tested for large atmospheric models. The present work investigates the approach of Stappers and Barkmeijer (2012)in the context of NASA's Goddard Earth Observing System Version 5 (GEOS-5) atmospheric data assimilation system (ADAS). The goal is to calculate observation impacts in the GEOS-5 ADAS for forecast lead-times of at least 48 hours in order to reduce the potential for undesirable correlations that occur at shorter forecast lead times. References [1]Langland, R. H., and N. L. Baker, 2004: Estimation of observation impact using the NRL atmospheric variational data assimilation adjoint system. Tellus, 56A, 189-201. [2] Gelaro, R., Y. Zhu, and R. M. Errico, 2007: Examination of various-order adjoint-based approximations of observation impact. Meteoroloische Zeitschrift, 16, 685-692. [3]Stappers, R. J. J., and J. Barkmeijer, 2012: Optimal linearization trajectories for tangent linear models. Q. J. R. Meteorol. Soc., 138, 170-184. [4] Todling, R. 2013: Comparing two approaches for assessing observation impact. Mon. Wea. Rev., 141, 1484-1505.

  15. The use of seasonal forecasts in a crop failure early warning system for West Africa

    NASA Astrophysics Data System (ADS)

    Nicklin, K. J.; Challinor, A.; Tompkins, A.

    2011-12-01

    Seasonal rainfall in semi-arid West Africa is highly variable. Farming systems in the region are heavily dependent on the monsoon rains leading to large variability in crop yields and a population that is vulnerable to drought. The existing crop yield forecasting system uses observed weather to calculate a water satisfaction index, which is then related to expected crop yield (Traore et al, 2006). Seasonal climate forecasts may be able to increase the lead-time of yield forecasts and reduce the humanitarian impact of drought. This study assesses the potential for a crop failure early warning system, which uses dynamic seasonal forecasts and a process-based crop model. Two sets of simulations are presented. In the first, the crop model is driven with observed weather as a control run. Observed rainfall is provided by the GPCP 1DD data set, whilst observed temperature and solar radiation data are given by the ERA-Interim reanalysis. The crop model used is the groundnut version of the General Large Area Model for annual crops (GLAM), which has been designed to operate on the grids used by seasonal weather forecasts (Challinor et al, 2004). GLAM is modified for use in West Africa by allowing multiple planting dates each season, replanting failed crops and producing parameter sets for Spanish- and Virginia- type West African groundnut. Crop yields are simulated for three different assumptions concerning the distribution and relative abundance of Spanish- and Virginia- type groundnut. Model performance varies with location, but overall shows positive skill in reproducing observed crop failure. The results for the three assumptions are similar, suggesting that the performance of the system is limited by something other than information on the type of groundnut grown. In the second set of simulations the crop model is driven with observed weather up to the forecast date, followed by ECMWF system 3 seasonal forecasts until harvest. The variation of skill with forecast date is assessed along with the extent to which forecasts can be improved by bias correction of the rainfall data. Two forms of bias correction are applied: a novel method of spatially bias correcting daily data, and statistical bias correction of the frequency and intensity distribution. Results are presented using both observed yields and the control run as the reference for verification. The potential for current dynamic seasonal forecasts to form part of an operational system giving timely and accurate warnings of crop failure is discussed. Traore S.B. et al., 2006. A Review of Agrometeorological Monitoring Tools and Methods Used in the West African Sahel. In: Motha R.P. et al., Strengthening Operational Agrometeorological Services at the National Level. Technical Bulletin WAOB-2006-1 and AGM-9, WMO/TD No. 1277. Pages 209-220. www.wamis.org/agm/pubs/agm9/WMO-TD1277.pdf Challinor A.J. et al., 2004. Design and optimisation of a large-area process based model for annual crops. Agric. For. Meteorol. 124, 99-120.

  16. Simulation-Based Probabilistic Seismic Hazard Assessment Using System-Level, Physics-Based Models: Assembling Virtual California

    NASA Astrophysics Data System (ADS)

    Rundle, P. B.; Rundle, J. B.; Morein, G.; Donnellan, A.; Turcotte, D.; Klein, W.

    2004-12-01

    The research community is rapidly moving towards the development of an earthquake forecast technology based on the use of complex, system-level earthquake fault system simulations. Using these topologically and dynamically realistic simulations, it is possible to develop ensemble forecasting methods similar to that used in weather and climate research. To effectively carry out such a program, one needs 1) a topologically realistic model to simulate the fault system; 2) data sets to constrain the model parameters through a systematic program of data assimilation; 3) a computational technology making use of modern paradigms of high performance and parallel computing systems; and 4) software to visualize and analyze the results. In particular, we focus attention on a new version of our code Virtual California (version 2001) in which we model all of the major strike slip faults in California, from the Mexico-California border to the Mendocino Triple Junction. Virtual California is a "backslip model", meaning that the long term rate of slip on each fault segment in the model is matched to the observed rate. We use the historic data set of earthquakes larger than magnitude M > 6 to define the frictional properties of 650 fault segments (degrees of freedom) in the model. To compute the dynamics and the associated surface deformation, we use message passing as implemented in the MPICH standard distribution on a Beowulf clusters consisting of >10 cpus. We also will report results from implementing the code on significantly larger machines so that we can begin to examine much finer spatial scales of resolution, and to assess scaling properties of the code. We present results of simulations both as static images and as mpeg movies, so that the dynamical aspects of the computation can be assessed by the viewer. We compute a variety of statistics from the simulations, including magnitude-frequency relations, and compare these with data from real fault systems. We report recent results on use of Virtual California for probabilistic earthquake forecasting for several sub-groups of major faults in California. These methods have the advantage that system-level fault interactions are explicitly included, as well as laboratory-based friction laws.

  17. Japan Meteorological Agency/Meteorological Research Institute-Coupled Prediction System version 1 (JMA/MRI-CPS1) for operational seasonal forecasting

    NASA Astrophysics Data System (ADS)

    Takaya, Yuhei; Yasuda, Tamaki; Fujii, Yosuke; Matsumoto, Satoshi; Soga, Taizo; Mori, Hirotoshi; Hirai, Masayuki; Ishikawa, Ichiro; Sato, Hitoshi; Shimpo, Akihiko; Kamachi, Masafumi; Ose, Tomoaki

    2017-01-01

    This paper describes the operational seasonal prediction system of the Japan Meteorological Agency (JMA), the Japan Meteorological Agency/Meteorological Research Institute-Coupled Prediction System version 1 (JMA/MRI-CPS1), which was in operation at JMA during the period between February 2010 and May 2015. The predictive skill of the system was assessed with a set of retrospective seasonal predictions (reforecasts) covering 30 years (1981-2010). JMA/MRI-CPS1 showed reasonable predictive skill for the El Niño-Southern Oscillation, comparable to the skills of other state-of-the-art systems. The one-tiered approach adopted in JMA/MRI-CPS1 improved its overall predictive skills for atmospheric predictions over those of the two-tiered approach of the previous uncoupled system. For 3-month predictions with a 1-month lead, JMA/MRI-CPS1 showed statistically significant skills in predicting 500-hPa geopotential height and 2-m temperature in East Asia in most seasons; thus, it is capable of providing skillful seasonal predictions for that region. Furthermore, JMA/MRI-CPS1 was superior overall to the previous system for atmospheric predictions with longer (4-month) lead times. In particular, JMA/MRI-CPS1 was much better able to predict the Asian Summer Monsoon than the previous two-tiered system. This enhanced performance was attributed to the system's ability to represent atmosphere-ocean coupled variability over the Indian Ocean and the western North Pacific from boreal winter to summer following winter El Niño events, which in turn influences the East Asian summer climate through the Pacific-Japan teleconnection pattern. These substantial improvements obtained by using an atmosphere-ocean coupled general circulation model underpin its success in providing more skillful seasonal forecasts on an operational basis.

  18. Performance Assessment of New Land-Surface and Planetary Boundary Layer Physics in the WRF-ARW

    EPA Science Inventory

    The Pleim-Xiu land surface model, Pleim surface layer scheme, and Asymmetric Convective Model (version 2) are now options in version 3.0 of the Weather Research and Forecasting model (WRF) Advanced Research WRF (ARW) core. These physics parameterizations were developed for the f...

  19. Earth Observations and the Role of UAVs: A Capabilities Assessment. Version 1.1

    NASA Technical Reports Server (NTRS)

    Cox, Timothy H.; Somers, Ivan; Fratello, David J.

    2006-01-01

    This document provides an assessment of the civil UAV missions and technologies and is intended to parallel the Office of the Secretary of Defense UAV Roadmap. The intent of this document is four-fold: 1. Determine and document desired future missions of Earth observation UAVs based on user-defined needs 2. Determine and document the technologies necessary to support those missions 3. Discuss the present state of the platform capabilities and required technologies, identifying those in progress, those planned, and those for which no current plans exist 4. Provide the foundations for development of a comprehensive civil UAV roadmap to complement the Department of Defense (DoD) effort (http://www.acq.osd.mil/uas/). Two aspects of the President's Management Agenda (refer to the document located at: www.whitehouse.gov/omb/budget/fy2002/mgmt.pdf ) are supported by this undertaking. First, it is one that will engage multiple Agencies in the effort as stakeholders and benefactors of the systems. In that sense, the market will be driven by the user requirements and applications. The second aspect is one of supporting economic development in the commercial sector. Market forecasts for the civil use of UAVs have indicated an infant market stage at present with a sustained forecasted growth. There is some difficulty in quantifying the value of the market since the typical estimate excludes system components other than the aerial platforms. Section 2.4 addresses the civil UAV market forecast and lists several independent forecasts. One conclusion that can be drawn from these forecasts is that all show a sustained growth for the duration of each long-term forecast.

  20. Global Earthquake Activity Rate models based on version 2 of the Global Strain Rate Map

    NASA Astrophysics Data System (ADS)

    Bird, P.; Kreemer, C.; Kagan, Y. Y.; Jackson, D. D.

    2013-12-01

    Global Earthquake Activity Rate (GEAR) models have usually been based on either relative tectonic motion (fault slip rates and/or distributed strain rates), or on smoothing of seismic catalogs. However, a hybrid approach appears to perform better than either parent, at least in some retrospective tests. First, we construct a Tectonic ('T') forecast of shallow (≤ 70 km) seismicity based on global plate-boundary strain rates from version 2 of the Global Strain Rate Map. Our approach is the SHIFT (Seismic Hazard Inferred From Tectonics) method described by Bird et al. [2010, SRL], in which the character of the strain rate tensor (thrusting and/or strike-slip and/or normal) is used to select the most comparable type of plate boundary for calibration of the coupled seismogenic lithosphere thickness and corner magnitude. One difference is that activity of offshore plate boundaries is spatially smoothed using empirical half-widths [Bird & Kagan, 2004, BSSA] before conversion to seismicity. Another is that the velocity-dependence of coupling in subduction and continental-convergent boundaries [Bird et al., 2009, BSSA] is incorporated. Another forecast component is the smoothed-seismicity ('S') forecast model of [Kagan & Jackson, 1994, JGR; Kagan & Jackson, 2010, GJI], which was based on optimized smoothing of the shallow part of the GCMT catalog, years 1977-2004. Both forecasts were prepared for threshold magnitude 5.767. Then, we create hybrid forecasts by one of 3 methods: (a) taking the greater of S or T; (b) simple weighted-average of S and T; or (c) log of the forecast rate is a weighted average of the logs of S and T. In methods (b) and (c) there is one free parameter, which is the fractional contribution from S. All hybrid forecasts are normalized to the same global rate. Pseudo-prospective tests for 2005-2012 (using versions of S and T calibrated on years 1977-2004) show that many hybrid models outperform both parents (S and T), and that the optimal weight on S is in the neighborhood of 5/8. This is true whether forecast performance is scored by Kagan's [2009, GJI] I1 information score, or by the S-test of Zechar & Jordan [2010, BSSA]. These hybrids also score well (0.97) in the ASS-test of Zechar & Jordan [2008, GJI] with respect to prior relative intensity.

  1. Operational skill assessment of the IBI-MFC Ocean Forecasting System within the frame of the CMEMS.

    NASA Astrophysics Data System (ADS)

    Lorente Jimenez, Pablo; Garcia-Sotillo, Marcos; Amo-Balandron, Arancha; Aznar Lecocq, Roland; Perez Gomez, Begoña; Levier, Bruno; Alvarez-Fanjul, Enrique

    2016-04-01

    Since operational ocean forecasting systems (OOFSs) are increasingly used as tools to support high-stakes decision-making for coastal management, a rigorous skill assessment of model performance becomes essential. In this context, the IBI-MFC (Iberia-Biscay-Ireland Monitoring & Forecasting Centre) has been providing daily ocean model estimates and forecasts for the IBI regional seas since 2011, first in the frame of MyOcean projects and later as part of the Copernicus Marine Environment Monitoring Service (CMEMS). A comprehensive web validation tool named NARVAL (North Atlantic Regional VALidation) has been developed to routinely monitor IBI performance and to evaluate model's veracity and prognostic capabilities. Three-dimensional comparisons are carried out on a different time basis ('online mode' - daily verifications - and 'delayed mode' - for longer time periods -) using a broad variety of in-situ (buoys, tide-gauges, ARGO-floats, drifters and gliders) and remote-sensing (satellite and HF radars) observational sources as reference fields to validate against the NEMO model solution. Product quality indicators and meaningful skill metrics are automatically computed not only averaged over the entire IBI domain but also over specific sub-regions of particular interest from a user perspective (i.e. coastal or shelf areas) in order to determine IBI spatial and temporal uncertainty levels. A complementary aspect of NARVAL web tool is the intercomparison of different CMEMS forecast model solutions in overlapping areas. Noticeable efforts are in progress in order to quantitatively assess the quality and consistency of nested system outputs by setting up specific intercomparison exercises on different temporal and spatial scales, encompassing global configurations (CMEMS Global system), regional applications (NWS and MED ones) and local high-resolution coastal models (i.e. the PdE SAMPA system in the Gibraltar Strait). NARVAL constitutes a powerful approach to increase our knowledge on the IBI-MFC forecast system and aids us to inform CMEMS end users about the provided ocean forecasting products' confidence level by routinely delivering QUality Information Documents (QUIDs). It allows the detection of strengths and weaknesses in the modeling of several key physical processes and the understanding of potential sources of discrepancies in IBI predictions. Once the numerical model shortcomings are identified, potential improvements can be achieved thanks to reliable upgrades, making evolve IBI OOFS towards more refined and advanced versions.

  2. Towards uncertainty estimation for operational forecast products - a multi-model-ensemble approach for the North Sea and the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Golbeck, Inga; Li, Xin; Janssen, Frank

    2014-05-01

    Several independent operational ocean models provide forecasts of the ocean state (e.g. sea level, temperature, salinity and ice cover) in the North Sea and the Baltic Sea on a daily basis. These forecasts are the primary source of information for a variety of information and emergency response systems used e.g. to issue sea level warnings or carry out oil drift forecast. The forecasts are of course highly valuable as such, but often suffer from a lack of information on their uncertainty. With the aim of augmenting the existing operational ocean forecasts in the North Sea and the Baltic Sea by a measure of uncertainty a multi-model-ensemble (MME) system for sea surface temperature (SST), sea surface salinity (SSS) and water transports has been set up in the framework of the MyOcean-2 project. Members of MyOcean-2, the NOOS² and HIROMB/BOOS³ communities provide 48h-forecasts serving as inputs. Different variables are processed separately due to their different physical characteristics. Based on the so far collected daily MME products of SST and SSS, a statistical method, Empirical Orthogonal Function (EOF) analysis is applied to assess their spatial and temporal variability. For sea surface currents, progressive vector diagrams at specific points are consulted to estimate the performance of the circulation models especially in hydrodynamic important areas, e.g. inflow/outflow of the Baltic Sea, Norwegian trench and English Channel. For further versions of the MME system, it is planned to extend the MME to other variables like e.g. sea level, ocean currents or ice cover based on the needs of the model providers and their customers. It is also planned to include in-situ data to augment the uncertainty information and for validation purposes. Additionally, weighting methods will be implemented into the MME system to develop more complex uncertainty measures. The methodology used to create the MME will be outlined and different ensemble products will be presented. In addition, some preliminary results based on the statistical analysis of the uncertainty measures provide first estimates of the regional and temporal performance of the ocean models for each parameter. ²Northwest European Shelf Operational Oceanography System ³High-resolution Operational Model of the Baltic / Baltic Operational Oceanographic System

  3. Real time soil moisture forecasts for irrigation management: the Pre.G.I. project

    NASA Astrophysics Data System (ADS)

    Ceppi, A.; Ravazzani, G.; Mancini, M.; Salerno, R.

    2012-04-01

    In recent years frequent periods of water scarcity have enhanced the need to use water more carefully. Future climate change scenarios, combined with limited water resources require better irrigation management and planning for farmers' water cooperatives. This has occurred also in areas traditionally rich of water as Lombardy Region, in the North of Italy. In this study we show the development and implementation of a real-time drought forecasting system with a soil moisture hydrological alert, in particular we describe preliminary results of the Pre.G.I. Project, an Italian acronym that stands for "Hydro-Meteorological forecast for irrigation management", funded by Lombardy Region. The project develops a support decision system based on an ensemble weather prediction in the medium-long range (up to 30 days) with hydrological simulation of water balance to forecast the soil water content in every parcel over the Consorzio Muzza basin, in order to use the irrigation water in a wiser and thriftier way. The studied area covers 74,000 ha in the middle of the Po Valley, near Lodi city. The hydrological ensemble forecasts are based on 20 meteorological members of a modified version of the non-hydrostatic WRF model, with multiple nesting to scale to the region of interest. Different physical schemes are also used to take into account a larger variability; these data are provided by Epson Meteo Centre. The hydrological model used to generate the soil moisture and water table simulations is the rainfall-runoff distributed FEST-WB model, developed at Politecnico di Milano. The analysis shows the system reliability based on most significant case-studies occurred in the recent years.

  4. Prediction and monitoring of monsoon intraseasonal oscillations over Indian monsoon region in an ensemble prediction system using CFSv2

    NASA Astrophysics Data System (ADS)

    Abhilash, S.; Sahai, A. K.; Borah, N.; Chattopadhyay, R.; Joseph, S.; Sharmila, S.; De, S.; Goswami, B. N.; Kumar, Arun

    2014-05-01

    An ensemble prediction system (EPS) is devised for the extended range prediction (ERP) of monsoon intraseasonal oscillations (MISO) of Indian summer monsoon (ISM) using National Centers for Environmental Prediction Climate Forecast System model version 2 at T126 horizontal resolution. The EPS is formulated by generating 11 member ensembles through the perturbation of atmospheric initial conditions. The hindcast experiments were conducted at every 5-day interval for 45 days lead time starting from 16th May to 28th September during 2001-2012. The general simulation of ISM characteristics and the ERP skill of the proposed EPS at pentad mean scale are evaluated in the present study. Though the EPS underestimates both the mean and variability of ISM rainfall, it simulates the northward propagation of MISO reasonably well. It is found that the signal-to-noise ratio of the forecasted rainfall becomes unity by about 18 days. The potential predictability error of the forecasted rainfall saturates by about 25 days. Though useful deterministic forecasts could be generated up to 2nd pentad lead, significant correlations are found even up to 4th pentad lead. The skill in predicting large-scale MISO, which is assessed by comparing the predicted and observed MISO indices, is found to be ~17 days. It is noted that the prediction skill of actual rainfall is closely related to the prediction of large-scale MISO amplitude as well as the initial conditions related to the different phases of MISO. An analysis of categorical prediction skills reveals that break is more skillfully predicted, followed by active and then normal. The categorical probability skill scores suggest that useful probabilistic forecasts could be generated even up to 4th pentad lead.

  5. Verification of temperature, precipitation, and streamflow forecasts from the NOAA/NWS Hydrologic Ensemble Forecast Service (HEFS): 1. Experimental design and forcing verification

    NASA Astrophysics Data System (ADS)

    Brown, James D.; Wu, Limin; He, Minxue; Regonda, Satish; Lee, Haksu; Seo, Dong-Jun

    2014-11-01

    Retrospective forecasts of precipitation, temperature, and streamflow were generated with the Hydrologic Ensemble Forecast Service (HEFS) of the U.S. National Weather Service (NWS) for a 20-year period between 1979 and 1999. The hindcasts were produced for two basins in each of four River Forecast Centers (RFCs), namely the Arkansas-Red Basin RFC, the Colorado Basin RFC, the California-Nevada RFC, and the Middle Atlantic RFC. Precipitation and temperature forecasts were produced with the HEFS Meteorological Ensemble Forecast Processor (MEFP). Inputs to the MEFP comprised ;raw; precipitation and temperature forecasts from the frozen (circa 1997) version of the NWS Global Forecast System (GFS) and a climatological ensemble, which involved resampling historical observations in a moving window around the forecast valid date (;resampled climatology;). In both cases, the forecast horizon was 1-14 days. This paper outlines the hindcasting and verification strategy, and then focuses on the quality of the temperature and precipitation forecasts from the MEFP. A companion paper focuses on the quality of the streamflow forecasts from the HEFS. In general, the precipitation forecasts are more skillful than resampled climatology during the first week, but comprise little or no skill during the second week. In contrast, the temperature forecasts improve upon resampled climatology at all forecast lead times. However, there are notable differences among RFCs and for different seasons, aggregation periods and magnitudes of the observed and forecast variables, both for precipitation and temperature. For example, the MEFP-GFS precipitation forecasts show the highest correlations and greatest skill in the California Nevada RFC, particularly during the wet season (November-April). While generally reliable, the MEFP forecasts typically underestimate the largest observed precipitation amounts (a Type-II conditional bias). As a statistical technique, the MEFP cannot detect, and thus appropriately correct for, conditions that are undetected by the GFS. The calibration of the MEFP to provide reliable and skillful forecasts of a range of precipitation amounts (not only large amounts) is a secondary factor responsible for these Type-II conditional biases. Interpretation of the verification results leads to guidance on the expected performance and limitations of the MEFP, together with recommendations on future enhancements.

  6. International MODIS and AIRS Processing Package (IMAPP) Implementation of Infusion of Satellite Data into Environmental Applications-International (IDEA-I) for Air Quality Forecasts using Suomi-NPP, Terra and Aqua Aerosol Retrievals

    NASA Astrophysics Data System (ADS)

    Davies, J. E.; Strabala, K.; Pierce, R. B.; Huang, A.

    2016-12-01

    Fine mode aerosols play a significant role in public health through their impact on respiratory and cardiovascular disease. IDEA-I (Infusion of Satellite Data into Environmental Applications-International) is a real-time system for trajectory-based forecasts of aerosol dispersion that can assist in the prediction of poor air quality events. We released a direct broadcast version of IDEA-I for aerosol trajectory forecasts in June 2012 under the International MODIS and AIRS Processing Package (IMAPP). In January 2014 we updated this application with website software to display multi-satellite products. Now we have added VIIRS aerosols from Suomi National Polar-orbiting Partnership (S-NPP). IMAPP is a NASA-funded and freely-distributed software package developed at Space Science and Engineering Center of University of Wisconsin-Madison that has over 2,300 registered users worldwide. With IMAPP, any ground station capable of receiving direct broadcast from Terra or Aqua can produce calibrated and geolocated radiances and a suite of environmental products. These products include MODIS AOD required for IDEA-I. VIIRS AOD for IDEA-I can be generated by Community Satellite Processing Package (CSPP) VIIRS EDR Version 2.0 Software for Suomi NPP. CSPP is also developed and distributed by Space Science & Engineering Center. This presentation describes our updated IMAPP implementation of IDEA-I through an example of its operation in a region known for episodic poor air quality events.

  7. The Global Ocean Forecast System, Version 3.0 (GOFS 3.0) or the Hybrid Coordinate Ocean Model (HYCOM)

    DTIC Science & Technology

    2012-04-10

    System (GOFS) V3.0 – 1/12 HYCOM/NCODA: Phase I‖ by Metzger et al., dated 26 November 2008 (NRL/MR/7320—08- 9148). The HYbrid Coordinate Ocean...C. Lozano, H.L. Tolman, A. Srinivasan, S. Hankin, P. Cornillon, R. Weisberg, A. Barth, R. He, F. Werner, and J. Wilkin , 2009. U.S. GODAE: Global...E.J. Metzger, J.F. Shriver, O.M. Smedstad, A.J. Wallcraft, and C.N. Barron, 2008 : Eddy-resolving global ocean prediction. In "Eddy-Resolving Ocean

  8. Forecast skill of a high-resolution real-time mesoscale model designed for weather support of operations at Kennedy Space Center and Cape Canaveral Air Station

    NASA Technical Reports Server (NTRS)

    Taylor, Gregory E.; Zack, John W.; Manobianco, John

    1994-01-01

    NASA funded Mesoscale Environmental Simulations and Operations (MESO), Inc. to develop a version of the Mesoscale Atmospheric Simulation System (MASS). The model has been modified specifically for short-range forecasting in the vicinity of KSC/CCAS. To accomplish this, the model domain has been limited to increase the number of horizontal grid points (and therefore grid resolution) and the model' s treatment of precipitation, radiation, and surface hydrology physics has been enhanced to predict convection forced by local variations in surface heat, moisture fluxes, and cloud shading. The objective of this paper is to (1) provide an overview of MASS including the real-time initialization and configuration for running the data pre-processor and model, and (2) to summarize the preliminary evaluation of the model's forecasts of temperature, moisture, and wind at selected rawinsonde station locations during February 1994 and July 1994. MASS is a hydrostatic, three-dimensional modeling system which includes schemes to represent planetary boundary layer processes, surface energy and moisture budgets, free atmospheric long and short wave radiation, cloud microphysics, and sub-grid scale moist convection.

  9. Characteristics of Operational Space Weather Forecasting: Observations and Models

    NASA Astrophysics Data System (ADS)

    Berger, Thomas; Viereck, Rodney; Singer, Howard; Onsager, Terry; Biesecker, Doug; Rutledge, Robert; Hill, Steven; Akmaev, Rashid; Milward, George; Fuller-Rowell, Tim

    2015-04-01

    In contrast to research observations, models and ground support systems, operational systems are characterized by real-time data streams and run schedules, with redundant backup systems for most elements of the system. We review the characteristics of operational space weather forecasting, concentrating on the key aspects of ground- and space-based observations that feed models of the coupled Sun-Earth system at the NOAA/Space Weather Prediction Center (SWPC). Building on the infrastructure of the National Weather Service, SWPC is working toward a fully operational system based on the GOES weather satellite system (constant real-time operation with back-up satellites), the newly launched DSCOVR satellite at L1 (constant real-time data network with AFSCN backup), and operational models of the heliosphere, magnetosphere, and ionosphere/thermosphere/mesophere systems run on the Weather and Climate Operational Super-computing System (WCOSS), one of the worlds largest and fastest operational computer systems that will be upgraded to a dual 2.5 Pflop system in 2016. We review plans for further operational space weather observing platforms being developed in the context of the Space Weather Operations Research and Mitigation (SWORM) task force in the Office of Science and Technology Policy (OSTP) at the White House. We also review the current operational model developments at SWPC, concentrating on the differences between the research codes and the modified real-time versions that must run with zero fault tolerance on the WCOSS systems. Understanding the characteristics and needs of the operational forecasting community is key to producing research into the coupled Sun-Earth system with maximal societal benefit.

  10. NOAA HRD's HEDAS Data Assimilation System's performance for the 2010 Atlantic Hurricane Season

    NASA Astrophysics Data System (ADS)

    Sellwood, K.; Aksoy, A.; Vukicevic, T.; Lorsolo, S.

    2010-12-01

    The Hurricane Ensemble Data Assimilation System (HEDAS) was developed at the Hurricane Research Division (HRD) of NOAA, in conjunction with an experimental version of the Hurricane Weather and Research Forecast model (HWRFx), in an effort to improve the initial representation of the hurricane vortex by utilizing high resolution in-situ data collected during NOAA’s Hurricane Field Program. HEDAS implements the “ensemble square root “ filter of Whitaker and Hamill (2002) using a 30 member ensemble obtained from NOAA/ESRL’s ensemble Kalman filter (EnKF) system and the assimilation is performed on a 3-km nest centered on the hurricane vortex. As part of NOAA’s Hurricane Forecast Improvement Program (HFIP), HEDAS will be run in a semi-operational mode for the first time during the 2010 Atlantic hurricane season and will assimilate airborne Doppler radar winds, dropwindsonde and flight level wind, temperature, pressure and relative humidity, and Stepped Frequency Microwave Radiometer surface wind observations as they become available. HEDAS has been implemented in an experimental mode for the cases of Hurricane Bill, 2009 and Paloma, 2008 to confirm functionality and determine the optimal configuration of the system. This test case demonstrates the importance of assimilating thermodynamic data in addition to wind observations and the benefit of increasing the quantity and distribution of observations. Applying HEDAS to a larger sample of storm forecasts would provide further insight into the behavior of the model when inner core aircraft observations are assimilated. The main focus of this talk will be to present a summary of HEDAS performance in the HWRFx model for the inaugural season. The HEDAS analyses and the resulting HWRFx forecasts will be compared with HWRFx analyses and forecasts produced concurrently using the HRD modeling group’s vortex initialization which does not employ data assimilation. The initial vortex and subsequent forecasts will be evaluated based on the thermodynamic structure, wind field, track and intensity. Related HEDAS research to be presented by HRD’s data assimilation group include evaluations of the geostrophic wind balance and covariance structures for the Bill experiments, and Observation System Simulation experiments (OSSEs) for the case of hurricane Paloma using both model generated and real observations.

  11. Forecasting Dust Storms Using the CARMA-Dust Model and MM5 Weather Data

    NASA Astrophysics Data System (ADS)

    Barnum, B. H.; Winstead, N. S.; Wesely, J.; Hakola, A.; Colarco, P.; Toon, O. B.; Ginoux, P.; Brooks, G.; Hasselbarth, L. M.; Toth, B.; Sterner, R.

    2002-12-01

    An operational model for the forecast of dust storms in Northern Africa, the Middle East and Southwest Asia has been developed for the United States Air Force Weather Agency (AFWA). The dust forecast model uses the 5th generation Penn State Mesoscale Meteorology Model (MM5), and a modified version of the Colorado Aerosol and Radiation Model for Atmospheres (CARMA). AFWA conducted a 60 day evaluation of the dust model to look at the model's ability to forecast dust storms for short, medium and long range (72 hour) forecast periods. The study used satellite and ground observations of dust storms to verify the model's effectiveness. Each of the main mesoscale forecast theaters was broken down into smaller sub-regions for detailed analysis. The study found the forecast model was able to forecast dust storms in Saharan Africa and the Sahel region with an average Probability of Detection (POD)exceeding 68%, with a 16% False Alarm Rate (FAR). The Southwest Asian theater had average POD's of 61% with FAR's averaging 10%.

  12. Comparative Evaluation of Performances of Two Versions of NCEP Climate Forecast System in Predicting Winter Precipitation over India

    NASA Astrophysics Data System (ADS)

    Nageswararao, M. M.; Mohanty, U. C.; Nair, Archana; Ramakrishna, S. S. V. S.

    2016-06-01

    The precipitation during winter (December through February) over India is highly variable in terms of time and space. Maximum precipitation occurs over the Himalaya region, which is important for water resources and agriculture sectors over the region and also for the economy of the country. Therefore, in the present global warming era, the realistic prediction of winter precipitation over India is important for planning and implementing agriculture and water management strategies. The National Centers for Environmental Prediction (NCEP) issued the operational prediction of climatic variables in monthly to seasonal scale since 2004 using their first version of fully coupled global climate model known as Climate Forecast System (CFSv1). In 2011, a new version of CFS (CFSv2) was introduced with the incorporation of significant changes in older version of CFS (CFSv1). The new version of CFS is required to compare in detail with the older version in the context of simulating the winter precipitation over India. Therefore, the current study presents a detailed analysis on the performance of CFSv2 as compared to CFSv1 for the winter precipitation over India. The hindcast runs of both CFS versions from 1982 to 2008 with November initial conditions are used and the model's precipitation is evaluated with that of India Meteorological Department (IMD). The models simulated wind and geopotential height against the National Center for Atmospheric Research (NCEP-NCAR) reanalysis-2 (NNRP2) and remote response patterns of SST against Extended Reconstructed Sea Surface Temperatures version 3b (ERSSTv3b) are examined for the same period. The analyses of winter precipitation revealed that both the models are able to replicate the patterns of observed climatology; interannual variability and coefficient of variation. However, the magnitude is lesser than IMD observation that can be attributed to the model's inability to simulate the observed remote response of sea surface temperatures to all India winter precipitation. Of the two, CFSv1 is appreciable in capturing year-to-year variations in observed winter precipitation while CFSv2 failed in simulating the same. CFSv1 has accounted for less mean bias and RMSE errors along with good correlations and index of agreements than CFSv2 for predicting winter precipitation over India. In addition, the CFSv1 is also having a high probability of detection in predicting different categories (normal, excess and deficit) of observed winter precipitation over India.

  13. Initial conditions and ENSO prediction using a coupled ocean-atmosphere model

    NASA Astrophysics Data System (ADS)

    Larow, T. E.; Krishnamurti, T. N.

    1998-01-01

    A coupled ocean-atmosphere initialization scheme using Newtonian relaxation has been developed for the Florida State University coupled ocean-atmosphere global general circulation model. The initialization scheme is used to initialize the coupled model for seasonal forecasting the boreal summers of 1987 and 1988. The atmosphere model is a modified version of the Florida State University global spectral model, resolution T-42. The ocean general circulation model consists of a slightly modified version of the Hamburg's climate group model described in Latif (1987) and Latif et al. (1993). The coupling is synchronous with information exchanged every two model hours. Using ECMWF atmospheric daily analysis and observed monthly mean SSTs, two, 1-year, time-dependent, Newtonian relaxation were performed using the coupled model prior to conducting the seasonal forecasts. The coupled initializations were conducted from 1 June 1986 to 1 June 1987 and from 1 June 1987 to 1 June 1988. Newtonian relaxation was applied to the prognostic atmospheric vorticity, divergence, temperature and dew point depression equations. In the ocean model the relaxation was applied to the surface temperature. Two, 10-member ensemble integrations were conducted to examine the impact of the coupled initialization on the seasonal forecasts. The initial conditions used for the ensembles are the ocean's final state after the initialization and the atmospheric initial conditions are ECMWF analysis. Examination of the SST root mean square error and anomaly correlations between observed and forecasted SSTs in the Niño-3 and Niño-4 regions for the 2 seasonal forecasts, show closer agreement between the initialized forecast than two, 10-member non-initialized ensemble forecasts. The main conclusion here is that a single forecast with the coupled initialization outperforms, in SST anomaly prediction, against each of the control forecasts (members of the ensemble) which do not include such an initialization, indicating possible importance for the inclusion of the atmosphere during the coupled initialization.

  14. Towards uncertainty estimates in global operational forecasts of trace gases in the Copernicus Atmosphere Monitoring System

    NASA Astrophysics Data System (ADS)

    Huijnen, V.; Bouarar, I.; Chabrillat, S. H.; Christophe, Y.; Thierno, D.; Karydis, V.; Marecal, V.; Pozzer, A.; Flemming, J.

    2017-12-01

    Operational atmospheric composition analyses and forecasts such as developed in the Copernicus Atmosphere Monitoring Service (CAMS) rely on modules describing emissions, chemical conversion, transport and removal processing, as well as data assimilation methods. The CAMS forecasts can be used to drive regional air quality models across the world. Critical analyses of uncertainties in any of these processes are continuously needed to advance the quality of such systems on a global scale, ranging from the surface up to the stratosphere. With regard to the atmospheric chemistry to describe the fate of trace gases, the operational system currently relies on a modified version of the CB05 chemistry scheme for the troposphere combined with the Cariolle scheme to describe stratospheric ozone, as integrated in ECMWF's Integrated Forecasting System (IFS). It is further constrained by assimilation of satellite observations of CO, O3 and NO2. As part of CAMS we have recently developed three fully independent schemes to describe the chemical conversion throughout the atmosphere. These parameterizations originate from parent model codes in MOZART, MOCAGE and a combination of TM5/BASCOE. In this contribution we evaluate the correspondence and elemental differences in the performance of the three schemes in an otherwise identical model configuration (excluding data-assimilation) against a large range of in-situ and satellite-based observations of ozone, CO, VOC's and chlorine-containing trace gases for both troposphere and stratosphere. This analysis aims to provide a measure of model uncertainty in the operational system for tracers that are not, or poorly, constrained by data assimilation. It aims also to provide guidance on the directions for further model improvement with regard to the chemical conversion module.

  15. Real Time Volcanic Cloud Products and Predictions for Aviation Alerts

    NASA Technical Reports Server (NTRS)

    Krotkov, Nickolay A.; Habib, Shahid; da Silva, Arlindo; Hughes, Eric; Yang, Kai; Brentzel, Kelvin; Seftor, Colin; Li, Jason Y.; Schneider, David; Guffanti, Marianne; hide

    2014-01-01

    Volcanic eruptions can inject significant amounts of sulfur dioxide (SO2) and volcanic ash into the atmosphere, posing a substantial risk to aviation safety. Ingesting near-real time and Direct Readout satellite volcanic cloud data is vital for improving reliability of volcanic ash forecasts and mitigating the effects of volcanic eruptions on aviation and the economy. NASA volcanic products from the Ozone Monitoring Insrument (OMI) aboard the Aura satellite have been incorporated into Decision Support Systems of many operational agencies. With the Aura mission approaching its 10th anniversary, there is an urgent need to replace OMI data with those from the next generation operational NASA/NOAA Suomi National Polar Partnership (SNPP) satellite. The data provided from these instruments are being incorporated into forecasting models to provide quantitative ash forecasts for air traffic management. This study demonstrates the feasibility of the volcanic near-real time and Direct Readout data products from the new Ozone Monitoring and Profiling Suite (OMPS) ultraviolet sensor onboard SNPP for monitoring and forecasting volcanic clouds. The transition of NASA data production to our operational partners is outlined. Satellite observations are used to constrain volcanic cloud simulations and improve estimates of eruption parameters, resulting in more accurate forecasts. This is demonstrated for the 2012 eruption of Copahue. Volcanic eruptions are modeled using the Goddard Earth Observing System, Version 5 (GEOS-5) and the Goddard Chemistry Aerosol and Radiation Transport (GOCART) model. A hindcast of the disruptive eruption from Iceland's Eyjafjallajokull is used to estimate aviation re-routing costs using Metron Aviation's ATM Tools.

  16. Predictability of CFSv2 in the tropical Indo-Pacific region, at daily and subseasonal time scales

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, V.

    2018-06-01

    The predictability of a coupled climate model is evaluated at daily and intraseasonal time scales in the tropical Indo-Pacific region during boreal summer and winter. This study has assessed the daily retrospective forecasts of the Climate Forecast System version 2 from the National Centers of Environmental Prediction for the period 1982-2010. The growth of errors in the forecasts of daily precipitation, monsoon intraseasonal oscillation (MISO) and the Madden-Julian oscillation (MJO) is studied. The seasonal cycle of the daily climatology of precipitation is reasonably well predicted except for the underestimation during the peak of summer. The anomalies follow the typical pattern of error growth in nonlinear systems and show no difference between summer and winter. The initial errors in all the cases are found to be in the nonlinear phase of the error growth. The doubling time of small errors is estimated by applying Lorenz error formula. For summer and winter, the doubling time of the forecast errors is in the range of 4-7 and 5-14 days while the doubling time of the predictability errors is 6-8 and 8-14 days, respectively. The doubling time in MISO during the summer and MJO during the winter is in the range of 12-14 days, indicating higher predictability and providing optimism for long-range prediction. There is no significant difference in the growth of forecasts errors originating from different phases of MISO and MJO, although the prediction of the active phase seems to be slightly better.

  17. A new short-term forecasting model for the total electron content storm time disturbances

    NASA Astrophysics Data System (ADS)

    Tsagouri, Ioanna; Koutroumbas, Konstantinos; Elias, Panagiotis

    2018-06-01

    This paper aims to introduce a new model for the short-term forecast of the vertical Total Electron Content (vTEC). The basic idea of the proposed model lies on the concept of the Solar Wind driven autoregressive model for Ionospheric short-term Forecast (SWIF). In its original version, the model is operationally implemented in the DIAS system (http://dias.space.noa.gr) and provides alerts and warnings for upcoming ionospheric disturbances, as well as single site and regional forecasts of the foF2 critical frequency over Europe up to 24 h in advance. The forecasts are driven by the real time assessment of the solar wind conditions at ACE location. The comparative analysis of the variations in foF2 and vTEC during eleven geomagnetic storm events that occurred in the present solar cycle 24 reveals similarities but also differences in the storm-time response of the two characteristics with respect to the local time and the latitude of the observation point. Since the aforementioned dependences drive the storm-time forecasts of the SWIF model, the results obtained here support the upgrade of the SWIF's modeling technique in forecasting the storm-time vTEC variation from its onset to full development and recovery. According to the proposed approach, the vTEC storm-time response can be forecasted from 1 to 12-13 h before its onset, depending on the local time of the observation point at storm onset at L1. Preliminary results on the assessment of the performance of the proposed model and further considerations on its potential implementation in operational mode are also discussed.

  18. Regional yield predictions of malting barley by remote sensing and ancillary data

    NASA Astrophysics Data System (ADS)

    Weissteiner, Christof J.; Braun, Matthias; Kuehbauch, Walter

    2004-02-01

    Yield forecasts are of high interest to the malting and brewing industry in order to allow the most convenient purchasing policy of raw materials. Within this investigation, malting barley yield forecasts (Hordeum vulgare L.) were performed for typical growing regions in South-Western Germany. Multisensoral and multitemporal Remote Sensing data on one hand and ancillary meteorological, agrostatistical, topographical and pedological data on the other hand were used as input data for prediction models, which were based on an empirical-statistical modeling approach. Since spring barley production is depending on acreage and on the yield per area, classification is needed, which was performed by a supervised multitemporal classification algorithm, utilizing optical Remote Sensing data (LANDSAT TM/ETM+). Comparison between a pixel-based and an object-oriented classification algorithm was carried out. The basic version of the yield estimation model was conducted by means of linear correlation of Remote Sensing data (NOAA-AVHRR NDVI), CORINE land cover data and agrostatistical data. In an extended version meteorological data (temperature, precipitation, etc.) and soil data was incorporated. Both, basic and extended prediction systems, led to feasible results, depending on the selection of the time span for NDVI accumulation.

  19. Energy Savings Forecast of Solid-State Lighting in General Illumination Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Penning, Julie; Stober, Kelsey; Taylor, Victor

    2016-09-01

    The DOE report, Energy Savings Forecast of Solid-State Lighting in General Illumination Applications, is a biannual report which models the adoption of LEDs in the U.S. general-lighting market, along with associated energy savings, based on the full potential DOE has determined to be technically feasible over time. This version of the report uses an updated 2016 U.S. lighting-market model that is more finely calibrated and granular than previous models, and extends the forecast period to 2035 from the 2030 limit that was used in previous editions.

  20. The Uniform California Earthquake Rupture Forecast, Version 2 (UCERF 2)

    USGS Publications Warehouse

    ,

    2008-01-01

    California?s 35 million people live among some of the most active earthquake faults in the United States. Public safety demands credible assessments of the earthquake hazard to maintain appropriate building codes for safe construction and earthquake insurance for loss protection. Seismic hazard analysis begins with an earthquake rupture forecast?a model of probabilities that earthquakes of specified magnitudes, locations, and faulting types will occur during a specified time interval. This report describes a new earthquake rupture forecast for California developed by the 2007 Working Group on California Earthquake Probabilities (WGCEP 2007).

  1. Technical report series on global modeling and data assimilation. Volume 4: Documentation of the Goddard Earth Observing System (GEOS) data assimilation system, version 1

    NASA Technical Reports Server (NTRS)

    Suarez, Max J. (Editor); Pfaendtner, James; Bloom, Stephen; Lamich, David; Seablom, Michael; Sienkiewicz, Meta; Stobie, James; Dasilva, Arlindo

    1995-01-01

    This report describes the analysis component of the Goddard Earth Observing System, Data Assimilation System, Version 1 (GEOS-1 DAS). The general features of the data assimilation system are outlined, followed by a thorough description of the statistical interpolation algorithm, including specification of error covariances and quality control of observations. We conclude with a discussion of the current status of development of the GEOS data assimilation system. The main components of GEOS-1 DAS are an atmospheric general circulation model and an Optimal Interpolation algorithm. The system is cycled using the Incremental Analysis Update (IAU) technique in which analysis increments are introduced as time independent forcing terms in a forecast model integration. The system is capable of producing dynamically balanced states without the explicit use of initialization, as well as a time-continuous representation of non- observables such as precipitation and radiational fluxes. This version of the data assimilation system was used in the five-year reanalysis project completed in April 1994 by Goddard's Data Assimilation Office (DAO) Data from this reanalysis are available from the Goddard Distributed Active Center (DAAC), which is part of NASA's Earth Observing System Data and Information System (EOSDIS). For information on how to obtain these data sets, contact the Goddard DAAC at (301) 286-3209, EMAIL daac@gsfc.nasa.gov.

  2. Evaluation of the Impact of AIRS Radiance and Profile Data Assimilation in Partly Cloudy Regions

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley; Srikishen, Jayanthi; Jedlovec, Gary

    2013-01-01

    Improvements to global and regional numerical weather prediction have been demonstrated through assimilation of data from NASA s Atmospheric Infrared Sounder (AIRS). Current operational data assimilation systems use AIRS radiances, but impact on regional forecasts has been much smaller than for global forecasts. Retrieved profiles from AIRS contain much of the information that is contained in the radiances and may be able to reveal reasons for this reduced impact. Assimilating AIRS retrieved profiles in an identical analysis configuration to the radiances, tracking the quantity and quality of the assimilated data in each technique, and examining analysis increments and forecast impact from each data type can yield clues as to the reasons for the reduced impact. By doing this with regional scale models individual synoptic features (and the impact of AIRS on these features) can be more easily tracked. This project examines the assimilation of hyperspectral sounder data used in operational numerical weather prediction by comparing operational techniques used for AIRS radiances and research techniques used for AIRS retrieved profiles. Parallel versions of a configuration of the Weather Research and Forecasting (WRF) model with Gridpoint Statistical Interpolation (GSI) are run to examine the impact AIRS radiances and retrieved profiles. Statistical evaluation of a long-term series of forecast runs will be compared along with preliminary results of in-depth investigations for select case comparing the analysis increments in partly cloudy regions and short-term forecast impacts.

  3. Evaluation of the Impact of Atmospheric Infrared Sounder (AIRS) Radiance and Profile Data Assimilation in Partly Cloudy Regions

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley; Srikishen, Jayanthi; Jedlovec, Gary

    2013-01-01

    Improvements to global and regional numerical weather prediction have been demonstrated through assimilation of data from NASA s Atmospheric Infrared Sounder (AIRS). Current operational data assimilation systems use AIRS radiances, but impact on regional forecasts has been much smaller than for global forecasts. Retrieved profiles from AIRS contain much of the information that is contained in the radiances and may be able to reveal reasons for this reduced impact. Assimilating AIRS retrieved profiles in an identical analysis configuration to the radiances, tracking the quantity and quality of the assimilated data in each technique, and examining analysis increments and forecast impact from each data type can yield clues as to the reasons for the reduced impact. By doing this with regional scale models individual synoptic features (and the impact of AIRS on these features) can be more easily tracked. This project examines the assimilation of hyperspectral sounder data used in operational numerical weather prediction by comparing operational techniques used for AIRS radiances and research techniques used for AIRS retrieved profiles. Parallel versions of a configuration of the Weather Research and Forecasting (WRF) model with Gridpoint Statistical Interpolation (GSI) are run to examine the impact AIRS radiances and retrieved profiles. Statistical evaluation of 6 weeks of forecast runs will be compared along with preliminary results of in-depth investigations for select case comparing the analysis increments in partly cloudy regions and short-term forecast impacts.

  4. Application of The Rainfall-runoff Model Topkapi For The Entire Basin of The Po River As Part of The European Project Effs

    NASA Astrophysics Data System (ADS)

    Todini, E.; Bartholmes, J.

    The project EFFS (European Flood Forecasting System) aims at developing a flood forecasting system for the major river basins all over Europe. To extend the forecast- ing and thus the warning time in a significant way (up to 10 days) meteorological forecasting data from the ECMWF will be used as input to hydrological models. For this purpose it is fundamental to have a reliable rainfall-runoff model. For the river Po basin we chose the TOPKAPI model (Ciarapica, Todini 1998). TOPKAPI is a physi- cally based rainfall-runoff model that maintains its physical significance passing from hillslope to large basin scale. The aim of the distributed version is to reproduce the spatial variability and to lead to a better understanding of scaling effects on meteo- rological data used as well as of physical phenomena and parameters. By now the TOPKAPI model has been applied successfully to basins of smaller and medium size (up to 8000 km2). The present work also proves that TOPKAPI is a valuable flood forecasting tool for larger basins such as the Po river. An advantage of the TOPKAPI model is its physical basis. It doesn't need a "real" calibration in the common sense of the expression. The calibration work that has to be done is due to the unavoidable averaging and approximation in the input data representing various phenomena. This reduces the calibration work as well as the length of data required. The model was implemented on the Po river at spatial steps of 1km and time steps of 1 hour using available data during the year 1994. After the calibration phase, mesoscale forecasts (from ECMWF) as well as forecasts of LAM models (DWD,DMI) will be used as input to the Po river models and their behaviour will be studied as a function of the prediction quality and of the coarseness of the spatial discretisation.

  5. The CMEMS-Med-MFC-Biogeochemistry operational system: implementation of NRT and Multi-Year validation tools

    NASA Astrophysics Data System (ADS)

    Salon, Stefano; Cossarini, Gianpiero; Bolzon, Giorgio; Teruzzi, Anna

    2017-04-01

    The Mediterranean Monitoring and Forecasting Centre (Med-MFC) is one of the regional production centres of the EU Copernicus Marine Environment Monitoring Service (CMEMS). Med-MFC manages a suite of numerical model systems for the operational delivery of the CMEMS products, providing continuous monitoring and forecasting of the Mediterranean marine environment. The CMEMS products of fundamental biogeochemical variables (chlorophyll, nitrate, phosphate, oxygen, phytoplankton biomass, primary productivity, pH, pCO2) are organised as gridded datasets and are available at the marine.copernicus.eu web portal. Quantitative estimates of CMEMS products accuracy are prerequisites to release reliable information to intermediate users, end users and to other downstream services. In particular, validation activities aim to deliver accuracy information of the model products and to serve as a long term monitoring of the performance of the modelling systems. The quality assessment of model output is implemented using a multiple-stages approach, basically inspired to the classic "GODAE 4 Classes" metrics and criteria (consistency, quality, performance and benefit). Firstly, pre-operational runs qualify the operational model system against historical data, also providing a verification of the improvements of the new model system release with respect to the previous version. Then, the near real time (NRT) validation aims at delivering a sustained on-line skill assessment of the model analysis and forecast, relying on the NRT available relevant observations (e.g. in situ, Bio Argo and satellite observations). NRT validation results are operated on weekly basis and published on the MEDEAF web portal (www.medeaf.inogs.it). On a quarterly basis, the integration of the NRT validation activities delivers a comprehensive view of the accuracy of model forecast through the official CMEMS validation webpage. Multi-Year production (e.g. reanalysis runs) follows a similar procedure, and the validation is achieved using the same metrics on available historical observations (e.g. the World Ocean Atlas 2013 dataset). Results of the validation activities show that the comparison of the different variables of the CMEMS products with experimental data is feasible at different levels (i.e. either as skill assessment of the short-term forecast and as model consistency through different system versions) and at different spatial and temporal scales. In particular, the accuracy of some variables (chlorophyll, nitrate, oxygen) can be provided at weekly scale and sub-mesoscale, others (carbonate system, phosphate) at quarterly/annual and sub-basin scale, and others (phytoplankton biomass, primary production) only at the level of consistency of model functioning (e.g. literature- or climatology-based). In spite of a wide literature on model validation has been produced so far, maintaining a validation framework in the biogeochemical operational contest that fulfils GODAE criteria is still a challenge. Recent results of the validation activities and new potential validation framework at the Med-MFC will be presented in our contribution.

  6. Evaluation of a new CNRM-CM6 model version for seasonal climate predictions

    NASA Astrophysics Data System (ADS)

    Volpi, Danila; Ardilouze, Constantin; Batté, Lauriane; Dorel, Laurant; Guérémy, Jean-François; Déqué, Michel

    2017-04-01

    This work presents the quality assessment of a new version of the Météo-France coupled climate prediction system, which has been developed in the EU COPERNICUS Climate Change Services framework to carry out seasonal forecast. The system is based on the CNRM-CM6 model, with Arpege-Surfex 6.2.2 as atmosphere/land component and Nemo 3.2 as ocean component, which has directly embedded the sea-ice component Gelato 6.0. In order to have a robust diagnostic, the experiment is composed by 60 ensemble members generated with stochastic dynamic perturbations. The experiment has been performed over a 37-year re-forecast period from 1979 to 2015, with two start dates per year, respectively in May 1st and November 1st. The evaluation of the predictive skill of the model is shown under two perspectives: on the one hand, the ability of the model to faithfully respond to positive or negative ENSO, NAO and QBO events, independently of the predictability of these events. Such assessment is carried out through a composite analysis, and shows that the model succeeds in reproducing the main patterns for 2-meter temperature, precipitation and geopotential height at 500 hPa during the winter season. On the other hand, the model predictive skill of the same events (positive and negative ENSO, NAO and QBO) is evaluated.

  7. Real-Time Kennedy Space Center and Cape Canaveral Air Force Station High-Resolution Model Implementation and Verification

    NASA Technical Reports Server (NTRS)

    Shafer, Jaclyn A.; Watson, Leela R.

    2015-01-01

    Customer: NASA's Launch Services Program (LSP), Ground Systems Development and Operations (GSDO), and Space Launch System (SLS) programs. NASA's LSP, GSDO, SLS and other programs at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) use the daily and weekly weather forecasts issued by the 45th Weather Squadron (45 WS) as decision tools for their day-to-day and launch operations on the Eastern Range (ER). For example, to determine if they need to limit activities such as vehicle transport to the launch pad, protect people, structures or exposed launch vehicles given a threat of severe weather, or reschedule other critical operations. The 45 WS uses numerical weather prediction models as a guide for these weather forecasts, particularly the Air Force Weather Agency (AFWA) 1.67 kilometer Weather Research and Forecasting (WRF) model. Considering the 45 WS forecasters' and Launch Weather Officers' (LWO) extensive use of the AFWA model, the 45 WS proposed a task at the September 2013 Applied Meteorology Unit (AMU) Tasking Meeting requesting the AMU verify this model. Due to the lack of archived model data available from AFWA, verification is not yet possible. Instead, the AMU proposed to implement and verify the performance of an ER version of the AMU high-resolution WRF Environmental Modeling System (EMS) model (Watson 2013) in real-time. The tasking group agreed to this proposal; therefore the AMU implemented the WRF-EMS model on the second of two NASA AMU modeling clusters. The model was set up with a triple-nested grid configuration over KSC/CCAFS based on previous AMU work (Watson 2013). The outer domain (D01) has 12-kilometer grid spacing, the middle domain (D02) has 4-kilometer grid spacing, and the inner domain (D03) has 1.33-kilometer grid spacing. The model runs a 12-hour forecast every hour, D01 and D02 domain outputs are available once an hour and D03 is every 15 minutes during the forecast period. The AMU assessed the WRF-EMS 1.33-kilometer domain model performance for the 2014 warm season (May-September). Verification statistics were computed using the Model Evaluation Tools, which compared the model forecasts to observations. The mean error values were close to 0 and the root mean square error values were less than 1.8 for mean sea-level pressure (millibars), temperature (degrees Kelvin), dewpoint temperature (degrees Kelvin), and wind speed (per millisecond), all very small differences between the forecast and observations considering the normal magnitudes of the parameters. The precipitation forecast verification results showed consistent under-forecasting of the precipitation object size. This could be an artifact of calculating the statistics for each hour rather than for the entire 12-hour period. The AMU will continue to generate verification statistics for the 1.33-kilometer WRF-EMS domain as data become available in future cool and warm seasons. More data will produce more robust statistics and reveal a more accurate assessment of model performance. Once the formal task was complete, the AMU conducted additional work to better understand the wind direction results. The results were stratified diurnally and by wind speed to determine what effects the stratifications would have on the model wind direction verification statistics. The results are summarized in the addendum at the end of this report. In addition to verifying the model's performance, the AMU also made the output available in the Advanced Weather Interactive Processing System II (AWIPS II). This allows the 45 WS and AMU staff to customize the model output display on the AMU and Range Weather Operations AWIPS II client computers and conduct real-time subjective analyses. In the future, the AMU will implement an updated version of the WRF-EMS model that incorporates local data assimilation. This model will also run in real-time and be made available in AWIPS II.

  8. Operational specification and forecasting advances for Dst, LEO thermospheric densities, and aviation radiation dose and dose rate

    NASA Astrophysics Data System (ADS)

    Tobiska, W. Kent

    Space weather’s effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun’s photons, particles, and fields. Of the space environment domains that are affected by space weather, the magnetosphere, thermosphere, and even troposphere are key regions that are affected. Space Environment Technologies (SET) has developed and is producing innovative space weather applications. Key operational systems for providing timely information about the effects of space weather on these domains are SET’s Magnetosphere Alert and Prediction System (MAPS), LEO Alert and Prediction System (LAPS), and Automated Radiation Measurements for Aviation Safety (ARMAS) system. MAPS provides a forecast Dst index out to 6 days through the data-driven, redundant data stream Anemomilos algorithm. Anemomilos uses observational proxies for the magnitude, location, and velocity of solar ejecta events. This forecast index is used by satellite operations to characterize upcoming geomagnetic storms, for example. In addition, an ENLIL/Rice Dst prediction out to several days has also been developed and will be described. LAPS is the SET fully redundant operational system providing recent history, current epoch, and forecast solar and geomagnetic indices for use in operational versions of the JB2008 thermospheric density model. The thermospheric densities produced by that system, driven by the LAPS data, are forecast to 72-hours to provide the global mass densities for satellite operators. ARMAS is a project that has successfully demonstrated the operation of a micro dosimeter on aircraft to capture the real-time radiation environment due to Galactic Cosmic Rays and Solar Energetic Particles. The dose and dose-rates are captured on aircraft, downlinked in real-time via the Iridium satellites, processed on the ground, incorporated into the most recent NAIRAS global radiation climatology data runs, and made available to end users via the web and smart phone apps. ARMAS provides the “weather” of the radiation environment to improve air-crew and passenger safety. Many of the data products from MAPS, LAPS, and ARMAS are available on the SpaceWx smartphone app for iPhone, iPad, iPod, and Android professional users and public space weather education. We describe recent forecasting advances for moving the space weather information from these automated systems into operational, derivative products for communications, aviation, and satellite operations uses.

  9. Data Assimilation and Regional Forecasts Using Atmospheric InfraRed Sounder (AIRS) Profiles

    NASA Technical Reports Server (NTRS)

    Chou, Shih-Hung; Zavodsky, Bradley; Jedlovec, Gary

    2009-01-01

    In data sparse regions, remotely-sensed observations can be used to improve analyses, which in turn should lead to better forecasts. One such source comes from the Atmospheric Infrared Sounder (AIRS), which together with the Advanced Microwave Sounding Unit (AMSU), provides temperature and moisture profiles with an accuracy comparable to that of radiosondes. The purpose of this paper is to describe a procedure to optimally assimilate AIRS thermodynamic profiles--obtained from the version 5.0 Earth Observing System (EOS) science team retrieval algorithm-into a regional configuration of the Weather Research and Forecasting (WRF) model using WRF-Var. The paper focuses on development of background error covariances for the regional domain and background field type, a methodology for ingesting AIRS profiles as separate over-land and over-water retrievals with different error characteristics, and utilization of level-by-level quality indicators to select only the highest quality data. The assessment of the impact of the AIRS profiles on WRF-Var analyses will focus on intelligent use of the quality indicators, optimized tuning of the WRF-Var, and comparison of analysis soundings to radiosondes. The analyses will be used to conduct a month-long series of regional forecasts over the continental U.S. The long-tern1 impact of AIRS profiles on forecast will be assessed against verifying radiosonde and stage IV precipitation data.

  10. Data Assimilation and Regional Forecasts using Atmospheric InfraRed Sounder (AIRS) Profiles

    NASA Technical Reports Server (NTRS)

    Zabodsky, Brad; Chou, Shih-Hung; Jedlovec, Gary J.

    2009-01-01

    In data sparse regions, remotely-sensed observations can be used to improve analyses, which in turn should lead to better forecasts. One such source comes from the Atmospheric Infrared Sounder (AIRS), which, together with the Advanced Microwave Sounding Unit (AMSU), provides temperature and moisture profiles with an accuracy comparable to that of radionsondes. The purpose of this poster is to describe a procedure to optimally assimilate AIRS thermodynamic profiles, obtained from the version 5.0 Earth Observing System (EOS) science team retrieval algorithm, into a regional configuration of the Weather Research and Forecasting (WRF) model using WRF-Var. The poster focuses on development of background error covariances for the regional domain and background field type, a methodology for ingesting AIRS profiles as separate over-land and over-water retrievals with different error characteristics, and utilization of level-by-level quality indicators to select only the highest quality data. The assessment of the impact of the AIRS profiles on WRF-Var analyses will focus on intelligent use of the quality indicators, optimized tuning of the WRF-Var, and comparison of analysis soundings to radiosondes. The analyses are used to conduct a month-long series of regional forecasts over the continental U.S. The long-term impact of AIRS profiles on forecast will be assessed against NAM analyses and stage IV precipitation data.

