Forecasting drug utilization and expenditure in a metropolitan health region.
Wettermark, Björn; Persson, Marie E; Wilking, Nils; Kalin, Mats; Korkmaz, Seher; Hjemdahl, Paul; Godman, Brian; Petzold, Max; Gustafsson, Lars L
2010-05-17
New pharmacological therapies are challenging the healthcare systems, and there is an increasing need to assess their therapeutic value in relation to existing alternatives as well as their potential budget impact. Consequently, new models to introduce drugs in healthcare are urgently needed. In the metropolitan health region of Stockholm, Sweden, a model has been developed including early warning (horizon scanning), forecasting of drug utilization and expenditure, critical drug evaluation as well as structured programs for the introduction and follow-up of new drugs. The aim of this paper is to present the forecasting model and the predicted growth in all therapeutic areas in 2010 and 2011. Linear regression analysis was applied to aggregate sales data on hospital sales and dispensed drugs in ambulatory care, including both reimbursed expenditure and patient co-payment. The linear regression was applied on each pharmacological group based on four observations 2006-2009, and the crude predictions estimated for the coming two years 2010-2011. The crude predictions were then adjusted for factors likely to increase or decrease future utilization and expenditure, such as patent expiries, new drugs to be launched or new guidelines from national bodies or the regional Drug and Therapeutics Committee. The assessment included a close collaboration with clinical, clinical pharmacological and pharmaceutical experts from the regional Drug and Therapeutics Committee. The annual increase in total expenditure for prescription and hospital drugs was predicted to be 2.0% in 2010 and 4.0% in 2011. Expenditures will increase in most therapeutic areas, but most predominantly for antineoplastic and immune modulating agents as well as drugs for the nervous system, infectious diseases, and blood and blood-forming organs. The utilisation and expenditure of drugs is difficult to forecast due to uncertainties about the rate of adoption of new medicines and various ongoing healthcare reforms and activities to improve the quality and efficiency of prescribing. Nevertheless, we believe our model will be valuable as an early warning system to start developing guidance for new drugs including systems to monitor their effectiveness, safety and cost-effectiveness in clinical practice.
Forecasting drug utilization and expenditure in a metropolitan health region
2010-01-01
Background New pharmacological therapies are challenging the healthcare systems, and there is an increasing need to assess their therapeutic value in relation to existing alternatives as well as their potential budget impact. Consequently, new models to introduce drugs in healthcare are urgently needed. In the metropolitan health region of Stockholm, Sweden, a model has been developed including early warning (horizon scanning), forecasting of drug utilization and expenditure, critical drug evaluation as well as structured programs for the introduction and follow-up of new drugs. The aim of this paper is to present the forecasting model and the predicted growth in all therapeutic areas in 2010 and 2011. Methods Linear regression analysis was applied to aggregate sales data on hospital sales and dispensed drugs in ambulatory care, including both reimbursed expenditure and patient co-payment. The linear regression was applied on each pharmacological group based on four observations 2006-2009, and the crude predictions estimated for the coming two years 2010-2011. The crude predictions were then adjusted for factors likely to increase or decrease future utilization and expenditure, such as patent expiries, new drugs to be launched or new guidelines from national bodies or the regional Drug and Therapeutics Committee. The assessment included a close collaboration with clinical, clinical pharmacological and pharmaceutical experts from the regional Drug and Therapeutics Committee. Results The annual increase in total expenditure for prescription and hospital drugs was predicted to be 2.0% in 2010 and 4.0% in 2011. Expenditures will increase in most therapeutic areas, but most predominantly for antineoplastic and immune modulating agents as well as drugs for the nervous system, infectious diseases, and blood and blood-forming organs. Conclusions The utilisation and expenditure of drugs is difficult to forecast due to uncertainties about the rate of adoption of new medicines and various ongoing healthcare reforms and activities to improve the quality and efficiency of prescribing. Nevertheless, we believe our model will be valuable as an early warning system to start developing guidance for new drugs including systems to monitor their effectiveness, safety and cost-effectiveness in clinical practice. PMID:20478043
Stogner, John M
2015-01-01
Countless novel psychoactive substances have been sensationally described in the last 15 years by the media and academia. Though some become significant issues, most fail to become a substantial threat. The diversity and breadth of these potential problem substances has led policymakers, law enforcement officers, and healthcare providers alike to feel overwhelmed and underprepared for dealing with novel drugs. Inadequacies in training and preparation may be remedied by a response that is more selective and more proactive. The current manuscript seeks to clarify how to most efficiently forecast the "success" of each newly introduced novel psychoactive substance in order to allow for more efficient decision making and proactive resource allocation. A review of literature, published case reports, and legal studies was used to determine which factors were most closely linked to use of a novel drug spreading. Following the development of a forecasting framework, examples of its use are provided. The resulting five-step forecast method relies on assessments of the availability of a potential user base, the costs--legal and otherwise--of the drug relative to existent analogues, the subjective experience, the substance's dependence potential and that of any existent analogue, and ease of acquisition. These five factors should serve to forecast the prevalence of novel drug use, but reaction should be conditioned by the potential for harm. The five-step forecast method predicts that use of acetyl fentanyl, kratom, Leonotis leonurus, and e-cigarettes will grow, but that use of dragonfly and similar substances will not. While this forecasting approach should not be used as a replacement for monitoring, the use of the five-step method will allow policymakers, law enforcement and practitioners to quickly begin targeted evaluative, intervention, and treatment initiatives only for those drugs with predicted harm.
National Utilization and Forecasting of Ototopical Antibiotics: Medicaid Data Versus "Dr. Google".
Crowson, Matthew G; Schulz, Kristine; Tucci, Debara L
2016-09-01
To forecast national Medicaid prescription volumes for common ototopical antibiotics, and correlate prescription volumes with internet user search interest using Google Trends (GT). National United States Medicaid prescription and GT user search database analysis. Quarterly national Medicaid summary drug utilization data and weekly GT search engine data for ciprofloxacin-dexamethasone (CD), ofloxacin (OF), and Cortisporin (CS) ototopicals were obtained from January 2008 to July 2014. Time series analysis was used to assess prescription seasonality, Holt-Winter's method for forecasting quarterly prescription volumes, and Pearson correlations to compare GT and Medicaid data. Medicaid prescription volumes demonstrated sinusoidal seasonality for OF (r = 0.91), CS (r = 0.71), and CD (r = 0.62) with annual peaks in July, August, and September. In 2017, OF was forecasted to be the most widely prescribed ototopical, followed by CD. CS was the least prescribed, and volumes were forecasted to decrease 9.0% by 2017 from 2014. GT user search interest demonstrated analogous sinusoidal seasonality and significant correlations with Medicaid data prescriptions for CD (r = 0.38, p = 0.046), OF (r = 0.74, p < 0.001), CS (r = 0.49, p = 0.008). We found that OF, CD, and CS ototopicals have sinusoidal seasonal variation with Medicaid prescription volume peaks occurring in the summer. After 2012, OF was the most commonly prescribed ototopical, and this trend was forecasted to continue. CS use was forecasted to decrease. Google user search interest in these ototopical agents demonstrated analogous seasonal variation. Analyses of GT for interest in ototopical antibiotics may be useful for health care providers and administrators as a complementary method for assessing healthcare utilization trends.
Uses and Applications of Climate Forecasts for Power Utilities.
NASA Astrophysics Data System (ADS)
Changnon, Stanley A.; Changnon, Joyce M.; Changnon, David
1995-05-01
The uses and potential applications of climate forecasts for electric and gas utilities were assessed 1) to discern needs for improving climate forecasts and guiding future research, and 2) to assist utilities in making wise use of forecasts. In-depth structured interviews were conducted with 56 decision makers in six utilities to assess existing and potential uses of climate forecasts. Only 3 of the 56 use forecasts. Eighty percent of those sampled envisioned applications of climate forecasts, given certain changes and additional information. Primary applications exist in power trading, load forecasting, fuel acquisition, and systems planning, with slight differences in interests between utilities. Utility staff understand probability-based forecasts but desire climatological information related to forecasted outcomes, including analogs similar to the forecasts, and explanations of the forecasts. Desired lead times vary from a week to three months, along with forecasts of up to four seasons ahead. The new NOAA forecasts initiated in 1995 provide the lead times and longer-term forecasts desired. Major hindrances to use of forecasts are hard-to-understand formats, lack of corporate acceptance, and lack of access to expertise. Recent changes in government regulations altered the utility industry, leading to a more competitive world wherein information about future weather conditions assumes much more value. Outreach efforts by government forecast agencies appear valuable to help achieve the appropriate and enhanced use of climate forecasts by the utility industry. An opportunity for service exists also for the private weather sector.
Park, Sun-Young; Han, Euna; Kim, Jini; Lee, Eui-Kyung
2016-08-01
This study analyzed factors contributing to increases in the actual sales volumes relative to forecasted volumes of drugs under price-volume agreement (PVA) policy in South Korea. Sales volumes of newly listed drugs on the national formulary are monitored under PVA policy. When actual sales volume exceeds the pre-agreed forecasted volume by 30% or more, the drug is subject to price-reduction. Logistic regression assessed the factors related to whether drugs were the PVA price-reduction drugs. A generalized linear model with gamma distribution and log-link assessed the factors influencing the increase in actual volumes compared to forecasted volume in the PVA price-reduction drugs. Of 186 PVA monitored drugs, 34.9% were price-reduction drugs. Drugs marketed by pharmaceutical companies with previous-occupation in the therapeutic markets were more likely to be PVA price-reduction drugs than drugs marketed by firms with no previous-occupation. Drugs of multinational pharmaceutical companies were more likely to be PVA price-reduction drugs than those of domestic companies. Having more alternative existing drugs was significantly associated with higher odds of being PVA price-reduction drugs. Among the PVA price-reduction drugs, the increasing rate of actual volume compared to forecasted volume was significantly higher in drugs with clinical usefulness. By focusing the negotiation efforts on those target drugs, PVA policy can be administered more efficiently with the improved predictability of the drug sales volumes. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Effect of Streamflow Forecast Uncertainty on Real-Time Reservoir Operation
NASA Astrophysics Data System (ADS)
Zhao, T.; Cai, X.; Yang, D.
2010-12-01
Various hydrological forecast products have been applied to real-time reservoir operation, including deterministic streamflow forecast (DSF), DSF-based probabilistic streamflow forecast (DPSF), and ensemble streamflow forecast (ESF), which represent forecast uncertainty in the form of deterministic forecast error, deterministic forecast error-based uncertainty distribution, and ensemble forecast errors, respectively. Compared to previous studies that treat these forecast products as ad hoc inputs for reservoir operation models, this paper attempts to model the uncertainties involved in the various forecast products and explores their effect on real-time reservoir operation decisions. In hydrology, there are various indices reflecting the magnitude of streamflow forecast uncertainty; meanwhile, few models illustrate the forecast uncertainty evolution process. This research introduces Martingale Model of Forecast Evolution (MMFE) from supply chain management and justifies its assumptions for quantifying the evolution of uncertainty in streamflow forecast as time progresses. Based on MMFE, this research simulates the evolution of forecast uncertainty in DSF, DPSF, and ESF, and applies the reservoir operation models (dynamic programming, DP; stochastic dynamic programming, SDP; and standard operation policy, SOP) to assess the effect of different forms of forecast uncertainty on real-time reservoir operation. Through a hypothetical single-objective real-time reservoir operation model, the results illustrate that forecast uncertainty exerts significant effects. Reservoir operation efficiency, as measured by a utility function, decreases as the forecast uncertainty increases. Meanwhile, these effects also depend on the type of forecast product being used. In general, the utility of reservoir operation with ESF is nearly as high as the utility obtained with a perfect forecast; the utilities of DSF and DPSF are similar to each other but not as efficient as ESF. Moreover, streamflow variability and reservoir capacity can change the magnitude of the effects of forecast uncertainty, but not the relative merit of DSF, DPSF, and ESF. Schematic diagram of the increase in forecast uncertainty with forecast lead-time and the dynamic updating property of real-time streamflow forecast
Long term load forecasting accuracy in electric utility integrated resource planning
Carvallo, Juan Pablo; Larsen, Peter H.; Sanstad, Alan H.; ...
2018-05-23
Forecasts of electricity consumption and peak demand over time horizons of one or two decades are a key element in electric utilities’ meeting their core objective and obligation to ensure reliable and affordable electricity supplies for their customers while complying with a range of energy and environmental regulations and policies. These forecasts are an important input to integrated resource planning (IRP) processes involving utilities, regulators, and other stake-holders. Despite their importance, however, there has been little analysis of long term utility load forecasting accuracy. We conduct a retrospective analysis of long term load forecasts on twelve Western U. S. electricmore » utilities in the mid-2000s to find that most overestimated both energy consumption and peak demand growth. A key reason for this was the use of assumptions that led to an overestimation of economic growth. We find that the complexity of forecast methods and the accuracy of these forecasts are mildly correlated. In addition, sensitivity and risk analysis of load growth and its implications for capacity expansion were not well integrated with subsequent implementation. As a result, we review changes in the utilities load forecasting methods over the subsequent decade, and discuss the policy implications of long term load forecast inaccuracy and its underlying causes.« less
Long term load forecasting accuracy in electric utility integrated resource planning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carvallo, Juan Pablo; Larsen, Peter H.; Sanstad, Alan H.
Forecasts of electricity consumption and peak demand over time horizons of one or two decades are a key element in electric utilities’ meeting their core objective and obligation to ensure reliable and affordable electricity supplies for their customers while complying with a range of energy and environmental regulations and policies. These forecasts are an important input to integrated resource planning (IRP) processes involving utilities, regulators, and other stake-holders. Despite their importance, however, there has been little analysis of long term utility load forecasting accuracy. We conduct a retrospective analysis of long term load forecasts on twelve Western U. S. electricmore » utilities in the mid-2000s to find that most overestimated both energy consumption and peak demand growth. A key reason for this was the use of assumptions that led to an overestimation of economic growth. We find that the complexity of forecast methods and the accuracy of these forecasts are mildly correlated. In addition, sensitivity and risk analysis of load growth and its implications for capacity expansion were not well integrated with subsequent implementation. As a result, we review changes in the utilities load forecasting methods over the subsequent decade, and discuss the policy implications of long term load forecast inaccuracy and its underlying causes.« less
Forecasts for NOAA Marine Sanctuaries
/Forecast The Gray's Reef Sea Turtle Satellite Tagging Project utilizes satellite transmitter tags to Synopsis/Forecast(0-20nm) Synopsis/Forecast(20-60nm) The Gray's Reef Sea Turtle Satellite Tagging Project utilizes satellite transmitter tags to monitor adult and juvenile loggerhead sea click image for more
ERIC Educational Resources Information Center
Fechter, Alan
Obstacles to producing forecasts of the impact of technological change and skill utilization are briefly discussed, and existing models for forecasting manpower requirements are described and analyzed. A survey of current literature reveals a concentration of models for producing long-range national forecasts, but few models for generating…
Utilizing Climate Forecasts for Improving Water and Power Systems Coordination
NASA Astrophysics Data System (ADS)
Arumugam, S.; Queiroz, A.; Patskoski, J.; Mahinthakumar, K.; DeCarolis, J.
2016-12-01
Climate forecasts, typically monthly-to-seasonal precipitation forecasts, are commonly used to develop streamflow forecasts for improving reservoir management. Irrespective of their high skill in forecasting, temperature forecasts in developing power demand forecasts are not often considered along with streamflow forecasts for improving water and power systems coordination. In this study, we consider a prototype system to analyze the utility of climate forecasts, both precipitation and temperature, for improving water and power systems coordination. The prototype system, a unit-commitment model that schedules power generation from various sources, is considered and its performance is compared with an energy system model having an equivalent reservoir representation. Different skill sets of streamflow forecasts and power demand forecasts are forced on both water and power systems representations for understanding the level of model complexity required for utilizing monthly-to-seasonal climate forecasts to improve coordination between these two systems. The analyses also identify various decision-making strategies - forward purchasing of fuel stocks, scheduled maintenance of various power systems and tradeoff on water appropriation between hydropower and other uses - in the context of various water and power systems configurations. Potential application of such analyses for integrating large power systems with multiple river basins is also discussed.
Evaluation of a wildfire smoke forecasting system as a tool for public health protection.
Yao, Jiayun; Brauer, Michael; Henderson, Sarah B
2013-10-01
Exposure to wildfire smoke has been associated with cardiopulmonary health impacts. Climate change will increase the severity and frequency of smoke events, suggesting a need for enhanced public health protection. Forecasts of smoke exposure can facilitate public health responses. We evaluated the utility of a wildfire smoke forecasting system (BlueSky) for public health protection by comparing its forecasts with observations and assessing their associations with population-level indicators of respiratory health in British Columbia, Canada. We compared BlueSky PM2.5 forecasts with PM2.5 measurements from air quality monitors, and BlueSky smoke plume forecasts with plume tracings from National Oceanic and Atmospheric Administration Hazard Mapping System remote sensing data. Daily counts of the asthma drug salbutamol sulfate dispensations and asthma-related physician visits were aggregated for each geographic local health area (LHA). Daily continuous measures of PM2.5 and binary measures of smoke plume presence, either forecasted or observed, were assigned to each LHA. Poisson regression was used to estimate the association between exposure measures and health indicators. We found modest agreement between forecasts and observations, which was improved during intense fire periods. A 30-μg/m3 increase in BlueSky PM2.5 was associated with an 8% increase in salbutamol dispensations and a 5% increase in asthma-related physician visits. BlueSky plume coverage was associated with 5% and 6% increases in the two health indicators, respectively. The effects were similar for observed smoke, and generally stronger in very smoky areas. BlueSky forecasts showed modest agreement with retrospective measures of smoke and were predictive of respiratory health indicators, suggesting they can provide useful information for public health protection.
System load forecasts for an electric utility. [Hourly loads using Box-Jenkins method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uri, N.D.
This paper discusses forecasting hourly system load for an electric utility using Box-Jenkins time-series analysis. The results indicate that a model based on the method of Box and Jenkins, given its simplicity, gives excellent results over the forecast horizon.
ERIC Educational Resources Information Center
Department of Justice, Washington, DC. National Inst. of Justice.
This report offers data on juvenile drug use and crime so as to increase understanding of the dimensions of drug use among youthful offenders. The report includes information from collaborative efforts at both the Federal and the local levels. Data on male juvenile arrestees and detainees were collected in 12 Drug Use Forecasting (DUF) sites…
Network bandwidth utilization forecast model on high bandwidth networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, Wuchert; Sim, Alex
With the increasing number of geographically distributed scientific collaborations and the scale of the data size growth, it has become more challenging for users to achieve the best possible network performance on a shared network. We have developed a forecast model to predict expected bandwidth utilization for high-bandwidth wide area network. The forecast model can improve the efficiency of resource utilization and scheduling data movements on high-bandwidth network to accommodate ever increasing data volume for large-scale scientific data applications. Univariate model is developed with STL and ARIMA on SNMP path utilization data. Compared with traditional approach such as Box-Jenkins methodology,more » our forecast model reduces computation time by 83.2%. It also shows resilience against abrupt network usage change. The accuracy of the forecast model is within the standard deviation of the monitored measurements.« less
Network Bandwidth Utilization Forecast Model on High Bandwidth Network
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, Wucherl; Sim, Alex
With the increasing number of geographically distributed scientific collaborations and the scale of the data size growth, it has become more challenging for users to achieve the best possible network performance on a shared network. We have developed a forecast model to predict expected bandwidth utilization for high-bandwidth wide area network. The forecast model can improve the efficiency of resource utilization and scheduling data movements on high-bandwidth network to accommodate ever increasing data volume for large-scale scientific data applications. Univariate model is developed with STL and ARIMA on SNMP path utilization data. Compared with traditional approach such as Box-Jenkins methodology,more » our forecast model reduces computation time by 83.2percent. It also shows resilience against abrupt network usage change. The accuracy of the forecast model is within the standard deviation of the monitored measurements.« less
Gutfraind, Alexander; Boodram, Basmattee; Prachand, Nikhil; Hailegiorgis, Atesmachew; Dahari, Harel; Major, Marian E
2015-01-01
People who inject drugs (PWID) are at high risk for blood-borne pathogens transmitted during the sharing of contaminated injection equipment, particularly hepatitis C virus (HCV). HCV prevalence is influenced by a complex interplay of drug-use behaviors, social networks, and geography, as well as the availability of interventions, such as needle exchange programs. To adequately address this complexity in HCV epidemic forecasting, we have developed a computational model, the Agent-based Pathogen Kinetics model (APK). APK simulates the PWID population in metropolitan Chicago, including the social interactions that result in HCV infection. We used multiple empirical data sources on Chicago PWID to build a spatial distribution of an in silico PWID population and modeled networks among the PWID by considering the geography of the city and its suburbs. APK was validated against 2012 empirical data (the latest available) and shown to agree with network and epidemiological surveys to within 1%. For the period 2010-2020, APK forecasts a decline in HCV prevalence of 0.8% per year from 44(± 2)% to 36(± 5)%, although some sub-populations would continue to have relatively high prevalence, including Non-Hispanic Blacks, 48(± 5)%. The rate of decline will be lowest in Non-Hispanic Whites and we find, in a reversal of historical trends, that incidence among non-Hispanic Whites would exceed incidence among Non-Hispanic Blacks (0.66 per 100 per years vs 0.17 per 100 person years). APK also forecasts an increase in PWID mean age from 35(± 1) to 40(± 2) with a corresponding increase from 59(± 2)% to 80(± 6)% in the proportion of the population >30 years old. Our studies highlight the importance of analyzing subpopulations in disease predictions, the utility of computer simulation for analyzing demographic and health trends among PWID and serve as a tool for guiding intervention and prevention strategies in Chicago, and other major cities.
Time-Series Forecast Modeling on High-Bandwidth Network Measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, Wucherl; Sim, Alex
With the increasing number of geographically distributed scientific collaborations and the growing sizes of scientific data, it has become challenging for users to achieve the best possible network performance on a shared network. In this paper, we have developed a model to forecast expected bandwidth utilization on high-bandwidth wide area networks. The forecast model can improve the efficiency of the resource utilization and scheduling of data movements on high-bandwidth networks to accommodate ever increasing data volume for large-scale scientific data applications. A univariate time-series forecast model is developed with the Seasonal decomposition of Time series by Loess (STL) and themore » AutoRegressive Integrated Moving Average (ARIMA) on Simple Network Management Protocol (SNMP) path utilization measurement data. Compared with the traditional approach such as Box-Jenkins methodology to train the ARIMA model, our forecast model reduces computation time up to 92.6 %. It also shows resilience against abrupt network usage changes. Finally, our forecast model conducts the large number of multi-step forecast, and the forecast errors are within the mean absolute deviation (MAD) of the monitored measurements.« less
Time-Series Forecast Modeling on High-Bandwidth Network Measurements
Yoo, Wucherl; Sim, Alex
2016-06-24
With the increasing number of geographically distributed scientific collaborations and the growing sizes of scientific data, it has become challenging for users to achieve the best possible network performance on a shared network. In this paper, we have developed a model to forecast expected bandwidth utilization on high-bandwidth wide area networks. The forecast model can improve the efficiency of the resource utilization and scheduling of data movements on high-bandwidth networks to accommodate ever increasing data volume for large-scale scientific data applications. A univariate time-series forecast model is developed with the Seasonal decomposition of Time series by Loess (STL) and themore » AutoRegressive Integrated Moving Average (ARIMA) on Simple Network Management Protocol (SNMP) path utilization measurement data. Compared with the traditional approach such as Box-Jenkins methodology to train the ARIMA model, our forecast model reduces computation time up to 92.6 %. It also shows resilience against abrupt network usage changes. Finally, our forecast model conducts the large number of multi-step forecast, and the forecast errors are within the mean absolute deviation (MAD) of the monitored measurements.« less
Verifying and Postprocesing the Ensemble Spread-Error Relationship
NASA Astrophysics Data System (ADS)
Hopson, Tom; Knievel, Jason; Liu, Yubao; Roux, Gregory; Wu, Wanli
2013-04-01
With the increased utilization of ensemble forecasts in weather and hydrologic applications, there is a need to verify their benefit over less expensive deterministic forecasts. One such potential benefit of ensemble systems is their capacity to forecast their own forecast error through the ensemble spread-error relationship. The paper begins by revisiting the limitations of the Pearson correlation alone in assessing this relationship. Next, we introduce two new metrics to consider in assessing the utility an ensemble's varying dispersion. We argue there are two aspects of an ensemble's dispersion that should be assessed. First, and perhaps more fundamentally: is there enough variability in the ensembles dispersion to justify the maintenance of an expensive ensemble prediction system (EPS), irrespective of whether the EPS is well-calibrated or not? To diagnose this, the factor that controls the theoretical upper limit of the spread-error correlation can be useful. Secondly, does the variable dispersion of an ensemble relate to variable expectation of forecast error? Representing the spread-error correlation in relation to its theoretical limit can provide a simple diagnostic of this attribute. A context for these concepts is provided by assessing two operational ensembles: 30-member Western US temperature forecasts for the U.S. Army Test and Evaluation Command and 51-member Brahmaputra River flow forecasts of the Climate Forecast and Applications Project for Bangladesh. Both of these systems utilize a postprocessing technique based on quantile regression (QR) under a step-wise forward selection framework leading to ensemble forecasts with both good reliability and sharpness. In addition, the methodology utilizes the ensemble's ability to self-diagnose forecast instability to produce calibrated forecasts with informative skill-spread relationships. We will describe both ensemble systems briefly, review the steps used to calibrate the ensemble forecast, and present verification statistics using error-spread metrics, along with figures from operational ensemble forecasts before and after calibration.
Evaluation of a Wildfire Smoke Forecasting System as a Tool for Public Health Protection
Brauer, Michael; Henderson, Sarah B.
2013-01-01
Background: Exposure to wildfire smoke has been associated with cardiopulmonary health impacts. Climate change will increase the severity and frequency of smoke events, suggesting a need for enhanced public health protection. Forecasts of smoke exposure can facilitate public health responses. Objectives: We evaluated the utility of a wildfire smoke forecasting system (BlueSky) for public health protection by comparing its forecasts with observations and assessing their associations with population-level indicators of respiratory health in British Columbia, Canada. Methods: We compared BlueSky PM2.5 forecasts with PM2.5 measurements from air quality monitors, and BlueSky smoke plume forecasts with plume tracings from National Oceanic and Atmospheric Administration Hazard Mapping System remote sensing data. Daily counts of the asthma drug salbutamol sulfate dispensations and asthma-related physician visits were aggregated for each geographic local health area (LHA). Daily continuous measures of PM2.5 and binary measures of smoke plume presence, either forecasted or observed, were assigned to each LHA. Poisson regression was used to estimate the association between exposure measures and health indicators. Results: We found modest agreement between forecasts and observations, which was improved during intense fire periods. A 30-μg/m3 increase in BlueSky PM2.5 was associated with an 8% increase in salbutamol dispensations and a 5% increase in asthma-related physician visits. BlueSky plume coverage was associated with 5% and 6% increases in the two health indicators, respectively. The effects were similar for observed smoke, and generally stronger in very smoky areas. Conclusions: BlueSky forecasts showed modest agreement with retrospective measures of smoke and were predictive of respiratory health indicators, suggesting they can provide useful information for public health protection. Citation: Yao J, Brauer M, Henderson SB. 2013. Evaluation of a wildfire smoke forecasting system as a tool for public health protection. Environ Health Perspect 121:1142–1147; http://dx.doi.org/10.1289/ehp.1306768 PMID:23906969
2000-06-20
smoothing and regression which includes curve fitting are two principle forecasting model types utilized in the vast majority of forecasting applications ... model were compared against the VA Office of Policy and Planning forecasting study commissioned with the actuarial firm of Milliman & Robertson (M & R... Application to the Veterans Healthcare System The development of a model to forecast future VEV needs, utilization, and cost of the Acute Care and
NASA Products to Enhance Energy Utility Load Forecasting
NASA Technical Reports Server (NTRS)
Lough, G.; Zell, E.; Engel-Cox, J.; Fungard, Y.; Jedlovec, G.; Stackhouse, P.; Homer, R.; Biley, S.
2012-01-01
Existing energy load forecasting tools rely upon historical load and forecasted weather to predict load within energy company service areas. The shortcomings of load forecasts are often the result of weather forecasts that are not at a fine enough spatial or temporal resolution to capture local-scale weather events. This project aims to improve the performance of load forecasting tools through the integration of high-resolution, weather-related NASA Earth Science Data, such as temperature, relative humidity, and wind speed. Three companies are participating in operational testing one natural gas company, and two electric providers. Operational results comparing load forecasts with and without NASA weather forecasts have been generated since March 2010. We have worked with end users at the three companies to refine selection of weather forecast information and optimize load forecast model performance. The project will conclude in 2012 with transitioning documented improvements from the inclusion of NASA forecasts for sustained use by energy utilities nationwide in a variety of load forecasting tools. In addition, Battelle has consulted with energy companies nationwide to document their information needs for long-term planning, in light of climate change and regulatory impacts.
Baseline and Target Values for PV Forecasts: Toward Improved Solar Power Forecasting: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jie; Hodge, Bri-Mathias; Lu, Siyuan
2015-08-05
Accurate solar power forecasting allows utilities to get the most out of the solar resources on their systems. To truly measure the improvements that any new solar forecasting methods can provide, it is important to first develop (or determine) baseline and target solar forecasting at different spatial and temporal scales. This paper aims to develop baseline and target values for solar forecasting metrics. These were informed by close collaboration with utility and independent system operator partners. The baseline values are established based on state-of-the-art numerical weather prediction models and persistence models. The target values are determined based on the reductionmore » in the amount of reserves that must be held to accommodate the uncertainty of solar power output. forecasting metrics. These were informed by close collaboration with utility and independent system operator partners. The baseline values are established based on state-of-the-art numerical weather prediction models and persistence models. The target values are determined based on the reduction in the amount of reserves that must be held to accommodate the uncertainty of solar power output.« less
Zhang, Jie; Hodge, Bri -Mathias; Lu, Siyuan; ...
2015-11-10
Accurate solar photovoltaic (PV) power forecasting allows utilities to reliably utilize solar resources on their systems. However, to truly measure the improvements that any new solar forecasting methods provide, it is important to develop a methodology for determining baseline and target values for the accuracy of solar forecasting at different spatial and temporal scales. This paper aims at developing a framework to derive baseline and target values for a suite of generally applicable, value-based, and custom-designed solar forecasting metrics. The work was informed by close collaboration with utility and independent system operator partners. The baseline values are established based onmore » state-of-the-art numerical weather prediction models and persistence models in combination with a radiative transfer model. The target values are determined based on the reduction in the amount of reserves that must be held to accommodate the uncertainty of PV power output. The proposed reserve-based methodology is a reasonable and practical approach that can be used to assess the economic benefits gained from improvements in accuracy of solar forecasting. Lastly, the financial baseline and targets can be translated back to forecasting accuracy metrics and requirements, which will guide research on solar forecasting improvements toward the areas that are most beneficial to power systems operations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hosking, Jonathan R. M.; Natarajan, Ramesh
The computer creates a utility demand forecast model for weather parameters by receiving a plurality of utility parameter values, wherein each received utility parameter value corresponds to a weather parameter value. Determining that a range of weather parameter values lacks a sufficient amount of corresponding received utility parameter values. Determining one or more utility parameter values that corresponds to the range of weather parameter values. Creating a model which correlates the received and the determined utility parameter values with the corresponding weather parameters values.
NASA Astrophysics Data System (ADS)
Palchak, David
Electrical load forecasting is a tool that has been utilized by distribution designers and operators as a means for resource planning and generation dispatch. The techniques employed in these predictions are proving useful in the growing market of consumer, or end-user, participation in electrical energy consumption. These predictions are based on exogenous variables, such as weather, and time variables, such as day of week and time of day as well as prior energy consumption patterns. The participation of the end-user is a cornerstone of the Smart Grid initiative presented in the Energy Independence and Security Act of 2007, and is being made possible by the emergence of enabling technologies such as advanced metering infrastructure. The optimal application of the data provided by an advanced metering infrastructure is the primary motivation for the work done in this thesis. The methodology for using this data in an energy management scheme that utilizes a short-term load forecast is presented. The objective of this research is to quantify opportunities for a range of energy management and operation cost savings of a university campus through the use of a forecasted daily electrical load profile. The proposed algorithm for short-term load forecasting is optimized for Colorado State University's main campus, and utilizes an artificial neural network that accepts weather and time variables as inputs. The performance of the predicted daily electrical load is evaluated using a number of error measurements that seek to quantify the best application of the forecast. The energy management presented utilizes historical electrical load data from the local service provider to optimize the time of day that electrical loads are being managed. Finally, the utilization of forecasts in the presented energy management scenario is evaluated based on cost and energy savings.
Forecast skill impact of drifting buoys in the Southern Hemisphere
NASA Technical Reports Server (NTRS)
Kalnay, E.; Atlas, R.; Baker, W.; Halem, M.
1984-01-01
Two analyses are performed to evaluate the effect of drift buoys and the FGGE's special observing system (SOS) on forecasting. The FGGE analysis utilizes all level II-b conventional and special data, and the Nosat analysis employs only surface and conventional upper air data. Twelve five-day forecasts are produced from these data. An additional experiment utilizing the FGGE data base minus buoys data, and the Nosat data base including buoys data is being conducted. The forecasts are compared and synoptic evaluation of the effect of buoys data is described. The results reveal that the FGGE data base with the SOS significantly improves forecasting in the Southern Hemisphere and the loss of buoys data does not have a great effect on forecasting. The Nosat data has less impact on forecasting; however, the addition of buoys data provides an improvement in forecast skills.