  11. Improved Decadal Climate Prediction in the North Atlantic using EnOI-Assimilated Initial Condition

    NASA Astrophysics Data System (ADS)

    Li, Q.; Xin, X.; Wei, M.; Zhou, W.

    2017-12-01

    Decadal prediction experiments of Beijing Climate Center climate system model version 1.1(BCC-CSM1.1) participated in Coupled Model Intercomparison Project Phase 5 (CMIP5) had poor skill in extratropics of the North Atlantic, the initialization of which was done by relaxing modeled ocean temperature to the Simple Ocean Data Assimilation (SODA) reanalysis data. This study aims to improve the prediction skill of this model by using the assimilation technique in the initialization. New ocean data are firstly generated by assimilating the sea surface temperature (SST) of the Hadley Centre Sea Ice and Sea Surface Temperature (HadISST) dataset to the ocean model of BCC-CSM1.1 via Ensemble Optimum Interpolation (EnOI). Then a suite of decadal re-forecasts launched annually over the period 1961-2005 is carried out with simulated ocean temperature restored to the assimilated ocean data. Comparisons between the re-forecasts and previous CMIP5 forecasts show that the re-forecasts are more skillful in mid-to-high latitude SST of the North Atlantic. Improved prediction skill is also found for the Atlantic multi-decadal Oscillation (AMO), which is consistent with the better skill of Atlantic meridional overturning circulation (AMOC) predicted by the re-forecasts. We conclude that the EnOI assimilation generates better ocean data than the SODA reanalysis for initializing decadal climate prediction of BCC-CSM1.1 model.

  12. Can decadal climate predictions be improved by ocean ensemble dispersion filtering?

    NASA Astrophysics Data System (ADS)

    Kadow, C.; Illing, S.; Kröner, I.; Ulbrich, U.; Cubasch, U.

    2017-12-01

    Decadal predictions by Earth system models aim to capture the state and phase of the climate several years inadvance. Atmosphere-ocean interaction plays an important role for such climate forecasts. While short-termweather forecasts represent an initial value problem and long-term climate projections represent a boundarycondition problem, the decadal climate prediction falls in-between these two time scales. The ocean memorydue to its heat capacity holds big potential skill on the decadal scale. In recent years, more precise initializationtechniques of coupled Earth system models (incl. atmosphere and ocean) have improved decadal predictions.Ensembles are another important aspect. Applying slightly perturbed predictions results in an ensemble. Insteadof using and evaluating one prediction, but the whole ensemble or its ensemble average, improves a predictionsystem. However, climate models in general start losing the initialized signal and its predictive skill from oneforecast year to the next. Here we show that the climate prediction skill of an Earth system model can be improvedby a shift of the ocean state toward the ensemble mean of its individual members at seasonal intervals. Wefound that this procedure, called ensemble dispersion filter, results in more accurate results than the standarddecadal prediction. Global mean and regional temperature, precipitation, and winter cyclone predictions showan increased skill up to 5 years ahead. Furthermore, the novel technique outperforms predictions with largerensembles and higher resolution. Our results demonstrate how decadal climate predictions benefit from oceanensemble dispersion filtering toward the ensemble mean. This study is part of MiKlip (fona-miklip.de) - a major project on decadal climate prediction in Germany.We focus on the Max-Planck-Institute Earth System Model using the low-resolution version (MPI-ESM-LR) andMiKlip's basic initialization strategy as in 2017 published decadal climate forecast: http://www.fona-miklip.de/decadal-forecast-2017-2026/decadal-forecast-for-2017-2026/ More informations about this study in JAMES:DOI: 10.1002/2016MS000787

  13. Sources and Sinks: Elucidating Mechanisms, Documenting Patterns, and Forecasting Impacts

    DTIC Science & Technology

    2017-01-18

    Molecular Ecology 17: 3628-3639. Fazio III, V. W., Miles, D. B., & White, M. M. 2004. Genetic differentiation in the endangered Black-capped Vireo...exploration of accuracy and power. Molecular Ecology 13: 55–65. Raymond, M., & Rousset, F. 1995. GENEPOP (version 1.2): population genetics software for...SUPPLEMENTAL GENETICS MEMO Sources and Sinks: Elucidating Mechanisms, Documenting Patterns, and Forecasting Impacts SERDP Project RC-2120

  14. An Assessment of the Skill of GEOS-5 Seasonal Forecasts

    NASA Technical Reports Server (NTRS)

    Ham, Yoo-Geun; Schubert, Siegfried D.; Rienecker, Michele M.

    2013-01-01

    The seasonal forecast skill of the NASA Global Modeling and Assimilation Office coupled global climate model (CGCM) is evaluated based on an ensemble of 9-month lead forecasts for the period 1993 to 2010. The results from the current version (V2) of the CGCM consisting of the GEOS-5 AGM coupled to the MOM4 ocean model are compared with those from an earlier version (V1) in which the AGCM (the NSIPP model) was coupled to the Poseidon Ocean Model. It was found that the correlation skill of the Sea Surface Temperature (SST) forecasts is generally better in V2, especially over the sub-tropical and tropical central and eastern Pacific, Atlantic, and Indian Ocean. Furthermore, the improvement in skill in V2 mainly comes from better forecasts of the developing phase of ENSO from boreal spring to summer. The skill of ENSO forecasts initiated during the boreal winter season, however, shows no improvement in terms of correlation skill, and is in fact slightly worse in terms of root mean square error (RMSE). The degradation of skill is found to be due to an excessive ENSO amplitude. For V1, the ENSO amplitude is too strong in forecasts starting in boreal spring and summer, which causes large RMSE in the forecast. For V2, the ENSO amplitude is slightly stronger than that in observations and V1 for forecasts starting in boreal winter season. An analysis of the terms in the SST tendency equation, shows that this is mainly due to an excessive zonal advective feedback. In addition, V2 forecasts that are initiated during boreal winter season, exhibit a slower phase transition of El Nino, which is consistent with larger amplitude of ENSO after the ENSO peak season. It is found that this is due to weak discharge of equatorial Warm Water Volume (WWV). In both observations and V1, the discharge of equatorial WWV leads the equatorial geostrophic easterly current so as to damp the El Nino starting in January. This process is delayed by about 2 months in V2 due to the slower phase transition of the equatorial zonal current from westerly to easterly.

  15. Prediction and Predictability of the Madden Julian Oscillation in the NASA GEOS-5 Seasonal-to-Subseasonal System

    NASA Technical Reports Server (NTRS)

    Achuthavarier, Deepthi; Koster, Randal; Marshak, Jelena; Schubert, Siegfried; Molod, Andrea

    2018-01-01

    In this study, we examine the prediction skill and predictability of the Madden Julian Oscillation (MJO) in a recent version of the NASA GEOS-5 atmosphere-ocean coupled model run at at 1/2 degree horizontal resolution. The results are based on a suite of hindcasts produced as part of the NOAA SubX project, consisting of seven ensemble members initialized every 5 days for the period 1999-2015. The atmospheric initial conditions were taken from the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2), and the ocean and the sea ice were taken from a GMAO ocean analysis. The land states were initialized from the MERRA-2 land output, which is based on observation-corrected precipitation fields. We investigated the MJO prediction skill in terms of the bivariate correlation coefficient for the real-time multivariate MJO (RMM) indices. The correlation coefficient stays at or above 0.5 out to forecast lead times of 26-36 days, with a pronounced increase in skill for forecasts initialized from phase 3, when the MJO convective anomaly is located in the central tropical Indian Ocean. A corresponding estimate of the upper limit of the predictability is calculated by considering a single ensemble member as the truth and verifying the ensemble mean of the remaining members against that. The predictability estimates fall between 35-37 days (taken as forecast lead when the correlation reaches 0.5) and are rather insensitive to the initial MJO phase. The model shows slightly higher skill when the initial conditions contain strong MJO events compared to weak events, although the difference in skill is evident only from lead 1 to 20. Similar to other models, the RMM-index-based skill arises mostly from the circulation components of the index. The skill of the convective component of the index drops to 0.5 by day 20 as opposed to day 30 for circulation fields. The propagation of the MJO anomalies over the Maritime Continent does not appear problematic in the GEOS-5 hindcasts implying that the Maritime Continent predictability barrier may not be a major concern in this model. Finally, the MJO prediction skill in this version of GEOS-5 is superior to that of the current seasonal prediction system at the GMAO; this could be partly attributed to a slightly better representation of the MJO in the free running version of this model and partly to the improved atmospheric initialization from MERRA-2.

  16. Prediction of the Length of Upcoming Solar Cycles

    NASA Astrophysics Data System (ADS)

    Kakad, Bharati; Kakad, Amar; Ramesh, Durbha Sai

    2017-12-01

    The forecast of solar cycle (SC) characteristics is crucial particularly for several space-based missions. In the present study, we propose a new model for predicting the length of the SC. The model uses the information of the width of an autocorrelation function that is derived from the daily sunspot data for each SC. We tested the model on Versions 1 and 2 of the daily international sunspot number data for SCs 10 - 24. We found that the autocorrelation width Aw n of SC n during the second half of its ascending phase correlates well with the modified length that is defined as T_{cy}^{n+2} - Tan. Here T_{cy}^{n+2} and T_{ a}n are the length and ascent time of SCs n+2 and n, respectively. The estimated correlation coefficient between the model parameters is 0.93 (0.91) for Version 1 (Version 2) sunspot series. The standard errors in the observed and predicted lengths of the SCs for Version 1 and Version 2 data are 0.38 and 0.44 years, respectively. The advantage of the proposed model is that the predictions of the length of the upcoming two SCs ( i.e., n+1, n+2) are readily available at the time of the peak of SC n. The present model gives a forecast of 11.01, 10.52, and 11.91 years (11.01, 12.20, and 11.68 years) for the length of SCs 24, 25, and 26, respectively, for Version 1 (Version 2).

  17. Empirical seasonal forecasts of the NAO

    NASA Astrophysics Data System (ADS)

    Sanchezgomez, E.; Ortizbevia, M.

    2003-04-01

    We present here seasonal forecasts of the North Atlantic Oscillation (NAO) issued from ocean predictors with an empirical procedure. The Singular Values Decomposition (SVD) of the cross-correlation matrix between predictor and predictand fields at the lag used for the forecast lead is at the core of the empirical model. The main predictor field are sea surface temperature anomalies, although sea ice cover anomalies are also used. Forecasts are issued in probabilistic form. The model is an improvement over a previous version (1), where Sea Level Pressure Anomalies were first forecast, and the NAO Index built from this forecast field. Both correlation skill between forecast and observed field, and number of forecasts that hit the correct NAO sign, are used to assess the forecast performance , usually above those values found in the case of forecasts issued assuming persistence. For certain seasons and/or leads, values of the skill are above the .7 usefulness treshold. References (1) SanchezGomez, E. and Ortiz Bevia M., 2002, Estimacion de la evolucion pluviometrica de la Espana Seca atendiendo a diversos pronosticos empiricos de la NAO, in 'El Agua y el Clima', Publicaciones de la AEC, Serie A, N 3, pp 63-73, Palma de Mallorca, Spain

  18. The CO5 configuration of the 7 km Atlantic Margin Model: large-scale biases and sensitivity to forcing, physics options and vertical resolution

    NASA Astrophysics Data System (ADS)

    O'Dea, Enda; Furner, Rachel; Wakelin, Sarah; Siddorn, John; While, James; Sykes, Peter; King, Robert; Holt, Jason; Hewitt, Helene

    2017-08-01

    We describe the physical model component of the standard Coastal Ocean version 5 configuration (CO5) of the European north-west shelf (NWS). CO5 was developed jointly between the Met Office and the National Oceanography Centre. CO5 is designed with the seamless approach in mind, which allows for modelling of multiple timescales for a variety of applications from short-range ocean forecasting to climate projections. The configuration constitutes the basis of the latest update to the ocean and data assimilation components of the Met Office's operational Forecast Ocean Assimilation Model (FOAM) for the NWS. A 30.5-year non-assimilating control hindcast of CO5 was integrated from January 1981 to June 2012. Sensitivity simulations were conducted with reference to the control run. The control run is compared against a previous non-assimilating Proudman Oceanographic Laboratory Coastal Ocean Modelling System (POLCOMS) hindcast of the NWS. The CO5 control hindcast is shown to have much reduced biases compared to POLCOMS. Emphasis in the system description is weighted to updates in CO5 over previous versions. Updates include an increase in vertical resolution, a new vertical coordinate stretching function, the replacement of climatological riverine sources with the pan-European hydrological model E-HYPE, a new Baltic boundary condition and switching from directly imposed atmospheric model boundary fluxes to calculating the fluxes within the model using a bulk formula. Sensitivity tests of the updates are detailed with a view toward attributing observed changes in the new system from the previous system and suggesting future directions of research to further improve the system.

  19. The Simulations of Wildland Fire Smoke PM25 in the NWS Air Quality Forecasting Systems

    NASA Astrophysics Data System (ADS)

    Huang, H. C.; Pan, L.; McQueen, J.; Lee, P.; ONeill, S. M.; Ruminski, M.; Shafran, P.; Huang, J.; Stajner, I.; Upadhayay, S.; Larkin, N. K.

    2017-12-01

    The increase of wildland fire intensity and frequency in the United States (U.S.) has led to property loss, human fatality, and poor air quality due to elevated particulate matters and surface ozone concentrations. The NOAA/National Weather Service (NWS) built the National Air Quality Forecast Capability (NAQFC) based on the U.S. Environmental Protection Agency (EPA) Community Multi-scale Air Quality (CMAQ) Modeling System driven by the NCEP North American Mesoscale Forecast System meteorology to provide ozone and fine particulate matter (PM2.5) forecast guidance publicly. State and local forecasters use the NWS air quality forecast guidance to issue air quality alerts in their area. The NAQFC PM2.5 predictions include emissions from anthropogenic and biogenic sources, as well as natural sources such as dust storms and wildland fires. The wildland fire emission inputs to the NAQFC is derived from the NOAA National Environmental Satellite, Data, and Information Service Hazard Mapping System fire and smoke detection product and the emission module of the U.S. Forest Service (USFS) BlueSky Smoke Modeling Framework. Wildland fires are unpredictable and can be ignited by natural causes such as lightning or be human-caused. It is extremely difficult to predict future occurrences and behavior of wildland fires, as is the available bio-fuel to be burned for real-time air quality predictions. Assumptions of future day's wildland fire behavior often have to be made from older observed wildland fire information. The comparisons between the NAQFC modeled PM2.5 and the EPA AirNow surface observation show that large errors in PM2.5 prediction can occur if fire smoke emissions are sometimes placed at the wrong location and/or time. A configuration of NAQFC CMAQ-system to re-run previous 24 hours, during which wildland fires were observed from satellites has been included recently. This study focuses on the effort performed to minimize the error in NAQFC PM2.5 predictions resulting from incorporating fire smoke emissions into the NAQFC from a recently updated newer version of USFS BlueSky system. This study will show how new approaches has improved the PM2.5 predictions at both nearby and downstream areas from fire sources. Furthermore, Environment and Climate Change Canada (ECCC) fire emissions data are being tested.

  20. The measurement of winds over the ocean from Skylab with application to measuring and forecasting typhoons and hurricanes

    NASA Technical Reports Server (NTRS)

    Cardone, V. J.; Pierson, W. J.

    1975-01-01

    On Skylab, a combination microwave radar-radiometer (S193) made measurements in a tropical hurricane (AVA), a tropical storm, and various extratropical wind systems. The winds at each cell scanned by the instrument were determined by objective numerical analysis techniques. The measured radar backscatter is compared to the analyzed winds and shown to provide an accurate method for measuring winds from space. An operational version of the instrument on an orbiting satellite will be able to provide the kind of measurements in tropical cyclones available today only by expensive and dangerous aircraft reconnaissance. Additionally, the specifications of the wind field in the tropical boundary layer should contribute to improved accuracy of tropical cyclone forecasts made with numerical weather predictions models currently being applied to the tropical atmosphere.

  1. Applications of Satellite Remote Sensing Products to Enhance and Evaluate the AIRPACT Regional Air Quality Modeling System

    NASA Astrophysics Data System (ADS)

    Herron-Thorpe, F. L.; Mount, G. H.; Emmons, L. K.; Lamb, B. K.; Jaffe, D. A.; Wigder, N. L.; Chung, S. H.; Zhang, R.; Woelfle, M.; Vaughan, J. K.; Leung, F. T.

    2013-12-01

    The WSU AIRPACT air quality modeling system for the Pacific Northwest forecasts hourly levels of aerosols and atmospheric trace gases for use in determining potential health and ecosystem impacts by air quality managers. AIRPACT uses the WRF/SMOKE/CMAQ modeling framework, derives dynamic boundary conditions from MOZART-4 forecast simulations with assimilated MOPITT CO, and uses the BlueSky framework to derive fire emissions. A suite of surface measurements and satellite-based remote sensing data products across the AIRPACT domain are used to evaluate and improve model performance. Specific investigations include anthropogenic emissions, wildfire simulations, and the effects of long-range transport on surface ozone. In this work we synthesize results for multiple comparisons of AIRPACT with satellite products such as IASI ammonia, AIRS carbon monoxide, MODIS AOD, OMI tropospheric ozone and nitrogen dioxide, and MISR plume height. Features and benefits of the newest version of AIRPACT's web-interface are also presented.

  2. Assimilation of Satellite Sea Surface Salinity Fields: Validating Ocean Analyses and Identifying Errors in Surface Buoyancy Fluxes

    NASA Astrophysics Data System (ADS)

    Mehra, A.; Nadiga, S.; Bayler, E. J.; Behringer, D.

    2014-12-01

    Recently available satellite sea-surface salinity (SSS) fields provide an important new global data stream for assimilation into ocean forecast systems. In this study, we present results from assimilating satellite SSS fields from NASA's Aquarius mission into the National Oceanic and Atmospheric Administration's (NOAA) operational Modular Ocean Model version 4 (MOM4), the oceanic component of NOAA's operational seasonal-interannual Climate Forecast System (CFS). Experiments on the sensitivity of the ocean's overall state to different relaxation time periods were run to evaluate the importance of assimilating high-frequency (daily to mesoscale) and low-frequency (seasonal) SSS variability. Aquarius SSS data (Aquarius Data Processing System (ADPS) version 3.0), mapped daily fields at 1-degree spatial resolution, were used. Four model simulations were started from the same initial ocean condition and forced with NOAA's daily Climate Forecast System Reanalysis (CFSR) fluxes, using a relaxation technique to assimilate daily satellite sea surface temperature (SST) fields and selected SSS fields, where, except as noted, a 30-day relaxation period is used. The simulations are: (1) WOAMC, the reference case and similar to the operational setup, assimilating monthly climatological SSS from the 2009 NOAA World Ocean Atlas; (2) AQ_D, assimilating daily Aquarius SSS; (3) AQ_M, assimilating monthly Aquarius SSS; and (4) AQ_D10, assimilating daily Aquarius SSS, but using a 10-day relaxation period. The analysis focuses on the tropical Pacific Ocean, where the salinity dynamics are intense and dominated by El Niño interannual variability in the cold tongue region and by high-frequency precipitation events in the western Pacific warm pool region. To assess the robustness of results and conclusions, we also examine the results for the tropical Atlantic and Indian Oceans. Preliminary validation studies are conducted using observations, such as satellite sea-surface height (SSH) fields and in situ Argo buoy vertical profiles of temperature and salinity, to demonstrate that SSS data assimilation improves ocean state representation of the following variables: ocean heat content (0-300m), dynamic height (0-1000m), mixed-layer depth, sea surface heigh, and surface buoyancy fluxes.

  3. Improving Global Reanalyses and Short Range Forecast Using TRMM and SSM/I-Derived Precipitation and Moisture Observations

    NASA Technical Reports Server (NTRS)

    Hou, Arthur Y.; Zhang, Sara Q.; deSilva, Arlindo M.

    2000-01-01

    Global reanalyses currently contain significant errors in the primary fields of the hydrological cycle such as precipitation, evaporation, moisture, and the related cloud fields, especially in the tropics. The Data Assimilation Office (DAO) at the NASA Goddard Space Flight Center has been exploring the use of tropical rainfall and total precipitable water (TPW) observations from the TRMM Microwave Imager (TMI) and the Special Sensor Microwave/ Imager (SSM/I) instruments to improve short-range forecast and reanalyses. We describe a "1+1"D procedure for assimilating 6-hr averaged rainfall and TPW in the Goddard Earth Observing System (GEOS) Data Assimilation System (DAS). The algorithm is based on a 6-hr time integration of a column version of the GEOS DAS, hence the "1+1"D designation. The scheme minimizes the least-square differences between the observed TPW and rain rates and those produced by the column model over the 6-hr analysis window. This 1+lD scheme, in its generalization to four dimensions, is related to the standard 4D variational assimilation but uses analysis increments instead of the initial condition as the control variable. Results show that assimilating the TMI and SSM/I rainfall and TPW observations improves not only the precipitation and moisture fields but also key climate parameters such as clouds, the radiation, the upper-tropospheric moisture, and the large-scale circulation in the tropics. In particular, assimilating these data reduce the state-dependent systematic errors in the assimilated products. The improved analysis also provides better initial conditions for short-range forecasts, but the improvements in forecast are less than improvements in the time-averaged assimilation fields, indicating that using these data types is effective in correcting biases and other errors of the forecast model in data assimilation.

  4. Improving Global Reanalyses and Short-Range Forecast Using TRMM and SSM/I-Derived Precipitation and Moisture Observations

    NASA Technical Reports Server (NTRS)

    Hou, Arthur Y.; Zhang, Sara Q.; daSilva, Arlindo M.

    1999-01-01

    Global reanalyses currently contain significant errors in the primary fields of the hydrological cycle such as precipitation, evaporation, moisture, and the related cloud fields, especially in the tropics. The Data Assimilation Office (DAO) at the NASA Goddard Space Flight Center has been exploring the use of tropical rainfall and total precipitable water (TPW) observations from the TRMM Microwave Imager (TMI) and the Special Sensor Microwave/ Imager (SSM/I) instruments to improve short-range forecast and reanalyses. We describe a 1+1D procedure for assimilating 6-hr averaged rainfall and TPW in the Goddard Earth Observing System (GEOS) Data Assimilation System (DAS). The algorithm is based on a 6-hr time integration of a column version of the GEOS DAS, hence the 1+1D designation. The scheme minimizes the least-square differences between the observed TPW and rain rates and those produced by the column model over the 6-hr analysis window. This 1+1D scheme, in its generalization to four dimensions, is related to the standard 4D variational assimilation but uses analysis increments instead of the initial condition as the control variable. Results show that assimilating the TMI and SSW rainfall and TPW observations improves not only the precipitation and moisture fields but also key climate parameters such as clouds, the radiation, the upper-tropospheric moisture, and the large-scale circulation in the tropics. In particular, assimilating these data reduce the state-dependent systematic errors in the assimilated products. The improved analysis also provides better initial conditions for short-range forecasts, but the improvements in forecast are less than improvements in the time-averaged assimilation fields, indicating that using these data types is effective in correcting biases and other errors of the forecast model in data assimilation.

  5. Impact of Moist Physics Complexity on Tropical Cyclone Simulations from the Hurricane Weather Research and Forecast System

    NASA Astrophysics Data System (ADS)

    Kalina, E. A.; Biswas, M.; Newman, K.; Grell, E. D.; Bernardet, L.; Frimel, J.; Carson, L.

    2017-12-01

    The parameterization of moist physics in numerical weather prediction models plays an important role in modulating tropical cyclone structure, intensity, and evolution. The Hurricane Weather Research and Forecast system (HWRF), the National Oceanic and Atmospheric Administration's operational model for tropical cyclone prediction, uses the Scale-Aware Simplified Arakawa-Schubert (SASAS) cumulus scheme and a modified version of the Ferrier-Aligo (FA) microphysics scheme to parameterize moist physics. The FA scheme contains a number of simplifications that allow it to run efficiently in an operational setting, which includes prescribing values for hydrometeor number concentrations (i.e., single-moment microphysics) and advecting the total condensate rather than the individual hydrometeor species. To investigate the impact of these simplifying assumptions on the HWRF forecast, the FA scheme was replaced with the more complex double-moment Thompson microphysics scheme, which individually advects cloud ice, cloud water, rain, snow, and graupel. Retrospective HWRF forecasts of tropical cyclones that occurred in the Atlantic and eastern Pacific ocean basins from 2015-2017 were then simulated and compared to those produced by the operational HWRF configuration. Both traditional model verification metrics (i.e., tropical cyclone track and intensity) and process-oriented metrics (e.g., storm size, precipitation structure, and heating rates from the microphysics scheme) will be presented and compared. The sensitivity of these results to the cumulus scheme used (i.e., the operational SASAS versus the Grell-Freitas scheme) also will be examined. Finally, the merits of replacing the moist physics schemes that are used operationally with the alternatives tested here will be discussed from a standpoint of forecast accuracy versus computational resources.

  6. Evaluation of the wind farm parameterization in the Weather Research and Forecasting model (version 3.8.1) with meteorological and turbine power data

    NASA Astrophysics Data System (ADS)

    Lee, Joseph C. Y.; Lundquist, Julie K.

    2017-11-01

    Forecasts of wind-power production are necessary to facilitate the integration of wind energy into power grids, and these forecasts should incorporate the impact of wind-turbine wakes. This paper focuses on a case study of four diurnal cycles with significant power production, and assesses the skill of the wind farm parameterization (WFP) distributed with the Weather Research and Forecasting (WRF) model version 3.8.1, as well as its sensitivity to model configuration. After validating the simulated ambient flow with observations, we quantify the value of the WFP as it accounts for wake impacts on power production of downwind turbines. We also illustrate with statistical significance that a vertical grid with approximately 12 m vertical resolution is necessary for reproducing the observed power production. Further, the WFP overestimates wake effects and hence underestimates downwind power production during high wind speed, highly stable, and low turbulence conditions. We also find the WFP performance is independent of the number of wind turbines per model grid cell and the upwind-downwind position of turbines. Rather, the ability of the WFP to predict power production is most dependent on the skill of the WRF model in simulating the ambient wind speed.

  7. Evaluation of the wind farm parameterization in the Weather Research and Forecasting model (version 3.8.1) with meteorological and turbine power data

    DOE PAGES

    Lee, Joseph C. Y.; Lundquist, Julie K.

    2017-11-23

    Forecasts of wind-power production are necessary to facilitate the integration of wind energy into power grids, and these forecasts should incorporate the impact of wind-turbine wakes. Our paper focuses on a case study of four diurnal cycles with significant power production, and assesses the skill of the wind farm parameterization (WFP) distributed with the Weather Research and Forecasting (WRF) model version 3.8.1, as well as its sensitivity to model configuration. After validating the simulated ambient flow with observations, we quantify the value of the WFP as it accounts for wake impacts on power production of downwind turbines. We also illustratemore » with statistical significance that a vertical grid with approximately 12 m vertical resolution is necessary for reproducing the observed power production. Further, the WFP overestimates wake effects and hence underestimates downwind power production during high wind speed, highly stable, and low turbulence conditions. We also find the WFP performance is independent of the number of wind turbines per model grid cell and the upwind–downwind position of turbines. Rather, the ability of the WFP to predict power production is most dependent on the skill of the WRF model in simulating the ambient wind speed.« less

  8. Evaluation of the wind farm parameterization in the Weather Research and Forecasting model (version 3.8.1) with meteorological and turbine power data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Joseph C. Y.; Lundquist, Julie K.

    Forecasts of wind-power production are necessary to facilitate the integration of wind energy into power grids, and these forecasts should incorporate the impact of wind-turbine wakes. Our paper focuses on a case study of four diurnal cycles with significant power production, and assesses the skill of the wind farm parameterization (WFP) distributed with the Weather Research and Forecasting (WRF) model version 3.8.1, as well as its sensitivity to model configuration. After validating the simulated ambient flow with observations, we quantify the value of the WFP as it accounts for wake impacts on power production of downwind turbines. We also illustratemore » with statistical significance that a vertical grid with approximately 12 m vertical resolution is necessary for reproducing the observed power production. Further, the WFP overestimates wake effects and hence underestimates downwind power production during high wind speed, highly stable, and low turbulence conditions. We also find the WFP performance is independent of the number of wind turbines per model grid cell and the upwind–downwind position of turbines. Rather, the ability of the WFP to predict power production is most dependent on the skill of the WRF model in simulating the ambient wind speed.« less

  9. Drought Prediction for Socio-Cultural Stability Project

    NASA Technical Reports Server (NTRS)

    Peters-Lidard, Christa; Eylander, John B.; Koster, Randall; Narapusetty, Balachandrudu; Kumar, Sujay; Rodell, Matt; Bolten, John; Mocko, David; Walker, Gregory; Arsenault, Kristi; hide

    2014-01-01

    The primary objective of this project is to answer the question: "Can existing, linked infrastructures be used to predict the onset of drought months in advance?" Based on our work, the answer to this question is "yes" with the qualifiers that skill depends on both lead-time and location, and especially with the associated teleconnections (e.g., ENSO, Indian Ocean Dipole) active in a given region season. As part of this work, we successfully developed a prototype drought early warning system based on existing/mature NASA Earth science components including the Goddard Earth Observing System Data Assimilation System Version 5 (GEOS-5) forecasting model, the Land Information System (LIS) land data assimilation software framework, the Catchment Land Surface Model (CLSM), remotely sensed terrestrial water storage from the Gravity Recovery and Climate Experiment (GRACE) and remotely sensed soil moisture products from the Aqua/Advanced Microwave Scanning Radiometer - EOS (AMSR-E). We focused on a single drought year - 2011 - during which major agricultural droughts occurred with devastating impacts in the Texas-Mexico region of North America (TEXMEX) and the Horn of Africa (HOA). Our results demonstrate that GEOS-5 precipitation forecasts show skill globally at 1-month lead, and can show up to 3 months skill regionally in the TEXMEX and HOA areas. Our results also demonstrate that the CLSM soil moisture percentiles are a goof indicator of drought, as compared to the North American Drought Monitor of TEXMEX and a combination of Famine Early Warning Systems Network (FEWS NET) data and Moderate Resolution Imaging Spectrometer (MODIS)'s Normalizing Difference Vegetation Index (NDVI) anomalies over HOA. The data assimilation experiments produced mixed results. GRACE terrestrial water storage (TWS) assimilation was found to significantly improve soil moisture and evapotransportation, as well as drought monitoring via soil moisture percentiles, while AMSR-E soil moisture assimilation produced marginal benefits. We carried out 1-3 month lead-time forecast experiments using GEOS-5 forecasts as input to LIS/CLSM. Based on these forecast experiments, we find that the expected skill in GEOS-5 forecasts from 1-3 months is present in the soil moisture percentiles used to indicate drought. In the case of the HOA drought, the failure of the long rains in April appears in the February 1, March 1 and April 1 initialized forecasts, suggesting that for this case, drought forecasting would have provided some advance warning about the drought conditions observed in 2011. Three key recommendations for follow-up work include: (1) carry out a comprehensive analysis of droughts observed over the entire period of record for GEOS-5 forecasts; (2) continue to analyze the GEOS-5 forecasts in HOA stratifying by anomalies in long and short rains; and (3) continue to include GRACE TWS, Soil Moisture/Ocean Salinity (SMOS) and the upcoming NASA Soil Moisture Active/Passive (SMAP) soil moisture products in a routine activity building on this prototype to further quantify the benefits for drought assessment and prediction.

  10. Wild Fire Emissions for the NOAA Operational HYSPLIT Smoke Model

    NASA Astrophysics Data System (ADS)

    Huang, H. C.; ONeill, S. M.; Ruminski, M.; Shafran, P.; McQueen, J.; DiMego, G.; Kondragunta, S.; Gorline, J.; Huang, J. P.; Stunder, B.; Stein, A. F.; Stajner, I.; Upadhayay, S.; Larkin, N. K.

    2015-12-01

    Particulate Matter (PM) generated from forest fires often lead to degraded visibility and unhealthy air quality in nearby and downstream areas. To provide near-real time PM information to the state and local agencies, the NOAA/National Weather Service (NWS) operational HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory Model) smoke modeling system (NWS/HYSPLIT smoke) provides the forecast of smoke concentration resulting from fire emissions driven by the NWS North American Model 12 km weather predictions. The NWS/HYSPLIT smoke incorporates the U.S. Forest Service BlueSky Smoke Modeling Framework (BlueSky) to provide smoke fire emissions along with the input fire locations from the NOAA National Environmental Satellite, Data, and Information Service (NESDIS)'s Hazard Mapping System fire and smoke detection system. Experienced analysts inspect satellite imagery from multiple sensors onboard geostationary and orbital satellites to identify the location, size and duration of smoke emissions for the model. NWS/HYSPLIT smoke is being updated to use a newer version of USFS BlueSky. The updated BlueSky incorporates the Fuel Characteristic Classification System version 2 (FCCS2) over the continental U.S. and Alaska. FCCS2 includes a more detailed description of fuel loadings with additional plant type categories. The updated BlueSky also utilizes an improved fuel consumption model and fire emission production system. For the period of August 2014 and June 2015, NWS/HYSPLIT smoke simulations show that fire smoke emissions with updated BlueSky are stronger than the current operational BlueSky in the Northwest U.S. For the same comparisons, weaker fire smoke emissions from the updated BlueSky were observed over the middle and eastern part of the U.S. A statistical evaluation of NWS/HYSPLIT smoke predicted total column concentration compared to NOAA NESDIS GOES EAST Aerosol Smoke Product retrievals is underway. Preliminary results show that using the newer version of BlueSky leads to improved performance of NWS/HYSPLIT-smoke for June 2015. These results are partially due to the default fuel loading selected for Canadian fires that lead to stronger fire emissions there. The use of more realistic Canadian fuel loading may improve NWS/HYSPLIT smoke forecast.

  11. The GEOS-iODAS: Description and Evaluation

    NASA Technical Reports Server (NTRS)

    Vernieres, Guillaume; Rienecker, Michele M.; Kovach, Robin; Keppenne, Christian L.

    2012-01-01

    This report documents the GMAO's Goddard Earth Observing System sea ice and ocean data assimilation systems (GEOS iODAS) and their evolution from the first reanalysis test, through the implementation that was used to initialize the GMAO decadal forecasts, and to the current system that is used to initialize the GMAO seasonal forecasts. The iODAS assimilates a wide range of observations into the ocean and sea ice components: in-situ temperature and salinity profiles, sea level anomalies from satellite altimetry, analyzed SST, and sea-ice concentration. The climatological sea surface salinity is used to constrain the surface salinity prior to the Argo years. Climatological temperature and salinity gridded data sets from the 2009 version of the World Ocean Atlas (WOA09) are used to help constrain the analysis in data sparse areas. The latest analysis, GEOS ODAS5.2, is diagnosed through detailed studies of the statistics of the innovations and analysis departures, comparisons with independent data, and integrated values such as volume transport. Finally, the climatologies of temperature and salinity fields from the Argo era, 2002-2011, are presented and compared with the WOA09.

  12. Birth, growth and progresses through the last twelve years of a regional scale landslide warning system

    NASA Astrophysics Data System (ADS)

    Fanti, Riccardo; Segoni, Samuele; Rosi, Ascanio; Lagomarsino, Daniela; Catani, Filippo

    2017-04-01

    SIGMA is a regional landslide warning system that operates in the Emilia Romagna region (Italy). In this work, we depict its birth and the continuous development process, still ongoing, after over a decade of operational employ. Traditionally, landslide rainfall thresholds are defined by the empirical correspondence between a rainfall database and a landslide database. However, in the early stages of the research, a complete catalogue of dated landslides was not available. Therefore, the prototypal version of SIGMA was based on rainfall thresholds defined by means of a statistical analysis performed over the rainfall time series. SIGMA was purposely designed to take into account both shallow and deep seated landslides and it was based on the hypothesis that anomalous or extreme values of accumulated rainfall are responsible for landslide triggering. The statistical distribution of the rainfall series was analyzed, and multiples of the standard deviation (σ) were used as thresholds to discriminate between ordinary and extraordinary rainfall events. In the warning system, the measured and the forecasted rainfall are compared with these thresholds. Since the response of slope stability to rainfall may be complex, SIGMA is based on a decision algorithm aimed at identifying short but exceptionally intense rainfalls and mild but exceptionally prolonged rains: while the former are commonly associated with shallow landslides, the latter are mainly associated with deep-seated landslides. In the first case, the rainfall threshold is defined by high σ values and short durations (i.e. a few days); in the second case, σ values are lower but the decision algorithm checks long durations (i.e. some months). The exact definition of "high" and "low" σ values and of "short" and "long" duration varied through time according as it was adjusted during the evolution of the model. Indeed, since 2005, a constant work was carried out to gather and organize newly available data (rainfall recordings and landslides occurred) and to use them to define more robust relationships between rainfalls and landslide triggering, with the final aim to increase the forecasting effectiveness of the warning system. The updated rainfall and landslide database were used to periodically perform a quantitative validation and to analyze the errors affecting the system forecasts. The errors characterization was used to implement a continuous process of updating and modification of SIGMA, that included: - Main model upgrades (generalization from a pilot test site to the whole Emilia Romagna region; calibration against well documented landslide events to define specific σ levels for each territorial units; definition of different alert levels according to the number of expected - Ordinary updates (periodically, the new landslide and rainfall data were used to re-calibrate the thresholds, taking into account a more robust sample). - Model tuning (set up of the optimal version of the decisional algorithm, including different definitions of "long" and "short" periods; selection of the optimal reference rain gauge for each Territorial Unit; modification of the boundaries of some territorial - Additional features (definition of a module that takes into account the effect of snow melt and snow accumulation; coupling with a landslide susceptibility model to improve the spatial accuracy of the model). - Various performance tests (including the comparison with alternate versions of SIGMA or with thresholds based on rainfall intensity and duration). This process has led to an evolution of the warning system and to a documented improvement of its forecasting effectiveness. Landslide forecasting at regional scale is a very complex task, but as time passes by and with the systematic gathering of new substantial data and the continuous progresses of research, uncertainties can be progressively reduced and a warning system can be set that increases its performances and reliability with time.

  13. Development of the ClearSky smoke dispersion forecast system for agricultural field burning in the Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Jain, Rahul; Vaughan, Joseph; Heitkamp, Kyle; Ramos, Charleston; Claiborn, Candis; Schreuder, Maarten; Schaaf, Mark; Lamb, Brian

    The post-harvest burning of agricultural fields is commonly used to dispose of crop residue and provide other desired services such as pest control. Despite careful regulation of burning, smoke plumes from field burning in the Pacific Northwest commonly degrade air quality, particularly for rural populations. In this paper, ClearSky, a numerical smoke dispersion forecast system for agricultural field burning that was developed to support smoke management in the Inland Pacific Northwest, is described. ClearSky began operation during the summer through fall burn season of 2002 and continues to the present. ClearSky utilizes Mesoscale Meteorological Model version 5 (MM5v3) forecasts from the University of Washington, data on agricultural fields, a web-based user interface for defining burn scenarios, the Lagrangian CALPUFF dispersion model and web-served animations of plume forecasts. The ClearSky system employs a unique hybrid source configuration, which treats the flaming portion of a field as a buoyant line source and the smoldering portion of the field as a buoyant area source. Limited field observations show that this hybrid approach yields reasonable plume rise estimates using source parameters derived from recent field burning emission field studies. The performance of this modeling system was evaluated for 2003 by comparing forecast meteorology against meteorological observations, and comparing model-predicted hourly averaged PM 2.5 concentrations against observations. Examples from this evaluation illustrate that while the ClearSky system can accurately predict PM 2.5 surface concentrations due to field burning, the overall model performance depends strongly on meteorological forecast error. Statistical evaluation of the meteorological forecast at seven surface stations indicates a strong relationship between topographical complexity near the station and absolute wind direction error with wind direction errors increasing from approximately 20° for sites in open areas to 70° or more for sites in very complex terrain. The analysis also showed some days with good forecast meteorology with absolute mean error in wind direction less than 30° when ClearSky correctly predicted PM 2.5 surface concentrations at receptors affected by field burns. On several other days with similar levels of wind direction error the model did not predict apparent plume impacts. In most of these cases, there were no reported burns in the vicinity of the monitor and, thus, it appeared that other, non-reported burns were responsible for the apparent plume impact at the monitoring site. These cases do not provide information on the performance of the model, but rather indicate that further work is needed to identify all burns and to improve burn reports in an accurate and timely manner. There were also a number of days with wind direction errors exceeding 70° when the forecast system did not correctly predict plume behavior.

  14. The hourly updated US High-Resolution Rapid Refresh (HRRR) storm-scale forecast model

    NASA Astrophysics Data System (ADS)

    Alexander, Curtis; Dowell, David; Benjamin, Stan; Weygandt, Stephen; Olson, Joseph; Kenyon, Jaymes; Grell, Georg; Smirnova, Tanya; Ladwig, Terra; Brown, John; James, Eric; Hu, Ming

    2016-04-01

    The 3-km convective-allowing High-Resolution Rapid Refresh (HRRR) is a US NOAA hourly updating weather forecast model that use a specially configured version of the Advanced Research WRF (ARW) model and assimilate many novel and most conventional observation types on an hourly basis using Gridpoint Statistical Interpolation (GSI). Included in this assimilation is a procedure for initializing ongoing precipitation systems from observed radar reflectivity data (and proxy reflectivity from lightning and satellite data), a cloud analysis to initialize stable layer clouds from METAR and satellite observations, and special techniques to enhance retention of surface observation information. The HRRR is run hourly out to 15 forecast hours over a domain covering the entire conterminous United States using initial and boundary conditions from the hourly-cycled 13km Rapid Refresh (RAP, using similar physics and data assimilation) covering North America and a significant part of the Northern Hemisphere. The HRRR is continually developed and refined at NOAA's Earth System Research Laboratory, and an initial version was implemented into the operational NOAA/NCEP production suite in September 2014. Ongoing experimental RAP and HRRR model development throughout 2014 and 2015 has culminated in a set of data assimilation and model enhancements that will be incorporated into the first simultaneous upgrade of both the operational RAP and HRRR that is scheduled for spring 2016 at NCEP. This presentation will discuss the operational RAP and HRRR changes contained in this upgrade. The RAP domain is being expanded to encompass the NAM domain and the forecast lengths of both the RAP and HRRR are being extended. RAP and HRRR assimilation enhancements have focused on (1) extending surface data assimilation to include mesonet observations and improved use of all surface observations through better background estimates of 2-m temperature and dewpoint including projection of 2-m temperature observations through the model boundary layer and (2) extending the use of radar observations to include both radial velocity and 3-D retrieval of rain hydrometeors from observed radar reflectivities in the warm-season. The RAP hybrid EnKF 3D-variational data assimilation will increase weighting of GFS ensemble-based background error covariance estimation and introduce this hybrid data assimilation configuration in the HRRR. Enhancement of RAP and HRRR model physics include improved land surface and boundary layer prediction using the updated Mellor-Yamada-Nakanishi-Niino (MYNN) parameterization scheme, Grell-Freitas-Olson (GFO) shallow and deep convective parameterization, aerosol-aware Thompson microphysics and upgraded Rapid Update Cycle (RUC) land-surface model. The presentation will highlight improvements in the RAP and HRRR model physics to reduce certain systematic forecast biases including a warm and dry daytime bias over the central and eastern CONUS during the warm season along with improved convective forecasts in more weakly-forced diurnally-driven events. Examples of RAP and HRRR forecast improvements will be demonstrated through both retrospective and real-time verification statistics and case-study examples.

  15. New and Improved GLDAS Data Sets and Data Services at NASA GES DISC

    NASA Technical Reports Server (NTRS)

    Rui, Hualan; Beaudoing, Hiroko; Teng, William; Vollmer, Bruce; Rodell, Matthew; Lei, Guang-Dih

    2012-01-01

    The goal of a Land Data Assimilation System (LDAS) is to ingest satellite- and ground-based observational data products, using advanced land surface modeling and data assimilation techniques, in order to generate optimal fields of land surface states and fluxes data and, thereby, facilitate hydrology and climate modeling, research, and forecast. With the motivation of creating more climatologically consistent data sets, NASA GSFC's Hydrological Sciences Laboratory has generated more than 60 years (Jan. 1948-- Dec. 2008) of Global LDAS Version 2 (GLDAS-2) data, by using the Princeton Forcing Data Set and upgraded versions of Land Surface Models (LSMs). GLDAS data and data services are provided at NASA GES DISC Hydrology Data and Information Services Center (HDISC), in collaboration with HSL and LDAS.

  16. Impact of Flow-Dependent Error Correlations and Tropospheric Chemistry on Assimilated Ozone

    NASA Technical Reports Server (NTRS)

    Wargan, K.; Stajner, I.; Hayashi, H.; Pawson, S.; Jones, D. B. A.

    2003-01-01

    The presentation compares different versions of a global three-dimensional ozone data assimilation system developed at NASA's Data Assimilation Office. The Solar Backscatter Ultraviolet/2 (SBUV/2) total and partial ozone column retrievals are the sole data assimilated in all of the experiments presented. We study the impact of changing the forecast error covariance model from a version assuming static correlations with a one that captures a short-term Lagrangian evolution of those correlations. This is further combined with a study of the impact of neglecting the tropospheric ozone production, loss and dry deposition rates, which are obtained from the Harvard GEOS-CHEM model. We compare statistical characteristics of the assimilated data and the results of validation against independent observations, obtained from WMO balloon-borne sondes and the Polar Ozone and Aerosol Measurement (POAM) III instrument. Experiments show that allowing forecast error correlations to evolve with the flow results in positive impact on assimilated ozone within the regions where data were not assimilated, particularly at high latitudes in both hemispheres. On the other hand, the main sensitivity to tropospheric chemistry is in the Tropics and sub-Tropics. The best agreement between the assimilated ozone and the in-situ sonde data is in the experiment using both flow-dependent error covariances and tropospheric chemistry.

  17. The SPoRT-WRF: Evaluating the Impact of NASA Datasets on Convective Forecasts

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley; Kozlowski, Danielle; Case, Jonathan; Molthan, Andrew

    2012-01-01

    Short-term Prediction Research and Transition (SPoRT) seeks to improve short-term, regional weather forecasts using unique NASA products and capabilities SPoRT has developed a unique, real-time configuration of the NASA Unified Weather Research and Forecasting (WRF)WRF (ARW) that integrates all SPoRT modeling research data: (1) 2-km SPoRT Sea Surface Temperature (SST) Composite, (2) 3-km LIS with 1-km Greenness Vegetation Fraction (GVFs) (3) 45-km AIRS retrieved profiles. Transitioned this real-time forecast to NOAA's Hazardous Weather Testbed (HWT) as deterministic model at Experimental Forecast Program (EFP). Feedback from forecasters/participants and internal evaluation of SPoRT-WRF shows a cool, dry bias that appears to suppress convection likely related to methodology for assimilation of AIRS profiles Version 2 of the SPoRT-WRF will premier at the 2012 EFP and include NASA physics, cycling data assimilation methodology, better coverage of precipitation forcing, and new GVFs

  18. Improving Weather Research and Forecasting Model Initial Conditions via Surface Pressure Analysis

    DTIC Science & Technology

    2015-09-01

    Obsgrid) that creates input data for the Advanced Research version of the Weather Research and Forecasting model ( WRF -ARW) is modified to perform a...surface pressure objective analysis to allow surface analyses of other fields to be more fully utilized in the WRF -ARW initial conditions. Nested 27-, 9...of surface pressure unnecessarily limits the application of other surface analyses into the WRF initial conditions and contributes to the creation of

  19. The economic value of remote sensing of earth resources from space: An ERTS overview and the value of continuity of service. Volume 3: Intensive use of living resources, agriculture. Part 3: The integrated impact of improved (ERS) information on US agricultural commodities

    NASA Technical Reports Server (NTRS)

    Seidel, A. D.

    1974-01-01

    The economic value of information produced by an assumed operational version of an earth resources survey satellite of the ERTS class is assessed. The theoretical capability of an ERTS system to provide improved agricultural forecasts is analyzed and this analysis is used as a reasonable input to the econometric methods derived by ECON. An econometric investigation into the markets for agricultural commodities is summarized. An overview of the effort including the objectives, scopes, and architecture of the analysis, and the estimation strategy employed is presented. The results and conclusions focus on the economic importance of improved crop forecasts, U.S. exports, and government policy operations. Several promising avenues of further investigation are suggested.

  20. Impact of Assimilated and Interactive Aerosol on Tropical Cyclogenesis

    NASA Technical Reports Server (NTRS)

    Reale, O.; Lau, K. M.; daSilva, A.; Matsui, T.

    2014-01-01

    This article investigates the impact 3 of Saharan dust on the development of tropical cyclones in the Atlantic. A global data assimilation and forecast system, the NASA GEOS-5, is used to assimilate all satellite and conventional data sets used operationally for numerical weather prediction. In addition, this new GEOS-5 version includes assimilation of aerosol optical depth from the Moderate Resolution Imaging Spectroradiometer (MODIS). The analysis so obtained comprises atmospheric quantities and a realistic 3-d aerosol and cloud distribution, consistent with the meteorology and validated against Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) and CloudSat data. These improved analyses are used to initialize GEOS-5 forecasts, explicitly accounting for aerosol direct radiative effects and their impact on the atmospheric dynamics. Parallel simulations with/without aerosol radiative effects show that effects of dust on static stability increase with time, becoming highly significant after day 5 and producing an environment less favorable to tropical cyclogenesis.

  1. Generalization of information-based concepts in forecast verification

    NASA Astrophysics Data System (ADS)

    Tödter, J.; Ahrens, B.

    2012-04-01

    This work deals with information-theoretical methods in probabilistic forecast verification. Recent findings concerning the Ignorance Score are shortly reviewed, then the generalization to continuous forecasts is shown. For ensemble forecasts, the presented measures can be calculated exactly. The Brier Score (BS) and its generalizations to the multi-categorical Ranked Probability Score (RPS) and to the Continuous Ranked Probability Score (CRPS) are the prominent verification measures for probabilistic forecasts. Particularly, their decompositions into measures quantifying the reliability, resolution and uncertainty of the forecasts are attractive. Information theory sets up the natural framework for forecast verification. Recently, it has been shown that the BS is a second-order approximation of the information-based Ignorance Score (IGN), which also contains easily interpretable components and can also be generalized to a ranked version (RIGN). Here, the IGN, its generalizations and decompositions are systematically discussed in analogy to the variants of the BS. Additionally, a Continuous Ranked IGN (CRIGN) is introduced in analogy to the CRPS. The applicability and usefulness of the conceptually appealing CRIGN is illustrated, together with an algorithm to evaluate its components reliability, resolution, and uncertainty for ensemble-generated forecasts. This is also directly applicable to the more traditional CRPS.

  2. Invasive Species Forecasting System: A Decision Support Tool for the U.S. Geological Survey: FY 2005 Benchmarking Report v.1.6

    NASA Technical Reports Server (NTRS)

    Stohlgren, Tom; Schnase, John; Morisette, Jeffrey; Most, Neal; Sheffner, Ed; Hutchinson, Charles; Drake, Sam; Van Leeuwen, Willem; Kaupp, Verne

    2005-01-01

    The National Institute of Invasive Species Science (NIISS), through collaboration with NASA's Goddard Space Flight Center (GSFC), recently began incorporating NASA observations and predictive modeling tools to fulfill its mission. These enhancements, labeled collectively as the Invasive Species Forecasting System (ISFS), are now in place in the NIISS in their initial state (V1.0). The ISFS is the primary decision support tool of the NIISS for the management and control of invasive species on Department of Interior and adjacent lands. The ISFS is the backbone for a unique information services line-of-business for the NIISS, and it provides the means for delivering advanced decision support capabilities to a wide range of management applications. This report describes the operational characteristics of the ISFS, a decision support tool of the United States Geological Survey (USGS). Recent enhancements to the performance of the ISFS, attained through the integration of observations, models, and systems engineering from the NASA are benchmarked; i.e., described quantitatively and evaluated in relation to the performance of the USGS system before incorporation of the NASA enhancements. This report benchmarks Version 1.0 of the ISFS.

  3. Potential influences of neglecting aerosol effects on the NCEP GFS precipitation forecast

    NASA Astrophysics Data System (ADS)

    Jiang, Mengjiao; Feng, Jinqin; Li, Zhanqing; Sun, Ruiyu; Hou, Yu-Tai; Zhu, Yuejian; Wan, Bingcheng; Guo, Jianping; Cribb, Maureen

    2017-11-01

    Aerosol-cloud interactions (ACIs) have been widely recognized as a factor affecting precipitation. However, they have not been considered in the operational National Centers for Environmental Predictions Global Forecast System model. We evaluated the potential impact of neglecting ACI on the operational rainfall forecast using ground-based and satellite observations and model reanalysis. The Climate Prediction Center unified gauge-based precipitation analysis and the Modern-Era Retrospective analysis for Research and Applications Version 2 aerosol reanalysis were used to evaluate the forecast in three countries for the year 2015. The overestimation of light rain (47.84 %) and underestimation of heavier rain (31.83, 52.94, and 65.74 % for moderate rain, heavy rain, and very heavy rain, respectively) from the model are qualitatively consistent with the potential errors arising from not accounting for ACI, although other factors cannot be totally ruled out. The standard deviation of the forecast bias was significantly correlated with aerosol optical depth in Australia, the US, and China. To gain further insight, we chose the province of Fujian in China to pursue a more insightful investigation using a suite of variables from gauge-based observations of precipitation, visibility, water vapor, convective available potential energy (CAPE), and satellite datasets. Similar forecast biases were found: over-forecasted light rain and under-forecasted heavy rain. Long-term analyses revealed an increasing trend in heavy rain in summer and a decreasing trend in light rain in other seasons, accompanied by a decreasing trend in visibility, no trend in water vapor, and a slight increasing trend in summertime CAPE. More aerosols decreased cloud effective radii for cases where the liquid water path was greater than 100 g m-2. All findings are consistent with the effects of ACI, i.e., where aerosols inhibit the development of shallow liquid clouds and invigorate warm-base mixed-phase clouds (especially in summertime), which in turn affects precipitation. While we cannot establish rigorous causal relations based on the analyses presented in this study, the significant rainfall forecast bias seen in operational weather forecast model simulations warrants consideration in future model improvements.

  4. The forecaster's added value in QPF

    NASA Astrophysics Data System (ADS)

    Turco, M.; Milelli, M.

    2010-03-01

    To the authors' knowledge there are relatively few studies that try to answer this question: "Are humans able to add value to computer-generated forecasts and warnings?". Moreover, the answers are not always positive. In particular some postprocessing method is competitive or superior to human forecast. Within the alert system of ARPA Piemonte it is possible to study in an objective manner if the human forecaster is able to add value with respect to computer-generated forecasts. Every day the meteorology group of the Centro Funzionale of Regione Piemonte produces the HQPF (Human Quantitative Precipitation Forecast) in terms of an areal average and maximum value for each of the 13 warning areas, which have been created according to meteo-hydrological criteria. This allows the decision makers to produce an evaluation of the expected effects by comparing these HQPFs with predefined rainfall thresholds. Another important ingredient in this study is the very dense non-GTS (Global Telecommunication System) network of rain gauges available that makes possible a high resolution verification. In this work we compare the performances of the latest three years of QPF derived from the meteorological models COSMO-I7 (the Italian version of the COSMO Model, a mesoscale model developed in the framework of the COSMO Consortium) and IFS (the ECMWF global model) with the HQPF. In this analysis it is possible to introduce the hypothesis test developed by Hamill (1999), in which a confidence interval is calculated with the bootstrap method in order to establish the real difference between the skill scores of two competitive forecasts. It is important to underline that the conclusions refer to the analysis of the Piemonte operational alert system, so they cannot be directly taken as universally true. But we think that some of the main lessons that can be derived from this study could be useful for the meteorological community. In details, the main conclusions are the following: - despite the overall improvement in global scale and the fact that the resolution of the limited area models has increased considerably over recent years, the QPF produced by the meteorological models involved in this study has not improved enough to allow its direct use: the subjective HQPF continues to offer the best performance for the period +24 h/+48 h (i.e. the warning period in the Piemonte system); - in the forecast process, the step where humans have the largest added value with respect to mathematical models, is the communication. In fact the human characterization and communication of the forecast uncertainty to end users cannot be replaced by any computer code; - eventually, although there is no novelty in this study, we would like to show that the correct application of appropriated statistical techniques permits a better definition and quantification of the errors and, mostly important, allows a correct (unbiased) communication between forecasters and decision makers.

  5. Wind-Farm Forecasting Using the HARMONIE Weather Forecast Model and Bayes Model Averaging for Bias Removal.

    NASA Astrophysics Data System (ADS)

    O'Brien, Enda; McKinstry, Alastair; Ralph, Adam

    2015-04-01

    Building on previous work presented at EGU 2013 (http://www.sciencedirect.com/science/article/pii/S1876610213016068 ), more results are available now from a different wind-farm in complex terrain in southwest Ireland. The basic approach is to interpolate wind-speed forecasts from an operational weather forecast model (i.e., HARMONIE in the case of Ireland) to the precise location of each wind-turbine, and then use Bayes Model Averaging (BMA; with statistical information collected from a prior training-period of e.g., 25 days) to remove systematic biases. Bias-corrected wind-speed forecasts (and associated power-generation forecasts) are then provided twice daily (at 5am and 5pm) out to 30 hours, with each forecast validation fed back to BMA for future learning. 30-hr forecasts from the operational Met Éireann HARMONIE model at 2.5km resolution have been validated against turbine SCADA observations since Jan. 2014. An extra high-resolution (0.5km grid-spacing) HARMONIE configuration has been run since Nov. 2014 as an extra member of the forecast "ensemble". A new version of HARMONIE with extra filters designed to stabilize high-resolution configurations has been run since Jan. 2015. Measures of forecast skill and forecast errors will be provided, and the contributions made by the various physical and computational enhancements to HARMONIE will be quantified.

  6. Seasonal prediction of Indian summer monsoon rainfall in NCEP CFSv2: forecast and predictability error

    NASA Astrophysics Data System (ADS)

    Pokhrel, Samir; Saha, Subodh Kumar; Dhakate, Ashish; Rahman, Hasibur; Chaudhari, Hemantkumar S.; Salunke, Kiran; Hazra, Anupam; Sujith, K.; Sikka, D. R.

    2016-04-01

    A detailed analysis of sensitivity to the initial condition for the simulation of the Indian summer monsoon using retrospective forecast by the latest version of the Climate Forecast System version-2 (CFSv2) is carried out. This study primarily focuses on the tropical region of Indian and Pacific Ocean basin, with special emphasis on the Indian land region. The simulated seasonal mean and the inter-annual standard deviations of rainfall, upper and lower level atmospheric circulations and Sea Surface Temperature (SST) tend to be more skillful as the lead forecast time decreases (5 month lead to 0 month lead time i.e. L5-L0). In general spatial correlation (bias) increases (decreases) as forecast lead time decreases. This is further substantiated by their averaged value over the selected study regions over the Indian and Pacific Ocean basins. The tendency of increase (decrease) of model bias with increasing (decreasing) forecast lead time also indicates the dynamical drift of the model. Large scale lower level circulation (850 hPa) shows enhancement of anomalous westerlies (easterlies) over the tropical region of the Indian Ocean (Western Pacific Ocean), which indicates the enhancement of model error with the decrease in lead time. At the upper level circulation (200 hPa) biases in both tropical easterly jet and subtropical westerlies jet tend to decrease as the lead time decreases. Despite enhancement of the prediction skill, mean SST bias seems to be insensitive to the initialization. All these biases are significant and together they make CFSv2 vulnerable to seasonal uncertainties in all the lead times. Overall the zeroth lead (L0) seems to have the best skill, however, in case of Indian summer monsoon rainfall (ISMR), the 3 month lead forecast time (L3) has the maximum ISMR prediction skill. This is valid using different independent datasets, wherein these maximum skill scores are 0.64, 0.42 and 0.57 with respect to the Global Precipitation Climatology Project, CPC Merged Analysis of Precipitation and the India Meteorological Department precipitation dataset respectively for L3. Despite significant El-Niño Southern Oscillation (ENSO) spring predictability barrier at L3, the ISMR skill score is highest at L3. Further, large scale zonal wind shear (Webster-Yang index) and SST over Niño3.4 region is best at L1 and L0. This implies that predictability aspect of ISMR is controlled by factors other than ENSO and Indian Ocean Dipole. Also, the model error (forecast error) outruns the error acquired by the inadequacies in the initial conditions (predictability error). Thus model deficiency is having more serious consequences as compared to the initial condition error for the seasonal forecast. All the model parameters show the increase in the predictability error as the lead decreases over the equatorial eastern Pacific basin and peaks at L2, then it further decreases. The dynamical consistency of both the forecast and the predictability error among all the variables indicates that these biases are purely systematic in nature and improvement of the physical processes in the CFSv2 may enhance the overall predictability.

  7. Prediction of Significant Wave Heights in the Tropics at Sub-seasonal Time Scales

    NASA Astrophysics Data System (ADS)

    Kinter, J. L.; Shukla, R. P.; Shin, C. S.

    2017-12-01

    Skillfully predicting the 14-day mean significant wave height (SWH) forecasts at 3 weeks lead-time over the Western Pacific and Indian Oceans has been demonstrated using the WAVEWATCH-3 (WW3) model coupled to a modified version of the National Centers for Environmental Prediction (NCEP) Climate Forecast System, version 2 (CFSv2). In this paper, we present results on the effect of the Madden Julian Oscillation (MJO) events and El Niño and the Southern Oscillation (ENSO) on such predictions. Forecasts initialized with multiple ocean analyses in both January and May for 1979-2008 are evaluated. A significant anomaly correlation of predicted and observed SWH anomalies (SWHA) at 3 weeks lead-time is found over portions of the domain in both January and May cases. The model successfully predicts almost all the important features of the observed SWHA during El Niño events in January, including negative SWHA in the central Indian Ocean and northern western tropical Pacific, and positive SWHA over the southern Ocean and western Pacific. The model also reproduces the spatial pattern of the inverse relationship between SWHA and sea level pressure anomalies during both composite El Niño and La Niña events at 3 weeks lead-time. The model successfully predicts the sign and magnitude of SWHA in May over the Bay of Bengal and South China Sea in composites of phases 2 and 6 of MJO. The observed leading mode of SWHA in May and the third mode of SWHA in January are influenced by the combined effects of MJO and ENSO. Analysis of the mechanisms for these relationships is described.

  8. Enhancing Cloud Radiative Processes and Radiation Efficiency in the Advanced Research Weather Research and Forecasting (WRF) Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iacono, Michael J.

    The objective of this research has been to evaluate and implement enhancements to the computational performance of the RRTMG radiative transfer option in the Advanced Research version of the Weather Research and Forecasting (WRF) model. Efficiency is as essential as accuracy for effective numerical weather prediction, and radiative transfer is a relatively time-consuming component of dynamical models, taking up to 30-50 percent of the total model simulation time. To address this concern, this research has implemented and tested a version of RRTMG that utilizes graphics processing unit (GPU) technology (hereinafter RRTMGPU) to greatly improve its computational performance; thereby permitting eithermore » more frequent simulation of radiative effects or other model enhancements. During the early stages of this project the development of RRTMGPU was completed at AER under separate NASA funding to accelerate the code for use in the Goddard Space Flight Center (GSFC) Goddard Earth Observing System GEOS-5 global model. It should be noted that this final report describes results related to the funded portion of the originally proposed work concerning the acceleration of RRTMG with GPUs in WRF. As a k-distribution model, RRTMG is especially well suited to this modification due to its relatively large internal pseudo-spectral (g-point) dimension that, when combined with the horizontal grid vector in the dynamical model, can take great advantage of the GPU capability. Thorough testing under several model configurations has been performed to ensure that RRTMGPU improves WRF model run time while having no significant impact on calculated radiative fluxes and heating rates or on dynamical model fields relative to the RRTMG radiation. The RRTMGPU codes have been provided to NCAR for possible application to the next public release of the WRF forecast model.« less

  9. Apollo: AN Automatic Procedure to Forecast Transport and Deposition of Tephra

    NASA Astrophysics Data System (ADS)

    Folch, A.; Costa, A.; Macedonio, G.

    2007-05-01

    Volcanic ash fallout represents a serious threat to communities around active volcanoes. Reliable short term predictions constitute a valuable support for to mitigate the effects of fallout on the surrounding area during an episode of crisis. We present a platform-independent automatic procedure aimed to daily forecast volcanic ash dispersal. The procedure builds on a series of programs and interfaces that allow an automatic data/results flow. Firstly the procedure downloads mesoscale meteorological forecasts for the region and period of interest, filters and converts data from its native format (typically GRIB format files), and sets up the CALMET diagnostic meteorological model to obtain hourly wind field and micro-meteorological variables on a finer mesh. Secondly a 1-D version of the buoyant plume equations assesses the distribution of mass along the eruptive column depending on the obtained wind field and on the conditions at the vent (granulometry, mass flow rate, etc.). All these data are used as input for the ash dispersion model(s). Any model able to face physical complexity and coupling processes with adequate solving times can be plugged into the system by means of an interface. Currently, the procedure contains the models HAZMAP, TEPHRA and FALL3D, the latter in both serial and parallel versions. Parallelization of FALL3D is done at two levels one for particle classes and one for spatial domain. The last step is to post-processes the model(s) outcomes to end up with homogeneous maps written on portable format files. Maps plot relevant quantities such as predicted ground load, expected deposit thickness or visual and flight safety concentration thresholds. Several applications are shown as examples.

  10. Conditional Probabilities of Large Earthquake Sequences in California from the Physics-based Rupture Simulator RSQSim

    NASA Astrophysics Data System (ADS)

    Gilchrist, J. J.; Jordan, T. H.; Shaw, B. E.; Milner, K. R.; Richards-Dinger, K. B.; Dieterich, J. H.

    2017-12-01

    Within the SCEC Collaboratory for Interseismic Simulation and Modeling (CISM), we are developing physics-based forecasting models for earthquake ruptures in California. We employ the 3D boundary element code RSQSim (Rate-State Earthquake Simulator of Dieterich & Richards-Dinger, 2010) to generate synthetic catalogs with tens of millions of events that span up to a million years each. This code models rupture nucleation by rate- and state-dependent friction and Coulomb stress transfer in complex, fully interacting fault systems. The Uniform California Earthquake Rupture Forecast Version 3 (UCERF3) fault and deformation models are used to specify the fault geometry and long-term slip rates. We have employed the Blue Waters supercomputer to generate long catalogs of simulated California seismicity from which we calculate the forecasting statistics for large events. We have performed probabilistic seismic hazard analysis with RSQSim catalogs that were calibrated with system-wide parameters and found a remarkably good agreement with UCERF3 (Milner et al., this meeting). We build on this analysis, comparing the conditional probabilities of sequences of large events from RSQSim and UCERF3. In making these comparisons, we consider the epistemic uncertainties associated with the RSQSim parameters (e.g., rate- and state-frictional parameters), as well as the effects of model-tuning (e.g., adjusting the RSQSim parameters to match UCERF3 recurrence rates). The comparisons illustrate how physics-based rupture simulators might assist forecasters in understanding the short-term hazards of large aftershocks and multi-event sequences associated with complex, multi-fault ruptures.

  11. Gigantic Jet Environments: A Meteorological Evaluation Using Reanalysis Data Sets

    NASA Astrophysics Data System (ADS)

    Splitt, M. E.; Lazarus, S. M.

    2017-12-01

    The meteorological conditions of gigantic jet (GJ) producing thunderstorms tend to be connected to maritime tropical environments. In particular, they have an affinity toward tropical disturbances including those with moderate values of upper tropospheric environmental wind shear. Wind shear related effects (including turbulence) in association with deep convection in these environments have been proposed as mechanisms for the arrangement of GJ favorable charge structures. This study focuses on a climatological evaluation in an effort to assess whether the proposed ingredients are consistent with observed GJ event regions. The Climate System Forecast System - Version 2 (CFSR V2) is used here to test for the proposed GJ conditions.

  12. Low-Level Turbulence Forecasts From Fine-Scale Models

    DTIC Science & Technology

    2014-02-01

    aircraft which often fly above 6097 m for much of the flight. Sharman et al. (35) have developed the Graphical Turbulence Guidance ( GTG ), which is a...original GTG was used above 6097-m AGL and is for MOD or greater CAT. The Rapid Refresh Model, which is an hourly updated assimilation model operational...applications and tactical decision aids. The recent version of GTG (V2.5) forecasts turbulence as low as 3354 m. Silberberg (36) notes that the Aviation

  13. Randomly correcting model errors in the ARPEGE-Climate v6.1 component of CNRM-CM: applications for seasonal forecasts

    NASA Astrophysics Data System (ADS)

    Batté, Lauriane; Déqué, Michel

    2016-06-01

    Stochastic methods are increasingly used in global coupled model climate forecasting systems to account for model uncertainties. In this paper, we describe in more detail the stochastic dynamics technique introduced by Batté and Déqué (2012) in the ARPEGE-Climate atmospheric model. We present new results with an updated version of CNRM-CM using ARPEGE-Climate v6.1, and show that the technique can be used both as a means of analyzing model error statistics and accounting for model inadequacies in a seasonal forecasting framework.The perturbations are designed as corrections of model drift errors estimated from a preliminary weakly nudged re-forecast run over an extended reference period of 34 boreal winter seasons. A detailed statistical analysis of these corrections is provided, and shows that they are mainly made of intra-month variance, thereby justifying their use as in-run perturbations of the model in seasonal forecasts. However, the interannual and systematic error correction terms cannot be neglected. Time correlation of the errors is limited, but some consistency is found between the errors of up to 3 consecutive days.These findings encourage us to test several settings of the random draws of perturbations in seasonal forecast mode. Perturbations are drawn randomly but consistently for all three prognostic variables perturbed. We explore the impact of using monthly mean perturbations throughout a given forecast month in a first ensemble re-forecast (SMM, for stochastic monthly means), and test the use of 5-day sequences of perturbations in a second ensemble re-forecast (S5D, for stochastic 5-day sequences). Both experiments are compared in the light of a REF reference ensemble with initial perturbations only. Results in terms of forecast quality are contrasted depending on the region and variable of interest, but very few areas exhibit a clear degradation of forecasting skill with the introduction of stochastic dynamics. We highlight some positive impacts of the method, mainly on Northern Hemisphere extra-tropics. The 500 hPa geopotential height bias is reduced, and improvements project onto the representation of North Atlantic weather regimes. A modest impact on ensemble spread is found over most regions, which suggests that this method could be complemented by other stochastic perturbation techniques in seasonal forecasting mode.

  14. Flash flood warnings for ungauged basins based on high-resolution precipitation forecasts

    NASA Astrophysics Data System (ADS)

    Demargne, Julie; Javelle, Pierre; Organde, Didier; de Saint Aubin, Céline; Janet, Bruno

    2016-04-01

    Early detection of flash floods, which are typically triggered by severe rainfall events, is still challenging due to large meteorological and hydrologic uncertainties at the spatial and temporal scales of interest. Also the rapid rising of waters necessarily limits the lead time of warnings to alert communities and activate effective emergency procedures. To better anticipate such events and mitigate their impacts, the French national service in charge of flood forecasting (SCHAPI) is implementing a national flash flood warning system for small-to-medium (up to 1000 km²) ungauged basins based on a discharge-threshold flood warning method called AIGA (Javelle et al. 2014). The current deterministic AIGA system has been run in real-time in the South of France since 2005 and has been tested in the RHYTMME project (rhytmme.irstea.fr/). It ingests the operational radar-gauge QPE grids from Météo-France to run a simplified hourly distributed hydrologic model at a 1-km² resolution every 15 minutes. This produces real-time peak discharge estimates along the river network, which are subsequently compared to regionalized flood frequency estimates to provide warnings according to the AIGA-estimated return period of the ongoing event. The calibration and regionalization of the hydrologic model has been recently enhanced for implementing the national flash flood warning system for the entire French territory by 2016. To further extend the effective warning lead time, the flash flood warning system is being enhanced to ingest Météo-France's AROME-NWC high-resolution precipitation nowcasts. The AROME-NWC system combines the most recent available observations with forecasts from the nowcasting version of the AROME convection-permitting model (Auger et al. 2015). AROME-NWC pre-operational deterministic precipitation forecasts, produced every hour at a 2.5-km resolution for a 6-hr forecast horizon, were provided for 3 significant rain events in September and November 2014 and ingested as time-lagged ensembles. The time-lagged approach is a practical choice of accounting for the atmospheric forecast uncertainty when no extensive forecast archive is available for statistical modelling. The evaluation on 185 basins in the South of France showed significant improvements in terms of flash flood event detection and effective warning lead-time, compared to warnings from the current AIGA setup (without any future precipitation). Various verification metrics (e.g., Relative Mean Error, Brier Skill Score) show the skill of ensemble precipitation and flow forecasts compared to single-valued persistency benchmarks. Planned enhancements include integrating additional probabilistic NWP products (e.g., AROME precipitation ensembles on longer forecast horizon), accounting for and reducing hydrologic uncertainties from the model parameters and initial conditions via data assimilation, and developing a comprehensive observational and post-event damage database to determine decision-relevant warning thresholds for flood magnitude and probability. Javelle, P., Demargne, J., Defrance, D., Arnaud, P., 2014. Evaluating flash flood warnings at ungauged locations using post-event surveys: a case study with the AIGA warning system. Hydrological Sciences Journal, doi: 10.1080/02626667.2014.923970 Auger, L., Dupont, O., Hagelin, S., Brousseau, P., Brovelli, P., 2015. AROME-NWC: a new nowcasting tool based on an operational mesoscale forecasting system. Quarterly Journal of the Royal Meteorological Society, 141: 1603-1611, doi: 10.1002/qj.2463

  15. TODS BioCast User Manual, Forecasting 3D Satellite Derived Optical Properties Using Eulerian Advection Procedure, Version 1.0

    DTIC Science & Technology

    2015-06-17

    Example 2: OpCast_cron.sh #!/bin/sh # # # # # Cron helper script This script may be called with the appropriate arguments to reproduce what the...testing. Example 3: OpCast.sh #!/bin/sh # # helper script to set up environment for call to make_merged_product.sh # # This script can be called stand...ecosystem model skill assessment, Journal of Marine Systems, 76(1-2), 64-82, doi:10.1016/j.jmarsys.2008.05.014. Jolliff, J. K., S. Ladner, R. Crout, P

  16. The role of atmospheric internal variability on the prediction skill of interannual North Pacific sea-surface temperatures

    NASA Astrophysics Data System (ADS)

    Narapusetty, Balachandrudu

    2017-06-01

    The sensitivity of the sea-surface temperature (SST) prediction skill to the atmospheric internal variability (weather noise) in the North Pacific (20∘-60∘N;120∘E-80∘W) on decadal timescales is examined using state-of-the-art Climate Forecasting System model version 2 (CFS) and a variation of CFS in an Interactive Ensemble approach (CFSIE), wherein six copies of atmospheric components with different perturbed initial states of CFS are coupled with the same ocean model by exchanging heat, momentum and fresh water fluxes dynamically at the air-sea interface throughout the model integrations. The CFSIE experiments are designed to reduce weather noise and using a few ten-year long forecasts this study shows that reduction in weather noise leads to lower SST forecast skill. To understand the pathways that cause the reduced SST prediction skill, two twenty-year long forecasts produced with CFS and CFSIE for 1980-2000 are analyzed for the ocean subsurface characteristics that influence SST due to the reduction in weather noise in the North Pacific. The heat budget analysis in the oceanic mixed layer across the North Pacific reveals that weather noise significantly impacts the heat transport in the oceanic mixed layer. In the CFSIE forecasts, the reduced weather noise leads to increased variations in heat content due to shallower mixed layer, diminished heat storage and enhanced horizontal heat advection. The enhancement of the heat advection spans from the active Kuroshio regions of the east coast of Japan to the west coast of continental United States and significantly diffuses the basin-wide SST anomaly (SSTA) contrasts and leads to reduction in the SST prediction skill in decadal forecasts.

  17. New Aspects of Probabilistic Forecast Verification Using Information Theory

    NASA Astrophysics Data System (ADS)

    Tödter, Julian; Ahrens, Bodo

    2013-04-01

    This work deals with information-theoretical methods in probabilistic forecast verification, particularly concerning ensemble forecasts. Recent findings concerning the "Ignorance Score" are shortly reviewed, then a consistent generalization to continuous forecasts is motivated. For ensemble-generated forecasts, the presented measures can be calculated exactly. The Brier Score (BS) and its generalizations to the multi-categorical Ranked Probability Score (RPS) and to the Continuous Ranked Probability Score (CRPS) are prominent verification measures for probabilistic forecasts. Particularly, their decompositions into measures quantifying the reliability, resolution and uncertainty of the forecasts are attractive. Information theory sets up a natural framework for forecast verification. Recently, it has been shown that the BS is a second-order approximation of the information-based Ignorance Score (IGN), which also contains easily interpretable components and can also be generalized to a ranked version (RIGN). Here, the IGN, its generalizations and decompositions are systematically discussed in analogy to the variants of the BS. Additionally, a Continuous Ranked IGN (CRIGN) is introduced in analogy to the CRPS. The useful properties of the conceptually appealing CRIGN are illustrated, together with an algorithm to evaluate its components reliability, resolution, and uncertainty for ensemble-generated forecasts. This algorithm can also be used to calculate the decomposition of the more traditional CRPS exactly. The applicability of the "new" measures is demonstrated in a small evaluation study of ensemble-based precipitation forecasts.

  18. An ocean data assimilation system and reanalysis of the World Ocean hydrophysical fields

    NASA Astrophysics Data System (ADS)

    Zelenko, A. A.; Vil'fand, R. M.; Resnyanskii, Yu. D.; Strukov, B. S.; Tsyrulnikov, M. D.; Svirenko, P. I.

    2016-07-01

    A new version of the ocean data assimilation system (ODAS) developed at the Hydrometcentre of Russia is presented. The assimilation is performed following the sequential scheme analysis-forecast-analysis. The main components of the ODAS are procedures for operational observation data processing, a variational analysis scheme, and an ocean general circulation model used to estimate the first guess fields involved in the analysis. In situ observations of temperature and salinity in the upper 1400-m ocean layer obtained from various observational platforms are used as input data. In the new ODAS version, the horizontal resolution of the assimilating model and of the output products is increased, the previous 2D-Var analysis scheme is replaced by a more general 3D-Var scheme, and a more flexible incremental analysis updating procedure is introduced to correct the model calculations. A reanalysis of the main World Ocean hydrophysical fields over the 2005-2015 period has been performed using the updated ODAS. The reanalysis results are compared with data from independent sources.

  19. Examination of Observation Impacts derived from OSEs and Adjoint Models

    NASA Technical Reports Server (NTRS)

    Gelaro, Ronald

    2008-01-01

    With the adjoint of a data assimilation system, the impact of any or all assimilated observations on measures of forecast skill can be estimated accurately and efficiently. The approach allows aggregation of results in terms of individual data types, channels or locations, all computed simultaneously. In this study, adjoint-based estimates of observation impact are compared with results from standard observing system experiments (OSEs) in the NASA Goddard Earth Observing System Model, Version 5 (GEOS-5) GEOS-5 system. The two approaches are shown to provide unique, but complimentary, information. Used together, they reveal both redundancies and dependencies between observing system impacts as observations are added or removed. Understanding these dependencies poses a major challenge for optimizing the use of the current observational network and defining requirements for future observing systems.

  20. Mixed Single/Double Precision in OpenIFS: A Detailed Study of Energy Savings, Scaling Effects, Architectural Effects, and Compilation Effects

    NASA Astrophysics Data System (ADS)

    Fagan, Mike; Dueben, Peter; Palem, Krishna; Carver, Glenn; Chantry, Matthew; Palmer, Tim; Schlacter, Jeremy

    2017-04-01

    It has been shown that a mixed precision approach that judiciously replaces double precision with single precision calculations can speed-up global simulations. In particular, a mixed precision variation of the Integrated Forecast System (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF) showed virtually the same quality model results as the standard double precision version (Vana et al., Single precision in weather forecasting models: An evaluation with the IFS, Monthly Weather Review, in print). In this study, we perform detailed measurements of savings in computing time and energy using a mixed precision variation of the -OpenIFS- model. The mixed precision variation of OpenIFS is analogous to the IFS variation used in Vana et al. We (1) present results for energy measurements for simulations in single and double precision using Intel's RAPL technology, (2) conduct a -scaling- study to quantify the effects that increasing model resolution has on both energy dissipation and computing cycles, (3) analyze the differences between single core and multicore processing, and (4) compare the effects of different compiler technologies on the mixed precision OpenIFS code. In particular, we compare intel icc/ifort with gnu gcc/gfortran.

  1. Bias Correction for Assimilation of Retrieved AIRS Profiles of Temperature and Humidity

    NASA Technical Reports Server (NTRS)

    Blankenship, Clay; Zavodsky, Brad; Blackwell, William

    2014-01-01

    Atmospheric Infrared Sounder (AIRS) is a hyperspectral radiometer aboard NASA's Aqua satellite designed to measure atmospheric profiles of temperature and humidity. AIRS retrievals are assimilated into the Weather Research and Forecasting (WRF) model over the North Pacific for some cases involving "atmospheric rivers". These events bring a large flux of water vapor to the west coast of North America and often lead to extreme precipitation in the coastal mountain ranges. An advantage of assimilating retrievals rather than radiances is that information in partly cloudy fields of view can be used. Two different Level 2 AIRS retrieval products are compared: the Version 6 AIRS Science Team standard retrievals and a neural net retrieval from MIT. Before assimilation, a bias correction is applied to adjust each layer of retrieved temperature and humidity so the layer mean values agree with a short-term model climatology. WRF runs assimilating each of the products are compared against each other and against a control run with no assimilation. This paper will describe the bias correction technique and results from forecasts evaluated by validation against a Total Precipitable Water (TPW) product from CIRA and against Global Forecast System (GFS) analyses.

  2. Simulation of tropospheric chemistry and aerosols with the climate model EC-Earth

    NASA Astrophysics Data System (ADS)

    van Noije, T. P. C.; Le Sager, P.; Segers, A. J.; van Velthoven, P. F. J.; Krol, M. C.; Hazeleger, W.

    2014-03-01

    We have integrated the atmospheric chemistry and transport model TM5 into the global climate model EC-Earth version 2.4. We present an overview of the TM5 model and the two-way data exchange between TM5 and the integrated forecasting system (IFS) model from the European Centre for Medium-Range Weather Forecasts (ECMWF), the atmospheric general circulation model of EC-Earth. In this paper we evaluate the simulation of tropospheric chemistry and aerosols in a one-way coupled configuration. We have carried out a decadal simulation for present-day conditions and calculated chemical budgets and climatologies of tracer concentrations and aerosol optical depth. For comparison we have also performed offline simulations driven by meteorological fields from ECMWF's ERA-Interim reanalysis and output from the EC-Earth model itself. Compared to the offline simulations, the online-coupled system produces more efficient vertical mixing in the troposphere, which likely reflects an improvement of the treatment of cumulus convection. The chemistry in the EC-Earth simulations is affected by the fact that the current version of EC-Earth produces a cold bias with too dry air in large parts of the troposphere. Compared to the ERA-Interim driven simulation, the oxidizing capacity in EC-Earth is lower in the tropics and higher in the extratropics. The methane lifetime is 7% higher in EC-Earth, but remains well within the range reported in the literature. We evaluate the model by comparing the simulated climatologies of surface carbon monoxide, tropospheric and surface ozone, and aerosol optical depth against observational data. The work presented in this study is the first step in the development of EC-Earth into an Earth system model with fully interactive atmospheric chemistry and aerosols.

  3. Noah-MP-Crop: Enhancing cropland representation in the community land surface modeling system

    NASA Astrophysics Data System (ADS)

    Liu, X.; Chen, F.; Barlage, M. J.; Zhou, G.; Niyogi, D.

    2015-12-01

    Croplands are important in land-atmosphere interactions and in modifying local and regional weather and climate. Despite their importance, croplands are poorly represented in the current version of the coupled Weather Research and Forecasting (WRF)/ Noah land-surface modeling system, resulting in significant surface temperature and humidity biases across agriculture- dominated regions of the United States. This study aims to improve the WRF weather forecasting and regional climate simulations during the crop growing season by enhancing the representation of cropland in the Noah-MP land model. We introduced dynamic crop growth parameterization into Noah-MP and evaluated the enhanced model (Noah-MP-Crop) at both the field and regional scales with multiple crop biomass datasets, surface fluxes and soil moisture/temperature observations. We also integrated a detailed cropland cover map into WRF, enabling the model to simulate corn and soybean field across the U.S. Great Plains. Results show marked improvement in the Noah-MP-Crop performance in simulating leaf area index (LAI), crop biomass, soil temperature, and surface fluxes. Enhanced cropland representation is not only crucial for improving weather forecasting but can also help assess potential impacts of weather variability on regional hydrometeorology and crop yields. In addition to its applications to WRF, Noah-MP-Crop can be applied in high-spatial-resolution regional crop yield modeling and drought assessments

  4. --No Title--

    Science.gov Websites

    Version] Short Range Forecast Discussion NWS Weather Prediction Center College Park MD 337 PM EDT Sun May available at www.wpc.ncep.noaa.gov/basicwx/basicwx_ndfd.php Last Updated: 337 PM EDT Sun May 27 2018

  5. Effect of high latitude filtering on NWP skill

    NASA Technical Reports Server (NTRS)

    Kalnay, E.; Hoffman, R.; Takacs, L. L.

    1983-01-01

    An assessment is made of the extent to which polar filtering may seriously affect the skill of latitude-longitude NWP models, such as the U.S. Navy's NOGAPS, or the GLAS fourth-order model. The limited experiments which have been completed to date with the 4 x 5-deg, 9-level version of the latter model indicate that the high latitude filter currently in operation affects its forecasting skill very little, with only one exception in which the use of the PG filter significantly improved forecasting.

  6. A synoptic view of the Third Uniform California Earthquake Rupture Forecast (UCERF3)

    USGS Publications Warehouse

    Field, Edward; Jordan, Thomas H.; Page, Morgan T.; Milner, Kevin R.; Shaw, Bruce E.; Dawson, Timothy E.; Biasi, Glenn; Parsons, Thomas E.; Hardebeck, Jeanne L.; Michael, Andrew J.; Weldon, Ray; Powers, Peter; Johnson, Kaj M.; Zeng, Yuehua; Bird, Peter; Felzer, Karen; van der Elst, Nicholas; Madden, Christopher; Arrowsmith, Ramon; Werner, Maximillan J.; Thatcher, Wayne R.

    2017-01-01

    Probabilistic forecasting of earthquake‐producing fault ruptures informs all major decisions aimed at reducing seismic risk and improving earthquake resilience. Earthquake forecasting models rely on two scales of hazard evolution: long‐term (decades to centuries) probabilities of fault rupture, constrained by stress renewal statistics, and short‐term (hours to years) probabilities of distributed seismicity, constrained by earthquake‐clustering statistics. Comprehensive datasets on both hazard scales have been integrated into the Uniform California Earthquake Rupture Forecast, Version 3 (UCERF3). UCERF3 is the first model to provide self‐consistent rupture probabilities over forecasting intervals from less than an hour to more than a century, and it is the first capable of evaluating the short‐term hazards that result from multievent sequences of complex faulting. This article gives an overview of UCERF3, illustrates the short‐term probabilities with aftershock scenarios, and draws some valuable scientific conclusions from the modeling results. In particular, seismic, geologic, and geodetic data, when combined in the UCERF3 framework, reject two types of fault‐based models: long‐term forecasts constrained to have local Gutenberg–Richter scaling, and short‐term forecasts that lack stress relaxation by elastic rebound.

  7. Impact of soil moisture initialization on boreal summer subseasonal forecasts: mid-latitude surface air temperature and heat wave events

    NASA Astrophysics Data System (ADS)

    Seo, Eunkyo; Lee, Myong-In; Jeong, Jee-Hoon; Koster, Randal D.; Schubert, Siegfried D.; Kim, Hye-Mi; Kim, Daehyun; Kang, Hyun-Suk; Kim, Hyun-Kyung; MacLachlan, Craig; Scaife, Adam A.

    2018-05-01

    This study uses a global land-atmosphere coupled model, the land-atmosphere component of the Global Seasonal Forecast System version 5, to quantify the degree to which soil moisture initialization could potentially enhance boreal summer surface air temperature forecast skill. Two sets of hindcast experiments are performed by prescribing the observed sea surface temperature as the boundary condition for a 15-year period (1996-2010). In one set of the hindcast experiments (noINIT), the initial soil moisture conditions are randomly taken from a long-term simulation. In the other set (INIT), the initial soil moisture conditions are taken from an observation-driven offline Land Surface Model (LSM) simulation. The soil moisture conditions from the offline LSM simulation are calibrated using the forecast model statistics to minimize the inconsistency between the LSM and the land-atmosphere coupled model in their mean and variability. Results show a higher boreal summer surface air temperature prediction skill in INIT than in noINIT, demonstrating the potential benefit from an accurate soil moisture initialization. The forecast skill enhancement appears especially in the areas in which the evaporative fraction—the ratio of surface latent heat flux to net surface incoming radiation—is sensitive to soil moisture amount. These areas lie in the transitional regime between humid and arid climates. Examination of the extreme 2003 European and 2010 Russian heat wave events reveal that the regionally anomalous soil moisture conditions during the events played an important role in maintaining the stationary circulation anomalies, especially those near the surface.

  8. Monitoring and forecasting the 2009-2010 severe drought in Southwest China

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Tang, Q.; Liu, X.; Leng, G.; Li, Z.; Cui, H.

    2015-12-01

    From the fall of 2009 to the spring of 2010, an unprecedented drought swept across southwest China (SW) and led to a severe shortage in drinking water and a huge loss to regional economy. Monitoring and predicting the severe drought with several months in advance is of critical importance for such hydrological disaster assessment, preparation and mitigation. In this study, we attempted to carry out a model-based hydrological monitoring and seasonal forecasting framework, and assessed its skill in capturing the evolution of the SW drought in 2009-2010. Using the satellite-based meteorological forcings and the Variable Infiltration Capacity (VIC) hydrologic model, the drought conditions were assessed in a near-real-time manner based on a 62-year (1952-2013) retrospective simulation, wherein the satellite data was adjusted by a gauge-based forcing to remove systematic biases. Bias-corrected seasonal forecasting outputs from the National Centers for Environmental Prediction (NCEP) Climate Forecast System Version 2 (CFSv2) was tentatively applied for a seasonal hydrologic prediction and its predictive skill was overall evaluated relative to a traditional Ensemble Streamflow Prediction (ESP) method with lead time varying from 1 to 6 months. The results show that the climate model-driven hydrologic predictability is generally limited to 1-month lead time and exhibits negligible skill improvement relative to ESP during this drought event, suggesting the initial hydrologic conditions (IHCs) play a dominant role in forecasting performance. The research highlights the value of the framework in providing accurate IHCs in a real-time manner which will greatly benefit drought early-warning.

  9. A Public-Private-Acadmic Partnership to Advance Solar Power Forecasting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haupt, Sue Ellen

    The National Center for Atmospheric Research (NCAR) is pleased to have led a partnership to advance the state-of-the-science of solar power forecasting by designing, developing, building, deploying, testing, and assessing the SunCast™ Solar Power Forecasting System. The project has included cutting edge research, testing in several geographically- and climatologically-diverse high penetration solar utilities and Independent System Operators (ISOs), and wide dissemination of the research results to raise the bar on solar power forecasting technology. The partners include three other national laboratories, six universities, and industry partners. This public-private-academic team has worked in concert to perform use-inspired research to advance solarmore » power forecasting through cutting-edge research to advance both the necessary forecasting technologies and the metrics for evaluating them. The project has culminated in a year-long, full-scale demonstration of provide irradiance and power forecasts to utilities and ISOs to use in their operations. The project focused on providing elements of a value chain, beginning with the weather that causes a deviation from clear sky irradiance and progresses through monitoring and observations, modeling, forecasting, dissemination and communication of the forecasts, interpretation of the forecast, and through decision-making, which produces outcomes that have an economic value. The system has been evaluated using metrics developed specifically for this project, which has provided rich information on model and system performance. Research was accomplished on the very short range (0-6 hours) Nowcasting system as well as on the longer term (6-72 hour) forecasting system. The shortest range forecasts are based on observations in the field. The shortest range system, built by Brookhaven National Laboratory (BNL) and based on Total Sky Imagers (TSIs) is TSICast, which operates on the shortest time scale with a latency of only a few minutes and forecasts that currently go out to about 15 min. This project has facilitated research in improving the hardware and software so that the new high definition cameras deployed at multiple nearby locations allow discernment of the clouds at varying levels and advection according to the winds observed at those levels. Improvements over “smart persistence” are about 29% for even these very short forecasts. StatCast is based on pyranometer data measured at the site as well as concurrent meteorological observations and forecasts. StatCast is based on regime-dependent artificial intelligence forecasting techniques and has been shown to improve on “smart persistence” forecasts by 15-50%. A second category of short-range forecasting systems employ satellite imagery and use that information to discern clouds and their motion, allowing them to project the clouds, and the resulting blockage of irradiance, in time. CIRACast (the system produced by the Cooperative Institute for Atmospheric Research [CIRA] at Colorado State University) was already one of the more advanced cloud motion systems, which is the reason that team was brought to this project. During the project timeframe, the CIRA team was able to advance cloud shadowing, parallax removal, and implementation of better advecting winds at different altitudes. CIRACast shows generally a 25-40% improvement over Smart Persistence between sunrise and approximately 1600 UTC (Coordinated Universal Time) . A second satellite-based system, MADCast (Multi-sensor Advective Diffusive foreCast system), assimilates data from multiple satellite imagers and profilers to assimilate a fully three-dimensional picture of the cloud into the dynamic core of WRF. During 2015, MADCast (provided at least 70% improvement over Smart Persistence, with most of that skill being derived during partly cloudy conditions. That allows advection of the clouds via the Weather Research and Forecasting (WRF) model dynamics directly. After WRF-Solar™ showed initial success, it was also deployed in nowcasting mode with coarser runs out to 6 hours made hourly. It provided improvements on the order of 50-60% over Smart Persistence for forecasts up to 1600 UTC. The advantages of WRF-Solar-Nowcasting and MADCast were then blended to develop the new MAD-WRF model that incorporates the most important features of each of those models, both assimilating satellite cloud fields and using WRF-So far physics to develop and dissipate clouds. MAE improvements for MAD-WRF for forecasts from 3-6 hours are improved over WRF-Solar-Now by 20%. While all the Nowcasting system components by themselves provide improvement over Smart Persistence, the largest benefit is derived when they are smartly blended together by the Nowcasting Integrator to produce an integrated forecast. The development of WRF-Solar™ under this project has provided the first numerical weather prediction (NWP) model specifically designed to meet the needs of irradiance forecasting. The first augmentation improved the solar tracking algorithm to account for deviations associated with the eccentricity of the Earth’s orbit and the obliquity of the Earth. Second, WRF-Solar™ added the direct normal irradiance (DNI) and diffuse (DIF) components from the radiation parameterization to the model output. Third, efficient parameterizations were implemented to either interpolate the irradiance in between calls to the expensive radiative transfer parameterization, or to use a fast radiative transfer code that avoids computing three-dimensional heating rates but provides the surface irradiance. Fourth, a new parameterization was developed to improve the representation of absorption and scattering of radiation by aerosols (aerosol direct effect). A fifth advance is that the aerosols now interact with the cloud microphysics, altering the cloud evolution and radiative properties, an effect that has been traditionally only implemented in atmospheric computationally costly chemistry models. A sixth development accounts for the feedbacks that sub-grid scale clouds produce in shortwave irradiance as implemented in a shallow cumulus parameterization Finally, WRF-Solar™ also allows assimilation of infrared irradiances from satellites to determine the three dimensional cloud field, allowing for an improved initialization of the cloud field that increases the performance of short-range forecasts. We find that WRF-Solar™ can improve clear sky irradiance prediction by 15-80% over a standard version of WRF, depending on location and cloud conditions. In a formal comparison to the NAM baseline, WRF-Solar™ showed improvements in the Day-Ahead forecast of 22-42%. The SunCast™ system requires substantial software engineering to blend all of the new model components as well as existing publically available NWP model runs. To do this we use an expert system for the Nowcasting blender and the Dynamic Integrated foreCast (DICast®) system for the NWP models. These two systems are then blended, we use an empirical power conversion method to convert the irradiance predictions to power, then apply an analog ensemble (AnEn) approach to further tune the forecast as well as to estimate its uncertainty. The AnEn module decreased RMSE (root mean squared error) by 17% over the blended SunCast™ power forecasts and provided skill in the probabilistic forecast with a Brier Skill Score of 0.55. In addition, we have also developed a Gridded Atmospheric Forecast System (GRAFS) in parallel, leveraging cost share funds. An economic evaluation based on Production Cost Modeling in the Public Service Company of Colorado showed that the observed 50% improvement in forecast accuracy will save their customers $819,200 with the projected MW deployment for 2024. Using econometrics, NCAR has scaled this savings to a national level and shown that an annual expected savings for this 50% forecast error reduction ranges from $11M in 2015 to $43M expected in 2040 with increased solar deployment. This amounts to a $455M discounted savings over the 26 year period of analysis.« less

  10. A strategy for representing the effects of convective momentum transport in multiscale models: Evaluation using a new superparameterized version of the Weather Research and Forecast model (SP-WRF)

    NASA Astrophysics Data System (ADS)

    Tulich, S. N.

    2015-06-01

    This paper describes a general method for the treatment of convective momentum transport (CMT) in large-scale dynamical solvers that use a cyclic, two-dimensional (2-D) cloud-resolving model (CRM) as a "superparameterization" of convective-system-scale processes. The approach is similar in concept to traditional parameterizations of CMT, but with the distinction that both the scalar transport and diagnostic pressure gradient force are calculated using information provided by the 2-D CRM. No assumptions are therefore made concerning the role of convection-induced pressure gradient forces in producing up or down-gradient CMT. The proposed method is evaluated using a new superparameterized version of the Weather Research and Forecast model (SP-WRF) that is described herein for the first time. Results show that the net effect of the formulation is to modestly reduce the overall strength of the large-scale circulation, via "cumulus friction." This statement holds true for idealized simulations of two types of mesoscale convective systems, a squall line, and a tropical cyclone, in addition to real-world global simulations of seasonal (1 June to 31 August) climate. In the case of the latter, inclusion of the formulation is found to improve the depiction of key synoptic modes of tropical wave variability, in addition to some aspects of the simulated time-mean climate. The choice of CRM orientation is also found to importantly affect the simulated time-mean climate, apparently due to changes in the explicit representation of wide-spread shallow convective regions.

  11. A comparison of Loon balloon observations and stratospheric reanalysis products

    NASA Astrophysics Data System (ADS)

    Friedrich, Leon S.; McDonald, Adrian J.; Bodeker, Gregory E.; Cooper, Kathy E.; Lewis, Jared; Paterson, Alexander J.

    2017-01-01

    Location information from long-duration super-pressure balloons flying in the Southern Hemisphere lower stratosphere during 2014 as part of X Project Loon are used to assess the quality of a number of different reanalyses including National Centers for Environmental Prediction Climate Forecast System version 2 (NCEP-CFSv2), European Centre for Medium-Range Weather Forecasts (ERA-Interim), NASA Modern Era Retrospective-Analysis for Research and Applications (MERRA), and the recently released MERRA version 2. Balloon GPS location information is used to derive wind speeds which are then compared with values from the reanalyses interpolated to the balloon times and locations. All reanalysis data sets accurately describe the winds, with biases in zonal winds of less than 0.37 m s-1 and meridional biases of less than 0.08 m s-1. The standard deviation on the differences between Loon and reanalyses zonal winds is latitude-dependent, ranging between 2.5 and 3.5 m s-1, increasing equatorward. Comparisons between Loon trajectories and those calculated by applying a trajectory model to reanalysis wind fields show that MERRA-2 wind fields result in the most accurate simulated trajectories with a mean 5-day balloon-reanalysis trajectory separation of 621 km and median separation of 324 km showing significant improvements over MERRA version 1 and slightly outperforming ERA-Interim. The latitudinal structure of the trajectory statistics for all reanalyses displays marginally lower mean separations between 15 and 35° S than between 35 and 55° S, despite standard deviations in the wind differences increasing toward the equator. This is shown to be related to the distance travelled by the balloon playing a role in the separation statistics.

  12. Design of an Aircraft Vortex Spacing System for Airport Capacity Improvement

    NASA Technical Reports Server (NTRS)

    Hinton, David A.; Charnock, James K.; Bagwell, Donald R.

    2000-01-01

    The National Aeronautics and Space Administration (NASA) is addressing airport capacity enhancements through the Terminal Area Productivity (TAP) program. Within TAP, the Reduced Spacing Operations element at the NASA Langley Research Center is developing an Aircraft VOrtex Spacing System (AVOSS). AVOSS will integrate the output of several systems to produce weather dependent, dynamic wake vortex spacing criteria. These systems provide current and predicted weather conditions, models of wake vortex transport and decay in these weather conditions, and real-time feedback of wake vortex behavior from sensors. The goal of the NASA program is to provide the research and development to demonstrate an engineering model AVOSS, in real-time operation, at a major airport. A wake vortex system test facility was established at the Dallas-Fort Worth International Airport (DFW) in 1997 and tested in 1998. Results from operation of the initial AVOSS system, plus advances in wake vortex prediction and near-term weather forecast models, "nowcast", have been integrated into a second-generation system. This AVOSS version is undergoing final checkout in preparation for a system demonstration in 2000. This paper describes the revised AVOSS system architecture, subsystem enhancements, and initial results with AVOSS version 2 from a deployment at DFW in the fall of 1999.

  13. MyOcean Information System : achievements and perspectives

    NASA Astrophysics Data System (ADS)

    Loubrieu, T.; Dorandeu, J.; Claverie, V.; Cordier, K.; Barzic, Y.; Lauret, O.; Jolibois, T.; Blower, J.

    2012-04-01

    MyOcean system (http://www.myocean.eu) objective is to provide a Core Service for the Ocean. This means MyOcean is setting up an operational service for forecasts, analysis and expertise on ocean currents, temperature, salinity, sea level, primary ecosystems and ice coverage. The production of observation and forecasting data is distributed through 12 production centres. The interface with the external users (including web portal) and the coordination of the overall service is managed by a component called service desk. Besides, a transverse component called MIS (myOcean Information System) aims at connecting the production centres and service desk together, manage the shared information for the overall system and implement a standard Inspire interface for the external world. 2012 is a key year for the system. The MyOcean, 3-year project, which has set up the first versions of the system is ending. The MyOcean II, 2-year project, which will upgrade and consolidate the system is starting. Both projects are granted by the European commission within the GMES Program (7th Framework Program). At the end of the MyOcean project, the system has been designed and the 2 first versions have been implemented. The system now offers an integrated service composed with 237 ocean products. The ocean products are homogeneously described in a catalogue. They can be visualized and downloaded by the user (identified with a unique login) through a seamless web interface. The discovery and viewing interfaces are INSPIRE compliant. The data production, subsystems availability and audience are continuously monitored. The presentation will detail the implemented information system architecture and the chosen software solutions. Regarding the information system, MyOcean II is mainly aiming at consolidating the existing functions and promoting the operations cost-effectiveness. In addition, a specific effort will be done so that the less common data features of the system (ocean in-situ observations, remote-sensing along track observations) reach the same level of interoperability for view and download function as the gridded features. The presentation will detail the envisioned plans.

  14. NWP model forecast skill optimization via closure parameter variations

    NASA Astrophysics Data System (ADS)

    Järvinen, H.; Ollinaho, P.; Laine, M.; Solonen, A.; Haario, H.

    2012-04-01

    We present results of a novel approach to tune predictive skill of numerical weather prediction (NWP) models. These models contain tunable parameters which appear in parameterizations schemes of sub-grid scale physical processes. The current practice is to specify manually the numerical parameter values, based on expert knowledge. We developed recently a concept and method (QJRMS 2011) for on-line estimation of the NWP model parameters via closure parameter variations. The method called EPPES ("Ensemble prediction and parameter estimation system") utilizes ensemble prediction infra-structure for parameter estimation in a very cost-effective way: practically no new computations are introduced. The approach provides an algorithmic decision making tool for model parameter optimization in operational NWP. In EPPES, statistical inference about the NWP model tunable parameters is made by (i) generating an ensemble of predictions so that each member uses different model parameter values, drawn from a proposal distribution, and (ii) feeding-back the relative merits of the parameter values to the proposal distribution, based on evaluation of a suitable likelihood function against verifying observations. In this presentation, the method is first illustrated in low-order numerical tests using a stochastic version of the Lorenz-95 model which effectively emulates the principal features of ensemble prediction systems. The EPPES method correctly detects the unknown and wrongly specified parameters values, and leads to an improved forecast skill. Second, results with an ensemble prediction system emulator, based on the ECHAM5 atmospheric GCM show that the model tuning capability of EPPES scales up to realistic models and ensemble prediction systems. Finally, preliminary results of EPPES in the context of ECMWF forecasting system are presented.

  15. Long-term ensemble forecast of snowmelt inflow into the Cheboksary Reservoir under two different weather scenarios

    NASA Astrophysics Data System (ADS)

    Gelfan, Alexander; Moreydo, Vsevolod; Motovilov, Yury; Solomatine, Dimitri P.

    2018-04-01

    A long-term forecasting ensemble methodology, applied to water inflows into the Cheboksary Reservoir (Russia), is presented. The methodology is based on a version of the semi-distributed hydrological model ECOMAG (ECOlogical Model for Applied Geophysics) that allows for the calculation of an ensemble of inflow hydrographs using two different sets of weather ensembles for the lead time period: observed weather data, constructed on the basis of the Ensemble Streamflow Prediction methodology (ESP-based forecast), and synthetic weather data, simulated by a multi-site weather generator (WG-based forecast). We have studied the following: (1) whether there is any advantage of the developed ensemble forecasts in comparison with the currently issued operational forecasts of water inflow into the Cheboksary Reservoir, and (2) whether there is any noticeable improvement in probabilistic forecasts when using the WG-simulated ensemble compared to the ESP-based ensemble. We have found that for a 35-year period beginning from the reservoir filling in 1982, both continuous and binary model-based ensemble forecasts (issued in the deterministic form) outperform the operational forecasts of the April-June inflow volume actually used and, additionally, provide acceptable forecasts of additional water regime characteristics besides the inflow volume. We have also demonstrated that the model performance measures (in the verification period) obtained from the WG-based probabilistic forecasts, which are based on a large number of possible weather scenarios, appeared to be more statistically reliable than the corresponding measures calculated from the ESP-based forecasts based on the observed weather scenarios.

  16. Online probabilistic learning with an ensemble of forecasts

    NASA Astrophysics Data System (ADS)

    Thorey, Jean; Mallet, Vivien; Chaussin, Christophe

    2016-04-01

    Our objective is to produce a calibrated weighted ensemble to forecast a univariate time series. In addition to a meteorological ensemble of forecasts, we rely on observations or analyses of the target variable. The celebrated Continuous Ranked Probability Score (CRPS) is used to evaluate the probabilistic forecasts. However applying the CRPS on weighted empirical distribution functions (deriving from the weighted ensemble) may introduce a bias because of which minimizing the CRPS does not produce the optimal weights. Thus we propose an unbiased version of the CRPS which relies on clusters of members and is strictly proper. We adapt online learning methods for the minimization of the CRPS. These methods generate the weights associated to the members in the forecasted empirical distribution function. The weights are updated before each forecast step using only past observations and forecasts. Our learning algorithms provide the theoretical guarantee that, in the long run, the CRPS of the weighted forecasts is at least as good as the CRPS of any weighted ensemble with weights constant in time. In particular, the performance of our forecast is better than that of any subset ensemble with uniform weights. A noteworthy advantage of our algorithm is that it does not require any assumption on the distributions of the observations and forecasts, both for the application and for the theoretical guarantee to hold. As application example on meteorological forecasts for photovoltaic production integration, we show that our algorithm generates a calibrated probabilistic forecast, with significant performance improvements on probabilistic diagnostic tools (the CRPS, the reliability diagram and the rank histogram).

  17. Understanding the Impact of Ground Water Treatment and Evapotranspiration Parameterizations in the NCEP Climate Forecast System (CFS) on Warm Season Predictions

    NASA Astrophysics Data System (ADS)

    Ek, M. B.; Yang, R.

    2016-12-01

    Skillful short-term weather forecasts, which rely heavily on quality atmospheric initial conditions, have a fundamental limit of about two weeks owing to the chaotic nature of the atmosphere. Useful forecasts at sub-seasonal to seasonal time scales, on the other hand, require well-simulated large-scale atmospheric response to slowly varying lower boundary forcings from both the ocean and land surface. The critical importance of ocean has been recognized, where the ocean indices have been used in a variety of climate applications. In contrast, the impact of land surface anomalies, especially soil moisture and associated evaporation, has been proven notably difficult to demonstrate. The Noah Land Surface Model (LSM) is the land component of NCEP CFS version 2 (CFSv2) used for seasonal predictions. The Noah LSM originates from the Oregon State University (OSU) LSM. The evaporation control in the Noah LSM is based on the Penman-Monteith equation, which takes into account the solar radiation, relative humidity, air temperature, and soil moisture effects. The Noah LSM is configured with four soil layers with a fixed depth of 2 meters and free drainage at the bottom soil layer. This treatment assumes that the soil water table depth is well within the specified range, and also potentially misrepresents the soil moisture memory effects at seasonal time scales. To overcome the limitation, an unconfined aquifer is attached to the bottom of the soil to allow the water table to move freely up and down. In addition, in conjunction with the water table, an alternative Ball-Berry photosynthesis-based evaporation parameterization is examined to evaluate the impact from using a different evaporation control methodology. Focusing on the 2011 and 2012 intense summer droughts in the central US, seasonal ensemble forecast experiments with early May initial conditions are carried out for the two years using an enhanced version of CFSv2, where the atmospheric component of the CFSv2 is coupled to the Noah Multiple-Parameterization (Noah-MP) land model. The Noah-MP has different options for ground water and evaporation control parameterizations. The differences will be presented and results will be discussed.

  18. A conceptual prediction model for seasonal drought processes using atmospheric and oceanic standardized anomalies and its application to four recent severe regional drought events in China

    NASA Astrophysics Data System (ADS)

    Liu, Z.; LU, G.; He, H.; Wu, Z.; He, J.

    2017-12-01

    Reliable drought prediction is fundamental for seasonal water management. Considering that drought development is closely related to the spatio-temporal evolution of large-scale circulation patterns, we develop a conceptual prediction model of seasonal drought processes based on atmospheric/oceanic Standardized Anomalies (SA). It is essentially the synchronous stepwise regression relationship between 90-day-accumulated atmospheric/oceanic SA-based predictors and 3-month SPI updated daily (SPI3). It is forced with forecasted atmospheric and oceanic variables retrieved from seasonal climate forecast systems, and it can make seamless drought prediction for operational use after a year-to-year calibration. Simulation and prediction of four severe seasonal regional drought processes in China were forced with the NCEP/NCAR reanalysis datasets and the NCEP Climate Forecast System Version 2 (CFSv2) operationally forecasted datasets, respectively. With the help of real-time correction for operational application, model application during four recent severe regional drought events in China revealed that the model is good at development prediction but weak in severity prediction. In addition to weakness in prediction of drought peak, the prediction of drought relief is possible to be predicted as drought recession. This weak performance may be associated with precipitation-causing weather patterns during drought relief. Based on initial virtual analysis on predicted 90-day prospective SPI3 curves, it shows that the 2009/2010 drought in Southwest China and 2014 drought in North China can be predicted and simulated well even for the prospective 1-75 day. In comparison, the prospective 1-45 day may be a feasible and acceptable lead time for simulation and prediction of the 2011 droughts in Southwest China and East China, after which the simulated and predicted developments clearly change.

  19. Improved Impact of Atmospheric Infrared Sounder (AIRS) Radiance Assimilation in Numerical Weather Prediction

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley; Chou, Shih-Hung; Jedlovec, Gary

    2012-01-01

    Improvements to global and regional numerical weather prediction (NWP) have been demonstrated through assimilation of data from NASA s Atmospheric Infrared Sounder (AIRS). Current operational data assimilation systems use AIRS radiances, but impact on regional forecasts has been much smaller than for global forecasts. Retrieved profiles from AIRS contain much of the information that is contained in the radiances and may be able to reveal reasons for this reduced impact. Assimilating AIRS retrieved profiles in an identical analysis configuration to the radiances, tracking the quantity and quality of the assimilated data in each technique, and examining analysis increments and forecast impact from each data type can yield clues as to the reasons for the reduced impact. By doing this with regional scale models individual synoptic features (and the impact of AIRS on these features) can be more easily tracked. This project examines the assimilation of hyperspectral sounder data used in operational numerical weather prediction by comparing operational techniques used for AIRS radiances and research techniques used for AIRS retrieved profiles. Parallel versions of a configuration of the Weather Research and Forecasting (WRF) model with Gridpoint Statistical Interpolation (GSI) that mimics the analysis methodology, domain, and observational datasets for the regional North American Mesoscale (NAM) model run at the National Centers for Environmental Prediction (NCEP)/Environmental Modeling Center (EMC) are run to examine the impact of each type of AIRS data set. The first configuration will assimilate the AIRS radiance data along with other conventional and satellite data using techniques implemented within the operational system; the second configuration will assimilate AIRS retrieved profiles instead of AIRS radiances in the same manner. Preliminary results of this study will be presented and focus on the analysis impact of the radiances and profiles for selected cases.

  20. Comparative Validation of Realtime Solar Wind Forecasting Using the UCSD Heliospheric Tomography Model

    NASA Technical Reports Server (NTRS)

    MacNeice, Peter; Taktakishvili, Alexandra; Jackson, Bernard; Clover, John; Bisi, Mario; Odstrcil, Dusan

    2011-01-01

    The University of California, San Diego 3D Heliospheric Tomography Model reconstructs the evolution of heliospheric structures, and can make forecasts of solar wind density and velocity up to 72 hours in the future. The latest model version, installed and running in realtime at the Community Coordinated Modeling Center(CCMC), analyzes scintillations of meter wavelength radio point sources recorded by the Solar-Terrestrial Environment Laboratory(STELab) together with realtime measurements of solar wind speed and density recorded by the Advanced Composition Explorer(ACE) Solar Wind Electron Proton Alpha Monitor(SWEPAM).The solution is reconstructed using tomographic techniques and a simple kinematic wind model. Since installation, the CCMC has been recording the model forecasts and comparing them with ACE measurements, and with forecasts made using other heliospheric models hosted by the CCMC. We report the preliminary results of this validation work and comparison with alternative models.

  1. Simulation of the dispersion of the Eyjafjallajökull plume over Europe with COSMO-ART in the operational mode

    NASA Astrophysics Data System (ADS)

    Vogel, H.; Förstner, J.; Vogel, B.; Hanisch, T.; Mühr, B.; Schättler, U.; Schad, T.

    2013-05-01

    An extended version of the German operational weather forecast model was used to simulate the ash dispersion during the eruption of the Eyjafjallajökull. Sensitivity runs show the ability of the model to simulate thin ash layers when an increased vertical resolution is used. Calibration of the model results with measured data allows for a quantitative forecast of the ash concentration. An independent comparison of the simulated number concentration of 3 μm particles and observations reveals nearly perfect agreement. However, this perfect agreement could only be reached after modification of the emissions. As an operational forecast was launched every six hours, a time-lagged ensemble was obtained. Hence, the probability of violation of a certain threshold can be calculated. This is valuable information for the forecasters advising the organizations responsible for the closing of the airspace.

  2. Seasonal simulations using a coupled ocean-atmosphere model with data assimilation

    NASA Astrophysics Data System (ADS)

    Larow, Timothy Edward

    1997-10-01

    A coupled ocean-atmosphere initialization scheme using Newtonian relaxation has been developed for the Florida State University coupled ocean-atmosphere global general circulation model. The coupled model is used for seasonal predictions of the boreal summers of 1987 and 1988. The atmosphere model is a modified version of the Florida State University global spectral model, resolution triangular truncation 42 waves. The ocean general circulation model consists of a slightly modified version developed by Latif (1987). Coupling is synchronous with exchange of information every two model hours. Using daily analysis from ECMWF and observed monthly mean SSTs from NCEP, two - one year, time dependent, Newtonian relaxation were conducted using the coupled model prior to the seasonal forecasts. Relaxation was selectively applied to the atmospheric vorticity, divergence, temperature, and dew point depression equations, and to the ocean's surface temperature equation. The ocean's initial conditions are from a six year ocean-only simulation which used observed wind stresses and a relaxation towards observed SSTs for forcings. Coupled initialization was conducted from 1 June 1986 to 1 June 1987 for the 1987 boreal forecast and from 1 June 1987 to 1 June 1988 for the 1988 boreal forecast. Examination of annual means of net heat flux, freshwater flux and wind stress obtained by from the initialization show close agreement with Oberhuber (1988) climatology and the Florida State University pseudo wind stress analysis. Sensitivity of the initialization/assimilation scheme was tested by conducting two - ten member ensemble integrations. Each member was integrated for 90 days (June-August) of the respective year. Initial conditions for the ensembles consisted of the same ocean state as used by the initialize forecasts, while the atmospheric initial conditions were from ECMWF analysis centered on 1 June of the respective year. Root mean square error and anomaly correlations between observed and forecasted SSTs in the Nino 3 and Nino 4 regions show greater skill between the initialized forecasts than the ensemble forecasts. It is hypothesized that differences in the specific humidity within the planetary boundary layer are responsible for the large SST errors noted with the ensembles.

  3. Description of the GMAO OSSE for Weather Analysis Software Package: Version 3

    NASA Technical Reports Server (NTRS)

    Koster, Randal D. (Editor); Errico, Ronald M.; Prive, Nikki C.; Carvalho, David; Sienkiewicz, Meta; El Akkraoui, Amal; Guo, Jing; Todling, Ricardo; McCarty, Will; Putman, William M.; hide

    2017-01-01

    The Global Modeling and Assimilation Office (GMAO) at the NASA Goddard Space Flight Center has developed software and products for conducting observing system simulation experiments (OSSEs) for weather analysis applications. Such applications include estimations of potential effects of new observing instruments or data assimilation techniques on improving weather analysis and forecasts. The GMAO software creates simulated observations from nature run (NR) data sets and adds simulated errors to those observations. The algorithms employed are much more sophisticated, adding a much greater degree of realism, compared with OSSE systems currently available elsewhere. The algorithms employed, software designs, and validation procedures are described in this document. Instructions for using the software are also provided.

  4. East Asian winter monsoon forecasting schemes based on the NCEP's climate forecast system

    NASA Astrophysics Data System (ADS)

    Tian, Baoqiang; Fan, Ke; Yang, Hongqing

    2017-12-01

    The East Asian winter monsoon (EAWM) is the major climate system in the Northern Hemisphere during boreal winter. In this study, we developed two schemes to improve the forecasting skill of the interannual variability of the EAWM index (EAWMI) using the interannual increment prediction method, also known as the DY method. First, we found that version 2 of the NCEP's Climate Forecast System (CFSv2) showed higher skill in predicting the EAWMI in DY form than not. So, based on the advantage of the DY method, Scheme-I was obtained by adding the EAWMI DY predicted by CFSv2 to the observed EAWMI in the previous year. This scheme showed higher forecasting skill than CFSv2. Specifically, during 1983-2016, the temporal correlation coefficient between the Scheme-I-predicted and observed EAWMI was 0.47, exceeding the 99% significance level, with the root-mean-square error (RMSE) decreased by 12%. The autumn Arctic sea ice and North Pacific sea surface temperature (SST) are two important external forcing factors for the interannual variability of the EAWM. Therefore, a second (hybrid) prediction scheme, Scheme-II, was also developed. This scheme not only involved the EAWMI DY of CFSv2, but also the sea-ice concentration (SIC) observed the previous autumn in the Laptev and East Siberian seas and the temporal coefficients of the third mode of the North Pacific SST in DY form. We found that a negative SIC anomaly in the preceding autumn over the Laptev and the East Siberian seas could lead to a significant enhancement of the Aleutian low and East Asian westerly jet in the following winter. However, the intensity of the winter Siberian high was mainly affected by the third mode of the North Pacific autumn SST. Scheme-I and Scheme-II also showed higher predictive ability for the EAWMI in negative anomaly years compared to CFSv2. More importantly, the improvement in the prediction skill of the EAWMI by the new schemes, especially for Scheme-II, could enhance the forecasting skill of the winter 2-m air temperature (T-2m) in most parts of China, as well as the intensity of the Aleutian low and Siberian high in winter. The new schemes provide a theoretical basis for improving the prediction of winter climate in China.

  5. SWIFT2: Software for continuous ensemble short-term streamflow forecasting for use in research and operations

    NASA Astrophysics Data System (ADS)

    Perraud, Jean-Michel; Bennett, James C.; Bridgart, Robert; Robertson, David E.

    2016-04-01

    Research undertaken through the Water Information Research and Development Alliance (WIRADA) has laid the foundations for continuous deterministic and ensemble short-term forecasting services. One output of this research is the software Short-term Water Information Forecasting Tools version 2 (SWIFT2). SWIFT2 is developed for use in research on short term streamflow forecasting techniques as well as operational forecasting services at the Australian Bureau of Meteorology. The variety of uses in research and operations requires a modular software system whose components can be arranged in applications that are fit for each particular purpose, without unnecessary software duplication. SWIFT2 modelling structures consist of sub-areas of hydrologic models, nodes and links with in-stream routing and reservoirs. While this modelling structure is customary, SWIFT2 is built from the ground up for computational and data intensive applications such as ensemble forecasts necessary for the estimation of the uncertainty in forecasts. Support for parallel computation on multiple processors or on a compute cluster is a primary use case. A convention is defined to store large multi-dimensional forecasting data and its metadata using the netCDF library. SWIFT2 is written in modern C++ with state of the art software engineering techniques and practices. A salient technical feature is a well-defined application programming interface (API) to facilitate access from different applications and technologies. SWIFT2 is already seamlessly accessible on Windows and Linux via packages in R, Python, Matlab and .NET languages such as C# and F#. Command line or graphical front-end applications are also feasible. This poster gives an overview of the technology stack, and illustrates the resulting features of SWIFT2 for users. Research and operational uses share the same common core C++ modelling shell for consistency, but augmented by different software modules suitable for each context. The accessibility via interactive modelling languages is particularly amenable to using SWIFT2 in exploratory research, with a dynamic and versatile experimental modelling workflow. This does not come at the expense of the stability and reliability required for use in operations, where only mature and stable components are used.

  6. National Water Model assessment for water management needs over the Western United States.

    NASA Astrophysics Data System (ADS)

    Viterbo, F.; Thorstensen, A.; Cifelli, R.; Hughes, M.; Johnson, L.; Gochis, D.; Wood, A.; Nowak, K.; Dahm, K.