Matsui, Kazuki; Tsume, Yasuhiro; Takeuchi, Susumu; Searls, Amanda; Amidon, Gordon L
2017-04-03
Weakly basic drugs exhibit a pH-dependent dissolution profile in the gastrointestinal (GI) tract, which makes it difficult to predict their oral absorption profile. The aim of this study was to investigate the utility of the gastrointestinal simulator (GIS), a novel in vivo predictive dissolution (iPD) methodology, in predicting the in vivo behavior of the weakly basic drug dipyridamole when coupled with in silico analysis. The GIS is a multicompartmental dissolution apparatus, which represents physiological gastric emptying in the fasted state. Kinetic parameters for drug dissolution and precipitation were optimized by fitting a curve to the dissolved drug amount-time profiles in the United States Pharmacopeia apparatus II and GIS. Optimized parameters were incorporated into mathematical equations to describe the mass transport kinetics of dipyridamole in the GI tract. By using this in silico model, intraluminal drug concentration-time profile was simulated. The predicted profile of dipyridamole in the duodenal compartment adequately captured observed data. In addition, the plasma concentration-time profile was also predicted using pharmacokinetic parameters following intravenous administration. On the basis of the comparison with observed data, the in silico approach coupled with the GIS successfully predicted in vivo pharmacokinetic profiles. Although further investigations are still required to generalize, these results indicated that incorporating GIS data into mathematical equations improves the predictability of in vivo behavior of weakly basic drugs like dipyridamole.
Cohen, Justin M; Singh, Inder; O'Brien, Megan E
2008-01-01
Background An accurate forecast of global demand is essential to stabilize the market for artemisinin-based combination therapy (ACT) and to ensure access to high-quality, life-saving medications at the lowest sustainable prices by avoiding underproduction and excessive overproduction, each of which can have negative consequences for the availability of affordable drugs. A robust forecast requires an understanding of the resources available to support procurement of these relatively expensive antimalarials, in particular from the Global Fund, at present the single largest source of ACT funding. Methods Predictive regression models estimating the timing and rate of disbursements from the Global Fund to recipient countries for each malaria grant were derived using a repeated split-sample procedure intended to avoid over-fitting. Predictions were compared against actual disbursements in a group of validation grants, and forecasts of ACT procurement extrapolated from disbursement predictions were evaluated against actual procurement in two sub-Saharan countries. Results Quarterly forecasts were correlated highly with actual smoothed disbursement rates (r = 0.987, p < 0.0001). Additionally, predicted ACT procurement, extrapolated from forecasted disbursements, was correlated strongly with actual ACT procurement supported by two grants from the Global Fund's first (r = 0.945, p < 0.0001) and fourth (r = 0.938, p < 0.0001) funding rounds. Conclusion This analysis derived predictive regression models that successfully forecasted disbursement patterning for individual Global Fund malaria grants. These results indicate the utility of this approach for demand forecasting of ACT and, potentially, for other commodities procured using funding from the Global Fund. Further validation using data from other countries in different regions and environments will be necessary to confirm its generalizability. PMID:18831742
Evaluation of CMAQ and CAMx Ensemble Air Quality Forecasts during the 2015 MAPS-Seoul Field Campaign
NASA Astrophysics Data System (ADS)
Kim, E.; Kim, S.; Bae, C.; Kim, H. C.; Kim, B. U.
2015-12-01
The performance of Air quality forecasts during the 2015 MAPS-Seoul Field Campaign was evaluated. An forecast system has been operated to support the campaign's daily aircraft route decisions for airborne measurements to observe long-range transporting plume. We utilized two real-time ensemble systems based on the Weather Research and Forecasting (WRF)-Sparse Matrix Operator Kernel Emissions (SMOKE)-Comprehensive Air quality Model with extensions (CAMx) modeling framework and WRF-SMOKE- Community Multi_scale Air Quality (CMAQ) framework over northeastern Asia to simulate PM10 concentrations. Global Forecast System (GFS) from National Centers for Environmental Prediction (NCEP) was used to provide meteorological inputs for the forecasts. For an additional set of retrospective simulations, ERA Interim Reanalysis from European Centre for Medium-Range Weather Forecasts (ECMWF) was also utilized to access forecast uncertainties from the meteorological data used. Model Inter-Comparison Study for Asia (MICS-Asia) and National Institute of Environment Research (NIER) Clean Air Policy Support System (CAPSS) emission inventories are used for foreign and domestic emissions, respectively. In the study, we evaluate the CMAQ and CAMx model performance during the campaign by comparing the results to the airborne and surface measurements. Contributions of foreign and domestic emissions are estimated using a brute force method. Analyses on model performance and emissions will be utilized to improve air quality forecasts for the upcoming KORUS-AQ field campaign planned in 2016.
Baseline and Target Values for PV Forecasts: Toward Improved Solar Power Forecasting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jie; Hodge, Bri-Mathias; Lu, Siyuan
2015-10-05
Accurate solar power forecasting allows utilities to get the most out of the solar resources on their systems. To truly measure the improvements that any new solar forecasting methods can provide, it is important to first develop (or determine) baseline and target solar forecasting at different spatial and temporal scales. This paper aims to develop baseline and target values for solar forecasting metrics. These were informed by close collaboration with utility and independent system operator partners. The baseline values are established based on state-of-the-art numerical weather prediction models and persistence models. The target values are determined based on the reductionmore » in the amount of reserves that must be held to accommodate the uncertainty of solar power output.« less
Economic benefits of improved meteorological forecasts - The construction industry
NASA Technical Reports Server (NTRS)
Bhattacharyya, R. K.; Greenberg, J. S.
1976-01-01
Estimates are made of the potential economic benefits accruing to particular industries from timely utilization of satellite-derived six-hour weather forecasts, and of economic penalties resulting from failure to utilize such forecasts in day-to-day planning. The cost estimate study is centered on the U.S. construction industry, with results simplified to yes/no 6-hr forecasts on thunderstorm activity and work/no work decisions. Effects of weather elements (thunderstorms, snow and sleet) on various construction operations are indicated. Potential dollar benefits for other industries, including air transportation and other forms of transportation, are diagrammed for comparison. Geosynchronous satellites such as STORMSAT, SEOS, and SMS/GOES are considered as sources of the forecast data.
Drugs foresight 2020: a Delphi expert panel study.
Lintonen, Tomi; Konu, Anne; Rönkä, Sanna; Kotovirta, Elina
2014-05-03
Historically substance misuse has been relatively common in western countries, but comparatively few Finns report drug use. The Drugs 2020 study aimed at foreseeing changes in the drug situation in Finland by the year 2020. The Delphi method was used, utilizing drug experts of the EU national network in Finland. Marked growth was foreseen in drug use, especially in synthetic designer drugs and misuse of medicinal drugs. Significant increase was also expected in growing cannabis at home. However, the control of drug market was expected to shift more into the hands of organized crime. No consensus was reached on how drug prices will develop in the time period. Drug use is likely to remain punishable although the use and possession of cannabis may be treated less severely. It seems likely that health and social services resources will be directed towards medicinal treatment. Foresight can be utilized in preparing for the future; desirable developments can be fostered, and measures can be taken to curb probable but undesirable lines of development. Based on the results of this study, the experts' view is that it is highly likely that the Finnish society will have to prepare for an increase in the demand for drug-related care, both in terms of content of the care and financing the services. Also, the forecasted increase in the role of legal prescription medicine used as intoxicants will call for efforts not only in changing prescription practices but in border and police control measures, as well. Parallel developments have been foreseen in the UK and Sweden, and it is likely that similar trends will actualize also in other western countries.
Gutfraind, Alexander; Boodram, Basmattee; Prachand, Nikhil; ...
2015-09-30
People who inject drugs (PWID) are at high risk for blood-borne pathogens transmitted during the sharing of contaminated injection equipment, particularly hepatitis C virus (HCV). HCV prevalence is influenced by a complex interplay of drug-use behaviors, social networks, and geography, as well as the availability of interventions, such as needle exchange programs. To adequately address this complexity in HCV epidemic forecasting, we have developed a computational model, the Agent-based Pathogen Kinetics model (APK). APK simulates the PWID population in metropolitan Chicago, including the social interactions that result in HCV infection. We used multiple empirical data sources on Chicago PWID tomore » build a spatial distribution of an in silico PWID population and modeled networks among the PWID by considering the geography of the city and its suburbs. APK was validated against 2012 empirical data (the latest available) and shown to agree with network and epidemiological surveys to within 1%. For the period 2010–2020, APK forecasts a decline in HCV prevalence of 0.8% per year from 44(±2)% to 36(±5)%, although some sub-populations would continue to have relatively high prevalence, including Non-Hispanic Blacks, 48(±5)%. The rate of decline will be lowest in Non-Hispanic Whites and we find, in a reversal of historical trends, that incidence among non-Hispanic Whites would exceed incidence among Non-Hispanic Blacks (0.66 per 100 per years vs 0.17 per 100 person years). APK also forecasts an increase in PWID mean age from 35(±1) to 40(±2) with a corresponding increase from 59(±2)% to 80(±6)% in the proportion of the population >30 years old. As a result, our studies highlight the importance of analyzing subpopulations in disease predictions, the utility of computer simulation for analyzing demographic and health trends among PWID and serve as a tool for guiding intervention and prevention strategies in Chicago, and other major cities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gutfraind, Alexander; Boodram, Basmattee; Prachand, Nikhil
People who inject drugs (PWID) are at high risk for blood-borne pathogens transmitted during the sharing of contaminated injection equipment, particularly hepatitis C virus (HCV). HCV prevalence is influenced by a complex interplay of drug-use behaviors, social networks, and geography, as well as the availability of interventions, such as needle exchange programs. To adequately address this complexity in HCV epidemic forecasting, we have developed a computational model, the Agent-based Pathogen Kinetics model (APK). APK simulates the PWID population in metropolitan Chicago, including the social interactions that result in HCV infection. We used multiple empirical data sources on Chicago PWID tomore » build a spatial distribution of an in silico PWID population and modeled networks among the PWID by considering the geography of the city and its suburbs. APK was validated against 2012 empirical data (the latest available) and shown to agree with network and epidemiological surveys to within 1%. For the period 2010–2020, APK forecasts a decline in HCV prevalence of 0.8% per year from 44(±2)% to 36(±5)%, although some sub-populations would continue to have relatively high prevalence, including Non-Hispanic Blacks, 48(±5)%. The rate of decline will be lowest in Non-Hispanic Whites and we find, in a reversal of historical trends, that incidence among non-Hispanic Whites would exceed incidence among Non-Hispanic Blacks (0.66 per 100 per years vs 0.17 per 100 person years). APK also forecasts an increase in PWID mean age from 35(±1) to 40(±2) with a corresponding increase from 59(±2)% to 80(±6)% in the proportion of the population >30 years old. As a result, our studies highlight the importance of analyzing subpopulations in disease predictions, the utility of computer simulation for analyzing demographic and health trends among PWID and serve as a tool for guiding intervention and prevention strategies in Chicago, and other major cities.« less
Prachand, Nikhil; Hailegiorgis, Atesmachew; Dahari, Harel; Major, Marian E.
2015-01-01
People who inject drugs (PWID) are at high risk for blood-borne pathogens transmitted during the sharing of contaminated injection equipment, particularly hepatitis C virus (HCV). HCV prevalence is influenced by a complex interplay of drug-use behaviors, social networks, and geography, as well as the availability of interventions, such as needle exchange programs. To adequately address this complexity in HCV epidemic forecasting, we have developed a computational model, the Agent-based Pathogen Kinetics model (APK). APK simulates the PWID population in metropolitan Chicago, including the social interactions that result in HCV infection. We used multiple empirical data sources on Chicago PWID to build a spatial distribution of an in silico PWID population and modeled networks among the PWID by considering the geography of the city and its suburbs. APK was validated against 2012 empirical data (the latest available) and shown to agree with network and epidemiological surveys to within 1%. For the period 2010–2020, APK forecasts a decline in HCV prevalence of 0.8% per year from 44(±2)% to 36(±5)%, although some sub-populations would continue to have relatively high prevalence, including Non-Hispanic Blacks, 48(±5)%. The rate of decline will be lowest in Non-Hispanic Whites and we find, in a reversal of historical trends, that incidence among non-Hispanic Whites would exceed incidence among Non-Hispanic Blacks (0.66 per 100 per years vs 0.17 per 100 person years). APK also forecasts an increase in PWID mean age from 35(±1) to 40(±2) with a corresponding increase from 59(±2)% to 80(±6)% in the proportion of the population >30 years old. Our studies highlight the importance of analyzing subpopulations in disease predictions, the utility of computer simulation for analyzing demographic and health trends among PWID and serve as a tool for guiding intervention and prevention strategies in Chicago, and other major cities. PMID:26421722
Municipal water consumption forecast accuracy
NASA Astrophysics Data System (ADS)
Fullerton, Thomas M.; Molina, Angel L.
2010-06-01
Municipal water consumption planning is an active area of research because of infrastructure construction and maintenance costs, supply constraints, and water quality assurance. In spite of that, relatively few water forecast accuracy assessments have been completed to date, although some internal documentation may exist as part of the proprietary "grey literature." This study utilizes a data set of previously published municipal consumption forecasts to partially fill that gap in the empirical water economics literature. Previously published municipal water econometric forecasts for three public utilities are examined for predictive accuracy against two random walk benchmarks commonly used in regional analyses. Descriptive metrics used to quantify forecast accuracy include root-mean-square error and Theil inequality statistics. Formal statistical assessments are completed using four-pronged error differential regression F tests. Similar to studies for other metropolitan econometric forecasts in areas with similar demographic and labor market characteristics, model predictive performances for the municipal water aggregates in this effort are mixed for each of the municipalities included in the sample. Given the competitiveness of the benchmarks, analysts should employ care when utilizing econometric forecasts of municipal water consumption for planning purposes, comparing them to recent historical observations and trends to insure reliability. Comparative results using data from other markets, including regions facing differing labor and demographic conditions, would also be helpful.
Optimization Based Data Mining Approah for Forecasting Real-Time Energy Demand
DOE Office of Scientific and Technical Information (OSTI.GOV)
Omitaomu, Olufemi A; Li, Xueping; Zhou, Shengchao
The worldwide concern over environmental degradation, increasing pressure on electric utility companies to meet peak energy demand, and the requirement to avoid purchasing power from the real-time energy market are motivating the utility companies to explore new approaches for forecasting energy demand. Until now, most approaches for forecasting energy demand rely on monthly electrical consumption data. The emergence of smart meters data is changing the data space for electric utility companies, and creating opportunities for utility companies to collect and analyze energy consumption data at a much finer temporal resolution of at least 15-minutes interval. While the data granularity providedmore » by smart meters is important, there are still other challenges in forecasting energy demand; these challenges include lack of information about appliances usage and occupants behavior. Consequently, in this paper, we develop an optimization based data mining approach for forecasting real-time energy demand using smart meters data. The objective of our approach is to develop a robust estimation of energy demand without access to these other building and behavior data. Specifically, the forecasting problem is formulated as a quadratic programming problem and solved using the so-called support vector machine (SVM) technique in an online setting. The parameters of the SVM technique are optimized using simulated annealing approach. The proposed approach is applied to hourly smart meters data for several residential customers over several days.« less
Mohammed, Emad A; Naugler, Christopher
2017-01-01
Demand forecasting is the area of predictive analytics devoted to predicting future volumes of services or consumables. Fair understanding and estimation of how demand will vary facilitates the optimal utilization of resources. In a medical laboratory, accurate forecasting of future demand, that is, test volumes, can increase efficiency and facilitate long-term laboratory planning. Importantly, in an era of utilization management initiatives, accurately predicted volumes compared to the realized test volumes can form a precise way to evaluate utilization management initiatives. Laboratory test volumes are often highly amenable to forecasting by time-series models; however, the statistical software needed to do this is generally either expensive or highly technical. In this paper, we describe an open-source web-based software tool for time-series forecasting and explain how to use it as a demand forecasting tool in clinical laboratories to estimate test volumes. This tool has three different models, that is, Holt-Winters multiplicative, Holt-Winters additive, and simple linear regression. Moreover, these models are ranked and the best one is highlighted. This tool will allow anyone with historic test volume data to model future demand.
Mohammed, Emad A.; Naugler, Christopher
2017-01-01
Background: Demand forecasting is the area of predictive analytics devoted to predicting future volumes of services or consumables. Fair understanding and estimation of how demand will vary facilitates the optimal utilization of resources. In a medical laboratory, accurate forecasting of future demand, that is, test volumes, can increase efficiency and facilitate long-term laboratory planning. Importantly, in an era of utilization management initiatives, accurately predicted volumes compared to the realized test volumes can form a precise way to evaluate utilization management initiatives. Laboratory test volumes are often highly amenable to forecasting by time-series models; however, the statistical software needed to do this is generally either expensive or highly technical. Method: In this paper, we describe an open-source web-based software tool for time-series forecasting and explain how to use it as a demand forecasting tool in clinical laboratories to estimate test volumes. Results: This tool has three different models, that is, Holt-Winters multiplicative, Holt-Winters additive, and simple linear regression. Moreover, these models are ranked and the best one is highlighted. Conclusion: This tool will allow anyone with historic test volume data to model future demand. PMID:28400996
Holt-Winters Forecasting: A Study of Practical Applications for Healthcare Managers
2006-05-25
Winters Forecasting 5 List of Tables Table 1. Holt-Winters smoothing parameters and Mean Absolute Percentage Errors: Pseudoephedrine prescriptions Table 2...confidence intervals Holt-Winters Forecasting 6 List of Figures Figure 1. Line Plot of Pseudoephedrine Prescriptions forecast using smoothing parameters...The first represents monthly prescriptions of pseudoephedrine . Pseudoephedrine is a drug commonly prescribed to relieve nasal congestion and other
Forecasting Medicaid Expenditures for Antipsychotic Medications.
Slade, Eric P; Simoni-Wastila, Linda
2015-07-01
The ongoing transition from use of mostly branded to mostly generic second-generation antipsychotic medications could bring about a substantial reduction in Medicaid expenditures for antipsychotic medications, a change with critical implications for formulary restrictions on second-generation antipsychotics in Medicaid. This study provided a forecast of the impact of generics on Medicaid expenditures for antipsychotic medications. Quarterly (N=816) state-level aggregate data on outpatient antipsychotic prescriptions in Medicaid between 2008 and 2011 were drawn from the Medicaid state drug utilization database. Annual numbers of prescriptions, expenditures, and cost per prescription were constructed for each antipsychotic medication. Forecasts of antipsychotic expenditures in calendar years 2016 and 2019 were developed on the basis of the estimated percentage reduction in Medicaid expenditures for risperidone, the only second-generation antipsychotic available generically throughout the study period. Two models of savings from generic risperidone use were estimated, one based on constant risperidone prices and the other based on variable risperidone prices. The sensitivity of the expenditure forecast to expected changes in Medicaid enrollment was also examined. In the main model, annual Medicaid expenditures for antipsychotics were forecasted to decrease by $1,794 million (48.8%) by 2016 and by $2,814 million (76.5%) by 2019. Adjustment for variable prices of branded medications and changes in Medicaid enrollment only moderately affected the magnitude of these reductions. Within five years, antipsychotic expenditures in Medicaid may decline to less than half their current levels. Such a spending reduction warrants a reassessment of the continued necessity of formulary restrictions for second-generation antipsychotics in Medicaid.
Model of medicines sales forecasting taking into account factors of influence
NASA Astrophysics Data System (ADS)
Kravets, A. G.; Al-Gunaid, M. A.; Loshmanov, V. I.; Rasulov, S. S.; Lempert, L. B.
2018-05-01
The article describes a method for forecasting sales of medicines in conditions of data sampling, which is insufficient for building a model based on historical data alone. The developed method is applicable mainly to new drugs that are already licensed and released for sale but do not yet have stable sales performance in the market. The purpose of this study is to prove the effectiveness of the suggested method forecasting drug sales, taking into account the selected factors of influence, revealed during the review of existing solutions and analysis of the specificity of the area under study. Three experiments were performed on samples of different volumes, which showed an improvement in the accuracy of forecasting sales in small samples.
A Delphi Forecast of Technology in Education.
ERIC Educational Resources Information Center
Robinson, Burke E.
The forecast reported here surveys expected utilization levels, organizational structures, and values concerning technology in education in 1990. The focus is upon educational technology and forecasting methodology; televised instruction, computer-assisted instruction (CAI), and information services are considered. The methodology employed…
Remote Sensing and River Discharge Forecasting for Major Rivers in South Asia (Invited)
NASA Astrophysics Data System (ADS)
Webster, P. J.; Hopson, T. M.; Hirpa, F. A.; Brakenridge, G. R.; De-Groeve, T.; Shrestha, K.; Gebremichael, M.; Restrepo, P. J.
2013-12-01
The South Asia is a flashpoint for natural disasters particularly flooding of the Indus, Ganges, and Brahmaputra has profound societal impacts for the region and globally. The 2007 Brahmaputra floods affecting India and Bangladesh, the 2008 avulsion of the Kosi River in India, the 2010 flooding of the Indus River in Pakistan and the 2013 Uttarakhand exemplify disasters on scales almost inconceivable elsewhere. Their frequent occurrence of floods combined with large and rapidly growing populations, high levels of poverty and low resilience, exacerbate the impact of the hazards. Mitigation of these devastating hazards are compounded by limited flood forecast capability, lack of rain/gauge measuring stations and forecast use within and outside the country, and transboundary data sharing on natural hazards. Here, we demonstrate the utility of remotely-derived hydrologic and weather products in producing skillful flood forecasting information without reliance on vulnerable in situ data sources. Over the last decade a forecast system has been providing operational probabilistic forecasts of severe flooding of the Brahmaputra and Ganges Rivers in Bangldesh was developed (Hopson and Webster 2010). The system utilizes ECMWF weather forecast uncertainty information and ensemble weather forecasts, rain gauge and satellite-derived precipitation estimates, together with the limited near-real-time river stage observations from Bangladesh. This system has been expanded to Pakistan and has successfully forecast the 2010-2012 flooding (Shrestha and Webster 2013). To overcome the in situ hydrological data problem, recent efforts in parallel with the numerical modeling have utilized microwave satellite remote sensing of river widths to generate operational discharge advective-based forecasts for the Ganges and Brahmaputra. More than twenty remotely locations upstream of Bangldesh were used to produce stand-alone river flow nowcasts and forecasts at 1-15 days lead time. showing that satellite-based flow estimates are a useful source of dynamical surface water information in data-scarce regions and that they could be used for model calibration and data assimilation purposes in near-time hydrologic forecast applications (Hirpa et al. 2013). More recent efforts during this year's monsoon season are optimally combining these different independent sources of river forecast information along with archived flood inundation imagery of the Dartmouth Flood Observatory to improve the visualization and overall skill of the ongoing CFAB ensemble weather forecast-based flood forecasting system within the unique context of the ongoing flood forecasting efforts for Bangladesh.
Load Forecasting in Electric Utility Integrated Resource Planning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carvallo, Juan Pablo; Larsen, Peter H.; Sanstad, Alan H
Integrated resource planning (IRP) is a process used by many vertically-integrated U.S. electric utilities to determine least-cost/risk supply and demand-side resources that meet government policy objectives and future obligations to customers and, in many cases, shareholders. Forecasts of energy and peak demand are a critical component of the IRP process. There have been few, if any, quantitative studies of IRP long-run (planning horizons of two decades) load forecast performance and its relationship to resource planning and actual procurement decisions. In this paper, we evaluate load forecasting methods, assumptions, and outcomes for 12 Western U.S. utilities by examining and comparing plansmore » filed in the early 2000s against recent plans, up to year 2014. We find a convergence in the methods and data sources used. We also find that forecasts in more recent IRPs generally took account of new information, but that there continued to be a systematic over-estimation of load growth rates during the period studied. We compare planned and procured resource expansion against customer load and year-to-year load growth rates, but do not find a direct relationship. Load sensitivities performed in resource plans do not appear to be related to later procurement strategies even in the presence of large forecast errors. These findings suggest that resource procurement decisions may be driven by other factors than customer load growth. Our results have important implications for the integrated resource planning process, namely that load forecast accuracy may not be as important for resource procurement as is generally believed, that load forecast sensitivities could be used to improve the procurement process, and that management of load uncertainty should be prioritized over more complex forecasting techniques.« less
Projecting future drug expenditures--2006.
Hoffman, James M; Shah, Nilay D; Vermeulen, Lee C; Schumock, Glen T; Grim, Penny; Hunkler, Robert J; Hontz, Karrie M
2006-01-15
Drug expenditure trends in 2004 and 2005, projected drug expenditures for 2006, and factors likely to influence drug costs are discussed. Various factors are likely to affect drug costs, including drug prices, drugs in development, and generic drugs. In 2004 there was a continued moderation of the increase in drug expenditures. Drug expenditures increased by 8.7% from 2003 to 2004. Through the first nine months of 2005, expenditures increased by only 8.1% compared with 2004. This moderation can be attributed to several factors, including the continued trend toward higher prescription drug cost sharing for insured consumers, growing availability of generic drugs, and lack of "blockbuster" new drugs in recent years. Drug expenditures in 2006 will likely be influenced by similar factors, with few costly new products reaching the market, increased concern over product safety slowing the diffusion of those new agents that do reach the market, and several important patent expirations, leading to slower growth in expenditures. Forecasting and managing rising drug expenditures remains a challenge. Pharmacy managers must remain vigilant in monitoring drug costs in their health system and take a proactive role in pursuing efficient drug utilization. The dynamic health policy environment further complicates drug budgeting and must be considered, especially in integrated health systems responsible for managing inpatient, outpatient, and clinic drug costs. The comparison of health-system-specific data and trends with the national information presented in this article may provide a useful context when presenting institutional drug costs to senior management.
NASA Astrophysics Data System (ADS)
Ferraro, R.; Zhao, L.; Kuligowski, R. J.; Kusselson, S.; Ma, L.; Kidder, S. Q.; Forsythe, J. M.; Jones, A. S.; Ebert, E. E.; Valenti, E.
2012-12-01
NOAA/NESDIS operates a constellation of polar and geostationary orbiting satellites to support weather forecasts and to monitor the climate. Additionally, NOAA utilizes satellite assets from other U.S. agencies like NASA and the Department of Defense, as well as those from other nations with similar weather and climate responsibilities (i.e., EUMETSAT and JMA). Over the past two decades, through joint efforts between U.S. and international government researchers, academic partners, and private sector corporations, a series of "value added" products have been developed to better serve the needs of weather forecasters and to exploit the full potential of precipitation and moisture products generated from these satellites. In this presentation, we will focus on two of these products - Ensemble Tropical Rainfall Potential (eTRaP) and Blended Total Precipitable Water (bTPW) - and provide examples on how they contribute to hydrometeorological forecasts. In terms of passive microwave satellite products, TPW perhaps is most widely used to support real-time forecasting applications, as it accurately depicts tropospheric water vapor and its movement. In particular, it has proven to be extremely useful in determining the location, timing, and duration of "atmospheric rivers" which contribute to and sustain flooding events. A multi-sensor approach has been developed and implemented at NESDIS in which passive microwave estimates from multiple satellites and sensors are merged to create a seamless, bTPW product that is more efficient for forecasters to use. Additionally, this product is being enhanced for utilization for television weather forecasters. Examples will be shown to illustrate the roll of atmospheric rivers and contribution to flooding events, and how the bTPW product was used to improve the forecast of these events. Heavy rains associated with land falling tropical cyclones (TC) frequently trigger floods that cause millions of dollars of damage and tremendous loss of lives. To provide observations-based forecast guidance for TC heavy rain, the Tropical Rainfall Potential (TRaP), an extrapolation forecast generated by accumulating rainfall estimates from satellites with microwave sensors as the storm is translated along the forecast track, was originally developed to predict the maximum rainfall at landfall, as well as the spatial pattern of precipitation. More recently, an enhancement has been made to combine the TRaP forecasts from multiple sensors and various start times into an ensemble (eTRaP). The ensemble approach provides not only more accurate quantitative precipitation forecasts, including more skillful maximum rainfall amount and location, it also produces probabilistic forecasts of rainfall exceeding various thresholds that decision makers can use to make critical risk assessments. Examples of the utilization and performance of eTRaP will be given in the presentation.
Novel methodology for pharmaceutical expenditure forecast.
Vataire, Anne-Lise; Cetinsoy, Laurent; Aballéa, Samuel; Rémuzat, Cécile; Urbinati, Duccio; Kornfeld, Åsa; Mzoughi, Olfa; Toumi, Mondher
2014-01-01
The value appreciation of new drugs across countries today features a disruption that is making the historical data that are used for forecasting pharmaceutical expenditure poorly reliable. Forecasting methods rarely addressed uncertainty. The objective of this project was to propose a methodology to perform pharmaceutical expenditure forecasting that integrates expected policy changes and uncertainty (developed for the European Commission as the 'EU Pharmaceutical expenditure forecast'; see http://ec.europa.eu/health/healthcare/key_documents/index_en.htm). 1) Identification of all pharmaceuticals going off-patent and new branded medicinal products over a 5-year forecasting period in seven European Union (EU) Member States. 2) Development of a model to estimate direct and indirect impacts (based on health policies and clinical experts) on savings of generics and biosimilars. Inputs were originator sales value, patent expiry date, time to launch after marketing authorization, price discount, penetration rate, time to peak sales, and impact on brand price. 3) Development of a model for new drugs, which estimated sales progression in a competitive environment. Clinical expected benefits as well as commercial potential were assessed for each product by clinical experts. Inputs were development phase, marketing authorization dates, orphan condition, market size, and competitors. 4) Separate analysis of the budget impact of products going off-patent and new drugs according to several perspectives, distribution chains, and outcomes. 5) Addressing uncertainty surrounding estimations via deterministic and probabilistic sensitivity analysis. This methodology has proven to be effective by 1) identifying the main parameters impacting the variations in pharmaceutical expenditure forecasting across countries: generics discounts and penetration, brand price after patent loss, reimbursement rate, the penetration of biosimilars and discount price, distribution chains, and the time to reach peak sales for new drugs; 2) estimating the statistical distribution of the budget impact; and 3) testing different pricing and reimbursement policy decisions on health expenditures. This methodology was independent of historical data and appeared to be highly flexible and adapted to test robustness and provide probabilistic analysis to support policy decision making.
A Delphi forecast of technology in education
NASA Technical Reports Server (NTRS)
Robinson, B. E.
1973-01-01
The results are reported of a Delphi forecast of the utilization and social impacts of large-scale educational telecommunications technology. The focus is on both forecasting methodology and educational technology. The various methods of forecasting used by futurists are analyzed from the perspective of the most appropriate method for a prognosticator of educational technology, and review and critical analysis are presented of previous forecasts and studies. Graphic responses, summarized comments, and a scenario of education in 1990 are presented.
Does NASA SMAP Improve the Accuracy of Power Outage Models?
NASA Astrophysics Data System (ADS)
Quiring, S. M.; McRoberts, D. B.; Toy, B.; Alvarado, B.
2016-12-01
Electric power utilities make critical decisions in the days prior to hurricane landfall that are primarily based on the estimated impact to their service area. For example, utilities must determine how many repair crews to request from other utilities, the amount of material and equipment they will need to make repairs, and where in their geographically expansive service area to station crews and materials. Accurate forecasts of the impact of an approaching hurricane within their service area are critical for utilities in balancing the costs and benefits of different levels of resources. The Hurricane Outage Prediction Model (HOPM) are a family of statistical models that utilize predictions of tropical cyclone windspeed and duration of strong winds, along with power system and environmental variables (e.g., soil moisture, long-term precipitation), to forecast the number and location of power outages. This project assesses whether using NASA SMAP soil moisture improves the accuracy of power outage forecasts as compared to using model-derived soil moisture from NLDAS-2. A sensitivity analysis is employed since there have been very few tropical cyclones making landfall in the United States since SMAP was launched. The HOPM is used to predict power outages for 13 historical tropical cyclones and the model is run using twice, once with NLDAS soil moisture and once with SMAP soil moisture. Our results demonstrate that using SMAP soil moisture can have a significant impact on power outage predictions. SMAP has the potential to enhance the accuracy of power outage forecasts. Improved outage forecasts reduce the duration of power outages which reduces economic losses and accelerates recovery.
Managing healthcare costs within an integrated framework.
Fernandes, Rudy
2002-01-01
Laupacis, Anderson and O'Brien's comprehensive diagnosis of the illness affecting the Canadian healthcare system is very insightful. In addition, their call for improving the quality of drug evidence and outcomes is a laudable goal. However, their prognosis of the negative impact on healthcare due to escalating drug costs appears to be rather pessimistic, as they fail to view drugs within an integrated framework. In part, their prescription for the perceived malady is rather impractical. Their recommendation for mandatory head-to-head randomized studies, as a prerequisite for achieving new drug listing in benefit formularies, suffers from many drawbacks. Such studies would be highly time-consuming, extremely costly, and given the fact that the choice of a drug comparator is a "moving target," the end result may not achieve the original intent. Growing anxieties about the rising healthcare costs in Canada, now forecast to reach C$100 billion in 2002, have led to implementation ofa variety of reforms aimed at cost-cutting. Shifts in drug utilization, demographics and prescribing have contributed to the authors' understandable concern about the rapid rise in drug plan expenditure, which has undeniably outpaced the increases of other healthcare components. However, drug plan costs represent only 7.7% of total provincial/territorial healthcare expenditures. Innovative medicines have played a significant role in reducing the burden of illness and overall healthcare costs. Drugs prevent, treat and cure disease, improve quality of life, control pain/suffering and save lives. Despite their great value, spending on drugs has received particular scrutiny from policy-makers, and pharmaceuticals have become the primary cost-containment target. The authors' goal-oriented concept of creating a clinical milieu that encourages cost-effective prescribing via "optimum" drug use is very attractive. One such approach is Disease Management, which relies on evidence-based, outcome-oriented performance indicators. It is highly regarded for promoting effective treatment options, improving patient care and optimizing healthcare resource utilization--hence deserving serious consideration for reducing overall costs while achieving improved outcomes.