    2017-12-01

    The NOAA National Water Model (NWM) became operational in August 2016, providing the first ever, real-time distributed high-resolution forecasts for the continental United States. Since the model predictions occur at the CONUS scale, there is a need to evaluate the NWM in different regions to assess the wide variety and heterogeneity of hydrological processes that are included (e.g., snow melting, ice freezing, flash flooding events). In particular, to address water management needs in the western U.S., a collaborative project between the Bureau of Reclamation, NOAA, and NCAR is ongoing to assess the NWM performance for reservoir inflow forecasting needs and water management operations. In this work, the NWM is evaluated using different forecast ranges (short to medium) and retrospective historical runs forced by North American Land Data Assimilation System (NLDAS) analysis to assess the NWM skills over key headwaters watersheds in the western U.S. that are of interest to the Bureau of Reclamation. The streamflow results are analyzed and compared with the available observations at the gauge sites, evaluating different NWM operational versions together with the already existing local River Forecast Center forecasts. The NWM uncertainty is also considered, evaluating the propagation of the precipitation forcing uncertainties in the resulting hydrograph. In addition, the possible advantages of high-resolution distributed output variables (such as soil moisture, evapotranspiration fluxes) are investigated, to determine the utility of such information for water managers in terms of watershed characteristics in areas that traditionally have not had any forecast information. The results highlight the NWM's ability to provide high-resolution forecast information in space and time. As anticipated, the performance is best in regions that are dominated by natural flows and where the model has benefited from efforts toward parameter calibration. In highly regulated basins, the water management operations result in NWM overestimation of the peak flows and too fast recession curves. As a future project goal, some reforecasts will be run on target locations, ingesting water management information into the NWM and comparing the new results with the actual operational forecast.

  7. Diabatic Initialization of Mesoscale Models in the Southeastern United States: Can 0 to 12h Warm Season QPF be Improved?

    NASA Technical Reports Server (NTRS)

    Lapenta, William M.; Bradshaw, Tom; Burks, Jason; Darden, Chris; Dembek, Scott

    2003-01-01

    It is well known that numerical warm season quantitative precipitation forecasts lack significant skill for numerous reasons. Some are related to the model--it may lack physical processes required to realistically simulate convection or the numerical algorithms and dynamics employed may not be adequate. Others are related to initialization-mesoscale features play an important role in convective initialization and atmospheric observation systems are incapable of properly depicting the three-dimensional stability structure at the mesoscale. The purpose of this study is to determine if a mesoscale model initialized with a diabatic initialization scheme can improve short-term (0 to 12h) warm season quantitative precipitation forecasts in the Southeastern United States. The Local Analysis and Prediction System (LAPS) developed at the Forecast System Laboratory is used to diabatically initialize the Pennsylvania State University/National center for Atmospheric Research (PSUNCAR) Mesoscale Model version 5 (MM5). The SPORT Center runs LAPS operationally on an hourly cycle to produce analyses on a 15 km covering the eastern 2/3 of the United States. The 20 km National Centers for Environmental Prediction (NCEP) Rapid Update Cycle analyses are used for the background fields. Standard observational data are acquired from MADIS with GOES/CRAFT Nexrad data acquired from in-house feeds. The MM5 is configured on a 140 x 140 12 km grid centered on Huntsville Alabama. Preliminary results indicate that MM5 runs initialized with LAPS produce improved 6 and 12h QPF threat scores compared with those initialized with the NCEP RUC.

  8. Forecasting the shortage of neurosurgeons in Iran using a system dynamics model approach.

    PubMed

    Rafiei, Sima; Daneshvaran, Arman; Abdollahzade, Sina

    2018-01-01

    Shortage of physicians particularly in specialty levels is considered as an important issue in Iran health system. Thus, in an uncertain environment, long-term planning is required for health professionals as a basic priority on a national scale. This study aimed to estimate the number of required neurosurgeons using system dynamic modeling. System dynamic modeling was applied to predict the gap between stock and number of required neurosurgeons in Iran up to 2020. A supply and demand simulation model was constructed for neurosurgeons using system dynamic approach. The demand model included epidemiological, demographic, and utilization variables along with supply model-incorporated current stock of neurosurgeons and flow variables such as attrition, migration, and retirement rate. Data were obtained from various governmental databases and were analyzed by Vensim PLE Version 3.0 to address the flow of health professionals, clinical infrastructure, population demographics, and disease prevalence during the time. It was forecasted that shortage in number of neurosurgeons would disappear at 2020. The most dominant determinants on predicted number of neurosurgeons were the prevalence of neurosurgical diseases, the rate for service utilization, and medical capacity of the region. Shortage of neurosurgeons in some areas of the country relates to maldistribution of the specialists. Accordingly, there is a need to reconsider the allocation system for health professionals within the country instead of increasing the overall number of acceptance quota in training positions.

  9. The seasonal-cycle climate model

    NASA Technical Reports Server (NTRS)

    Marx, L.; Randall, D. A.

    1981-01-01

    The seasonal cycle run which will become the control run for the comparison with runs utilizing codes and parameterizations developed by outside investigators is discussed. The climate model currently exists in two parallel versions: one running on the Amdahl and the other running on the CYBER 203. These two versions are as nearly identical as machine capability and the requirement for high speed performance will allow. Developmental changes are made on the Amdahl/CMS version for ease of testing and rapidity of turnaround. The changes are subsequently incorporated into the CYBER 203 version using vectorization techniques where speed improvement can be realized. The 400 day seasonal cycle run serves as a control run for both medium and long range climate forecasts alsensitivity studies.

  10. Utilizing Climate Forecasts for Improving Water and Power Systems Coordination

    NASA Astrophysics Data System (ADS)

    Arumugam, S.; Queiroz, A.; Patskoski, J.; Mahinthakumar, K.; DeCarolis, J.

    2016-12-01

    Climate forecasts, typically monthly-to-seasonal precipitation forecasts, are commonly used to develop streamflow forecasts for improving reservoir management. Irrespective of their high skill in forecasting, temperature forecasts in developing power demand forecasts are not often considered along with streamflow forecasts for improving water and power systems coordination. In this study, we consider a prototype system to analyze the utility of climate forecasts, both precipitation and temperature, for improving water and power systems coordination. The prototype system, a unit-commitment model that schedules power generation from various sources, is considered and its performance is compared with an energy system model having an equivalent reservoir representation. Different skill sets of streamflow forecasts and power demand forecasts are forced on both water and power systems representations for understanding the level of model complexity required for utilizing monthly-to-seasonal climate forecasts to improve coordination between these two systems. The analyses also identify various decision-making strategies - forward purchasing of fuel stocks, scheduled maintenance of various power systems and tradeoff on water appropriation between hydropower and other uses - in the context of various water and power systems configurations. Potential application of such analyses for integrating large power systems with multiple river basins is also discussed.

  11. Simulation Based Earthquake Forecasting with RSQSim

    NASA Astrophysics Data System (ADS)

    Gilchrist, J. J.; Jordan, T. H.; Dieterich, J. H.; Richards-Dinger, K. B.

    2016-12-01

    We are developing a physics-based forecasting model for earthquake ruptures in California. We employ the 3D boundary element code RSQSim to generate synthetic catalogs with millions of events that span up to a million years. The simulations incorporate rate-state fault constitutive properties in complex, fully interacting fault systems. The Unified California Earthquake Rupture Forecast Version 3 (UCERF3) model and data sets are used for calibration of the catalogs and specification of fault geometry. Fault slip rates match the UCERF3 geologic slip rates and catalogs are tuned such that earthquake recurrence matches the UCERF3 model. Utilizing the Blue Waters Supercomputer, we produce a suite of million-year catalogs to investigate the epistemic uncertainty in the physical parameters used in the simulations. In particular, values of the rate- and state-friction parameters a and b, the initial shear and normal stress, as well as the earthquake slip speed, are varied over several simulations. In addition to testing multiple models with homogeneous values of the physical parameters, the parameters a, b, and the normal stress are varied with depth as well as in heterogeneous patterns across the faults. Cross validation of UCERF3 and RSQSim is performed within the SCEC Collaboratory for Interseismic Simulation and Modeling (CISM) to determine the affect of the uncertainties in physical parameters observed in the field and measured in the lab, on the uncertainties in probabilistic forecasting. We are particularly interested in the short-term hazards of multi-event sequences due to complex faulting and multi-fault ruptures.

  12. Evaluation of the product ratio coherent model in forecasting mortality rates and life expectancy at births by States

    NASA Astrophysics Data System (ADS)

    Shair, Syazreen Niza; Yusof, Aida Yuzi; Asmuni, Nurin Haniah

    2017-05-01

    Coherent mortality forecasting models have recently received increasing attention particularly in their application to sub-populations. The advantage of coherent models over independent models is the ability to forecast a non-divergent mortality for two or more sub-populations. One of the coherent models was recently developed by [1] known as the product-ratio model. This model is an extension version of the functional independent model from [2]. The product-ratio model has been applied in a developed country, Australia [1] and has been extended in a developing nation, Malaysia [3]. While [3] accounted for coherency of mortality rates between gender and ethnic group, the coherency between states in Malaysia has never been explored. This paper will forecast the mortality rates of Malaysian sub-populations according to states using the product ratio coherent model and its independent version— the functional independent model. The forecast accuracies of two different models are evaluated using the out-of-sample error measurements— the mean absolute forecast error (MAFE) for age-specific death rates and the mean forecast error (MFE) for the life expectancy at birth. We employ Malaysian mortality time series data from 1991 to 2014, segregated by age, gender and states.

  13. SST-Forced Seasonal Simulation and Prediction Skill for Versions of the NCEP/MRF Model.

    NASA Astrophysics Data System (ADS)

    Livezey, Robert E.; Masutani, Michiko; Jil, Ming

    1996-03-01

    The feasibility of using a two-tier approach to provide guidance to operational long-lead seasonal prediction is explored. The approach includes first a forecast of global sea surface temperatures (SSTs) using a coupled general circulation model, followed by an atmospheric forecast using an atmospheric general circulation model (AGCM). For this exploration, ensembles of decade-long integrations of the AGCM driven by observed SSTs and ensembles of integrations of select cases driven by forecast SSTs have been conducted. The ability of the model in these sets of runs to reproduce observed atmospheric conditions has been evaluated with a multiparameter performance analysis.Results have identified performance and skill levels in the specified SST runs, for winters and springs over the Pacific/North America region, that are sufficient to impact operational seasonal predictions in years with major El Niño-Southern Oscillation (ENSO) episodes. Further, these levels were substantially reproduced in the forecast SST runs for 1-month leads and in many instances for up to one-season leads. In fact, overall the 0- and 1-month-lead forecasts of seasonal temperature over the United States for three falls and winters with major ENSO episodes were substantially better than corresponding official forecasts. Thus, there is considerable reason to develop a dynamical component for the official seasonal forecast process.

  14. Prediction of Winter Storm Tracks and Intensities Using the GFDL fvGFS Model

    NASA Astrophysics Data System (ADS)

    Rees, S.; Boaggio, K.; Marchok, T.; Morin, M.; Lin, S. J.

    2017-12-01

    The GFDL Finite-Volume Cubed-Sphere Dynamical core (FV3) is coupled to a modified version of the Global Forecast System (GFS) physics and initial conditions, to form the fvGFS model. This model is similar to the one being implemented as the next-generation operational weather model for the NWS, which is also FV3-powered. Much work has been done to verify fvGFS tropical cyclone prediction, but little has been done to verify winter storm prediction. These costly and dangerous storms impact parts of the U.S. every year. To verify winter storms we ran the NCEP operational cyclone tracker, developed at GFDL, on semi-real-time 13 km horizontal resolution fvGFS forecasts. We have found that fvGFS compares well to the operational GFS in storm track and intensity, though often predicts slightly higher intensities. This presentation will show the track and intensity verification from the past two winter seasons and explore possible reasons for bias.

  15. Revised cloud processes to improve the mean and intraseasonal variability of Indian summer monsoon in climate forecast system: Part 1

    NASA Astrophysics Data System (ADS)

    Abhik, S.; Krishna, R. P. M.; Mahakur, M.; Ganai, Malay; Mukhopadhyay, P.; Dudhia, J.

    2017-06-01

    The National Centre for Environmental Prediction (NCEP) Climate Forecast System (CFS) is being used for operational monsoon prediction over the Indian region. Recent studies indicate that the moist convective process in CFS is one of the major sources of uncertainty in monsoon predictions. In this study, the existing simple cloud microphysics of CFS is replaced by the six-class Weather Research Forecasting (WRF) single moment (WSM6) microphysical scheme. Additionally, a revised convective parameterization is employed to improve the performance of the model in simulating the boreal summer mean climate and intraseasonal variability over the Indian summer monsoon (ISM) region. The revised version of the model (CFSCR) exhibits a potential to improve shortcomings in the seasonal mean precipitation distribution relative to the standard CFS (CTRL), especially over the ISM region. Consistently, notable improvements are also evident in other observed ISM characteristics. These improvements are found to be associated with a better simulation of spatial and vertical distributions of cloud hydrometeors in CFSCR. A reasonable representation of the subgrid-scale convective parameterization along with cloud hydrometeors helps to improve the convective and large-scale precipitation distribution in the model. As a consequence, the simulated low-frequency boreal summer intraseasonal oscillation (BSISO) exhibits realistic propagation and the observed northwest-southeast rainband is well reproduced in CFSCR. Additionally, both the high and low-frequency BSISOs are better captured in CFSCR. The improvement of low and high-frequency BSISOs in CFSCR is shown to be related to a realistic phase relationship of clouds.Plain Language SummaryThis study attempts to demonstrate the impact of better representation of cloud processes on simulating the mean and intraseasonal variability of Indian summer monsoon in a revised version of CFSv2 called CFSCR. The CFSCR shows better fidelity in capturing the global mean cloud distribution and also better cloud-rain relationship. This appears to improve the precipitation distribution in general and most importantly the convective and stratiform rain by CFSCR as compared to CFSv2.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20000039367&hterms=David+waugh&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DDavid%2Bwaugh','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20000039367&hterms=David+waugh&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DDavid%2Bwaugh"><span>Performance of the GEOS-3/Terra Data Assimilation System in the Northern Stratospheric Winter 1999/2000</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Pawson, S.; Lamich, David; Ledvina, Andrea; Conaty, Austin; Newman, Paul A.; Lait, Leslie R.; Waugh, Darryn</p> <p>2000-01-01</p> <p>As part of NASA's support for the Terra satellite, which became operational in January 2000, the Data Assimilation Office introduced a new version of the GEOS data assimilation system (DAS) in November 1999. This system, GEOS-3/Terra, differs from its predecessor in several ways, notably through an increase in horizontal resolution (from 2-by-2.5 degrees to 1-by-1 degree), a slightly lower upper boundary (0.1 instead of 0.01hPa) with fewer levels (48 as opposed to 70), and substantial changes to the tropospheric physics package. This paper will address the performance of the GEOS-3/Terra DAS in the stratosphere. it focusses on the analyses (produced four times daily) and the five-day forecasts (produced twice daily). These were important for the meteorological support of the SAGE-3 Ozone Loss and Validation Experiment, based in Kiruna, Northern Sweden, in the winter of 1999/2000. It is shown that the analyses of basic meteorological fields (temperature, geopotential height, and horizontal wind) are in good agreement with those from other centers. The analyses captured the cold polar vortex which persisted through most of the winter. It is shown that forecasts (up to five days) tend to have a warm bias, which is important for the prediction of polar stratospheric clouds, which are triggered by temperatures of 195K (or lower). The importance of accurate upper tropospheric forecasts in predicting the stratospheric flow is highlighted in the context of the evolution of the shape of the stratospheric polar vortex. A prominent blocking high in the Atlantic region in January was an important factor determining the shape of the distorted lower stratospheric vortex; the predictive skill of these features was strongly coupled in the GEOS-3/Terra system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMNH43B1866S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMNH43B1866S"><span>Short-term Inundation Forecasting for Tsunamis Version 4.0 Brings Forecasting Speed, Accuracy, and Capability Improvements to NOAA's Tsunami Warning Centers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sterling, K.; Denbo, D. W.; Eble, M. C.</p> <p>2016-12-01</p> <p>Short-term Inundation Forecasting for Tsunamis (SIFT) software was developed by NOAA's Pacific Marine Environmental Laboratory (PMEL) for use in tsunami forecasting and has been used by both U.S. Tsunami Warning Centers (TWCs) since 2012, when SIFTv3.1 was operationally accepted. Since then, advancements in research and modeling have resulted in several new features being incorporated into SIFT forecasting. Following the priorities and needs of the TWCs, upgrades to SIFT forecasting were implemented into SIFTv4.0, scheduled to become operational in October 2016. Because every minute counts in the early warning process, two major time saving features were implemented in SIFT 4.0. To increase processing speeds and generate high-resolution flooding forecasts more quickly, the tsunami propagation and inundation codes were modified to run on Graphics Processing Units (GPUs). To reduce time demand on duty scientists during an event, an automated DART inversion (or fitting) process was implemented. To increase forecasting accuracy, the forecasted amplitudes and inundations were adjusted to include dynamic tidal oscillations, thereby reducing the over-estimates of flooding common in SIFTv3.1 due to the static tide stage conservatively set at Mean High Water. Further improvements to forecasts were gained through the assimilation of additional real-time observations. Cabled array measurements from Bottom Pressure Recorders (BPRs) in the Oceans Canada NEPTUNE network are now available to SIFT for use in the inversion process. To better meet the needs of harbor masters and emergency managers, SIFTv4.0 adds a tsunami currents graphical product to the suite of disseminated forecast results. When delivered, these new features in SIFTv4.0 will improve the operational tsunami forecasting speed, accuracy, and capabilities at NOAA's Tsunami Warning Centers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA621882','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA621882"><span>Validation Test Report for the BioCast Optical Forecast Model Version 1.0</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2015-04-09</p> <p>can generate such as: total absorption (a), backscattering (bb), chlorophyll (chl), sea surface temperature (SST), diver visibility, etc. The...optical backscattering coefficient BSP - Battle Space Profiler CHARTS - Compact Hydrographic Airborne Rapid Total Survey Chl - Chlorophyll EO</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JHyd..556.1026L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JHyd..556.1026L"><span>Verification of the skill of numerical weather prediction models in forecasting rainfall from U.S. landfalling tropical cyclones</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Luitel, Beda; Villarini, Gabriele; Vecchi, Gabriel A.</p> <p>2018-01-01</p> <p>The goal of this study is the evaluation of the skill of five state-of-the-art numerical weather prediction (NWP) systems [European Centre for Medium-Range Weather Forecasts (ECMWF), UK Met Office (UKMO), National Centers for Environmental Prediction (NCEP), China Meteorological Administration (CMA), and Canadian Meteorological Center (CMC)] in forecasting rainfall from North Atlantic tropical cyclones (TCs). Analyses focus on 15 North Atlantic TCs that made landfall along the U.S. coast over the 2007-2012 period. As reference data we use gridded rainfall provided by the Climate Prediction Center (CPC). We consider forecast lead-times up to five days. To benchmark the skill of these models, we consider rainfall estimates from one radar-based (Stage IV) and four satellite-based [Tropical Rainfall Measuring Mission - Multi-satellite Precipitation Analysis (TMPA, both real-time and research version); Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN); the CPC MORPHing Technique (CMORPH)] rainfall products. Daily and storm total rainfall fields from each of these remote sensing products are compared to the reference data to obtain information about the range of errors we can expect from "observational data." The skill of the NWP models is quantified: (1) by visual examination of the distribution of the errors in storm total rainfall for the different lead-times, and numerical examination of the first three moments of the error distribution; (2) relative to climatology at the daily scale. Considering these skill metrics, we conclude that the NWP models can provide skillful forecasts of TC rainfall with lead-times up to 48 h, without a consistently best or worst NWP model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.4009S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.4009S"><span>Assessment of wind energy potential in Poland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Starosta, Katarzyna; Linkowska, Joanna; Mazur, Andrzej</p> <p>2014-05-01</p> <p>The aim of the presentation is to show the suitability of using numerical model wind speed forecasts for the wind power industry applications in Poland. In accordance with the guidelines of the European Union, the consumption of wind energy in Poland is rapidly increasing. According to the report of Energy Regulatory Office from 30 March 2013, the installed capacity of wind power in Poland was 2807MW from 765 wind power stations. Wind energy is strongly dependent on the meteorological conditions. Based on the climatological wind speed data, potential energy zones within the area of Poland have been developed (H. Lorenc). They are the first criterion for assessing the location of the wind farm. However, for exact monitoring of a given wind farm location the prognostic data from numerical model forecasts are necessary. For the practical interpretation and further post-processing, the verification of the model data is very important. Polish Institute Meteorology and Water Management - National Research Institute (IMWM-NRI) runs an operational model COSMO (Consortium for Small-scale Modelling, version 4.8) using two nested domains at horizontal resolutions of 7 km and 2.8 km. The model produces 36 hour and 78 hour forecasts from 00 UTC, for 2.8 km and 7 km domain resolutions respectively. Numerical forecasts were compared with the observation of 60 SYNOP and 3 TEMP stations in Poland, using VERSUS2 (Unified System Verification Survey 2) and R package. For every zone the set of statistical indices (ME, MAE, RMSE) was calculated. Forecast errors for aerological profiles are shown for Polish TEMP stations at Wrocław, Legionowo and Łeba. The current studies are connected with a topic of the COST ES1002 WIRE-Weather Intelligence for Renewable Energies.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950052179&hterms=covariance+correlation&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dcovariance%2Bcorrelation','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950052179&hterms=covariance+correlation&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dcovariance%2Bcorrelation"><span>On-line estimation of error covariance parameters for atmospheric data assimilation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Dee, Dick P.</p> <p>1995-01-01</p> <p>A simple scheme is presented for on-line estimation of covariance parameters in statistical data assimilation systems. The scheme is based on a maximum-likelihood approach in which estimates are produced on the basis of a single batch of simultaneous observations. Simple-sample covariance estimation is reasonable as long as the number of available observations exceeds the number of tunable parameters by two or three orders of magnitude. Not much is known at present about model error associated with actual forecast systems. Our scheme can be used to estimate some important statistical model error parameters such as regionally averaged variances or characteristic correlation length scales. The advantage of the single-sample approach is that it does not rely on any assumptions about the temporal behavior of the covariance parameters: time-dependent parameter estimates can be continuously adjusted on the basis of current observations. This is of practical importance since it is likely to be the case that both model error and observation error strongly depend on the actual state of the atmosphere. The single-sample estimation scheme can be incorporated into any four-dimensional statistical data assimilation system that involves explicit calculation of forecast error covariances, including optimal interpolation (OI) and the simplified Kalman filter (SKF). The computational cost of the scheme is high but not prohibitive; on-line estimation of one or two covariance parameters in each analysis box of an operational bozed-OI system is currently feasible. A number of numerical experiments performed with an adaptive SKF and an adaptive version of OI, using a linear two-dimensional shallow-water model and artificially generated model error are described. The performance of the nonadaptive versions of these methods turns out to depend rather strongly on correct specification of model error parameters. These parameters are estimated under a variety of conditions, including uniformly distributed model error and time-dependent model error statistics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015GMDD....8.7911M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015GMDD....8.7911M"><span>VISIR-I: small vessels, least-time nautical routes using wave forecasts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mannarini, G.; Pinardi, N.; Coppini, G.; Oddo, P.; Iafrati, A.</p> <p>2015-09-01</p> <p>A new numerical model for the on-demand computation of optimal ship routes based on sea-state forecasts has been developed. The model, named VISIR (discoVerIng Safe and effIcient Routes) is designed to support decision-makers when planning a marine voyage. The first version of the system, VISIR-I, considers medium and small motor vessels with lengths of up to a few tens of meters and a displacement hull. The model is made up of three components: the route optimization algorithm, the mechanical model of the ship, and the environmental fields. The optimization algorithm is based on a graph-search method with time-dependent edge weights. The algorithm is also able to compute a voluntary ship speed reduction. The ship model accounts for calm water and added wave resistance by making use of just the principal particulars of the vessel as input parameters. The system also checks the optimal route for parametric roll, pure loss of stability, and surfriding/broaching-to hazard conditions. Significant wave height, wave spectrum peak period, and wave direction forecast fields are employed as an input. Examples of VISIR-I routes in the Mediterranean Sea are provided. The optimal route may be longer in terms of miles sailed and yet it is faster and safer than the geodetic route between the same departure and arrival locations. Route diversions result from the safety constraints and the fact that the algorithm takes into account the full temporal evolution and spatial variability of the environmental fields.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004AGUSMSM21A..08H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004AGUSMSM21A..08H"><span>AF-GEOSPACE Version 2.1</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hilmer, R. V.; Ginet, G. P.; Hall, T.; Holeman, E.; Madden, D.; Tautz, M.; Roth, C.</p> <p>2004-05-01</p> <p>AF-GEOSpace is a graphics-intensive software program with space environment models and applications developed and distributed by the Space Weather Center of Excellence at AFRL. A review of current (Version 2.0) and planned (Version 2.1) AF-GEOSpace capabilities will be given. A wide range of physical domains is represented enabling the software to address such things as solar disturbance propagation, radiation belt configuration, and ionospheric auroral particle precipitation and scintillation. The software is currently being used to aid with the design, operation, and simulation of a wide variety of communications, navigation, and surveillance systems. Building on the success of previous releases, AF-GEOSpace has become a platform for the rapid prototyping of automated operational and simulation space weather visualization products and helps with a variety of tasks, including: orbit specification for radiation hazard avoidance; satellite design assessment and post-event anomaly analysis; solar disturbance effects forecasting; frequency and antenna management for radar and HF communications; determination of link outage regions for active ionospheric conditions; scientific model validation and comparison, physics research, and education. Version 2.0 provided a simplified graphical user interface, improved science and application modules, and significantly enhanced graphical performance. Common input data archive sets, application modules, and 1-D, 2-D, and 3-D visualization tools are provided to all models. Dynamic capabilities permit multiple environments to be generated at user-specified time intervals while animation tools enable displays such as satellite orbits and environment data together as a function of time. Building on the existing Version 2.0 software architecture, AF-GEOSpace Version 2.1 is currently under development and will include a host of new modules to provide, for example, geosynchronous charged particle fluxes, neutral atmosphere densities, cosmic ray cutoff maps, low-altitude trapped proton belt specification, and meteor shower/storm fluxes with spacecraft impact probabilities. AF-GEOSpace Version 2.1 is being developed for Windows NT/2000/XP and Linux systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMIN53D..07A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMIN53D..07A"><span>Using JPSS VIIRS Fire Radiative Power Data to Forecast Biomass Burning Emissions and Smoke Transport by the High Resolution Rapid Refresh Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ahmadov, R.; Grell, G. A.; James, E.; Alexander, C.; Stewart, J.; Benjamin, S.; McKeen, S. A.; Csiszar, I. A.; Tsidulko, M.; Pierce, R. B.; Pereira, G.; Freitas, S. R.; Goldberg, M.</p> <p>2017-12-01</p> <p>We present a new real-time smoke modeling system, the High Resolution Rapid Refresh coupled with smoke (HRRR-Smoke), to simulate biomass burning (BB) emissions, plume rise and smoke transport in real time. The HRRR is the NOAA Earth System Research Laboratory's 3km grid spacing version of the Weather Research and Forecasting (WRF) model used for weather forecasting. Here we make use of WRF-Chem (the WRF model coupled with chemistry) and simulate fine particulate matter (smoke) emissions emitted by BB. The HRRR-Smoke modeling system ingests fire radiative power (FRP) data from the Visible Infrared Imaging Radiometer Suite (VIIRS) sensor on the Suomi National Polar-orbiting Partnership (S-NPP) satellite to calculate BB emissions. The FRP product is based on processing 750m resolution "M" bands. The algorithms for fire detection and FRP retrieval are consistent with those used to generate the MODIS fire detection data. For the purpose of ingesting VIIRS fire data into the HRRR-Smoke model, text files are generated to provide the location and detection confidence of fire pixels, as well as FRP. The VIIRS FRP data from the text files are processed and remapped over the HRRR-Smoke model domains. We process the FRP data to calculate BB emissions (smoldering part) and fire size for the model input. In addition, HRRR-Smoke uses the FRP data to simulate the injection height for the flaming emissions using concurrently simulated meteorological fields by the model. Currently, there are two 3km resolution domains covering the contiguous US and Alaska which are used to simulate smoke in real time. In our presentation, we focus on the CONUS domain. HRRR-Smoke is initialized 4 times per day to forecast smoke concentrations for the next 36 hours. The VIIRS FRP data, as well as near-surface and vertically integrated smoke mass concentrations are visualized for every forecast hour. These plots are provided to the public via the HRRR-Smoke web-page: https://rapidrefresh.noaa.gov/HRRRsmoke/. Model evaluations for a case study are presented, where simulated smoke concentrations are compared with hourly PM2.5 measurements from EPA's Air Quality System network. These comparisons demonstrate the model's ability in simulating high aerosol loadings during major wildfire events in the western US.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.A22D..08S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.A22D..08S"><span>Reforecasting the 1972-73 ENSO Event and the Monsoon Drought Over India</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shukla, J.; Huang, B.; Shin, C. S.</p> <p>2016-12-01</p> <p>This paper presents the results of reforcasting the 1972-73 ENSO event and the Indian summer monsoon drought using the National Centers for Environmental Prediction (NCEP) Climate Forecast System, version 2 (CFSv2), initialized with the Eu­ropean Centre for Medium-Range Weather Forecasts (ECMWF) global ocean reanalysis version 4, and observation-based land and atmosphere reanalyses. The results of this paper demonstrate that if the modern day climate models were available during the 1970's, even with the limited observations at that time, it should have been possible to predict the 1972-73 ENSO event and the associated monsoon drought. These results further suggest the necessity of continuing to develop realistic models of the climate system for accurate and reliable seasonal predictions. This paper also presents a comparison of the 1972-73 El Niño reforecast with the 1997-98 case. As the strongest event during 1958-78, the 1972-73 El Niño is distinguished from the 1997-98 one by its early termination. Initialized in the spring season, the forecast system predicted the onset and development of both events reasonably well, although the reforecasts underestimate the ENSO peaking magnitudes. On the other hand, the reforecasts initialized in spring and fall of 1972 persistently predicted lingering wind and SST anomalies in the eastern equatorial Pacific during the spring of 1973. Initialized in fall of 1997, the reforecast also grossly overestimates the peaking westerly wind and warm SST anomalies in the 1997-98 El Niño.In 1972-73, both the Eastern Pacific SST anomalies (for example Nino 3 Index) and the summer monsoon drought over India and the adjoining areas were predicted remarkably well. In contrast, the Eastern Pacific SST anomalies for the 1997-98 event were predicted well, but the normal summer monsoon rainfall over India of 1997 was not predicted by the model. This case study of the 1972-73 event is part of a larger, comprehensive reforecast project undertaken by one of the coauthors (Bohua Huang, see the paper by Huang et al. Reforecasting the ENSO Events in the Past Fifty-Seven Years (1958-2014) in another AGU session) in which seasonal hindcasts are being carried out for each of the 57 years (1958-2014) using CFSv2.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRC..123..533P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRC..123..533P"><span>Modeling North Atlantic Nor'easters With Modern Wave Forecast Models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Perrie, Will; Toulany, Bechara; Roland, Aron; Dutour-Sikiric, Mathieu; Chen, Changsheng; Beardsley, Robert C.; Qi, Jianhua; Hu, Yongcun; Casey, Michael P.; Shen, Hui</p> <p>2018-01-01</p> <p>Three state-of-the-art operational wave forecast model systems are implemented on fine-resolution grids for the Northwest Atlantic. These models are: (1) a composite model system consisting of SWAN implemented within WAVEWATCHIII® (the latter is hereafter, WW3) on a nested system of traditional structured grids, (2) an unstructured grid finite-volume wave model denoted "SWAVE," using SWAN physics, and (3) an unstructured grid finite element wind wave model denoted as "WWM" (for "wind wave model") which uses WW3 physics. Models are implemented on grid systems that include relatively large domains to capture the wave energy generated by the storms, as well as including fine-resolution nearshore regions of the southern Gulf of Maine with resolution on the scale of 25 m to simulate areas where inundation and coastal damage have occurred, due to the storms. Storm cases include three intense midlatitude cases: a spring Nor'easter storm in May 2005, the Patriot's Day storm in 2007, and the Boxing Day storm in 2010. Although these wave model systems have comparable overall properties in terms of their performance and skill, it is found that there are differences. Models that use more advanced physics, as presented in recent versions of WW3, tuned to regional characteristics, as in the Gulf of Maine and the Northwest Atlantic, can give enhanced results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.H51K1526N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.H51K1526N"><span>Infrastructure Upgrades to Support Model Longevity and New Applications: The Variable Infiltration Capacity Model Version 5.0 (VIC 5.0)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nijssen, B.; Hamman, J.; Bohn, T. J.</p> <p>2015-12-01</p> <p>The Variable Infiltration Capacity (VIC) model is a macro-scale semi-distributed hydrologic model. VIC development began in the early 1990s and it has been used extensively, applied from basin to global scales. VIC has been applied in a many use cases, including the construction of hydrologic data sets, trend analysis, data evaluation and assimilation, forecasting, coupled climate modeling, and climate change impact analysis. Ongoing applications of the VIC model include the University of Washington's drought monitor and forecast systems, and NASA's land data assimilation systems. The development of VIC version 5.0 focused on reconfiguring the legacy VIC source code to support a wider range of modern modeling applications. The VIC source code has been moved to a public Github repository to encourage participation by the model development community-at-large. The reconfiguration has separated the physical core of the model from the driver, which is responsible for memory allocation, pre- and post-processing and I/O. VIC 5.0 includes four drivers that use the same physical model core: classic, image, CESM, and Python. The classic driver supports legacy VIC configurations and runs in the traditional time-before-space configuration. The image driver includes a space-before-time configuration, netCDF I/O, and uses MPI for parallel processing. This configuration facilitates the direct coupling of streamflow routing, reservoir, and irrigation processes within VIC. The image driver is the foundation of the CESM driver; which couples VIC to CESM's CPL7 and a prognostic atmosphere. Finally, we have added a Python driver that provides access to the functions and datatypes of VIC's physical core from a Python interface. This presentation demonstrates how reconfiguring legacy source code extends the life and applicability of a research model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1917179R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1917179R"><span>Recent updates in the aerosol component of the C-IFS model run by ECMWF</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Remy, Samuel; Boucher, Olivier; Hauglustaine, Didier; Kipling, Zak; Flemming, Johannes</p> <p>2017-04-01</p> <p>The Composition-Integrated Forecast System (C-IFS) is a global atmospheric composition forecasting tool, run by ECMWF within the framework of the Copernicus Atmospheric Monitoring Service (CAMS). The aerosol model of C-IFS is a simple bulk scheme that forecasts 5 species: dust, sea-salt, black carbon, organic matter and sulfate. Three bins represent the dust and sea-salt, for the super-coarse, coarse and fine mode of these species (Morcrette et al., 2009). This talk will present recent updates of the aerosol model, and also introduce forthcoming developments. It will also present the impact of these changes as measured scores against AERONET Aerosol Optical Depth (AOD) and Airbase PM10 observations. The next cycle of C-IFS will include a mass fixer, because the semi-Lagrangian advection scheme used in C-IFS is not mass-conservative. C-IFS now offers the possibility to emit biomass-burning aerosols at an injection height that is provided by a new version of the Global Fire Assimilation System (GFAS). Secondary Organic Aerosols (SOA) production will be scaled on non-biomass burning CO fluxes. This approach allows to represent the anthropogenic contribution to SOA production; it brought a notable improvement in the skill of the model, especially over Europe. Lastly, the emissions of SO2 are now provided by the MACCity inventory instead of and older version of the EDGAR dataset. The seasonal and yearly variability of SO2 emissions are better captured by the MACCity dataset. Upcoming developments of the aerosol model of C-IFS consist mainly in the implementation of a nitrate and ammonium module, with 2 bins (fine and coarse) for nitrate. Nitrate and ammonium sulfate particle formation from gaseous precursors is represented following Hauglustaine et al. (2014); formation of coarse nitrate over pre-existing sea-salt or dust particles is also represented. This extension of the forward model improved scores over heavily populated areas such as Europe, China and Eastern United States. A new sea-salt scheme following Grythe et al (2014) has been adapted into C-IFS, which brings optical depths closer to MODIS values over oceans, and also has a beneficial impact on PM10 forecasts over Europe. The model also offers the possibility to use dynamically computed dry deposition velocities following Zhang et al (2001). These new developments come as options in C-IFS; the decision of use these options in the operational configuration will be taken by ECMWF after considering input from various parties.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/678157-coupling-trac-pf1-mod2-version-nestle','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/678157-coupling-trac-pf1-mod2-version-nestle"><span>Coupling of TRAC-PF1/MOD2, Version 5.4.25, with NESTLE</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Knepper, P.L.; Hochreiter, L.E.; Ivanov, K.N.</p> <p>1999-09-01</p> <p>A three-dimensional (3-D) spatial kinetics capability within a thermal-hydraulics system code provides a more correct description of the core physics during reactor transients that involve significant variations in the neutron flux distribution. Coupled codes provide the ability to forecast safety margins in a best-estimate manner. The behavior of a reactor core and the feedback to the plant dynamics can be accurately simulated. For each time step, coupled codes are capable of resolving system interaction effects on neutronics feedback and are capable of describing local neutronics effects caused by the thermal hydraulics and neutronics coupling. With the improvements in computational technology,more » modeling complex reactor behaviors with coupled thermal hydraulics and spatial kinetics is feasible. Previously, reactor analysis codes were limited to either a detailed thermal-hydraulics model with simplified kinetics or multidimensional neutron kinetics with a simplified thermal-hydraulics model. The authors discuss the coupling of the Transient Reactor Analysis Code (TRAC)-PF1/MOD2, Version 5.4.25, with the NESTLE code.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150003518','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150003518"><span>Ensemble Forecasting of Coronal Mass Ejections Using the WSA-ENLIL with CONED Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Emmons, D.; Acebal, A.; Pulkkinen, A.; Taktakishvili, A.; MacNeice, P.; Odstricil, D.</p> <p>2013-01-01</p> <p>The combination of the Wang-Sheeley-Arge (WSA) coronal model, ENLIL heliospherical model version 2.7, and CONED Model version 1.3 (WSA-ENLIL with CONED Model) was employed to form ensemble forecasts for 15 halo coronal mass ejections (halo CMEs). The input parameter distributions were formed from 100 sets of CME cone parameters derived from the CONED Model. The CONED Model used image processing along with the bootstrap approach to automatically calculate cone parameter distributions from SOHO/LASCO imagery based on techniques described by Pulkkinen et al. (2010). The input parameter distributions were used as input to WSA-ENLIL to calculate the temporal evolution of the CMEs, which were analyzed to determine the propagation times to the L1 Lagrangian point and the maximum Kp indices due to the impact of the CMEs on the Earth's magnetosphere. The Newell et al. (2007) Kp index formula was employed to calculate the maximum Kp indices based on the predicted solar wind parameters near Earth assuming two magnetic field orientations: a completely southward magnetic field and a uniformly distributed clock-angle in the Newell et al. (2007) Kp index formula. The forecasts for 5 of the 15 events had accuracy such that the actual propagation time was within the ensemble average plus or minus one standard deviation. Using the completely southward magnetic field assumption, 10 of the 15 events contained the actual maximum Kp index within the range of the ensemble forecast, compared to 9 of the 15 events when using a uniformly distributed clock angle.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.H12C..04K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.H12C..04K"><span>Assimilating All-Sky GPM Microwave Imager(GMI) Radiance Data in NASA GEOS-5 System for Global Cloud and Precipitation Analyses</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kim, M. J.; Jin, J.; McCarty, W.; Todling, R.; Holdaway, D. R.; Gelaro, R.</p> <p>2014-12-01</p> <p>The NASA Global Modeling and Assimilation Office (GMAO) works to maximize the impact of satellite observations in the analysis and prediction of climate and weather through integrated Earth system modeling and data assimilation. To achieve this goal, the GMAO undertakes model and assimilation development, generates products to support NASA instrument teams and the NASA Earth science program. Currently Atmospheric Data Assimilation System (ADAS) in the Goddard Earth Observing System Model, Version 5(GEOS-5) system combines millions of observations and short-term forecasts to determine the best estimate, or analysis, of the instantaneous atmospheric state. However, ADAS has been geared towards utilization of observations in clear sky conditions and the majority of satellite channel data affected by clouds are discarded. Microwave imager data from satellites can be a significant source of information for clouds and precipitation but the data are presently underutilized, as only surface rain rates from the Tropical Rainfall Measurement Mission (TRMM) Microwave Imager (TMI) are assimilated with small weight assigned in the analysis process. As clouds and precipitation often occur in regions with high forecast sensitivity, improvements in the temperature, moisture, wind and cloud analysis of these regions are likely to contribute to significant gains in numerical weather prediction accuracy. This presentation is intended to give an overview of GMAO's recent progress in assimilating the all-sky GPM Microwave Imager (GMI) radiance data in GEOS-5 system. This includes development of various new components to assimilate cloud and precipitation affected data in addition to data in clear sky condition. New observation operators, quality controls, moisture control variables, observation and background error models, and a methodology to incorporate the linearlized moisture physics in the assimilation system are described. In addition preliminary results showing impacts of assimilating all-sky GMI data on GEOS-5 forecasts are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5095208','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5095208"><span>Superensemble forecasts of dengue outbreaks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Kandula, Sasikiran; Shaman, Jeffrey</p> <p>2016-01-01</p> <p>In recent years, a number of systems capable of predicting future infectious disease incidence have been developed. As more of these systems are operationalized, it is important that the forecasts generated by these different approaches be formally reconciled so that individual forecast error and bias are reduced. Here we present a first example of such multi-system, or superensemble, forecast. We develop three distinct systems for predicting dengue, which are applied retrospectively to forecast outbreak characteristics in San Juan, Puerto Rico. We then use Bayesian averaging methods to combine the predictions from these systems and create superensemble forecasts. We demonstrate that on average, the superensemble approach produces more accurate forecasts than those made from any of the individual forecasting systems. PMID:27733698</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AMT.....8.3021V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AMT.....8.3021V"><span>Extended and refined multi sensor reanalysis of total ozone for the period 1970-2012</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>van der A, R. J.; Allaart, M. A. F.; Eskes, H. J.</p> <p>2015-07-01</p> <p>The ozone multi-sensor reanalysis (MSR) is a multi-decadal ozone column data record constructed using all available ozone column satellite data sets, surface Brewer and Dobson observations and a data assimilation technique with detailed error modelling. The result is a high-resolution time series of 6-hourly global ozone column fields and forecast error fields that may be used for ozone trend analyses as well as detailed case studies. The ozone MSR is produced in two steps. First, the latest reprocessed versions of all available ozone column satellite data sets are collected and then are corrected for biases as a function of solar zenith angle (SZA), viewing zenith angle (VZA), time (trend), and stratospheric temperature using surface observations of the ozone column from Brewer and Dobson spectrophotometers from the World Ozone and Ultraviolet Radiation Data Centre (WOUDC). Subsequently the de-biased satellite observations are assimilated within the ozone chemistry and data assimilation model TMDAM. The MSR2 (MSR version 2) reanalysis upgrade described in this paper consists of an ozone record for the 43-year period 1970-2012. The chemistry transport model and data assimilation system have been adapted to improve the resolution, error modelling and processing speed. Backscatter ultraviolet (BUV) satellite observations have been included for the period 1970-1977. The total record is extended by 13 years compared to the first version of the ozone multi sensor reanalysis, the MSR1. The latest total ozone retrievals of 15 satellite instruments are used: BUV-Nimbus4, TOMS-Nimbus7, TOMS-EP, SBUV-7, -9, -11, -14, -16, -17, -18, -19, GOME, SCIAMACHY, OMI and GOME-2. The resolution of the model runs, assimilation and output is increased from 2° × 3° to 1° × 1°. The analysis is driven by 3-hourly meteorology from the ERA-Interim reanalysis of the European Centre for Medium-Range Weather Forecasts (ECMWF) starting from 1979, and ERA-40 before that date. The chemistry parameterization has been updated. The performance of the MSR2 analysis is studied with the help of observation-minus-forecast (OmF) departures from the data assimilation, by comparisons with the individual station observations and with ozone sondes. The OmF statistics show that the mean bias of the MSR2 analyses is less than 1 % with respect to de-biased satellite observations after 1979.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.A44B..08M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.A44B..08M"><span>The Sensitivity of Orographic Precipitation to Flow Direction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mass, C.; Picard, L.</p> <p>2015-12-01</p> <p>An area of substantial interest is the sensitivity of orographic precipitation to the characteristics of the incoming flow and to the surrounding environment. Some studies have suggested substantial sensitivity of precipitation within individual river drainages for relatively small directional or stability variations of incoming flow. A characterization of such flow sensitivity would be of great value for hydrometeorological prediction, the determination of Probable Maximum Precipitation statistics, and for quantifying the uncertainty in precipitation and hydrological forecasts. To gain insight into this problem, an idealized version of the Weather Research and Forecasting (WRF) modeling system was created in which simulations are driven by a single vertical sounding, with the assumption of thermal wind balance. The actual terrain is used and the full physics complement of the modeling system. The presentation will show how precipitation over the Olympic Mountains of Washington State varies as flow direction changes. This analysis will include both the aggregate precipitation over the barrier and the precipitation within individual drainages or areas. The role of surrounding terrain and the nearby coastline are also examined by removing these features from simulations. Finally, the impact of varying flow stability and speed on the precipitation over this orographic feature will be described.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1710512S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1710512S"><span>A data assimilation experiment of RASTA airborne cloud radar data during HyMeX IOP16</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Saussereau, Gaël; Caumont, Olivier; Delanoë, Julien</p> <p>2015-04-01</p> <p>The main goal of HyMeX first special observing period (SOP1), which took place from 5 September to 5 November 2012, was to document the heavy precipitation events and flash floods that regularly affect the north-western Mediterranean coastal areas. In the two-month campaign, around twenty rainfall events were documented in France, Italy, and Spain. Among the instrumental platforms that were deployed during SOP1, the Falcon 20 of the Safire unit (http://www.safire.fr/) made numerous flights in storm systems so as to document their thermodynamic, microphysical, and dynamical properties. In particular, the RASTA cloud radar (http://rali.projet.latmos.ipsl.fr/) was aboard this aircraft. This radar measures vertical profiles of reflectivity and Doppler velocity above and below the aircraft. This unique instrument thus allows us to document the microphysical properties and the speed of wind and hydrometeors in the clouds, quasi-continuously in time and at a 60-m vertical resolution. For this field campaign, a special version of the numerical weather prediction (NWP) Arome system was developed to cover the whole north-western Mediterranean basin. This version, called Arome-WMed, ran in real time during the SOP in order to, notably, schedule the airborne operations, especially in storm systems. Like the operational version, Arome-WMed delivers forecasts at a horizontal resolution of 2.5 km with a one-moment microphysical scheme that predicts the evolution of six water species: water vapour, cloud liquid water, rainwater, pristine ice, snow, and graupel. Its three-dimensional variational (3DVar) data assimilation (DA) system ingests every three hours (at 00 UTC, 03 UTC, etc.) numerous observations (radiosoundings, ground automatic weather stations, radar, satellite, GPS, etc.). In order to provide improved initial conditions to Arome-WMed, especially for heavy precipitation events, RASTA data were assimilated in Arome-WMed 3DVar DA system for IOP16 (26 October 2012), to begin with. There were two flights on 26 October and thus RASTA data were assimilated at 2+2 consecutive analysis times (06, 09, 12, and 15 UTC). This task involved a preliminary step to convert the original data into vertical profiles that are suitable for assimilation: the data were averaged to remove noise and match the model's resolution, they were converted to appropriate physical quantities and in a format that is readable by the DA system, etc.). The presentation will show the impact of RASTA data on Arome-WMed analyses and forecasts, both with respect to RASTA data and to independent data (either also assimilated or not).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20180000527','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20180000527"><span>GEOS-5 Seasonal Forecast System: ENSO Prediction Skill and Bias</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Borovikov, Anna; Kovach, Robin; Marshak, Jelena</p> <p>2018-01-01</p> <p>The GEOS-5 AOGCM known as S2S-1.0 has been in service from June 2012 through January 2018 (Borovikov et al. 2017). The atmospheric component of S2S-1.0 is Fortuna-2.5, the same that was used for the Modern-Era Retrospective Analysis for Research and Applications (MERRA), but with adjusted parameterization of moist processes and turbulence. The ocean component is the Modular Ocean Model version 4 (MOM4). The sea ice component is the Community Ice CodE, version 4 (CICE). The land surface model is a catchment-based hydrological model coupled to the multi-layer snow model. The AGCM uses a Cartesian grid with a 1 deg × 1.25 deg horizontal resolution and 72 hybrid vertical levels with the upper most level at 0.01 hPa. OGCM nominal resolution of the tripolar grid is 1/2 deg, with a meridional equatorial refinement to 1/4 deg. In the coupled model initialization, selected atmospheric variables are constrained with MERRA. The Goddard Earth Observing System integrated Ocean Data Assimilation System (GEOS-iODAS) is used for both ocean state and sea ice initialization. SST, T and S profiles and sea ice concentration were assimilated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..44.6334Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..44.6334Z"><span>Importance of convective parameterization in ENSO predictions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhu, Jieshun; Kumar, Arun; Wang, Wanqiu; Hu, Zeng-Zhen; Huang, Bohua; Balmaseda, Magdalena A.</p> <p>2017-06-01</p> <p>This letter explored the influence of atmospheric convection scheme on El Niño-Southern Oscillation (ENSO) predictions using a set of hindcast experiments. Specifically, a low-resolution version of the Climate Forecast System version 2 is used for 12 month hindcasts starting from each April during 1982-2011. The hindcast experiments are repeated with three atmospheric convection schemes. All three hindcasts apply the identical initialization with ocean initial conditions taken from the European Centre for Medium-Range Weather Forecasts and atmosphere/land initial states from the National Centers for Environmental Prediction. Assessments indicate a substantial sensitivity of the sea surface temperature prediction skill to the different convection schemes, particularly over the eastern tropical Pacific. For the Niño 3.4 index, the anomaly correlation skill can differ by 0.1-0.2 at lead times longer than 2 months. Long-term simulations are further conducted with the three convection schemes to understand the differences in prediction skill. By conducting heat budget analyses for the mixed-layer temperature anomalies, it is suggested that the convection scheme having the highest skill simulates stronger and more realistic coupled feedbacks related to ENSO. Particularly, the strength of the Ekman pumping feedback is better represented, which is traced to more realistic simulation of surface wind stress. Our results imply that improving the mean state simulations in coupled (ocean-atmosphere) general circulation model (e.g., ameliorating the Intertropical Convergence Zone simulation) might further improve our ENSO prediction capability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/12877','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/12877"><span>Simplified 4-Step Transportation Planning Process For Any Sized Area</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>1999-01-01</p> <p>This paper presents a streamlined version of the Washington, D.C. region's : 4-step travel demand forecasting model. The purpose for streamlining the : model was to have a model that could: replicate the regional model, and be run : in a new s...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20070016641&hterms=Hurricane+Katrina&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DHurricane%2BKatrina','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20070016641&hterms=Hurricane+Katrina&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DHurricane%2BKatrina"><span>Hurricane Intensity Forecasts with a Global Mesoscale Model on the NASA Columbia Supercomputer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Shen, Bo-Wen; Tao, Wei-Kuo; Atlas, Robert</p> <p>2006-01-01</p> <p>It is known that General Circulation Models (GCMs) have insufficient resolution to accurately simulate hurricane near-eye structure and intensity. The increasing capabilities of high-end computers (e.g., the NASA Columbia Supercomputer) have changed this. In 2004, the finite-volume General Circulation Model at a 1/4 degree resolution, doubling the resolution used by most of operational NWP center at that time, was implemented and run to obtain promising landfall predictions for major hurricanes (e.g., Charley, Frances, Ivan, and Jeanne). In 2005, we have successfully implemented the 1/8 degree version, and demonstrated its performance on intensity forecasts with hurricane Katrina (2005). It is found that the 1/8 degree model is capable of simulating the radius of maximum wind and near-eye wind structure, and thereby promising intensity forecasts. In this study, we will further evaluate the model s performance on intensity forecasts of hurricanes Ivan, Jeanne, Karl in 2004. Suggestions for further model development will be made in the end.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PhyA..401...71B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PhyA..401...71B"><span>Multifractality and value-at-risk forecasting of exchange rates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Batten, Jonathan A.; Kinateder, Harald; Wagner, Niklas</p> <p>2014-05-01</p> <p>This paper addresses market risk prediction for high frequency foreign exchange rates under nonlinear risk scaling behaviour. We use a modified version of the multifractal model of asset returns (MMAR) where trading time is represented by the series of volume ticks. Our dataset consists of 138,418 5-min round-the-clock observations of EUR/USD spot quotes and trading ticks during the period January 5, 2006 to December 31, 2007. Considering fat-tails, long-range dependence as well as scale inconsistency with the MMAR, we derive out-of-sample value-at-risk (VaR) forecasts and compare our approach to historical simulation as well as a benchmark GARCH(1,1) location-scale VaR model. Our findings underline that the multifractal properties in EUR/USD returns in fact have notable risk management implications. The MMAR approach is a parsimonious model which produces admissible VaR forecasts at the 12-h forecast horizon. For the daily horizon, the MMAR outperforms both alternatives based on conditional as well as unconditional coverage statistics.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014ACP....14.7837V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014ACP....14.7837V"><span>Time-lagged ensemble simulations of the dispersion of the Eyjafjallajökull plume over Europe with COSMO-ART</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vogel, H.; Förstner, J.; Vogel, B.; Hanisch, T.; Mühr, B.; Schättler, U.; Schad, T.</p> <p>2014-08-01</p> <p>An extended version of the German operational weather forecast model was used to simulate the ash dispersion during the eruption of the Eyjafjallajökull. As an operational forecast was launched every 6 hours, a time-lagged ensemble was obtained. Sensitivity runs show the ability of the model to simulate thin ash layers when an increased vertical resolution is used. Calibration of the model results with measured data allows for a quantitative forecast of the ash concentration. After this calibration an independent comparison of the simulated number concentration of 3 μm particles and observations at Hohenpeißenberg gives a correlation coefficient of 0.79. However, this agreement could only be reached after additional modifications of the emissions. Based on the time lagged ensemble the conditional probability of violation of a certain threshold is calculated. Improving the ensemble technique used in our study such probabilities could become valuable information for the forecasters advising the organizations responsible for the closing of the airspace.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015WRR....51.3437K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015WRR....51.3437K"><span>Assessment of reservoir system variable forecasts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kistenmacher, Martin; Georgakakos, Aris P.</p> <p>2015-05-01</p> <p>Forecast ensembles are a convenient means to model water resources uncertainties and to inform planning and management processes. For multipurpose reservoir systems, forecast types include (i) forecasts of upcoming inflows and (ii) forecasts of system variables and outputs such as reservoir levels, releases, flood damage risks, hydropower production, water supply withdrawals, water quality conditions, navigation opportunities, and environmental flows, among others. Forecasts of system variables and outputs are conditional on forecasted inflows as well as on specific management policies and can provide useful information for decision-making processes. Unlike inflow forecasts (in ensemble or other forms), which have been the subject of many previous studies, reservoir system variable and output forecasts are not formally assessed in water resources management theory or practice. This article addresses this gap and develops methods to rectify potential reservoir system forecast inconsistencies and improve the quality of management-relevant information provided to stakeholders and managers. The overarching conclusion is that system variable and output forecast consistency is critical for robust reservoir management and needs to be routinely assessed for any management model used to inform planning and management processes. The above are demonstrated through an application from the Sacramento-American-San Joaquin reservoir system in northern California.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14.4103K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14.4103K"><span>Debris flow early warning systems in Norway: organization and tools</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kleivane, I.; Colleuille, H.; Haugen, L. E.; Alve Glad, P.; Devoli, G.</p> <p>2012-04-01</p> <p>In Norway, shallow slides and debris flows occur as a combination of high-intensity precipitation, snowmelt, high groundwater level and saturated soil. Many events have occurred in the last decades and are often associated with (or related to) floods events, especially in the Southern of Norway, causing significant damages to roads, railway lines, buildings, and other infrastructures (i.e November 2000; August 2003; September 2005; November 2005; Mai 2008; June and Desember 2011). Since 1989 the Norwegian Water Resources and Energy Directorate (NVE) has had an operational 24 hour flood forecasting system for the entire country. From 2009 NVE is also responsible to assist regions and municipalities in the prevention of disasters posed by landslides and snow avalanches. Besides assisting the municipalities through implementation of digital landslides inventories, susceptibility and hazard mapping, areal planning, preparation of guidelines, realization of mitigation measures and helping during emergencies, NVE is developing a regional scale debris flow warning system that use hydrological models that are already available in the flood warning systems. It is well known that the application of rainfall thresholds is not sufficient to evaluate the hazard for debris flows and shallow slides, and soil moisture conditions play a crucial role in the triggering conditions. The information on simulated soil and groundwater conditions and water supply (rain and snowmelt) based on weather forecast, have proved to be useful variables that indicate the potential occurrence of debris flows and shallow slides. Forecasts of runoff and freezing-thawing are also valuable information. The early warning system is using real-time measurements (Discharge; Groundwater level; Soil water content and soil temperature; Snow water equivalent; Meteorological data) and model simulations (a spatially distributed version of the HBV-model and an adapted version of 1-D soil water and energy balance model COUP). The data are presented in a web- and GIS-based system with daily nationwide maps showing the meteorological and hydrological conditions for the present and the near future from quantitative weather prognosis. In addition a division of the country in homogenous debris flow-prone regions is also under progress based on geomorfological, topographic parameters and loose quaternary deposits distribution. Threshold-levels are being investigated by using statistical analyses of historical debris flows events and measured hydro-meteorological parameters. The debris flow early warning system is currently being tested and is expected to be operational in 2013. Final products will be warning messages and a map showing the different hazard levels, from low to high, indicating the landslide probability and the type of expected damages in a certain area. Many activities are realized in strong collaboration with the road and railway authorities, the geological survey and private consultant companies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.A11B0009S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.A11B0009S"><span>NOAA's National Air Quality Predictions and Development of Aerosol and Atmospheric Composition Prediction Components for the Next Generation Global Prediction System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stajner, I.; Hou, Y. T.; McQueen, J.; Lee, P.; Stein, A. F.; Tong, D.; Pan, L.; Huang, J.; Huang, H. C.; Upadhayay, S.</p> <p>2016-12-01</p> <p>NOAA provides operational air quality predictions using the National Air Quality Forecast Capability (NAQFC): ozone and wildfire smoke for the United States and airborne dust for the contiguous 48 states at http://airquality.weather.gov. NOAA's predictions of fine particulate matter (PM2.5) became publicly available in February 2016. Ozone and PM2.5 predictions are produced using a system that operationally links the Community Multiscale Air Quality (CMAQ) model with meteorological inputs from the North American mesoscale forecast Model (NAM). Smoke and dust predictions are provided using the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model. Current NAQFC focus is on updating CMAQ to version 5.0.2, improving PM2.5 predictions, and updating emissions estimates, especially for NOx using recently observed trends. Wildfire smoke emissions from a newer version of the USFS BlueSky system are being included in a new configuration of the NAQFC NAM-CMAQ system, which is re-run for the previous 24 hours when the wildfires were observed from satellites, to better represent wildfire emissions prior to initiating predictions for the next 48 hours. In addition, NOAA is developing the Next Generation Global Prediction System (NGGPS) to represent the earth system for extended weather prediction. NGGPS will include a representation of atmospheric dynamics, physics, aerosols and atmospheric composition as well as coupling with ocean, wave, ice and land components. NGGPS is being developed with a broad community involvement, including community developed components and academic research to develop and test potential improvements for potentially inclusion in NGGPS. Several investigators at NOAA's research laboratories and in academia are working to improve the aerosol and gaseous chemistry representation for NGGPS, to develop and evaluate the representation of atmospheric composition, and to establish and improve the coupling with radiation and microphysics. Additional efforts may include the improved use of predicted atmospheric composition in assimilation of observations and the linkage of full global atmospheric composition predictions with national air quality predictions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMIN21C1399H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMIN21C1399H"><span>Using Satellite-Based Earth Science Data in a Public Health Decision-Support System to Track and Forecast Pollen Events</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hudspeth, W. B.; Budge, A.</p> <p>2013-12-01</p> <p>There is widespread recognition within the public health community that ongoing changes in climate are expected to increasingly pose threats to human health. Environmentally induced health risks to populations with respiratory illnesses are a growing concern globally. Of particular concern are dust and smoke events carrying PM2.5 and PM10 particle sizes, ozone, and pollen. There is considerable interest in documenting the precise linkages between changing patterns in the climate and how these shifts impact the prevalence of respiratory illnesses. The establishment of these linkages can drive the development of early warning and forecasting systems to alert health care professionals of impending air-quality events. As a component of a larger NASA-funded project on Integration of Airborne Dust Prediction Systems and Vegetation Phenology to Track Pollen for Asthma Alerts in Public Health Decision Support Systems, the Earth Data Analysis Center (EDAC) at the University of New Mexico, is developing web-based visualization and analysis services for forecasting pollen concentration data. This decision-support system, New Mexico's Environmental Public Health Tracking System (NMEPHTS), funded by the Centers for Disease Control (CDC) Environmental Public Health Tracking Network (EPHTN), aims to improve health awareness and services by linking health effects data with levels and frequency of environmental exposure. The forecast of atmospheric events with high pollen concentrations has employed a modified version of the DREAM (Dust Regional Atmospheric Model, a verified model for atmospheric dust transport modeling. In this application, PREAM (Pollen Regional Atmospheric Model) models pollen emission using a MODIS-derived phenology of Juniperus spp. communities. Model outputs are verified and validated with ground-based records of pollen release timing and quantities. Outputs of the PREAM model are post-processed and archived in EDAC's Geographic Storage, Transformation, and Retrieval Engine (GStore) database. The GStore geospatial services platform provides general purpose web services based upon the REST service model, and is capable of data discovery, access, and publication functions, metadata delivery functions, data transformation, and auto-generated OGC services for those data products that can support those services. These services are in turn ingested by New Mexico's EPHTN where end users in the public health community can then assess environmental-pubic health data associations. Advances in web mapping and related technologies open new doors for data providers and users that can deliver data and information in near-real time. In the public health community these technologies are being used to enhance disease and syndromic surveillance systems, visualize environmentally-related events such as pollen and dust events, and to provide focused mapping and analysis capabilities on the desktop. Here we present the current results of the project, and will focus on the challenges encountered in providing reliable and accurate forecast of pollen concentrations, as well as the experience of integrating output results and services into end user applications that can provide timely and meaningful alerts and forecasts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMGC41D0850B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMGC41D0850B"><span>A short-term ensemble wind speed forecasting system for wind power applications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Baidya Roy, S.; Traiteur, J. J.; Callicutt, D.; Smith, M.</p> <p>2011-12-01</p> <p>This study develops an adaptive, blended forecasting system to provide accurate wind speed forecasts 1 hour ahead of time for wind power applications. The system consists of an ensemble of 21 forecasts with different configurations of the Weather Research and Forecasting Single Column Model (WRFSCM) and a persistence model. The ensemble is calibrated against observations for a 2 month period (June-July, 2008) at a potential wind farm site in Illinois using the Bayesian Model Averaging (BMA) technique. The forecasting system is evaluated against observations for August 2008 at the same site. The calibrated ensemble forecasts significantly outperform the forecasts from the uncalibrated ensemble while significantly reducing forecast uncertainty under all environmental stability conditions. The system also generates significantly better forecasts than persistence, autoregressive (AR) and autoregressive moving average (ARMA) models during the morning transition and the diurnal convective regimes. This forecasting system is computationally more efficient than traditional numerical weather prediction models and can generate a calibrated forecast, including model runs and calibration, in approximately 1 minute. Currently, hour-ahead wind speed forecasts are almost exclusively produced using statistical models. However, numerical models have several distinct advantages over statistical models including the potential to provide turbulence forecasts. Hence, there is an urgent need to explore the role of numerical models in short-term wind speed forecasting. This work is a step in that direction and is likely to trigger a debate within the wind speed forecasting community.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA09715&hterms=lime&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dlime','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA09715&hterms=lime&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dlime"><span>Exoplanet Forecast: Hot and Wet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2007-01-01</p> <p><p/> [figure removed for brevity, see original site] Click on image for larger poster version <p/> This plot of data from NASA's Spitzer Space Telescope tells astronomers that a toasty gas exoplanet, or a planet beyond our solar system, contains water vapor. <p/> Spitzer observed the planet, called HD 189733b, cross in front of its star at three different infrared wavelengths: 3.6 microns; 4.5 microns and 8 microns (see lime-colored dots). For each wavelength, the planet's atmosphere absorbed different amounts of the starlight that passed through it. The pattern by which this absorption varies with wavelength matches known signatures of water, as shown by the theoretical model in blue.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110022999','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110022999"><span>Improvement of the GEOS-5 AGCM upon Updating the Air-Sea Roughness Parameterization</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Garfinkel, C. I.; Molod, A.; Oman, L. D.; Song, I.-S.</p> <p>2011-01-01</p> <p>The impact of an air-sea roughness parameterization over the ocean that more closely matches recent observations of air-sea exchange is examined in the NASA Goddard Earth Observing System, version 5 (GEOS-5) atmospheric general circulation model. Surface wind biases in the GEOS-5 AGCM are decreased by up to 1.2m/s. The new parameterization also has implications aloft as improvements extend into the stratosphere. Many other GCMs (both for operational weather forecasting and climate) use a similar class of parameterization for their air-sea roughness scheme. We therefore expect that results from GEOS-5 are relevant to other models as well.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19890005280','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19890005280"><span>A study for systematic errors of the GLA forecast model in tropical regions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chen, Tsing-Chang; Baker, Wayman E.; Pfaendtner, James; Corrigan, Martin</p> <p>1988-01-01</p> <p>From the sensitivity studies performed with the Goddard Laboratory for Atmospheres (GLA) analysis/forecast system, it was revealed that the forecast errors in the tropics affect the ability to forecast midlatitude weather in some cases. Apparently, the forecast errors occurring in the tropics can propagate to midlatitudes. Therefore, the systematic error analysis of the GLA forecast system becomes a necessary step in improving the model's forecast performance. The major effort of this study is to examine the possible impact of the hydrological-cycle forecast error on dynamical fields in the GLA forecast system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1916233M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1916233M"><span>DMI's Baltic Sea Coastal operational forecasting system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Murawski, Jens; Berg, Per; Weismann Poulsen, Jacob</p> <p>2017-04-01</p> <p>Operational forecasting is challenged with bridging the gap between the large scales of the driving weather systems and the local, human scales of the model applications. The limit of what can be represented by local model has been continuously shifted to higher and higher spatial resolution, with the aim to better resolve the local dynamic and to make it possible to describe processes that could only be parameterised in older versions, with the ultimate goal to improve the quality of the forecast. Current hardware trends demand a str onger focus on the development of efficient, highly parallelised software and require a refactoring of the code with a solid focus on portable performance. The gained performance can be used for running high resolution model with a larger coverage. Together with the development of efficient two-way nesting routines, this has made it possible to approach the near-coastal zone with model applications that can run in a time effective way. Denmarks Meteorological Institute uses the HBM(1) ocean circulation model for applications that covers the entire Baltic Sea and North Sea with an integrated model set-up that spans the range of horizontal resolution from 1nm for the entire Baltic Sea to approx. 200m resolution in local fjords (Limfjord). For the next model generation, the high resolution set-ups are going to be extended and new high resolution domains in coastal zones are either implemented or tested for operational use. For the first time it will be possible to cover large stretches of the Baltic coastal zone with sufficiently high resolution to model the local hydrodynamic adequately. (1) HBM stands for HIROMB-BOOS-Model, whereas HIROMB stands for "High Resolution Model for the Baltic Sea" and BOOS stands for "Baltic Operational Oceanography System".</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.A23G0297W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.A23G0297W"><span>An Assessment of the SST Simulation Using the Climate Forecast System Coupled to the SSiB Surface Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Y.; Xue, Y.; Huang, B.; Lee, J.; De Sales, F.</p> <p>2016-12-01</p> <p>A long term simulation has been conducted using the Climate Forecast System (CFSv2) coupled to the SSiB-2 land model, which consists of the Global Forecast System atmospheric model (GFS) and the Modular Ocean model - version 4 (MOM4) as the ocean component. This study evaluates the model's performance in simulating sea surface temperature (SST) mean state, trend, and inter-annual and decadal variabilities. The model is able to produce the reasonable spatial distribution of the SST climatology; however, it has prominent large scale biases. In the middle latitude of the Northern Hemisphere, major cold biases is close to the warm side of the large SST gradients, which may be associated with the weaker Kuroshio and Gulf Stream extensions that diffuse the SST gradient. IN addition, warm biases extend along the west coast of the North America continent to the high latitude, which may be related with excessive Ekman down-welling and solar radiation fluxes reaching to the surface due to the lack of cloud there. Warm biases also exist over the tropical cold tough areas in the Pacific and Atlantic. The global SST trend and interannual variations are well captured except for that in the south Hemisphere after year 2000, which is mainly contributed by the bias from the southern Pacific Ocean. Although the model fails to accurately produce ENSO events in proper years, it does reproduce the ENSO frequency well; they are skewed toward more warm events after 1990. The model also shows ability in SST decadal variation, such as the so-called inter-decadal Pacific oscillation (IPO); however, its phases seem to go reversely compared with the observation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.A33B0131N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.A33B0131N"><span>A Self-Organizing Map Based Evaluation of the Antarctic Mesoscale Prediction System Using Observations from a 30-m Instrumented Tower on the Ross Ice Shelf, Antarctica</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nigro, M. A.; Cassano, J. J.; Wille, J.; Bromwich, D. H.; Lazzara, M. A.</p> <p>2015-12-01</p> <p>An accurate representation of the atmospheric boundary layer in numerical weather prediction models is important for predicting turbulence and energy exchange in the atmosphere. This study uses two years of observations from a 30-m automatic weather station (AWS) installed on the Ross Ice Shelf, Antarctica to evaluate forecasts from the Antarctic Mesoscale Prediction System (AMPS), a numerical weather prediction system based on the polar version of the Weather Research and Forecasting (Polar WRF) model that uses the MYJ planetary boundary layer scheme and that primarily supports the extensive aircraft operations of the U.S. Antarctic Program. The 30-m AWS has six levels of instrumentation, providing vertical profiles of temperature, wind speed, and wind direction. The observations show the atmospheric boundary layer over the Ross Ice Shelf is stable approximately 80% of the time, indicating the influence of the permanent ice surface in this region. The observations from the AWS are further analyzed using the method of self-organizing maps (SOM) to identify the range of potential temperature profiles that occur over the Ross Ice Shelf. The SOM analysis identified 30 patterns, which range from strong inversions to slightly unstable profiles. The corresponding AMPS forecasts were evaluated for each of the 30 patterns to understand the accuracy of the AMPS near surface layer under different atmospheric conditions. The results indicate that under stable conditions AMPS with MYJ under predicts the inversion strength by as much as 7.4 K over the 30-m depth of the tower and over predicts the near surface wind speed by as much as 3.8 m s-1. Conversely, under slightly unstable conditions, AMPS predicts both the inversion strength and near surface wind speeds with reasonable accuracy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1613804B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1613804B"><span>Prediction and Monitoring of Monsoon Intraseasonal Oscillations over Indian Monsoon Region in an Ensemble Prediction System using CFSv2</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Borah, Nabanita; Sukumarpillai, Abhilash; Sahai, Atul Kumar; Chattopadhyay, Rajib; Joseph, Susmitha; De, Soumyendu; Nath Goswami, Bhupendra; Kumar, Arun</p> <p>2014-05-01</p> <p>An ensemble prediction system (EPS) is devised for the extended range prediction (ERP) of monsoon intraseasonal oscillations (MISO) of Indian summer monsoon (ISM) using NCEP Climate Forecast System model version2 at T126 horizontal resolution. The EPS is formulated by producing 11 member ensembles through the perturbation of atmospheric initial conditions. The hindcast experiments were conducted at every 5-day interval for 45 days lead time starting from 16th May to 28th September during 2001-2012. The general simulation of ISM characteristics and the ERP skill of the proposed EPS at pentad mean scale are evaluated in the present study. Though the EPS underestimates both the mean and variability of ISM rainfall, it simulates the northward propagation of MISO reasonably well. It is found that the signal-to-noise ratio becomes unity by about18 days and the predictability error saturates by about 25 days. Though useful deterministic forecasts could be generated up to 2nd pentad lead, significant correlations are observed even up to 4th pentad lead. The skill in predicting large-scale MISO, which is assessed by comparing the predicted and observed MISO indices, is found to be ~17 days. It is noted that the prediction skill of actual rainfall is closely related to the prediction of amplitude of large scale MISO as well as the initial conditions related to the different phases of MISO. Categorical prediction skills reveals that break is more skillfully predicted, followed by active and then normal. The categorical probability skill scores suggest that useful probabilistic forecasts could be generated even up to 4th pentad lead.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.A13E0260B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.A13E0260B"><span>Prediction and Monitoring of Monsoon Intraseasonal Oscillations over Indian Monsoon Region in an Ensemble Prediction System using CFSv2</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Borah, N.; Abhilash, S.; Sahai, A. K.; Chattopadhyay, R.; Joseph, S.; Sharmila, S.; de, S.; Goswami, B.; Kumar, A.</p> <p>2013-12-01</p> <p>An ensemble prediction system (EPS) is devised for the extended range prediction (ERP) of monsoon intraseasonal oscillations (MISOs) of Indian summer monsoon (ISM) using NCEP Climate Forecast System model version2 at T126 horizontal resolution. The EPS is formulated by producing 11 member ensembles through the perturbation of atmospheric initial conditions. The hindcast experiments were conducted at every 5-day interval for 45 days lead time starting from 16th May to 28th September during 2001-2012. The general simulation of ISM characteristics and the ERP skill of the proposed EPS at pentad mean scale are evaluated in the present study. Though the EPS underestimates both the mean and variability of ISM rainfall, it simulates the northward propagation of MISO reasonably well. It is found that the signal-to-noise ratio becomes unity by about18 days and the predictability error saturates by about 25 days. Though useful deterministic forecasts could be generated up to 2nd pentad lead, significant correlations are observed even up to 4th pentad lead. The skill in predicting large-scale MISO, which is assessed by comparing the predicted and observed MISO indices, is found to be ~17 days. It is noted that the prediction skill of actual rainfall is closely related to the prediction of amplitude of large scale MISO as well as the initial conditions related to the different phases of MISO. Categorical prediction skills reveals that break is more skillfully predicted, followed by active and then normal. The categorical probability skill scores suggest that useful probabilistic forecasts could be generated even up to 4th pentad lead.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.3058C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.3058C"><span>Training the next generation of scientists in Weather Forecasting: new approaches with real models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carver, Glenn; Váňa, Filip; Siemen, Stephan; Kertesz, Sandor; Keeley, Sarah</p> <p>2014-05-01</p> <p>The European Centre for Medium Range Weather Forecasts operationally produce medium range forecasts using what is internationally acknowledged as the world leading global weather forecast model. Future development of this scientifically advanced model relies on a continued availability of experts in the field of meteorological science and with high-level software skills. ECMWF therefore has a vested interest in young scientists and University graduates developing the necessary skills in numerical weather prediction including both scientific and technical aspects. The OpenIFS project at ECMWF maintains a portable version of the ECMWF forecast model (known as IFS) for use in education and research at Universities, National Meteorological Services and other research and education organisations. OpenIFS models can be run on desktop or high performance computers to produce weather forecasts in a similar way to the operational forecasts at ECMWF. ECMWF also provide the Metview desktop application, a modern, graphical, and easy to use tool for analysing and visualising forecasts that is routinely used by scientists and forecasters at ECMWF and other institutions. The combination of Metview with the OpenIFS models has the potential to deliver classroom-friendly tools allowing students to apply their theoretical knowledge to real-world examples using a world-leading weather forecasting model. In this paper we will describe how the OpenIFS model has been used for teaching. We describe the use of Linux based 'virtual machines' pre-packaged on USB sticks that support a technically easy and safe way of providing 'classroom-on-a-stick' learning environments for advanced training in numerical weather prediction. We welcome discussions with interested parties.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930015558','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930015558"><span>Weather forecasting expert system study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1985-01-01</p> <p>Weather forecasting is critical to both the Space Transportation System (STS) ground operations and the launch/landing activities at NASA Kennedy Space Center (KSC). The current launch frequency places significant demands on the USAF weather forecasters at the Cape Canaveral Forecasting Facility (CCFF), who currently provide the weather forecasting for all STS operations. As launch frequency increases, KSC's weather forecasting problems will be great magnified. The single most important problem is the shortage of highly skilled forecasting personnel. The development of forecasting expertise is difficult and requires several years of experience. Frequent personnel changes within the forecasting staff jeopardize the accumulation and retention of experience-based weather forecasting expertise. The primary purpose of this project was to assess the feasibility of using Artificial Intelligence (AI) techniques to ameliorate this shortage of experts by capturing aria incorporating the forecasting knowledge of current expert forecasters into a Weather Forecasting Expert System (WFES) which would then be made available to less experienced duty forecasters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.emc.ncep.noaa.gov','SCIGOVWS'); return false;" href="http://www.emc.ncep.noaa.gov"><span>National Centers for Environmental Prediction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.science.gov/aboutsearch.html">Science.gov Websites</a></p> <p></p> <p></p> <p>SYSTEM CFS CLIMATE FORECAST SYSTEM NAQFC NAQFC MODEL GEFS GLOBAL ENSEMBLE FORECAST SYSTEM HWRF <em>HURRICANE</em> WEATHER RESEARCH and FORECASTING HMON HMON - OPERATIONAL <em>HURRICANE</em> FORECASTING WAVEWATCH III WAVEWATCH III</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.nrel.gov/rredc/publications.html','SCIGOVWS'); return false;" href="https://www.nrel.gov/rredc/publications.html"><span>NREL: Renewable Resource Data Center - Solar Resource Publications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.science.gov/aboutsearch.html">Science.gov Websites</a></p> <p></p> <p></p> <p>Publications The following links provide useful information about solar <em>resource</em> tools and data resources, solar data, or solar technology". <em>Resource</em> Assessment and Forecasting Group Publications By | 1985 | 1984 | 1983 | 1982 | 1981 | 1980 Miscellaneous Printable Version RReDC Home Biomass <em>Resource</em></p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040082208&hterms=employment&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Demployment','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040082208&hterms=employment&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Demployment"><span>Assimilation of SBUV Version 8 Radiances into the GEOS Ozone DAS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mueller, Martin D.; Stajner, Ivanka; Bhartia, Pawan K.</p> <p>2004-01-01</p> <p>In operational weather forecasting, the assimilation of brightness temperatures from satellite sounders, instead of assimilation of 1D-retrievals has become increasingly common practice over the last two decades. Compared to these systems, assimilation of trace gases is still at a relatively early stage of development, and efforts to directly assimilate radiances instead of retrieved products have just begun a few years ago, partially because it requires much more computation power due to the employment of a radiative transport forward model (FM). This paper will focus on a method to assimilate SBUV/2 radiances (albedos) into the Global Earth Observation System Ozone Data Assimilation Scheme (GEOS-03DAS). While SBUV-type instruments cannot compete with newer sensors in terms of spectral and horizontal resolution, they feature a continuous data record back to 1978, which makes them very valuable for trend studies. Assimilation can help spreading their ground coverage over the whole globe, as has been previously demonstrated with the GEOS-03DAS using SBUV Version 6 ozone profiles. Now, the DAS has been updated to use the newly released SBUV Version 8 data. We will compare pre]lmlnarv results of SBUV radiance assimilation with the assimilation of retrieved ozone profiles, discuss methods to deal with the increased computational load, and try to assess the error characteristics and future potential of the new approach.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5759431','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5759431"><span>178: FORECASTING THE SHORTAGE OF NEUROSURGEONS IN IRAN USING A SYSTEM DYNAMICS MODEL APPROACH</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Ezzatabadi, Mohammad Ranjbar; Zadeh, Sina Abdollah; Rafiei, Sima</p> <p>2017-01-01</p> <p>Background and aims Shortage of physicians particularly in specialty levels is considered as an important issue in Iran health system. Thus in an uncertain environment, long term planning is required for health professionals as a basic priority on a national scale. The study aimed to estimate the number of required neurosurgeons using system dynamic modelling. Methods System dynamic modelling was applied to predict the gap between stock and number of required neurosurgeons in Iran up to 2020. A supply and demand simulation model was constructed for neurosurgeons using system dynamic approach. The demand model included epidemiological, demographic and utilization variables. Along with, supply model incorporated current stock of neurosurgeons and flow variables such as: attrition, migration and retirement rate. Data were obtained from various governmental databases were analysed by Vensim PLE Version 3.0 to address the flow of health professionals, clinical infrastructure, population demographics and disease prevalence during the time. Results It was forecasted that shortage in number of neurosurgeons would disappear at 2020. The most dominant determinants on predicted number of neurosurgeons were the prevalence of neurosurgical diseases, the rate for service utilization and medical capacity of the region. Conclusion Results of the study suggests that shortage of neurosurgeons in some areas of the country relates to maldistribution of the specialists. Accordingly there is a need to reconsider the allocation system for health professionals within the country instead of increasing the overall number of acceptance quota in training positions.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20080040149','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20080040149"><span>Improved Atmospheric Soundings and Error Estimates from Analysis of AIRS/AMSU Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Susskind, Joel</p> <p>2007-01-01</p> <p>The AIRS Science Team Version 5.0 retrieval algorithm became operational at the Goddard DAAC in July 2007 generating near real-time products from analysis of AIRS/AMSU sounding data. This algorithm contains many significant theoretical advances over the AIRS Science Team Version 4.0 retrieval algorithm used previously. Three very significant developments of Version 5 are: 1) the development and implementation of an improved Radiative Transfer Algorithm (RTA) which allows for accurate treatment of non-Local Thermodynamic Equilibrium (non-LTE) effects on shortwave sounding channels; 2) the development of methodology to obtain very accurate case by case product error estimates which are in turn used for quality control; and 3) development of an accurate AIRS only cloud clearing and retrieval system. These theoretical improvements taken together enabled a new methodology to be developed which further improves soundings in partially cloudy conditions, without the need for microwave observations in the cloud clearing step as has been done previously. In this methodology, longwave C02 channel observations in the spectral region 700 cm-' to 750 cm-' are used exclusively for cloud clearing purposes, while shortwave C02 channels in the spectral region 2195 cm-' to 2395 cm-' are used for temperature sounding purposes. The new methodology for improved error estimates and their use in quality control is described briefly and results are shown indicative of their accuracy. Results are also shown of forecast impact experiments assimilating AIRS Version 5.0 retrieval products in the Goddard GEOS 5 Data Assimilation System using different quality control thresholds.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150000209','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150000209"><span>Inclusion of Linearized Moist Physics in Nasa's Goddard Earth Observing System Data Assimilation Tools</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Holdaway, Daniel; Errico, Ronald; Gelaro, Ronaldo; Kim, Jong G.</p> <p>2013-01-01</p> <p>Inclusion of moist physics in the linearized version of a weather forecast model is beneficial in terms of variational data assimilation. Further, it improves the capability of important tools, such as adjoint-based observation impacts and sensitivity studies. A linearized version of the relaxed Arakawa-Schubert (RAS) convection scheme has been developed and tested in NASA's Goddard Earth Observing System data assimilation tools. A previous study of the RAS scheme showed it to exhibit reasonable linearity and stability. This motivates the development of a linearization of a near-exact version of the RAS scheme. Linearized large-scale condensation is included through simple conversion of supersaturation into precipitation. The linearization of moist physics is validated against the full nonlinear model for 6- and 24-h intervals, relevant to variational data assimilation and observation impacts, respectively. For a small number of profiles, sudden large growth in the perturbation trajectory is encountered. Efficient filtering of these profiles is achieved by diagnosis of steep gradients in a reduced version of the operator of the tangent linear model. With filtering turned on, the inclusion of linearized moist physics increases the correlation between the nonlinear perturbation trajectory and the linear approximation of the perturbation trajectory. A month-long observation impact experiment is performed and the effect of including moist physics on the impacts is discussed. Impacts from moist-sensitive instruments and channels are increased. The effect of including moist physics is examined for adjoint sensitivity studies. A case study examining an intensifying Northern Hemisphere Atlantic storm is presented. The results show a significant sensitivity with respect to moisture.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150002534','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150002534"><span>Using Ensemble Short-Term Initialized Coupled NASA GEOS5 Climate Model Integrations to Study Convective Bias Growth</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cohen, Charlie; Robertson, Franklin; Molod, Andrea</p> <p>2014-01-01</p> <p>The representation of convective processes, particularly deep convection in the tropics, remains a persistent problem in climate models. In fact structural biases in the distribution of tropical rainfall in the CMIP5 models is hardly different than that of the CMIP3 versions. Given that regional climate change at higher latitudes is sensitive to the configuration of tropical forcing, this persistent bias is a major issue for the credibility of climate change projections. In this study we use model output from integrations of the NASA Global Earth Observing System Five (GEOS5) climate modeling system to study the evolution of biases in the location and intensity of convective processes. We take advantage of a series of hindcast experiments done in support of the US North American Multi-Model Ensemble (NMME) initiative. For these experiments a nine-month forecast using a coupled model configuration is made approximately every five days over the past 30 years. Each forecast is started with an updated analysis of the ocean, atmosphere and land states. For a given calendar month we have approximately 180 forecasts with daily means of various quantities. These forecasts can be averaged to essentially remove "weather scales" and highlight systematic errors as they evolve. Our primary question is to ask how the spatial structure of daily mean precipitation over the tropics evolves from the initial state and what physical processes are involved. Errors in parameterized convection, various water and energy fluxes and the divergent circulation are found to set up on fast time scales (order five days) compared to errors in the ocean, although SST changes can be non-negligible over that time. For the month of June the difference between forecast day five versus day zero precipitation looks quite similar to the difference between the June precipitation climatology and that from the Global Precipitation Climatology Project (GPCP). We focus much of our analysis on the influence of SST gradients, associated PBL baroclinicity enabled by turbulent mixing, the ensuing PBL moisture convergence, and how changes in these processes relate to convective precipitation bias growth over this short period.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.A43G3356R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.A43G3356R"><span>Using Ensemble Short-Term Initialized Coupled NASA GEOS5 Climate Model Integrations to Study Convective Bias Growth</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Robertson, F. R.; Cohen, C.