Decomposition of Sources of Errors in Seasonal Streamflow Forecasting over the U.S. Sunbelt
NASA Technical Reports Server (NTRS)
Mazrooei, Amirhossein; Sinah, Tusshar; Sankarasubramanian, A.; Kumar, Sujay V.; Peters-Lidard, Christa D.
2015-01-01
Seasonal streamflow forecasts, contingent on climate information, can be utilized to ensure water supply for multiple uses including municipal demands, hydroelectric power generation, and for planning agricultural operations. However, uncertainties in the streamflow forecasts pose significant challenges in their utilization in real-time operations. In this study, we systematically decompose various sources of errors in developing seasonal streamflow forecasts from two Land Surface Models (LSMs) (Noah3.2 and CLM2), which are forced with downscaled and disaggregated climate forecasts. In particular, the study quantifies the relative contributions of the sources of errors from LSMs, climate forecasts, and downscaling/disaggregation techniques in developing seasonal streamflow forecast. For this purpose, three month ahead seasonal precipitation forecasts from the ECHAM4.5 general circulation model (GCM) were statistically downscaled from 2.8deg to 1/8deg spatial resolution using principal component regression (PCR) and then temporally disaggregated from monthly to daily time step using kernel-nearest neighbor (K-NN) approach. For other climatic forcings, excluding precipitation, we considered the North American Land Data Assimilation System version 2 (NLDAS-2) hourly climatology over the years 1979 to 2010. Then the selected LSMs were forced with precipitation forecasts and NLDAS-2 hourly climatology to develop retrospective seasonal streamflow forecasts over a period of 20 years (1991-2010). Finally, the performance of LSMs in forecasting streamflow under different schemes was analyzed to quantify the relative contribution of various sources of errors in developing seasonal streamflow forecast. Our results indicate that the most dominant source of errors during winter and fall seasons is the errors due to ECHAM4.5 precipitation forecasts, while temporal disaggregation scheme contributes to maximum errors during summer season.
NASA Technical Reports Server (NTRS)
Kratochvil, D.; Bowyer, J.; Bhushan, C.; Steinnagel, K.; Kaushal, D.; Al-Kinani, G.
1983-01-01
Voice applications, data applications, video applications, impacted baseline forecasts, market distribution model, net long haul forecasts, trunking earth station definition and costs, trunking space segment cost, trunking entrance/exit links, trunking network costs and crossover distances with terrestrial tariffs, net addressable forecasts, capacity requirements, improving spectrum utilization, satellite system market development, and the 30/20 net accessible market are considered.
NASA Astrophysics Data System (ADS)
Kratochvil, D.; Bowyer, J.; Bhushan, C.; Steinnagel, K.; Kaushal, D.; Al-Kinani, G.
1983-09-01
Voice applications, data applications, video applications, impacted baseline forecasts, market distribution model, net long haul forecasts, trunking earth station definition and costs, trunking space segment cost, trunking entrance/exit links, trunking network costs and crossover distances with terrestrial tariffs, net addressable forecasts, capacity requirements, improving spectrum utilization, satellite system market development, and the 30/20 net accessible market are considered.
Delcher, Chris; Wang, Yanning; Young, Henry W; Goldberger, Bruce A; Schmidt, Siegfried; Reisfield, Gary M
Effective use of state prescription drug monitoring programs (PDMPs) to track controlled substance prescribing and dispensing may help mitigate the current opioid crisis. Our objective was to examine trends in registration for and use of Florida's PDMP by physicians and pharmacists, from 2013 to 2016. We discuss implications for PDMP uptake and policy. Key measures, such as cumulative number of registrants per license type and monthly utilization intensity, are presented. A time series forecasting approach was used to (1) model the monthly count of new PDMP registrants and users from January 2013 to December 2016 and (2) estimate cumulative registration totals after 1 year. Florida. As of November 2016, there were 16,498 physicians (representing 31 percent of Drug Enforcement Administration licensees) and 17,241 pharmacists registered with the PDMP, representing 21 and 57 percent of professional licensees, respectively. Of note, the PDMP's designation as a "specialized registry" for electronic medical record "meaningful use" criteria led to a nearly sevenfold increase in physician registrations in a single month. In November 2016, pharmacists displayed a higher past-month PDMP utilization rate (52.2 percent vs 30.1 percent), while physicians displayed a higher past-month PDMP utilization intensity (58.1 vs. 36.1 queries per user). Approximately 25,000 physicians and 31,000 pharmacists must register by the end of 2017 to meet national policy goals. PDMP registration among physicians and pharmacists is limited, and the use of the PDMP among registrants is more limited still. Our findings suggest that Florida will not meet national policy goals for registrants by the end of 2017, although new initiatives may alter this trend. Allowing the PDMP to help prescribers meet other professional needs, such as "meaningful use" or similar efforts, may be effective in increasing PDMP use.
NASA Astrophysics Data System (ADS)
Yuchi, Weiran; Yao, Jiayun; McLean, Kathleen E.; Stull, Roland; Pavlovic, Radenko; Davignon, Didier; Moran, Michael D.; Henderson, Sarah B.
2016-11-01
Fine particulate matter (PM2.5) generated by forest fires has been associated with a wide range of adverse health outcomes, including exacerbation of respiratory diseases and increased risk of mortality. Due to the unpredictable nature of forest fires, it is challenging for public health authorities to reliably evaluate the magnitude and duration of potential exposures before they occur. Smoke forecasting tools are a promising development from the public health perspective, but their widespread adoption is limited by their inherent uncertainties. Observed measurements from air quality monitoring networks and remote sensing platforms are more reliable, but they are inherently retrospective. It would be ideal to reduce the uncertainty in smoke forecasts by integrating any available observations. This study takes spatially resolved PM2.5 estimates from an empirical model that integrates air quality measurements with satellite data, and averages them with PM2.5 predictions from two smoke forecasting systems. Two different indicators of population respiratory health are then used to evaluate whether the blending improved the utility of the smoke forecasts. Among a total of six models, including two single forecasts and four blended forecasts, the blended estimates always performed better than the forecast values alone. Integrating measured observations into smoke forecasts could improve public health preparedness for smoke events, which are becoming more frequent and intense as the climate changes.
NASA Astrophysics Data System (ADS)
Satti, S.; Zaitchik, B. F.; Siddiqui, S.; Badr, H. S.; Shukla, S.; Peters-Lidard, C. D.
2015-12-01
The unpredictable nature of precipitation within the East African (EA) region makes it one of the most vulnerable, food insecure regions in the world. There is a vital need for forecasts to inform decision makers, both local and regional, and to help formulate the region's climate change adaptation strategies. Here, we present a suite of different seasonal forecast models, both statistical and dynamical, for the EA region. Objective regionalization is performed for EA on the basis of interannual variability in precipitation in both observations and models. This regionalization is applied as the basis for calculating a number of standard skill scores to evaluate each model's forecast accuracy. A dynamically linked Land Surface Model (LSM) is then applied to determine forecasted flows, which drive the Sudanese Hydroeconomic Optimization Model (SHOM). SHOM combines hydrologic, agronomic and economic inputs to determine the optimal decisions that maximize economic benefits along the Sudanese Blue Nile. This modeling sequence is designed to derive the potential added value of information of each forecasting model to agriculture and hydropower management. A rank of each model's forecasting skill score along with its added value of information is analyzed in order compare the performance of each forecast. This research aims to improve understanding of how characteristics of accuracy, lead time, and uncertainty of seasonal forecasts influence their utility to water resources decision makers who utilize them.
Metrics for the Evaluation the Utility of Air Quality Forecasting
NASA Astrophysics Data System (ADS)
Sumo, T. M.; Stockwell, W. R.
2013-12-01
Global warming is expected to lead to higher levels of air pollution and therefore the forecasting of both long-term and daily air quality is an important component for the assessment of the costs of climate change and its impact on human health. Some of the risks associated with poor air quality days (where the Air Pollution Index is greater than 100), include hospital visits and mortality. Accurate air quality forecasting has the potential to allow sensitive groups to take appropriate precautions. This research builds metrics for evaluating the utility of air quality forecasting in terms of its potential impacts. Our analysis of air quality models focuses on the Washington, DC/Baltimore, MD region over the summertime ozone seasons between 2010 and 2012. The metrics that are relevant to our analysis include: (1) The number of times that a high ozone or particulate matter (PM) episode is correctly forecasted, (2) the number of times that high ozone or PM episode is forecasted when it does not occur and (3) the number of times when the air quality forecast predicts a cleaner air episode when the air was observed to have high ozone or PM. Our evaluation of the performance of air quality forecasts include those forecasts of ozone and particulate matter and data available from the U.S. Environmental Protection Agency (EPA)'s AIRNOW. We also examined observational ozone and particulate matter data available from Clean Air Partners. Overall the forecast models perform well for our region and time interval.
7 CFR 1710.205 - Minimum approval requirements for all load forecasts.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 11 2010-01-01 2010-01-01 false Minimum approval requirements for all load forecasts. 1710.205 Section 1710.205 Agriculture Regulations of the Department of Agriculture (Continued) RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE GENERAL AND PRE-LOAN POLICIES AND PROCEDURES COMMON TO ELECTRIC LOANS AND GUARANTEES Load Forecasts §...
NASA Technical Reports Server (NTRS)
1977-01-01
A demonstration experiment is being planned to show that frost and freeze prediction improvements are possible utilizing timely Synchronous Meteorological Satellite temperature measurements and that this information can affect Florida citrus grower operations and decisions so as to significantly reduce the cost for frost and freeze protection and crop losses. The design and implementation of the first phase of an economic experiment which will monitor citrus growers decisions, actions, costs and losses, and meteorological forecasts and actual weather events was carried out. The economic experiment was designed to measure the change in annual protection costs and crop losses which are the direct result of improved temperature forecasts. To estimate the benefits that may result from improved temperature forecasting capability, control and test groups were established with effective separation being accomplished temporally. The control group, utilizing current forecasting capability, was observed during the 1976-77 frost season and the results are reported. A brief overview is given of the economic experiment, the results obtained to date, and the work which still remains to be done.
Assessing and Adapting Scientific Results for Space Weather Research to Operations (R2O)
NASA Astrophysics Data System (ADS)
Thompson, B. J.; Friedl, L.; Halford, A. J.; Mays, M. L.; Pulkkinen, A. A.; Singer, H. J.; Stehr, J. W.
2017-12-01
Why doesn't a solid scientific paper necessarily result in a tangible improvement in space weather capability? A well-known challenge in space weather forecasting is investing effort to turn the results of basic scientific research into operational knowledge. This process is commonly known as "Research to Operations," abbreviated R2O. There are several aspects of this process: 1) How relevant is the scientific result to a particular space weather process? 2) If fully utilized, how much will that result improve the reliability of the forecast for the associated process? 3) How much effort will this transition require? Is it already in a relatively usable form, or will it require a great deal of adaptation? 4) How much burden will be placed on forecasters? Is it "plug-and-play" or will it require effort to operate? 5) How can robust space weather forecasting identify challenges for new research? This presentation will cover several approaches that have potential utility in assessing scientific results for use in space weather research. The demonstration of utility is the first step, relating to the establishment of metrics to ensure that there will be a clear benefit to the end user. The presentation will then move to means of determining cost vs. benefit, (where cost involves the full effort required to transition the science to forecasting, and benefit concerns the improvement of forecast reliability), and conclude with a discussion of the role of end users and forecasters in driving further innovation via "O2R."
1980-05-01
Medicine - Biomedicine Related Subjects: Drugs * 1’ 136 Forecast: Minoxidil , an experimental drug for reducing high blood pressure is also proven to be...Derived by The Futures Group from: Sannerstedt, Rune, et.al., " Minoxidil : Haemodynamic and Clinical Experiences With a New Peripheral Vasodilator
Survey of spatial data needs and land use forecasting methods in the electric utility industry
NASA Technical Reports Server (NTRS)
1981-01-01
A representative sample of the electric utility industry in the United States was surveyed to determine industry need for spatial data (specifically LANDSAT and other remotely sensed data) and the methods used by the industry to forecast land use changes and future energy demand. Information was acquired through interviews, written questionnaires, and reports (both published and internal).
Neural network versus classical time series forecasting models
NASA Astrophysics Data System (ADS)
Nor, Maria Elena; Safuan, Hamizah Mohd; Shab, Noorzehan Fazahiyah Md; Asrul, Mohd; Abdullah, Affendi; Mohamad, Nurul Asmaa Izzati; Lee, Muhammad Hisyam
2017-05-01
Artificial neural network (ANN) has advantage in time series forecasting as it has potential to solve complex forecasting problems. This is because ANN is data driven approach which able to be trained to map past values of a time series. In this study the forecast performance between neural network and classical time series forecasting method namely seasonal autoregressive integrated moving average models was being compared by utilizing gold price data. Moreover, the effect of different data preprocessing on the forecast performance of neural network being examined. The forecast accuracy was evaluated using mean absolute deviation, root mean square error and mean absolute percentage error. It was found that ANN produced the most accurate forecast when Box-Cox transformation was used as data preprocessing.
Medication sales and syndromic surveillance, France.
Vergu, Elisabeta; Grais, Rebecca F; Sarter, Hélène; Fagot, Jean-Paul; Lambert, Bruno; Valleron, Alain-Jaques; Flahault, Antoine
2006-03-01
Although syndromic surveillance systems using nonclinical data have been implemented in the United States, the approach has yet to be tested in France. We present the results of the first model based on drug sales that detects the onset of influenza season and forecasts its trend. Using weekly lagged sales of a selected set of medications, we forecast influenzalike illness (ILI) incidence at the national and regional level for 3 epidemic seasons (2000-01, 2001-02, and 2002-03) and validate the model with real-time updating on the fourth (2003-04). For national forecasts 1-3 weeks ahead, the correlation between observed ILI incidence and forecast was 0.85-0.96, an improvement over the current surveillance method in France. Our findings indicate that drug sales are a useful additional tool to syndromic surveillance, a complementary and independent source of information, and a potential improvement for early warning systems for both epidemic and pandemic planning.
Forecasting paratransit services demand : review and recommendations.
DOT National Transportation Integrated Search
2013-06-01
Travel demand forecasting tools for Floridas paratransit services are outdated, utilizing old national trip : generation rate generalities and simple linear regression models. In its guidance for the development of : mandated Transportation Disadv...
Applications of Experimental Suomi-NPP VIIRS Flood Inundation Maps in Operational Flood Forecasting
NASA Astrophysics Data System (ADS)
Deweese, M. M.
2017-12-01
Flooding is the most costly natural disaster across the globe. In 2016 flooding caused more fatalities than any other natural disaster in the United States. The U.S. National Weather Service (NWS) is mandated to forecast rivers for the protection of life and property and the enhancement of the national economy. Since 2014, the NWS North Central River Forecast Center has utilized experimental near real time flood mapping products from the JPSS Suomi-NPP VIIRS satellite. These products have been demonstrated to provide reliable and high value information for forecasters in ice jam and snowmelt flooding in data sparse regions of the northern plains. In addition, they have proved valuable in rainfall induced flooding within the upper Mississippi River basin. Aerial photography and ground observations have validated the accuracy of the products. Examples are provided from numerous flooding events to demonstrate the operational application of this satellite derived information as a remotely sensed observational data source and it's utility in real time flood forecasting.
NASA Technical Reports Server (NTRS)
1978-01-01
Research activities related to global weather, ocean/air interactions, and climate are reported. The global weather research is aimed at improving the assimilation of satellite-derived data in weather forecast models, developing analysis/forecast models that can more fully utilize satellite data, and developing new measures of forecast skill to properly assess the impact of satellite data on weather forecasting. The oceanographic research goal is to understand and model the processes that determine the general circulation of the oceans, focusing on those processes that affect sea surface temperature and oceanic heat storage, which are the oceanographic variables with the greatest influence on climate. The climate research objective is to support the development and effective utilization of space-acquired data systems in climate forecast models and to conduct sensitivity studies to determine the affect of lower boundary conditions on climate and predictability studies to determine which global climate features can be modeled either deterministically or statistically.
7 CFR 1710.209 - Approval requirements for load forecast work plans.
Code of Federal Regulations, 2011 CFR
2011-01-01
...) In addition to the approved load forecast required under §§ 1710.202 and 1710.203, any power supply... that are members of a power supply borrower with a total utility plant of $500 million or more must cooperate in the preparation of and submittal of the load forecast work plan of their power supply borrower...
The Nature and Variability of Ensemble Sensitivity Fields that Diagnose Severe Convection
NASA Astrophysics Data System (ADS)
Ancell, B. C.
2017-12-01
Ensemble sensitivity analysis (ESA) is a statistical technique that uses information from an ensemble of forecasts to reveal relationships between chosen forecast metrics and the larger atmospheric state at various forecast times. A number of studies have employed ESA from the perspectives of dynamical interpretation, observation targeting, and ensemble subsetting toward improved probabilistic prediction of high-impact events, mostly at synoptic scales. We tested ESA using convective forecast metrics at the 2016 HWT Spring Forecast Experiment to understand the utility of convective ensemble sensitivity fields in improving forecasts of severe convection and its individual hazards. The main purpose of this evaluation was to understand the temporal coherence and general characteristics of convective sensitivity fields toward future use in improving ensemble predictability within an operational framework.The magnitude and coverage of simulated reflectivity, updraft helicity, and surface wind speed were used as response functions, and the sensitivity of these functions to winds, temperatures, geopotential heights, and dew points at different atmospheric levels and at different forecast times were evaluated on a daily basis throughout the HWT Spring Forecast experiment. These sensitivities were calculated within the Texas Tech real-time ensemble system, which possesses 42 members that run twice daily to 48-hr forecast time. Here we summarize both the findings regarding the nature of the sensitivity fields and the evaluation of the participants that reflects their opinions of the utility of operational ESA. The future direction of ESA for operational use will also be discussed.
An improved Multimodel Approach for Global Sea Surface Temperature Forecasts
NASA Astrophysics Data System (ADS)
Khan, M. Z. K.; Mehrotra, R.; Sharma, A.
2014-12-01
The concept of ensemble combinations for formulating improved climate forecasts has gained popularity in recent years. However, many climate models share similar physics or modeling processes, which may lead to similar (or strongly correlated) forecasts. Recent approaches for combining forecasts that take into consideration differences in model accuracy over space and time have either ignored the similarity of forecast among the models or followed a pairwise dynamic combination approach. Here we present a basis for combining model predictions, illustrating the improvements that can be achieved if procedures for factoring in inter-model dependence are utilised. The utility of the approach is demonstrated by combining sea surface temperature (SST) forecasts from five climate models over a period of 1960-2005. The variable of interest, the monthly global sea surface temperature anomalies (SSTA) at a 50´50 latitude-longitude grid, is predicted three months in advance to demonstrate the utility of the proposed algorithm. Results indicate that the proposed approach offers consistent and significant improvements for majority of grid points compared to the case where the dependence among the models is ignored. Therefore, the proposed approach of combining multiple models by taking into account the existing interdependence, provides an attractive alternative to obtain improved climate forecast. In addition, an approach to combine seasonal forecasts from multiple climate models with varying periods of availability is also demonstrated.
The Use of Ambient Humidity Conditions to Improve Influenza Forecast
NASA Astrophysics Data System (ADS)
Shaman, J. L.; Kandula, S.; Yang, W.; Karspeck, A. R.
2017-12-01
Laboratory and epidemiological evidence indicate that ambient humidity modulates the survival and transmission of influenza. Here we explore whether the inclusion of humidity forcing in mathematical models describing influenza transmission improves the accuracy of forecasts generated with those models. We generate retrospective forecasts for 95 cities over 10 seasons in the United States and assess both forecast accuracy and error. Overall, we find that humidity forcing improves forecast performance and that forecasts generated using daily climatological humidity forcing generally outperform forecasts that utilize daily observed humidity forcing. These findings hold for predictions of outbreak peak intensity, peak timing, and incidence over 2- and 4-week horizons. The results indicate that use of climatological humidity forcing is warranted for current operational influenza forecast and provide further evidence that humidity modulates rates of influenza transmission.
NASA Astrophysics Data System (ADS)
Arumugam, S.; Mazrooei, A.; Lakshmi, V.; Wood, A.
2017-12-01
Subseasonal-to-seasonal (S2S) forecasts of soil moisture and streamflow provides critical information for water and agricultural systems to support short-term planning and mangement. This study evaluates the role of observed streamflow and remotely-sensed soil moisture from SMAP (Soil Moisture Active Passive) mission in improving S2S streamflow and soil moisture forecasting using data assimilation (DA). We first show the ability to forecast soil moisture at monthly-to-seaasonal time scale by forcing climate forecasts with NASA's Land Information System and then compares the developed soil moisture forecast with the SMAP data over the Southeast US. Our analyses show significant skill in forecasting real-time soil moisture over 1-3 months using climate information. We also show that the developed soil moisture forecasts capture the observed severe drought conditions (2007-2008) over the Southeast US. Following that, we consider both SMAP data and observed streamflow for improving S2S streamflow and soil moisture forecasts for a pilot study area, Tar River basin, in NC. Towards this, we consider variational assimilation (VAR) of gauge-measured daily streamflow data in improving initial hydrologic conditions of Variable Infiltration Capacity (VIC) model. The utility of data assimilation is then assessed in improving S2S forecasts of streamflow and soil moisture through a retrospective analyses. Furthermore, the optimal frequency of data assimilation and optimal analysis window (number of past observations to use) are also assessed in order to achieve the maximum improvement in S2S forecasts of streamflow and soil moisture. Potential utility of updating initial conditions using DA and providing skillful forcings are also discussed.
7 CFR 1710.202 - Requirement to prepare a load forecast-power supply borrowers.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 11 2011-01-01 2011-01-01 false Requirement to prepare a load forecast-power supply...—power supply borrowers. (a) A power supply borrower with a total utility plant of $500 million or more... be prepared pursuant to the approved load forecast work plan. (b) A power supply borrower that is a...
Spatial Pattern Classification for More Accurate Forecasting of Variable Energy Resources
NASA Astrophysics Data System (ADS)
Novakovskaia, E.; Hayes, C.; Collier, C.
2014-12-01
The accuracy of solar and wind forecasts is becoming increasingly essential as grid operators continue to integrate additional renewable generation onto the electric grid. Forecast errors affect rate payers, grid operators, wind and solar plant maintenance crews and energy traders through increases in prices, project down time or lost revenue. While extensive and beneficial efforts were undertaken in recent years to improve physical weather models for a broad spectrum of applications these improvements have generally not been sufficient to meet the accuracy demands of system planners. For renewables, these models are often used in conjunction with additional statistical models utilizing both meteorological observations and the power generation data. Forecast accuracy can be dependent on specific weather regimes for a given location. To account for these dependencies it is important that parameterizations used in statistical models change as the regime changes. An automated tool, based on an artificial neural network model, has been developed to identify different weather regimes as they impact power output forecast accuracy at wind or solar farms. In this study, improvements in forecast accuracy were analyzed for varying time horizons for wind farms and utility-scale PV plants located in different geographical regions.
Daily air quality index forecasting with hybrid models: A case in China.
Zhu, Suling; Lian, Xiuyuan; Liu, Haixia; Hu, Jianming; Wang, Yuanyuan; Che, Jinxing
2017-12-01
Air quality is closely related to quality of life. Air pollution forecasting plays a vital role in air pollution warnings and controlling. However, it is difficult to attain accurate forecasts for air pollution indexes because the original data are non-stationary and chaotic. The existing forecasting methods, such as multiple linear models, autoregressive integrated moving average (ARIMA) and support vector regression (SVR), cannot fully capture the information from series of pollution indexes. Therefore, new effective techniques need to be proposed to forecast air pollution indexes. The main purpose of this research is to develop effective forecasting models for regional air quality indexes (AQI) to address the problems above and enhance forecasting accuracy. Therefore, two hybrid models (EMD-SVR-Hybrid and EMD-IMFs-Hybrid) are proposed to forecast AQI data. The main steps of the EMD-SVR-Hybrid model are as follows: the data preprocessing technique EMD (empirical mode decomposition) is utilized to sift the original AQI data to obtain one group of smoother IMFs (intrinsic mode functions) and a noise series, where the IMFs contain the important information (level, fluctuations and others) from the original AQI series. LS-SVR is applied to forecast the sum of the IMFs, and then, S-ARIMA (seasonal ARIMA) is employed to forecast the residual sequence of LS-SVR. In addition, EMD-IMFs-Hybrid first separately forecasts the IMFs via statistical models and sums the forecasting results of the IMFs as EMD-IMFs. Then, S-ARIMA is employed to forecast the residuals of EMD-IMFs. To certify the proposed hybrid model, AQI data from June 2014 to August 2015 collected from Xingtai in China are utilized as a test case to investigate the empirical research. In terms of some of the forecasting assessment measures, the AQI forecasting results of Xingtai show that the two proposed hybrid models are superior to ARIMA, SVR, GRNN, EMD-GRNN, Wavelet-GRNN and Wavelet-SVR. Therefore, the proposed hybrid models can be used as effective and simple tools for air pollution forecasting and warning as well as for management. Copyright © 2017 Elsevier Ltd. All rights reserved.
A Multi-scale, Multi-Model, Machine-Learning Solar Forecasting Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamann, Hendrik F.
The goal of the project was the development and demonstration of a significantly improved solar forecasting technology (short: Watt-sun), which leverages new big data processing technologies and machine-learnt blending between different models and forecast systems. The technology aimed demonstrating major advances in accuracy as measured by existing and new metrics which themselves were developed as part of this project. Finally, the team worked with Independent System Operators (ISOs) and utilities to integrate the forecasts into their operations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cormier, Dallas; Edra, Sherwin; Espinoza, Michael
This project will enable utilities to develop long-term strategic plans that integrate high levels of renewable energy generation, and to better plan power system operations under high renewable penetration. The program developed forecast data streams for decision support and effective integration of centralized and distributed solar power generation in utility operations. This toolset focused on real time simulation of distributed power generation within utility grids with the emphasis on potential applications in day ahead (market) and real time (reliability) utility operations. The project team developed and demonstrated methodologies for quantifying the impact of distributed solar generation on core utility operations,more » identified protocols for internal data communication requirements, and worked with utility personnel to adapt the new distributed generation (DG) forecasts seamlessly within existing Load and Generation procedures through a sophisticated DMS. This project supported the objectives of the SunShot Initiative and SUNRISE by enabling core utility operations to enhance their simulation capability to analyze and prepare for the impacts of high penetrations of solar on the power grid. The impact of high penetration solar PV on utility operations is not only limited to control centers, but across many core operations. Benefits of an enhanced DMS using state-of-the-art solar forecast data were demonstrated within this project and have had an immediate direct operational cost savings for Energy Marketing for Day Ahead generation commitments, Real Time Operations, Load Forecasting (at an aggregate system level for Day Ahead), Demand Response, Long term Planning (asset management), Distribution Operations, and core ancillary services as required for balancing and reliability. This provided power system operators with the necessary tools and processes to operate the grid in a reliable manner under high renewable penetration.« less
The use of ambient humidity conditions to improve influenza forecast.
Shaman, Jeffrey; Kandula, Sasikiran; Yang, Wan; Karspeck, Alicia
2017-11-01
Laboratory and epidemiological evidence indicate that ambient humidity modulates the survival and transmission of influenza. Here we explore whether the inclusion of humidity forcing in mathematical models describing influenza transmission improves the accuracy of forecasts generated with those models. We generate retrospective forecasts for 95 cities over 10 seasons in the United States and assess both forecast accuracy and error. Overall, we find that humidity forcing improves forecast performance (at 1-4 lead weeks, 3.8% more peak week and 4.4% more peak intensity forecasts are accurate than with no forcing) and that forecasts generated using daily climatological humidity forcing generally outperform forecasts that utilize daily observed humidity forcing (4.4% and 2.6% respectively). These findings hold for predictions of outbreak peak intensity, peak timing, and incidence over 2- and 4-week horizons. The results indicate that use of climatological humidity forcing is warranted for current operational influenza forecast.
The use of ambient humidity conditions to improve influenza forecast
Kandula, Sasikiran; Karspeck, Alicia
2017-01-01
Laboratory and epidemiological evidence indicate that ambient humidity modulates the survival and transmission of influenza. Here we explore whether the inclusion of humidity forcing in mathematical models describing influenza transmission improves the accuracy of forecasts generated with those models. We generate retrospective forecasts for 95 cities over 10 seasons in the United States and assess both forecast accuracy and error. Overall, we find that humidity forcing improves forecast performance (at 1–4 lead weeks, 3.8% more peak week and 4.4% more peak intensity forecasts are accurate than with no forcing) and that forecasts generated using daily climatological humidity forcing generally outperform forecasts that utilize daily observed humidity forcing (4.4% and 2.6% respectively). These findings hold for predictions of outbreak peak intensity, peak timing, and incidence over 2- and 4-week horizons. The results indicate that use of climatological humidity forcing is warranted for current operational influenza forecast. PMID:29145389
Doos, Lucy; Packer, Claire; Ward, Derek; Simpson, Sue; Stevens, Andrew
2017-01-01
Objective To describe and classify health technologies predicted in forecasting studies. Design and methods A portrait describing health technologies predicted in 15 forecasting studies published between 1986 and 2010 that were identified in a previous systematic review. Health technologies are classified according to their type, purpose and clinical use; relating these to the original purpose and timing of the forecasting studies. Data sources All health-related technologies predicted in 15 forecasting studies identified in a previously published systematic review. Main outcome measure Outcomes related to (1) each forecasting study including country, year, intention and forecasting methods used and (2) the predicted technologies including technology type, purpose, targeted clinical area and forecast timeframe. Results Of the 896 identified health-related technologies, 685 (76.5%) were health technologies with an explicit or implied health application and included in our study. Of these, 19.1% were diagnostic or imaging tests, 14.3% devices or biomaterials, 12.6% information technology systems, eHealth or mHealth and 12% drugs. The majority of the technologies were intended to treat or manage disease (38.1%) or diagnose or monitor disease (26.1%). The most frequent targeted clinical areas were infectious diseases followed by cancer, circulatory and nervous system disorders. The most frequent technology types were for: infectious diseases—prophylactic vaccines (45.8%), cancer—drugs (40%), circulatory disease—devices and biomaterials (26.3%), and diseases of the nervous system—equally devices and biomaterials (25%) and regenerative medicine (25%). The mean timeframe for forecasting was 11.6 years (range 0–33 years, median=10, SD=6.6). The forecasting timeframe significantly differed by technology type (p=0.002), the intent of the forecasting group (p<0.001) and the methods used (p<001). Conclusion While description and classification of predicted health-related technologies is crucial in preparing healthcare systems for adopting new innovations, further work is needed to test the accuracy of predictions made. PMID:28760796
A GLM Post-processor to Adjust Ensemble Forecast Traces
NASA Astrophysics Data System (ADS)
Thiemann, M.; Day, G. N.; Schaake, J. C.; Draijer, S.; Wang, L.
2011-12-01
The skill of hydrologic ensemble forecasts has improved in the last years through a better understanding of climate variability, better climate forecasts and new data assimilation techniques. Having been extensively utilized for probabilistic water supply forecasting, interest is developing to utilize these forecasts in operational decision making. Hydrologic ensemble forecast members typically have inherent biases in flow timing and volume caused by (1) structural errors in the models used, (2) systematic errors in the data used to calibrate those models, (3) uncertain initial hydrologic conditions, and (4) uncertainties in the forcing datasets. Furthermore, hydrologic models have often not been developed for operational decision points and ensemble forecasts are thus not always available where needed. A statistical post-processor can be used to address these issues. The post-processor should (1) correct for systematic biases in flow timing and volume, (2) preserve the skill of the available raw forecasts, (3) preserve spatial and temporal correlation as well as the uncertainty in the forecasted flow data, (4) produce adjusted forecast ensembles that represent the variability of the observed hydrograph to be predicted, and (5) preserve individual forecast traces as equally likely. The post-processor should also allow for the translation of available ensemble forecasts to hydrologically similar locations where forecasts are not available. This paper introduces an ensemble post-processor (EPP) developed in support of New York City water supply operations. The EPP employs a general linear model (GLM) to (1) adjust available ensemble forecast traces and (2) create new ensembles for (nearby) locations where only historic flow observations are available. The EPP is calibrated by developing daily and aggregated statistical relationships form historical flow observations and model simulations. These are then used in operation to obtain the conditional probability density function (PDF) of the observations to be predicted, thus jointly adjusting individual ensemble members. These steps are executed in a normalized transformed space ('z'-space) to account for the strong non-linearity in the flow observations involved. A data window centered on each calibration date is used to minimize impacts from sampling errors and data noise. Testing on datasets from California and New York suggests that the EPP can successfully minimize biases in ensemble forecasts, while preserving the raw forecast skill in a 'days to weeks' forecast horizon and reproducing the variability of climatology for 'weeks to years' forecast horizons.
Use of EOS Data in AWIPS for Weather Forecasting
NASA Technical Reports Server (NTRS)
Jedlovec, Gary J.; Haines, Stephanie L.; Suggs, Ron J.; Bradshaw, Tom; Darden, Chris; Burks, Jason
2003-01-01
Operational weather forecasting relies heavily on real time data and modeling products for forecast preparation and dissemination of significant weather information to the public. The synthesis of this information (observations and model products) by the meteorologist is facilitated by a decision support system to display and integrate the information in a useful fashion. For the NWS this system is called Advanced Weather Interactive Processing System (AWIPS). Over the last few years NASA has launched a series of new Earth Observation Satellites (EOS) for climate monitoring that include several instruments that provide high-resolution measurements of atmospheric and surface features important for weather forecasting and analysis. The key to the utilization of these unique new measurements by the NWS is the real time integration of the EOS data into the AWIPS system. This is currently being done in the Huntsville and Birmingham NWS Forecast Offices under the NASA Short-term Prediction Research and Transition (SPORT) Program. This paper describes the use of near real time MODIS and AIRS data in AWIPS to improve the detection of clouds, moisture variations, atmospheric stability, and thermal signatures that can lead to significant weather development. The paper and the conference presentation will focus on several examples where MODIS and AIRS data have made a positive impact on forecast accuracy. The results of an assessment of the utility of these products for weather forecast improvement made at the Huntsville NWS Forecast Office will be presented.
H.K. Preisler; R.E. Burgan; J.C. Eidenshink; J.M. Klaver; R.W. Klaver
2009-01-01
The current study presents a statistical model for assessing the skill of fire danger indices and for forecasting the distribution of the expected numbers of large fires over a given region and for the upcoming week. The procedure permits development of daily maps that forecast, for the forthcoming week and within federal lands, percentiles of the distributions of (i)...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 11 2010-01-01 2010-01-01 false RUS criteria for approval of load forecasts by distribution borrowers not required to maintain an approved load forecast on an ongoing basis. 1710.207 Section 1710.207 Agriculture Regulations of the Department of Agriculture (Continued) RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE GENERAL AND PR...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gagnon, Pieter; Barbose, Galen L.; Stoll, Brady
Misforecasting the adoption of customer-owned distributed photovoltaics (DPV) can have operational and financial implications for utilities; forecasting capabilities can be improved, but generally at a cost. This paper informs this decision-space by using a suite of models to explore the capacity expansion and operation of the Western Interconnection over a 15-year period across a wide range of DPV growth rates and misforecast severities. The system costs under a misforecast are compared against the costs under a perfect forecast, to quantify the costs of misforecasting. Using a simplified probabilistic method applied to these modeling results, an analyst can make a first-ordermore » estimate of the financial benefit of improving a utility’s forecasting capabilities, and thus be better informed about whether to make such an investment. For example, under our base assumptions, a utility with 10 TWh per year of retail electric sales who initially estimates that DPV growth could range from 2% to 7.5% of total generation over the next 15 years could expect total present-value savings of approximately $4 million if they could reduce the severity of misforecasting to within ±25%. Utility resource planners can compare those savings against the costs needed to achieve that level of precision, to guide their decision on whether to make an investment in tools or resources.« less
Electricity forecasting on the individual household level enhanced based on activity patterns
Gajowniczek, Krzysztof; Ząbkowski, Tomasz
2017-01-01
Leveraging smart metering solutions to support energy efficiency on the individual household level poses novel research challenges in monitoring usage and providing accurate load forecasting. Forecasting electricity usage is an especially important component that can provide intelligence to smart meters. In this paper, we propose an enhanced approach for load forecasting at the household level. The impacts of residents’ daily activities and appliance usages on the power consumption of the entire household are incorporated to improve the accuracy of the forecasting model. The contributions of this paper are threefold: (1) we addressed short-term electricity load forecasting for 24 hours ahead, not on the aggregate but on the individual household level, which fits into the Residential Power Load Forecasting (RPLF) methods; (2) for the forecasting, we utilized a household specific dataset of behaviors that influence power consumption, which was derived using segmentation and sequence mining algorithms; and (3) an extensive load forecasting study using different forecasting algorithms enhanced by the household activity patterns was undertaken. PMID:28423039
Electricity forecasting on the individual household level enhanced based on activity patterns.
Gajowniczek, Krzysztof; Ząbkowski, Tomasz
2017-01-01
Leveraging smart metering solutions to support energy efficiency on the individual household level poses novel research challenges in monitoring usage and providing accurate load forecasting. Forecasting electricity usage is an especially important component that can provide intelligence to smart meters. In this paper, we propose an enhanced approach for load forecasting at the household level. The impacts of residents' daily activities and appliance usages on the power consumption of the entire household are incorporated to improve the accuracy of the forecasting model. The contributions of this paper are threefold: (1) we addressed short-term electricity load forecasting for 24 hours ahead, not on the aggregate but on the individual household level, which fits into the Residential Power Load Forecasting (RPLF) methods; (2) for the forecasting, we utilized a household specific dataset of behaviors that influence power consumption, which was derived using segmentation and sequence mining algorithms; and (3) an extensive load forecasting study using different forecasting algorithms enhanced by the household activity patterns was undertaken.
NASA Astrophysics Data System (ADS)
Matte, Simon; Boucher, Marie-Amélie; Boucher, Vincent; Fortier Filion, Thomas-Charles
2017-06-01
A large effort has been made over the past 10 years to promote the operational use of probabilistic or ensemble streamflow forecasts. Numerous studies have shown that ensemble forecasts are of higher quality than deterministic ones. Many studies also conclude that decisions based on ensemble rather than deterministic forecasts lead to better decisions in the context of flood mitigation. Hence, it is believed that ensemble forecasts possess a greater economic and social value for both decision makers and the general population. However, the vast majority of, if not all, existing hydro-economic studies rely on a cost-loss ratio framework that assumes a risk-neutral decision maker. To overcome this important flaw, this study borrows from economics and evaluates the economic value of early warning flood systems using the well-known Constant Absolute Risk Aversion (CARA) utility function, which explicitly accounts for the level of risk aversion of the decision maker. This new framework allows for the full exploitation of the information related to a forecasts' uncertainty, making it especially suited for the economic assessment of ensemble or probabilistic forecasts. Rather than comparing deterministic and ensemble forecasts, this study focuses on comparing different types of ensemble forecasts. There are multiple ways of assessing and representing forecast uncertainty. Consequently, there exist many different means of building an ensemble forecasting system for future streamflow. One such possibility is to dress deterministic forecasts using the statistics of past error forecasts. Such dressing methods are popular among operational agencies because of their simplicity and intuitiveness. Another approach is the use of ensemble meteorological forecasts for precipitation and temperature, which are then provided as inputs to one or many hydrological model(s). In this study, three concurrent ensemble streamflow forecasting systems are compared: simple statistically dressed deterministic forecasts, forecasts based on meteorological ensembles, and a variant of the latter that also includes an estimation of state variable uncertainty. This comparison takes place for the Montmorency River, a small flood-prone watershed in southern central Quebec, Canada. The assessment of forecasts is performed for lead times of 1 to 5 days, both in terms of forecasts' quality (relative to the corresponding record of observations) and in terms of economic value, using the new proposed framework based on the CARA utility function. It is found that the economic value of a forecast for a risk-averse decision maker is closely linked to the forecast reliability in predicting the upper tail of the streamflow distribution. Hence, post-processing forecasts to avoid over-forecasting could help improve both the quality and the value of forecasts.
Karin L. Riley; Crystal Stonesifer; Haiganoush Preisler; Dave Calkin
2014-01-01
Can fire potential forecasts assist with pre-positioning of fire suppression resources, which could result in a cost savings to the United States government? Here, we present a preliminary assessment of the 7-Day Fire Potential Outlook forecasts made by the Predictive Services program. We utilized historical fire occurrence data and archived forecasts to assess how...
Solar Photovoltaic and Liquid Natural Gas Opportunities for Command Naval Region Hawaii
2014-12-01
Utilities Commission xii PV Photovoltaic Pwr Power RE Renewable Energy Re-gas Regasification RFP Request For Proposal RMI Rocky... forecasted LS diesel price and the forecasted LNG delivered-to-the- power -plant cost. The forecast for LS diesel by FGE from year 2020–2030 is seen...annual/html/epa_08_01.html Electric Power Research Institute. (July, 2010). Addressing solar photovoltaic operations and maintenance challenges: A
NASA Astrophysics Data System (ADS)
Pathak, Jaideep; Wikner, Alexander; Fussell, Rebeckah; Chandra, Sarthak; Hunt, Brian R.; Girvan, Michelle; Ott, Edward
2018-04-01
A model-based approach to forecasting chaotic dynamical systems utilizes knowledge of the mechanistic processes governing the dynamics to build an approximate mathematical model of the system. In contrast, machine learning techniques have demonstrated promising results for forecasting chaotic systems purely from past time series measurements of system state variables (training data), without prior knowledge of the system dynamics. The motivation for this paper is the potential of machine learning for filling in the gaps in our underlying mechanistic knowledge that cause widely-used knowledge-based models to be inaccurate. Thus, we here propose a general method that leverages the advantages of these two approaches by combining a knowledge-based model and a machine learning technique to build a hybrid forecasting scheme. Potential applications for such an approach are numerous (e.g., improving weather forecasting). We demonstrate and test the utility of this approach using a particular illustrative version of a machine learning known as reservoir computing, and we apply the resulting hybrid forecaster to a low-dimensional chaotic system, as well as to a high-dimensional spatiotemporal chaotic system. These tests yield extremely promising results in that our hybrid technique is able to accurately predict for a much longer period of time than either its machine-learning component or its model-based component alone.
NASA Astrophysics Data System (ADS)
Arumugam, S.; Mazrooei, A.; Ward, R.
2017-12-01
Changing climate arising from structured oscillations such as ENSO and rising temperature poses challenging issues in meeting the increasing water demand (due to population growth) for public supply and agriculture over the Southeast US. This together with infrastructural (e.g., most reservoirs being within-year systems) and operational (e.g., static rule curves) constraints requires an integrated approach that seamlessly monitors and forecasts water and soil moisture conditions to support adaptive decision making in water and agricultural sectors. In this talk, we discuss the utility of an integrated drought management portal that both monitors and forecasts streamflow and soil moisture over the southeast US. The forecasts are continuously developed and updated by forcing monthly-to-seasonal climate forecasts with a land surface model for various target basins. The portal also houses a reservoir allocation model that allows water managers to explore different release policies in meeting the system constraints and target storages conditioned on the forecasts. The talk will also demonstrate how past events (e.g., 2007-2008 drought) could be proactively monitored and managed to improve decision making in water and agricultural sectors over the Southeast US. Challenges in utilizing the portal information from institutional and operational perspectives will also be presented.
Projecting future drug expenditures in U.S. nonfederal hospitals and clinics--2013.
Hoffman, James M; Li, Edward; Doloresco, Fred; Matusiak, Linda; Hunkler, Robert J; Shah, Nilay D; Vermeulen, Lee C; Schumock, Glen T
2013-03-15
Factors likely to influence drug expenditures, drug expenditure trends in 2012, and projected drug expenditures for U.S. nonfederal hospitals and clinics in 2013 are discussed. Prescription drug expenditure data for 2011 through September 2012 were obtained from the IMS Health National Sales Perspectives database. Expenditure projections were based on a combination of quantitative and qualitative analyses, combined with expert opinion. Total prescription sales in the United States for the 12-month period ending September 2012 were $326.0 billion, a 0.8% increase from the previous 12 months. This rate of growth was the lowest in recent history and can be attributed to modest increases in expenditures for new products (3.3%) and the prices of existing products (5.9%), coupled with a marked decline in overall volume and mix (-8.4%). For the 9 months ending in September 2012, total prescription expenditures grew 2.7% when compared with the same period in 2011. Oncology products remained important expenditures for hospitals and clinics. Antineoplastic agents were the top medication class for expenditures in nonfederal hospitals, and oncology products accounted for 32.2% of drug expenditures in the clinic setting in the first 9 months of 2012. For 2013, we project a 1-3% increase in total drug expenditures across all settings, a 2-4% increase in expenditures for clinic-administered drugs, and a 0.5% decline to 1.5% increase in hospital drug expenditures. Health-system pharmacy leaders should carefully examine their own local drug-utilization patterns to determine their own organization's drug expenditure forecast.
Novel methodology for pharmaceutical expenditure forecast
Vataire, Anne-Lise; Cetinsoy, Laurent; Aballéa, Samuel; Rémuzat, Cécile; Urbinati, Duccio; Kornfeld, Åsa; Mzoughi, Olfa; Toumi, Mondher
2014-01-01
Background and objective The value appreciation of new drugs across countries today features a disruption that is making the historical data that are used for forecasting pharmaceutical expenditure poorly reliable. Forecasting methods rarely addressed uncertainty. The objective of this project was to propose a methodology to perform pharmaceutical expenditure forecasting that integrates expected policy changes and uncertainty (developed for the European Commission as the ‘EU Pharmaceutical expenditure forecast’; see http://ec.europa.eu/health/healthcare/key_documents/index_en.htm). Methods 1) Identification of all pharmaceuticals going off-patent and new branded medicinal products over a 5-year forecasting period in seven European Union (EU) Member States. 2) Development of a model to estimate direct and indirect impacts (based on health policies and clinical experts) on savings of generics and biosimilars. Inputs were originator sales value, patent expiry date, time to launch after marketing authorization, price discount, penetration rate, time to peak sales, and impact on brand price. 3) Development of a model for new drugs, which estimated sales progression in a competitive environment. Clinical expected benefits as well as commercial potential were assessed for each product by clinical experts. Inputs were development phase, marketing authorization dates, orphan condition, market size, and competitors. 4) Separate analysis of the budget impact of products going off-patent and new drugs according to several perspectives, distribution chains, and outcomes. 5) Addressing uncertainty surrounding estimations via deterministic and probabilistic sensitivity analysis. Results This methodology has proven to be effective by 1) identifying the main parameters impacting the variations in pharmaceutical expenditure forecasting across countries: generics discounts and penetration, brand price after patent loss, reimbursement rate, the penetration of biosimilars and discount price, distribution chains, and the time to reach peak sales for new drugs; 2) estimating the statistical distribution of the budget impact; and 3) testing different pricing and reimbursement policy decisions on health expenditures. Conclusions This methodology was independent of historical data and appeared to be highly flexible and adapted to test robustness and provide probabilistic analysis to support policy decision making. PMID:27226843
Operational Impact of Data Collected from the Global Hawk Unmanned Aircraft During SHOUT
NASA Astrophysics Data System (ADS)
Wick, G. A.; Dunion, J. P.; Sippel, J.; Cucurull, L.; Aksoy, A.; Kren, A.; Christophersen, H.; Black, P.
2017-12-01
The primary scientific goal of the Sensing Hazards with Operational Unmanned Technology (SHOUT) Project was to determine the potential utility of observations from high-altitude, long-endurance unmanned aircraft systems such as the Global Hawk (GH) aircraft to improve operational forecasts of high-impact weather events or mitigate potential degradation of forecasts in the event of a future gap in satellite coverage. Hurricanes and tropical cyclones are among the most potentially destructive high-impact weather events and pose a major forecasting challenge to NOAA. Major winter storms over the Pacific Ocean, including atmospheric river events, which make landfall and bring strong winds and extreme precipitation to the West Coast and Alaska are also important to forecast accurately because of their societal impact in those parts of the country. In response, the SHOUT project supported three field campaigns with the GH aircraft and dedicated data impact studies exploring the potential for the real-time data from the aircraft to improve the forecasting of both tropical cyclones and landfalling Pacific storms. Dropsonde observations from the GH aircraft were assimilated into the operational Hurricane Weather Research and Forecasting (HWRF) and Global Forecast System (GFS) models. The results from several diverse but complementary studies consistently demonstrated significant positive forecast benefits spanning the regional and global models. Forecast skill improvements within HWRF reached up to about 9% for track and 14% for intensity. Within GFS, track skill improvements for multi-storm averages exceeded 10% and improvements for individual storms reached over 20% depending on forecast lead time. Forecasted precipitation was also improved. Impacts for Pacific winter storms were smaller but still positive. The results are highly encouraging and support the potential for operational utilization of data from a platform like the GH. This presentation summarizes the observations collected and highlights the multiple impact studies completed.
NASA Astrophysics Data System (ADS)
Li, Weihua; Sankarasubramanian, A.; Ranjithan, R. S.; Brill, E. D.
2014-08-01
Regional water supply systems undergo surplus and deficit conditions due to differences in inflow characteristics as well as due to their seasonal demand patterns. This study proposes a framework for regional water management by proposing an interbasin transfer (IBT) model that uses climate-information-based inflow forecast for minimizing the deviations from the end-of-season target storage across the participating pools. Using the ensemble streamflow forecast, the IBT water allocation model was applied for two reservoir systems in the North Carolina Triangle Area. Results show that interbasin transfers initiated by the ensemble streamflow forecast could potentially improve the overall water supply reliability as the demand continues to grow in the Triangle Area. To further understand the utility of climate forecasts in facilitating IBT under different spatial correlation structures between inflows and between the initial storages of the two systems, a synthetic experiment was designed to evaluate the framework under inflow forecast having different skills. Findings from the synthetic study can be summarized as follows: (a) inflow forecasts combined with the proposed IBT optimization model provide improved allocation in comparison to the allocations obtained under the no-transfer scenario as well as under transfers obtained with climatology; (b) spatial correlations between inflows and between initial storages among participating reservoirs could also influence the potential benefits that could be achieved through IBT; (c) IBT is particularly beneficial for systems that experience low correlations between inflows or between initial storages or on both attributes of the regional water supply system. Thus, if both infrastructure and permitting structures exist for promoting interbasin transfers, season-ahead inflow forecasts could provide added benefits in forecasting surplus/deficit conditions among the participating pools in the regional water supply system.
NASA Astrophysics Data System (ADS)
Li, W.; Arumugam, S.; Ranjithan, R. S.; Brill, E. D., Jr.
2014-12-01
Regional water supply systems undergo surplus and deficit conditions due to differences in inflow characteristics as well as due to their seasonal demand patterns. This study presents a framework for regional water management by proposing an Inter-Basin Transfer (IBT) model that uses climate-information-based inflow forecast for minimizing the deviations from the end- of-season target storage across the participating reservoirs. Using the ensemble streamflow forecast, the IBT water allocation model was applied for two reservoir systems in the North Carolina Triangle area. Results show that inter-basin transfers initiated by the ensemble streamflow forecast could potentially improve the overall water supply reliability as the demand continues to grow in the Triangle Area. To further understand the utility of climate forecasts in facilitating IBT under different spatial correlation structures between inflows and between the initial storages of the two systems, a synthetic experiment was designed to evaluate the framework under inflow forecast having different skills. Findings from the synthetic study can be summarized as follows: (a) Inflow forecasts combined with the proposed IBT optimization model provide improved allocation in comparison to the allocations obtained under the no- transfer scenario as well as under transfers obtained with climatology; (b) Spatial correlations between inflows and between initial storages among participating reservoirs could also influence the potential benefits that could be achieved through IBT; (c) IBT is particularly beneficial for systems that experience low correlations between inflows or between initial storages or on both attributes of the regional water supply system. Thus, if both infrastructure and permitting structures exist for promoting inter-basin transfers, season-ahead inflow forecasts could provide added benefits in forecasting surplus/deficit conditions among the participating reservoirs in the regional water supply system.
A Solar Time-Based Analog Ensemble Method for Regional Solar Power Forecasting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hodge, Brian S; Zhang, Xinmin; Li, Yuan
This paper presents a new analog ensemble method for day-ahead regional photovoltaic (PV) power forecasting with hourly resolution. By utilizing open weather forecast and power measurement data, this prediction method is processed within a set of historical data with similar meteorological data (temperature and irradiance), and astronomical date (solar time and earth declination angle). Further, clustering and blending strategies are applied to improve its accuracy in regional PV forecasting. The robustness of the proposed method is demonstrated with three different numerical weather prediction models, the North American Mesoscale Forecast System, the Global Forecast System, and the Short-Range Ensemble Forecast, formore » both region level and single site level PV forecasts. Using real measured data, the new forecasting approach is applied to the load zone in Southeastern Massachusetts as a case study. The normalized root mean square error (NRMSE) has been reduced by 13.80%-61.21% when compared with three tested baselines.« less
Pappenberger, F; Jendritzky, G; Staiger, H; Dutra, E; Di Giuseppe, F; Richardson, D S; Cloke, H L
2015-03-01
Although over a hundred thermal indices can be used for assessing thermal health hazards, many ignore the human heat budget, physiology and clothing. The Universal Thermal Climate Index (UTCI) addresses these shortcomings by using an advanced thermo-physiological model. This paper assesses the potential of using the UTCI for forecasting thermal health hazards. Traditionally, such hazard forecasting has had two further limitations: it has been narrowly focused on a particular region or nation and has relied on the use of single 'deterministic' forecasts. Here, the UTCI is computed on a global scale, which is essential for international health-hazard warnings and disaster preparedness, and it is provided as a probabilistic forecast. It is shown that probabilistic UTCI forecasts are superior in skill to deterministic forecasts and that despite global variations, the UTCI forecast is skilful for lead times up to 10 days. The paper also demonstrates the utility of probabilistic UTCI forecasts on the example of the 2010 heat wave in Russia.
Hybrid Intrusion Forecasting Framework for Early Warning System
NASA Astrophysics Data System (ADS)
Kim, Sehun; Shin, Seong-Jun; Kim, Hyunwoo; Kwon, Ki Hoon; Han, Younggoo
Recently, cyber attacks have become a serious hindrance to the stability of Internet. These attacks exploit interconnectivity of networks, propagate in an instant, and have become more sophisticated and evolutionary. Traditional Internet security systems such as firewalls, IDS and IPS are limited in terms of detecting recent cyber attacks in advance as these systems respond to Internet attacks only after the attacks inflict serious damage. In this paper, we propose a hybrid intrusion forecasting system framework for an early warning system. The proposed system utilizes three types of forecasting methods: time-series analysis, probabilistic modeling, and data mining method. By combining these methods, it is possible to take advantage of the forecasting technique of each while overcoming their drawbacks. Experimental results show that the hybrid intrusion forecasting method outperforms each of three forecasting methods.
A hybrid group method of data handling with discrete wavelet transform for GDP forecasting
NASA Astrophysics Data System (ADS)
Isa, Nadira Mohamed; Shabri, Ani
2013-09-01
This study is proposed the application of hybridization model using Group Method of Data Handling (GMDH) and Discrete Wavelet Transform (DWT) in time series forecasting. The objective of this paper is to examine the flexibility of the hybridization GMDH in time series forecasting by using Gross Domestic Product (GDP). A time series data set is used in this study to demonstrate the effectiveness of the forecasting model. This data are utilized to forecast through an application aimed to handle real life time series. This experiment compares the performances of a hybrid model and a single model of Wavelet-Linear Regression (WR), Artificial Neural Network (ANN), and conventional GMDH. It is shown that the proposed model can provide a promising alternative technique in GDP forecasting.
Using Satellite Data in Weather Forecasting: I
NASA Technical Reports Server (NTRS)
Jedlovec, Gary J.; Suggs, Ronnie J.; Lecue, Juan M.
2006-01-01
The GOES Product Generation System (GPGS) is a set of computer codes and scripts that enable the assimilation of real-time Geostationary Operational Environmental Satellite (GOES) data into regional-weather-forecasting mathematical models. The GPGS can be used to derive such geophysical parameters as land surface temperature, the amount of precipitable water, the degree of cloud cover, the surface albedo, and the amount of insolation from satellite measurements of radiant energy emitted by the Earth and its atmosphere. GPGS incorporates a priori information (initial guesses of thermodynamic parameters of the atmosphere) and radiometric measurements from the geostationary operational environmental satellites along with mathematical models of physical principles that govern the transfer of energy in the atmosphere. GPGS solves the radiative-transfer equation and provides the resulting data products in formats suitable for use by weather-forecasting computer programs. The data-assimilation capability afforded by GPGS offers the potential to improve local weather forecasts ranging from 3 hours to 2 days - especially with respect to temperature, humidity, cloud cover, and the probability of precipitation. The improvements afforded by GPGS could be of interest to news media, utility companies, and other organizations that utilize regional weather forecasts.
Alamaniotis, Miltiadis; Bargiotas, Dimitrios; Tsoukalas, Lefteri H
2016-01-01
Integration of energy systems with information technologies has facilitated the realization of smart energy systems that utilize information to optimize system operation. To that end, crucial in optimizing energy system operation is the accurate, ahead-of-time forecasting of load demand. In particular, load forecasting allows planning of system expansion, and decision making for enhancing system safety and reliability. In this paper, the application of two types of kernel machines for medium term load forecasting (MTLF) is presented and their performance is recorded based on a set of historical electricity load demand data. The two kernel machine models and more specifically Gaussian process regression (GPR) and relevance vector regression (RVR) are utilized for making predictions over future load demand. Both models, i.e., GPR and RVR, are equipped with a Gaussian kernel and are tested on daily predictions for a 30-day-ahead horizon taken from the New England Area. Furthermore, their performance is compared to the ARMA(2,2) model with respect to mean average percentage error and squared correlation coefficient. Results demonstrate the superiority of RVR over the other forecasting models in performing MTLF.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gagnon, Pieter J
Misforecasting the adoption of customer-owned distributed photovoltaics (DPV) can have operational and financial implications for utilities - forecasting capabilities can be improved, but generally at a cost. This paper informs this decision-space by quantifying the costs of misforecasting across a wide range of DPV growth rates and misforecast severities. Using a simplified probabilistic method presented within, an analyst can make a first-order estimate of the financial benefit of improving a utility's forecasting capabilities, and thus be better informed about whether to make such an investment. For example, we show that a utility with 10 TWh per year of retail electricmore » sales who initially estimates that the increase in DPV's contribution to total generation could range from 2 to 7.5 percent over the next 15 years could expect total present-value savings of approximately 4 million dollars if they could keep the severity of successive five-year misforecasts within plus or minus 25 percent. We also have more general discussions about how misforecasting DPV impacts the buildout and operation of the bulk power system - for example, we observed that misforecasting DPV most strongly influenced the amount of utility-scale PV that gets built, due to the similarity in the energy and capacity services offered by the two solar technologies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gagnon, Pieter J; Stoll, Brady; Mai, Trieu T
Misforecasting the adoption of customer-owned distributed photovoltaics (DPV) can have operational and financial implications for utilities - forecasting capabilities can be improved, but generally at a cost.This paper informs this decision-space by quantifying the costs of misforecasting across a wide range of DPV growth rates and misforecast severities. Using a simplified probabilistic method presented within, an analyst can make a first-order estimate of the financial benefit of improving a utility's forecasting capabilities, and thus be better informed about whether to make such an investment. For example, we show that a utility with 10 TWh per year of retail electric salesmore » who initially estimates that the increase in DPV's contribution to total generation could range from 2 percent to 7.5 percent over the next 15 years could expect total present-value savings of approximately $4 million if they could keep the severity of successive five-year misforecasts within +/- 25 percent. We also have more general discussions about how misforecasting DPV impacts the buildout and operation of the bulk power system - for example, we observed that misforecasting DPV most strongly influenced the amount of utility-scale PV that gets built, due to the similarity in the energy and capacity services offered by the two solar technologies.« less
Recent examples of mesoscale numerical forecasts of severe weather events along the east coast
NASA Technical Reports Server (NTRS)
Kocin, P. J.; Uccellini, L. W.; Zack, J. W.; Kaplan, M. L.
1984-01-01
Mesoscale numerical forecasts utilizing the Mesoscale Atmospheric Simulation System (MASS) are documented for two East Coast severe weather events. The two events are the thunderstorm and heavy snow bursts in the Washington, D.C. - Baltimore, MD region on 8 March 1984 and the devastating tornado outbreak across North and South Carolina on 28 March 1984. The forecasts are presented to demonstrate the ability of the model to simulate dynamical interactions and diabatic processes and to note some of the problems encountered when using mesoscale models for day-to-day forecasting.
Doos, Lucy; Packer, Claire; Ward, Derek; Simpson, Sue; Stevens, Andrew
2017-07-31
To describe and classify health technologies predicted in forecasting studies. A portrait describing health technologies predicted in 15 forecasting studies published between 1986 and 2010 that were identified in a previous systematic review. Health technologies are classified according to their type, purpose and clinical use; relating these to the original purpose and timing of the forecasting studies. All health-related technologies predicted in 15 forecasting studies identified in a previously published systematic review. Outcomes related to (1) each forecasting study including country, year, intention and forecasting methods used and (2) the predicted technologies including technology type, purpose, targeted clinical area and forecast timeframe. Of the 896 identified health-related technologies, 685 (76.5%) were health technologies with an explicit or implied health application and included in our study. Of these, 19.1% were diagnostic or imaging tests, 14.3% devices or biomaterials, 12.6% information technology systems, eHealth or mHealth and 12% drugs. The majority of the technologies were intended to treat or manage disease (38.1%) or diagnose or monitor disease (26.1%). The most frequent targeted clinical areas were infectious diseases followed by cancer, circulatory and nervous system disorders. The most frequent technology types were for: infectious diseases-prophylactic vaccines (45.8%), cancer-drugs (40%), circulatory disease-devices and biomaterials (26.3%), and diseases of the nervous system-equally devices and biomaterials (25%) and regenerative medicine (25%). The mean timeframe for forecasting was 11.6 years (range 0-33 years, median=10, SD=6.6). The forecasting timeframe significantly differed by technology type (p=0.002), the intent of the forecasting group (p<0.001) and the methods used (p<001). While description and classification of predicted health-related technologies is crucial in preparing healthcare systems for adopting new innovations, further work is needed to test the accuracy of predictions made. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Forecasting annual aboveground net primary production in the intermountain west
USDA-ARS?s Scientific Manuscript database
For many land manager’s annual aboveground net primary production, or plant growth, is a key factor affecting business success, profitability and each land manager's ability to successfully meet land management objectives. The strategy often utilized for forecasting plant growth is to assume every y...
Ben Yahya, M
2016-05-01
The department of pharmacy of the Regional Hospital of Dapaong is responsible for delivery of health products. We sought to assess the department's avoidable costs to optimize the hospital's drug policies and thereby improve patient care. This cost-forecasting study is intended to convince the hospital staff of the utility of setting up a drug and therapeutics committee and more particularly of developing a drug handbook for use within the public health institutions of the Savanna region. This prospective study seeks to improve the efficiency, quality, and availability of medicines by listing the references currently available at the Regional Hospital to demonstrate the percentage of duplicates and to show the references currently unavailable via "lost" sales. A retrospective study then estimated the loss of income from sales due to expired drugs. Our studies indicate that optimized management of the pharmacy would result in a potential gain of 14,914,397 FCFA, that is, 22,770 €. This significant savings could be used to improve the quality of care and promote quality assurance at the CHRD. The elimination of duplicates would allow the purchase of currently unavailable pharmaceutical classes (12,369,701 FCFA, that is, 18,885 € for reinvestment), and multidisciplinary collaboration with prescribers could reduce the losses associated with expired drugs (2,544,696 FCFA, or 3,885 €). These changes would improve the matching of the drugs prescribed at the CHRD and those delivered by the pharmacy.
Weather Prediction Improvement Using Advanced Satellite Technology
NASA Technical Reports Server (NTRS)
Einaudi, Franco; Uccellini, L.; Purdom, J.; Rogers, D.; Gelaro, R.; Dodge, J.; Atlas, R.; Lord, S.
2001-01-01
We discuss in this paper some of the problems that exist today in the fall utilization of satellite data to improve weather forecasts and we propose specific recommendations to solve them. This discussion can be viewed as an aspect of the general debate on how best to organize the transition from research to operational satellites and how to evaluate the impact of a research instrument on numerical weather predictions. A method for providing this transition is offered by the National Polar-Orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP). This mission will bridge the time between the present NOAA and Department of Defense (DOD) polar orbiting missions and the initiation of the converged NPOESS series and will evaluate some of the Earth Observing System (EOS) instruments as appropriate for operational missions. Thus, this mission can be viewed as an effort to meet the operational requirements of NOAA and DOD and the research requirements of NASA. More generally, however, it can be said that the process of going from the conception of new, more advanced instruments to their operational implementation and full utilization by the weather forecast communities is not optimal. Instruments developed for research purposes may have insufficient funding to explore their potential operational capabilities. Furthermore, instrument development programs designed for operational satellites typically have insufficient funding for assimilation algorithms needed to transform the satellite observations into data that can be used by sophisticated global weather forecast models. As a result, years often go by before satellite data are efficiently used for operational forecasts. NASA and NOAA each have unique expertise in the design of satellite instruments, their use for basic and applied research and their utilization in weather and climate research. At a time of limited resources, the two agencies must combine their efforts to work toward common goals of full utilization of satellite data. This is a challenge that requires the assimilation of myriad new data into increasingly sophisticated numerical forecast models that run on increasingly sophisticated computer systems. In section II, we briefly outline the impact of satellite data on the quality of the National Centers for Environmental Prediction (NCEP) forecasts. In section III, we describe the present status of the utilization of satellite data in NCEP models and the challenges that lie ahead. In section IV, we propose solutions whose goals are summarized in section V.
New drug adoption models: a review and assessment of future needs.
Agrawal, M; Calantone, R J
1995-01-01
New drug products today are the key to survival in the pharmaceutical industry. However, the new product development process in the pharmaceutical industry also happens to be one of the riskiest and most expensive undertakings because of the huge research and development costs involved. Consequently market forecasting of new pharmaceutical products takes on added importance if the formidable investments are to be recovered. New drug adoption models provide the marketer with a means to assess new product potential. Although several adoption models are available in the marketing literature for assessing potential of common consumer goods, the unique characteristics of the prescription drug market makes it necessary to examine the current state of pharmaceutical innovations. The purpose of this study, therefore, is to: (1) review new drug adoption models in the pharmaceutical literature, (2) evaluate the existing models of new drug adoption using the ten criteria for a good model as prescribed by Zaltman and Wallendorf (1983), and (3) provide an overall assessment and a ¿prescription¿ for better forecasting of new drug products.
The Texas Children's Hospital immunization forecaster: conceptualization to implementation.
Cunningham, Rachel M; Sahni, Leila C; Kerr, G Brady; King, Laura L; Bunker, Nathan A; Boom, Julie A
2014-12-01
Immunization forecasting systems evaluate patient vaccination histories and recommend the dates and vaccines that should be administered. We described the conceptualization, development, implementation, and distribution of a novel immunization forecaster, the Texas Children's Hospital (TCH) Forecaster. In 2007, TCH convened an internal expert team that included a pediatrician, immunization nurse, software engineer, and immunization subject matter experts to develop the TCH Forecaster. Our team developed the design of the model, wrote the software, populated the Excel tables, integrated the software, and tested the Forecaster. We created a table of rules that contained each vaccine's recommendations, minimum ages and intervals, and contraindications, which served as the basis for the TCH Forecaster. We created 15 vaccine tables that incorporated 79 unique dose states and 84 vaccine types to operationalize the entire United States recommended immunization schedule. The TCH Forecaster was implemented throughout the TCH system, the Indian Health Service, and the Virginia Department of Health. The TCH Forecast Tester is currently being used nationally. Immunization forecasting systems might positively affect adherence to vaccine recommendations. Efforts to support health care provider utilization of immunization forecasting systems and to evaluate their impact on patient care are needed.