</p> <p>2014-12-01</p> <p>The representation of convective processes, particularly deep convection in the tropics, remains a persistent problem in climate models. In fact structural biases in the distribution of tropical rainfall in the CMIP5 models is hardly different than that of the CMIP3 versions. Given that regional climate change at higher latitudes is sensitive to the configuration of tropical forcing, this persistent bias is a major issue for the credibility of climate change projections. In this study we use model output from integrations of the NASA Global Earth Observing System Five (GEOS5) climate modeling system to study the evolution of biases in the location and intensity of convective processes. We take advantage of a series of hindcast experiments done in support of the US North American Multi-Model Ensemble (NMME) initiative. For these experiments a nine-month forecast using a coupled model configuration is made approximately every five days over the past 30 years. Each forecast is started with an updated analysis of the ocean, atmosphere and land states. For a given calendar month we have approximately 180 forecasts with daily means of various quantities. These forecasts can be averaged to essentially remove "weather scales" and highlight systematic errors as they evolve. Our primary question is to ask how the spatial structure of daily mean precipitation over the tropics evolves from the initial state and what physical processes are involved. Errors in parameterized convection, various water and energy fluxes and the divergent circulation are found to set up on fast time scales (order five days) compared to errors in the ocean, although SST changes can be non-negligible over that time. For the month of June the difference between forecast day five versus day zero precipitation looks quite similar to the difference between the June precipitation climatology and that from the Global Precipitation Climatology Project (GPCP). We focus much of our analysis on the influence of SST gradients, associated PBL baroclinicity enabled by turbulent mixing, the ensuing PBL moisture convergence, and how changes in these processes relate to convective precipitation bias growth over this short period.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1914421L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1914421L"><span>Toward the assimilation of biogeochemical data in the CMEMS BIOMER coupled physical-biogeochemical operational system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lamouroux, Julien; Testut, Charles-Emmanuel; Lellouche, Jean-Michel; Perruche, Coralie; Paul, Julien</p> <p>2017-04-01</p> <p>The operational production of data-assimilated biogeochemical state of the ocean is one of the challenging core projects of the Copernicus Marine Environment Monitoring Service. In that framework - and with the April 2018 CMEMS V4 release as a target - Mercator Ocean is in charge of improving the realism of its global ¼° BIOMER coupled physical-biogeochemical (NEMO/PISCES) simulations, analyses and re-analyses, and to develop an effective capacity to routinely estimate the biogeochemical state of the ocean, through the implementation of biogeochemical data assimilation. Primary objectives are to enhance the time representation of the seasonal cycle in the real time and reanalysis systems, and to provide a better control of the production in the equatorial regions. The assimilation of BGC data will rely on a simplified version of the SEEK filter, where the error statistics do not evolve with the model dynamics. The associated forecast error covariances are based on the statistics of a collection of 3D ocean state anomalies. The anomalies are computed from a multi-year numerical experiment (free run without assimilation) with respect to a running mean in order to estimate the 7-day scale error on the ocean state at a given period of the year. These forecast error covariances rely thus on a fixed-basis seasonally variable ensemble of anomalies. This methodology, which is currently implemented in the "blue" component of the CMEMS operational forecast system, is now under adaptation to be applied to the biogeochemical part of the operational system. Regarding observations - and as a first step - the system shall rely on the CMEMS GlobColour Global Ocean surface chlorophyll concentration products, delivered in NRT. The objective of this poster is to provide a detailed overview of the implementation of the aforementioned data assimilation methodology in the CMEMS BIOMER forecasting system. Focus shall be put on (1) the assessment of the capabilities of this data assimilation methodology to provide satisfying statistics of the model variability errors (through space-time analysis of dedicated representers of satellite surface Chla observations), (2) the dedicated features of the data assimilation configuration that have been implemented so far (e.g. log-transformation of the analysis state, multivariate Chlorophyll-Nutrient control vector, etc.) and (3) the assessment of the performances of this future operational data assimilation configuration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.A51P0308B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.A51P0308B"><span>Evaluation and Applications of the Prediction of Intensity Model Error (PRIME) Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bhatia, K. T.; Nolan, D. S.; Demaria, M.; Schumacher, A.</p> <p>2015-12-01</p> <p>Forecasters and end users of tropical cyclone (TC) intensity forecasts would greatly benefit from a reliable expectation of model error to counteract the lack of consistency in TC intensity forecast performance. As a first step towards producing error predictions to accompany each TC intensity forecast, Bhatia and Nolan (2013) studied the relationship between synoptic parameters, TC attributes, and forecast errors. In this study, we build on previous results of Bhatia and Nolan (2013) by testing the ability of the Prediction of Intensity Model Error (PRIME) model to forecast the absolute error and bias of four leading intensity models available for guidance in the Atlantic basin. PRIME forecasts are independently evaluated at each 12-hour interval from 12 to 120 hours during the 2007-2014 Atlantic hurricane seasons. The absolute error and bias predictions of PRIME are compared to their respective climatologies to determine their skill. In addition to these results, we will present the performance of the operational version of PRIME run during the 2015 hurricane season. PRIME verification results show that it can reliably anticipate situations where particular models excel, and therefore could lead to a more informed protocol for hurricane evacuations and storm preparations. These positive conclusions suggest that PRIME forecasts also have the potential to lower the error in the original intensity forecasts of each model. As a result, two techniques are proposed to develop a post-processing procedure for a multimodel ensemble based on PRIME. The first approach is to inverse-weight models using PRIME absolute error predictions (higher predicted absolute error corresponds to lower weights). The second multimodel ensemble applies PRIME bias predictions to each model's intensity forecast and the mean of the corrected models is evaluated. The forecasts of both of these experimental ensembles are compared to those of the equal-weight ICON ensemble, which currently provides the most reliable forecasts in the Atlantic basin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20130011633','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20130011633"><span>Multifunctional Space Evaporator-Absorber-Radiator (SEAR)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bue, Grant C.; Hodgson, Ed; Izenson, Mike; Chen, Weibo</p> <p>2013-01-01</p> <p>A system for non-venting thermal control for spacesuits was built by integrating two previously developed technologies, namely NASA's Spacesuit Water Membrane Evaporator (SWME), and Creare's flexible version of the Lithium Chloride Absorber Radiator (LCAR). This SEAR system was tested in relevant thermal vacuum conditions. These tests show that a 1 sq m radiator having about three times as much absorption media as in the test article would be required to support a 7 hour spacewalk. The serial flow arrangement of the LCAR of the flexible version proved to be inefficient for venting non-condensable gas (NCG). A different LCAR packaging arrangement was conceived wherein the Portable Life Support System (PLSS) housing would be made with a high-strength carbon fiber composite honeycomb, the cells of which would be filled with the chemical absorption media. This new packaging reduce the mass and volume impact of the SEAR on the Portable Life Support System (PLSS) compared to the flexible design. A 0.2 sq m panel with flight-like honeycomb geometry is being constructed and will be tested in thermal and thermal vacuum conditions. Design analyses forecast improved system performance and improved NCG control. A flight-like regeneration system also is also being built and tested. Design analyses for the structurally integrated prototype as well as the earlier test data show that SEAR is not only practical for spacesuits but also has useful applications in spacecraft thermal control.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120015997','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120015997"><span>Space Evaporator-Absorber-Radiator (SEAR)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bue, Grant C.; Stephan, Ryan; Hodgson, Ed; Izenson, Mike; Chen, Weibo</p> <p>2012-01-01</p> <p>A system for non-venting thermal control for spacesuits was built by integrating two previously developed technologies, namely NASA s Spacesuit Water Membrane Evaporator (SWME), and Creare s flexible version of the Lithium Chloride Absorber Radiator (LCAR). This SEAR system was tested in relevant thermal vacuum conditions. These tests show that a 1 m2 radiator having about three times as much absorption media as in the test article would be required to support a 7 hour spacewalk. The serial flow arrangement of the LCAR of the flexible version proved to be inefficient for venting non-condensable gas (NCG). A different LCAR packaging arrangement was conceived wherein the Portable Life Support System (PLSS) housing would be made with a high-strength carbon fiber composite honeycomb, the cells of which would be filled with the chemical absorption media. This new packaging reduces the mass and volume impact of the SEAR on the Portable Life Support System (PLSS) compared to the flexible design. A 0.2 sq m panel with flight-like honeycomb geometry is being constructed and will be tested in thermal and thermal vacuum conditions. Design analyses forecast improved system performance and improved NCG control. A flight-like regeneration system also is also being built and tested. Design analyses for the structurally integrated prototype as well as the earlier test data show that SEAR is not only practical for spacesuits but also has useful applications in spacecraft thermal control.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1818197C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1818197C"><span>Mediterranean monitoring and forecasting operational system for Copernicus Marine Service</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Coppini, Giovanni; Drudi, Massimiliano; Korres, Gerasimos; Fratianni, Claudia; Salon, Stefano; Cossarini, Gianpiero; Clementi, Emanuela; Zacharioudaki, Anna; Grandi, Alessandro; Delrosso, Damiano; Pistoia, Jenny; Solidoro, Cosimo; Pinardi, Nadia; Lecci, Rita; Agostini, Paola; Cretì, Sergio; Turrisi, Giuseppe; Palermo, Francesco; Konstantinidou, Anna; Storto, Andrea; Simoncelli, Simona; Di Pietro, Pier Luigi; Masina, Simona; Ciliberti, Stefania Angela; Ravdas, Michalis; Mancini, Marco; Aloisio, Giovanni; Fiore, Sandro; Buonocore, Mauro</p> <p>2016-04-01</p> <p>The MEDiterranean Monitoring and Forecasting Center (Med-MFC) is part of the Copernicus Marine Environment Monitoring Service (CMEMS, http://marine.copernicus.eu/), provided on an operational mode by Mercator Ocean in agreement with the European Commission. Specifically, Med MFC system provides regular and systematic information about the physical state of the ocean and marine ecosystems for the Mediterranean Sea. The Med-MFC service started in May 2015 from the pre-operational system developed during the MyOcean projects, consolidating the understanding of regional Mediterranean Sea dynamics, from currents to biogeochemistry to waves, interfacing with local data collection networks and guaranteeing an efficient link with other Centers in Copernicus network. The Med-MFC products include analyses, 10 days forecasts and reanalysis, describing currents, temperature, salinity, sea level and pelagic biogeochemistry. Waves products will be available in MED-MFC version in 2017. The consortium, composed of INGV (Italy), HCMR (Greece) and OGS (Italy) and coordinated by the Euro-Mediterranean Centre on Climate Change (CMCC, Italy), performs advanced R&D activities and manages the service delivery. The Med-MFC infrastructure consists of 3 Production Units (PU), for Physics, Biogechemistry and Waves, a unique Dissemination Unit (DU) and Archiving Unit (AU) and Backup Units (BU) for all principal components, guaranteeing a resilient configuration of the service and providing and efficient and robust solution for the maintenance of the service and delivery. The Med-MFC includes also an evolution plan, both in terms of research and operational activities, oriented to increase the spatial resolution of products, to start wave products dissemination, to increase temporal extent of the reanalysis products and improving ocean physical modeling for delivering new products. The scientific activities carried out in 2015 concerned some improvements in the physical, biogeochemical and wave components of the system. Regarding the currents, new grid-point EOFs have been implemented in the Med-MFC assimilation system; the climatological CMAP precipitation was replaced by the ECMWF daily precipitation; reanalysis time-series have been increased by one year. Regarding the biogeochemistry, the main scientific achievement is related to the implementation of the carbon system in the Med-MFC biogeochemistry model system already available. The new model is able to reproduce the principal spatial patterns of the carbonate system variables in the Mediterranean Sea. Further, a key result consists of the calibration of the new variables (DIC and alkalinity), which serves to the estimation of the accuracy of the new products to be released in the next version of the system (i.e. pH and pCO2 at surface). Regarding the waves, the system has been validated against in-situ and satellite observations. For example, a very good agreement between model output and in-situ observations has been obtained at offshore and/or well-exposed wave buoys in the Mediterranean Sea.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.5801L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.5801L"><span>The Met Office Coupled Atmosphere/Land/Ocean/Sea-Ice Data Assimilation System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lea, Daniel; Mirouze, Isabelle; King, Robert; Martin, Matthew; Hines, Adrian</p> <p>2015-04-01</p> <p>The Met Office has developed a weakly-coupled data assimilation (DA) system using the global coupled model HadGEM3 (Hadley Centre Global Environment Model, version 3). At present the analysis from separate ocean and atmosphere DA systems are combined to produced coupled forecasts. The aim of coupled DA is to produce a more consistent analysis for coupled forecasts which may lead to less initialisation shock and improved forecast performance. The HadGEM3 coupled model combines the atmospheric model UM (Unified Model) at 60 km horizontal resolution on 85 vertical levels, the ocean model NEMO (Nucleus for European Modelling of the Ocean) at 25 km (at the equator) horizontal resolution on 75 vertical levels, and the sea-ice model CICE at the same resolution as NEMO. The atmosphere and the ocean/sea-ice fields are coupled every 1-hour using the OASIS coupler. The coupled model is corrected using two separate 6-hour window data assimilation systems: a 4D-Var for the atmosphere with associated soil moisture content nudging and snow analysis schemes on the one hand, and a 3D-Var FGAT for the ocean and sea-ice on the other hand. The background information in the DA systems comes from a previous 6-hour forecast of the coupled model. To isolate the impact of the coupled DA, 13-month experiments have been carried out, including 1) a full atmosphere/land/ocean/sea-ice coupled DA run, 2) an atmosphere-only run forced by OSTIA SSTs and sea-ice with atmosphere and land DA, and 3) an ocean-only run forced by atmospheric fields from run 2 with ocean and sea-ice DA. In addition, 5-day and 10-day forecast runs, have been produced from initial conditions generated by either run 1 or a combination of runs 2 and 3. The different results have been compared to each other and, whenever possible, to other references such as the Met Office atmosphere and ocean operational analyses or the OSTIA SST data. The performance of the coupled DA is similar to the existing separate ocean and atmosphere DA systems. This is despite the fact that the assimilation error covariances have not yet been tuned for coupled DA. In addition, the coupled model also exhibits some biases which do not affect the uncoupled models. An example is precipitation and run off errors affecting the ocean salinity. This of course impacts the performance of the ocean data assimilation. This does, however, highlight a particular benefit of data assimilation in that it can help to identify short term model biases by using, for example, the differences between the observations and model background (innovations) and the mean increments. Coupled DA has the distinct advantage that this gives direct information about the coupled model short term biases. By identifying the biases and developing solutions this will improve the short range coupled forecasts, and may also improve the coupled model on climate timescales.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140010161','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140010161"><span>Results from CrIS-ATMS Obtained Using the AIRS Science Team Retrieval Methodology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Susskind, Joel; Kouvaris, Louis C.; Iredell, Lena</p> <p>2013-01-01</p> <p>AIRS was launched on EOS Aqua in May 2002, together with AMSU-A and HSB (which subsequently failed early in the mission), to form a next generation polar orbiting infrared and microwave atmospheric sounding system. AIRS/AMSU had two primary objectives. The first objective was to provide real-time data products available for use by the operational Numerical Weather Prediction Centers in a data assimilation mode to improve the skill of their subsequent forecasts. The second objective was to provide accurate unbiased sounding products with good spatial coverage that are used to generate stable multi-year climate data sets to study the earth's interannual variability, climate processes, and possibly long-term trends. AIRS/AMSU data for all time periods are now being processed using the state of the art AIRS Science Team Version-6 retrieval methodology. The Suomi-NPP mission was launched in October 2011 as part of a sequence of Low Earth Orbiting satellite missions under the "Joint Polar Satellite System" (JPSS). NPP carries CrIS and ATMS, which are advanced infra-red and microwave atmospheric sounders that were designed as follow-ons to the AIRS and AMSU instruments. The main objective of this work is to assess whether CrIS/ATMS will be an adequate replacement for AIRS/AMSU from the perspective of the generation of accurate and consistent long term climate data records, or if improved instruments should be developed for future flight. It is critical for CrIS/ATMS to be processed using an algorithm similar to, or at least comparable to, AIRS Version-6 before such an assessment can be made. We have been conducting research to optimize products derived from CrIS/ATMS observations using a scientific approach analogous to the AIRS Version-6 retrieval algorithm. Our latest research uses Version-5.70 of the CrIS/ATMS retrieval algorithm, which is otherwise analogous to AIRS Version-6, but does not yet contain the benefit of use of a Neural-Net first guess start-up system which significantly improved results of AIRS Version-6. Version-5.70 CrIS/ATMS temperature profile and surface skin temperature retrievals are of very good quality, and are better than AIRS Version-5 retrievals, but are still significantly poorer than those of AIRS Version-6. CrIS/ATMS retrievals should improve when a Neural-Net start-up system is ready for use. We also examined CrIS/ATMS retrievals generated by NOAA using their NUCAPS retrieval algorithm, which is based on earlier versions of the AIRS Science Team retrieval algorithms. We show that the NUCAPS algorithm as currently configured is not well suited for climate monitoring purposes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=306610&keyword=statistical+AND+process+AND+control&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=306610&keyword=statistical+AND+process+AND+control&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Investigating the Impact on Modeled Ozone Concentrations Using Meteorological Fields From WRF With and Updated Four-Dimensional Data Assimilation Approach”</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>The four-dimensional data assimilation (FDDA) technique in the Weather Research and Forecasting (WRF) meteorological model has recently undergone an important update from the original version. Previous evaluation results have demonstrated that the updated FDDA approach in WRF pr...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFM.H41A0372L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFM.H41A0372L"><span>A seasonal hydrologic ensemble prediction system for water resource management</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Luo, L.; Wood, E. F.</p> <p>2006-12-01</p> <p>A seasonal hydrologic ensemble prediction system, developed for the Ohio River basin, has been improved and expanded to several other regions including the Eastern U.S., Africa and East Asia. The prediction system adopts the traditional Extended Streamflow Prediction (ESP) approach, utilizing the VIC (Variable Infiltration Capacity) hydrological model as the central tool for producing ensemble prediction of soil moisture, snow and streamflow with lead times up to 6-month. VIC is forced by observed meteorology to estimate the hydrological initial condition prior to the forecast, but during the forecast period the atmospheric forcing comes from statistically downscaled, seasonal forecast from dynamic climate models. The seasonal hydrologic ensemble prediction system is currently producing realtime seasonal hydrologic forecast for these regions on a monthly basis. Using hindcasts from a 19-year period (1981-1999), during which seasonal hindcasts from NCEP Climate Forecast System (CFS) and European Union DEMETER project are available, we evaluate the performance of the forecast system over our forecast regions. The evaluation shows that the prediction system using the current forecast approach is able to produce reliable and accurate precipitation, soil moisture and streamflow predictions. The overall skill is much higher then the traditional ESP. In particular, forecasts based on multiple climate model forecast are more skillful than single model-based forecast. This emphasizes the significant need for producing seasonal climate forecast with multiple climate models for hydrologic applications. Forecast from this system is expected to provide very valuable information about future hydrologic states and associated risks for end users, including water resource management and financial sectors.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1915719A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1915719A"><span>A framework for improving a seasonal hydrological forecasting system using sensitivity analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Arnal, Louise; Pappenberger, Florian; Smith, Paul; Cloke, Hannah</p> <p>2017-04-01</p> <p>Seasonal streamflow forecasts are of great value for the socio-economic sector, for applications such as navigation, flood and drought mitigation and reservoir management for hydropower generation and water allocation to agriculture and drinking water. However, as we speak, the performance of dynamical seasonal hydrological forecasting systems (systems based on running seasonal meteorological forecasts through a hydrological model to produce seasonal hydrological forecasts) is still limited in space and time. In this context, the ESP (Ensemble Streamflow Prediction) remains an attractive forecasting method for seasonal streamflow forecasting as it relies on forcing a hydrological model (starting from the latest observed or simulated initial hydrological conditions) with historical meteorological observations. This makes it cheaper to run than a standard dynamical seasonal hydrological forecasting system, for which the seasonal meteorological forecasts will first have to be produced, while still producing skilful forecasts. There is thus the need to focus resources and time towards improvements in dynamical seasonal hydrological forecasting systems which will eventually lead to significant improvements in the skill of the streamflow forecasts generated. Sensitivity analyses are a powerful tool that can be used to disentangle the relative contributions of the two main sources of errors in seasonal streamflow forecasts, namely the initial hydrological conditions (IHC; e.g., soil moisture, snow cover, initial streamflow, among others) and the meteorological forcing (MF; i.e., seasonal meteorological forecasts of precipitation and temperature, input to the hydrological model). Sensitivity analyses are however most useful if they inform and change current operational practices. To this end, we propose a method to improve the design of a seasonal hydrological forecasting system. This method is based on sensitivity analyses, informing the forecasters as to which element of the forecasting chain (i.e., IHC or MF) could potentially lead to the highest increase in seasonal hydrological forecasting performance, after each forecast update.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMIN23A1763W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMIN23A1763W"><span>Serving Real-Time Point Observation Data in netCDF using Climate and Forecasting Discrete Sampling Geometry Conventions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ward-Garrison, C.; May, R.; Davis, E.; Arms, S. C.</p> <p>2016-12-01</p> <p>NetCDF is a set of software libraries and self-describing, machine-independent data formats that support the creation, access, and sharing of array-oriented scientific data. The Climate and Forecasting (CF) metadata conventions for netCDF foster the ability to work with netCDF files in general and useful ways. These conventions include metadata attributes for physical units, standard names, and spatial coordinate systems. While these conventions have been successful in easing the use of working with netCDF-formatted output from climate and forecast models, their use for point-based observation data has been less so. Unidata has prototyped using the discrete sampling geometry (DSG) CF conventions to serve, using the THREDDS Data Server, the real-time point observation data flowing across the Internet Data Distribution (IDD). These data originate in text format reports for individual stations (e.g. METAR surface data or TEMP upper air data) and are converted and stored in netCDF files in real-time. This work discusses the experiences and challenges of using the current CF DSG conventions for storing such real-time data. We also test how parts of netCDF's extended data model can address these challenges, in order to inform decisions for a future version of CF (CF 2.0) that would take advantage of features of the netCDF enhanced data model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1613531M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1613531M"><span>A 3-month long operational implementation of an ensemble prediction system of storm surge for the city of Venice</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mel, Riccardo; Lionello, Piero</p> <p>2014-05-01</p> <p>Advantages of an ensemble prediction forecast (EPF) technique that has been used for sea level (SL) prediction at the Northern Adriatic coast are investigated. The aims is to explore whether EPF is more precise than the traditional Deterministic Forecast (DF) and the value of the added information, mainly on forecast uncertainty. Improving the SL forecast for the city of Venice is of paramount importance for the management and maintenance of this historical city and for operating the movable barriers that are presently being built for its protection. The operational practice is simulated for three months from 1st October to 31st December 2010. The EPF is based on the HYPSE model, which is a standard single-layer nonlinear shallow water model, whose equations are derived from the depth averaged momentum equations and predicts the SL. A description of the model is available in the scientific literature. Forcing of HYPSE are provided by three different sets of 3-hourly ECMWF 10m-wind and MSLP fields: the high resolution meteorological forecast (which is used for the deterministic SL forecast, DF), the control run forecast (CRF, that differs from the DF forecast only for it lower meteorological fields resolution) and the 50 ensemble members of the ECMWF EPS (which are used for the SL-EPS. The resolution of DF fields is T1279 and resolution of both CRF and ECMWF EPS fields is T639 resolution. The 10m wind and MSLP fields have been downloaded at 0.125degs (DF) and 0.25degs(CRF and EPS) and linearly interpolated to the HYPSE grid (which is the same for all simulations). The version of HYPSE used in the SR EPS uses a rectangular mesh grid of variable size, which has the minimum grid step (0.03 degrees) in the northern part of the Adriatic Sea, from where grid step increases with a 1.01 factor in both latitude and longitude (In practice, resolution varies in the range from 3.3 to 7km). Results are analyzed considering the EPS spread, the rms of the simulations, the Brier Skill Score and are compared to observations at tide gauges distributed along the Croatian and Italian coast of the Adriatic Sea. It is shown that the ensemble spread is indeed a reliable indicator of the uncertainty of the storm surge prediction. Further, results show how uncertainty depends on the predicted value of sea level and how it increases with the forecast time range. The accuracy of the ensemble mean forecast is actually larger than that of the deterministic forecast, though the latter is produced by meteorological forcings at higher resolution</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JIEIB..99..125C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JIEIB..99..125C"><span>Analyzing Effect of System Inertia on Grid Frequency Forecasting Usnig Two Stage Neuro-Fuzzy System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chourey, Divyansh R.; Gupta, Himanshu; Kumar, Amit; Kumar, Jitesh; Kumar, Anand; Mishra, Anup</p> <p>2018-04-01</p> <p>Frequency forecasting is an important aspect of power system operation. The system frequency varies with load-generation imbalance. Frequency variation depends upon various parameters including system inertia. System inertia determines the rate of fall of frequency after the disturbance in the grid. Though, inertia of the system is not considered while forecasting the frequency of power system during planning and operation. This leads to significant errors in forecasting. In this paper, the effect of inertia on frequency forecasting is analysed for a particular grid system. In this paper, a parameter equivalent to system inertia is introduced. This parameter is used to forecast the frequency of a typical power grid for any instant of time. The system gives appreciable result with reduced error.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ClDy...49.3031S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ClDy...49.3031S"><span>Extraction and prediction of indices for monsoon intraseasonal oscillations: an approach based on nonlinear Laplacian spectral analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sabeerali, C. T.; Ajayamohan, R. S.; Giannakis, Dimitrios; Majda, Andrew J.</p> <p>2017-11-01</p> <p>An improved index for real-time monitoring and forecast verification of monsoon intraseasonal oscillations (MISOs) is introduced using the recently developed nonlinear Laplacian spectral analysis (NLSA) technique. Using NLSA, a hierarchy of Laplace-Beltrami (LB) eigenfunctions are extracted from unfiltered daily rainfall data from the Global Precipitation Climatology Project over the south Asian monsoon region. Two modes representing the full life cycle of the northeastward-propagating boreal summer MISO are identified from the hierarchy of LB eigenfunctions. These modes have a number of advantages over MISO modes extracted via extended empirical orthogonal function analysis including higher memory and predictability, stronger amplitude and higher fractional explained variance over the western Pacific, Western Ghats, and adjoining Arabian Sea regions, and more realistic representation of the regional heat sources over the Indian and Pacific Oceans. Real-time prediction of NLSA-derived MISO indices is demonstrated via extended-range hindcasts based on NCEP Coupled Forecast System version 2 operational output. It is shown that in these hindcasts the NLSA MISO indices remain predictable out to ˜3 weeks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007JGRD..11215205K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007JGRD..11215205K"><span>Forecast errors in dust vertical distributions over Rome (Italy): Multiple particle size representation and cloud contributions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kishcha, P.; Alpert, P.; Shtivelman, A.; Krichak, S. O.; Joseph, J. H.; Kallos, G.; Katsafados, P.; Spyrou, C.; Gobbi, G. P.; Barnaba, F.; Nickovic, S.; PéRez, C.; Baldasano, J. M.</p> <p>2007-08-01</p> <p>In this study, forecast errors in dust vertical distributions were analyzed. This was carried out by using quantitative comparisons between dust vertical profiles retrieved from lidar measurements over Rome, Italy, performed from 2001 to 2003, and those predicted by models. Three models were used: the four-particle-size Dust Regional Atmospheric Model (DREAM), the older one-particle-size version of the SKIRON model from the University of Athens (UOA), and the pre-2006 one-particle-size Tel Aviv University (TAU) model. SKIRON and DREAM are initialized on a daily basis using the dust concentration from the previous forecast cycle, while the TAU model initialization is based on the Total Ozone Mapping Spectrometer aerosol index (TOMS AI). The quantitative comparison shows that (1) the use of four-particle-size bins in the dust modeling instead of only one-particle-size bins improves dust forecasts; (2) cloud presence could contribute to noticeable dust forecast errors in SKIRON and DREAM; and (3) as far as the TAU model is concerned, its forecast errors were mainly caused by technical problems with TOMS measurements from the Earth Probe satellite. As a result, dust forecast errors in the TAU model could be significant even under cloudless conditions. The DREAM versus lidar quantitative comparisons at different altitudes show that the model predictions are more accurate in the middle part of dust layers than in the top and bottom parts of dust layers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.6517C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.6517C"><span>Evaluation of ensemble forecast uncertainty using a new proper score: application to medium-range and seasonal forecasts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Christensen, Hannah; Moroz, Irene; Palmer, Tim</p> <p>2015-04-01</p> <p>Forecast verification is important across scientific disciplines as it provides a framework for evaluating the performance of a forecasting system. In the atmospheric sciences, probabilistic skill scores are often used for verification as they provide a way of unambiguously ranking the performance of different probabilistic forecasts. In order to be useful, a skill score must be proper -- it must encourage honesty in the forecaster, and reward forecasts which are reliable and which have good resolution. A new score, the Error-spread Score (ES), is proposed which is particularly suitable for evaluation of ensemble forecasts. It is formulated with respect to the moments of the forecast. The ES is confirmed to be a proper score, and is therefore sensitive to both resolution and reliability. The ES is tested on forecasts made using the Lorenz '96 system, and found to be useful for summarising the skill of the forecasts. The European Centre for Medium-Range Weather Forecasts (ECMWF) ensemble prediction system (EPS) is evaluated using the ES. Its performance is compared to a perfect statistical probabilistic forecast -- the ECMWF high resolution deterministic forecast dressed with the observed error distribution. This generates a forecast that is perfectly reliable if considered over all time, but which does not vary from day to day with the predictability of the atmospheric flow. The ES distinguishes between the dynamically reliable EPS forecasts and the statically reliable dressed deterministic forecasts. Other skill scores are tested and found to be comparatively insensitive to this desirable forecast quality. The ES is used to evaluate seasonal range ensemble forecasts made with the ECMWF System 4. The ensemble forecasts are found to be skilful when compared with climatological or persistence forecasts, though this skill is dependent on region and time of year.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930016427','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930016427"><span>Interactive Forecasting with the National Weather Service River Forecast System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Smith, George F.; Page, Donna</p> <p>1993-01-01</p> <p>The National Weather Service River Forecast System (NWSRFS) consists of several major hydrometeorologic subcomponents to model the physics of the flow of water through the hydrologic cycle. The entire NWSRFS currently runs in both mainframe and minicomputer environments, using command oriented text input to control the system computations. As computationally powerful and graphically sophisticated scientific workstations became available, the National Weather Service (NWS) recognized that a graphically based, interactive environment would enhance the accuracy and timeliness of NWS river and flood forecasts. Consequently, the operational forecasting portion of the NWSRFS has been ported to run under a UNIX operating system, with X windows as the display environment on a system of networked scientific workstations. In addition, the NWSRFS Interactive Forecast Program was developed to provide a graphical user interface to allow the forecaster to control NWSRFS program flow and to make adjustments to forecasts as necessary. The potential market for water resources forecasting is immense and largely untapped. Any private company able to market the river forecasting technologies currently developed by the NWS Office of Hydrology could provide benefits to many information users and profit from providing these services.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016GMD.....9.1153J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016GMD.....9.1153J"><span>Earth System Chemistry integrated Modelling (ESCiMo) with the Modular Earth Submodel System (MESSy) version 2.51</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jöckel, Patrick; Tost, Holger; Pozzer, Andrea; Kunze, Markus; Kirner, Oliver; Brenninkmeijer, Carl A. M.; Brinkop, Sabine; Cai, Duy S.; Dyroff, Christoph; Eckstein, Johannes; Frank, Franziska; Garny, Hella; Gottschaldt, Klaus-Dirk; Graf, Phoebe; Grewe, Volker; Kerkweg, Astrid; Kern, Bastian; Matthes, Sigrun; Mertens, Mariano; Meul, Stefanie; Neumaier, Marco; Nützel, Matthias; Oberländer-Hayn, Sophie; Ruhnke, Roland; Runde, Theresa; Sander, Rolf; Scharffe, Dieter; Zahn, Andreas</p> <p>2016-03-01</p> <p>Three types of reference simulations, as recommended by the Chemistry-Climate Model Initiative (CCMI), have been performed with version 2.51 of the European Centre for Medium-Range Weather Forecasts - Hamburg (ECHAM)/Modular Earth Submodel System (MESSy) Atmospheric Chemistry (EMAC) model: hindcast simulations (1950-2011), hindcast simulations with specified dynamics (1979-2013), i.e. nudged towards ERA-Interim reanalysis data, and combined hindcast and projection simulations (1950-2100). The manuscript summarizes the updates of the model system and details the different model set-ups used, including the on-line calculated diagnostics. Simulations have been performed with two different nudging set-ups, with and without interactive tropospheric aerosol, and with and without a coupled ocean model. Two different vertical resolutions have been applied. The on-line calculated sources and sinks of reactive species are quantified and a first evaluation of the simulation results from a global perspective is provided as a quality check of the data. The focus is on the intercomparison of the different model set-ups. The simulation data will become publicly available via CCMI and the Climate and Environmental Retrieval and Archive (CERA) database of the German Climate Computing Centre (DKRZ). This manuscript is intended to serve as an extensive reference for further analyses of the Earth System Chemistry integrated Modelling (ESCiMo) simulations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20100032887&hterms=forecast&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DTitle%26N%3D0%26No%3D80%26Ntt%3Dforecast','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20100032887&hterms=forecast&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DTitle%26N%3D0%26No%3D80%26Ntt%3Dforecast"><span>Atlantic Tropical Cyclogenetic Processes During SOP-3 NAMMA in the GEOS-5 Global Data Assimilation and Forecast System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Reale, Oreste; Lau, William K.; Kim, Kyu-Myong; Brin, Eugenia</p> <p>2009-01-01</p> <p>This article investigates the role of the Saharan air layer (SAL) in tropical cyclogenetic processes associated with a nondeveloping and a developing African easterly wave observed during the Special Observation Period (SOP-3) phase of the 2006 NASA African. Monsoon Multidisciplinary Analyses (NAMMA). The two waves are chosen because they both interact heavily with Saharan air. A glottal data assimilation and forecast system, the NASA Goddard Earth Observing System. version 5 (GEOS-5), is being run to produce a set of high-9 uality global analyses, inclusive of all observations used operationally but with additional satellite information. In particular, following previous works by the same authors, the duality-controlled data from the Atmospheric Infrared Sounder (AIRS) used to produce these analyses have a better coverage than the one adopted by operational centers. From these improved analyses, two sets of 31 five-day high-resolution forecasts, at horizontal resolutions of both half and quarter degrees, are produced. Results indicate that very steep moisture gradients are associated with the SAL in forecasts and analyses, even at great distances from their source over the Sahara. In addition, a thermal dipole in the vertiieat (warm above, cool below) is present in the nondeveloping case. The Moderate Resolution Imaging Spoctroradiometer (MODIS) aboard NASA's Terra and Aqua satellites shows that aerosol optical thickness, indicative of more dust as opposed to other factors, is higher in the nondeveloping case. Altogether, results suggest that the radiative effect of dust may play some role in producing a thermal structure less favorable to cyclogenesis. Results also indicate that only global horizontal resolutions on the order of 20-30 km can capture the large-scale transport and the tine thermal structure of the SAL, inclusive of the sharp moisture gradients, reproducing the effect of tropical cyclone suppression that has been hypothesized by previous authors from observational and regional modeling perspectives. Thcse effects cannot be fully represented at lower resolutions, therefore global resolution of a quarter of a degree is a minimum critical threshold necessary to investigate Atlantic tropical cyclogenesis from a global modeling perspective</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4736223','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4736223"><span>Forecasting SPEI and SPI Drought Indices Using the Integrated Artificial Neural Networks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Maca, Petr; Pech, Pavel</p> <p>2016-01-01</p> <p>The presented paper compares forecast of drought indices based on two different models of artificial neural networks. The first model is based on feedforward multilayer perceptron, sANN, and the second one is the integrated neural network model, hANN. The analyzed drought indices are the standardized precipitation index (SPI) and the standardized precipitation evaporation index (SPEI) and were derived for the period of 1948–2002 on two US catchments. The meteorological and hydrological data were obtained from MOPEX experiment. The training of both neural network models was made by the adaptive version of differential evolution, JADE. The comparison of models was based on six model performance measures. The results of drought indices forecast, explained by the values of four model performance indices, show that the integrated neural network model was superior to the feedforward multilayer perceptron with one hidden layer of neurons. PMID:26880875</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26880875','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26880875"><span>Forecasting SPEI and SPI Drought Indices Using the Integrated Artificial Neural Networks.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Maca, Petr; Pech, Pavel</p> <p>2016-01-01</p> <p>The presented paper compares forecast of drought indices based on two different models of artificial neural networks. The first model is based on feedforward multilayer perceptron, sANN, and the second one is the integrated neural network model, hANN. The analyzed drought indices are the standardized precipitation index (SPI) and the standardized precipitation evaporation index (SPEI) and were derived for the period of 1948-2002 on two US catchments. The meteorological and hydrological data were obtained from MOPEX experiment. The training of both neural network models was made by the adaptive version of differential evolution, JADE. The comparison of models was based on six model performance measures. The results of drought indices forecast, explained by the values of four model performance indices, show that the integrated neural network model was superior to the feedforward multilayer perceptron with one hidden layer of neurons.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/6746503-examination-simplified-travel-demand-model-internal-volume-forecasting-model','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6746503-examination-simplified-travel-demand-model-internal-volume-forecasting-model"><span>Examination of simplified travel demand model. [Internal volume forecasting model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Smith, R.L. Jr.; McFarlane, W.J.</p> <p>1978-01-01</p> <p>A simplified travel demand model, the Internal Volume Forecasting (IVF) model, proposed by Low in 1972 is evaluated as an alternative to the conventional urban travel demand modeling process. The calibration of the IVF model for a county-level study area in Central Wisconsin results in what appears to be a reasonable model; however, analysis of the structure of the model reveals two primary mis-specifications. Correction of the mis-specifications leads to a simplified gravity model version of the conventional urban travel demand models. Application of the original IVF model to ''forecast'' 1960 traffic volumes based on the model calibrated for 1970more » produces accurate estimates. Shortcut and ad hoc models may appear to provide reasonable results in both the base and horizon years; however, as shown by the IVF mode, such models will not always provide a reliable basis for transportation planning and investment decisions.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20080003929','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20080003929"><span>Comprehensive Software Eases Air Traffic Management</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2007-01-01</p> <p>To help air traffic control centers improve the safety and the efficiency of the National Airspace System, Ames Research Center developed the Future Air Traffic Management Concepts Evaluation Tool (FACET) software, which won NASA's 2006 "Software of the Year" competition. In 2005, Ames licensed FACET to Flight Explorer Inc., for integration into its Flight Explorer (version 6.0) software. The primary FACET features incorporated in the Flight Explorer software system alert airspace users to forecasted demand and capacity imbalances. Advance access to this information helps dispatchers anticipate congested sectors (airspace) and delays at airports, and decide if they need to reroute flights. FACET is now a fully integrated feature in the Flight Explorer Professional Edition (version 7.0). Flight Explorer Professional offers end-users other benefits, including ease of operation; automatic alerts to inform users of important events such as weather conditions and potential airport delays; and international, real-time flight coverage over Canada, the United Kingdom, New Zealand, and sections of the Atlantic and Pacific Oceans. Flight Explorer Inc. recently broadened coverage by partnering with Honeywell International Inc.'s Global Data Center, Blue Sky Network, Sky Connect LLC, SITA, ARINC Incorporated, Latitude Technologies Corporation, and Wingspeed Corporation, to track their aircraft anywhere in the world.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150018409','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150018409"><span>Exploring Dust Impacts on Tropical Systems from the NASA HS-3 Field Campaign</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Nowottnick, Ed; Colarco, Pete; da Silva, Arlindo; Barahona, Donifan; Hlavka, Dennis</p> <p>2015-01-01</p> <p>One of the overall scientific goals of the NASA Hurricane and Severe Storm Sentinel (HS-3) field campaign is to better understand the role of the Saharan Air Layer (SAL) in tropical storm development. During the 2012 HS-3 deployment, the Cloud Physics Lidar (CPL) observed dust within SAL air in close proximity to a developing Nadine (September 11, 2012). Throughout the mission, the NASA GEOS-5 modeling system supported HS-3 by providing 0.25 degrees resolution 5-day global forecasts of aerosols, which were used to support mission planning. The aerosol module was radiatively interactive within the GEOS-5 model, but aerosols were not directly coupled to cloud and precipitation processes. In this study we revisit the aerosol forecasts with an updated version of the GEOS-5 model. For the duration of Hurricane Nadine, we run multiday climate simulations leading up to each respective Global Hawk flight with and without aerosol direct interaction. For each set of simulations, we compare simulated dust mass fluxes to identify differences in SAL entrainment related to the interaction between dust aerosols and the atmosphere. We find that the direct effects of dust induce a low level anticyclonic circulation that temporarily shields Nadine from the intrusion of dry air, leading to a more intense storm.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1997BAMS...78.2851V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1997BAMS...78.2851V"><span>Performance of an Advanced MOS System in the 1996-97 National Collegiate Weather Forecasting Contest.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vislocky, Robert L.; Fritsch, J. Michael</p> <p>1997-12-01</p> <p>A prototype advanced model output statistics (MOS) forecast system that was entered in the 1996-97 National Collegiate Weather Forecast Contest is described and its performance compared to that of widely available objective guidance and to contest participants. The prototype system uses an optimal blend of aviation (AVN) and nested grid model (NGM) MOS forecasts, explicit output from the NGM and Eta guidance, and the latest surface weather observations from the forecast site. The forecasts are totally objective and can be generated quickly on a personal computer. Other "objective" forms of guidance tracked in the contest are 1) the consensus forecast (i.e., the average of the forecasts from all of the human participants), 2) the combination of NGM raw output (for precipitation forecasts) and NGM MOS guidance (for temperature forecasts), and 3) the combination of Eta Model raw output (for precipitation forecasts) and AVN MOS guidance (for temperature forecasts).Results show that the advanced MOS system finished in 20th place out of 737 original entrants, or better than approximately 97% of the human forecasters who entered the contest. Moreover, the advanced MOS system was slightly better than consensus (23d place). The fact that an objective forecast system finished ahead of consensus is a significant accomplishment since consensus is traditionally a very formidable "opponent" in forecast competitions. Equally significant is that the advanced MOS system was superior to the traditional guidance products available from the National Centers for Environmental Prediction (NCEP). Specifically, the combination of NGM raw output and NGM MOS guidance finished in 175th place, and the combination of Eta Model raw output and AVN MOS guidance finished in 266th place. The latter result is most intriguing since the proposed elimination of all NGM products would likely result in a serious degradation of objective products disseminated by NCEP, unless they are replaced with equal or better substitutes. On the other hand, the positive performance of the prototype advanced MOS system shows that it is possible to create a single objective product that is not only superior to currently available objective guidance products, but is also on par with some of the better human forecasters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1914118T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1914118T"><span>Comparative analysis of GPS-derived TEC estimates and foF2 observations during storm conditions towards the expansion of ionospheric forecasting capabilities over Europe</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tsagouri, Ioanna; Belehaki, Anna; Elias, Panagiotis</p> <p>2017-04-01</p> <p>This paper builts the discussion on the comparative analysis of the variations in the peak electron density at F2 layer and the TEC parameter during a significant number of geomagnetic storm events that occurred in the present solar cycle 24. The ionospheric disturbances are determined through the comparison of actual observations of the foF2 critical frequency and GPS-TEC estimates obtained over European locations with the corresponding median estimates, and they are analysed in conjunction to the solar wind conditions at L1 point that are monitored by the ACE spacecraft. The quantification of the storm impact on the TEC parameter in terms of possible limitations introduced by different TEC derivation methods is carefully addressed.The results reveal similarities and differences in the response of the two parameters with respect to the solar wind drivers of the storms, as well as the local time and the latitude of the observation point. The aforementioned dependences drive the storm-time forecasts of the SWIF model (Solar Wind driven autorgressive model for Ionospheric short-term Forecast), which is operationally implemented in the DIAS system (http://dias.space.noa.gr) and extensively tested in performance at several occassions. In its present version, the model provides alerts and warnings for upcoming ionospheric disturbances, as well as single site and regional forecasts of the foF2 characteristic over Europe up to 24 hours ahead based on the assesment of the solar wind conditions at ACE location. In that respect, the results obtained above support the upgrade of the SWIF's modeling technique in forecasting the storm-time TEC variation within an operational environment several hours in advance. Preliminary results on the evaluation of the model's efficiency in TEC prediction are also discussed, giving special attention in the assesment of the capabilities through the TEC-derivation uncertanties for future discussions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.H42B..06G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.H42B..06G"><span>Transforming National Oceanic and Atmospheric Administration (NOAA) Water Prediction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Graziano, T. M.; Clark, E. P.</p> <p>2016-12-01</p> <p>As a significant step forward to transform NOAA's water prediction services, NOAA plans to implement a new National Water Model (NWM) Version 1.0 in August 2016. A continental scale water resources model, the NWM is an evolution of the WRF-Hydro architecture developed by the National Center for Atmospheric Research (NCAR). It represents NOAA's first foray into high performance computing for water prediction and will expand NOAA's current water quantity forecasts, at approximately 4000 U.S. Geological Survey (USGS) stream gage sites across the country, to forecasts of flow, soil moisture, evapotranspiration, runoff, snow water equivalent and other parameters for 2.7 million stream reaches nationwide. This new guidance will be provided to NOAA's River Forecast Centers around the country and other field offices, along with guidance for evaluation and validation, and tools to visualize these data and enhance decision support. Initially, a subset if these data will be available via NOAA's Office of Water Prediction web site and the full output of the NWM simulations will be available via the NOAA Operational Model Archive and Distribution System (NOMADS). These enhancements in turn will improve NWS' ability to deliver impact-based decision support services nationwide through the provision of short through extended range, high fidelity "street level" water forecasts and warnings. Subsequent planned out-year enhancements to the NWM include the expanded assimilation of anthropogenic data, an operational nest to provide higher resolution forecasts needed for inundation mapping, and tackling the deeper challenges associated with drought and other water resources issues. The NWM is a NOAA-led interagency effort that relies on the National Hydrographic Dataset of the USGS and EPA, as well as the National Streamflow Information Program of the USGS. Its development continues to be advanced in partnership with NCAR, and a partnership with the Consortium for the Advancement of Hydrologic Sciences, Inc. (CUASHI) and the National Science Foundation. This presentation will highlight the policy, programmatic, and service transformation of NOAA's water resources mission with the NWM.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.emc.ncep.noaa.gov/monsoondesk','SCIGOVWS'); return false;" href="http://www.emc.ncep.noaa.gov/monsoondesk"><span>National Centers for Environmental Prediction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.science.gov/aboutsearch.html">Science.gov Websites</a></p> <p></p> <p></p> <p>available at IMD Click here to go to the Special Report page Aug 2016 - IITM started <em>experimental</em> real-time <em>Experimental</em> version of GFS 10.0.0 ported to IITM & NCMRWF - February 2012 EnKF Hybrid GSI update - Spring diagnostics *<em>Experimental</em>* Climate Prediction Center (CPC) links... African Desk: SWFDP GFS forecasts South</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014GMDD....7.7733F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014GMDD....7.7733F"><span>Tropospheric chemistry in the integrated forecasting system of ECMWF</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Flemming, J.; Huijnen, V.; Arteta, J.; Bechtold, P.; Beljaars, A.; Blechschmidt, A.-M.; Josse, B.; Diamantakis, M.; Engelen, R. J.; Gaudel, A.; Inness, A.; Jones, L.; Katragkou, E.; Marecal, V.; Peuch, V.-H.; Richter, A.; Schultz, M. G.; Stein, O.; Tsikerdekis, A.</p> <p>2014-11-01</p> <p>A representation of atmospheric chemistry has been included in the Integrated Forecasting System (IFS) of the European Centre for Medium-range Weather Forecasts (ECMWF). The new chemistry modules complement the aerosol modules of the IFS for atmospheric composition, which is named C-IFS. C-IFS for chemistry supersedes a coupled system, in which the Chemical Transport Model (CTM) Model for OZone and Related chemical Tracers 3 was two-way coupled to the IFS (IFS-MOZART). This paper contains a description of the new on-line implementation, an evaluation with observations and a comparison of the performance of C-IFS with MOZART and with a re-analysis of atmospheric composition produced by IFS-MOZART within the Monitoring Atmospheric Composition and Climate (MACC) project. The chemical mechanism of C-IFS is an extended version of the Carbon Bond 2005 (CB05) chemical mechanism as implemented in the CTM Transport Model 5 (TM5). CB05 describes tropospheric chemistry with 54 species and 126 reactions. Wet deposition and lightning nitrogen monoxide (NO) emissions are modelled in C-IFS using the detailed input of the IFS physics package. A one-year simulation by C-IFS, MOZART and the MACC re-analysis is evaluated against ozonesondes, carbon monoxide (CO) aircraft profiles, European surface observations of ozone (O3), CO, sulphur dioxide (SO2) and nitrogen dioxide (NO2) as well as satellite retrievals of CO, tropospheric NO2 and formaldehyde. Anthropogenic emissions from the MACC/CityZen (MACCity) inventory and biomass burning emissions from the Global Fire Assimilation System (GFAS) data set were used in the simulations by both C-IFS and MOZART. C-IFS (CB05) showed an improved performance with respect to MOZART for CO, upper tropospheric O3, winter time SO2 and was of a similar accuracy for other evaluated species. C-IFS (CB05) is about ten times more computationally efficient than IFS-MOZART.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015GMD.....8..975F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015GMD.....8..975F"><span>Tropospheric chemistry in the Integrated Forecasting System of ECMWF</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Flemming, J.; Huijnen, V.; Arteta, J.; Bechtold, P.; Beljaars, A.; Blechschmidt, A.-M.; Diamantakis, M.; Engelen, R. J.; Gaudel, A.; Inness, A.; Jones, L.; Josse, B.; Katragkou, E.; Marecal, V.; Peuch, V.-H.; Richter, A.; Schultz, M. G.; Stein, O.; Tsikerdekis, A.</p> <p>2015-04-01</p> <p>A representation of atmospheric chemistry has been included in the Integrated Forecasting System (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF). The new chemistry modules complement the aerosol modules of the IFS for atmospheric composition, which is named C-IFS. C-IFS for chemistry supersedes a coupled system in which chemical transport model (CTM) Model for OZone and Related chemical Tracers 3 was two-way coupled to the IFS (IFS-MOZART). This paper contains a description of the new on-line implementation, an evaluation with observations and a comparison of the performance of C-IFS with MOZART and with a re-analysis of atmospheric composition produced by IFS-MOZART within the Monitoring Atmospheric Composition and Climate (MACC) project. The chemical mechanism of C-IFS is an extended version of the Carbon Bond 2005 (CB05) chemical mechanism as implemented in CTM Transport Model 5 (TM5). CB05 describes tropospheric chemistry with 54 species and 126 reactions. Wet deposition and lightning nitrogen monoxide (NO) emissions are modelled in C-IFS using the detailed input of the IFS physics package. A 1 year simulation by C-IFS, MOZART and the MACC re-analysis is evaluated against ozonesondes, carbon monoxide (CO) aircraft profiles, European surface observations of ozone (O3), CO, sulfur dioxide (SO2) and nitrogen dioxide (NO2) as well as satellite retrievals of CO, tropospheric NO2 and formaldehyde. Anthropogenic emissions from the MACC/CityZen (MACCity) inventory and biomass burning emissions from the Global Fire Assimilation System (GFAS) data set were used in the simulations by both C-IFS and MOZART. C-IFS (CB05) showed an improved performance with respect to MOZART for CO, upper tropospheric O3, and wintertime SO2, and was of a similar accuracy for other evaluated species. C-IFS (CB05) is about 10 times more computationally efficient than IFS-MOZART.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1815865K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1815865K"><span>Coupling flood forecasting and social media crowdsourcing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kalas, Milan; Kliment, Tomas; Salamon, Peter</p> <p>2016-04-01</p> <p>Social and mainstream media monitoring is being more and more recognized as valuable source of information in disaster management and response. The information on ongoing disasters could be detected in very short time and the social media can bring additional information to traditional data feeds (ground, remote observation schemes). Probably the biggest attempt to use the social media in the crisis management was the activation of the Digital Humanitarian Network by the United Nations Office for the Coordination of Humanitarian Affairs in response to Typhoon Yolanda. The network of volunteers performing rapid needs & damage assessment by tagging reports posted to social media which were then used by machine learning classifiers as a training set to automatically identify tweets referring to both urgent needs and offers of help. In this work we will present the potential of coupling a social media streaming and news monitoring application ( GlobalFloodNews - www.globalfloodsystem.com) with a flood forecasting system (www.globalfloods.eu) and the geo-catalogue of the OGC services discovered in the Google Search Engine (WMS, WFS, WCS, etc.) to provide a full suite of information available to crisis management centers as fast as possible. In GlobalFloodNews we use advanced filtering of the real-time Twitter stream, where the relevant information is automatically extracted using natural language and signal processing techniques. The keyword filters are adjusted and optimized automatically using machine learning algorithms as new reports are added to the system. In order to refine the search results the forecasting system will be triggering an event-based search on the social media and OGC services relevant for crisis response (population distribution, critical infrastructure, hospitals etc.). The current version of the system makes use of USHAHIDI Crowdmap platform, which is designed to easily crowdsource information using multiple channels, including SMS, email, Twitter and the web we want to show the potential of monitoring floods at the global scale.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ESD.....9..701I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ESD.....9..701I"><span>Assessing the impact of a future volcanic eruption on decadal predictions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Illing, Sebastian; Kadow, Christopher; Pohlmann, Holger; Timmreck, Claudia</p> <p>2018-06-01</p> <p>The likelihood of a large volcanic eruption in the future provides the largest uncertainty concerning the evolution of the climate system on the timescale of a few years, but also an excellent opportunity to learn about the behavior of the climate system, and our models thereof. So the following question emerges: how predictable is the response of the climate system to future eruptions? By this we mean to what extent will the volcanic perturbation affect decadal climate predictions and how does the pre-eruption climate state influence the impact of the volcanic signal on the predictions? To address these questions, we performed decadal forecasts with the MiKlip prediction system, which is based on the MPI-ESM, in the low-resolution configuration for the initialization years 2012 and 2014, which differ in the Pacific Decadal Oscillation (PDO) and North Atlantic Oscillation (NAO) phase. Each forecast contains an artificial Pinatubo-like eruption starting in June of the first prediction year and consists of 10 ensemble members. For the construction of the aerosol radiative forcing, we used the global aerosol model ECHAM5-HAM in a version adapted for volcanic eruptions. We investigate the response of different climate variables, including near-surface air temperature, precipitation, frost days, and sea ice area fraction. Our results show that the average global cooling response over 4 years of about 0.2 K and the precipitation decrease of about 0.025 mm day-1 is relatively robust throughout the different experiments and seemingly independent of the initialization state. However, on a regional scale, we find substantial differences between the initializations. The cooling effect in the North Atlantic and Europe lasts longer and the Arctic sea ice increase is stronger in the simulations initialized in 2014. In contrast, the forecast initialized in 2012 with a negative PDO shows a prolonged cooling in the North Pacific basin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1129929','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1129929"><span>The Wind Forecast Improvement Project (WFIP). A Public/Private Partnership for Improving Short Term Wind Energy Forecasts and Quantifying the Benefits of Utility Operations -- the Northern Study Area</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Finley, Cathy</p> <p>2014-04-30</p> <p>This report contains the results from research aimed at improving short-range (0-6 hour) hub-height wind forecasts in the NOAA weather forecast models through additional data assimilation and model physics improvements for use in wind energy forecasting. Additional meteorological observing platforms including wind profilers, sodars, and surface stations were deployed for this study by NOAA and DOE, and additional meteorological data at or near wind turbine hub height were provided by South Dakota State University and WindLogics/NextEra Energy Resources over a large geographical area in the U.S. Northern Plains for assimilation into NOAA research weather forecast models. The resulting improvements inmore » wind energy forecasts based on the research weather forecast models (with the additional data assimilation and model physics improvements) were examined in many different ways and compared with wind energy forecasts based on the current operational weather forecast models to quantify the forecast improvements important to power grid system operators and wind plant owners/operators participating in energy markets. Two operational weather forecast models (OP_RUC, OP_RAP) and two research weather forecast models (ESRL_RAP, HRRR) were used as the base wind forecasts for generating several different wind power forecasts for the NextEra Energy wind plants in the study area. Power forecasts were generated from the wind forecasts in a variety of ways, from very simple to quite sophisticated, as they might be used by a wide range of both general users and commercial wind energy forecast vendors. The error characteristics of each of these types of forecasts were examined and quantified using bulk error statistics for both the local wind plant and the system aggregate forecasts. The wind power forecast accuracy was also evaluated separately for high-impact wind energy ramp events. The overall bulk error statistics calculated over the first six hours of the forecasts at both the individual wind plant and at the system-wide aggregate level over the one year study period showed that the research weather model-based power forecasts (all types) had lower overall error rates than the current operational weather model-based power forecasts, both at the individual wind plant level and at the system aggregate level. The bulk error statistics of the various model-based power forecasts were also calculated by season and model runtime/forecast hour as power system operations are more sensitive to wind energy forecast errors during certain times of year and certain times of day. The results showed that there were significant differences in seasonal forecast errors between the various model-based power forecasts. The results from the analysis of the various wind power forecast errors by model runtime and forecast hour showed that the forecast errors were largest during the times of day that have increased significance to power system operators (the overnight hours and the morning/evening boundary layer transition periods), but the research weather model-based power forecasts showed improvement over the operational weather model-based power forecasts at these times.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1910517B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1910517B"><span>Should we use seasonnal meteorological ensemble forecasts for hydrological forecasting? A case study for nordic watersheds in Canada.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bazile, Rachel; Boucher, Marie-Amélie; Perreault, Luc; Leconte, Robert; Guay, Catherine</p> <p>2017-04-01</p> <p>Hydro-electricity is a major source of energy for many countries throughout the world, including Canada. Long lead-time streamflow forecasts are all the more valuable as they help decision making and dam management. Different techniques exist for long-term hydrological forecasting. Perhaps the most well-known is 'Extended Streamflow Prediction' (ESP), which considers past meteorological scenarios as possible, often equiprobable, future scenarios. In the ESP framework, those past-observed meteorological scenarios (climatology) are used in turn as the inputs of a chosen hydrological model to produce ensemble forecasts (one member corresponding to each year in the available database). Many hydropower companies, including Hydro-Québec (province of Quebec, Canada) use variants of the above described ESP system operationally for long-term operation planning. The ESP system accounts for the hydrological initial conditions and for the natural variability of the meteorological variables. However, it cannot consider the current initial state of the atmosphere. Climate models can help remedy this drawback. In the context of a changing climate, dynamical forecasts issued from climate models seem to be an interesting avenue to improve upon the ESP method and could help hydropower companies to adapt their management practices to an evolving climate. Long-range forecasts from climate models can also be helpful for water management at locations where records of past meteorological conditions are short or nonexistent. In this study, we compare 7-month hydrological forecasts obtained from climate model outputs to an ESP system. The ESP system mimics the one used operationally at Hydro-Québec. The dynamical climate forecasts are produced by the European Center for Medium range Weather Forecasts (ECMWF) System4. Forecasts quality is assessed using numerical scores such as the Continuous Ranked Probability Score (CRPS) and the Ignorance score and also graphical tools such as the reliability diagram. This study covers 10 nordic watersheds. We show that forecast performance according to the CRPS varies with lead-time but also with the period of the year. The raw forecasts from the ECMWF System4 display important biases for both temperature and precipitation, which need to be corrected. The linear scaling method is used for this purpose and is found effective. Bias correction improves forecasts performance, especially during the summer when the precipitations are over-estimated. According to the CRPS, bias corrected forecasts from System4 show performances comparable to those of the ESP system. However, the Ignorance score, which penalizes the lack of calibration (under-dispersive forecasts in this case) more severely than the CRPS, provides a different outlook for the comparison of the two systems. In fact, according to the Ignorance score, the ESP system outperforms forecasts based on System4 in most cases. This illustrates that the joint use of several metrics is crucial to assess the quality of a forecasts system thoroughly. Globally, ESP provide reliable forecasts which can be over-dispersed whereas bias corrected ECMWF System4 forecasts are sharper but at the risk of missing events.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AIPC.1298..445H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AIPC.1298..445H"><span>Short Term Load Forecasting with Fuzzy Logic Systems for power system planning and reliability-A Review</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Holmukhe, R. M.; Dhumale, Mrs. Sunita; Chaudhari, Mr. P. S.; Kulkarni, Mr. P. P.</p> <p>2010-10-01</p> <p>Load forecasting is very essential to the operation of Electricity companies. It enhances the energy efficient and reliable operation of power system. Forecasting of load demand data forms an important component in planning generation schedules in a power system. The purpose of this paper is to identify issues and better method for load foecasting. In this paper we focus on fuzzy logic system based short term load forecasting. It serves as overview of the state of the art in the intelligent techniques employed for load forecasting in power system planning and reliability. Literature review has been conducted and fuzzy logic method has been summarized to highlight advantages and disadvantages of this technique. The proposed technique for implementing fuzzy logic based forecasting is by Identification of the specific day and by using maximum and minimum temperature for that day and finally listing the maximum temperature and peak load for that day. The results show that Load forecasting where there are considerable changes in temperature parameter is better dealt with Fuzzy Logic system method as compared to other short term forecasting techniques.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1220632-recent-trends-variable-generation-forecasting-its-value-power-system','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1220632-recent-trends-variable-generation-forecasting-its-value-power-system"><span>Recent Trends in Variable Generation Forecasting and Its Value to the Power System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Orwig, Kirsten D.; Ahlstrom, Mark L.; Banunarayanan, Venkat; ...</p> <p>2014-12-23</p> <p>We report that the rapid deployment of wind and solar energy generation systems has resulted in a need to better understand, predict, and manage variable generation. The uncertainty around wind and solar power forecasts is still viewed by the power industry as being quite high, and many barriers to forecast adoption by power system operators still remain. In response, the U.S. Department of Energy has sponsored, in partnership with the National Oceanic and Atmospheric Administration, public, private, and academic organizations, two projects to advance wind and solar power forecasts. Additionally, several utilities and grid operators have recognized the value ofmore » adopting variable generation forecasting and have taken great strides to enhance their usage of forecasting. In parallel, power system markets and operations are evolving to integrate greater amounts of variable generation. This paper will discuss the recent trends in wind and solar power forecasting technologies in the U.S., the role of forecasting in an evolving power system framework, and the benefits to intended forecast users.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.9319S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.9319S"><span>Seasonal Water Balance Forecasts for Drought Early Warning in Ethiopia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Spirig, Christoph; Bhend, Jonas; Liniger, Mark</p> <p>2016-04-01</p> <p>Droughts severely impact Ethiopian agricultural production. Successful early warning for drought conditions in the upcoming harvest season therefore contributes to better managing food shortages arising from adverse climatic conditions. So far, however, meteorological seasonal forecasts have not been used in Ethiopia's national food security early warning system (i.e. the LEAP platform). Here we analyse the forecast quality of seasonal forecasts of total rainfall and of the meteorological water balance as a proxy for plant available water. We analyse forecast skill of June to September rainfall and water balance from dynamical seasonal forecast systems, the ECMWF System4 and EC-EARTH global forecasting systems. Rainfall forecasts outperform forecasts assuming a stationary climate mainly in north-eastern Ethiopia - an area that is particularly vulnerable to droughts. Forecasts of the water balance index seem to be even more skilful and thus more useful than pure rainfall forecasts. The results vary though for different lead times and skill measures employed. We further explore the potential added value of dynamically downscaling the forecasts through several dynamical regional climate models made available through the EU FP7 project EUPORIAS. Preliminary results suggest that dynamically downscaled seasonal forecasts are not significantly better compared with seasonal forecasts from the global models. We conclude that seasonal forecasts of a simple climate index such as the water balance have the potential to benefit drought early warning in Ethiopia, both due to its positive predictive skill and higher usefulness than seasonal mean quantities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005MAP....88...39B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005MAP....88...39B"><span>Impact of a variational objective analysis scheme on a regional area numerical model: The Italian Air Force Weather Service experience</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bonavita, M.; Torrisi, L.</p> <p>2005-03-01</p> <p>A new data assimilation system has been designed and implemented at the National Center for Aeronautic Meteorology and Climatology of the Italian Air Force (CNMCA) in order to improve its operational numerical weather prediction capabilities and provide more accurate guidance to operational forecasters. The system, which is undergoing testing before operational use, is based on an “observation space” version of the 3D-VAR method for the objective analysis component, and on the High Resolution Regional Model (HRM) of the Deutscher Wetterdienst (DWD) for the prognostic component. Notable features of the system include a completely parallel (MPI+OMP) implementation of the solution of analysis equations by a preconditioned conjugate gradient descent method; correlation functions in spherical geometry with thermal wind constraint between mass and wind field; derivation of the objective analysis parameters from a statistical analysis of the innovation increments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016LatJP..53b...3R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016LatJP..53b...3R"><span>Short-Term Forecasting of Loads and Wind Power for Latvian Power System: Accuracy and Capacity of the Developed Tools</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Radziukynas, V.; Klementavičius, A.</p> <p>2016-04-01</p> <p>The paper analyses the performance results of the recently developed short-term forecasting suit for the Latvian power system. The system load and wind power are forecasted using ANN and ARIMA models, respectively, and the forecasting accuracy is evaluated in terms of errors, mean absolute errors and mean absolute percentage errors. The investigation of influence of additional input variables on load forecasting errors is performed. The interplay of hourly loads and wind power forecasting errors is also evaluated for the Latvian power system with historical loads (the year 2011) and planned wind power capacities (the year 2023).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.A43H0340R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.A43H0340R"><span>The Impact of Lightning on Hurricane Rapid Intensification Forecasts Using the HWRF Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rosado, K.; Tallapragada, V.; Jenkins, G. S.</p> <p>2016-12-01</p> <p>In 2010, the National Oceanic and Atmospheric Administration (NOAA) created the Hurricane Forecast Improvement Project (HFIP) with the main goal of improving the tropical cyclone intensity and track forecasts by 50% in ten years. One of the focus areas is the improvement of the tropical cyclone rapid intensification (RI) forecasts. In order to contribute to this task, the role of lightning during the life cycle of a tropical cyclone using the NCEP operational HWRF hurricane model has been investigated. We ask two key research questions: (1) What is the functional relationship between atmospheric moisture content, lightning, and intensity in the HWRF model? and (2) How well does the HWRF model forecast the spatial distributions of lightning before, during, and after tropical cyclone intensification, especially for RI events? In order to address those questions, a lightning parameterization scheme called the Lightning Potential Index (LPI) was implemented into the HWRF model. The selected study cases to test the LPI implementation on the 2015 HWRF (operational version) are: Earl and Joaquin (North Atlantic), Haiyan (Western North Pacific), and Patricia (Eastern North Pacific). Five-day forecasts was executed on each case study with emphasis on rapid intensification periods. An extensive analysis between observed "best track" intensity, model intensity forecast, and potential for lightning forecast was performed. Preliminary results show that: (1) strong correlation between lightning and intensity changes does exists; and (2) the potential for lightning increases to its maximum peak a few hours prior to the peak intensity of the tropical cyclone. LPI peak values could potentially serve as indicator for future rapid intensification periods. Results from this investigation are giving us a better understanding of the mechanism behind lightning as a proxy for tropical cyclone steady state intensification and tropical cyclone rapid intensification processes. Improvement of lightning forecast has the potential to improve HWRF hurricane model intensity forecasts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPC.1870d0019I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPC.1870d0019I"><span>Forecasting the mortality rates of Malaysian population using Heligman-Pollard model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ibrahim, Rose Irnawaty; Mohd, Razak; Ngataman, Nuraini; Abrisam, Wan Nur Azifah Wan Mohd</p> <p>2017-08-01</p> <p>Actuaries, demographers and other professionals have always been aware of the critical importance of mortality forecasting due to declining trend of mortality and continuous increases in life expectancy. Heligman-Pollard model was introduced in 1980 and has been widely used by researchers in modelling and forecasting future mortality. This paper aims to estimate an eight-parameter model based on Heligman and Pollard's law of mortality. Since the model involves nonlinear equations that are explicitly difficult to solve, the Matrix Laboratory Version 7.0 (MATLAB 7.0) software will be used in order to estimate the parameters. Statistical Package for the Social Sciences (SPSS) will be applied to forecast all the parameters according to Autoregressive Integrated Moving Average (ARIMA). The empirical data sets of Malaysian population for period of 1981 to 2015 for both genders will be considered, which the period of 1981 to 2010 will be used as "training set" and the period of 2011 to 2015 as "testing set". In order to investigate the accuracy of the estimation, the forecast results will be compared against actual data of mortality rates. The result shows that Heligman-Pollard model fit well for male population at all ages while the model seems to underestimate the mortality rates for female population at the older ages.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014SPIE.9247E..09H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014SPIE.9247E..09H"><span>Implementation of 5-layer thermal diffusion scheme in weather research and forecasting model with Intel Many Integrated Cores</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Huang, Melin; Huang, Bormin; Huang, Allen H.</p> <p>2014-10-01</p> <p>For weather forecasting and research, the Weather Research and Forecasting (WRF) model has been developed, consisting of several components such as dynamic solvers and physical simulation modules. WRF includes several Land- Surface Models (LSMs). The LSMs use atmospheric information, the radiative and precipitation forcing from the surface layer scheme, the radiation scheme, and the microphysics/convective scheme all together with the land's state variables and land-surface properties, to provide heat and moisture fluxes over land and sea-ice points. The WRF 5-layer thermal diffusion simulation is an LSM based on the MM5 5-layer soil temperature model with an energy budget that includes radiation, sensible, and latent heat flux. The WRF LSMs are very suitable for massively parallel computation as there are no interactions among horizontal grid points. The features, efficient parallelization and vectorization essentials, of Intel Many Integrated Core (MIC) architecture allow us to optimize this WRF 5-layer thermal diffusion scheme. In this work, we present the results of the computing performance on this scheme with Intel MIC architecture. Our results show that the MIC-based optimization improved the performance of the first version of multi-threaded code on Xeon Phi 5110P by a factor of 2.1x. Accordingly, the same CPU-based optimizations improved the performance on Intel Xeon E5- 2603 by a factor of 1.6x as compared to the first version of multi-threaded code.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012JGRD..11710110J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012JGRD..11710110J"><span>Evaluation of snowmelt simulation in the Weather Research and Forecasting model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jin, Jiming; Wen, Lijuan</p> <p>2012-05-01</p> <p>The objective of this study is to better understand and improve snowmelt simulations in the advanced Weather Research and Forecasting (WRF) model by coupling it with the Community Land Model (CLM) Version 3.5. Both WRF and CLM are developed by the National Center for Atmospheric Research. The automated Snow Telemetry (SNOTEL) station data over the Columbia River Basin in the northwestern United States are used to evaluate snowmelt simulations generated with the coupled WRF-CLM model. These SNOTEL data include snow water equivalent (SWE), precipitation, and temperature. The simulations cover the period of March through June 2002 and focus mostly on the snowmelt season. Initial results show that when compared to observations, WRF-CLM significantly improves the simulations of SWE, which is underestimated when the release version of WRF is coupled with the Noah and Rapid Update Cycle (RUC) land surface schemes, in which snow physics is oversimplified. Further analysis shows that more realistic snow surface energy allocation in CLM is an important process that results in improved snowmelt simulations when compared to that in Noah and RUC. Additional simulations with WRF-CLM at different horizontal spatial resolutions indicate that accurate description of topography is also vital to SWE simulations. WRF-CLM at 10 km resolution produces the most realistic SWE simulations when compared to those produced with coarser spatial resolutions in which SWE is remarkably underestimated. The coupled WRF-CLM provides an important tool for research and forecasts in weather, climate, and water resources at regional scales.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27801079','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27801079"><span>Resolution of Probabilistic Weather Forecasts with Application in Disease Management.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hughes, G; McRoberts, N; Burnett, F J</p> <p>2017-02-01</p> <p>Predictive systems in disease management often incorporate weather data among the disease risk factors, and sometimes this comes in the form of forecast weather data rather than observed weather data. In such cases, it is useful to have an evaluation of the operational weather forecast, in addition to the evaluation of the disease forecasts provided by the predictive system. Typically, weather forecasts and disease forecasts are evaluated using different methodologies. However, the information theoretic quantity expected mutual information provides a basis for evaluating both kinds of forecast. Expected mutual information is an appropriate metric for the average performance of a predictive system over a set of forecasts. Both relative entropy (a divergence, measuring information gain) and specific information (an entropy difference, measuring change in uncertainty) provide a basis for the assessment of individual forecasts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25320898','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25320898"><span>The Texas Children's Hospital immunization forecaster: conceptualization to implementation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cunningham, Rachel M; Sahni, Leila C; Kerr, G Brady; King, Laura L; Bunker, Nathan A; Boom, Julie A</p> <p>2014-12-01</p> <p>Immunization forecasting systems evaluate patient vaccination histories and recommend the dates and vaccines that should be administered. We described the conceptualization, development, implementation, and distribution of a novel immunization forecaster, the Texas Children's Hospital (TCH) Forecaster. In 2007, TCH convened an internal expert team that included a pediatrician, immunization nurse, software engineer, and immunization subject matter experts to develop the TCH Forecaster. Our team developed the design of the model, wrote the software, populated the Excel tables, integrated the software, and tested the Forecaster. We created a table of rules that contained each vaccine's recommendations, minimum ages and intervals, and contraindications, which served as the basis for the TCH Forecaster. We created 15 vaccine tables that incorporated 79 unique dose states and 84 vaccine types to operationalize the entire United States recommended immunization schedule. The TCH Forecaster was implemented throughout the TCH system, the Indian Health Service, and the Virginia Department of Health. The TCH Forecast Tester is currently being used nationally. Immunization forecasting systems might positively affect adherence to vaccine recommendations. Efforts to support health care provider utilization of immunization forecasting systems and to evaluate their impact on patient care are needed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A31H2288D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A31H2288D"><span>Probabilistic empirical prediction of seasonal climate: evaluation and potential applications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dieppois, B.; Eden, J.; van Oldenborgh, G. J.