7 CFR 1710.302 - Financial forecasts-power supply borrowers.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 11 2010-01-01 2010-01-01 false Financial forecasts-power supply borrowers. 1710.302 Section 1710.302 Agriculture Regulations of the Department of Agriculture (Continued) RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE GENERAL AND PRE-LOAN POLICIES AND PROCEDURES COMMON TO ELECTRIC LOANS AND GUARANTEES Long-Range Financial...
7 CFR 1710.301 - Financial forecasts-distribution borrowers.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 11 2010-01-01 2010-01-01 false Financial forecasts-distribution borrowers. 1710.301 Section 1710.301 Agriculture Regulations of the Department of Agriculture (Continued) RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE GENERAL AND PRE-LOAN POLICIES AND PROCEDURES COMMON TO ELECTRIC LOANS AND GUARANTEES Long-Range Financial...
Closing Schools without Enraging the Public.
ERIC Educational Resources Information Center
Orrell, Donald B.
In the late 1970's, declining enrollment in Raytown, Missouri, prompted the school board to employ an outside consulting firm to prepare a 10-year comprehensive demographic forecast. The enrollment forecast clearly indicated that the decline would continue. A facility utilization study found that the overall physical condition of the schools was…
Operational Earthquake Forecasting and Decision-Making in a Low-Probability Environment
NASA Astrophysics Data System (ADS)
Jordan, T. H.; the International Commission on Earthquake ForecastingCivil Protection
2011-12-01
Operational earthquake forecasting (OEF) is the dissemination of authoritative information about the time dependence of seismic hazards to help communities prepare for potentially destructive earthquakes. Most previous work on the public utility of OEF has anticipated that forecasts would deliver high probabilities of large earthquakes; i.e., deterministic predictions with low error rates (false alarms and failures-to-predict) would be possible. This expectation has not been realized. An alternative to deterministic prediction is probabilistic forecasting based on empirical statistical models of aftershock triggering and seismic clustering. During periods of high seismic activity, short-term earthquake forecasts can attain prospective probability gains in excess of 100 relative to long-term forecasts. The utility of such information is by no means clear, however, because even with hundredfold increases, the probabilities of large earthquakes typically remain small, rarely exceeding a few percent over forecasting intervals of days or weeks. Civil protection agencies have been understandably cautious in implementing OEF in this sort of "low-probability environment." The need to move more quickly has been underscored by recent seismic crises, such as the 2009 L'Aquila earthquake sequence, in which an anxious public was confused by informal and inaccurate earthquake predictions. After the L'Aquila earthquake, the Italian Department of Civil Protection appointed an International Commission on Earthquake Forecasting (ICEF), which I chaired, to recommend guidelines for OEF utilization. Our report (Ann. Geophys., 54, 4, 2011; doi: 10.4401/ag-5350) concludes: (a) Public sources of information on short-term probabilities should be authoritative, scientific, open, and timely, and need to convey epistemic uncertainties. (b) Earthquake probabilities should be based on operationally qualified, regularly updated forecasting systems. (c) All operational models should be evaluated for reliability and skill by retrospective testing, and the models should be under continuous prospective testing against long-term forecasts and alternative time-dependent models. (d) Short-term models used in operational forecasting should be consistent with the long-term forecasts used in probabilistic seismic hazard analysis. (e) Alert procedures should be standardized to facilitate decisions at different levels of government, based in part on objective analysis of costs and benefits. (f) In establishing alert protocols, consideration should also be given to the less tangible aspects of value-of-information, such as gains in psychological preparedness and resilience. Authoritative statements of increased risk, even when the absolute probability is low, can provide a psychological benefit to the public by filling information vacuums that lead to informal predictions and misinformation. Formal OEF procedures based on probabilistic forecasting appropriately separate hazard estimation by scientists from the decision-making role of civil protection authorities. The prosecution of seven Italian scientists on manslaughter charges stemming from their actions before the L'Aquila earthquake makes clear why this separation should be explicit in defining OEF protocols.
GCM Hindcasts for SST Forced Climate Variability over Agriculturally Intensive Regions
NASA Technical Reports Server (NTRS)
Druyan, Leonard M.; Shah, Kathryn P.; Chandler, Mark A.; Rind, David
1998-01-01
The ability to forecast seasonal climate is of great practical interest. One of the most obvious benefits would be agriculture, for which various preparations (planting, machinery, irrigation, manpower) would be enabled. The expectation of being able to make such forecasts far enough in advance (on the order of 9 months) hinges on components of the system with the longest persistence or predictability. The mixed results of El Nino forecasts has raised the hope that tropical Pacific sea surface temperatures (SST) fall into this category. For agriculturally-relevant forecasts to be made, and utilized, requires several conditions. The SST in the regions that affect agricultural areas must be forecast successfully, many months in advance. The climate response to such sea surface temperatures must then be ascertained, either through the use of historical empirical studies or models (e.g., GCMS). For practical applications, the agricultural production must be strongly influenced by climate, and farmers on either the local level or through commercial concerns must be able to adjust to using such forecasts. In a continuing series of papers, we will explore each of these components. This article concerns the question of utilizing SST to forecast the climate in several regions of agricultural production. We optimize the possibility of doing so successfully by using observed SST in a hindcast mode (i.e., a perfect forecast), and we also use the globally observed values (rather than just those from the tropical Pacific, for which predictability has been shown). This then is the ideal situation; in subsequent papers we will explore degrading the results by using only tropical Pacific SSTs, and then using only
NASA Technical Reports Server (NTRS)
Steinberg, R.
1984-01-01
It is suggested that the very short range forecast problem for aviation is one of data management rather than model development and the possibility of improving the aviation forecast using current technology is underlined. The MERIT concept of modeling technology, and advanced man/computer interactive data management and enhancement techniques to provide a tailored, accurate and timely forecast for aviation is outlined. The MERIT includes utilization of the Langrangian approach, extensive use of the automated aircraft report to complement the present data base and provide the most current observations; and the concept that a 2 to 12 hour forecast provided every 3 hr can meet the domestic needs of aviation instead of the present 18 and 24 hr forecast provided every 12 hr.
Mean Bias in Seasonal Forecast Model and ENSO Prediction Error.
Kim, Seon Tae; Jeong, Hye-In; Jin, Fei-Fei
2017-07-20
This study uses retrospective forecasts made using an APEC Climate Center seasonal forecast model to investigate the cause of errors in predicting the amplitude of El Niño Southern Oscillation (ENSO)-driven sea surface temperature variability. When utilizing Bjerknes coupled stability (BJ) index analysis, enhanced errors in ENSO amplitude with forecast lead times are found to be well represented by those in the growth rate estimated by the BJ index. ENSO amplitude forecast errors are most strongly associated with the errors in both the thermocline slope response and surface wind response to forcing over the tropical Pacific, leading to errors in thermocline feedback. This study concludes that upper ocean temperature bias in the equatorial Pacific, which becomes more intense with increasing lead times, is a possible cause of forecast errors in the thermocline feedback and thus in ENSO amplitude.
Collaborative Initiative toward Developing River Forecasting in South America
NASA Astrophysics Data System (ADS)
Cabrera, R.
2015-12-01
In the United States, river floods have been discussed as early as 1884. Following a disastrous flooding in 1903, Congress passed legislation and river and flood services became a separate division within the U.S. Weather Bureau. The first River Forecast Center started in 1946 and today the whole country is served by thirteen River Forecast Centers. News from Latin American and Caribbean Countries often report of devastating flooding. However, river forecast services are not fully developed yet. This presentation suggests the utilization of a multinational collaborative approach toward the development of river forecasts in order to mitigate flooding in South America. The benefit of an international strategy resides in the strength created by a team of professionals with different capabilities and expertise.
Andreas, Cord J; Chen, Ying-Chen; Markopoulos, Constantinos; Reppas, Christos; Dressman, Jennifer
2015-11-01
Postprandial administration of solid oral dosage forms greatly changes the dissolution environment compared to fasted state administration. The aims of this study were to investigate and forecast the effect of co-administration of a meal on drug release for delayed and/or extended release mesalamine formulations as well as design of in vitro tests to distinguish among formulations in a biorelevant way. Five different mesalamine formulations (Asacol® 400 mg, Mezavant® 1200 mg, Pentasa® 500 mg and Salofalk® in the 250 mg and 500 mg strengths) were investigated with biorelevant dissolution methods using the USP apparatus III and USP apparatus IV (open loop mode) under both fasted and fed state conditions, as well as with the dissolution methods described in pharmacopeia for delayed and extended release mesalamine products. Using the biorelevant experimental conditions proposed in this study, changes in release in the proximal gut due to meal intake are forecast to be minimal for Asacol®, Mezavant®, Pentasa® and Salofalk® 500 mg, while for Salofalk® 250 mg release was predicted to occur much earlier under fed state conditions. The USP apparatus III generally tended to result in faster dissolution rates and forecast more pronounced food effects for Salofalk® 250 mg than the USP apparatus IV. The biorelevant dissolution gradients were also able to reflect the in vivo behavior of the formulations. In vitro biorelevant models can be useful in the comparison of the release behavior from different delayed and extended release mesalamine formulations as well as forecasting effects of concomitant meal intake on drug release. Copyright © 2015 Elsevier B.V. All rights reserved.
Recent Trends in Variable Generation Forecasting and Its Value to the Power System
Orwig, Kirsten D.; Ahlstrom, Mark L.; Banunarayanan, Venkat; ...
2014-12-23
We report that the rapid deployment of wind and solar energy generation systems has resulted in a need to better understand, predict, and manage variable generation. The uncertainty around wind and solar power forecasts is still viewed by the power industry as being quite high, and many barriers to forecast adoption by power system operators still remain. In response, the U.S. Department of Energy has sponsored, in partnership with the National Oceanic and Atmospheric Administration, public, private, and academic organizations, two projects to advance wind and solar power forecasts. Additionally, several utilities and grid operators have recognized the value ofmore » adopting variable generation forecasting and have taken great strides to enhance their usage of forecasting. In parallel, power system markets and operations are evolving to integrate greater amounts of variable generation. This paper will discuss the recent trends in wind and solar power forecasting technologies in the U.S., the role of forecasting in an evolving power system framework, and the benefits to intended forecast users.« less
A review of multimodel superensemble forecasting for weather, seasonal climate, and hurricanes
NASA Astrophysics Data System (ADS)
Krishnamurti, T. N.; Kumar, V.; Simon, A.; Bhardwaj, A.; Ghosh, T.; Ross, R.
2016-06-01
This review provides a summary of work in the area of ensemble forecasts for weather, climate, oceans, and hurricanes. This includes a combination of multiple forecast model results that does not dwell on the ensemble mean but uses a unique collective bias reduction procedure. A theoretical framework for this procedure is provided, utilizing a suite of models that is constructed from the well-known Lorenz low-order nonlinear system. A tutorial that includes a walk-through table and illustrates the inner workings of the multimodel superensemble's principle is provided. Systematic errors in a single deterministic model arise from a host of features that range from the model's initial state (data assimilation), resolution, representation of physics, dynamics, and ocean processes, local aspects of orography, water bodies, and details of the land surface. Models, in their diversity of representation of such features, end up leaving unique signatures of systematic errors. The multimodel superensemble utilizes as many as 10 million weights to take into account the bias errors arising from these diverse features of multimodels. The design of a single deterministic forecast models that utilizes multiple features from the use of the large volume of weights is provided here. This has led to a better understanding of the error growths and the collective bias reductions for several of the physical parameterizations within diverse models, such as cumulus convection, planetary boundary layer physics, and radiative transfer. A number of examples for weather, seasonal climate, hurricanes and sub surface oceanic forecast skills of member models, the ensemble mean, and the superensemble are provided.
A plan for the economic assessment of the benefits of improved meteorological forecasts
NASA Technical Reports Server (NTRS)
Bhattacharyya, R.; Greenberg, J.
1975-01-01
Benefit-cost relationships for the development of meteorological satellites are outlined. The weather forecast capabilities of the various weather satellites (Tiros, SEOS, Nimbus) are discussed, and the development of additional satellite systems is examined. A rational approach is development that leads to the establishment of the economic benefits which may result from the utilization of meteorological satellite data. The economic and social impacts of improved weather forecasting for industries and resources management are discussed, and significant weather sensitive industries are listed.
NASA Technical Reports Server (NTRS)
Reynolds, David; Rasch, William; Kozlowski, Daniel; Burks, Jason; Zavodsky, Bradley; Bernardet, Ligia; Jankov, Isidora; Albers, Steve
2014-01-01
The Experimental Regional Ensemble Forecast (ExREF) system is a tool for the development and testing of new Numerical Weather Prediction (NWP) methodologies. ExREF is run in near-realtime by the Global Systems Division (GSD) of the NOAA Earth System Research Laboratory (ESRL) and its products are made available through a website, an ftp site, and via the Unidata Local Data Manager (LDM). The ExREF domain covers most of North America and has 9-km horizontal grid spacing. The ensemble has eight members, all employing WRF-ARW. The ensemble uses a variety of initial conditions from LAPS and the Global Forecasting System (GFS) and multiple boundary conditions from the GFS ensemble. Additionally, a diversity of physical parameterizations is used to increase ensemble spread and to account for the uncertainty in forecasting extreme precipitation events. ExREF has been a component of the Hydrometeorology Testbed (HMT) NWP suite in the 2012-2013 and 2013-2014 winters. A smaller domain covering just the West Coast was created to minimize band-width consumption for the NWS. This smaller domain has and is being distributed to the National Weather Service (NWS) Weather Forecast Office and California Nevada River Forecast Center in Sacramento, California, where it is ingested into the Advanced Weather Interactive Processing System (AWIPS I and II) to provide guidance on the forecasting of extreme precipitation events. This paper will review the cooperative effort employed by NOAA ESRL, NASA SPoRT (Short-term Prediction Research and Transition Center), and the NWS to facilitate the ingest and display of ExREF data utilizing the AWIPS I and II D2D and GFE (Graphical Software Editor) software. Within GFE is a very useful verification software package called BoiVer that allows the NWS to utilize the River Forecast Center's 4 km gridded QPE to compare with all operational NWP models 6-hr QPF along with the ExREF mean 6-hr QPF so the forecasters can build confidence in the use of the ExREF in preparing their rainfall forecasts. Preliminary results will be presented.
NASA Astrophysics Data System (ADS)
Uprety, M.; Dugar, S.; Gautam, D.; Kanel, D.; Kshetri, M.; Kharbuja, R. G.; Acharya, S. H.
2017-12-01
Advances in flood forecasting have provided opportunities for humanitarian responders to employ a range of preparedness activities at different forecast time horizons. Yet, the science of prediction is less understood and realized across the humanitarian landscape, and often preparedness plans are based upon average level of flood risk. Working under the remit of Forecast Based Financing (FbF), we present a pilot from Nepal on how available flood and weather forecast products are informing specific pre-emptive actions in the local preparedness and response plans, thereby supporting government stakeholders and humanitarian agencies to take early actions before an impending flood event. In Nepal, forecasting capabilities are limited but in a state of positive flux. Whilst local flood forecasts based upon rainfall-runoff models are yet to be operationalized, streamflow predictions from Global Flood Awareness System (GLoFAS) can be utilized to plan and implement preparedness activities several days in advance. Likewise, 3-day rainfall forecasts from Nepal Department of Hydrology and Meteorology (DHM) can further inform specific set of early actions for potential flash floods due to heavy precipitation. Existing community based early warning systems in the major river basins of Nepal are utilizing real time monitoring of water levels and rainfall together with localised probabilistic flood forecasts which has increased warning lead time from 2-3 hours to 7-8 hours. Based on these available forecast products, thresholds and trigger levels have been determined for different flood scenarios. Matching these trigger levels and assigning responsibilities to relevant actors for early actions, a set of standard operating procedures (SOPs) are being developed, broadly covering general preparedness activities and science informed anticipatory actions for different forecast lead times followed by the immediate response activities. These SOPs are currently being rolled out and tested by the Ministry of Home Affairs (MoHA) through its district emergency operation centres in West Nepal. Potential scale up and successful implementation of this science based approach would be instrumental to take forward global commitments on disaster risk reduction, climate change adaptation and sustainable goals in Nepal.
Impacts of Short-Term Solar Power Forecasts in System Operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ibanez, Eduardo; Krad, Ibrahim; Hodge, Bri-Mathias
2016-05-05
Solar generation is experiencing an exponential growth in power systems worldwide and, along with wind power, is posing new challenges to power system operations. Those challenges are characterized by an increase of system variability and uncertainty across many time scales: from days, down to hours, minutes, and seconds. Much of the research in the area has focused on the effect of solar forecasting across hours or days. This paper presents a methodology to capture the effect of short-term forecasting strategies and analyzes the economic and reliability implications of utilizing a simple, yet effective forecasting method for solar PV in intra-daymore » operations.« less
Forecasting Container Throughput at the Doraleh Port in Djibouti through Time Series Analysis
NASA Astrophysics Data System (ADS)
Mohamed Ismael, Hawa; Vandyck, George Kobina
The Doraleh Container Terminal (DCT) located in Djibouti has been noted as the most technologically advanced container terminal on the African continent. DCT's strategic location at the crossroads of the main shipping lanes connecting Asia, Africa and Europe put it in a unique position to provide important shipping services to vessels plying that route. This paper aims to forecast container throughput through the Doraleh Container Port in Djibouti by Time Series Analysis. A selection of univariate forecasting models has been used, namely Triple Exponential Smoothing Model, Grey Model and Linear Regression Model. By utilizing the above three models and their combination, the forecast of container throughput through the Doraleh port was realized. A comparison of the different forecasting results of the three models, in addition to the combination forecast is then undertaken, based on commonly used evaluation criteria Mean Absolute Deviation (MAD) and Mean Absolute Percentage Error (MAPE). The study found that the Linear Regression forecasting Model was the best prediction method for forecasting the container throughput, since its forecast error was the least. Based on the regression model, a ten (10) year forecast for container throughput at DCT has been made.
Advanced Cloud Forecasting for Solar Energy Production
NASA Astrophysics Data System (ADS)
Werth, D. W.; Parker, M. J.
2017-12-01
A power utility must decide days in advance how it will allocate projected loads among its various generating sources. If the latter includes solar plants, the utility must predict how much energy the plants will produce - any shortfall will have to be compensated for by purchasing power as it is needed, when it is more expensive. To avoid this, utilities often err on the side of caution and assume that a relatively small amount of solar energy will be available, and allocate correspondingly more load to coal-fired plants. If solar irradiance can be predicted more accurately, utilities can be more confident that the predicted solar energy will indeed be available when needed, and assign solar plants a larger share of the future load. Solar power production is increasing in the Southeast, but is often hampered by irregular cloud fields, especially during high-pressure periods when rapid afternoon thunderstorm development can occur during what was predicted to be a clear day. We are currently developing an analog forecasting system to predict solar irradiance at the surface at the Savannah River Site in South Carolina, with the goal of improving predictions of available solar energy. Analog forecasting is based on the assumption that similar initial conditions will lead to similar outcomes, and involves the use of an algorithm to look through the weather patterns of the past to identify previous conditions (the analogs) similar to those of today. For our application, we select three predictor variables - sea-level pressure, 700mb geopotential, and 700mb humidity. These fields for the current day are compared to those from past days, and a weighted combination of the differences (defined by a cost function) is used to select the five best analog days. The observed solar irradiance values subsequent to the dates of those analogs are then combined to represent the forecast for the next day. We will explain how we apply the analog process, and compare it to existing solar forecasts.
NASA Astrophysics Data System (ADS)
Harty, T. M.; Lorenzo, A.; Holmgren, W.; Morzfeld, M.
2017-12-01
The irradiance incident on a solar panel is the main factor in determining the power output of that panel. For this reason, accurate global horizontal irradiance (GHI) estimates and forecasts are critical when determining the optimal location for a solar power plant, forecasting utility scale solar power production, or forecasting distributed, behind the meter rooftop solar power production. Satellite images provide a basis for producing the GHI estimates needed to undertake these objectives. The focus of this work is to combine satellite derived GHI estimates with ground sensor measurements and an advection model. The idea is to use accurate but sparsely distributed ground sensors to improve satellite derived GHI estimates which can cover large areas (the size of a city or a region of the United States). We use a Bayesian framework to perform the data assimilation, which enables us to produce irradiance forecasts and associated uncertainties which incorporate both satellite and ground sensor data. Within this framework, we utilize satellite images taken from the GOES-15 geostationary satellite (available every 15-30 minutes) as well as ground data taken from irradiance sensors and rooftop solar arrays (available every 5 minutes). The advection model, driven by wind forecasts from a numerical weather model, simulates cloud motion between measurements. We use the Local Ensemble Transform Kalman Filter (LETKF) to perform the data assimilation. We present preliminary results towards making such a system useful in an operational context. We explain how localization and inflation in the LETKF, perturbations of wind-fields, and random perturbations of the advection model, affect the accuracy of our estimates and forecasts. We present experiments showing the accuracy of our forecasted GHI over forecast-horizons of 15 mins to 1 hr. The limitations of our approach and future improvements are also discussed.
Greenberg, L; Cultice, J M
1997-01-01
OBJECTIVE: The Health Resources and Services Administration's Bureau of Health Professions developed a demographic utilization-based model of physician specialty requirements to explore the consequences of a broad range of scenarios pertaining to the nation's health care delivery system on need for physicians. DATA SOURCE/STUDY SETTING: The model uses selected data primarily from the National Center for Health Statistics, the American Medical Association, and the U.S. Bureau of Census. Forecasts are national estimates. STUDY DESIGN: Current (1989) utilization rates for ambulatory and inpatient medical specialty services were obtained for the population according to age, gender, race/ethnicity, and insurance status. These rates are used to estimate specialty-specific total service utilization expressed in patient care minutes for future populations and converted to physician requirements by applying per-physician productivity estimates. DATA COLLECTION/EXTRACTION METHODS: Secondary data were analyzed and put into matrixes for use in the mainframe computer-based model. Several missing data points, e.g., for HMO-enrolled populations, were extrapolated from available data by the project's contractor. PRINCIPAL FINDINGS: The authors contend that the Bureau's demographic utilization model represents improvements over other data-driven methodologies that rely on staffing ratios and similar supply-determined bases for estimating requirements. The model's distinct utility rests in offering national-level physician specialty requirements forecasts. Images Figure 1 PMID:9018213
7 CFR 1710.203 - Requirement to prepare a load forecast-distribution borrowers.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 11 2010-01-01 2010-01-01 false Requirement to prepare a load forecast-distribution borrowers. 1710.203 Section 1710.203 Agriculture Regulations of the Department of Agriculture (Continued) RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE GENERAL AND PRE-LOAN POLICIES AND PROCEDURES COMMON TO ELECTRIC LOANS AND GUARANTEES Load...
Over the past decade, the remote sensing of trace gases and aerosols from space has dramatically improved. The emergence and application of these measurements adds a new dimension to air quality Management and forecasting by enabling consistent observations of pollutants over l...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakafuji, Dora; Gouveia, Lauren
This project supports development of the next generation, integrated energy management infrastructure (EMS) able to incorporate advance visualization of behind-the-meter distributed resource information and probabilistic renewable energy generation forecasts to inform real-time operational decisions. The project involves end-users and active feedback from an Utility Advisory Team (UAT) to help inform how information can be used to enhance operational functions (e.g. unit commitment, load forecasting, Automatic Generation Control (AGC) reserve monitoring, ramp alerts) within two major EMS platforms. Objectives include: Engaging utility operations personnel to develop user input on displays, set expectations, test and review; Developing ease of use and timelinessmore » metrics for measuring enhancements; Developing prototype integrated capabilities within two operational EMS environments; Demonstrating an integrated decision analysis platform with real-time wind and solar forecasting information and timely distributed resource information; Seamlessly integrating new 4-dimensional information into operations without increasing workload and complexities; Developing sufficient analytics to inform and confidently transform and adopt new operating practices and procedures; Disseminating project lessons learned through industry sponsored workshops and conferences;Building on collaborative utility-vendor partnership and industry capabilities« less
A case study of the sensitivity of forecast skill to data and data analysis techniques
NASA Technical Reports Server (NTRS)
Baker, W. E.; Atlas, R.; Halem, M.; Susskind, J.
1983-01-01
A series of experiments have been conducted to examine the sensitivity of forecast skill to various data and data analysis techniques for the 0000 GMT case of January 21, 1979. These include the individual components of the FGGE observing system, the temperatures obtained with different satellite retrieval methods, and the method of vertical interpolation between the mandatory pressure analysis levels and the model sigma levels. It is found that NESS TIROS-N infrared retrievals seriously degrade a rawinsonde-only analysis over land, resulting in a poorer forecast over North America. Less degradation in the 72-hr forecast skill at sea level and some improvement at 500 mb is noted, relative to the control with TIROS-N retrievals produced with a physical inversion method which utilizes a 6-hr forecast first guess. NESS VTPR oceanic retrievals lead to an improved forecast over North America when added to the control.
Gridded Calibration of Ensemble Wind Vector Forecasts Using Ensemble Model Output Statistics
NASA Astrophysics Data System (ADS)
Lazarus, S. M.; Holman, B. P.; Splitt, M. E.
2017-12-01
A computationally efficient method is developed that performs gridded post processing of ensemble wind vector forecasts. An expansive set of idealized WRF model simulations are generated to provide physically consistent high resolution winds over a coastal domain characterized by an intricate land / water mask. Ensemble model output statistics (EMOS) is used to calibrate the ensemble wind vector forecasts at observation locations. The local EMOS predictive parameters (mean and variance) are then spread throughout the grid utilizing flow-dependent statistical relationships extracted from the downscaled WRF winds. Using data withdrawal and 28 east central Florida stations, the method is applied to one year of 24 h wind forecasts from the Global Ensemble Forecast System (GEFS). Compared to the raw GEFS, the approach improves both the deterministic and probabilistic forecast skill. Analysis of multivariate rank histograms indicate the post processed forecasts are calibrated. Two downscaling case studies are presented, a quiescent easterly flow event and a frontal passage. Strengths and weaknesses of the approach are presented and discussed.
The Impact of Soil Moisture Initialization On Seasonal Precipitation Forecasts
NASA Technical Reports Server (NTRS)
Koster, R. D.; Suarez, M. J.; Tyahla, L.; Houser, Paul (Technical Monitor)
2002-01-01
Some studies suggest that the proper initialization of soil moisture in a forecasting model may contribute significantly to the accurate prediction of seasonal precipitation, especially over mid-latitude continents. In order for the initialization to have any impact at all, however, two conditions must be satisfied: (1) the initial soil moisture anomaly must be "remembered" into the forecasted season, and (2) the atmosphere must respond in a predictable way to the soil moisture anomaly. In our previous studies, we identified the key land surface and atmospheric properties needed to satisfy each condition. Here, we tie these studies together with an analysis of an ensemble of seasonal forecasts. Initial soil moisture conditions for the forecasts are established by forcing the land surface model with realistic precipitation prior to the start of the forecast period. As expected, the impacts on forecasted precipitation (relative to an ensemble of runs that do not utilize soil moisture information) tend to be localized over the small fraction of the earth with all of the required land and atmosphere properties.
The Value of Seasonal Climate Forecasts in Managing Energy Resources.
NASA Astrophysics Data System (ADS)
Brown Weiss, Edith
1982-04-01
Research and interviews with officials of the United States energy industry and a systems analysis of decision making in a natural gas utility lead to the conclusion that seasonal climate forecasts would only have limited value in fine tuning the management of energy supply, even if the forecasts were more reliable and detailed than at present.On the other hand, reliable forecasts could be useful to state and local governments both as a signal to adopt long-term measures to increase the efficiency of energy use and to initiate short-term measures to reduce energy demand in anticipation of a weather-induced energy crisis.To be useful for these purposes, state governments would need better data on energy demand patterns and available energy supplies, staff competent to interpret climate forecasts, and greater incentive to conserve. The use of seasonal climate forecasts is not likely to be constrained by fear of legal action by those claiming to be injured by a possible incorrect forecast.
The Economic Value of Air Quality Forecasting
NASA Astrophysics Data System (ADS)
Anderson-Sumo, Tasha
Both long-term and daily air quality forecasts provide an essential component to human health and impact costs. According the American Lung Association, the estimated current annual cost of air pollution related illness in the United States, adjusted for inflation (3% per year), is approximately $152 billion. Many of the risks such as hospital visits and morality are associated with poor air quality days (where the Air Quality Index is greater than 100). Groups such as sensitive groups become more susceptible to the resulting conditions and more accurate forecasts would help to take more appropriate precautions. This research focuses on evaluating the utility of air quality forecasting in terms of its potential impacts by building on air quality forecasting and economical metrics. Our analysis includes data collected during the summertime ozone seasons between 2010 and 2012 from air quality models for the Washington, DC/Baltimore, MD region. The metrics that are relevant to our analysis include: (1) The number of times that a high ozone or particulate matter (PM) episode is correctly forecasted, (2) the number of times that high ozone or PM episode is forecasted when it does not occur and (3) the number of times when the air quality forecast predicts a cleaner air episode when the air was observed to have high ozone or PM. Our collection of data included available air quality model forecasts of ozone and particulate matter data from the U.S. Environmental Protection Agency (EPA)'s AIRNOW as well as observational data of ozone and particulate matter from Clean Air Partners. We evaluated the performance of the air quality forecasts with that of the observational data and found that the forecast models perform well for the Baltimore/Washington region and the time interval observed. We estimate the potential amount for the Baltimore/Washington region accrues to a savings of up to 5,905 lives and 5.9 billion dollars per year. This total assumes perfect compliance with bad air quality warning and forecast air quality forecasts. There is a difficulty presented with evaluating the economic utility of the forecasts. All may not comply and even with a low compliance rate of 5% and 72% as the average probability of detection of poor air quality days by the air quality models, we estimate that the forecasting program saves 412 lives or 412 million dollars per year for the region. The totals we found are great or greater than other typical yearly meteorological hazard programs such as tornado or hurricane forecasting and it is clear that the economic value of air quality forecasting in the Baltimore/Washington region is vital.
Case studies on forecasting for innovative technologies: frequent revisions improve accuracy.
Lerner, Jeffrey C; Robertson, Diane C; Goldstein, Sara M
2015-02-01
Health technology forecasting is designed to provide reliable predictions about costs, utilization, diffusion, and other market realities before the technologies enter routine clinical use. In this article we address three questions central to forecasting's usefulness: Are early forecasts sufficiently accurate to help providers acquire the most promising technology and payers to set effective coverage policies? What variables contribute to inaccurate forecasts? How can forecasters manage the variables to improve accuracy? We analyzed forecasts published between 2007 and 2010 by the ECRI Institute on four technologies: single-room proton beam radiation therapy for various cancers; digital breast tomosynthesis imaging technology for breast cancer screening; transcatheter aortic valve replacement for serious heart valve disease; and minimally invasive robot-assisted surgery for various cancers. We then examined revised ECRI forecasts published in 2013 (digital breast tomosynthesis) and 2014 (the other three topics) to identify inaccuracies in the earlier forecasts and explore why they occurred. We found that five of twenty early predictions were inaccurate when compared with the updated forecasts. The inaccuracies pertained to two technologies that had more time-sensitive variables to consider. The case studies suggest that frequent revision of forecasts could improve accuracy, especially for complex technologies whose eventual use is governed by multiple interactive factors. Project HOPE—The People-to-People Health Foundation, Inc.
Lightning Initiation Forecasting: An Operational Dual-Polarimetric Radar Technique
NASA Technical Reports Server (NTRS)
Woodard, Crystal J.; Carey, L. D.; Petersen, W. A.; Roeder, W. P.
2011-01-01
The objective of this NASA MSFC and NOAA CSTAR funded study is to develop and test operational forecast algorithms for the prediction of lightning initiation utilizing the C-band dual-polarimetric radar, UAHuntsville's Advanced Radar for Meteorological and Operational Research (ARMOR). Although there is a rich research history of radar signatures associated with lightning initiation, few studies have utilized dual-polarimetric radar signatures (e.g., Z(sub dr) columns) and capabilities (e.g., fuzzy-logic particle identification [PID] of precipitation ice) in an operational algorithm for first flash forecasting. The specific goal of this study is to develop and test polarimetric techniques that enhance the performance of current operational radar reflectivity based first flash algorithms. Improving lightning watch and warning performance will positively impact personnel safety in both work and leisure environments. Advanced warnings can provide space shuttle launch managers time to respond appropriately to secure equipment and personnel, while they can also provide appropriate warnings for spectators and players of leisure sporting events to seek safe shelter. Through the analysis of eight case dates, consisting of 35 pulse-type thunderstorms and 20 non-thunderstorm case studies, lightning initiation forecast techniques were developed and tested. The hypothesis is that the additional dual-polarimetric information could potentially reduce false alarms while maintaining high probability of detection and increasing lead-time for the prediction of the first lightning flash relative to reflectivity-only based techniques. To test the hypothesis, various physically-based techniques using polarimetric variables and/or PID categories, which are strongly correlated to initial storm electrification (e.g., large precipitation ice production via drop freezing), were benchmarked against the operational reflectivity-only based approaches to find the best compromise between forecast skill and lead-time. Forecast skill is determined by statistical analysis of probability of detection (POD), false alarm ratio (FAR), Operational Utility Index (OUI), and critical success index (CSI).
Forecasting patient outcomes in the management of hyperlipidemia.
Brier, K L; Tornow, J J; Ries, A J; Weber, M P; Downs, J R
1999-03-22
To forecast adult patient outcomes in the management of hyperlipidemia using adult National Health and Examination Survey III (NHANES III) population statistics and National Cholesterol Education Program (NCEP) guidelines for goals of therapy. Review of the hyperlipidemia drug therapy English-language medical literature with emphasis on randomized controlled trials of more than 6 weeks' duration published in the last 7 years, product package inserts, US Food and Drug Administration submission information, and NHANES III population statistics. Data were extracted from studies of lipid-lowering therapy to modify low-density lipoprotein (LDL) levels for primary and secondary prevention of coronary heart disease. The data that were evaluated included sample size, study design, therapeutic intervention, length of study, percentage change in LDL levels, and patient demographics. Cumulative frequency curves of the LDL distribution among the US adult population were constructed. The mean efficacy of drug therapy from qualified studies was used to extrapolate the percentage of the population expected to respond to the intervention and to forecast the patient outcome. A useful tool for clinicians was constructed to approximate the percentage of patients, based on risk stratification, who would reach NCEP target goal after a given pharmacotherapeutic intervention to decrease LDL levels.
Evaluation of NU-WRF Rainfall Forecasts for IFloodS
NASA Technical Reports Server (NTRS)
Wu, Di; Peters-Lidard, Christa; Tao, Wei-Kuo; Petersen, Walter
2016-01-01
The Iowa Flood Studies (IFloodS) campaign was conducted in eastern Iowa as a pre- GPM-launch campaign from 1 May to 15 June 2013. During the campaign period, real time forecasts are conducted utilizing NASA-Unified Weather Research and Forecasting (NU-WRF) model to support the everyday weather briefing. In this study, two sets of the NU-WRF rainfall forecasts are evaluated with Stage IV and Multi-Radar Multi-Sensor (MRMS) Quantitative Precipitation Estimation (QPE), with the objective to understand the impact of Land Surface initialization on the predicted precipitation. NU-WRF is also compared with North American Mesoscale Forecast System (NAM) 12 kilometer forecast. In general, NU-WRF did a good job at capturing individual precipitation events. NU-WRF is also able to replicate a better rainfall spatial distribution compare with NAM. Further sensitivity tests show that the high-resolution makes a positive impact on rainfall forecast. The two sets of NU-WRF simulations produce very close rainfall characteristics. The Land surface initialization do not show significant impact on short term rainfall forecast, and it is largely due to the soil conditions during the field campaign period.
An Ensemble-Based Forecasting Framework to Optimize Reservoir Releases
NASA Astrophysics Data System (ADS)
Ramaswamy, V.; Saleh, F.
2017-12-01
Increasing frequency of extreme precipitation events are stressing the need to manage water resources on shorter timescales. Short-term management of water resources becomes proactive when inflow forecasts are available and this information can be effectively used in the control strategy. This work investigates the utility of short term hydrological ensemble forecasts for operational decision making during extreme weather events. An advanced automated hydrologic prediction framework integrating a regional scale hydrologic model, GIS datasets and the meteorological ensemble predictions from the European Center for Medium Range Weather Forecasting (ECMWF) was coupled to an implicit multi-objective dynamic programming model to optimize releases from a water supply reservoir. The proposed methodology was evaluated by retrospectively forecasting the inflows to the Oradell reservoir in the Hackensack River basin in New Jersey during the extreme hydrologic event, Hurricane Irene. Additionally, the flexibility of the forecasting framework was investigated by forecasting the inflows from a moderate rainfall event to provide important perspectives on using the framework to assist reservoir operations during moderate events. The proposed forecasting framework seeks to provide a flexible, assistive tool to alleviate the complexity of operational decision-making.
NASA Technical Reports Server (NTRS)
Koster, Randal D.; Walker, Gregory K.; Mahanama, Sarith P.; Reichle, Rolf H.
2013-01-01
Offline simulations over the conterminous United States (CONUS) with a land surface model are used to address two issues relevant to the forecasting of large-scale seasonal streamflow: (i) the extent to which errors in soil moisture initialization degrade streamflow forecasts, and (ii) the extent to which a realistic increase in the spatial resolution of forecasted precipitation would improve streamflow forecasts. The addition of error to a soil moisture initialization field is found to lead to a nearly proportional reduction in streamflow forecast skill. The linearity of the response allows the determination of a lower bound for the increase in streamflow forecast skill achievable through improved soil moisture estimation, e.g., through satellite-based soil moisture measurements. An increase in the resolution of precipitation is found to have an impact on large-scale streamflow forecasts only when evaporation variance is significant relative to the precipitation variance. This condition is met only in the western half of the CONUS domain. Taken together, the two studies demonstrate the utility of a continental-scale land surface modeling system as a tool for addressing the science of hydrological prediction.
NASA Technical Reports Server (NTRS)
Shevell, R. S.; Jones, D. W., Jr.
1973-01-01
The development of a forecast model for short haul air transportation systems in the California Corridor is discussed. The factors which determine the level of air traffic demand are identified. A forecast equation for use in airport utilization analysis is developed. A mathematical model is submitted to show the relationship between population, employment, and income for indicating future air transportation utilization. Diagrams and tables of data are included to support the conclusions reached regarding air transportation economic factors.
Forecasting malaria in a highly endemic country using environmental and clinical predictors.
Zinszer, Kate; Kigozi, Ruth; Charland, Katia; Dorsey, Grant; Brewer, Timothy F; Brownstein, John S; Kamya, Moses R; Buckeridge, David L
2015-06-18
Malaria thrives in poor tropical and subtropical countries where local resources are limited. Accurate disease forecasts can provide public and clinical health services with the information needed to implement targeted approaches for malaria control that make effective use of limited resources. The objective of this study was to determine the relevance of environmental and clinical predictors of malaria across different settings in Uganda. Forecasting models were based on health facility data collected by the Uganda Malaria Surveillance Project and satellite-derived rainfall, temperature, and vegetation estimates from 2006 to 2013. Facility-specific forecasting models of confirmed malaria were developed using multivariate autoregressive integrated moving average models and produced weekly forecast horizons over a 52-week forecasting period. The model with the most accurate forecasts varied by site and by forecast horizon. Clinical predictors were retained in the models with the highest predictive power for all facility sites. The average error over the 52 forecasting horizons ranged from 26 to 128% whereas the cumulative burden forecast error ranged from 2 to 22%. Clinical data, such as drug treatment, could be used to improve the accuracy of malaria predictions in endemic settings when coupled with environmental predictors. Further exploration of malaria forecasting is necessary to improve its accuracy and value in practice, including examining other environmental and intervention predictors, including insecticide-treated nets.
NASA Technical Reports Server (NTRS)
Balikhin, M. A.; Rodriguez, J. V.; Boynton, R. J.; Walker, S. N.; Aryan, Homayon; Sibeck, D. G.; Billings, S. A.
2016-01-01
Reliable forecasts of relativistic electrons at geostationary orbit (GEO) are important for the mitigation of their hazardous effects on spacecraft at GEO. For a number of years the Space Weather Prediction Center at NOAA has provided advanced online forecasts of the fluence of electrons with energy >2 MeV at GEO using the Relativistic Electron Forecast Model (REFM). The REFM forecasts are based on real-time solar wind speed observations at L1. The high reliability of this forecasting tool serves as a benchmark for the assessment of other forecasting tools. Since 2012 the Sheffield SNB3GEO model has been operating online, providing a 24 h ahead forecast of the same fluxes. In addition to solar wind speed, the SNB3GEO forecasts use solar wind density and interplanetary magnetic field B(sub z) observations at L1. The period of joint operation of both of these forecasts has been used to compare their accuracy. Daily averaged measurements of electron fluxes by GOES 13 have been used to estimate the prediction efficiency of both forecasting tools. To assess the reliability of both models to forecast infrequent events of very high fluxes, the Heidke skill score was employed. The results obtained indicate that SNB3GEO provides a more accurate 1 day ahead forecast when compared to REFM. It is shown that the correction methodology utilized by REFM potentially can improve the SNB3GEO forecast.
Balikhin, M A; Rodriguez, J V; Boynton, R J; Walker, S N; Aryan, H; Sibeck, D G; Billings, S A
2016-01-01
Reliable forecasts of relativistic electrons at geostationary orbit (GEO) are important for the mitigation of their hazardous effects on spacecraft at GEO. For a number of years the Space Weather Prediction Center at NOAA has provided advanced online forecasts of the fluence of electrons with energy >2 MeV at GEO using the Relativistic Electron Forecast Model (REFM). The REFM forecasts are based on real-time solar wind speed observations at L1. The high reliability of this forecasting tool serves as a benchmark for the assessment of other forecasting tools. Since 2012 the Sheffield SNB 3 GEO model has been operating online, providing a 24 h ahead forecast of the same fluxes. In addition to solar wind speed, the SNB 3 GEO forecasts use solar wind density and interplanetary magnetic field B z observations at L1.The period of joint operation of both of these forecasts has been used to compare their accuracy. Daily averaged measurements of electron fluxes by GOES 13 have been used to estimate the prediction efficiency of both forecasting tools. To assess the reliability of both models to forecast infrequent events of very high fluxes, the Heidke skill score was employed. The results obtained indicate that SNB 3 GEO provides a more accurate 1 day ahead forecast when compared to REFM. It is shown that the correction methodology utilized by REFM potentially can improve the SNB 3 GEO forecast.
Using Forecasting to Predict Long-Term Resource Utilization for Web Services
ERIC Educational Resources Information Center
Yoas, Daniel W.
2013-01-01
Researchers have spent years understanding resource utilization to improve scheduling, load balancing, and system management through short-term prediction of resource utilization. Early research focused primarily on single operating systems; later, interest shifted to distributed systems and, finally, into web services. In each case researchers…
Global Impacts and Regional Actions: Preparing for the 1997-98 El Niño.
NASA Astrophysics Data System (ADS)
Buizer, James L.; Foster, Josh; Lund, David
2000-09-01
It has been estimated that severe El Niño-related flooding and droughts in Africa, Latin America, North America, and Southeast Asia resulted in more than 22 000 lives lost and in excess of $36 billion in damages during 1997-98. As one of the most severe events this century, the 1997-98 El Niño was unique not only in terms of physical magnitude, but also in terms of human response. This response was made possible by recent advances in climate-observing and forecasting systems, creation and dissemination of forecast information by institutions such as the International Research Institute for Climate Prediction and NOAA's Climate Prediction Center, and individuals in climate-sensitive sectors willing to act on forecast information by incorporating it into their decision-making. The supporting link between the forecasts and their practical application was a product of efforts by several national and international organizations, and a primary focus of the United States National Oceanic and Atmospheric Administration Office of Global Programs (NOAA/OGP).NOAA/OGP over the last decade has supported pilot projects in Latin America, the Caribbean, the South Pacific, Southeast Asia, and Africa to improve transfer of forecast information to climate sensitive sectors, study linkages between climate and human health, and distribute climate information products in certain areas. Working with domestic and international partners, NOAA/OGP helped organize a total of 11 Climate Outlook Fora around the world during the 1997-98 El Niño. At each Outlook Forum, climatologists and meteorologists created regional, consensus-based, seasonal precipitation forecasts and representatives from climate-sensitive sectors discussed options for applying forecast information. Additional ongoing activities during 1997-98 included research programs focused on the social and economic impacts of climate change and the regional manifestations of global-scale climate variations and their effect on decision-making in climate-sensitive sectors in the United States.The overall intent of NOAA/OGP's activities was to make experimental forecast information broadly available to potential users, and to foster a learning process on how seasonal-to-interannual forecasts could be applied in sectors susceptible to climate variability. This process allowed users to explore the capabilities and limitations of climate forecasts currently available, and forecast producers to receive feedback on the utility of their products. Through activities in which NOAA/OGP and its partners were involved, it became clear that further application of forecast information will be aided by improved forecast accuracy and detail, creation of common validation techniques, continued training in forecast generation and application, alternate methods for presenting forecast information, and a systematic strategy for creation and dissemination of forecast products.The overall intent of NOAA/OGP's activities was to make experimental forecast information broadly available to potential users, and to foster a learning process on how seasonal-to-interannual forecasts could be applied in sectors susceptible to climate variability. This process allowed users to explore the capabilities and limitations of climate forecasts currently available, and forecast producers to receive feedback on the utility of their products. Through activities in which NOAA/OGP and its partners were involved, it became clear that further application of forecast information will be aided by improved forecast accuracy and detail, creation of common validation techniques, continued training in forecast generation and application, alternate methods for presenting forecast information, and a systematic strategy for creation and dissemination of forecast products.
Needle Exchange Programs and Drug Injection Behavior
ERIC Educational Resources Information Center
DeSimone, Jeff
2005-01-01
This study examines how drug injection and needle sharing propensities respond when a needle exchange program (NEP) is introduced into a city. I analyze 1989-1995 Drug Use Forecasting data on adult male arrestees from 24 large U.S. cities, in nine of which NEPs opened during the sample period. After controlling for cocaine and heroin prices, AIDS…
NASA Astrophysics Data System (ADS)
Tsai, Hsiao-Chung; Chen, Pang-Cheng; Elsberry, Russell L.
2017-04-01
The objective of this study is to evaluate the predictability of the extended-range forecasts of tropical cyclone (TC) in the western North Pacific using reforecasts from National Centers for Environmental Prediction (NCEP) Global Ensemble Forecast System (GEFS) during 1996-2015, and from the Climate Forecast System (CFS) during 1999-2010. Tsai and Elsberry have demonstrated that an opportunity exists to support hydrological operations by using the extended-range TC formation and track forecasts in the western North Pacific from the ECMWF 32-day ensemble. To demonstrate this potential for the decision-making processes regarding water resource management and hydrological operation in Taiwan reservoir watershed areas, special attention is given to the skill of the NCEP GEFS and CFS models in predicting the TCs affecting the Taiwan area. The first objective of this study is to analyze the skill of NCEP GEFS and CFS TC forecasts and quantify the forecast uncertainties via verifications of categorical binary forecasts and probabilistic forecasts. The second objective is to investigate the relationships among the large-scale environmental factors [e.g., El Niño Southern Oscillation (ENSO), Madden-Julian Oscillation (MJO), etc.] and the model forecast errors by using the reforecasts. Preliminary results are indicating that the skill of the TC activity forecasts based on the raw forecasts can be further improved if the model biases are minimized by utilizing these reforecasts.
Method for assigning sites to projected generic nuclear power plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holter, G.M.; Purcell, W.L.; Shutz, M.E.
1986-07-01
Pacific Northwest Laboratory developed a method for forecasting potential locations and startup sequences of nuclear power plants that will be required in the future but have not yet been specifically identified by electric utilities. Use of the method results in numerical ratings for potential nuclear power plant sites located in each of the 10 federal energy regions. The rating for each potential site is obtained from numerical factors assigned to each of 5 primary siting characteristics: (1) cooling water availability, (2) site land area, (3) power transmission land area, (4) proximity to metropolitan areas, and (5) utility plans for themore » site. The sequence of plant startups in each federal energy region is obtained by use of the numerical ratings and the forecasts of generic nuclear power plant startups obtained from the EIA Middle Case electricity forecast. Sites are assigned to generic plants in chronological order according to startup date.« less
Dai, Wensheng; Wu, Jui-Yu; Lu, Chi-Jie
2014-01-01
Sales forecasting is one of the most important issues in managing information technology (IT) chain store sales since an IT chain store has many branches. Integrating feature extraction method and prediction tool, such as support vector regression (SVR), is a useful method for constructing an effective sales forecasting scheme. Independent component analysis (ICA) is a novel feature extraction technique and has been widely applied to deal with various forecasting problems. But, up to now, only the basic ICA method (i.e., temporal ICA model) was applied to sale forecasting problem. In this paper, we utilize three different ICA methods including spatial ICA (sICA), temporal ICA (tICA), and spatiotemporal ICA (stICA) to extract features from the sales data and compare their performance in sales forecasting of IT chain store. Experimental results from a real sales data show that the sales forecasting scheme by integrating stICA and SVR outperforms the comparison models in terms of forecasting error. The stICA is a promising tool for extracting effective features from branch sales data and the extracted features can improve the prediction performance of SVR for sales forecasting.
Dai, Wensheng
2014-01-01
Sales forecasting is one of the most important issues in managing information technology (IT) chain store sales since an IT chain store has many branches. Integrating feature extraction method and prediction tool, such as support vector regression (SVR), is a useful method for constructing an effective sales forecasting scheme. Independent component analysis (ICA) is a novel feature extraction technique and has been widely applied to deal with various forecasting problems. But, up to now, only the basic ICA method (i.e., temporal ICA model) was applied to sale forecasting problem. In this paper, we utilize three different ICA methods including spatial ICA (sICA), temporal ICA (tICA), and spatiotemporal ICA (stICA) to extract features from the sales data and compare their performance in sales forecasting of IT chain store. Experimental results from a real sales data show that the sales forecasting scheme by integrating stICA and SVR outperforms the comparison models in terms of forecasting error. The stICA is a promising tool for extracting effective features from branch sales data and the extracted features can improve the prediction performance of SVR for sales forecasting. PMID:25165740
Stationarity test with a direct test for heteroskedasticity in exchange rate forecasting models
NASA Astrophysics Data System (ADS)
Khin, Aye Aye; Chau, Wong Hong; Seong, Lim Chee; Bin, Raymond Ling Leh; Teng, Kevin Low Lock
2017-05-01
Global economic has been decreasing in the recent years, manifested by the greater exchange rates volatility on international commodity market. This study attempts to analyze some prominent exchange rate forecasting models on Malaysian commodity trading: univariate ARIMA, ARCH and GARCH models in conjunction with stationarity test on residual diagnosis direct testing of heteroskedasticity. All forecasting models utilized the monthly data from 1990 to 2015. Given a total of 312 observations, the data used to forecast both short-term and long-term exchange rate. The forecasting power statistics suggested that the forecasting performance of ARIMA (1, 1, 1) model is more efficient than the ARCH (1) and GARCH (1, 1) models. For ex-post forecast, exchange rate was increased from RM 3.50 per USD in January 2015 to RM 4.47 per USD in December 2015 based on the baseline data. For short-term ex-ante forecast, the analysis results indicate a decrease in exchange rate on 2016 June (RM 4.27 per USD) as compared with 2015 December. A more appropriate forecasting method of exchange rate is vital to aid the decision-making process and planning on the sustainable commodities' production in the world economy.
7 CFR 1710.202 - Requirement to prepare a load forecast-power supply borrowers.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 11 2010-01-01 2010-01-01 false Requirement to prepare a load forecast-power supply borrowers. 1710.202 Section 1710.202 Agriculture Regulations of the Department of Agriculture (Continued) RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE GENERAL AND PRE-LOAN POLICIES AND PROCEDURES COMMON TO ELECTRIC LOANS AND GUARANTEES Load...
2014-01-01
Gold price forecasting has been a hot issue in economics recently. In this work, wavelet neural network (WNN) combined with a novel artificial bee colony (ABC) algorithm is proposed for this gold price forecasting issue. In this improved algorithm, the conventional roulette selection strategy is discarded. Besides, the convergence statuses in a previous cycle of iteration are fully utilized as feedback messages to manipulate the searching intensity in a subsequent cycle. Experimental results confirm that this new algorithm converges faster than the conventional ABC when tested on some classical benchmark functions and is effective to improve modeling capacity of WNN regarding the gold price forecasting scheme. PMID:24744773
NASA Astrophysics Data System (ADS)
Areekul, Phatchakorn; Senjyu, Tomonobu; Urasaki, Naomitsu; Yona, Atsushi
Electricity price forecasting is becoming increasingly relevant to power producers and consumers in the new competitive electric power markets, when planning bidding strategies in order to maximize their benefits and utilities, respectively. This paper proposed a method to predict hourly electricity prices for next-day electricity markets by combination methodology of ARIMA and ANN models. The proposed method is examined on the Australian National Electricity Market (NEM), New South Wales regional in year 2006. Comparison of forecasting performance with the proposed ARIMA, ANN and combination (ARIMA-ANN) models are presented. Empirical results indicate that an ARIMA-ANN model can improve the price forecasting accuracy.
Variable Generation Power Forecasting as a Big Data Problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haupt, Sue Ellen; Kosovic, Branko
To blend growing amounts of power from renewable resources into utility operations requires accurate forecasts. For both day ahead planning and real-time operations, the power from the wind and solar resources must be predicted based on real-time observations and a series of models that span the temporal and spatial scales of the problem, using the physical and dynamical knowledge as well as computational intelligence. Accurate prediction is a Big Data problem that requires disparate data, multiple models that are each applicable for a specific time frame, and application of computational intelligence techniques to successfully blend all of the model andmore » observational information in real-time and deliver it to the decision makers at utilities and grid operators. This paper describes an example system that has been used for utility applications and how it has been configured to meet utility needs while addressing the Big Data issues.« less
Variable Generation Power Forecasting as a Big Data Problem
Haupt, Sue Ellen; Kosovic, Branko
2016-10-10
To blend growing amounts of power from renewable resources into utility operations requires accurate forecasts. For both day ahead planning and real-time operations, the power from the wind and solar resources must be predicted based on real-time observations and a series of models that span the temporal and spatial scales of the problem, using the physical and dynamical knowledge as well as computational intelligence. Accurate prediction is a Big Data problem that requires disparate data, multiple models that are each applicable for a specific time frame, and application of computational intelligence techniques to successfully blend all of the model andmore » observational information in real-time and deliver it to the decision makers at utilities and grid operators. This paper describes an example system that has been used for utility applications and how it has been configured to meet utility needs while addressing the Big Data issues.« less
Averaging business cycles vs. myopia: Do we need a long term vision when developing IRP?
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDonald, C.; Gupta, P.C.
1995-05-01
Utility demand forecasting is inherently imprecise due to the number of uncertainties resulting from business cycles, policy making, technology breakthroughs, national and international political upheavals and the limitations of the forecasting tools. This implies that revisions based primarily on recent experience could lead to unstable forecasts. Moreover, new planning tools are required that provide an explicit consideration of uncertainty and lead to flexible and robust planning tools are required that provide an explicit consideration of uncertainty and lead to flexible and robust planning decisions.
The time series approach to short term load forecasting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagan, M.T.; Behr, S.M.
The application of time series analysis methods to load forecasting is reviewed. It is shown than Box and Jenkins time series models, in particular, are well suited to this application. The logical and organized procedures for model development using the autocorrelation function make these models particularly attractive. One of the drawbacks of these models is the inability to accurately represent the nonlinear relationship between load and temperature. A simple procedure for overcoming this difficulty is introduced, and several Box and Jenkins models are compared with a forecasting procedure currently used by a utility company.
NASA Astrophysics Data System (ADS)
Morin, C.; Quattrochi, D. A.; Zavodsky, B.; Case, J.
2015-12-01
Dengue fever (DF) is an important mosquito transmitted disease that is strongly influenced by meteorological and environmental conditions. Recent research has focused on forecasting DF case numbers based on meteorological data. However, these forecasting tools have generally relied on empirical models that require long DF time series to train. Additionally, their accuracy has been tested retrospectively, using past meteorological data. Consequently, the operational utility of the forecasts are still in question because the error associated with weather and climate forecasts are not reflected in the results. Using up-to-date weekly dengue case numbers for model parameterization and weather forecast data as meteorological input, we produced weekly forecasts of DF cases in San Juan, Puerto Rico. Each week, the past weeks' case counts were used to re-parameterize a process-based DF model driven with updated weather forecast data to generate forecasts of DF case numbers. Real-time weather forecast data was produced using the Weather Research and Forecasting (WRF) numerical weather prediction (NWP) system enhanced using additional high-resolution NASA satellite data. This methodology was conducted in a weekly iterative process with each DF forecast being evaluated using county-level DF cases reported by the Puerto Rico Department of Health. The one week DF forecasts were accurate especially considering the two sources of model error. First, weather forecasts were sometimes inaccurate and generally produced lower than observed temperatures. Second, the DF model was often overly influenced by the previous weeks DF case numbers, though this phenomenon could be lessened by increasing the number of simulations included in the forecast. Although these results are promising, we would like to develop a methodology to produce longer range forecasts so that public health workers can better prepare for dengue epidemics.
Integrating predictive information into an agro-economic model to guide agricultural planning
NASA Astrophysics Data System (ADS)
Block, Paul; Zhang, Ying; You, Liangzhi
2017-04-01
Seasonal climate forecasts can inform long-range planning, including water resources utilization and allocation, however quantifying the value of this information on the economy is often challenging. For rain-fed farmers, skillful season-ahead predictions may lead to superior planning, as compared to business as usual strategies, resulting in additional benefits or reduced losses. In this study, regional-level probabilistic precipitation forecasts of the major rainy season in Ethiopia are fed into an agro-economic model, adapted from the International Food Policy Research Institute, to evaluate economic outcomes (GDP, poverty rates, etc.) as compared with a no-forecast approach. Based on forecasted conditions, farmers can select various actions: adjusting crop area and crop type, purchasing drought resistant seed, or applying additional fertilizer. Preliminary results favor the forecast-based approach, particularly through crop area reallocation.
Ensemble Streamflow Forecast Improvements in NYC's Operations Support Tool
NASA Astrophysics Data System (ADS)
Wang, L.; Weiss, W. J.; Porter, J.; Schaake, J. C.; Day, G. N.; Sheer, D. P.
2013-12-01
Like most other water supply utilities, New York City's Department of Environmental Protection (DEP) has operational challenges associated with drought and wet weather events. During drought conditions, DEP must maintain water supply reliability to 9 million customers as well as meet environmental release requirements downstream of its reservoirs. During and after wet weather events, DEP must maintain turbidity compliance in its unfiltered Catskill and Delaware reservoir systems and minimize spills to mitigate downstream flooding. Proactive reservoir management - such as release restrictions to prepare for a drought or preventative drawdown in advance of a large storm - can alleviate negative impacts associated with extreme events. It is important for water managers to understand the risks associated with proactive operations so unintended consequences such as endangering water supply reliability with excessive drawdown prior to a storm event are minimized. Probabilistic hydrologic forecasts are a critical tool in quantifying these risks and allow water managers to make more informed operational decisions. DEP has recently completed development of an Operations Support Tool (OST) that integrates ensemble streamflow forecasts, real-time observations, and a reservoir system operations model into a user-friendly graphical interface that allows its water managers to take robust and defensible proactive measures in the face of challenging system conditions. Since initial development of OST was first presented at the 2011 AGU Fall Meeting, significant improvements have been made to the forecast system. First, the monthly AR1 forecasts ('Hirsch method') were upgraded with a generalized linear model (GLM) utilizing historical daily correlations ('Extended Hirsch method' or 'eHirsch'). The development of eHirsch forecasts improved predictive skill over the Hirsch method in the first week to a month from the forecast date and produced more realistic hydrographs on the tail end of high flow periods. These improvements allowed DEP to more effectively manage water quality control and spill mitigation operations immediately after storm events. Later on, post-processed hydrologic forecasts from the National Weather Service (NWS) including the Advanced Hydrologic Prediction Service (AHPS) and the Hydrologic Ensemble Forecast Service (HEFS) were implemented into OST. These forecasts further increased the predictive skill over the initial statistical models as current basin conditions (e.g. soil moisture, snowpack) and meteorological forecasts (with HEFS) are now explicitly represented. With the post-processed HEFS forecasts, DEP may now truly quantify impacts associated with wet weather events on the horizon, rather than relying on statistical representations of current hydrologic trends. This presentation will highlight the benefits of the improved forecasts using examples from actual system operations.
Type- and Subtype-Specific Influenza Forecast.
Kandula, Sasikiran; Yang, Wan; Shaman, Jeffrey
2017-03-01
Prediction of the growth and decline of infectious disease incidence has advanced considerably in recent years. As these forecasts improve, their public health utility should increase, particularly as interventions are developed that make explicit use of forecast information. It is the task of the research community to increase the content and improve the accuracy of these infectious disease predictions. Presently, operational real-time forecasts of total influenza incidence are produced at the municipal and state level in the United States. These forecasts are generated using ensemble simulations depicting local influenza transmission dynamics, which have been optimized prior to forecast with observations of influenza incidence and data assimilation methods. Here, we explore whether forecasts targeted to predict influenza by type and subtype during 2003-2015 in the United States were more or less accurate than forecasts targeted to predict total influenza incidence. We found that forecasts separated by type/subtype generally produced more accurate predictions and, when summed, produced more accurate predictions of total influenza incidence. These findings indicate that monitoring influenza by type and subtype not only provides more detailed observational content but supports more accurate forecasting. More accurate forecasting can help officials better respond to and plan for current and future influenza activity. © The Author 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Economic assessment of flood forecasts for a risk-averse decision-maker
NASA Astrophysics Data System (ADS)
Matte, Simon; Boucher, Marie-Amélie; Boucher, Vincent; Fortier-Filion, Thomas-Charles
2017-04-01
A large effort has been made over the past 10 years to promote the operational use of probabilistic or ensemble streamflow forecasts. It has also been suggested in past studies that ensemble forecasts might possess a greater economic value than deterministic forecasts. However, the vast majority of recent hydro-economic literature is based on the cost-loss ratio framework, which might be appealing for its simplicity and intuitiveness. One important drawback of the cost-loss ratio is that it implicitly assumes a risk-neutral decision maker. By definition, a risk-neutral individual is indifferent to forecasts' sharpness: as long as forecasts agree with observations on average, the risk-neutral individual is satisfied. A risk-averse individual, however, is sensitive to the level of precision (sharpness) of forecasts. This person is willing to pay to increase his or her certainty about future events. In fact, this is how insurance companies operate: the probability of seeing one's house burn down is relatively low, so the expected cost related to such event is also low. However, people are willing to buy insurance to avoid the risk, however small, of loosing everything. Similarly, in a context where people's safety and property is at stake, the typical decision maker is more risk-averse than risk-neutral. Consequently, the cost-loss ratio is not the most appropriate tool to assess the economic value of flood forecasts. This presentation describes a more realistic framework for assessing the economic value of such forecasts for flood mitigation purposes. Borrowing from economics, the Constant Absolute Risk Aversion utility function (CARA) is the central tool of this new framework. Utility functions allow explicitly accounting for the level of risk aversion of the decision maker and fully exploiting the information related to ensemble forecasts' uncertainty. Three concurrent ensemble streamflow forecasting systems are compared in terms of quality (comparison with observed values) and in terms of their economic value. This assessment is performed for lead times of one to five days. The three systems are: (1) simple statistically dressed deterministic forecasts, (2) forecasts based on meteorological ensembles and (3) a variant of the latter that also includes an estimation of state variables uncertainty. The comparison takes place on the Montmorency River, a small flood-prone watershed in south central Quebec, Canada. The results show that forecasts quality as assessed by well-known tools such as the Continuous Ranked Probability Score or the reliability diagram do not necessarily translate directly into economic value, especially if the decision maker is not risk-neutral. In addition, results show that the economic value of forecasts for a risk-averse decision maker is very much influenced by the most extreme members of ensemble forecasts (upper tail of the predictive distributions). This study provides a new basis for further improvement of our comprehension of the complex interactions between forecasts uncertainty, risk-aversion and decision-making.
7 CFR 1710.203 - Requirement to prepare a load forecast-distribution borrowers.
Code of Federal Regulations, 2011 CFR
2011-01-01
...—distribution borrowers. (a) A distribution borrower that is a member of a power supply borrower with a total... forecast work plan of its power supply borrower. (b) A distribution borrower that is a member of a power supply borrower which is itself a member of another power supply borrower that has a total utility plant...
Fuzzy time-series based on Fibonacci sequence for stock price forecasting
NASA Astrophysics Data System (ADS)
Chen, Tai-Liang; Cheng, Ching-Hsue; Jong Teoh, Hia
2007-07-01
Time-series models have been utilized to make reasonably accurate predictions in the areas of stock price movements, academic enrollments, weather, etc. For promoting the forecasting performance of fuzzy time-series models, this paper proposes a new model, which incorporates the concept of the Fibonacci sequence, the framework of Song and Chissom's model and the weighted method of Yu's model. This paper employs a 5-year period TSMC (Taiwan Semiconductor Manufacturing Company) stock price data and a 13-year period of TAIEX (Taiwan Stock Exchange Capitalization Weighted Stock Index) stock index data as experimental datasets. By comparing our forecasting performances with Chen's (Forecasting enrollments based on fuzzy time-series. Fuzzy Sets Syst. 81 (1996) 311-319), Yu's (Weighted fuzzy time-series models for TAIEX forecasting. Physica A 349 (2004) 609-624) and Huarng's (The application of neural networks to forecast fuzzy time series. Physica A 336 (2006) 481-491) models, we conclude that the proposed model surpasses in accuracy these conventional fuzzy time-series models.
Winter precipitation forecast in the European and Mediterranean regions using cluster analysis
NASA Astrophysics Data System (ADS)
Molnos, S.
2017-12-01
The European and Mediterranean climates are sensitive to large-scale circulation of the atmosphere andocean making it difficult to forecast precipitation or temperature on seasonal time-scales. In addition, theMediterranean region has been identified as a hotspot for climate change and already today a drying in theMediterranean region is observed.Thus, it is critically important to predict seasonal droughts as early as possible such that water managersand stakeholders can mitigate impacts.We developed a novel cluster-based forecast method to empirically predict winter's precipitationanomalies in European and Mediterranean regions using precursors in autumn. This approach does notonly utilizes the amplitude but also the pattern of the precursors in generating the forecast.Using a toy model we show that it achieves a better forecast skill than more traditional regression models. Furthermore, we compare our algorithm with dynamic forecast models demonstrating that our prediction method performs better in terms of time and pattern correlation in the Mediterranean and European regions.