</p> <p>2017-12-01</p> <p>Preparing for episodes with risks of anomalous weather a month to a year ahead is an important challenge for governments, non-governmental organisations, and private companies and is dependent on the availability of reliable forecasts. The majority of operational seasonal forecasts are made using process-based dynamical models, which are complex, computationally challenging and prone to biases. Empirical forecast approaches built on statistical models to represent physical processes offer an alternative to dynamical systems and can provide either a benchmark for comparison or independent supplementary forecasts. Here, we present a new evaluation of an established empirical system used to predict seasonal climate across the globe. Forecasts for surface air temperature, precipitation and sea level pressure are produced by the KNMI Probabilistic Empirical Prediction (K-PREP) system every month and disseminated via the KNMI Climate Explorer (climexp.knmi.nl). K-PREP is based on multiple linear regression and built on physical principles to the fullest extent with predictive information taken from the global CO2-equivalent concentration, large-scale modes of variability in the climate system and regional-scale information. K-PREP seasonal forecasts for the period 1981-2016 will be compared with corresponding dynamically generated forecasts produced by operational forecast systems. While there are many regions of the world where empirical forecast skill is extremely limited, several areas are identified where K-PREP offers comparable skill to dynamical systems. We discuss two key points in the future development and application of the K-PREP system: (a) the potential for K-PREP to provide a more useful basis for reference forecasts than those based on persistence or climatology, and (b) the added value of including K-PREP forecast information in multi-model forecast products, at least for known regions of good skill. We also discuss the potential development of stakeholder-driven applications of the K-PREP system, including empirical forecasts for circumboreal fire activity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010IEITI..91.1234K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010IEITI..91.1234K"><span>Hybrid Intrusion Forecasting Framework for Early Warning System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kim, Sehun; Shin, Seong-Jun; Kim, Hyunwoo; Kwon, Ki Hoon; Han, Younggoo</p> <p></p> <p>Recently, cyber attacks have become a serious hindrance to the stability of Internet. These attacks exploit interconnectivity of networks, propagate in an instant, and have become more sophisticated and evolutionary. Traditional Internet security systems such as firewalls, IDS and IPS are limited in terms of detecting recent cyber attacks in advance as these systems respond to Internet attacks only after the attacks inflict serious damage. In this paper, we propose a hybrid intrusion forecasting system framework for an early warning system. The proposed system utilizes three types of forecasting methods: time-series analysis, probabilistic modeling, and data mining method. By combining these methods, it is possible to take advantage of the forecasting technique of each while overcoming their drawbacks. Experimental results show that the hybrid intrusion forecasting method outperforms each of three forecasting methods.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120011857','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120011857"><span>Recent Advances in Improvement of Forecast Skill and Understanding Climate Processes Using AIRS Version-5 Products</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Susskind, Joel; Molnar, Gyula; Iredell, Lena; Rosenberg, Robert</p> <p>2012-01-01</p> <p>AIRS/AMSU is the state of the art infrared and microwave atmospheric sounding system flying aboard EOS Aqua. These observations, covering the period September 2002 until the present, have been analyzed using the AIRS Science Team Version-5 retrieval algorithm. AIRS is a high spectral resolution infrared grating spectrometer with spect,ral coverage from 650 per centimeter extending to 2660 per centimeter, with low noise and a spectral resolving power of 2400. A brief overview of the AIRS Version-5 retrieval procedure will be presented, including the AIRS channels used in different steps in the retrieval process. Many researchers have used these products to make significant advances in both climate and weather applications. Recent significant results of these experiments will be presented, including results showing that 1) assimilation of AIRS Quality Controlled temperature profiles into a General Circulation Model (GCM) significantly improves the ability to predict storm tracks of intense precipitation events; and 2) anomaly time-series of Outgoing Longwave Radiation (OLR) computed using AIRS sounding products closely match those determined from the CERES instrument, and furthermore explain that the phenomenon that global and especially tropical mean OLR have been decreasing since September 2002 is a result of El Nino/La Nina oscillations during this period.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A41L..06N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A41L..06N"><span>Integrating Measurement Based New Knowledge on Wildland Fire Emissions and Chemistry into the AIRPACT Air Quality Forecasting for the Pacific Northwest</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nergui, T.; Lee, Y.; Chung, S. H.; Lamb, B. K.; Yokelson, R. J.; Barsanti, K.</p> <p>2017-12-01</p> <p>A number of chamber and field measurements have shown that atmospheric organic aerosols and their precursors produced from wildfires are significantly underestimated in the emission inventories used for air quality models for various applications such as regulatory strategy development, impact assessments of air pollutants, and air quality forecasting for public health. The AIRPACT real-time air quality forecasting system consistently underestimates surface level fine particulate matter (PM2.5) concentrations in the summer at both urban and rural locations in the Pacific Northwest, primarily result of errors in organic particulate matter. In this work, we implement updated chemical speciation and emission factors based on FLAME-IV (Fourth Fire Lab at Missoula Experiment) and other measurements in the Blue-Sky fire emission model and the SMOKE emission preprocessor; and modified parameters for the secondary organic aerosol (SOA) module in CMAQ chemical transport model of the AIRPACT modeling system. Simulation results from CMAQ version 5.2 which has a better treatment for anthropogenic SOA formation (as a base case) and modified parameterization used for fire emissions and chemistry in the model (fire-soa case) are evaluated against airborne measurements downwind of the Big Windy Complex Fire and the Colockum Tarps Fire, both of which occurred in the Pacific Northwest in summer 2013. Using the observed aerosol chemical composition and mass loadings for organics, nitrate, sulfate, ammonium, and chloride from aircraft measurements during the Studies of Emissions and Atmospheric Composition, Clouds, and Climate Coupling by Regional Surveys (SEAC4RS) and the Biomass Burning Observation Project (BBOP), we assess how new knowledge gained from wildfire measurements improve model predictions for SOA and its contribution to the total mass of PM2.5 concentrations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..1113498R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..1113498R"><span>The NRL relocatable ocean/acoustic ensemble forecast system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rowley, C.; Martin, P.; Cummings, J.; Jacobs, G.; Coelho, E.; Bishop, C.; Hong, X.; Peggion, G.; Fabre, J.</p> <p>2009-04-01</p> <p>A globally relocatable regional ocean nowcast/forecast system has been developed to support rapid implementation of new regional forecast domains. The system is in operational use at the Naval Oceanographic Office for a growing number of regional and coastal implementations. The new system is the basis for an ocean acoustic ensemble forecast and adaptive sampling capability. We present an overview of the forecast system and the ocean ensemble and adaptive sampling methods. The forecast system consists of core ocean data analysis and forecast modules, software for domain configuration, surface and boundary condition forcing processing, and job control, and global databases for ocean climatology, bathymetry, tides, and river locations and transports. The analysis component is the Navy Coupled Ocean Data Assimilation (NCODA) system, a 3D multivariate optimum interpolation system that produces simultaneous analyses of temperature, salinity, geopotential, and vector velocity using remotely-sensed SST, SSH, and sea ice concentration, plus in situ observations of temperature, salinity, and currents from ships, buoys, XBTs, CTDs, profiling floats, and autonomous gliders. The forecast component is the Navy Coastal Ocean Model (NCOM). The system supports one-way nesting and multiple assimilation methods. The ensemble system uses the ensemble transform technique with error variance estimates from the NCODA analysis to represent initial condition error. Perturbed surface forcing or an atmospheric ensemble is used to represent errors in surface forcing. The ensemble transform Kalman filter is used to assess the impact of adaptive observations on future analysis and forecast uncertainty for both ocean and acoustic properties.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1333432-value-long-term-streamflow-forecast-reservoir-operations-water-supply-snow-dominated-catchments','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1333432-value-long-term-streamflow-forecast-reservoir-operations-water-supply-snow-dominated-catchments"><span>Value of long-term streamflow forecast to reservoir operations for water supply in snow-dominated catchments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Anghileri, Daniela; Voisin, Nathalie; Castelletti, Andrea F.</p> <p></p> <p>In this study, we develop a forecast-based adaptive control framework for Oroville reservoir, California, to assess the value of seasonal and inter-annual forecasts for reservoir operation.We use an Ensemble Streamflow Prediction (ESP) approach to generate retrospective, one-year-long streamflow forecasts based on the Variable Infiltration Capacity hydrology model. The optimal sequence of daily release decisions from the reservoir is then determined by Model Predictive Control, a flexible and adaptive optimization scheme.We assess the forecast value by comparing system performance based on the ESP forecasts with that based on climatology and a perfect forecast. In addition, we evaluate system performance based onmore » a synthetic forecast, which is designed to isolate the contribution of seasonal and inter-annual forecast skill to the overall value of the ESP forecasts.Using the same ESP forecasts, we generalize our results by evaluating forecast value as a function of forecast skill, reservoir features, and demand. Our results show that perfect forecasts are valuable when the water demand is high and the reservoir is sufficiently large to allow for annual carry-over. Conversely, ESP forecast value is highest when the reservoir can shift water on a seasonal basis.On average, for the system evaluated here, the overall ESP value is 35% less than the perfect forecast value. The inter-annual component of the ESP forecast contributes 20-60% of the total forecast value. Improvements in the seasonal component of the ESP forecast would increase the overall ESP forecast value between 15 and 20%.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1051129','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1051129"><span>Wind Power Forecasting Error Distributions: An International Comparison; Preprint</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hodge, B. M.; Lew, D.; Milligan, M.</p> <p>2012-09-01</p> <p>Wind power forecasting is expected to be an important enabler for greater penetration of wind power into electricity systems. Because no wind forecasting system is perfect, a thorough understanding of the errors that do occur can be critical to system operation functions, such as the setting of operating reserve levels. This paper provides an international comparison of the distribution of wind power forecasting errors from operational systems, based on real forecast data. The paper concludes with an assessment of similarities and differences between the errors observed in different locations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JPhCS1015d2018K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JPhCS1015d2018K"><span>Real-time emergency forecasting technique for situation management systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kopytov, V. V.; Kharechkin, P. V.; Naumenko, V. V.; Tretyak, R. S.; Tebueva, F. B.</p> <p>2018-05-01</p> <p>The article describes the real-time emergency forecasting technique that allows increasing accuracy and reliability of forecasting results of any emergency computational model applied for decision making in situation management systems. Computational models are improved by the Improved Brown’s method applying fractal dimension to forecast short time series data being received from sensors and control systems. Reliability of emergency forecasting results is ensured by the invalid sensed data filtering according to the methods of correlation analysis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ThApC.126..437N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ThApC.126..437N"><span>Performance evaluation of NCEP climate forecast system for the prediction of winter temperatures over India</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nageswararao, M. M.; Mohanty, U. C.; Kiran Prasad, S.; Osuri, Krishna K.; Ramakrishna, S. S. V. S.</p> <p>2016-11-01</p> <p>The surface air temperature during the winter season (December-February) in India adversely affects agriculture as well as day-to-day life. Therefore, the accurate prediction of winter temperature in extended range is of utmost importance. The National Center for Environmental Prediction (NCEP) has been providing climatic variables from the fully coupled global climate model, known as Climate Forecast System version 1 (CFSv1) on monthly to seasonal scale since 2004, and it has been upgraded to CFSv2 subsequently in 2011. In the present study, the performance of CFSv1 and CFSv2 in simulating the winter 2 m maximum, minimum, and mean temperatures ( T max, T min, and T mean, respectively) over India is evaluated with respect to India Meteorological Department (IMD) 1° × 1° observations. The hindcast data obtained from both versions of CFS from 1982 to 2009 (27 years) with November initial conditions (lead-1) are used. The analyses of winter ( T max, T min, and T mean) temperatures revealed that CFSv1 and CFSv2 are able to replicate the patterns of observed climatology, interannual variability, and coefficient of variation with a slight negative bias. Of the two, CFSv2 is appreciable in capturing increasing trends of winter temperatures like observed. The T max, T min, and T mean correlations from CFSv2 is significantly high (0.35, 0.53, and 0.51, respectively), while CFSv1 correlations are less (0.29, 0.15, and 0.12) and insignificant. This performance of CFSv2 may be due to the better estimation of surface heat budget terms and realistic CO2 concentration, which were absent in CFSv1. CFSv2 proved to have a high probability of detection in predicting different categories (below, near, and above normal) for winter T min, which are required for crop yield and public utility services, over north India.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23923146','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23923146"><span>Medicare program; prospective payment system and consolidated billing for skilled nursing facilities for FY 2014. Final rule.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p></p> <p>2013-08-06</p> <p>This final rule updates the payment rates used under the prospective payment system for skilled nursing facilities (SNFs) for fiscal year (FY) 2014. In addition, it revises and rebases the SNF market basket, revises and updates the labor related share, and makes certain technical and conforming revisions in the regulations text. This final rule also includes a policy for reporting the SNF market basket forecast error in certain limited circumstances and adds a new item to the Minimum Data Set (MDS), Version 3.0 for reporting the number of distinct therapy days. Finally, this final rule adopts a change to the diagnosis code used to determine which residents will receive the AIDS add-on payment, effective for services provided on or after the October 1, 2014 implementation date for conversion to ICD-10-CM.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/22235','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/22235"><span>Louisiana Airport System Plan aviation activity forecasts 1990-2010.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>1991-07-01</p> <p>This report documents the methodology used to develop the aviation activity forecasts prepared as a part of the update to the Louisiana Airport System Plan and provides Louisiana aviation forecasts for the years 1990 to 2010. In general, the forecast...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004JGRC..109.3023A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004JGRC..109.3023A"><span>Real-time forecasting at weekly timescales of the SST and SLA of the Ligurian Sea with a satellite-based ocean forecasting (SOFT) system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>ÁLvarez, A.; Orfila, A.; Tintoré, J.</p> <p>2004-03-01</p> <p>Satellites are the only systems able to provide continuous information on the spatiotemporal variability of vast areas of the ocean. Relatively long-term time series of satellite data are nowadays available. These spatiotemporal time series of satellite observations can be employed to build empirical models, called satellite-based ocean forecasting (SOFT) systems, to forecast certain aspects of future ocean states. SOFT systems can predict satellite-observed fields at different timescales. The forecast skill of SOFT systems forecasting the sea surface temperature (SST) at monthly timescales has been extensively explored in previous works. In this work we study the performance of two SOFT systems forecasting, respectively, the SST and sea level anomaly (SLA) at weekly timescales, that is, providing forecasts of the weekly averaged SST and SLA fields with 1 week in advance. The SOFT systems were implemented in the Ligurian Sea (Western Mediterranean Sea). Predictions from the SOFT systems are compared with observations and with the predictions obtained from persistence models. Results indicate that the SOFT system forecasting the SST field is always superior in terms of predictability to persistence. Minimum prediction errors in the SST are obtained during winter and spring seasons. On the other hand, the biggest differences between the performance of SOFT and persistence models are found during summer and autumn. These changes in the predictability are explained on the basis of the particular variability of the SST field in the Ligurian Sea. Concerning the SLA field, no improvements with respect to persistence have been found for the SOFT system forecasting the SLA field.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=312215','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=312215"><span>Maryblyt v. 7.1 for Windows: an improved fire blight forecasting program for apples and pears</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>This article describes updates found in Version 7.1 of the fire blight prediction model Maryblyt, originally developed by Paul Steiner and Gary Lightner. In addition, a brief history of the development of the Maryblyt model is given. The article ends with examples comparing the performance of Versio...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.crh.noaa.gov/greatlakes','SCIGOVWS'); return false;" href="http://www.crh.noaa.gov/greatlakes"><span>Great Lakes Maps - NOAA's National Weather Service</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.science.gov/aboutsearch.html">Science.gov Websites</a></p> <p></p> <p></p> <p><em>Coastal</em> Forecast System) Waves (GLERL Great Lakes <em>Coastal</em> Forecast System) Ice Cover (GLERL Great Lakes <em>Coastal</em> Forecast System) NOAA's National Weather Service Central Region Headquarters Regional Office 7220</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014E%26ES...17a2058H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014E%26ES...17a2058H"><span>Winter wheat quality monitoring and forecasting system based on remote sensing and environmental factors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Haiyang, Yu; Yanmei, Liu; Guijun, Yang; Xiaodong, Yang; Dong, Ren; Chenwei, Nie</p> <p>2014-03-01</p> <p>To achieve dynamic winter wheat quality monitoring and forecasting in larger scale regions, the objective of this study was to design and develop a winter wheat quality monitoring and forecasting system by using a remote sensing index and environmental factors. The winter wheat quality trend was forecasted before the harvest and quality was monitored after the harvest, respectively. The traditional quality-vegetation index from remote sensing monitoring and forecasting models were improved. Combining with latitude information, the vegetation index was used to estimate agronomy parameters which were related with winter wheat quality in the early stages for forecasting the quality trend. A combination of rainfall in May, temperature in May, illumination at later May, the soil available nitrogen content and other environmental factors established the quality monitoring model. Compared with a simple quality-vegetation index, the remote sensing monitoring and forecasting model used in this system get greatly improved accuracy. Winter wheat quality was monitored and forecasted based on the above models, and this system was completed based on WebGIS technology. Finally, in 2010 the operation process of winter wheat quality monitoring system was presented in Beijing, the monitoring and forecasting results was outputted as thematic maps.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150002900','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150002900"><span>Cloud-Based Numerical Weather Prediction for Near Real-Time Forecasting and Disaster Response</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Molthan, Andrew; Case, Jonathan; Venners, Jason; Schroeder, Richard; Checchi, Milton; Zavodsky, Bradley; Limaye, Ashutosh; O'Brien, Raymond</p> <p>2015-01-01</p> <p>The use of cloud computing resources continues to grow within the public and private sector components of the weather enterprise as users become more familiar with cloud-computing concepts, and competition among service providers continues to reduce costs and other barriers to entry. Cloud resources can also provide capabilities similar to high-performance computing environments, supporting multi-node systems required for near real-time, regional weather predictions. Referred to as "Infrastructure as a Service", or IaaS, the use of cloud-based computing hardware in an on-demand payment system allows for rapid deployment of a modeling system in environments lacking access to a large, supercomputing infrastructure. Use of IaaS capabilities to support regional weather prediction may be of particular interest to developing countries that have not yet established large supercomputing resources, but would otherwise benefit from a regional weather forecasting capability. Recently, collaborators from NASA Marshall Space Flight Center and Ames Research Center have developed a scripted, on-demand capability for launching the NOAA/NWS Science and Training Resource Center (STRC) Environmental Modeling System (EMS), which includes pre-compiled binaries of the latest version of the Weather Research and Forecasting (WRF) model. The WRF-EMS provides scripting for downloading appropriate initial and boundary conditions from global models, along with higher-resolution vegetation, land surface, and sea surface temperature data sets provided by the NASA Short-term Prediction Research and Transition (SPoRT) Center. This presentation will provide an overview of the modeling system capabilities and benchmarks performed on the Amazon Elastic Compute Cloud (EC2) environment. In addition, the presentation will discuss future opportunities to deploy the system in support of weather prediction in developing countries supported by NASA's SERVIR Project, which provides capacity building activities in environmental monitoring and prediction across a growing number of regional hubs throughout the world. Capacity-building applications that extend numerical weather prediction to developing countries are intended to provide near real-time applications to benefit public health, safety, and economic interests, but may have a greater impact during disaster events by providing a source for local predictions of weather-related hazards, or impacts that local weather events may have during the recovery phase.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1193237-cloud-detection-tracking-system-solar-forecast-using-multiple-sky-imagers','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1193237-cloud-detection-tracking-system-solar-forecast-using-multiple-sky-imagers"><span>3D cloud detection and tracking system for solar forecast using multiple sky imagers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Peng, Zhenzhou; Yu, Dantong; Huang, Dong; ...</p> <p>2015-06-23</p> <p>We propose a system for forecasting short-term solar irradiance based on multiple total sky imagers (TSIs). The system utilizes a novel method of identifying and tracking clouds in three-dimensional space and an innovative pipeline for forecasting surface solar irradiance based on the image features of clouds. First, we develop a supervised classifier to detect clouds at the pixel level and output cloud mask. In the next step, we design intelligent algorithms to estimate the block-wise base height and motion of each cloud layer based on images from multiple TSIs. Thus, this information is then applied to stitch images together intomore » larger views, which are then used for solar forecasting. We examine the system’s ability to track clouds under various cloud conditions and investigate different irradiance forecast models at various sites. We confirm that this system can 1) robustly detect clouds and track layers, and 2) extract the significant global and local features for obtaining stable irradiance forecasts with short forecast horizons from the obtained images. Finally, we vet our forecasting system at the 32-megawatt Long Island Solar Farm (LISF). Compared with the persistent model, our system achieves at least a 26% improvement for all irradiance forecasts between one and fifteen minutes.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.H41L..07W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.H41L..07W"><span>Assessing the viability of `over-the-loop' real-time short-to-medium range ensemble streamflow forecasts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wood, A. W.; Clark, E.; Mendoza, P. A.; Nijssen, B.; Newman, A. J.; Clark, M. P.; Arnold, J.; Nowak, K. C.</p> <p>2016-12-01</p> <p>Many if not most national operational short-to-medium range streamflow prediction systems rely on a forecaster-in-the-loop approach in which some parts of the forecast workflow are automated, but others require the hands-on-effort of an experienced human forecaster. This approach evolved out of the need to correct for deficiencies in the models and datasets that were available for forecasting, and often leads to skillful predictions despite the use of relatively simple, conceptual models. On the other hand, the process is not reproducible, which limits opportunities to assess and incorporate process variations, and the effort required to make forecasts in this way is an obstacle to expanding forecast services - e.g., though adding new forecast locations or more frequent forecast updates, running more complex models, or producing forecast ensembles and hindcasts that can support verification. In the last decade, the hydrologic forecasting community has begun to develop more centralized, `over-the-loop' systems. The quality of these new forecast products will depend on their ability to leverage research in areas including earth system modeling, parameter estimation, data assimilation, statistical post-processing, weather and climate prediction, verification, and uncertainty estimation through the use of ensembles. Currently, the operational streamflow forecasting and water management communities have little experience with the strengths and weaknesses of over-the-loop approaches, even as the systems are being rolled out in major operational forecasting centers. There is thus a need both to evaluate these forecasting advances and to demonstrate their potential in a public arena, raising awareness in forecast user communities and development programs alike. To address this need, the National Center for Atmospheric Research is collaborating with the University of Washington, the Bureau of Reclamation and the US Army Corps of Engineers, using the NCAR 'System for Hydromet Analysis, Research, and Prediction' (SHARP) to implement, assess and demonstrate real-time over-the-loop forecasts. We present early hindcast and verification results from SHARP for short to medium range streamflow forecasts in a number of US case study watersheds.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016GGG....17.2539T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016GGG....17.2539T"><span>A new Bayesian Event Tree tool to track and quantify volcanic unrest and its application to Kawah Ijen volcano</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tonini, Roberto; Sandri, Laura; Rouwet, Dmitri; Caudron, Corentin; Marzocchi, Warner; Suparjan</p> <p>2016-07-01</p> <p>Although most of volcanic hazard studies focus on magmatic eruptions, volcanic hazardous events can also occur when no migration of magma can be recognized. Examples are tectonic and hydrothermal unrest that may lead to phreatic eruptions. Recent events (e.g., Ontake eruption on September 2014) have demonstrated that phreatic eruptions are still hard to forecast, despite being potentially very hazardous. For these reasons, it is of paramount importance to identify indicators that define the condition of nonmagmatic unrest, in particular for hydrothermal systems. Often, this type of unrest is driven by movement of fluids, requiring alternative monitoring setups, beyond the classical seismic-geodetic-geochemical architectures. Here we present a new version of the probabilistic BET (Bayesian Event Tree) model, specifically developed to include the forecasting of nonmagmatic unrest and related hazards. The structure of the new event tree differs from the previous schemes by adding a specific branch to detail nonmagmatic unrest outcomes. A further goal of this work consists in providing a user-friendly, open-access, and straightforward tool to handle the probabilistic forecast and visualize the results as possible support during a volcanic crisis. The new event tree and tool are here applied to Kawah Ijen stratovolcano, Indonesia, as exemplificative application. In particular, the tool is set on the basis of monitoring data for the learning period 2000-2010, and is then blindly applied to the test period 2010-2012, during which significant unrest phases occurred.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMIN43C1756H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMIN43C1756H"><span>Polar2Grid 2.0: Reprojecting Satellite Data Made Easy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hoese, D.; Strabala, K.</p> <p>2015-12-01</p> <p>Polar-orbiting multi-band meteorological sensors such as those on the Suomi National Polar-orbiting Partnership (SNPP) satellite pose substantial challenges for taking imagery the last mile to forecast offices, scientific analysis environments, and the general public. To do this quickly and easily, the Cooperative Institute for Meteorological Satellite Studies (CIMSS) at the University of Wisconsin has created an open-source, modular application system, Polar2Grid. This bundled solution automates tools for converting various satellite products like those from VIIRS and MODIS into a variety of output formats, including GeoTIFFs, AWIPS compatible NetCDF files, and NinJo forecasting workstation compatible TIFF images. In addition to traditional visible and infrared imagery, Polar2Grid includes three perceptual enhancements for the VIIRS Day-Night Band (DNB), as well as providing the capability to create sharpened true color, sharpened false color, and user-defined RGB images. Polar2Grid performs conversions and projections in seconds on large swaths of data. Polar2Grid is currently providing VIIRS imagery over the Continental United States, as well as Alaska and Hawaii, from various Direct-Broadcast antennas to operational forecasters at the NOAA National Weather Service (NWS) offices in their AWIPS terminals, within minutes of an overpass of the Suomi NPP satellite. Three years after Polar2Grid development started, the Polar2Grid team is now releasing version 2.0 of the software; supporting more sensors, generating more products, and providing all of its features in an easy to use command line interface.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JHyd..498..177W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JHyd..498..177W"><span>An information-theoretical perspective on weighted ensemble forecasts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Weijs, Steven V.; van de Giesen, Nick</p> <p>2013-08-01</p> <p>This paper presents an information-theoretical method for weighting ensemble forecasts with new information. Weighted ensemble forecasts can be used to adjust the distribution that an existing ensemble of time series represents, without modifying the values in the ensemble itself. The weighting can, for example, add new seasonal forecast information in an existing ensemble of historically measured time series that represents climatic uncertainty. A recent article in this journal compared several methods to determine the weights for the ensemble members and introduced the pdf-ratio method. In this article, a new method, the minimum relative entropy update (MRE-update), is presented. Based on the principle of minimum discrimination information, an extension of the principle of maximum entropy (POME), the method ensures that no more information is added to the ensemble than is present in the forecast. This is achieved by minimizing relative entropy, with the forecast information imposed as constraints. From this same perspective, an information-theoretical view on the various weighting methods is presented. The MRE-update is compared with the existing methods and the parallels with the pdf-ratio method are analysed. The paper provides a new, information-theoretical justification for one version of the pdf-ratio method that turns out to be equivalent to the MRE-update. All other methods result in sets of ensemble weights that, seen from the information-theoretical perspective, add either too little or too much (i.e. fictitious) information to the ensemble.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010sucs.conf...34S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010sucs.conf...34S"><span>Design of a Forecasting Service System for Monitoring of Vulnerabilities of Sensor Networks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Song, Jae-Gu; Kim, Jong Hyun; Seo, Dong Il; Kim, Seoksoo</p> <p></p> <p>This study aims to reduce security vulnerabilities of sensor networks which transmit data in an open environment by developing a forecasting service system. The system is to remove or monitor causes of breach incidents in advance. To that end, this research first examines general security vulnerabilities of sensor networks and analyzes characteristics of existing forecasting systems. Then, 5 steps of a forecasting service system are proposed in order to improve security responses.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017HESS...21.4841T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017HESS...21.4841T"><span>Complex relationship between seasonal streamflow forecast skill and value in reservoir operations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Turner, Sean W. D.; Bennett, James C.; Robertson, David E.; Galelli, Stefano</p> <p>2017-09-01</p> <p>Considerable research effort has recently been directed at improving and operationalising ensemble seasonal streamflow forecasts. Whilst this creates new opportunities for improving the performance of water resources systems, there may also be associated risks. Here, we explore these potential risks by examining the sensitivity of forecast value (improvement in system performance brought about by adopting forecasts) to changes in the forecast skill for a range of hypothetical reservoir designs with contrasting operating objectives. Forecast-informed operations are simulated using rolling horizon, adaptive control and then benchmarked against optimised control rules to assess performance improvements. Results show that there exists a strong relationship between forecast skill and value for systems operated to maintain a target water level. But this relationship breaks down when the reservoir is operated to satisfy a target demand for water; good forecast accuracy does not necessarily translate into performance improvement. We show that the primary cause of this behaviour is the buffering role played by storage in water supply reservoirs, which renders the forecast superfluous for long periods of the operation. System performance depends primarily on forecast accuracy when critical decisions are made - namely during severe drought. As it is not possible to know in advance if a forecast will perform well at such moments, we advocate measuring the consistency of forecast performance, through bootstrap resampling, to indicate potential usefulness in storage operations. Our results highlight the need for sensitivity assessment in value-of-forecast studies involving reservoirs with supply objectives.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1398219','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1398219"><span>Complex relationship between seasonal streamflow forecast skill and value in reservoir operations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Turner, Sean W. D.; Bennett, James C.; Robertson, David E.</p> <p></p> <p>Considerable research effort has recently been directed at improving and operationalising ensemble seasonal streamflow forecasts. Whilst this creates new opportunities for improving the performance of water resources systems, there may also be associated risks. Here, we explore these potential risks by examining the sensitivity of forecast value (improvement in system performance brought about by adopting forecasts) to changes in the forecast skill for a range of hypothetical reservoir designs with contrasting operating objectives. Forecast-informed operations are simulated using rolling horizon, adaptive control and then benchmarked against optimised control rules to assess performance improvements. Results show that there exists a strongmore » relationship between forecast skill and value for systems operated to maintain a target water level. But this relationship breaks down when the reservoir is operated to satisfy a target demand for water; good forecast accuracy does not necessarily translate into performance improvement. We show that the primary cause of this behaviour is the buffering role played by storage in water supply reservoirs, which renders the forecast superfluous for long periods of the operation. System performance depends primarily on forecast accuracy when critical decisions are made – namely during severe drought. As it is not possible to know in advance if a forecast will perform well at such moments, we advocate measuring the consistency of forecast performance, through bootstrap resampling, to indicate potential usefulness in storage operations. Our results highlight the need for sensitivity assessment in value-of-forecast studies involving reservoirs with supply objectives.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1398219-complex-relationship-between-seasonal-streamflow-forecast-skill-value-reservoir-operations','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1398219-complex-relationship-between-seasonal-streamflow-forecast-skill-value-reservoir-operations"><span>Complex relationship between seasonal streamflow forecast skill and value in reservoir operations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Turner, Sean W. D.; Bennett, James C.; Robertson, David E.; ...</p> <p>2017-09-28</p> <p>Considerable research effort has recently been directed at improving and operationalising ensemble seasonal streamflow forecasts. Whilst this creates new opportunities for improving the performance of water resources systems, there may also be associated risks. Here, we explore these potential risks by examining the sensitivity of forecast value (improvement in system performance brought about by adopting forecasts) to changes in the forecast skill for a range of hypothetical reservoir designs with contrasting operating objectives. Forecast-informed operations are simulated using rolling horizon, adaptive control and then benchmarked against optimised control rules to assess performance improvements. Results show that there exists a strongmore » relationship between forecast skill and value for systems operated to maintain a target water level. But this relationship breaks down when the reservoir is operated to satisfy a target demand for water; good forecast accuracy does not necessarily translate into performance improvement. We show that the primary cause of this behaviour is the buffering role played by storage in water supply reservoirs, which renders the forecast superfluous for long periods of the operation. System performance depends primarily on forecast accuracy when critical decisions are made – namely during severe drought. As it is not possible to know in advance if a forecast will perform well at such moments, we advocate measuring the consistency of forecast performance, through bootstrap resampling, to indicate potential usefulness in storage operations. Our results highlight the need for sensitivity assessment in value-of-forecast studies involving reservoirs with supply objectives.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AtmRe.123....2S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AtmRe.123....2S"><span>Progress and challenges with Warn-on-Forecast</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stensrud, David J.; Wicker, Louis J.; Xue, Ming; Dawson, Daniel T.; Yussouf, Nusrat; Wheatley, Dustan M.; Thompson, Therese E.; Snook, Nathan A.; Smith, Travis M.; Schenkman, Alexander D.; Potvin, Corey K.; Mansell, Edward R.; Lei, Ting; Kuhlman, Kristin M.; Jung, Youngsun; Jones, Thomas A.; Gao, Jidong; Coniglio, Michael C.; Brooks, Harold E.; Brewster, Keith A.</p> <p>2013-04-01</p> <p>The current status and challenges associated with two aspects of Warn-on-Forecast-a National Oceanic and Atmospheric Administration research project exploring the use of a convective-scale ensemble analysis and forecast system to support hazardous weather warning operations-are outlined. These two project aspects are the production of a rapidly-updating assimilation system to incorporate data from multiple radars into a single analysis, and the ability of short-range ensemble forecasts of hazardous convective weather events to provide guidance that could be used to extend warning lead times for tornadoes, hailstorms, damaging windstorms and flash floods. Results indicate that a three-dimensional variational assimilation system, that blends observations from multiple radars into a single analysis, shows utility when evaluated by forecasters in the Hazardous Weather Testbed and may help increase confidence in a warning decision. The ability of short-range convective-scale ensemble forecasts to provide guidance that could be used in warning operations is explored for five events: two tornadic supercell thunderstorms, a macroburst, a damaging windstorm and a flash flood. Results show that the ensemble forecasts of the three individual severe thunderstorm events are very good, while the forecasts from the damaging windstorm and flash flood events, associated with mesoscale convective systems, are mixed. Important interactions between mesoscale and convective-scale features occur for the mesoscale convective system events that strongly influence the quality of the convective-scale forecasts. The development of a successful Warn-on-Forecast system will take many years and require the collaborative efforts of researchers and operational forecasters to succeed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.6029G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.6029G"><span>Challenges for operational forecasting and early warning of rainfall induced landslides</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Guzzetti, Fausto</p> <p>2017-04-01</p> <p>In many areas of the world, landslides occur every year, claiming lives and producing severe economic and environmental damage. Many of the landslides with human or economic consequences are the result of intense or prolonged rainfall. For this reason, in many areas the timely forecast of rainfall-induced landslides is of both scientific interest and social relevance. In the recent years, there has been a mounting interest and an increasing demand for operational landslide forecasting, and for associated landslide early warning systems. Despite the relevance of the problem, and the increasing interest and demand, only a few systems have been designed, and are currently operated. Inspection of the - limited - literature on operational landslide forecasting, and on the associated early warning systems, reveals that common criteria and standards for the design, the implementation, the operation, and the evaluation of the performances of the systems, are lacking. This limits the possibility to compare and to evaluate the systems critically, to identify their inherent strengths and weaknesses, and to improve the performance of the systems. Lack of common criteria and of established standards can also limit the credibility of the systems, and consequently their usefulness and potential practical impact. Landslides are very diversified phenomena, and the information and the modelling tools used to attempt landslide forecasting vary largely, depending on the type and size of the landslides, the extent of the geographical area considered, the timeframe of the forecasts, and the scope of the predictions. Consequently, systems for landslide forecasting and early warning can be designed and implemented at several different geographical scales, from the local (site or slope specific) to the regional, or even national scale. The talk focuses on regional to national scale landslide forecasting systems, and specifically on operational systems based on empirical rainfall threshold models. Building on the experience gained in designing, implementing, and operating national and regional landslide forecasting systems in Italy, and on a preliminary review of the existing literature on regional landslide early warning systems, the talk discusses concepts, limitations and challenges inherent to the design of reliable forecasting and early warning systems for rainfall-triggered landslides, the evaluation of the performances of the systems, and on problems related to the use of the forecasts and the issuing of landslide warnings. Several of the typical elements of an operational landslide forecasting system are considered, including: (i) the rainfall and landslide information used to establish the threshold models, (ii) the methods and tools used to define the empirical rainfall thresholds, and their associated uncertainty, (iii) the quality (e.g., the temporal and spatial resolution) of the rainfall information used for operational forecasting, including rain gauge and radar measurements, satellite estimates, and quantitative weather forecasts, (iv) the ancillary information used to prepare the forecasts, including e.g., the terrain subdivisions and the landslide susceptibility zonations, (v) the criteria used to transform the forecasts into landslide warnings and the methods used to communicate the warnings, and (vi) the criteria and strategies adopted to evaluate the performances of the systems, and to define minimum or optimal performance levels.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009ems..confE.579T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009ems..confE.579T"><span>The forecaster's added value</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Turco, M.; Milelli, M.</p> <p>2009-09-01</p> <p>To the authors' knowledge there are relatively few studies that try to answer this topic: "Are humans able to add value to computer-generated forecasts and warnings ?". Moreover, the answers are not always positive. In particular some postprocessing method is competitive or superior to human forecast (see for instance Baars et al., 2005, Charba et al., 2002, Doswell C., 2003, Roebber et al., 1996, Sanders F., 1986). Within the alert system of ARPA Piemonte it is possible to study in an objective manner if the human forecaster is able to add value with respect to computer-generated forecasts. Every day the meteorology group of the Centro Funzionale of Regione Piemonte produces the HQPF (Human QPF) in terms of an areal average for each of the 13 regional warning areas, which have been created according to meteo-hydrological criteria. This allows the decision makers to produce an evaluation of the expected effects by comparing these HQPFs with predefined rainfall thresholds. Another important ingredient in this study is the very dense non-GTS network of rain gauges available that makes possible a high resolution verification. In this context the most useful verification approach is the measure of the QPF and HQPF skills by first converting precipitation expressed as continuous amounts into ‘‘exceedance'' categories (yes-no statements indicating whether precipitation equals or exceeds selected thresholds) and then computing the performances for each threshold. In particular in this work we compare the performances of the latest three years of QPF derived from two meteorological models COSMO-I7 (the Italian version of the COSMO Model, a mesoscale model developed in the framework of the COSMO Consortium) and IFS (the ECMWF global model) with the HQPF. In this analysis it is possible to introduce the hypothesis test developed by Hamill (1999), in which a confidence interval is calculated with the bootstrap method in order to establish the real difference between the skill scores of two competitive forecast. It is important to underline that the conclusions refer to the analysis of the Piemonte operational alert system, so they cannot be directly taken as universally true. But we think that some of the main lessons that can be derived from this study could be useful for the meteorological community. In details, the main conclusions are the following: - despite the overall improvement in global scale and the fact that the resolution of the limited area models has increased considerably over recent years, the QPF produced by the meteorological models involved in this study has not improved enough to allow its direct use, that is, the subjective HQPF continues to offer the best performance; - in the forecast process, the step where humans have the largest added value with respect to mathematical models, is the communication. In fact the human characterisation and communication of the forecast uncertainty to end users cannot be replaced by any computer code; - eventually, although there is no novelty in this study, we would like to show that the correct application of appropriated statistical techniques permits a better definition and quantification of the errors and, mostly important, allows a correct (unbiased) communication between forecasters and decision makers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H41A1423S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H41A1423S"><span>Distributed HUC-based modeling with SUMMA for ensemble streamflow forecasting over large regional domains.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Saharia, M.; Wood, A.; Clark, M. P.; Bennett, A.; Nijssen, B.; Clark, E.; Newman, A. J.</p> <p>2017-12-01</p> <p>Most operational streamflow forecasting systems rely on a forecaster-in-the-loop approach in which some parts of the forecast workflow require an experienced human forecaster. But this approach faces challenges surrounding process reproducibility, hindcasting capability, and extension to large domains. The operational hydrologic community is increasingly moving towards `over-the-loop' (completely automated) large-domain simulations yet recent developments indicate a widespread lack of community knowledge about the strengths and weaknesses of such systems for forecasting. A realistic representation of land surface hydrologic processes is a critical element for improving forecasts, but often comes at the substantial cost of forecast system agility and efficiency. While popular grid-based models support the distributed representation of land surface processes, intermediate-scale Hydrologic Unit Code (HUC)-based modeling could provide a more efficient and process-aligned spatial discretization, reducing the need for tradeoffs between model complexity and critical forecasting requirements such as ensemble methods and comprehensive model calibration. The National Center for Atmospheric Research is collaborating with the University of Washington, the Bureau of Reclamation and the USACE to implement, assess, and demonstrate real-time, over-the-loop distributed streamflow forecasting for several large western US river basins and regions. In this presentation, we present early results from short to medium range hydrologic and streamflow forecasts for the Pacific Northwest (PNW). We employ a real-time 1/16th degree daily ensemble model forcings as well as downscaled Global Ensemble Forecasting System (GEFS) meteorological forecasts. These datasets drive an intermediate-scale configuration of the Structure for Unifying Multiple Modeling Alternatives (SUMMA) model, which represents the PNW using over 11,700 HUCs. The system produces not only streamflow forecasts (using the MizuRoute channel routing tool) but also distributed model states such as soil moisture and snow water equivalent. We also describe challenges in distributed model-based forecasting, including the application and early results of real-time hydrologic data assimilation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSPO11A..07X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSPO11A..07X"><span>Validation and Inter-comparison Against Observations of GODAE Ocean View Ocean Prediction Systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xu, J.; Davidson, F. J. M.; Smith, G. C.; Lu, Y.; Hernandez, F.; Regnier, C.; Drevillon, M.; Ryan, A.; Martin, M.; Spindler, T. D.; Brassington, G. B.; Oke, P. R.</p> <p>2016-02-01</p> <p>For weather forecasts, validation of forecast performance is done at the end user level as well as by the meteorological forecast centers. In the development of Ocean Prediction Capacity, the same level of care for ocean forecast performance and validation is needed. Herein we present results from a validation against observations of 6 Global Ocean Forecast Systems under the GODAE OceanView International Collaboration Network. These systems include the Global Ocean Ice Forecast System (GIOPS) developed by the Government of Canada, two systems PSY3 and PSY4 from the French Mercator-Ocean Ocean Forecasting Group, the FOAM system from UK met office, HYCOM-RTOFS from NOAA/NCEP/NWA of USA, and the Australian Bluelink-OceanMAPS system from the CSIRO, the Australian Meteorological Bureau and the Australian Navy.The observation data used in the comparison are sea surface temperature, sub-surface temperature, sub-surface salinity, sea level anomaly, and sea ice total concentration data. Results of the inter-comparison demonstrate forecast performance limits, strengths and weaknesses of each of the six systems. This work establishes validation protocols and routines by which all new prediction systems developed under the CONCEPTS Collaborative Network will be benchmarked prior to approval for operations. This includes anticipated delivery of CONCEPTS regional prediction systems over the next two years including a pan Canadian 1/12th degree resolution ice ocean prediction system and limited area 1/36th degree resolution prediction systems. The validation approach of comparing forecasts to observations at the time and location of the observation is called Class 4 metrics. It has been adopted by major international ocean prediction centers, and will be recommended to JCOMM-WMO as routine validation approach for operational oceanography worldwide.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.H23L..08X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.H23L..08X"><span>Impact of Initial Condition Errors and Precipitation Forecast Bias on Drought Simulation and Prediction in the Huaihe River Basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xu, H.; Luo, L.; Wu, Z.</p> <p>2016-12-01</p> <p>Drought, regarded as one of the major disasters all over the world, is not always easy to detect and forecast. Hydrological models coupled with Numerical Weather Prediction (NWP) has become a relatively effective method for drought monitoring and prediction. The accuracy of hydrological initial condition (IC) and the skill of NWP precipitation forecast can both heavily affect the quality and skill of hydrological forecast. In the study, the Variable Infiltration Capacity (VIC) model and Global Environmental Multi-scale (GEM) model were used to investigate the roles of IC and NWP forecast accuracy on hydrological predictions. A rev-ESP type experiment was conducted for a number of drought events in the Huaihe river basin. The experiment suggests that errors in ICs indeed affect the drought simulations by VIC and thus the drought monitoring. Although errors introduced in the ICs diminish gradually, the influence sometimes can last beyond 12 months. Using the soil moisture anomaly percentage index (SMAPI) as the metric to measure drought severity for the study region, we are able to quantify that time scale of influence from IC ranges. The analysis shows that the time scale is directly related to the magnitude of the introduced IC range and the average precipitation intensity. In order to explore how systematic bias correction in GEM forecasted precipitation can affect precipitation and hydrological forecast, we then both used station and gridded observations to eliminate biases of forecasted data. Meanwhile, different precipitation inputs with corrected data during drought process were conducted by VIC to investigate the changes of drought simulations, thus demonstrated short-term rolling drought prediction using a better performed corrected precipitation forecast. There is a word limit on the length of the abstract. So make sure your abstract fits the requirement. If this version is too long, try to shorten it as much as you can.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15940404','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15940404"><span>Consensus Seasonal Flood Forecasts and Warning Response System (FFWRS): an alternate for nonstructural flood management in Bangladesh.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chowdhury, Rashed</p> <p>2005-06-01</p> <p>Despite advances in short-range flood forecasting and information dissemination systems in Bangladesh, the present system is less than satisfactory. This is because of short lead-time products, outdated dissemination networks, and lack of direct feedback from the end-user. One viable solution is to produce long-lead seasonal forecasts--the demand for which is significantly increasing in Bangladesh--and disseminate these products through the appropriate channels. As observed in other regions, the success of seasonal forecasts, in contrast to short-term forecast, depends on consensus among the participating institutions. The Flood Forecasting and Warning Response System (henceforth, FFWRS) has been found to be an important component in a comprehensive and participatory approach to seasonal flood management. A general consensus in producing seasonal forecasts can thus be achieved by enhancing the existing FFWRS. Therefore, the primary objective of this paper is to revisit and modify the framework of an ideal warning response system for issuance of consensus seasonal flood forecasts in Bangladesh. The five-stage FFWRS-i) Flood forecasting, ii) Forecast interpretation and message formulation, iii) Warning preparation and dissemination, iv) Responses, and v) Review and analysis-has been modified. To apply the concept of consensus forecast, a framework similar to that of the Southern African Regional Climate Outlook Forum (SARCOF) has been discussed. Finally, the need for a climate Outlook Fora has been emphasized for a comprehensive and participatory approach to seasonal flood hazard management in Bangladesh.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H44B..01P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H44B..01P"><span>A Diagnostics Tool to detect ensemble forecast system anomaly and guide operational decisions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Park, G. H.; Srivastava, A.; Shrestha, E.; Thiemann, M.; Day, G. N.; Draijer, S.</p> <p>2017-12-01</p> <p>The hydrologic community is moving toward using ensemble forecasts to take uncertainty into account during the decision-making process. The New York City Department of Environmental Protection (DEP) implements several types of ensemble forecasts in their decision-making process: ensemble products for a statistical model (Hirsch and enhanced Hirsch); the National Weather Service (NWS) Advanced Hydrologic Prediction Service (AHPS) forecasts based on the classical Ensemble Streamflow Prediction (ESP) technique; and the new NWS Hydrologic Ensemble Forecasting Service (HEFS) forecasts. To remove structural error and apply the forecasts to additional forecast points, the DEP post processes both the AHPS and the HEFS forecasts. These ensemble forecasts provide mass quantities of complex data, and drawing conclusions from these forecasts is time-consuming and difficult. The complexity of these forecasts also makes it difficult to identify system failures resulting from poor data, missing forecasts, and server breakdowns. To address these issues, we developed a diagnostic tool that summarizes ensemble forecasts and provides additional information such as historical forecast statistics, forecast skill, and model forcing statistics. This additional information highlights the key information that enables operators to evaluate the forecast in real-time, dynamically interact with the data, and review additional statistics, if needed, to make better decisions. We used Bokeh, a Python interactive visualization library, and a multi-database management system to create this interactive tool. This tool compiles and stores data into HTML pages that allows operators to readily analyze the data with built-in user interaction features. This paper will present a brief description of the ensemble forecasts, forecast verification results, and the intended applications for the diagnostic tool.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1910912W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1910912W"><span>A real-time evaluation and demonstration of strategies for 'Over-The-Loop' ensemble streamflow forecasting in US watersheds</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wood, Andy; Clark, Elizabeth; Mendoza, Pablo; Nijssen, Bart; Newman, Andy; Clark, Martyn; Nowak, Kenneth; Arnold, Jeffrey</p> <p>2017-04-01</p> <p>Many if not most national operational streamflow prediction systems rely on a forecaster-in-the-loop approach that require the hands-on-effort of an experienced human forecaster. This approach evolved from the need to correct for long-standing deficiencies in the models and datasets used in forecasting, and the practice often leads to skillful flow predictions despite the use of relatively simple, conceptual models. Yet the 'in-the-loop' forecast process is not reproducible, which limits opportunities to assess and incorporate new techniques systematically, and the effort required to make forecasts in this way is an obstacle to expanding forecast services - e.g., though adding new forecast locations or more frequent forecast updates, running more complex models, or producing forecast and hindcasts that can support verification. In the last decade, the hydrologic forecasting community has begun develop more centralized, 'over-the-loop' systems. The quality of these new forecast products will depend on their ability to leverage research in areas including earth system modeling, parameter estimation, data assimilation, statistical post-processing, weather and climate prediction, verification, and uncertainty estimation through the use of ensembles. Currently, many national operational streamflow forecasting and water management communities have little experience with the strengths and weaknesses of over-the-loop approaches, even as such systems are beginning to be deployed operationally in centers such as ECMWF. There is thus a need both to evaluate these forecasting advances and to demonstrate their potential in a public arena, raising awareness in forecast user communities and development programs alike. To address this need, the US National Center for Atmospheric Research is collaborating with the University of Washington, the Bureau of Reclamation and the US Army Corps of Engineers, using the NCAR 'System for Hydromet Analysis Research and Prediction Applications' (SHARP) to implement, assess and demonstrate real-time over-the-loop ensemble flow forecasts in a range of US watersheds. The system relies on fully ensemble techniques, including: an 100-member ensemble of meteorological model forcings and an ensemble particle filter data assimilation for initializing watershed states; analog/regression-based downscaling of ensemble weather forecasts from GEFS; and statistical post-processing of ensemble forecast outputs, all of which run in real-time within a workflow managed by ECWMF's ecFlow libraries over large US regional domains. We describe SHARP and present early hindcast and verification results for short to seasonal range streamflow forecasts in a number of US case study watersheds.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004AGUFM.H33D0502L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004AGUFM.H33D0502L"><span>The Watershed and River Systems Management Program: Decision Support for Water- and Environmental-Resource Management</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Leavesley, G.; Markstrom, S.; Frevert, D.; Fulp, T.; Zagona, E.; Viger, R.</p> <p>2004-12-01</p> <p>Increasing demands for limited fresh-water supplies, and increasing complexity of water-management issues, present the water-resource manager with the difficult task of achieving an equitable balance of water allocation among a diverse group of water users. The Watershed and River System Management Program (WARSMP) is a cooperative effort between the U.S. Geological Survey (USGS) and the Bureau of Reclamation (BOR) to develop and deploy a database-centered, decision-support system (DSS) to address these multi-objective, resource-management problems. The decision-support system couples the USGS Modular Modeling System (MMS) with the BOR RiverWare tools using a shared relational database. MMS is an integrated system of computer software that provides a research and operational framework to support the development and integration of a wide variety of hydrologic and ecosystem models, and their application to water- and ecosystem-resource management. RiverWare is an object-oriented reservoir and river-system modeling framework developed to provide tools for evaluating and applying water-allocation and management strategies. The modeling capabilities of MMS and Riverware include simulating watershed runoff, reservoir inflows, and the impacts of resource-management decisions on municipal, agricultural, and industrial water users, environmental concerns, power generation, and recreational interests. Forecasts of future climatic conditions are a key component in the application of MMS models to resource-management decisions. Forecast methods applied in MMS include a modified version of the National Weather Service's Extended Streamflow Prediction Program (ESP) and statistical downscaling from atmospheric models. The WARSMP DSS is currently operational in the Gunnison River Basin, Colorado; Yakima River Basin, Washington; Rio Grande Basin in Colorado and New Mexico; and Truckee River Basin in California and Nevada.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/28106','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/28106"><span>Forecasting, Forecasting</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Michael A. Fosberg</p> <p>1987-01-01</p> <p>Future improvements in the meteorological forecasts used in fire management will come from improvements in three areas: observational systems, forecast techniques, and postprocessing of forecasts and better integration of this information into the fire management process.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H51J1396S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H51J1396S"><span>DAPAGLOCO - A global daily precipitation dataset from satellite and rain-gauge measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Spangehl, T.; Danielczok, A.; Dietzsch, F.; Andersson, A.; Schroeder, M.; Fennig, K.; Ziese, M.; Becker, A.</p> <p>2017-12-01</p> <p>The BMBF funded project framework MiKlip(Mittelfristige Klimaprognosen) develops a global climate forecast system on decadal time scales for operational applications. Herein, the DAPAGLOCO project (Daily Precipitation Analysis for the validation of Global medium-range Climate predictions Operationalized) provides a global precipitation dataset as a combination of microwave-based satellite measurements over ocean and rain gauge measurements over land on daily scale. The DAPAGLOCO dataset is created for the evaluation of the MiKlip forecast system in the first place. The HOAPS dataset (Hamburg Ocean Atmosphere Parameter and Fluxes from Satellite data) is used for the derivation of precipitation rates over ocean and is extended by the use of measurements from TMI, GMI, and AMSR-E, in addition to measurements from SSM/I and SSMIS. A 1D-Var retrieval scheme is developed to retrieve rain rates from microwave imager data, which also allows for the determination of uncertainty estimates. Over land, the GPCC (Global Precipitation Climatology Center) Full Data Daily product is used. It consists of rain gauge measurements that are interpolated on a regular grid by ordinary Kriging. The currently available dataset is based on a neuronal network approach, consists of 21 years of data from 1988 to 2008 and is currently extended until 2015 using the 1D-Var scheme and with improved sampling. Three different spatial resolved dataset versions are available with 1° and 2.5° global, and 0.5° for Europe. The evaluation of the MiKlip forecast system by DAPAGLOCO is based on ETCCDI (Expert Team on Climate Change and Detection Indices). Hindcasts are used for the index-based comparison between model and observations. These indices allow for the evaluation of precipitation extremes, their spatial and temporal distribution as well as for the duration of dry and wet spells, average precipitation amounts and percentiles on global scale. Besides, an ETCCDI-based climatology of the DAPAGLOCO precipitation dataset has been derived.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.4273C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.4273C"><span>Skill of a global seasonal ensemble streamflow forecasting system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Candogan Yossef, Naze; Winsemius, Hessel; Weerts, Albrecht; van Beek, Rens; Bierkens, Marc</p> <p>2013-04-01</p> <p>Forecasting of water availability and scarcity is a prerequisite for managing the risks and opportunities caused by the inter-annual variability of streamflow. Reliable seasonal streamflow forecasts are necessary to prepare for an appropriate response in disaster relief, management of hydropower reservoirs, water supply, agriculture and navigation. Seasonal hydrological forecasting on a global scale could be valuable especially for developing regions of the world, where effective hydrological forecasting systems are scarce. In this study, we investigate the forecasting skill of the global seasonal streamflow forecasting system FEWS-World, using the global hydrological model PCR-GLOBWB. FEWS-World has been setup within the European Commission 7th Framework Programme project Global Water Scarcity Information Service (GLOWASIS). Skill is assessed in historical simulation mode as well as retroactive forecasting mode. The assessment in historical simulation mode used a meteorological forcing based on observations from the Climate Research Unit of the University of East Anglia and the ERA-40 reanalysis of the European Center for Medium-Range Weather Forecasts (ECMWF). We assessed the skill of the global hydrological model PCR-GLOBWB in reproducing past discharge extremes in 20 large rivers of the world. This preliminary assessment concluded that the prospects for seasonal forecasting with PCR-GLOBWB or comparable models are positive. However this assessment did not include actual meteorological forecasts. Thus the meteorological forcing errors were not assessed. Yet, in a forecasting setup, the predictive skill of a hydrological forecasting system is affected by errors due to uncertainty from numerical weather prediction models. For the assessment in retroactive forecasting mode, the model is forced with actual ensemble forecasts from the seasonal forecast archives of ECMWF. Skill is assessed at 78 stations on large river basins across the globe, for all the months of the year and for lead times up to 6 months. The forecasted discharges are compared with observed monthly streamflow records using the ensemble verification measures Brier Skill Score (BSS) and Continuous Ranked Probability Score (CRPS). The eventual goal is to transfer FEWS-World to operational forecasting mode, where the system will use operational seasonal forecasts from ECMWF. The results will be disseminated on the internet, and hopefully provide information that is valuable for users in data and model-poor regions of the world.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.H21C1187L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.H21C1187L"><span>Risky Business: Development, Communication and Use of Hydroclimatic Forecasts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lall, U.</p> <p>2012-12-01</p> <p>Inter-seasonal and longer hydroclimatic forecasts have been made increasingly in the last two decades following the increase in ENSO activity since the early 1980s and the success in seasonal ENSO forecasting. Yet, the number of examples of systematic use of these forecasts and their incorporation into water systems operation continue to be few. This may be due in part to the limited skill in such forecasts over much of the world, but is also likely due to the limited evolution of methods and opportunities to "safely" use uncertain forecasts. There has been a trend to rely more on "physically based" rather than "physically informed" empirical forecasts, and this may in part explain the limited success in developing usable products in more locations. Given the limited skill, forecasters have tended to "dumb" down their forecasts - either formally or subjectively shrinking the forecasts towards climatology, or reducing them to tercile forecasts that serve to obscure the potential information in the forecast. Consequently, the potential utility of such forecasts for decision making is compromised. Water system operating rules are often designed to be robust in the face of historical climate variability, and consequently are adapted to the potential conditions that a forecast seeks to inform. In such situations, there is understandable reluctance by managers to use the forecasts as presented, except in special cases where an alternate course of action is pragmatically appealing in any case. In this talk, I review opportunities to present targeted forecasts for use with decision systems that directly address climate risk and the risk induced by unbiased yet uncertain forecasts, focusing especially on extreme events and water allocation in a competitive environment. Examples from Brazil and India covering surface and ground water conjunctive use strategies that could potentially be insured and lead to improvements over the traditional system operation and resource allocation are provided.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.8529B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.8529B"><span>A global flash flood forecasting system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Baugh, Calum; Pappenberger, Florian; Wetterhall, Fredrik; Hewson, Tim; Zsoter, Ervin</p> <p>2016-04-01</p> <p>The sudden and devastating nature of flash flood events means it is imperative to provide early warnings such as those derived from Numerical Weather Prediction (NWP) forecasts. Currently such systems exist on basin, national and continental scales in Europe, North America and Australia but rely on high resolution NWP forecasts or rainfall-radar nowcasting, neither of which have global coverage. To produce global flash flood forecasts this work investigates the possibility of using forecasts from a global NWP system. In particular we: (i) discuss how global NWP can be used for flash flood forecasting and discuss strengths and weaknesses; (ii) demonstrate how a robust evaluation can be performed given the rarity of the event; (iii) highlight the challenges and opportunities in communicating flash flood uncertainty to decision makers; and (iv) explore future developments which would significantly improve global flash flood forecasting. The proposed forecast system uses ensemble surface runoff forecasts from the ECMWF H-TESSEL land surface scheme. A flash flood index is generated using the ERIC (Enhanced Runoff Index based on Climatology) methodology [Raynaud et al., 2014]. This global methodology is applied to a series of flash floods across southern Europe. Results from the system are compared against warnings produced using the higher resolution COSMO-LEPS limited area model. The global system is evaluated by comparing forecasted warning locations against a flash flood database of media reports created in partnership with floodlist.com. To deal with the lack of objectivity in media reports we carefully assess the suitability of different skill scores and apply spatial uncertainty thresholds to the observations. To communicate the uncertainties of the flash flood system output we experiment with a dynamic region-growing algorithm. This automatically clusters regions of similar return period exceedence probabilities, thus presenting the at-risk areas at a spatial resolution appropriate to the NWP system. We then demonstrate how these warning areas could eventually complement existing global systems such as the Global Flood Awareness System (GloFAS), to give warnings of flash floods. This work demonstrates the possibility of creating a global flash flood forecasting system based on forecasts from existing global NWP systems. Future developments, in post-processing for example, will need to address an under-prediction bias, for extreme point rainfall, that is innate to current-generation global models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2013/1165/pdf/ofr2013-1165.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2013/1165/pdf/ofr2013-1165.pdf"><span>Uniform California earthquake rupture forecast, version 3 (UCERF3): the time-independent model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Field, Edward H.; Biasi, Glenn P.; Bird, Peter; Dawson, Timothy E.; Felzer, Karen R.; Jackson, David D.; Johnson, Kaj M.; Jordan, Thomas H.; Madden, Christopher; Michael, Andrew J.; Milner, Kevin R.; Page, Morgan T.; Parsons, Thomas; Powers, Peter M.; Shaw, Bruce E.; Thatcher, Wayne R.; Weldon, Ray J.; Zeng, Yuehua; ,</p> <p>2013-01-01</p> <p>In this report we present the time-independent component of the Uniform California Earthquake Rupture Forecast, Version 3 (UCERF3), which provides authoritative estimates of the magnitude, location, and time-averaged frequency of potentially damaging earthquakes in California. The primary achievements have been to relax fault segmentation assumptions and to include multifault ruptures, both limitations of the previous model (UCERF2). The rates of all earthquakes are solved for simultaneously, and from a broader range of data, using a system-level "grand inversion" that is both conceptually simple and extensible. The inverse problem is large and underdetermined, so a range of models is sampled using an efficient simulated annealing algorithm. The approach is more derivative than prescriptive (for example, magnitude-frequency distributions are no longer assumed), so new analysis tools were developed for exploring solutions. Epistemic uncertainties were also accounted for using 1,440 alternative logic tree branches, necessitating access to supercomputers. The most influential uncertainties include alternative deformation models (fault slip rates), a new smoothed seismicity algorithm, alternative values for the total rate of M≥5 events, and different scaling relationships, virtually all of which are new. As a notable first, three deformation models are based on kinematically consistent inversions of geodetic and geologic data, also providing slip-rate constraints on faults previously excluded because of lack of geologic data. The grand inversion constitutes a system-level framework for testing hypotheses and balancing the influence of different experts. For example, we demonstrate serious challenges with the Gutenberg-Richter hypothesis for individual faults. UCERF3 is still an approximation of the system, however, and the range of models is limited (for example, constrained to stay close to UCERF2). Nevertheless, UCERF3 removes the apparent UCERF2 overprediction of M6.5–7 earthquake rates and also includes types of multifault ruptures seen in nature. Although UCERF3 fits the data better than UCERF2 overall, there may be areas that warrant further site-specific investigation. Supporting products may be of general interest, and we list key assumptions and avenues for future model improvements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1339240-short-term-distribution-system-state-forecast-based-optimal-synchrophasor-sensor-placement-extreme-learning-machine','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1339240-short-term-distribution-system-state-forecast-based-optimal-synchrophasor-sensor-placement-extreme-learning-machine"><span>Short-Term Distribution System State Forecast Based on Optimal Synchrophasor Sensor Placement and Extreme Learning Machine</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Jiang, Huaiguang; Zhang, Yingchen</p> <p></p> <p>This paper proposes an approach for distribution system state forecasting, which aims to provide an accurate and high speed state forecasting with an optimal synchrophasor sensor placement (OSSP) based state estimator and an extreme learning machine (ELM) based forecaster. Specifically, considering the sensor installation cost and measurement error, an OSSP algorithm is proposed to reduce the number of synchrophasor sensor and keep the whole distribution system numerically and topologically observable. Then, the weighted least square (WLS) based system state estimator is used to produce the training data for the proposed forecaster. Traditionally, the artificial neural network (ANN) and support vectormore » regression (SVR) are widely used in forecasting due to their nonlinear modeling capabilities. However, the ANN contains heavy computation load and the best parameters for SVR are difficult to obtain. In this paper, the ELM, which overcomes these drawbacks, is used to forecast the future system states with the historical system states. The proposed approach is effective and accurate based on the testing results.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JGRD..121..196X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JGRD..121..196X"><span>Basin-scale assessment of the land surface energy budget in the National Centers for Environmental Prediction operational and research NLDAS-2 systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xia, Youlong; Cosgrove, Brian A.; Mitchell, Kenneth E.; Peters-Lidard, Christa D.; Ek, Michael B.; Kumar, Sujay; Mocko, David; Wei, Helin</p> <p>2016-01-01</p> <p>This paper compares the annual and monthly components of the simulated energy budget from the North American Land Data Assimilation System phase 2 (NLDAS-2) with reference products over the domains of the 12 River Forecast Centers (RFCs) of the continental United States (CONUS). The simulations are calculated from both operational and research versions of NLDAS-2. The reference radiation components are obtained from the National Aeronautics and Space Administration Surface Radiation Budget product. The reference sensible and latent heat fluxes are obtained from a multitree ensemble method applied to gridded FLUXNET data from the Max Planck Institute, Germany. As these references are obtained from different data sources, they cannot fully close the energy budget, although the range of closure error is less than 15% for mean annual results. The analysis here demonstrates the usefulness of basin-scale surface energy budget analysis for evaluating model skill and deficiencies. The operational (i.e., Noah, Mosaic, and VIC) and research (i.e., Noah-I and VIC4.0.5) NLDAS-2 land surface models exhibit similarities and differences in depicting basin-averaged energy components. For example, the energy components of the five models have similar seasonal cycles, but with different magnitudes. Generally, Noah and VIC overestimate (underestimate) sensible (latent) heat flux over several RFCs of the eastern CONUS. In contrast, Mosaic underestimates (overestimates) sensible (latent) heat flux over almost all 12 RFCs. The research Noah-I and VIC4.0.5 versions show moderate-to-large improvements (basin and model dependent) relative to their operational versions, which indicates likely pathways for future improvements in the operational NLDAS-2 system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20160005177&hterms=energy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Denergy','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20160005177&hterms=energy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Denergy"><span>Basin-Scale Assessment of the Land Surface Energy Budget in the National Centers for Environmental Prediction Operational and Research NLDAS-2 Systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Xia, Youlong; Peters-Lidard, Christa D.; Cosgrove, Brian A.; Mitchell, Kenneth E.; Peters-Lidard, Christa; Ek, Michael B.; Kumar, Sujay V.; Mocko, David M.; Wei, Helin</p> <p>2015-01-01</p> <p>This paper compares the annual and monthly components of the simulated energy budget from the North American Land Data Assimilation System phase 2 (NLDAS-2) with reference products over the domains of the 12 River Forecast Centers (RFCs) of the continental United States (CONUS). The simulations are calculated from both operational and research versions of NLDAS-2. The reference radiation components are obtained from the National Aeronautics and Space Administration Surface Radiation Budget product. The reference sensible and latent heat fluxes are obtained from a multitree ensemble method applied to gridded FLUXNET data from the Max Planck Institute, Germany. As these references are obtained from different data sources, they cannot fully close the energy budget, although the range of closure error is less than 15%formean annual results. The analysis here demonstrates the usefulness of basin-scale surface energy budget analysis for evaluating model skill and deficiencies. The operational (i.e., Noah, Mosaic, and VIC) and research (i.e., Noah-I and VIC4.0.5) NLDAS-2 land surface models exhibit similarities and differences in depicting basin-averaged energy components. For example, the energy components of the five models have similar seasonal cycles, but with different magnitudes. Generally, Noah and VIC overestimate (underestimate) sensible (latent) heat flux over several RFCs of the eastern CONUS. In contrast, Mosaic underestimates (overestimates) sensible (latent) heat flux over almost all 12 RFCs. The research Noah-I and VIC4.0.5 versions show moderate-to-large improvements (basin and model dependent) relative to their operational versions, which indicates likely pathways for future improvements in the operational NLDAS-2 system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1347861-probabilistic-drought-forecasting-framework-combined-dynamical-statistical-approach','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1347861-probabilistic-drought-forecasting-framework-combined-dynamical-statistical-approach"><span>A probabilistic drought forecasting framework: A combined dynamical and statistical approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Yan, Hongxiang; Moradkhani, Hamid; Zarekarizi, Mahkameh</p> <p></p> <p>In order to improve drought forecasting skill, this study develops a probabilistic drought forecasting framework comprised of dynamical and statistical modeling components. The novelty of this study is to seek the use of data assimilation to quantify initial condition uncertainty with the Monte Carlo ensemble members, rather than relying entirely on the hydrologic model or land surface model to generate a single deterministic initial condition, as currently implemented in the operational drought forecasting systems. Next, the initial condition uncertainty is quantified through data assimilation and coupled with a newly developed probabilistic drought forecasting model using a copula function. The initialmore » condition at each forecast start date are sampled from the data assimilation ensembles for forecast initialization. Finally, seasonal drought forecasting products are generated with the updated initial conditions. This study introduces the theory behind the proposed drought forecasting system, with an application in Columbia River Basin, Pacific Northwest, United States. Results from both synthetic and real case studies suggest that the proposed drought forecasting system significantly improves the seasonal drought forecasting skills and can facilitate the state drought preparation and declaration, at least three months before the official state drought declaration.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA550973','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA550973"><span>Development, Implementation, and Skill Assessment of the NOAA/NOS Great Lakes Operational Forecast System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2011-01-01</p> <p>USA) 2011 Abstract The NOAA Great Lakes Operational Forecast System ( GLOFS ) uses near-real-time atmospheric observa- tions and numerical weather...Operational Oceanographic Products and Services (CO-OPS) in Silver Spring, MD. GLOFS has been making operational nowcasts and forecasts at CO-OPS... GLOFS ) uses near-real-time atmospheric observations and numerical weather prediction forecast guidance to produce three-dimensional forecasts of water</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/851196','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/851196"><span>SOLID WASTE INTEGRATED FORECAST TECHNICAL (SWIFT) REPORT FY2005 THRU FY2035 2005.0 VOLUME 2</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>BARCOT, R.A.</p> <p></p> <p>This report provides up-to-date life cycle information about the radioactive solid waste expected to be managed by Hanford's Waste Management (WM) Project from onsite and offsite generators. It includes: (1) an overview of Hanford-wide solid waste to be managed by the WM Project; (2) multi-level and waste class-specific estimates; (3) background information on waste sources; and (4) comparisons to previous forecasts and other national data sources. The focus of this report is low-level waste (LLW), mixed low-level waste (MLLW), and transuranic waste, both non-mixed and mixed (TRU(M)). Some details on hazardous waste are also provided, however, this information is notmore » considered comprehensive. This report includes data requested in December, 2004 with updates through March 31,2005. The data represent a life cycle forecast covering all reported activities from FY2005 through the end of each program's life cycle and are an update of the previous FY2004.1 data version.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19900056837&hterms=seasonal+forecast&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dseasonal%2Bforecast','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19900056837&hterms=seasonal+forecast&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dseasonal%2Bforecast"><span>Simulated forecast error and climate drift resulting from the omission of the upper stratosphere in numerical models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Boville, Byron A.; Baumhefner, David P.</p> <p>1990-01-01</p> <p>Using an NCAR community climate model, Version I, the forecast error growth and the climate drift resulting from the omission of the upper stratosphere are investigated. In the experiment, the control simulation is a seasonal integration of a medium horizontal general circulation model with 30 levels extending from the surface to the upper mesosphere, while the main experiment uses an identical model, except that only the bottom 15 levels (below 10 mb) are retained. It is shown that both random and systematic errors develop rapidly in the lower stratosphere with some local propagation into the troposphere in the 10-30-day time range. The random growth rate in the troposphere in the case of the altered upper boundary was found to be slightly faster than that for the initial-condition uncertainty alone. However, this is not likely to make a significant impact in operational forecast models, because the initial-condition uncertainty is very large.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.A23F0377K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.A23F0377K"><span>Verification of Meteorological and Oceanographic Ensemble Forecasts in the U.S. Navy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Klotz, S.; Hansen, J.; Pauley, P.; Sestak, M.; Wittmann, P.; Skupniewicz, C.; Nelson, G.