Palm oil price forecasting model: An autoregressive distributed lag (ARDL) approach
NASA Astrophysics Data System (ADS)
Hamid, Mohd Fahmi Abdul; Shabri, Ani
2017-05-01
Palm oil price fluctuated without any clear trend or cyclical pattern in the last few decades. The instability of food commodities price causes it to change rapidly over time. This paper attempts to develop Autoregressive Distributed Lag (ARDL) model in modeling and forecasting the price of palm oil. In order to use ARDL as a forecasting model, this paper modifies the data structure where we only consider lagged explanatory variables to explain the variation in palm oil price. We then compare the performance of this ARDL model with a benchmark model namely ARIMA in term of their comparative forecasting accuracy. This paper also utilize ARDL bound testing approach to co-integration in examining the short run and long run relationship between palm oil price and its determinant; production, stock, and price of soybean as the substitute of palm oil and price of crude oil. The comparative forecasting accuracy suggests that ARDL model has a better forecasting accuracy compared to ARIMA.
NASA Technical Reports Server (NTRS)
Fiorino, Michael; Goerss, James S.; Jensen, Jack J.; Harrison, Edward J., Jr.
1993-01-01
The paper evaluates the meteorological quality and operational utility of the Navy Operational Global Atmospheric Prediction System (NOGAPS) in forecasting tropical cyclones. It is shown that the model can provide useful predictions of motion and formation on a real-time basis in the western North Pacific. The meterological characteristics of the NOGAPS tropical cyclone predictions are evaluated by examining the formation of low-level cyclone systems in the tropics and vortex structure in the NOGAPS analysis and verifying 72-h forecasts. The adjusted NOGAPS track forecasts showed equitable skill to the baseline aid and the dynamical model. NOGAPS successfully predicted unusual equatorward turns for several straight-running cyclones.
Preisler, H.K.; Burgan, R.E.; Eidenshink, J.C.; Klaver, Jacqueline M.; Klaver, R.W.
2009-01-01
The current study presents a statistical model for assessing the skill of fire danger indices and for forecasting the distribution of the expected numbers of large fires over a given region and for the upcoming week. The procedure permits development of daily maps that forecast, for the forthcoming week and within federal lands, percentiles of the distributions of (i) number of ignitions; (ii) number of fires above a given size; (iii) conditional probabilities of fires greater than a specified size, given ignition. As an illustration, we used the methods to study the skill of the Fire Potential Index an index that incorporates satellite and surface observations to map fire potential at a national scale in forecasting distributions of large fires. ?? 2009 IAWF.
A data-driven multi-model methodology with deep feature selection for short-term wind forecasting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Cong; Cui, Mingjian; Hodge, Bri-Mathias
With the growing wind penetration into the power system worldwide, improving wind power forecasting accuracy is becoming increasingly important to ensure continued economic and reliable power system operations. In this paper, a data-driven multi-model wind forecasting methodology is developed with a two-layer ensemble machine learning technique. The first layer is composed of multiple machine learning models that generate individual forecasts. A deep feature selection framework is developed to determine the most suitable inputs to the first layer machine learning models. Then, a blending algorithm is applied in the second layer to create an ensemble of the forecasts produced by firstmore » layer models and generate both deterministic and probabilistic forecasts. This two-layer model seeks to utilize the statistically different characteristics of each machine learning algorithm. A number of machine learning algorithms are selected and compared in both layers. This developed multi-model wind forecasting methodology is compared to several benchmarks. The effectiveness of the proposed methodology is evaluated to provide 1-hour-ahead wind speed forecasting at seven locations of the Surface Radiation network. Numerical results show that comparing to the single-algorithm models, the developed multi-model framework with deep feature selection procedure has improved the forecasting accuracy by up to 30%.« less
3D cloud detection and tracking system for solar forecast using multiple sky imagers
Peng, Zhenzhou; Yu, Dantong; Huang, Dong; ...
2015-06-23
We propose a system for forecasting short-term solar irradiance based on multiple total sky imagers (TSIs). The system utilizes a novel method of identifying and tracking clouds in three-dimensional space and an innovative pipeline for forecasting surface solar irradiance based on the image features of clouds. First, we develop a supervised classifier to detect clouds at the pixel level and output cloud mask. In the next step, we design intelligent algorithms to estimate the block-wise base height and motion of each cloud layer based on images from multiple TSIs. Thus, this information is then applied to stitch images together intomore » larger views, which are then used for solar forecasting. We examine the system’s ability to track clouds under various cloud conditions and investigate different irradiance forecast models at various sites. We confirm that this system can 1) robustly detect clouds and track layers, and 2) extract the significant global and local features for obtaining stable irradiance forecasts with short forecast horizons from the obtained images. Finally, we vet our forecasting system at the 32-megawatt Long Island Solar Farm (LISF). Compared with the persistent model, our system achieves at least a 26% improvement for all irradiance forecasts between one and fifteen minutes.« less
A Load-Based Temperature Prediction Model for Anomaly Detection
NASA Astrophysics Data System (ADS)
Sobhani, Masoud
Electric load forecasting, as a basic requirement for the decision-making in power utilities, has been improved in various aspects in the past decades. Many factors may affect the accuracy of the load forecasts, such as data quality, goodness of the underlying model and load composition. Due to the strong correlation between the input variables (e.g., weather and calendar variables) and the load, the quality of input data plays a vital role in forecasting practices. Even if the forecasting model were able to capture most of the salient features of the load, a low quality input data may result in inaccurate forecasts. Most of the data cleansing efforts in the load forecasting literature have been devoted to the load data. Few studies focused on weather data cleansing for load forecasting. This research proposes an anomaly detection method for the temperature data. The method consists of two components: a load-based temperature prediction model and a detection technique. The effectiveness of the proposed method is demonstrated through two case studies: one based on the data from the Global Energy Forecasting Competition 2014, and the other based on the data published by ISO New England. The results show that by removing the detected observations from the original input data, the final load forecast accuracy is enhanced.
Wang, Deyun; Liu, Yanling; Luo, Hongyuan; Yue, Chenqiang; Cheng, Sheng
2017-01-01
Accurate PM2.5 concentration forecasting is crucial for protecting public health and atmospheric environment. However, the intermittent and unstable nature of PM2.5 concentration series makes its forecasting become a very difficult task. In order to improve the forecast accuracy of PM2.5 concentration, this paper proposes a hybrid model based on wavelet transform (WT), variational mode decomposition (VMD) and back propagation (BP) neural network optimized by differential evolution (DE) algorithm. Firstly, WT is employed to disassemble the PM2.5 concentration series into a number of subsets with different frequencies. Secondly, VMD is applied to decompose each subset into a set of variational modes (VMs). Thirdly, DE-BP model is utilized to forecast all the VMs. Fourthly, the forecast value of each subset is obtained through aggregating the forecast results of all the VMs obtained from VMD decomposition of this subset. Finally, the final forecast series of PM2.5 concentration is obtained by adding up the forecast values of all subsets. Two PM2.5 concentration series collected from Wuhan and Tianjin, respectively, located in China are used to test the effectiveness of the proposed model. The results demonstrate that the proposed model outperforms all the other considered models in this paper. PMID:28704955
NASA Astrophysics Data System (ADS)
Aulov, Oleg
This dissertation presents a novel approach that utilizes quantifiable social media data as a human aware, near real-time observing system, coupled with geophysical predictive models for improved response to disasters and extreme events. It shows that social media data has the potential to significantly improve disaster management beyond informing the public, and emphasizes the importance of different roles that social media can play in management, monitoring, modeling and mitigation of natural and human-caused extreme disasters. In the proposed approach Social Media users are viewed as "human sensors" that are "deployed" in the field, and their posts are considered to be "sensor observations", thus different social media outlets all together form a Human Sensor Network. We utilized the "human sensor" observations, as boundary value forcings, to show improved geophysical model forecasts of extreme disaster events when combined with other scientific data such as satellite observations and sensor measurements. Several recent extreme disasters are presented as use case scenarios. In the case of the Deepwater Horizon oil spill disaster of 2010 that devastated the Gulf of Mexico, the research demonstrates how social media data from Flickr can be used as a boundary forcing condition of GNOME oil spill plume forecast model, and results in an order of magnitude forecast improvement. In the case of Hurricane Sandy NY/NJ landfall impact of 2012, we demonstrate how the model forecasts, when combined with social media data in a single framework, can be used for near real-time forecast validation, damage assessment and disaster management. Owing to inherent uncertainties in the weather forecasts, the NOAA operational surge model only forecasts the worst-case scenario for flooding from any given hurricane. Geolocated and time-stamped Instagram photos and tweets allow near real-time assessment of the surge levels at different locations, which can validate model forecasts, give timely views of the actual levels of surge, as well as provide an upper bound beyond which the surge did not spread. Additionally, we developed AsonMaps---a crisis-mapping tool that combines dynamic model forecast outputs with social media observations and physical measurements to define the regions of event impacts.
A seasonal hydrologic ensemble prediction system for water resource management
NASA Astrophysics Data System (ADS)
Luo, L.; Wood, E. F.
2006-12-01
A seasonal hydrologic ensemble prediction system, developed for the Ohio River basin, has been improved and expanded to several other regions including the Eastern U.S., Africa and East Asia. The prediction system adopts the traditional Extended Streamflow Prediction (ESP) approach, utilizing the VIC (Variable Infiltration Capacity) hydrological model as the central tool for producing ensemble prediction of soil moisture, snow and streamflow with lead times up to 6-month. VIC is forced by observed meteorology to estimate the hydrological initial condition prior to the forecast, but during the forecast period the atmospheric forcing comes from statistically downscaled, seasonal forecast from dynamic climate models. The seasonal hydrologic ensemble prediction system is currently producing realtime seasonal hydrologic forecast for these regions on a monthly basis. Using hindcasts from a 19-year period (1981-1999), during which seasonal hindcasts from NCEP Climate Forecast System (CFS) and European Union DEMETER project are available, we evaluate the performance of the forecast system over our forecast regions. The evaluation shows that the prediction system using the current forecast approach is able to produce reliable and accurate precipitation, soil moisture and streamflow predictions. The overall skill is much higher then the traditional ESP. In particular, forecasts based on multiple climate model forecast are more skillful than single model-based forecast. This emphasizes the significant need for producing seasonal climate forecast with multiple climate models for hydrologic applications. Forecast from this system is expected to provide very valuable information about future hydrologic states and associated risks for end users, including water resource management and financial sectors.
NASA Astrophysics Data System (ADS)
Sinha, T.; Arumugam, S.
2012-12-01
Seasonal streamflow forecasts contingent on climate forecasts can be effectively utilized in updating water management plans and optimize generation of hydroelectric power. Streamflow in the rainfall-runoff dominated basins critically depend on forecasted precipitation in contrast to snow dominated basins, where initial hydrological conditions (IHCs) are more important. Since precipitation forecasts from Atmosphere-Ocean-General Circulation Models are available at coarse scale (~2.8° by 2.8°), spatial and temporal downscaling of such forecasts are required to implement land surface models, which typically runs on finer spatial and temporal scales. Consequently, multiple sources are introduced at various stages in predicting seasonal streamflow. Therefore, in this study, we addresses the following science questions: 1) How do we attribute the errors in monthly streamflow forecasts to various sources - (i) model errors, (ii) spatio-temporal downscaling, (iii) imprecise initial conditions, iv) no forecasts, and (iv) imprecise forecasts? and 2) How does monthly streamflow forecast errors propagate with different lead time over various seasons? In this study, the Variable Infiltration Capacity (VIC) model is calibrated over Apalachicola River at Chattahoochee, FL in the southeastern US and implemented with observed 1/8° daily forcings to estimate reference streamflow during 1981 to 2010. The VIC model is then forced with different schemes under updated IHCs prior to forecasting period to estimate relative mean square errors due to: a) temporally disaggregation, b) spatial downscaling, c) Reverse Ensemble Streamflow Prediction (imprecise IHCs), d) ESP (no forecasts), and e) ECHAM4.5 precipitation forecasts. Finally, error propagation under different schemes are analyzed with different lead time over different seasons.
Forecasting residential electricity demand in provincial China.
Liao, Hua; Liu, Yanan; Gao, Yixuan; Hao, Yu; Ma, Xiao-Wei; Wang, Kan
2017-03-01
In China, more than 80% electricity comes from coal which dominates the CO2 emissions. Residential electricity demand forecasting plays a significant role in electricity infrastructure planning and energy policy designing, but it is challenging to make an accurate forecast for developing countries. This paper forecasts the provincial residential electricity consumption of China in the 13th Five-Year-Plan (2016-2020) period using panel data. To overcome the limitations of widely used predication models with unreliably prior knowledge on function forms, a robust piecewise linear model in reduced form is utilized to capture the non-deterministic relationship between income and residential electricity consumption. The forecast results suggest that the growth rates of developed provinces will slow down, while the less developed will be still in fast growing. The national residential electricity demand will increase at 6.6% annually during 2016-2020, and populous provinces such as Guangdong will be the main contributors to the increments.
Satellite Sounder Data Assimilation for Improving Alaska Region Weather Forecast
NASA Technical Reports Server (NTRS)
Zhu, Jiang; Stevens, E.; Zavodsky, B. T.; Zhang, X.; Heinrichs, T.; Broderson, D.
2014-01-01
Data assimilation has been demonstrated very useful in improving both global and regional numerical weather prediction. Alaska has very coarser surface observation sites. On the other hand, it gets much more satellite overpass than lower 48 states. How to utilize satellite data to improve numerical prediction is one of hot topics among weather forecast community in Alaska. The Geographic Information Network of Alaska (GINA) at University of Alaska is conducting study on satellite data assimilation for WRF model. AIRS/CRIS sounder profile data are used to assimilate the initial condition for the customized regional WRF model (GINA-WRF model). Normalized standard deviation, RMSE, and correlation statistic analysis methods are applied to analyze one case of 48 hours forecasts and one month of 24-hour forecasts in order to evaluate the improvement of regional numerical model from Data assimilation. The final goal of the research is to provide improved real-time short-time forecast for Alaska regions.
NASA Technical Reports Server (NTRS)
Forbes, G. S.; Pielke, R. A.
1985-01-01
Various empirical and statistical weather-forecasting studies which utilize stratification by weather regime are described. Objective classification was used to determine weather regime in some studies. In other cases the weather pattern was determined on the basis of a parameter representing the physical and dynamical processes relevant to the anticipated mesoscale phenomena, such as low level moisture convergence and convective precipitation, or the Froude number and the occurrence of cold-air damming. For mesoscale phenomena already in existence, new forecasting techniques were developed. The use of cloud models in operational forecasting is discussed. Models to calculate the spatial scales of forcings and resultant response for mesoscale systems are presented. The use of these models to represent the climatologically most prevalent systems, and to perform case-by-case simulations is reviewed. Operational implementation of mesoscale data into weather forecasts, using both actual simulation output and method-output statistics is discussed.
Forecast model applications of retrieved three dimensional liquid water fields
NASA Technical Reports Server (NTRS)
Raymond, William H.; Olson, William S.
1990-01-01
Forecasts are made for tropical storm Emily using heating rates derived from the SSM/I physical retrievals described in chapters 2 and 3. Average values of the latent heating rates from the convective and stratiform cloud simulations, used in the physical retrieval, are obtained for individual 1.1 km thick vertical layers. Then, the layer-mean latent heating rates are regressed against the slant path-integrated liquid and ice precipitation water contents to determine the best fit two parameter regression coefficients for each layer. The regression formulae and retrieved precipitation water contents are utilized to infer the vertical distribution of heating rates for forecast model applications. In the forecast model, diabatic temperature contributions are calculated and used in a diabatic initialization, or in a diabatic initialization combined with a diabatic forcing procedure. Our forecasts show that the time needed to spin-up precipitation processes in tropical storm Emily is greatly accelerated through the application of the data.
Ensemble Solar Forecasting Statistical Quantification and Sensitivity Analysis: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheung, WanYin; Zhang, Jie; Florita, Anthony
2015-12-08
Uncertainties associated with solar forecasts present challenges to maintain grid reliability, especially at high solar penetrations. This study aims to quantify the errors associated with the day-ahead solar forecast parameters and the theoretical solar power output for a 51-kW solar power plant in a utility area in the state of Vermont, U.S. Forecasts were generated by three numerical weather prediction (NWP) models, including the Rapid Refresh, the High Resolution Rapid Refresh, and the North American Model, and a machine-learning ensemble model. A photovoltaic (PV) performance model was adopted to calculate theoretical solar power generation using the forecast parameters (e.g., irradiance,more » cell temperature, and wind speed). Errors of the power outputs were quantified using statistical moments and a suite of metrics, such as the normalized root mean squared error (NRMSE). In addition, the PV model's sensitivity to different forecast parameters was quantified and analyzed. Results showed that the ensemble model yielded forecasts in all parameters with the smallest NRMSE. The NRMSE of solar irradiance forecasts of the ensemble NWP model was reduced by 28.10% compared to the best of the three NWP models. Further, the sensitivity analysis indicated that the errors of the forecasted cell temperature attributed only approximately 0.12% to the NRMSE of the power output as opposed to 7.44% from the forecasted solar irradiance.« less
NASA Astrophysics Data System (ADS)
Nanda, Trushnamayee; Beria, Harsh; Sahoo, Bhabagrahi; Chatterjee, Chandranath
2016-04-01
Increasing frequency of hydrologic extremes in a warming climate call for the development of reliable flood forecasting systems. The unavailability of meteorological parameters in real-time, especially in the developing parts of the world, makes it a challenging task to accurately predict flood, even at short lead times. The satellite-based Tropical Rainfall Measuring Mission (TRMM) provides an alternative to the real-time precipitation data scarcity. Moreover, rainfall forecasts by the numerical weather prediction models such as the medium term forecasts issued by the European Center for Medium range Weather Forecasts (ECMWF) are promising for multistep-ahead flow forecasts. We systematically evaluate these rainfall products over a large catchment in Eastern India (Mahanadi River basin). We found spatially coherent trends, with both the real-time TRMM rainfall and ECMWF rainfall forecast products overestimating low rainfall events and underestimating high rainfall events. However, no significant bias was found for the medium rainfall events. Another key finding was that these rainfall products captured the phase of the storms pretty well, but suffered from consistent under-prediction. The utility of the real-time TRMM and ECMWF forecast products are evaluated by rainfall-runoff modeling using different artificial neural network (ANN)-based models up to 3-days ahead. Keywords: TRMM; ECMWF; forecast; ANN; rainfall-runoff modeling
Visualization of ocean forecast in BYTHOS
NASA Astrophysics Data System (ADS)
Zhuk, E.; Zodiatis, G.; Nikolaidis, A.; Stylianou, S.; Karaolia, A.
2016-08-01
The Cyprus Oceanography Center has been constantly searching for new ideas for developing and implementing innovative methods and new developments concerning the use of Information Systems in Oceanography, to suit both the Center's monitoring and forecasting products. Within the frame of this scope two major online managing and visualizing data systems have been developed and utilized, those of CYCOFOS and BYTHOS. The Cyprus Coastal Ocean Forecasting and Observing System - CYCOFOS provides a variety of operational predictions such as ultra high, high and medium resolution ocean forecasts in the Levantine Basin, offshore and coastal sea state forecasts in the Mediterranean and Black Sea, tide forecasting in the Mediterranean, ocean remote sensing in the Eastern Mediterranean and coastal and offshore monitoring. As a rich internet application, BYTHOS enables scientists to search, visualize and download oceanographic data online and in real time. The recent improving of BYTHOS system is the extension with access and visualization of CYCOFOS data and overlay forecast fields and observing data. The CYCOFOS data are stored at OPENDAP Server in netCDF format. To search, process and visualize it the php and python scripts were developed. Data visualization is achieved through Mapserver. The BYTHOS forecast access interface allows to search necessary forecasting field by recognizing type, parameter, region, level and time. Also it provides opportunity to overlay different forecast and observing data that can be used for complex analyze of sea basin aspects.
A NOAA/SWPC Perspective on Space Weather Forecasts That Fail
NASA Astrophysics Data System (ADS)
Biesecker, D. A.
2014-12-01
The Space Weather Prediction Center (SWPC) at NOAA is the Official US source for space weather watches, warning and alerts. These alerts are provided to a breadth of customers covering a range of industries, including electric utilities, airlines, emergency managers, and users of precision GPS to name a few. This talk will review the current tools used by SWPC to forecast geomagnetic storms, solar flares, and solar energetic particle events and present the SWPC performance in each of these areas. We will include a discussion of the current limitations and examples of events that proved difficult to forecast.
DOT National Transportation Integrated Search
2012-01-01
The report describes a comprehensive vehicle fleet composition, utilization, and evolution : simulator that can be used to forecast household vehicle ownership and mileage by type of : vehicle over time. The components of the simulator are developed ...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 11 2010-01-01 2010-01-01 false Filing requirements for borrowers that must maintain an approved load forecast on an ongoing basis. 1710.204 Section 1710.204 Agriculture Regulations of the Department of Agriculture (Continued) RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE GENERAL AND PRE-LOAN POLICIES AND PROCEDURES COMMON TO...
A multiscale forecasting method for power plant fleet management
NASA Astrophysics Data System (ADS)
Chen, Hongmei
In recent years the electric power industry has been challenged by a high level of uncertainty and volatility brought on by deregulation and globalization. A power producer must minimize the life cycle cost while meeting stringent safety and regulatory requirements and fulfilling customer demand for high reliability. Therefore, to achieve true system excellence, a more sophisticated system-level decision-making process with a more accurate forecasting support system to manage diverse and often widely dispersed generation units as a single, easily scaled and deployed fleet system in order to fully utilize the critical assets of a power producer has been created as a response. The process takes into account the time horizon for each of the major decision actions taken in a power plant and develops methods for information sharing between them. These decisions are highly interrelated and no optimal operation can be achieved without sharing information in the overall process. The process includes a forecasting system to provide information for planning for uncertainty. A new forecasting method is proposed, which utilizes a synergy of several modeling techniques properly combined at different time-scales of the forecasting objects. It can not only take advantages of the abundant historical data but also take into account the impact of pertinent driving forces from the external business environment to achieve more accurate forecasting results. Then block bootstrap is utilized to measure the bias in the estimate of the expected life cycle cost which will actually be needed to drive the business for a power plant in the long run. Finally, scenario analysis is used to provide a composite picture of future developments for decision making or strategic planning. The decision-making process is applied to a typical power producer chosen to represent challenging customer demand during high-demand periods. The process enhances system excellence by providing more accurate market information, evaluating the impact of external business environment, and considering cross-scale interactions between decision actions. Along with this process, system operation strategies, maintenance schedules, and capacity expansion plans that guide the operation of the power plant are optimally identified, and the total life cycle costs are estimated.
Scale and modeling issues in water resources planning
Lins, H.F.; Wolock, D.M.; McCabe, G.J.
1997-01-01
Resource planners and managers interested in utilizing climate model output as part of their operational activities immediately confront the dilemma of scale discordance. Their functional responsibilities cover relatively small geographical areas and necessarily require data of relatively high spatial resolution. Climate models cover a large geographical, i.e. global, domain and produce data at comparatively low spatial resolution. Although the scale differences between model output and planning input are large, several techniques have been developed for disaggregating climate model output to a scale appropriate for use in water resource planning and management applications. With techniques in hand to reduce the limitations imposed by scale discordance, water resource professionals must now confront a more fundamental constraint on the use of climate models-the inability to produce accurate representations and forecasts of regional climate. Given the current capabilities of climate models, and the likelihood that the uncertainty associated with long-term climate model forecasts will remain high for some years to come, the water resources planning community may find it impractical to utilize such forecasts operationally.
Risky Business: Development, Communication and Use of Hydroclimatic Forecasts
NASA Astrophysics Data System (ADS)
Lall, U.
2012-12-01
Inter-seasonal and longer hydroclimatic forecasts have been made increasingly in the last two decades following the increase in ENSO activity since the early 1980s and the success in seasonal ENSO forecasting. Yet, the number of examples of systematic use of these forecasts and their incorporation into water systems operation continue to be few. This may be due in part to the limited skill in such forecasts over much of the world, but is also likely due to the limited evolution of methods and opportunities to "safely" use uncertain forecasts. There has been a trend to rely more on "physically based" rather than "physically informed" empirical forecasts, and this may in part explain the limited success in developing usable products in more locations. Given the limited skill, forecasters have tended to "dumb" down their forecasts - either formally or subjectively shrinking the forecasts towards climatology, or reducing them to tercile forecasts that serve to obscure the potential information in the forecast. Consequently, the potential utility of such forecasts for decision making is compromised. Water system operating rules are often designed to be robust in the face of historical climate variability, and consequently are adapted to the potential conditions that a forecast seeks to inform. In such situations, there is understandable reluctance by managers to use the forecasts as presented, except in special cases where an alternate course of action is pragmatically appealing in any case. In this talk, I review opportunities to present targeted forecasts for use with decision systems that directly address climate risk and the risk induced by unbiased yet uncertain forecasts, focusing especially on extreme events and water allocation in a competitive environment. Examples from Brazil and India covering surface and ground water conjunctive use strategies that could potentially be insured and lead to improvements over the traditional system operation and resource allocation are provided.
NASA Astrophysics Data System (ADS)
Hu, Qi; Pytlik Zillig, Lisa M.; Lynne, Gary D.; Tomkins, Alan J.; Waltman, William J.; Hayes, Michael J.; Hubbard, Kenneth G.; Artikov, Ikrom; Hoffman, Stacey J.; Wilhite, Donald A.
2006-09-01
Although the accuracy of weather and climate forecasts is continuously improving and new information retrieved from climate data is adding to the understanding of climate variation, use of the forecasts and climate information by farmers in farming decisions has changed little. This lack of change may result from knowledge barriers and psychological, social, and economic factors that undermine farmer motivation to use forecasts and climate information. According to the theory of planned behavior (TPB), the motivation to use forecasts may arise from personal attitudes, social norms, and perceived control or ability to use forecasts in specific decisions. These attributes are examined using data from a survey designed around the TPB and conducted among farming communities in the region of eastern Nebraska and the western U.S. Corn Belt. There were three major findings: 1) the utility and value of the forecasts for farming decisions as perceived by farmers are, on average, around 3.0 on a 0 7 scale, indicating much room to improve attitudes toward the forecast value. 2) The use of forecasts by farmers to influence decisions is likely affected by several social groups that can provide “expert viewpoints” on forecast use. 3) A major obstacle, next to forecast accuracy, is the perceived identity and reliability of the forecast makers. Given the rapidly increasing number of forecasts in this growing service business, the ambiguous identity of forecast providers may have left farmers confused and may have prevented them from developing both trust in forecasts and skills to use them. These findings shed light on productive avenues for increasing the influence of forecasts, which may lead to greater farming productivity. In addition, this study establishes a set of reference points that can be used for comparisons with future studies to quantify changes in forecast use and influence.
Wang, Deyun; Wei, Shuai; Luo, Hongyuan; Yue, Chenqiang; Grunder, Olivier
2017-02-15
The randomness, non-stationarity and irregularity of air quality index (AQI) series bring the difficulty of AQI forecasting. To enhance forecast accuracy, a novel hybrid forecasting model combining two-phase decomposition technique and extreme learning machine (ELM) optimized by differential evolution (DE) algorithm is developed for AQI forecasting in this paper. In phase I, the complementary ensemble empirical mode decomposition (CEEMD) is utilized to decompose the AQI series into a set of intrinsic mode functions (IMFs) with different frequencies; in phase II, in order to further handle the high frequency IMFs which will increase the forecast difficulty, variational mode decomposition (VMD) is employed to decompose the high frequency IMFs into a number of variational modes (VMs). Then, the ELM model optimized by DE algorithm is applied to forecast all the IMFs and VMs. Finally, the forecast value of each high frequency IMF is obtained through adding up the forecast results of all corresponding VMs, and the forecast series of AQI is obtained by aggregating the forecast results of all IMFs. To verify and validate the proposed model, two daily AQI series from July 1, 2014 to June 30, 2016 collected from Beijing and Shanghai located in China are taken as the test cases to conduct the empirical study. The experimental results show that the proposed hybrid model based on two-phase decomposition technique is remarkably superior to all other considered models for its higher forecast accuracy. Copyright © 2016 Elsevier B.V. All rights reserved.
Forecasting influenza in Hong Kong with Google search queries and statistical model fusion.
Xu, Qinneng; Gel, Yulia R; Ramirez Ramirez, L Leticia; Nezafati, Kusha; Zhang, Qingpeng; Tsui, Kwok-Leung
2017-01-01
The objective of this study is to investigate predictive utility of online social media and web search queries, particularly, Google search data, to forecast new cases of influenza-like-illness (ILI) in general outpatient clinics (GOPC) in Hong Kong. To mitigate the impact of sensitivity to self-excitement (i.e., fickle media interest) and other artifacts of online social media data, in our approach we fuse multiple offline and online data sources. Four individual models: generalized linear model (GLM), least absolute shrinkage and selection operator (LASSO), autoregressive integrated moving average (ARIMA), and deep learning (DL) with Feedforward Neural Networks (FNN) are employed to forecast ILI-GOPC both one week and two weeks in advance. The covariates include Google search queries, meteorological data, and previously recorded offline ILI. To our knowledge, this is the first study that introduces deep learning methodology into surveillance of infectious diseases and investigates its predictive utility. Furthermore, to exploit the strength from each individual forecasting models, we use statistical model fusion, using Bayesian model averaging (BMA), which allows a systematic integration of multiple forecast scenarios. For each model, an adaptive approach is used to capture the recent relationship between ILI and covariates. DL with FNN appears to deliver the most competitive predictive performance among the four considered individual models. Combing all four models in a comprehensive BMA framework allows to further improve such predictive evaluation metrics as root mean squared error (RMSE) and mean absolute predictive error (MAPE). Nevertheless, DL with FNN remains the preferred method for predicting locations of influenza peaks. The proposed approach can be viewed a feasible alternative to forecast ILI in Hong Kong or other countries where ILI has no constant seasonal trend and influenza data resources are limited. The proposed methodology is easily tractable and computationally efficient.
NASA Technical Reports Server (NTRS)
Molthan, Andrew L.
2011-01-01
Increases in computing resources have allowed for the utilization of high-resolution weather forecast models capable of resolving cloud microphysical and precipitation processes among varying numbers of hydrometeor categories. Several microphysics schemes are currently available within the Weather Research and Forecasting (WRF) model, ranging from single-moment predictions of precipitation content to double-moment predictions that include a prediction of particle number concentrations. Each scheme incorporates several assumptions related to the size distribution, shape, and fall speed relationships of ice crystals in order to simulate cold-cloud processes and resulting precipitation. Field campaign data offer a means of evaluating the assumptions present within each scheme. The Canadian CloudSat/CALIPSO Validation Project (C3VP) represented collaboration among the CloudSat, CALIPSO, and NASA Global Precipitation Measurement mission communities, to observe cold season precipitation processes relevant to forecast model evaluation and the eventual development of satellite retrievals of cloud properties and precipitation rates. During the C3VP campaign, widespread snowfall occurred on 22 January 2007, sampled by aircraft and surface instrumentation that provided particle size distributions, ice water content, and fall speed estimations along with traditional surface measurements of temperature and precipitation. In this study, four single-moment and two double-moment microphysics schemes were utilized to generate hypothetical WRF forecasts of the event, with C3VP data used in evaluation of their varying assumptions. Schemes that incorporate flexibility in size distribution parameters and density assumptions are shown to be preferable to fixed constants, and that a double-moment representation of the snow category may be beneficial when representing the effects of aggregation. These results may guide forecast centers in optimal configurations of their forecast models for winter weather and identify best practices present within these various schemes.
Analysis and Synthesis of Load Forecasting Data for Renewable Integration Studies: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steckler, N.; Florita, A.; Zhang, J.
2013-11-01
As renewable energy constitutes greater portions of the generation fleet, the importance of modeling uncertainty as part of integration studies also increases. In pursuit of optimal system operations, it is important to capture not only the definitive behavior of power plants, but also the risks associated with systemwide interactions. This research examines the dependence of load forecast errors on external predictor variables such as temperature, day type, and time of day. The analysis was utilized to create statistically relevant instances of sequential load forecasts with only a time series of historic, measured load available. The creation of such load forecastsmore » relies on Bayesian techniques for informing and updating the model, thus providing a basis for networked and adaptive load forecast models in future operational applications.« less
Transforming Atmospheric and Remotely-Sensed Information to Hydrologic Predictability in South Asia
NASA Astrophysics Data System (ADS)
Hopson, T. M.; Riddle, E. E.; Broman, D.; Brakenridge, G. R.; Birkett, C. M.; Kettner, A.; Sampson, K. M.; Boehnert, J.; Priya, S.; Collins, D. C.; Rostkier-Edelstein, D.; Young, W.; Singh, D.; Islam, A. S.
2017-12-01
South Asia is a flashpoint for natural disasters with profound societal impacts for the region and globally. Although close to 40% of the world's population depends on the Greater Himalaya's great rivers, $20 Billion of GDP is affected by river floods each year. The frequent occurrence of floods, combined with large and rapidly growing populations with high levels of poverty, make South Asia highly susceptible to humanitarian disasters. The challenges of mitigating such devastating disasters are exacerbated by the limited availability of real-time rain and stream gauge measuring stations and transboundary data sharing, and by constrained institutional commitments to overcome these challenges. To overcome such limitations, India and the World Bank have committed resources to the National Hydrology Project III, with the development objective to improve the extent, quality, and accessibility of water resources information and to strengthen the capacity of targeted water resources management institutions in India. The availability and application of remote sensing products and weather forecasts from ensemble prediction systems (EPS) have transformed river forecasting capability over the last decade, and is of interest to India. In this talk, we review the potential predictability of river flow contributed by some of the freely-available remotely-sensed and weather forecasting products within the framework of the physics of water migration through a watershed. Our specific geographical context is the Ganges, Brahmaputra, and Meghna river basin and a newly-available set of stream gauge measurements located over the region. We focus on satellite rainfall estimation, river height and width estimation, and EPS weather forecasts. For the later, we utilize the THORPEX-TIGGE dataset of global forecasts, and discuss how atmospheric predictability, as measured by an EPS, is transformed into hydrometeorological predictability. We provide an overview of the strengths and weaknesses of each of these data sets to the river flow prediction problem, generalizing their utility across spatial- and temporal-scales, and highlight the benefits of joint utilization and multi-modeling to minimize uncertainty and enhance operational robustness.