</p> <p>2013-12-01</p> <p>The Navy Ensemble Forecast Verification System (NEFVS) has been promoted recently to operational status at the U.S. Navy's Fleet Numerical Meteorology and Oceanography Center (FNMOC). NEFVS processes FNMOC and National Centers for Environmental Prediction (NCEP) meteorological and ocean wave ensemble forecasts, gridded forecast analyses, and innovation (observational) data output by FNMOC's data assimilation system. The NEFVS framework consists of statistical analysis routines, a variety of pre- and post-processing scripts to manage data and plot verification metrics, and a master script to control application workflow. NEFVS computes metrics that include forecast bias, mean-squared error, conditional error, conditional rank probability score, and Brier score. The system also generates reliability and Receiver Operating Characteristic diagrams. In this presentation we describe the operational framework of NEFVS and show examples of verification products computed from ensemble forecasts, meteorological observations, and forecast analyses. The construction and deployment of NEFVS addresses important operational and scientific requirements within Navy Meteorology and Oceanography. These include computational capabilities for assessing the reliability and accuracy of meteorological and ocean wave forecasts in an operational environment, for quantifying effects of changes and potential improvements to the Navy's forecast models, and for comparing the skill of forecasts from different forecast systems. NEFVS also supports the Navy's collaboration with the U.S. Air Force, NCEP, and Environment Canada in the North American Ensemble Forecast System (NAEFS) project and with the Air Force and the National Oceanic and Atmospheric Administration (NOAA) in the National Unified Operational Prediction Capability (NUOPC) program. This program is tasked with eliminating unnecessary duplication within the three agencies, accelerating the transition of new technology, such as multi-model ensemble forecasting, to U.S. Department of Defense use, and creating a superior U.S. global meteorological and oceanographic prediction capability. Forecast verification is an important component of NAEFS and NUOPC. Distribution Statement A: Approved for Public Release; distribution is unlimited</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.A23D0251K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.A23D0251K"><span>Verification of Meteorological and Oceanographic Ensemble Forecasts in the U.S. Navy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Klotz, S. P.; Hansen, J.; Pauley, P.; Sestak, M.; Wittmann, P.; Skupniewicz, C.; Nelson, G.</p> <p>2012-12-01</p> <p>The Navy Ensemble Forecast Verification System (NEFVS) has been promoted recently to operational status at the U.S. Navy's Fleet Numerical Meteorology and Oceanography Center (FNMOC). NEFVS processes FNMOC and National Centers for Environmental Prediction (NCEP) meteorological and ocean wave ensemble forecasts, gridded forecast analyses, and innovation (observational) data output by FNMOC's data assimilation system. The NEFVS framework consists of statistical analysis routines, a variety of pre- and post-processing scripts to manage data and plot verification metrics, and a master script to control application workflow. NEFVS computes metrics that include forecast bias, mean-squared error, conditional error, conditional rank probability score, and Brier score. The system also generates reliability and Receiver Operating Characteristic diagrams. In this presentation we describe the operational framework of NEFVS and show examples of verification products computed from ensemble forecasts, meteorological observations, and forecast analyses. The construction and deployment of NEFVS addresses important operational and scientific requirements within Navy Meteorology and Oceanography (METOC). These include computational capabilities for assessing the reliability and accuracy of meteorological and ocean wave forecasts in an operational environment, for quantifying effects of changes and potential improvements to the Navy's forecast models, and for comparing the skill of forecasts from different forecast systems. NEFVS also supports the Navy's collaboration with the U.S. Air Force, NCEP, and Environment Canada in the North American Ensemble Forecast System (NAEFS) project and with the Air Force and the National Oceanic and Atmospheric Administration (NOAA) in the National Unified Operational Prediction Capability (NUOPC) program. This program is tasked with eliminating unnecessary duplication within the three agencies, accelerating the transition of new technology, such as multi-model ensemble forecasting, to U.S. Department of Defense use, and creating a superior U.S. global meteorological and oceanographic prediction capability. Forecast verification is an important component of NAEFS and NUOPC.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010ems..confE.406R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010ems..confE.406R"><span>Development of a short-term irradiance prediction system using post-processing tools on WRF-ARW meteorological forecasts in Spain</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rincón, A.; Jorba, O.; Baldasano, J. M.</p> <p>2010-09-01</p> <p>The increased contribution of solar energy in power generation sources requires an accurate estimation of surface solar irradiance conditioned by geographical, temporal and meteorological conditions. The knowledge of the variability of these factors is essential to estimate the expected energy production and therefore help stabilizing the electricity grid and increase the reliability of available solar energy. The use of numerical meteorological models in combination with statistical post-processing tools may have the potential to satisfy the requirements for short-term forecasting of solar irradiance for up to several days ahead and its application in solar devices. In this contribution, we present an assessment of a short-term irradiance prediction system based on the WRF-ARW mesoscale meteorological model (Skamarock et al., 2005) and several post-processing tools in order to improve the overall skills of the system in an annual simulation of the year 2004 in Spain. The WRF-ARW model is applied with 4 km x 4 km horizontal resolution and 38 vertical layers over the Iberian Peninsula. The hourly model irradiance is evaluated against more than 90 surface stations. The stations are used to assess the temporal and spatial fluctuations and trends of the system evaluating three different post-processes: Model Output Statistics technique (MOS; Glahn and Lowry, 1972), Recursive statistical method (REC; Boi, 2004) and Kalman Filter Predictor (KFP, Bozic, 1994; Roeger et al., 2003). A first evaluation of the system without post-processing tools shows an overestimation of the surface irradiance, due to the lack of atmospheric absorbers attenuation different than clouds not included in the meteorological model. This produces an annual BIAS of 16 W m-2 h-1, annual RMSE of 106 W m-2 h-1 and annual NMAE of 42%. The largest errors are observed in spring and summer, reaching RMSE of 350 W m-2 h-1. Results using Kalman Filter Predictor show a reduction of 8% of RMSE, 83% of BIAS, and NMAE decreases down to 32%. The REC method shows a reduction of 6% of RMSE, 79% of BIAS, and NMAE decreases down to 28%. When comparing stations at different altitudes, the overestimation is enhanced at coastal stations (less than 200m) up to 900 W m-2 h-1. The results allow us to analyze strengths and drawbacks of the irradiance prediction system and its application in the estimation of energy production from photovoltaic system cells. References Boi, P.: A statistical method for forecasting extreme daily temperatures using ECMWF 2-m temperatures and ground station measurements, Meteorol. Appl., 11, 245-251, 2004. Bozic, S.: Digital and Kalman filtering, John Wiley, Hoboken, New Jersey, 2nd edn., 1994. Glahn, H. and Lowry, D.: The use of Model Output Statistics (MOS) in Objective Weather Forecasting, Applied Meteorology, 11, 1203-1211, 1972. Roeger, C., Stull, R., McClung, D., Hacker, J., Deng, X., and Modzelewski, H.: Verification of Mesoscale Numerical Weather Forecasts in Mountainous Terrain for Application to Avalanche Prediction, Weather and forecasting, 18, 1140-1160, 2003. Skamarock, W., Klemp, J., Dudhia, J., Gill, D., Barker, D. M., Wang, W., and Powers, J. G.: A Description of the Advanced Research WRF Version 2, Tech. Rep. NCAR/TN-468+STR, NCAR Technical note, 2005.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1422824','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1422824"><span>A Public-Private-Academic Partnership to Advance Solar Power Forecasting</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Marquis, Melinda; Benjamin, Stan; James, Eric</p> <p></p> <p>Executive Summary NOAA is making major contributions to the solar forecasting project in three areas. First, it is improving its forecasts of solar irradiance, clouds, and aerosols in its numerical weather prediction models. Second, it is providing advanced satellite products for DOE's FOA awardees to use in their forecast systems. Third, it is using high-quality ground-based measurements from SURFRAD and ISIS stations to verify and validate forecast model output. This reports covers results from all three areas for the period May 1, 2014 - April 30, 2015. Modeling In its modeling effort, NOAA continues work to improve the skill ofmore » solar forecasts from the Earth System Research Lab (ESRL) research versions of the 13-km Rapid Refresh (RAP) and the 3-km High-Resolution Rapid Refresh (HRRR) models, which are in turn transitioned into operations at the National Centers for Environmental Prediction (NCEP). A major milestone was achieved in September 2014 with the initial operational implementation of the HRRR at NCEP. In the ESRL research versions of the models, testing and development, in both real-time runs and retrospective experiments, is guided by an extensive in-house verification system. Early in the SFIP project, we developed the capability to verify our model forecasts against the high-quality surface radiation measurements from the SURFRAD and ISIS networks. This highlighted some shortcomings with the RAP and HRRR forecasts of incoming shortwave radiation. Most of our effort during Phase 1 of SFIP was focused on addressing these problems with a variety of model system improvements. The RAP and HRRR models during the warm season of 2014 had a noticeable warm and dry bias in near-surface conditions over most of the central and eastern United States, and our new SURFRAD/ISIS verification revealed that there was also a large excess of incoming global horizontal irradiance in the models. We hypothesized that a lack of cloud cover (particularly low-level cloud cover) in the models was resulting in too much heating of the land surface. This, in turn, caused unrealistically strong surface heat fluxes and turbulent mixing in the planetary boundary layer (PBL), which further reduced the already deficient cloud cover. We addressed these issues with a combination of data assimilation system modifications and model physics improvements. Many of our data assimilation changes were made with a view towards improving the near-term representation of clouds and precipitation. One of these changes involved better accounting for regions of weak reflectivity in the RAP cloud / hydrometeor assimilation system, in order to improve the representation of light precipitation in the RAP initial conditions and provide more realistic initial cloud cover. Additional modifications more accurately accounted for radar beam blockage and data gaps (particularly in the western United States), which improves shorter lead times forecasts of clouds and precipitation. We have also tested the assimilation of new data sources within the RAP and the HRRR, including radar radial velocity data and surface mesonet observations. Within the HRRR, we have tested the cycling of the 3-km land surface fields to allow a higher-resolution treatment of land surface processes. In terms of model physics development for SFIP, we have implemented a shallow cumulus scheme within the RAP, and have made numerous improvements to the Mellor-Yamada-Nakanishi-Niino (MYNN) PBL scheme to address insufficient low-level cloud cover in the models. We have conducted tests incorporating the radiation effects of (parameterized) boundary-layer clouds within the modified MYNN PBL scheme (independent of the convective schemes). The Grell-Freitas-Olson shallow cumulus scheme has also been tested within the 3-km HRRR. Finally, we have also modified the RUC land surface model (LSM) treatment of the vegetation wilting point, reducing it to increase evapotranspiration and increase cloud cover in the boundary layer. All of these changes work in tandem to significantly improve the model forecasts of cloud cover, incoming shortwave radiation, and near-surface temperature and moisture. Satellite The role of NOAA/NESDIS in the Solar Forecasting Improvement Project is to provide Advanced Satellite Products (ASPs) for the two forecasting teams at NCAR and IBM. The ASPs are cloud, surface, and atmosphere products derived from geostationary satellite imagery at the highest possible spatial and temporal resolution - such quantities as cloud mask, cloud probability, cloud transmission, cloud top height, cloud top temperature, cloud effective particle size, etc. Ancillary data, such as elevation and numerical weather prediction fields are provided in the files at the same resolution as well. There are at this time 147 different variables in the ASP output, including quality flags and processing information. The main goals for Year 1 of the project were to implement an Advanced Satellite Products system for the use of the IBM and NCAR teams, begin validation, and make any needed changes based on feedback from the teams. ASP files are being produced every GOES Imager acquisition, which occur on a 15-30 minute schedule. Processing is done on a dedicated computer, with a turn-around time of 8-21 minutes from image acquisition to results available on ftp. Several helpful visualizations of the data are also created for users on web pages. Users have been provided with a document titled "User's Guide for 1km Cloud Products Derived from GOES Imager Data using CLAVR-x", which discusses the basics of the source imagery, the process by which it is turned into Advanced Satellite Products, and considerations users should make when using the data. Validation of selected variables from the older 4km version of the products was also included. Future work will concentrate on validation of the 1km products and improving the turn-around time, product variety, and product quality as needed. Ground Observations In the ground-based measurement effort, NOAA's main objectives are to provide high quality radiation products for validation and verification of short-term to day-ahead solar forecasts. More specifically for the three year project, our goals include (1) Maintaining and providing data from our 7 SURFRAD and 7 ISIS; (2) Update ISIS radiation measurements from 3 min to 1 min data: (3) Purchase and install new pyrheliometers for direct solar irradiance measurements at the 7 SURFRAD sites; (4) Building, testing, and deploying two mobile SURFRAD stations at two utility plants in collaboration with DOE sponsored partners, and includes ongoing maintenance and processing of the data at the mobile sites; (5) Upgrading the data acquisition and communications at 7 SURFRAD sites and 7 ISIS sites; (6) Providing radiation data at the 7 SURFRAD sites in near real-time; (7) Develop and provide aerosol optical depth and cloud images and cloud fraction at our two mobile sites; (8) Provide data recovery rates each year; (9) Provide temporally and spatially averaged radiation products for comparison to HRRR and RAP solar forecasts and advanced satellite products; (10) Provide a data-set for analysis of conversion of direct and diffuse to sloped surfaces; (11) and as time permits develop and provide spectral solar irradiance, cloud optical depth and spectral albedo from the mobile sites. Milestones this year include working with the DOE sponsored teams to find locations to deploy two mobile SURFRAD stations. One existing unit was deployed at a 30MW PV facility in the San Luis Valley in collaboration with Xcel and the NCAR team in August, 2014. The second unit was built and tested at our facilities in Boulder, CO and deployed near Green Mountain Power's Education Center in Rutland, VT in collaboration with Green Mountain Power and the IBM Team in October, 2014. Data processing was implemented and the radiation data from these two mobile sites have been made available on our ftp server in near real-time. We also are providing images and cloud fraction from the TSI cameras for these two mobile sites on our ftp site. Another milestone was upgrading our data acquisition and communication systems at 7 SURFRAD and 7 ISIS sites. We accelerated our schedule for these upgrades to provide timely radiation products. These upgrades allow more reliable and near-real time radiation data delivery to the DOE sponsored teams to meet their goals. Lastly, we changed the data rate at the ISIS sites from 3 min to 1 min.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFM.A31A0849L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFM.A31A0849L"><span>Application Of Multi-grid Method On China Seas' Temperature Forecast</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, W.; Xie, Y.; He, Z.; Liu, K.; Han, G.; Ma, J.; Li, D.</p> <p>2006-12-01</p> <p>Correlation scales have been used in traditional scheme of 3-dimensional variational (3D-Var) data assimilation to estimate the background error covariance for the numerical forecast and reanalysis of atmosphere and ocean for decades. However there are still some drawbacks of this scheme. First, the correlation scales are difficult to be determined accurately. Second, the positive definition of the first-guess error covariance matrix cannot be guaranteed unless the correlation scales are sufficiently small. Xie et al. (2005) indicated that a traditional 3D-Var only corrects some certain wavelength errors and its accuracy depends on the accuracy of the first-guess covariance. And in general, short wavelength error can not be well corrected until long one is corrected and then inaccurate first-guess covariance may mistakenly take long wave error as short wave ones and result in erroneous analysis. For the purpose of quickly minimizing the errors of long and short waves successively, a new 3D-Var data assimilation scheme, called multi-grid data assimilation scheme, is proposed in this paper. By assimilating the shipboard SST and temperature profiles data into a numerical model of China Seas, we applied this scheme in two-month data assimilation and forecast experiment which ended in a favorable result. Comparing with the traditional scheme of 3D-Var, the new scheme has higher forecast accuracy and a lower forecast Root-Mean-Square (RMS) error. Furthermore, this scheme was applied to assimilate the SST of shipboard, AVHRR Pathfinder Version 5.0 SST and temperature profiles at the same time, and a ten-month forecast experiment on sea temperature of China Seas was carried out, in which a successful forecast result was obtained. Particularly, the new scheme is demonstrated a great numerical efficiency in these analyses.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4930702','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4930702"><span>The Impact of Implementing a Demand Forecasting System into a Low-Income Country’s Supply Chain</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Mueller, Leslie E.; Haidari, Leila A.; Wateska, Angela R.; Phillips, Roslyn J.; Schmitz, Michelle M.; Connor, Diana L.; Norman, Bryan A.; Brown, Shawn T.; Welling, Joel S.; Lee, Bruce Y.</p> <p>2016-01-01</p> <p>OBJECTIVE To evaluate the potential impact and value of applications (e.g., ordering levels, storage capacity, transportation capacity, distribution frequency) of data from demand forecasting systems implemented in a lower-income country’s vaccine supply chain with different levels of population change to urban areas. MATERIALS AND METHODS Using our software, HERMES, we generated a detailed discrete event simulation model of Niger’s entire vaccine supply chain, including every refrigerator, freezer, transport, personnel, vaccine, cost, and location. We represented the introduction of a demand forecasting system to adjust vaccine ordering that could be implemented with increasing delivery frequencies and/or additions of cold chain equipment (storage and/or transportation) across the supply chain during varying degrees of population movement. RESULTS Implementing demand forecasting system with increased storage and transport frequency increased the number of successfully administered vaccine doses and lowered the logistics cost per dose up to 34%. Implementing demand forecasting system without storage/transport increases actually decreased vaccine availability in certain circumstances. DISCUSSION The potential maximum gains of a demand forecasting system may only be realized if the system is implemented to both augment the supply chain cold storage and transportation. Implementation may have some impact but, in certain circumstances, may hurt delivery. Therefore, implementation of demand forecasting systems with additional storage and transport may be the better approach. Significant decreases in the logistics cost per dose with more administered vaccines support investment in these forecasting systems. CONCLUSION Demand forecasting systems have the potential to greatly improve vaccine demand fulfillment, and decrease logistics cost/dose when implemented with storage and transportation increases direct vaccines. Simulation modeling can demonstrate the potential health and economic benefits of supply chain improvements. PMID:27219341</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27219341','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27219341"><span>The impact of implementing a demand forecasting system into a low-income country's supply chain.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mueller, Leslie E; Haidari, Leila A; Wateska, Angela R; Phillips, Roslyn J; Schmitz, Michelle M; Connor, Diana L; Norman, Bryan A; Brown, Shawn T; Welling, Joel S; Lee, Bruce Y</p> <p>2016-07-12</p> <p>To evaluate the potential impact and value of applications (e.g. adjusting ordering levels, storage capacity, transportation capacity, distribution frequency) of data from demand forecasting systems implemented in a lower-income country's vaccine supply chain with different levels of population change to urban areas. Using our software, HERMES, we generated a detailed discrete event simulation model of Niger's entire vaccine supply chain, including every refrigerator, freezer, transport, personnel, vaccine, cost, and location. We represented the introduction of a demand forecasting system to adjust vaccine ordering that could be implemented with increasing delivery frequencies and/or additions of cold chain equipment (storage and/or transportation) across the supply chain during varying degrees of population movement. Implementing demand forecasting system with increased storage and transport frequency increased the number of successfully administered vaccine doses and lowered the logistics cost per dose up to 34%. Implementing demand forecasting system without storage/transport increases actually decreased vaccine availability in certain circumstances. The potential maximum gains of a demand forecasting system may only be realized if the system is implemented to both augment the supply chain cold storage and transportation. Implementation may have some impact but, in certain circumstances, may hurt delivery. Therefore, implementation of demand forecasting systems with additional storage and transport may be the better approach. Significant decreases in the logistics cost per dose with more administered vaccines support investment in these forecasting systems. Demand forecasting systems have the potential to greatly improve vaccine demand fulfilment, and decrease logistics cost/dose when implemented with storage and transportation increases. Simulation modeling can demonstrate the potential health and economic benefits of supply chain improvements. Copyright © 2016 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.3132P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.3132P"><span>Experimental Forecasts of Wildfire Pollution at the Canadian Meteorological Centre</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pavlovic, Radenko; Beaulieu, Paul-Andre; Chen, Jack; Landry, Hugo; Cousineau, Sophie; Moran, Michael</p> <p>2016-04-01</p> <p>Environment and Climate Change Canada's Canadian Meteorological Centre Operations division (CMCO) has been running an experimental North American air quality forecast system with near-real-time wildfire emissions since 2014. This system, named FireWork, also takes anthropogenic and other natural emission sources into account. FireWork 48-hour forecasts are provided to CMCO forecasters and external partners in Canada and the U.S. twice daily during the wildfire season. This system has proven to be very useful in capturing short- and long-range smoke transport from wildfires over North America. Several upgrades to the FireWork system have been made since 2014 to accommodate the needs of operational AQ forecasters and to improve system performance. In this talk we will present performance statistics and some case studies for the 2014 and 2015 wildfire seasons. We will also describe current limitations of the FireWork system and ongoing and future work planned for this air quality forecast system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1344441-ramp-forecasting-performance-from-improved-short-term-wind-power-forecasting-over-multiple-spatial-temporal-scales','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1344441-ramp-forecasting-performance-from-improved-short-term-wind-power-forecasting-over-multiple-spatial-temporal-scales"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zhang, Jie; Cui, Mingjian; Hodge, Bri-Mathias</p> <p></p> <p>The large variability and uncertainty in wind power generation present a concern to power system operators, especially given the increasing amounts of wind power being integrated into the electric power system. Large ramps, one of the biggest concerns, can significantly influence system economics and reliability. The Wind Forecast Improvement Project (WFIP) was to improve the accuracy of forecasts and to evaluate the economic benefits of these improvements to grid operators. This paper evaluates the ramp forecasting accuracy gained by improving the performance of short-term wind power forecasting. This study focuses on the WFIP southern study region, which encompasses most ofmore » the Electric Reliability Council of Texas (ERCOT) territory, to compare the experimental WFIP forecasts to the existing short-term wind power forecasts (used at ERCOT) at multiple spatial and temporal scales. The study employs four significant wind power ramping definitions according to the power change magnitude, direction, and duration. The optimized swinging door algorithm is adopted to extract ramp events from actual and forecasted wind power time series. The results show that the experimental WFIP forecasts improve the accuracy of the wind power ramp forecasting. This improvement can result in substantial costs savings and power system reliability enhancements.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMNH54A..08G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMNH54A..08G"><span>Evaluation of Probable Maximum Precipitation and Flood under Climate Change in the 21st Century</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gangrade, S.; Kao, S. C.; Rastogi, D.; Ashfaq, M.; Naz, B. S.; Kabela, E.; Anantharaj, V. G.; Singh, N.; Preston, B. L.; Mei, R.</p> <p>2016-12-01</p> <p>Critical infrastructures are potentially vulnerable to extreme hydro-climatic events. Under a warming environment, the magnitude and frequency of extreme precipitation and flood are likely to increase enhancing the needs to more accurately quantify the risks due to climate change. In this study, we utilized an integrated modeling framework that includes the Weather Research Forecasting (WRF) model and a high resolution distributed hydrology soil vegetation model (DHSVM) to simulate probable maximum precipitation (PMP) and flood (PMF) events over Alabama-Coosa-Tallapoosa River Basin. A total of 120 storms were selected to simulate moisture maximized PMP under different meteorological forcings, including historical storms driven by Climate Forecast System Reanalysis (CFSR) and baseline (1981-2010), near term future (2021-2050) and long term future (2071-2100) storms driven by Community Climate System Model version 4 (CCSM4) under Representative Concentrations Pathway 8.5 emission scenario. We also analyzed the sensitivity of PMF to various antecedent hydrologic conditions such as initial soil moisture conditions and tested different compulsive approaches. Overall, a statistical significant increase is projected for future PMP and PMF, mainly attributed to the increase of background air temperature. The ensemble of simulated PMP and PMF along with their sensitivity allows us to better quantify the potential risks associated with hydro-climatic extreme events on critical energy-water infrastructures such as major hydropower dams and nuclear power plants.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=financial+AND+autonomy&pg=2&id=EJ1086435','ERIC'); return false;" href="https://eric.ed.gov/?q=financial+AND+autonomy&pg=2&id=EJ1086435"><span>Exploring Partial School Autonomy: What Does It Mean for the Cypriot School of the Future?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Theodorou, Theodoros; Pashiardis, Petros</p> <p>2016-01-01</p> <p>This paper examines the school of the future, aiming to identify and aid the implementation of the most desired version of school autonomy in Cyprus. More specifically, the study initially forecasts the areas of financial decisions that the school of the future might autonomously manage, identifies the negative effects that may appear along the…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=226085&Lab=NHEERL&keyword=herbicide&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=226085&Lab=NHEERL&keyword=herbicide&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Model Forecasts of Atrazine in Lake Michigan in Response to Various Sensitivity and Potential Management Scenarios</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>For more than forty years, the herbicide atrazine has been used on corn crops in the Lake Michigan basin to control weeds. It is usually applied to farm fields in the spring before or after the corn crop emerges. A version of the WASP4 mass balance model, LM2-Atrazine, was used...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA221842','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA221842"><span>The Use of the Skew T, Log P Diagram in Analysis and Forecasting. Revision</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1990-03-01</p> <p>28 x 30 been added to further enhance the value of the inches. This version now includes the Apple - diagram. A detailed description of the Skew T, man...airocrau rqor we ovailable. The eauning lIkIaatte U the lop rate Is. at times. recorded as swot - adobaik wheun the mulm leave* a cloud Up and ener</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014SoPh..289.3159Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014SoPh..289.3159Z"><span>Evaluation of a Revised Interplanetary Shock Prediction Model: 1D CESE-HD-2 Solar-Wind Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Y.; Du, A. M.; Du, D.; Sun, W.</p> <p>2014-08-01</p> <p>We modified the one-dimensional conservation element and solution element (CESE) hydrodynamic (HD) model into a new version [ 1D CESE-HD-2], by considering the direction of the shock propagation. The real-time performance of the 1D CESE-HD-2 model during Solar Cycle 23 (February 1997 - December 2006) is investigated and compared with those of the Shock Time of Arrival Model ( STOA), the Interplanetary-Shock-Propagation Model ( ISPM), and the Hakamada-Akasofu-Fry version 2 ( HAFv.2). Of the total of 584 flare events, 173 occurred during the rising phase, 166 events during the maximum phase, and 245 events during the declining phase. The statistical results show that the success rates of the predictions by the 1D CESE-HD-2 model for the rising, maximum, declining, and composite periods are 64 %, 62 %, 57 %, and 61 %, respectively, with a hit window of ± 24 hours. The results demonstrate that the 1D CESE-HD-2 model shows the highest success rates when the background solar-wind speed is relatively fast. Thus, when the background solar-wind speed at the time of shock initiation is enhanced, the forecasts will provide potential values to the customers. A high value (27.08) of χ 2 and low p-value (< 0.0001) for the 1D CESE-HD-2 model give considerable confidence for real-time forecasts by using this new model. Furthermore, the effects of various shock characteristics (initial speed, shock duration, background solar wind, longitude, etc.) and background solar wind on the forecast are also investigated statistically.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000SPD....31.0905A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000SPD....31.0905A"><span>Implementation and Verification of the Chen Prediction Technique for Forecasting Large Nonrecurrent Storms*</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Arge, C. N.; Chen, J.; Slinker, S.; Pizzo, V. J.</p> <p>2000-05-01</p> <p>The method of Chen et al. [1997, JGR, 101, 27499] is designed to accurately identify and predict the occurrence, duration, and strength of largegeomagnetic storms using real-time solar wind data. The method estimates the IMF and the geoeffectiveness of the solar wind upstream of a monitor and can provide warning times that range from a few hours to more than 10 hours. The model uses physical features of solar wind structures that cause large storms: long durations of southward interplanetary magnetic field. It is currently undergoing testing, improvement, and validation at NOAA/SEC in effort to transition it into a real-time space weather forecasting tool. The original version of the model has modified so that it now makes hourly (as opposed to daily) predictions and has been improved in effort to enhance both its predictive capability and reliability. In this paper, we report on the results of a 2-year historical verification study of the model using ACE real-time data. The prediction performances of the original and improved versions of the model are then compared. A real-time prediction web page has been developed and is on line at NOAA/SEC. *Work supported by ONR.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1915854D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1915854D"><span>Seasonal Forecasting of Reservoir Inflow for the Segura River Basin, Spain</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>de Tomas, Alberto; Hunink, Johannes</p> <p>2017-04-01</p> <p>A major threat to the agricultural sector in Europe is an increasing occurrence of low water availability for irrigation, affecting the local and regional food security and economies. Especially in the Mediterranean region, such as in the Segura river basin (Spain), drought epidodes are relatively frequent. Part of the irrigation water demand in this basin is met by a water transfer from the Tagus basin (central Spain), but also in this basin an increasing pressure on the water resources has reduced the water available to be transferred. Currently, Drought Management Plans in these Spanish basins are in place and mitigate the impact of drought periods to some extent. Drought indicators that are derived from the available water in the storage reservoirs impose a set of drought mitigation measures. Decisions on water transfers are dependent on a regression-based time series forecast from the reservoir inflows of the preceding months. This user-forecast has its limitations and can potentially be improved using more advanced techniques. Nowadays, seasonal climate forecasts have shown to have increasing skill for certain areas and for certain applications. So far, such forecasts have not been evaluated in a seasonal hydrologic forecasting system in the Spanish context. The objective of this work is to develop a prototype of a Seasonal Hydrologic Forecasting System and compare this with a reference forecast. The reference forecast in this case is the locally used regression-based forecast. Additionally, hydrological simulations derived from climatological reanalysis (ERA-Interim) are taken as a reference forecast. The Spatial Processes in Hydrology model (SPHY - http://www.sphy.nl/) forced with the ECMWF- SFS4 (15 ensembles) Seasonal Forecast Systems is used to predict reservoir inflows of the upper basins of the Segura and Tagus rivers. The system is evaluated for 4 seasons with a forecasting lead time of 3 months. First results show that only for certain initialization months and lead times, the developed system outperforms the reference forecast. This research is carried out within the European research project IMPREX (www.imprex.eu) that aims at investigating the value of improving predictions of hydro-meteorological extremes in a number of water sectors, including agriculture . The next step is to integrate improved seasonal forecasts into the system and evaluate these. This should finally lead to a more robust forecasting system that allows water managers and irrigators to better anticipate to drought episodes and putting into practice more effective water allocation and mitigation practices.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1990BAMS...71..173R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1990BAMS...71..173R"><span>Testing a Mobile Version of a Cross-Chain Loran Atmospheric (M-CLASS) Sounding System.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rust, W. David; Burgess, Donald W.; Maddox, Robert A.; Showell, Lester C.; Marshall, Thomas C.; Lauritsen, Dean K.</p> <p>1990-02-01</p> <p>We have Rested the NCAR Cross-Chain LORAN Atmospheric Sounding System (CLASS) in a fully mobile configuration, which we call M-CLASS. The sondes use LORAN-C navigation signals to allow calculation of balloon position and horizontal winds. In nonstormy environments, thermodynamics and wind data were almost always of high quality. Besides providing special soundings for operational forecasts and research programs, a major feature of mobile ballooning with M-CLASS is the ability to obtain additional data by flying other instruments on the balloons. We flew an electric field meter, along with a sonde, into storms on 8 of the initial 47 test flights in the spring of 1987. In storms, pressure, temperature, humidity, and wind data were of good quality about 80%, 75%, 60%, and 40% of the time, respectively. In a flight into a mesocyclone, we measured electric fields as high as 135 kV/m (at 10 km MSL) in a region of negative charge. The electric field data from several storms allow a quantitative assessment of conditions that accompany loss of LORAN data. LORAN tracking was lost at a median field of about 16 kV/m, and it returned at a median field of about 7 kV/m. Corona discharge from the LORAN antenna on the sonde was a cause of the loss of LORAN. We provided our early-afternoon M-CLASS test soundings to the National Weather Service Forecast Office in Norman, Oklahoma, in near real-time via amateur packet radio and also to the National Severe Storms Forecast Center. These soundings illustrate the potential for improving operational forecasts. Other test flights showed that M-CLASS data can provide high-resolution information on evolution of the Great Plains low-level jet stream. Our intercept of Hurricane Gilbert provided M-CLASS soundings in the right quadrant of the storm. We observed substantial wind shear in the lowest levels of the soundings around the time tornadoes were reported in south Texas. This intercept demonstrated the feasibility of taking M-CLASS data during the landfall phase of hurricanes and tropical storms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002EGSGA..27..657S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002EGSGA..27..657S"><span>Synoptic Regulation of The 3 May 1999 Oklahoma Tornado Outbreak</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schultz, D. M.; Roebber, P. J.; Romero, R.</p> <p></p> <p>Despite the relatively successful long-lead-time forecasts of the storms during the 3 May 1999 tornadic outbreak in Oklahoma and Kansas, forecasters were unable to predict with confidence details concerning convective initiation and convective mode. The forecasters identified three synoptic processes they were monitoring for clues as to how the event would unfold. These elements were (a) the absence of strong surface convergence along a dryline in western Oklahoma and the Texas panhandle, (b) the presence of a cirrus shield that was hypothesized to limit surface heating, and (c) the arrival into Oklahoma of an upper-level wind-speed maximum (associated with the so- called southern PV anomaly) that was responsible for favorable synoptic-scale ascent and the cirrus shield. The Pennsylvania State University/National Center for Atmospheric Research Mesoscale Model Version 5 (MM5) is used in forecast mode (using the operational AVN run data to provide initial and lateral boundary conditions) to explore the sen- sitivity of the outbreak to these features using simulations down to 2-km horizontal grid spacing. A 30-h control simulation is compared to the available observations and captures important qualitative characteristics of the event, including convective initi- ation east of the dryline and organization of mesoscale convective systems into long lived, long-track supercells. Additional simulations in which the initial strength of the southern PV anomaly is altered suggest that synoptic regulation of the 3 May 1999 event was imposed by the effects of the southern PV anomaly. The model results in- dicate that: (1) convective initiation in the weakly forced environment was achieved through modification of the existing cap through both surface heating and synoptic- scale ascent associated with the southern PV anomaly; (2) supercellular organization was supported regardless of the strength of the southern PV anomaly, although weak- to-moderate forcing from this feature was most conducive to the production of long lived supercells and strong forcing resulted in a trend toward linear mesoscale convec- tive systems; (3) the cirrus shield was important in limiting development of convection and reducing competition between storms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1917833C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1917833C"><span>Evolution of Indian land surface biases in the seasonal hindcasts from the Met Office Global Seasonal Forecasting System GloSea5</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chevuturi, Amulya; Turner, Andrew G.; Woolnoug, Steve J.; Martin, Gill</p> <p>2017-04-01</p> <p>In this study we investigate the development of biases over the Indian region in summer hindcasts of the UK Met Office coupled initialised global seasonal forecasting system, GloSea5-GC2. Previous work has demonstrated the rapid evolution of strong monsoon circulation biases over India from seasonal forecasts initialised in early May, together with coupled strong easterly wind biases on the equator. These mean state biases lead to strong precipitation errors during the monsoon over the subcontinent. We analyse a set of three springtime start dates for the 20-year hindcast period (1992-2011) and fifteen total ensemble members for each year. We use comparisons with variety of observations to assess the evolution of the mean state biases over the Indian land surface. All biases within the model develop rapidly, particularly surface heat and radiation flux biases. Strong biases are present within the model climatology from pre-monsoon (May) in the surface heat fluxes over India (higher sensible / lower latent heat fluxes) when compared to observed estimates. The early evolution of such biases prior to onset rains suggests possible problems with the land surface scheme or soil moisture errors. Further analysis of soil moisture over the Indian land surface shows a dry bias present from the beginning of the hindcasts during the pre-monsoon. This lasts until the after the monsoon develops (July) after which there is a wet bias over the region. Soil moisture used for initialization of the model also shows a dry bias when compared against the observed estimates, which may lead to the same in the model. The early dry bias in the model may reduce local moisture availability through surface evaporation and thus may possibly limit precipitation recycling. On this premise, we identify and test the sensitivity of the monsoon in the model against higher soil moisture forcing. We run sensitivity experiments initiated using gridpoint-wise annual soil moisture maxima over the Indian land surface as input for experiments in the atmosphere-only version of the model. We plan to analyse the response of the sensitivity experiments on seasonal forecasting of surface heat fluxes and subsequently monsoon precipitation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMGC21B0955D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMGC21B0955D"><span>DEA-I: A Globally Configurable Open Source Software Package in Support of Air Quality Forecasts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Davies, J.; Strabala, K.; Pierce, R.; Huang, H.; Schiffer, E.</p> <p>2012-12-01</p> <p>During September 2003, a team of NASA, NOAA, and EPA researchers demonstrated a prototype for using Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth retrievals in daily air quality forecasts; this became known as IDEA (Infusing satellite Data into Environmental Applications). IDEA was part of the NASA Applied Sciences Program strategy to demonstrate practical uses of NASA-sponsored observations from space and predictions. Following its successful demonstration an export version of IDEA, known as IDEA International (IDEA-I), has now been released. IDEA-I supports the Global Earth Observation Systems of Systems (GEOSS) Group on Earth Observations (GEO) Health Societal Benefit Area (SBA) and is being developed within the framework of the GEO Earth Observations in Decision Support Call for Proposals. The vehicle for IDEA-I release is the International MODIS and AIRS (Atmospheric Infrared Sounder) Processing Package (IMAPP), developed at the Space Science and Engineering Center, University of Wisconsin-Madison (SSEC/UW-Madison). IMAPP is a NASA-funded and freely-distributed software package which allows any ground station capable of receiving direct broadcast from Terra or Aqua to produce calibrated and geolocated radiances, and a suite of environmental products, of which the IDEA-I 48-hour forward trajectory prediction of high aerosol events is now a part. IDEA-I provides a tool for linking ground-based and satellite capabilities to support international air quality forecasting activities and is to be demonstrated internationally through user training and impact evaluation via a series of IMAPP workshops. This presentation describes the IMAPP implementation of IDEA-I in terms of its simple installation and configuration, and through examples of its operation in several regions known for periodic high aerosol events.; Screen capture of the University of Wisconsin implementation of the real-time direct broadcast IDEA-I Air Quality monitoring website. This example uses Terra MODIS Aerosol Optical Depth retrievals to identify regions of high aerosol concentrations. A trajectory model is then run that provide a forecast of the horizontal and vertical movement of the aerosols over the next 48 hours.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013HESS...17.3853L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013HESS...17.3853L"><span>The potential of radar-based ensemble forecasts for flash-flood early warning in the southern Swiss Alps</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liechti, K.; Panziera, L.; Germann, U.; Zappa, M.</p> <p>2013-10-01</p> <p>This study explores the limits of radar-based forecasting for hydrological runoff prediction. Two novel radar-based ensemble forecasting chains for flash-flood early warning are investigated in three catchments in the southern Swiss Alps and set in relation to deterministic discharge forecasts for the same catchments. The first radar-based ensemble forecasting chain is driven by NORA (Nowcasting of Orographic Rainfall by means of Analogues), an analogue-based heuristic nowcasting system to predict orographic rainfall for the following eight hours. The second ensemble forecasting system evaluated is REAL-C2, where the numerical weather prediction COSMO-2 is initialised with 25 different initial conditions derived from a four-day nowcast with the radar ensemble REAL. Additionally, three deterministic forecasting chains were analysed. The performance of these five flash-flood forecasting systems was analysed for 1389 h between June 2007 and December 2010 for which NORA forecasts were issued, due to the presence of orographic forcing. A clear preference was found for the ensemble approach. Discharge forecasts perform better when forced by NORA and REAL-C2 rather then by deterministic weather radar data. Moreover, it was observed that using an ensemble of initial conditions at the forecast initialisation, as in REAL-C2, significantly improved the forecast skill. These forecasts also perform better then forecasts forced by ensemble rainfall forecasts (NORA) initialised form a single initial condition of the hydrological model. Thus the best results were obtained with the REAL-C2 forecasting chain. However, for regions where REAL cannot be produced, NORA might be an option for forecasting events triggered by orographic precipitation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19850020194','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19850020194"><span>Centralized Storm Information System (CSIS)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Norton, C. C.</p> <p>1985-01-01</p> <p>A final progress report is presented on the Centralized Storm Information System (CSIS). The primary purpose of the CSIS is to demonstrate and evaluate real time interactive computerized data collection, interpretation and display techniques as applied to severe weather forecasting. CSIS objectives pertaining to improved severe storm forecasting and warning systems are outlined. The positive impact that CSIS has had on the National Severe Storms Forecast Center (NSSFC) is discussed. The benefits of interactive processing systems on the forecasting ability of the NSSFC are described.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.5523T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.5523T"><span>Potential for malaria seasonal forecasting in Africa</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tompkins, Adrian; Di Giuseppe, Francesca; Colon-Gonzalez, Felipe; Namanya, Didas; Friday, Agabe</p> <p>2014-05-01</p> <p>As monthly and seasonal dynamical prediction systems have improved their skill in the tropics over recent years, there is now the potential to use these forecasts to drive dynamical malaria modelling systems to provide early warnings in epidemic and meso-endemic regions. We outline a new pilot operational system that has been developed at ECMWF and ICTP. It uses a precipitation bias correction methodology to seamlessly join the monthly ensemble prediction system (EPS) and seasonal (system 4) forecast systems of ECMWF together. The resulting temperature and rainfall forecasts for Africa are then used to drive the recently developed ICTP malaria model known as VECTRI. The resulting coupled system of ECMWF climate forecasts and VECTRI thus produces predictions of malaria prevalence rates and transmission intensity across Africa. The forecasts are filtered to highlight the regions and months in which the system has particular value due to high year to year variability. In addition to epidemic areas, these also include meso and hyper-endemic regions which undergo considerable variability in the onset months. We demonstrate the limits of the forecast skill as a function of lead-time, showing that for many areas the dynamical system can add one to two months additional warning time to a system based on environmental monitoring. We then evaluate the past forecasts against district level case data in Uganda and show that when interventions can be discounted, the system can show significant skill at predicting interannual variability in transmission intensity up to 3 or 4 months ahead at the district scale. The prospects for a operational implementation will be briefly discussed.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110001586','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110001586"><span>Tool for Forecasting Cool-Season Peak Winds Across Kennedy Space Center and Cape Canaveral Air Force Station</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Barrett, Joe H., III; Roeder, William P.</p> <p>2010-01-01</p> <p>The expected peak wind speed for the day is an important element in the daily morning forecast for ground and space launch operations at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS). The 45th Weather Squadron (45 WS) must issue forecast advisories for KSC/CCAFS when they expect peak gusts for >= 25, >= 35, and >= 50 kt thresholds at any level from the surface to 300 ft. In Phase I of this task, the 45 WS tasked the Applied Meteorology Unit (AMU) to develop a cool-season (October - April) tool to help forecast the non-convective peak wind from the surface to 300 ft at KSC/CCAFS. During the warm season, these wind speeds are rarely exceeded except during convective winds or under the influence of tropical cyclones, for which other techniques are already in use. The tool used single and multiple linear regression equations to predict the peak wind from the morning sounding. The forecaster manually entered several observed sounding parameters into a Microsoft Excel graphical user interface (GUI), and then the tool displayed the forecast peak wind speed, average wind speed at the time of the peak wind, the timing of the peak wind and the probability the peak wind will meet or exceed 35, 50 and 60 kt. The 45 WS customers later dropped the requirement for >= 60 kt wind warnings. During Phase II of this task, the AMU expanded the period of record (POR) by six years to increase the number of observations used to create the forecast equations. A large number of possible predictors were evaluated from archived soundings, including inversion depth and strength, low-level wind shear, mixing height, temperature lapse rate and winds from the surface to 3000 ft. Each day in the POR was stratified in a number of ways, such as by low-level wind direction, synoptic weather pattern, precipitation and Bulk Richardson number. The most accurate Phase II equations were then selected for an independent verification. The Phase I and II forecast methods were compared using an independent verification data set. The two methods were compared to climatology, wind warnings and advisories issued by the 45 WS, and North American Mesoscale (NAM) model (MesoNAM) forecast winds. The performance of the Phase I and II methods were similar with respect to mean absolute error. Since the Phase I data were not stratified by precipitation, this method's peak wind forecasts had a large negative bias on days with precipitation and a small positive bias on days with no precipitation. Overall, the climatology methods performed the worst while the MesoNAM performed the best. Since the MesoNAM winds were the most accurate in the comparison, the final version of the tool was based on the MesoNAM winds. The probability the peak wind will meet or exceed the warning thresholds were based on the one standard deviation error bars from the linear regression. For example, the linear regression might forecast the most likely peak speed to be 35 kt and the error bars used to calculate that the probability of >= 25 kt = 76%, the probability of >= 35 kt = 50%, and the probability of >= 50 kt = 19%. The authors have not seen this application of linear regression error bars in any other meteorological applications. Although probability forecast tools should usually be developed with logistic regression, this technique could be easily generalized to any linear regression forecast tool to estimate the probability of exceeding any desired threshold . This could be useful for previously developed linear regression forecast tools or new forecast applications where statistical analysis software to perform logistic regression is not available. The tool was delivered in two formats - a Microsoft Excel GUI and a Tool Command Language/Tool Kit (Tcl/Tk) GUI in the Meteorological Interactive Data Display System (MIDDS). The Microsoft Excel GUI reads a MesoNAM text file containing hourly forecasts from 0 to 84 hours, from one model run (00 or 12 UTC). The GUI then displays e peak wind speed, average wind speed, and the probability the peak wind will meet or exceed the 25-, 35- and 50-kt thresholds. The user can display the Day-1 through Day-3 peak wind forecasts, and separate forecasts are made for precipitation and non-precipitation days. The MIDDS GUI uses data from the NAM and Global Forecast System (GFS), instead of the MesoNAM. It can display Day-1 and Day-2 forecasts using NAM data, and Day-1 through Day-5 forecasts using GFS data. The timing of the peak wind is not displayed, since the independent verification showed that none of the forecast methods performed significantly better than climatology. The forecaster should use the climatological timing of the peak wind (2248 UTC) as a first guess and then adjust it based on the movement of weather features.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16297222','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16297222"><span>Forecasting Spanish natural life expectancy.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Guillen, Montserrat; Vidiella-i-Anguera, Antoni</p> <p>2005-10-01</p> <p>Knowledge of trends in life expectancy is of major importance for policy planning. It is also a key indicator for assessing future development of life insurance products, substantiality of existing retirement schemes, and long-term care for the elderly. This article examines the feasibility of decomposing age-gender-specific accidental and natural mortality rates. We study this decomposition by using the Lee and Carter model. In particular, we fit the Poisson log-bilinear version of this model proposed by Wilmoth and Brouhns et al. to historical (1975-1998) Spanish mortality rates. In addition, by using the model introduced by Wilmoth and Valkonen we analyze mortality-gender differentials for accidental and natural rates. We present aggregated life expectancy forecasts compared with those constructed using nondecomposed mortality rates.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19790037256&hterms=information+analysis&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dinformation%2Banalysis','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19790037256&hterms=information+analysis&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dinformation%2Banalysis"><span>The value of information as applied to the Landsat Follow-on benefit-cost analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wood, D. B.</p> <p>1978-01-01</p> <p>An econometric model was run to compare the current forecasting system with a hypothetical (Landsat Follow-on) space-based system. The baseline current system was a hybrid of USDA SRS domestic forecasts and the best known foreign data. The space-based system improved upon the present Landsat by the higher spatial resolution capability of the thematic mapper. This satellite system is a major improvement for foreign forecasts but no better than SRS for domestic forecasts. The benefit analysis was concentrated on the use of Landsat Follow-on to forecast world wheat production. Results showed that it was possible to quantify the value of satellite information and that there are significant benefits in more timely and accurate crop condition information.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.H13K..06W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.H13K..06W"><span>An assessment of a North American Multi-Model Ensemble (NMME) based global drought early warning forecast system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wood, E. F.; Yuan, X.; Sheffield, J.; Pan, M.; Roundy, J.</p> <p>2013-12-01</p> <p>One of the key recommendations of the WCRP Global Drought Information System (GDIS) workshop is to develop an experimental real-time global monitoring and prediction system. While great advances has been made in global drought monitoring based on satellite observations and model reanalysis data, global drought forecasting has been stranded in part due to the limited skill both in climate forecast models and global hydrologic predictions. Having been working on drought monitoring and forecasting over USA for more than a decade, the Princeton land surface hydrology group is now developing an experimental global drought early warning system that is based on multiple climate forecast models and a calibrated global hydrologic model. In this presentation, we will test its capability in seasonal forecasting of meteorological, agricultural and hydrologic droughts over global major river basins, using precipitation, soil moisture and streamflow forecasts respectively. Based on the joint probability distribution between observations using Princeton's global drought monitoring system and model hindcasts and real-time forecasts from North American Multi-Model Ensemble (NMME) project, we (i) bias correct the monthly precipitation and temperature forecasts from multiple climate forecast models, (ii) downscale them to a daily time scale, and (iii) use them to drive the calibrated VIC model to produce global drought forecasts at a 1-degree resolution. A parallel run using the ESP forecast method, which is based on resampling historical forcings, is also carried out for comparison. Analysis is being conducted over global major river basins, with multiple drought indices that have different time scales and characteristics. The meteorological drought forecast does not have uncertainty from hydrologic models and can be validated directly against observations - making the validation an 'apples-to-apples' comparison. Preliminary results for the evaluation of meteorological drought onset hindcasts indicate that climate models increase drought detectability over ESP by 31%-81%. However, less than 30% of the global drought onsets can be detected by climate models. The missed drought events are associated with weak ENSO signals and lower potential predictability. Due to the high false alarms from climate models, the reliability is more important than sharpness for a skillful probabilistic drought onset forecast. Validations and skill assessments for agricultural and hydrologic drought forecasts are carried out using soil moisture and streamflow output from the VIC land surface model (LSM) forced by a global forcing data set. Given our previous drought forecasting experiences over USA and Africa, validating the hydrologic drought forecasting is a significant challenge for a global drought early warning system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.5156M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.5156M"><span>Performance assessment of deterministic and probabilistic weather predictions for the short-term optimization of a tropical hydropower reservoir</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mainardi Fan, Fernando; Schwanenberg, Dirk; Alvarado, Rodolfo; Assis dos Reis, Alberto; Naumann, Steffi; Collischonn, Walter</p> <p>2016-04-01</p> <p>Hydropower is the most important electricity source in Brazil. During recent years, it accounted for 60% to 70% of the total electric power supply. Marginal costs of hydropower are lower than for thermal power plants, therefore, there is a strong economic motivation to maximize its share. On the other hand, hydropower depends on the availability of water, which has a natural variability. Its extremes lead to the risks of power production deficits during droughts and safety issues in the reservoir and downstream river reaches during flood events. One building block of the proper management of hydropower assets is the short-term forecast of reservoir inflows as input for an online, event-based optimization of its release strategy. While deterministic forecasts and optimization schemes are the established techniques for the short-term reservoir management, the use of probabilistic ensemble forecasts and stochastic optimization techniques receives growing attention and a number of researches have shown its benefit. The present work shows one of the first hindcasting and closed-loop control experiments for a multi-purpose hydropower reservoir in a tropical region in Brazil. The case study is the hydropower project (HPP) Três Marias, located in southeast Brazil. The HPP reservoir is operated with two main objectives: (i) hydroelectricity generation and (ii) flood control at Pirapora City located 120 km downstream of the dam. In the experiments, precipitation forecasts based on observed data, deterministic and probabilistic forecasts with 50 ensemble members of the ECMWF are used as forcing of the MGB-IPH hydrological model to generate streamflow forecasts over a period of 2 years. The online optimization depends on a deterministic and multi-stage stochastic version of a model predictive control scheme. Results for the perfect forecasts show the potential benefit of the online optimization and indicate a desired forecast lead time of 30 days. In comparison, the use of actual forecasts with shorter lead times of up to 15 days shows the practical benefit of actual operational data. It appears that the use of stochastic optimization combined with ensemble forecasts leads to a significant higher level of flood protection without compromising the HPP's energy production.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AIPC.1738U0031F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AIPC.1738U0031F"><span>New efficient optimizing techniques for Kalman filters and numerical weather prediction models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Famelis, Ioannis; Galanis, George; Liakatas, Aristotelis</p> <p>2016-06-01</p> <p>The need for accurate local environmental predictions and simulations beyond the classical meteorological forecasts are increasing the last years due to the great number of applications that are directly or not affected: renewable energy resource assessment, natural hazards early warning systems, global warming and questions on the climate change can be listed among them. Within this framework the utilization of numerical weather and wave prediction systems in conjunction with advanced statistical techniques that support the elimination of the model bias and the reduction of the error variability may successfully address the above issues. In the present work, new optimization methods are studied and tested in selected areas of Greece where the use of renewable energy sources is of critical. The added value of the proposed work is due to the solid mathematical background adopted making use of Information Geometry and Statistical techniques, new versions of Kalman filters and state of the art numerical analysis tools.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A14C..02S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A14C..02S"><span>Development and validation of a regional coupled forecasting system for S2S forecasts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sun, R.; Subramanian, A. C.; Hoteit, I.; Miller, A. J.; Ralph, M.; Cornuelle, B. D.</p> <p>2017-12-01</p> <p>Accurate and efficient forecasting of oceanic and atmospheric circulation is essential for a wide variety of high-impact societal needs, including: weather extremes; environmental protection and coastal management; management of fisheries, marine conservation; water resources; and renewable energy. Effective forecasting relies on high model fidelity and accurate initialization of the models with observed state of the ocean-atmosphere-land coupled system. A regional coupled ocean-atmosphere model with the Weather Research and Forecasting (WRF) model and the MITGCM ocean model coupled using the ESMF (Earth System Modeling Framework) coupling framework is developed to resolve mesoscale air-sea feedbacks. The regional coupled model allows oceanic mixed layer heat and momentum to interact with the atmospheric boundary layer dynamics at the mesoscale and submesoscale spatiotemporal regimes, thus leading to feedbacks which are otherwise not resolved in coarse resolution global coupled forecasting systems or regional uncoupled forecasting systems. The model is tested in two scenarios in the mesoscale eddy rich Red Sea and Western Indian Ocean region as well as mesoscale eddies and fronts of the California Current System. Recent studies show evidence for air-sea interactions involving the oceanic mesoscale in these two regions which can enhance predictability on sub seasonal timescale. We will present results from this newly developed regional coupled ocean-atmosphere model for forecasts over the Red Sea region as well as the California Current region. The forecasts will be validated against insitu observations in the region as well as reanalysis fields.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26226185','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26226185"><span>Forecasting Influenza Epidemics in Hong Kong.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yang, Wan; Cowling, Benjamin J; Lau, Eric H Y; Shaman, Jeffrey</p> <p>2015-07-01</p> <p>Recent advances in mathematical modeling and inference methodologies have enabled development of systems capable of forecasting seasonal influenza epidemics in temperate regions in real-time. However, in subtropical and tropical regions, influenza epidemics can occur throughout the year, making routine forecast of influenza more challenging. Here we develop and report forecast systems that are able to predict irregular non-seasonal influenza epidemics, using either the ensemble adjustment Kalman filter or a modified particle filter in conjunction with a susceptible-infected-recovered (SIR) model. We applied these model-filter systems to retrospectively forecast influenza epidemics in Hong Kong from January 1998 to December 2013, including the 2009 pandemic. The forecast systems were able to forecast both the peak timing and peak magnitude for 44 epidemics in 16 years caused by individual influenza strains (i.e., seasonal influenza A(H1N1), pandemic A(H1N1), A(H3N2), and B), as well as 19 aggregate epidemics caused by one or more of these influenza strains. Average forecast accuracies were 37% (for both peak timing and magnitude) at 1-3 week leads, and 51% (peak timing) and 50% (peak magnitude) at 0 lead. Forecast accuracy increased as the spread of a given forecast ensemble decreased; the forecast accuracy for peak timing (peak magnitude) increased up to 43% (45%) for H1N1, 93% (89%) for H3N2, and 53% (68%) for influenza B at 1-3 week leads. These findings suggest that accurate forecasts can be made at least 3 weeks in advance for subtropical and tropical regions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4520691','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4520691"><span>Forecasting Influenza Epidemics in Hong Kong</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Yang, Wan; Cowling, Benjamin J.; Lau, Eric H. Y.; Shaman, Jeffrey</p> <p>2015-01-01</p> <p>Recent advances in mathematical modeling and inference methodologies have enabled development of systems capable of forecasting seasonal influenza epidemics in temperate regions in real-time. However, in subtropical and tropical regions, influenza epidemics can occur throughout the year, making routine forecast of influenza more challenging. Here we develop and report forecast systems that are able to predict irregular non-seasonal influenza epidemics, using either the ensemble adjustment Kalman filter or a modified particle filter in conjunction with a susceptible-infected-recovered (SIR) model. We applied these model-filter systems to retrospectively forecast influenza epidemics in Hong Kong from January 1998 to December 2013, including the 2009 pandemic. The forecast systems were able to forecast both the peak timing and peak magnitude for 44 epidemics in 16 years caused by individual influenza strains (i.e., seasonal influenza A(H1N1), pandemic A(H1N1), A(H3N2), and B), as well as 19 aggregate epidemics caused by one or more of these influenza strains. Average forecast accuracies were 37% (for both peak timing and magnitude) at 1-3 week leads, and 51% (peak timing) and 50% (peak magnitude) at 0 lead. Forecast accuracy increased as the spread of a given forecast ensemble decreased; the forecast accuracy for peak timing (peak magnitude) increased up to 43% (45%) for H1N1, 93% (89%) for H3N2, and 53% (68%) for influenza B at 1-3 week leads. These findings suggest that accurate forecasts can be made at least 3 weeks in advance for subtropical and tropical regions. PMID:26226185</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..1210275V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..1210275V"><span>A probabilistic approach of the Flash Flood Early Warning System (FF-EWS) in Catalonia based on radar ensemble generation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Velasco, David; Sempere-Torres, Daniel; Corral, Carles; Llort, Xavier; Velasco, Enrique</p> <p>2010-05-01</p> <p>Early Warning Systems (EWS) are commonly identified as the most efficient tools in order to improve the preparedness and risk management against heavy rains and Flash Floods (FF) with the objective of reducing economical losses and human casualties. In particular, flash floods affecting torrential Mediterranean catchments are a key element to be incorporated within operational EWSs. The characteristic high spatial and temporal variability of the storms requires high-resolution data and methods to monitor/forecast the evolution of rainfall and its hydrological impact in small and medium torrential basins. A first version of an operational FF-EWS has been implemented in Catalonia (NE Spain) under the name of EHIMI system (Integrated Tool for Hydrometeorological Forecasting) with the support of the Catalan Water Agency (ACA) and the Meteorological Service of Catalonia (SMC). Flash flood warnings are issued based on radar-rainfall estimates. Rainfall estimation is performed on radar observations with high spatial and temporal resolution (1km2 and 10 minutes) in order to adapt the warning scale to the 1-km grid of the EWS. The method is based on comparing observed accumulated rainfall against rainfall thresholds provided by the regional Intensity-Duration-Frequency (IDF) curves. The so-called "aggregated rainfall warning" at every river cell is obtained as the spatially averaged rainfall over its associated upstream draining area. Regarding the time aggregation of rainfall, the critical duration is thought to be an accumulation period similar to the concentration time of each cachtment. The warning is issued once the forecasted rainfall accumulation exceeds the rainfall thresholds mentioned above, which are associated to certain probability of occurrence. Finally, the hazard warning is provided and shown to the decision-maker in terms of exceeded return periods at every river cell covering the whole area of Catalonia. The objective of the present work includes the probabilistic component to the FF-EWS. As a first step, we have incorporated the uncertainty in rainfall estimates and forecasts based on an ensemble of equiprobable rainfall scenarios. The presented study has focused on a number of rainfall events and the performance of the FF-EWS evaluated in terms of its ability to produce probabilistic hazard warnings for decision-making support.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26979129','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26979129"><span>Self-Organizing Maps-based ocean currents forecasting system.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Vilibić, Ivica; Šepić, Jadranka; Mihanović, Hrvoje; Kalinić, Hrvoje; Cosoli, Simone; Janeković, Ivica; Žagar, Nedjeljka; Jesenko, Blaž; Tudor, Martina; Dadić, Vlado; Ivanković, Damir</p> <p>2016-03-16</p> <p>An ocean surface currents forecasting system, based on a Self-Organizing Maps (SOM) neural network algorithm, high-frequency (HF) ocean radar measurements and numerical weather prediction (NWP) products, has been developed for a coastal area of the northern Adriatic and compared with operational ROMS-derived surface currents. The two systems differ significantly in architecture and algorithms, being based on either unsupervised learning techniques or ocean physics. To compare performance of the two methods, their forecasting skills were tested on independent datasets. The SOM-based forecasting system has a slightly better forecasting skill, especially during strong wind conditions, with potential for further improvement when data sets of higher quality and longer duration are used for training.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4793242','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4793242"><span>Self-Organizing Maps-based ocean currents forecasting system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Vilibić, Ivica; Šepić, Jadranka; Mihanović, Hrvoje; Kalinić, Hrvoje; Cosoli, Simone; Janeković, Ivica; Žagar, Nedjeljka; Jesenko, Blaž; Tudor, Martina; Dadić, Vlado; Ivanković, Damir</p> <p>2016-01-01</p> <p>An ocean surface currents forecasting system, based on a Self-Organizing Maps (SOM) neural network algorithm, high-frequency (HF) ocean radar measurements and numerical weather prediction (NWP) products, has been developed for a coastal area of the northern Adriatic and compared with operational ROMS-derived surface currents. The two systems differ significantly in architecture and algorithms, being based on either unsupervised learning techniques or ocean physics. To compare performance of the two methods, their forecasting skills were tested on independent datasets. The SOM-based forecasting system has a slightly better forecasting skill, especially during strong wind conditions, with potential for further improvement when data sets of higher quality and longer duration are used for training. PMID:26979129</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016HESS...20.3549C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016HESS...20.3549C"><span>Action-based flood forecasting for triggering humanitarian action</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Coughlan de Perez, Erin; van den Hurk, Bart; van Aalst, Maarten K.; Amuron, Irene; Bamanya, Deus; Hauser, Tristan; Jongma, Brenden; Lopez, Ana; Mason, Simon; Mendler de Suarez, Janot; Pappenberger, Florian; Rueth, Alexandra; Stephens, Elisabeth; Suarez, Pablo; Wagemaker, Jurjen; Zsoter, Ervin</p> <p>2016-09-01</p> <p>Too often, credible scientific early warning information of increased disaster risk does not result in humanitarian action. With financial resources tilted heavily towards response after a disaster, disaster managers have limited incentive and ability to process complex scientific data, including uncertainties. These incentives are beginning to change, with the advent of several new forecast-based financing systems that provide funding based on a forecast of an extreme event. Given the changing landscape, here we demonstrate a method to select and use appropriate forecasts for specific humanitarian disaster prevention actions, even in a data-scarce location. This action-based forecasting methodology takes into account the parameters of each action, such as action lifetime, when verifying a forecast. Forecasts are linked with action based on an understanding of (1) the magnitude of previous flooding events and (2) the willingness to act "in vain" for specific actions. This is applied in the context of the Uganda Red Cross Society forecast-based financing pilot project, with forecasts from the Global Flood Awareness System (GloFAS). Using this method, we define the "danger level" of flooding, and we select the probabilistic forecast triggers that are appropriate for specific actions. Results from this methodology can be applied globally across hazards and fed into a financing system that ensures that automatic, pre-funded early action will be triggered by forecasts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ClDy..tmp...72M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ClDy..tmp...72M"><span>Seasonal drought ensemble predictions based on multiple climate models in the upper Han River Basin, China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ma, Feng; Ye, Aizhong; Duan, Qingyun</p> <p>2017-03-01</p> <p>An experimental seasonal drought forecasting system is developed based on 29-year (1982-2010) seasonal meteorological hindcasts generated by the climate models from the North American Multi-Model Ensemble (NMME) project. This system made use of a bias correction and spatial downscaling method, and a distributed time-variant gain model (DTVGM) hydrologic model. DTVGM was calibrated using observed daily hydrological data and its streamflow simulations achieved Nash-Sutcliffe efficiency values of 0.727 and 0.724 during calibration (1978-1995) and validation (1996-2005) periods, respectively, at the Danjiangkou reservoir station. The experimental seasonal drought forecasting system (known as NMME-DTVGM) is used to generate seasonal drought forecasts. The forecasts were evaluated against the reference forecasts (i.e., persistence forecast and climatological forecast). The NMME-DTVGM drought forecasts have higher detectability and accuracy and lower false alarm rate than the reference forecasts at different lead times (from 1 to 4 months) during the cold-dry season. No apparent advantage is shown in drought predictions during spring and summer seasons because of a long memory of the initial conditions in spring and a lower predictive skill for precipitation in summer. Overall, the NMME-based seasonal drought forecasting system has meaningful skill in predicting drought several months in advance, which can provide critical information for drought preparedness and response planning as well as the sustainable practice of water resource conservation over the basin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016SPIE.9688E..1EZ','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016SPIE.9688E..1EZ"><span>Visualization of ocean forecast in BYTHOS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhuk, E.; Zodiatis, G.; Nikolaidis, A.; Stylianou, S.; Karaolia, A.</p> <p>2016-08-01</p> <p>The Cyprus Oceanography Center has been constantly searching for new ideas for developing and implementing innovative methods and new developments concerning the use of Information Systems in Oceanography, to suit both the Center's monitoring and forecasting products. Within the frame of this scope two major online managing and visualizing data systems have been developed and utilized, those of CYCOFOS and BYTHOS. The Cyprus Coastal Ocean Forecasting and Observing System - CYCOFOS provides a variety of operational predictions such as ultra high, high and medium resolution ocean forecasts in the Levantine Basin, offshore and coastal sea state forecasts in the Mediterranean and Black Sea, tide forecasting in the Mediterranean, ocean remote sensing in the Eastern Mediterranean and coastal and offshore monitoring. As a rich internet application, BYTHOS enables scientists to search, visualize and download oceanographic data online and in real time. The recent improving of BYTHOS system is the extension with access and visualization of CYCOFOS data and overlay forecast fields and observing data. The CYCOFOS data are stored at OPENDAP Server in netCDF format. To search, process and visualize it the php and python scripts were developed. Data visualization is achieved through Mapserver. The BYTHOS forecast access interface allows to search necessary forecasting field by recognizing type, parameter, region, level and time. Also it provides opportunity to overlay different forecast and observing data that can be used for complex analyze of sea basin aspects.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MAP...129..375P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MAP...129..375P"><span>Heat wave over India during summer 2015: an assessment of real time extended range forecast</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pattanaik, D. R.; Mohapatra, M.; Srivastava, A. K.; Kumar, Arun</p> <p>2017-08-01</p> <p>Hot winds are the marked feature of summer season in India during late spring preceding the climatological onset of the monsoon season in June. Some years the conditions becomes very vulnerable with the maximum temperature ( T max) exceeding 45 °C for many days over parts of north-western, eastern coastal states of India and Indo-Gangetic plain. During summer of 2015 (late May to early June) eastern coastal states, central and northwestern parts of India experienced severe heat wave conditions leading to loss of thousands of human life in extreme high temperature conditions. It is not only the loss of human life but also the animals and birds were very vulnerable to this extreme heat wave conditions. In this study, an attempt is made to assess the performance of real time extended range forecast (forecast up to 3 weeks) of this scorching T max based on the NCEP's Climate Forecast System (CFS) latest version coupled model (CFSv2). The heat wave condition was very severe during the week from 22 to 28 May with subsequent week from 29 May to 4 June also witnessed high T max over many parts of central India including eastern coastal states of India. The 8 ensemble members of operational CFSv2 model are used once in a week to prepare the weekly bias corrected deterministic (ensemble mean) T max forecast for 3 weeks valid from Friday to Thursday coinciding with the heat wave periods of 2015. Using the 8 ensemble members separately and the CFSv2 corresponding hindcast climatology the probability of above and below normal T max is also prepared for the same 3 weeks. The real time deterministic and probabilistic forecasts did indicate impending heat wave over many parts of India during late May and early June of 2015 associated with strong northwesterly wind over main land mass of India, delaying the sea breeze, leading to heat waves over eastern coastal regions of India. Thus, the capability of coupled model in providing early warning of such killer heat wave can be very useful to the disaster managers to take appropriate actions to minimize the loss of life and property due to such high T max.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.A43L..08K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.A43L..08K"><span>Development of an Adaptable Display and Diagnostic System for the Evaluation of Tropical Cyclone Forecasts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kucera, P. A.; Burek, T.; Halley-Gotway, J.</p> <p>2015-12-01</p> <p>NCAR's Joint Numerical Testbed Program (JNTP) focuses on the evaluation of experimental forecasts of tropical cyclones (TCs) with the goal of developing new research tools and diagnostic evaluation methods that can be transitioned to operations. Recent activities include the development of new TC forecast verification methods and the development of an adaptable TC display and diagnostic system. The next generation display and diagnostic system is being developed to support evaluation needs of the U.S. National Hurricane Center (NHC) and broader TC research community. The new hurricane display and diagnostic capabilities allow forecasters and research scientists to more deeply examine the performance of operational and experimental models. The system is built upon modern and flexible technology that includes OpenLayers Mapping tools that are platform independent. The forecast track and intensity along with associated observed track information are stored in an efficient MySQL database. The system provides easy-to-use interactive display system, and provides diagnostic tools to examine forecast track stratified by intensity. Consensus forecasts can be computed and displayed interactively. The system is designed to display information for both real-time and for historical TC cyclones. The display configurations are easily adaptable to meet the needs of the end-user preferences. Ongoing enhancements include improving capabilities for stratification and evaluation of historical best tracks, development and implementation of additional methods to stratify and compute consensus hurricane track and intensity forecasts, and improved graphical display tools. The display is also being enhanced to incorporate gridded forecast, satellite, and sea surface temperature fields. The presentation will provide an overview of the display and diagnostic system development and demonstration of the current capabilities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010ems..confE.145T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010ems..confE.145T"><span>The state of the art of flood forecasting - Hydrological Ensemble Prediction Systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thielen-Del Pozo, J.; Pappenberger, F.; Salamon, P.; Bogner, K.; Burek, P.; de Roo, A.</p> <p>2010-09-01</p> <p>Flood forecasting systems form a key part of ‘preparedness' strategies for disastrous floods and provide hydrological services, civil protection authorities and the public with information of upcoming events. Provided the warning leadtime is sufficiently long, adequate preparatory actions can be taken to efficiently reduce the impacts of the flooding. Because of the specific characteristics of each catchment, varying data availability and end-user demands, the design of the best flood forecasting system may differ from catchment to catchment. However, despite the differences in concept and data needs, there is one underlying issue that spans across all systems. There has been an growing awareness and acceptance that uncertainty is a fundamental issue of flood forecasting and needs to be dealt with at the different spatial and temporal scales as well as the different stages of the flood generating processes. Today, operational flood forecasting centres change increasingly from single deterministic forecasts to probabilistic forecasts with various representations of the different contributions of uncertainty. The move towards these so-called Hydrological Ensemble Prediction Systems (HEPS) in flood forecasting represents the state of the art in forecasting science, following on the success of the use of ensembles for weather forecasting (Buizza et al., 2005) and paralleling the move towards ensemble forecasting in other related disciplines such as climate change predictions. The use of HEPS has been internationally fostered by initiatives such as "The Hydrologic Ensemble Prediction Experiment" (HEPEX), created with the aim to investigate how best to produce, communicate and use hydrologic ensemble forecasts in hydrological short-, medium- und long term prediction of hydrological processes. The advantages of quantifying the different contributions of uncertainty as well as the overall uncertainty to obtain reliable and useful flood forecasts also for extreme events, has become evident. However, despite the demonstrated advantages, worldwide the incorporation of HEPS in operational flood forecasting is still limited. The applicability of HEPS for smaller river basins was tested in MAP D-Phase, an acronym for "Demonstration of Probabilistic Hydrological and Atmospheric Simulation of flood Events in the Alpine region" which was launched in 2005 as a Forecast Demonstration Project of World Weather Research Programme of WMO, and entered a pre-operational and still active testing phase in 2007. In Europe, a comparatively high number of EPS driven systems for medium-large rivers exist. National flood forecasting centres of Sweden, Finland and the Netherlands, have already implemented HEPS in their operational forecasting chain, while in other countries including France, Germany, Czech Republic and Hungary, hybrids or experimental chains have been installed. As an example of HEPS, the European Flood Alert System (EFAS) is being presented. EFAS provides medium-range probabilistic flood forecasting information for large trans-national river basins. It incorporates multiple sets of weather forecast including different types of EPS and deterministic forecasts from different providers. EFAS products are evaluated and visualised as exceedance of critical levels only - both in forms of maps and time series. Different sources of uncertainty and its impact on the flood forecasting performance for every grid cell has been tested offline but not yet incorporated operationally into the forecasting chain for computational reasons. However, at stations where real-time discharges are available, a hydrological uncertainty processor is being applied to estimate the total predictive uncertainty from the hydrological and input uncertainties. Research on long-term EFAS results has shown the need for complementing statistical analysis with case studies for which examples will be shown.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/19389','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/19389"><span>Traffic flow forecasting for intelligent transportation systems.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>1995-01-01</p> <p>The capability to forecast traffic volume in an operational setting has been identified as a critical need for intelligent transportation systems (ITS). In particular, traffic volume forecasts will directly support proactive traffic control and accur...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H11E1214M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H11E1214M"><span>The Community WRF-Hydro Modeling System Version 4 Updates: Merging Toward Capabilities of the National Water Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McAllister, M.; Gochis, D.; Dugger, A. L.; Karsten, L. R.; McCreight, J. L.; Pan, L.; Rafieeinasab, A.; Read, L. K.; Sampson, K. M.; Yu, W.</p> <p>2017-12-01</p> <p>The community WRF-Hydro modeling system is publicly available and provides researchers and operational forecasters a flexible and extensible capability for performing multi-scale, multi-physics options for hydrologic modeling that can be run independent or fully-interactive with the WRF atmospheric model. The core WRF-Hydro physics model contains very high-resolution descriptions of terrestrial hydrologic process representations such as land-atmosphere exchanges of energy and moisture, snowpack evolution, infiltration, terrain routing, channel routing, basic reservoir representation and hydrologic data assimilation. Complementing the core physics components of WRF-Hydro are an ecosystem of pre- and post-processing tools that facilitate the preparation of terrain and meteorological input data, an open-source hydrologic model evaluation toolset (Rwrfhydro), hydrologic data assimilation capabilities with DART and advanced model visualization capabilities. The National Center for Atmospheric Research (NCAR), through collaborative support from the National Science Foundation and other funding partners, provides community support for the entire WRF-Hydro system through a variety of mechanisms. This presentation summarizes the enhanced user support capabilities that are being developed for the community WRF-Hydro modeling system. These products and services include a new website, open-source code repositories, documentation and user guides, test cases, online training materials, live, hands-on training sessions, an email list serve, and individual user support via email through a new help desk ticketing system. The WRF-Hydro modeling system and supporting tools which now include re-gridding scripts and model calibration have recently been updated to Version 4 and are merging toward capabilities of the National Water Model.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>