A scoping review of nursing workforce planning and forecasting research.
Squires, Allison; Jylhä, Virpi; Jun, Jin; Ensio, Anneli; Kinnunen, Juha
2017-11-01
This study will critically evaluate forecasting models and their content in workforce planning policies for nursing professionals and to highlight the strengths and the weaknesses of existing approaches. Although macro-level nursing workforce issues may not be the first thing that many nurse managers consider in daily operations, the current and impending nursing shortage in many countries makes nursing specific models for workforce forecasting important. A scoping review was conducted using a directed and summative content analysis approach to capture supply and demand analytic methods of nurse workforce planning and forecasting. The literature on nurse workforce forecasting studies published in peer-reviewed journals as well as in grey literature was included in the scoping review. Thirty six studies met the inclusion criteria, with the majority coming from the USA. Forecasting methods were biased towards service utilization analyses and were not consistent across studies. Current methods for nurse workforce forecasting are inconsistent and have not accounted sufficiently for socioeconomic and political factors that can influence workforce projections. Additional studies examining past trends are needed to improve future modelling. Accurate nursing workforce forecasting can help nurse managers, administrators and policy makers to understand the supply and demand of the workforce to prepare and maintain an adequate and competent current and future workforce. © 2017 John Wiley & Sons Ltd.
Early Transition and Use of VIIRS and GOES-R Products by NWS Forecast Offices
NASA Technical Reports Server (NTRS)
Fuell, Kevin K.; Smith, Mathew; Jedlovec, Gary
2012-01-01
The Visible Infrared Imaging Radiometer Suite (VIIRS) on the NPOESS Preparatory Project (NPP) satellite, part of the Joint Polar Satellite System (JPSS), and the ABI and GLM sensors scheduled for the GOES-R geostationary satellite will bring advanced observing capabilities to the operational weather community. The NASA Short-term Prediction Research and Transition (SPoRT) project at Marshall Space Flight Center has been facilitating the use of real-time experimental and research satellite data by NWS Weather Forecast Offices (WFOs) for a number of years to demonstrate the planned capabilities of future sensors to address particular forecast challenges through improve situational awareness and short-term weather forecasts. For the NOAA GOES-R Proving Ground (PG) activity, SPoRT is developing and disseminating selected GOES-R proxy products to collaborating WFOs and National Centers. SPoRT developed the a pseudo-Geostationary Lightning Mapper product and helped in the transition of the Algorithm Working Group (AWG) Convective Initiation (CI) proxy product for the Hazardous Weather Testbed (HWT) Spring Experiment,. Along with its partner WFOs, SPoRT is evaluating MODIS/GOES Hybrid products, which brings ABI-like data sets from existing NASA instrumentation in front of the forecaster for everyday use. The Hybrid uses near real-time MODIS imagery to demonstrate future ABI capabilities, while utilizing standard GOES imagery to provide the temporal frequency of geostationary imagery expected by operational forecasters. In addition, SPoRT is collaborating with the GOES-R hydrology AWG to transition a baseline proxy product for rainfall rate / quantitative precipitation estimate (QPE) to the OCONUS regions. For VIIRS, SPoRT is demonstrating multispectral observing capabilities and the utility of low-light channels not previously available on operational weather satellites to address a variety of weather forecast challenges. This presentation will discuss the results of transitioning these products to collaborating WFOs throughout the country.
Seasonal Forecast Skill And Teleconnections Over East Africa
NASA Astrophysics Data System (ADS)
MacLeod, D.; Palmer, T.
2017-12-01
Many people living in East Africa are significantly exposed to risks arising from climate variability. The region experiences two rainy seasons and poor performance of either or both of these (such as seen recently in 2016/17) reduces agricultural productivity and threatens food security. In combination with other factors this can lead to famine. By utilizing seasonal climate forecasts, preparatory actions can be taken in order to mitigate the risks arising from such climate variability. As part of the project ForPAc: "Towards forecast-based preparedness action", we are working with humanitarian agencies in Kenya to build such early warning systems on subseasonal-to-seasonal timescales. Here, the seasonal predictability and forecast skill of the two East African rainy seasons will be presented. Results from the new ECMWF operational forecasting system SEAS5 will be shown and compared to the previous System 4. Analysis of a new 110 year long atmosphere-only simulation will also be discussed, demonstrating impacts of atmosphere-ocean coupling as well as putting operational forecast skill in a long-term context. Particular focus will be given to the model representation of teleconnections of seasonal climate with global sea surface temperatures; highlighting sources of forecast error and informing future model development.
NASA Astrophysics Data System (ADS)
Tian, D.; Medina, H.
2017-12-01
Post-processing of medium range reference evapotranspiration (ETo) forecasts based on numerical weather prediction (NWP) models has the potential of improving the quality and utility of these forecasts. This work compares the performance of several post-processing methods for correcting ETo forecasts over the continental U.S. generated from The Observing System Research and Predictability Experiment (THORPEX) Interactive Grand Global Ensemble (TIGGE) database using data from Europe (EC), the United Kingdom (MO), and the United States (NCEP). The pondered post-processing techniques are: simple bias correction, the use of multimodels, the Ensemble Model Output Statistics (EMOS, Gneitting et al., 2005) and the Bayesian Model Averaging (BMA, Raftery et al., 2005). ETo estimates based on quality-controlled U.S. Regional Climate Reference Network measurements, and computed with the FAO 56 Penman Monteith equation, are adopted as baseline. EMOS and BMA are generally the most efficient post-processing techniques of the ETo forecasts. Nevertheless, the simple bias correction of the best model is commonly much more rewarding than using multimodel raw forecasts. Our results demonstrate the potential of different forecasting and post-processing frameworks in operational evapotranspiration and irrigation advisory systems at national scale.
NASA Technical Reports Server (NTRS)
Smith, Matthew R.; Molthan, Andrew L.; Fuell, Kevin K.; Jedlovec, Gary J.
2012-01-01
SPoRT is a team of NASA/NOAA scientists focused on demonstrating the utility of NASA and future NOAA data and derived products on improving short-term weather forecasts. Work collaboratively with a suite of unique products and selected WFOs in an end-to-end transition activity. Stable funding from NASA and NOAA. Recognized by the science community as the "go to" place for transitioning experimental and research data to the operational weather community. Endorsed by NWS ESSD/SSD chiefs. Proven paradigm for transitioning satellite observations and modeling capabilities to operations (R2O). SPoRT s transition of NASA satellite instruments provides unique or higher resolution data products to complement the baseline suite of geostationary data available to forecasters. SPoRT s partnership with NWS WFOs provides them with unique imagery to support disaster response and local forecast challenges. SPoRT has years of proven experience in developing and transitioning research products to the operational weather community. SPoRT has begun work with CONUS and OCONUS WFOs to determine the best products for maximum benefit to forecasters. VIIRS has already proven to be another extremely powerful tool, enhancing forecasters ability to handle difficult forecasting situations.
Alternative Approaches to Land Initialization for Seasonal Precipitation and Temperature Forecasts
NASA Technical Reports Server (NTRS)
Koster, Randal; Suarez, Max; Liu, Ping; Jambor, Urszula
2004-01-01
The seasonal prediction system of the NASA Global Modeling and Assimilation Office is used to generate ensembles of summer forecasts utilizing realistic soil moisture initialization. To derive the realistic land states, we drive offline the system's land model with realistic meteorological forcing over the period 1979-1993 (in cooperation with the Global Land Data Assimilation System project at GSFC) and then extract the state variables' values on the chosen forecast start dates. A parallel series of forecast ensembles is performed with a random (though climatologically consistent) set of land initial conditions; by comparing the two sets of ensembles, we can isolate the impact of land initialization on forecast skill from that of the imposed SSTs. The base initialization experiment is supplemented with several forecast ensembles that use alternative initialization techniques. One ensemble addresses the impact of minimizing climate drift in the system through the scaling of the initial conditions, and another is designed to isolate the importance of the precipitation signal from that of all other signals in the antecedent offline forcing. A third ensemble includes a more realistic initialization of the atmosphere along with the land initialization. The impact of each variation on forecast skill is quantified.
Forecasting of Seasonal Rainfall using ENSO and IOD teleconnection with Classification Models
NASA Astrophysics Data System (ADS)
De Silva, T.; Hornberger, G. M.
2017-12-01
Seasonal to annual forecasts of precipitation patterns are very important for water infrastructure management. In particular, such forecasts can be used to inform decisions about the operation of multipurpose reservoir systems in the face of changing climate conditions. Success in making useful forecasts often is achieved by considering climate teleconnections such as the El-Nino-Southern Oscillation (ENSO), Indian Ocean Dipole (IOD) as related to sea surface temperature variations. We present an analysis to explore the utility of using rainfall relationships in Sri Lanka with ENSO and IOD to predict rainfall to the Mahaweli, river basin. Forecasting of rainfall as classes - above normal, normal, and below normal - can be useful for water resource management decision making. Quadratic discrimination analysis (QDA) and random forest models are used to identify the patterns of rainfall classes with respect to ENSO and IOD indices. These models can be used to forecast the likelihood of areal rainfall anomalies using predicted climate indices. Results can be used for decisions regarding allocation of water for agriculture and electricity generation within the Mahaweli project of Sri Lanka.
NASA Astrophysics Data System (ADS)
Zhong, Z. W.; Ridhwan Salleh, Saiful; Chow, W. X.; Ong, Z. M.
2016-10-01
Air traffic forecasting is important as it helps stakeholders to plan their budgets and facilities. Thus, three most commonly used forecasting models were compared to see which model suited the air passenger traffic the best. General forecasting equations were also created to forecast the passenger traffic. The equations could forecast around 6.0% growth from 2015 onwards. Another study sought to provide an initial work for determining a theoretical airspace load with relevant calculations. The air traffic was simulated to investigate the current airspace load. Logical and reasonable results were obtained from the modelling and simulations. The current utilization percentages for airspace load per hour and the static airspace load in the interested airspace were found to be 6.64% and 11.21% respectively. Our research also studied how ADS-B would affect the time taken for aircraft to travel. 6000 flights departing from and landing at the airport were studied. New flight plans were simulated with improved flight paths due to the implementation of ADS-B, and flight times of all studied flights could be improved.
Short-term forecasts gain in accuracy. [Regression technique using ''Box-Jenkins'' analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Box-Jenkins time-series models offer accuracy for short-term forecasts that compare with large-scale macroeconomic forecasts. Utilities need to be able to forecast peak demand in order to plan their generating, transmitting, and distribution systems. This new method differs from conventional models by not assuming specific data patterns, but by fitting available data into a tentative pattern on the basis of auto-correlations. Three types of models (autoregressive, moving average, or mixed autoregressive/moving average) can be used according to which provides the most appropriate combination of autocorrelations and related derivatives. Major steps in choosing a model are identifying potential models, estimating the parametersmore » of the problem, and running a diagnostic check to see if the model fits the parameters. The Box-Jenkins technique is well suited for seasonal patterns, which makes it possible to have as short as hourly forecasts of load demand. With accuracy up to two years, the method will allow electricity price-elasticity forecasting that can be applied to facility planning and rate design. (DCK)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Huaiguang
This work proposes an approach for distribution system load forecasting, which aims to provide highly accurate short-term load forecasting with high resolution utilizing a support vector regression (SVR) based forecaster and a two-step hybrid parameters optimization method. Specifically, because the load profiles in distribution systems contain abrupt deviations, a data normalization is designed as the pretreatment for the collected historical load data. Then an SVR model is trained by the load data to forecast the future load. For better performance of SVR, a two-step hybrid optimization algorithm is proposed to determine the best parameters. In the first step of themore » hybrid optimization algorithm, a designed grid traverse algorithm (GTA) is used to narrow the parameters searching area from a global to local space. In the second step, based on the result of the GTA, particle swarm optimization (PSO) is used to determine the best parameters in the local parameter space. After the best parameters are determined, the SVR model is used to forecast the short-term load deviation in the distribution system.« less
Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System Operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoff, Thomas Hoff; Kankiewicz, Adam
Four major research objectives were completed over the course of this study. Three of the objectives were to evaluate three, new, state-of-the-art solar irradiance forecasting models. The fourth objective was to improve the California Independent System Operator’s (ISO) load forecasts by integrating behind-the-meter (BTM) PV forecasts. The three, new, state-of-the-art solar irradiance forecasting models included: the infrared (IR) satellite-based cloud motion vector (CMV) model; the WRF-SolarCA model and variants; and the Optimized Deep Machine Learning (ODML)-training model. The first two forecasting models targeted known weaknesses in current operational solar forecasts. They were benchmarked against existing operational numerical weather prediction (NWP)more » forecasts, visible satellite CMV forecasts, and measured PV plant power production. IR CMV, WRF-SolarCA, and ODML-training forecasting models all improved the forecast to a significant degree. Improvements varied depending on time of day, cloudiness index, and geographic location. The fourth objective was to demonstrate that the California ISO’s load forecasts could be improved by integrating BTM PV forecasts. This objective represented the project’s most exciting and applicable gains. Operational BTM forecasts consisting of 200,000+ individual rooftop PV forecasts were delivered into the California ISO’s real-time automated load forecasting (ALFS) environment. They were then evaluated side-by-side with operational load forecasts with no BTM-treatment. Overall, ALFS-BTM day-ahead (DA) forecasts performed better than baseline ALFS forecasts when compared to actual load data. Specifically, ALFS-BTM DA forecasts were observed to have the largest reduction of error during the afternoon on cloudy days. Shorter term 30 minute-ahead ALFS-BTM forecasts were shown to have less error under all sky conditions, especially during the morning time periods when traditional load forecasts often experience their largest uncertainties. This work culminated in a GO decision being made by the California ISO to include zonal BTM forecasts into its operational load forecasting system. The California ISO’s Manager of Short Term Forecasting, Jim Blatchford, summarized the research performed in this project with the following quote: “The behind-the-meter (BTM) California ISO region forecasting research performed by Clean Power Research and sponsored by the Department of Energy’s SUNRISE program was an opportunity to verify value and demonstrate improved load forecast capability. In 2016, the California ISO will be incorporating the BTM forecast into the Hour Ahead and Day Ahead load models to look for improvements in the overall load forecast accuracy as BTM PV capacity continues to grow.”« less
EU pharmaceutical expenditure forecast.
Urbinati, Duccio; Rémuzat, Cécile; Kornfeld, Åsa; Vataire, Anne-Lise; Cetinsoy, Laurent; Aballéa, Samuel; Mzoughi, Olfa; Toumi, Mondher
2014-01-01
With constant incentives for healthcare payers to contain their pharmaceutical budgets, forecasting has become critically important. Some countries have, for instance, developed pharmaceutical horizon scanning units. The objective of this project was to build a model to assess the net effect of the entrance of new patented medicinal products versus medicinal products going off-patent, with a defined forecast horizon, on selected European Union (EU) Member States' pharmaceutical budgets. This model took into account population ageing, as well as current and future country-specific pricing, reimbursement, and market access policies (the project was performed for the European Commission; see http://ec.europa.eu/health/healthcare/key_documents/index_en.htm). In order to have a representative heterogeneity of EU Member States, the following countries were selected for the analysis: France, Germany, Greece, Hungary, Poland, Portugal, and the United Kingdom. A forecasting period of 5 years (2012-2016) was chosen to assess the net pharmaceutical budget impact. A model for generics and biosimilars was developed for each country. The model estimated a separate and combined effect of the direct and indirect impacts of the patent cliff. A second model, estimating the sales development and the risk of development failure, was developed for new drugs. New drugs were reviewed individually to assess their clinical potential and translate it into commercial potential. The forecast was carried out according to three perspectives (healthcare public payer, society, and manufacturer), and several types of distribution chains (retail, hospital, and combined retail and hospital). Probabilistic and deterministic sensitivity analyses were carried out. According to the model, all countries experienced drug budget reductions except Poland (+€41 million). Savings were expected to be the highest in the United Kingdom (-€9,367 million), France (-€5,589 million), and, far behind them, Germany (-€831 million), Greece (-€808 million), Portugal (-€243 million), and Hungary (-€84 million). The main source of savings came from the cardiovascular, central nervous system, and respiratory areas and from biosimilar entries. Oncology, immunology, and inflammation, in contrast, lead to additional expenditure. The model was particularly sensitive to the time to market of branded products, generic prices, generic penetration, and the distribution of biosimilars. The results of this forecast suggested a decrease in pharmaceutical expenditure in the studied period. The model was sensitive to pharmaceutical policy decisions.
EU pharmaceutical expenditure forecast
Urbinati, Duccio; Rémuzat, Cécile; Kornfeld, Åsa; Vataire, Anne-Lise; Cetinsoy, Laurent; Aballéa, Samuel; Mzoughi, Olfa; Toumi, Mondher
2014-01-01
Background and Objectives With constant incentives for healthcare payers to contain their pharmaceutical budgets, forecasting has become critically important. Some countries have, for instance, developed pharmaceutical horizon scanning units. The objective of this project was to build a model to assess the net effect of the entrance of new patented medicinal products versus medicinal products going off-patent, with a defined forecast horizon, on selected European Union (EU) Member States’ pharmaceutical budgets. This model took into account population ageing, as well as current and future country-specific pricing, reimbursement, and market access policies (the project was performed for the European Commission; see http://ec.europa.eu/health/healthcare/key_documents/index_en.htm). Method In order to have a representative heterogeneity of EU Member States, the following countries were selected for the analysis: France, Germany, Greece, Hungary, Poland, Portugal, and the United Kingdom. A forecasting period of 5 years (2012–2016) was chosen to assess the net pharmaceutical budget impact. A model for generics and biosimilars was developed for each country. The model estimated a separate and combined effect of the direct and indirect impacts of the patent cliff. A second model, estimating the sales development and the risk of development failure, was developed for new drugs. New drugs were reviewed individually to assess their clinical potential and translate it into commercial potential. The forecast was carried out according to three perspectives (healthcare public payer, society, and manufacturer), and several types of distribution chains (retail, hospital, and combined retail and hospital). Probabilistic and deterministic sensitivity analyses were carried out. Results According to the model, all countries experienced drug budget reductions except Poland (+€41 million). Savings were expected to be the highest in the United Kingdom (−€9,367 million), France (−€5,589 million), and, far behind them, Germany (−€831 million), Greece (−€808 million), Portugal (−€243 million), and Hungary (−€84 million). The main source of savings came from the cardiovascular, central nervous system, and respiratory areas and from biosimilar entries. Oncology, immunology, and inflammation, in contrast, lead to additional expenditure. The model was particularly sensitive to the time to market of branded products, generic prices, generic penetration, and the distribution of biosimilars. Conclusions The results of this forecast suggested a decrease in pharmaceutical expenditure in the studied period. The model was sensitive to pharmaceutical policy decisions. PMID:27226837
Qualitative Validation of the IMM Model for ISS and STS Programs
NASA Technical Reports Server (NTRS)
Kerstman, E.; Walton, M.; Reyes, D.; Boley, L.; Saile, L.; Young, M.; Arellano, J.; Garcia, Y.; Myers, J. G.
2016-01-01
To validate and further improve the Integrated Medical Model (IMM), medical event data were obtained from 32 ISS and 122 STS person-missions. Using the crew characteristics from these observed missions, IMM v4.0 was used to forecast medical events and medical resource utilization. The IMM medical condition incidence values were compared to the actual observed medical event incidence values, and the IMM forecasted medical resource utilization was compared to actual observed medical resource utilization. Qualitative comparisons of these parameters were conducted for both the ISS and STS programs. The results of these analyses will provide validation of IMM v4.0 and reveal areas of the model requiring adjustments to improve the overall accuracy of IMM outputs. This validation effort should result in enhanced credibility of the IMM and improved confidence in the use of IMM as a decision support tool for human space flight.
Short Term Weather Forecasting and Long Term Climate Predictions in Mesoamerica
NASA Astrophysics Data System (ADS)
Hardin, D. M.; Daniel, I.; Mecikalski, J.; Graves, S.
2008-05-01
The SERVIR project utilizes several predictive models to support regional monitoring and decision support in Mesoamerica. Short term forecasts ranging from a few hours to several days produce more than 30 data products that are used daily by decision makers, as well as news organizations in the region. The forecast products can be visualized in both two and three dimensional viewers such as Google Maps and Google Earth. Other viewers developed specifically for the Mesoamerican region by the University of Alabama in Huntsville and the Institute for the Application of Geospatial Technologies in Auburn New York can also be employed. In collaboration with the NASA Short Term Prediction Research and Transition (SpoRT) Center SERVIR utilizes the Weather Research and Forecast (WRF) model to produce short-term (24 hr) regional weather forecasts twice a day. Temperature, precipitation, wind, and other variables are forecast in 10km and 30km grids over the Mesoamerica region. Using the PSU/NCAR Mesoscale Model, known as MM5, SERVIR produces 48 hour- forecasts of soil temperature, two meter surface temperature, three hour accumulated precipitation, winds at different heights, and other variables. These are forecast hourly in 9km grids. Working in collaboration with the Atmospheric Science Department of the University of Alabama in Huntsville produces a suite of short-term (0-6 hour) weather prediction products are generated. These "convective initiation" products predict the onset of thunderstorm rainfall and lightning within a 1-hour timeframe. Models are also employed for long term predictions. The SERVIR project, under USAID funding, has developed comprehensive regional climate change scenarios of Mesoamerica for future years: 2010, 2015, 2025, 2050, and 2099. These scenarios were created using the Pennsylvania State University/National Center for Atmospheric Research (MM5) model and processed on the Oak Ridge National Laboratory Cheetah supercomputer. The goal of these Mesoamerican climate change scenarios is to better understand the regional climate, the major controls, and how it might be expected to change in the future. This presentation will present a summary of the model results and show the application of these data in preparation for and response to recent tropical storms.
NASA Astrophysics Data System (ADS)
Zavodsky, B.; Le Roy, A.; Smith, M. R.; Case, J.
2016-12-01
In support of NASA's recently launched GPM `core' satellite, the NASA-SPoRT project is leveraging experience in research-to-operations transitions and training to provide feedback on the operational utility of GPM products. Thus far, SPoRT has focused on evaluating the Level 2 GPROF passive microwave and IMERG rain rate estimates. Formal evaluations with end-users have occurred, as well as internal evaluations of the datasets. One set of end users for these products is National Weather Service Forecast Offices (WFOs) and National Weather Service River Forecast Centers (RFCs), comprising forecasters and hydrologists. SPoRT has hosted a series of formal assessments to determine uses and utility of these datasets for NWS operations at specific offices. Forecasters primarily have used Level 2 swath rain rates to observe rainfall in otherwise data-void regions and to confirm model QPF for their nowcasting or short-term forecasting. Hydrologists have been evaluating both the Level 2 rain rates and the IMERG rain rates, including rain rate accumulations derived from IMERG; hydrologists have used these data to supplement gauge data for post-event analysis as well as for longer-term forecasting. Results from specific evaluations will be presented. Another evaluation of the GPM passive microwave rain rates has been in using the data within other products that are currently transitioned to end-users, rather than as stand-alone observations. For example, IMERG Early data is being used as a forcing mechanism in the NASA Land Information System (LIS) for real-time soil moisture product over eastern Africa. IMERG is providing valuable precipitation information to LIS in an otherwise data-void region. Results and caveats will briefly be discussed. A third application of GPM data is using the IMERG Late and Final products for model verification in remote regions where high-quality gridded precipitation fields are not readily available. These datasets can now be used to verify NWP model forecasts over Eastern Africa using the SPoRT-MET scripts verification package, a wrapper around the NCAR Model Evaluation Toolkit (MET) verification software.
NASA Astrophysics Data System (ADS)
Turnbull, S. J.
2017-12-01
Within the US Army Corps of Engineers (USACE), reservoirs are typically operated according to a rule curve that specifies target water levels based on the time of year. The rule curve is intended to maximize flood protection by specifying releases of water before the dominant rainfall period for a region. While some operating allowances are permissible, generally the rule curve elevations must be maintained. While this operational approach provides for the required flood control purpose, it may not result in optimal reservoir operations for multi-use impoundments. In the Russian River Valley of California a multi-agency research effort called Forecast-Informed Reservoir Operations (FIRO) is assessing the application of forecast weather and streamflow predictions to potentially enhance the operation of reservoirs in the watershed. The focus of the study has been on Lake Mendocino, a USACE project important for flood control, water supply, power generation and ecological flows. As part of this effort the Engineer Research and Development Center is assessing the ability of utilizing the physics based, distributed watershed model Gridded Surface Subsurface Hydrologic Analysis (GSSHA) model to simulate stream flows, reservoir stages, and discharges while being driven by weather forecast products. A key question in this application is the effect of watershed model resolution on forecasted stream flows. To help resolve this question, GSSHA models of multiple grid resolutions, 30, 50, and 270m, were developed for the upper Russian River, which includes Lake Mendocino. The models were derived from common inputs: DEM, soils, land use, stream network, reservoir characteristics, and specified inflows and discharges. All the models were calibrated in both event and continuous simulation mode using measured precipitation gages and then driven with the West-WRF atmospheric model in prediction mode to assess the ability of the model to function in short term, less than one week, forecasting mode. In this presentation we will discuss the effect the grid resolution has model development, parameter assignment, streamflow prediction and forecasting capability utilizing the West-WRF forecast hydro-meteorology.
Transforming community access to space science models
NASA Astrophysics Data System (ADS)
MacNeice, Peter; Hesse, Michael; Kuznetsova, Maria; Maddox, Marlo; Rastaetter, Lutz; Berrios, David; Pulkkinen, Antti
2012-04-01
Researching and forecasting the ever changing space environment (often referred to as space weather) and its influence on humans and their activities are model-intensive disciplines. This is true because the physical processes involved are complex, but, in contrast to terrestrial weather, the supporting observations are typically sparse. Models play a vital role in establishing a physically meaningful context for interpreting limited observations, testing theory, and producing both nowcasts and forecasts. For example, with accurate forecasting of hazardous space weather conditions, spacecraft operators can place sensitive systems in safe modes, and power utilities can protect critical network components from damage caused by large currents induced in transmission lines by geomagnetic storms.
Transforming Community Access to Space Science Models
NASA Technical Reports Server (NTRS)
MacNeice, Peter; Heese, Michael; Kunetsova, Maria; Maddox, Marlo; Rastaetter, Lutz; Berrios, David; Pulkkinen, Antti
2012-01-01
Researching and forecasting the ever changing space environment (often referred to as space weather) and its influence on humans and their activities are model-intensive disciplines. This is true because the physical processes involved are complex, but, in contrast to terrestrial weather, the supporting observations are typically sparse. Models play a vital role in establishing a physically meaningful context for interpreting limited observations, testing theory, and producing both nowcasts and forecasts. For example, with accurate forecasting of hazardous space weather conditions, spacecraft operators can place sensitive systems in safe modes, and power utilities can protect critical network components from damage caused by large currents induced in transmission lines by geomagnetic storms.
Progress and challenges with Warn-on-Forecast
NASA Astrophysics Data System (ADS)
Stensrud, David J.; Wicker, Louis J.; Xue, Ming; Dawson, Daniel T.; Yussouf, Nusrat; Wheatley, Dustan M.; Thompson, Therese E.; Snook, Nathan A.; Smith, Travis M.; Schenkman, Alexander D.; Potvin, Corey K.; Mansell, Edward R.; Lei, Ting; Kuhlman, Kristin M.; Jung, Youngsun; Jones, Thomas A.; Gao, Jidong; Coniglio, Michael C.; Brooks, Harold E.; Brewster, Keith A.
2013-04-01
The current status and challenges associated with two aspects of Warn-on-Forecast-a National Oceanic and Atmospheric Administration research project exploring the use of a convective-scale ensemble analysis and forecast system to support hazardous weather warning operations-are outlined. These two project aspects are the production of a rapidly-updating assimilation system to incorporate data from multiple radars into a single analysis, and the ability of short-range ensemble forecasts of hazardous convective weather events to provide guidance that could be used to extend warning lead times for tornadoes, hailstorms, damaging windstorms and flash floods. Results indicate that a three-dimensional variational assimilation system, that blends observations from multiple radars into a single analysis, shows utility when evaluated by forecasters in the Hazardous Weather Testbed and may help increase confidence in a warning decision. The ability of short-range convective-scale ensemble forecasts to provide guidance that could be used in warning operations is explored for five events: two tornadic supercell thunderstorms, a macroburst, a damaging windstorm and a flash flood. Results show that the ensemble forecasts of the three individual severe thunderstorm events are very good, while the forecasts from the damaging windstorm and flash flood events, associated with mesoscale convective systems, are mixed. Important interactions between mesoscale and convective-scale features occur for the mesoscale convective system events that strongly influence the quality of the convective-scale forecasts. The development of a successful Warn-on-Forecast system will take many years and require the collaborative efforts of researchers and operational forecasters to succeed.
Sharma, Aditya; Hill, Andrew; Kurbatova, Ekaterina; van der Walt, Martie; Kvasnovsky, Charlotte; Tupasi, Thelma E; Caoili, Janice C; Gler, Maria Tarcela; Volchenkov, Grigory V; Kazennyy, Boris Y; Demikhova, Olga V; Bayona, Jaime; Contreras, Carmen; Yagui, Martin; Leimane, Vaira; Cho, Sang Nae; Kim, Hee Jin; Kliiman, Kai; Akksilp, Somsak; Jou, Ruwen; Ershova, Julia; Dalton, Tracy; Cegielski, Peter
2017-07-01
Multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis are emerging worldwide. The Green Light Committee initiative supported programmatic management of drug-resistant tuberculosis in 90 countries. We used estimates from the Preserving Effective TB Treatment Study to predict MDR and XDR tuberculosis trends in four countries with a high burden of MDR tuberculosis: India, the Philippines, Russia, and South Africa. We calibrated a compartmental model to data from drug resistance surveys and WHO tuberculosis reports to forecast estimates of incident MDR and XDR tuberculosis and the percentage of incident MDR and XDR tuberculosis caused by acquired drug resistance, assuming no fitness cost of resistance from 2000 to 2040 in India, the Philippines, Russia, and South Africa. The model forecasted the percentage of MDR tuberculosis among incident cases of tuberculosis to increase, reaching 12·4% (95% prediction interval 9·4-16·2) in India, 8·9% (4·5-11·7) in the Philippines, 32·5% (27·0-35·8) in Russia, and 5·7% (3·0-7·6) in South Africa in 2040. It also predicted the percentage of XDR tuberculosis among incident MDR tuberculosis to increase, reaching 8·9% (95% prediction interval 5·1-12·9) in India, 9·0% (4·0-14·7) in the Philippines, 9·0% (4·8-14·2) in Russia, and 8·5% (2·5-14·7) in South Africa in 2040. Acquired drug resistance would cause less than 30% of incident MDR tuberculosis during 2000-40. Acquired drug resistance caused 80% of incident XDR tuberculosis in 2000, but this estimate would decrease to less than 50% by 2040. MDR and XDR tuberculosis were forecast to increase in all four countries despite improvements in acquired drug resistance shown by the Green Light Committee-supported programmatic management of drug-resistant tuberculosis. Additional control efforts beyond improving acquired drug resistance rates are needed to stop the spread of MDR and XDR tuberculosis in countries with a high burden of MDR tuberculosis. US Agency for International Development and US Centers for Disease Control and Prevention, Division of Tuberculosis Elimination. Copyright © 2017 Elsevier Ltd. All rights reserved.
Jatau, Bolajoko; Avong, Yohanna; Ogundahunsi, Olumide; Shah, Safieh; Tayler Smith, Katherine; Van den Bergh, Rafael; Zachariah, Rony; van Griensven, Johan; Ekong, Ernest; Dakum, Patrick
2015-01-01
The World Health Organisation (WHO) introduced the twelve early warning indicators for monitoring and evaluating drug Procurement and Supply management (PSM) systems, intended to prevent drug stock-outs and overstocking. Nigeria--one of the high Multi Drug Resistant Tuberculosis (MDR-TB) burden countries, scaled-up treatment in 2012 with the concurrent implementation of a PSM system. We evaluated how well this system functioned using the WHO indicators, including all seven MDR-TB treatment centres in the country that were functional throughout 2013. The quantity of MDR-TB drugs ordered for 2013 matched the annual forecast and all central orders placed during the year were delivered in full and on time. Drug consumption was 81%-106% of the quantity allocated for routine consumption. Timely submission of complete inventory reports ranged from 86-100%, late submissions being 5-15 days late. Forty to 71% of treatment centres placed a drug order when stock was below the minimum level of three months. The proportion of drug orders received at the treatment centres in full and on time ranged from 29-80%, late orders being 1-19 days late. The PSM was found to be performing well in terms of forecasting and procurement of MDR-TB drugs, but there were shortcomings in drug distribution, reporting at treatment centre level and in drug order placements. Despite these gaps, there were no stock outs. These findings indicate that where it matters most, namely ensuring that no drug stock outs affect patient management, the PSM system is effective. Addressing the observed shortcomings will help to strengthen the existing PSM system in anticipation of a growing MDR-TB case burden in the country.
NASA Astrophysics Data System (ADS)
Gelfan, Alexander; Moreido, Vsevolod
2017-04-01
Ensemble hydrological forecasting allows for describing uncertainty caused by variability of meteorological conditions in the river basin for the forecast lead-time. At the same time, in snowmelt-dependent river basins another significant source of uncertainty relates to variability of initial conditions of the basin (snow water equivalent, soil moisture content, etc.) prior to forecast issue. Accurate long-term hydrological forecast is most crucial for large water management systems, such as the Cheboksary reservoir (the catchment area is 374 000 sq.km) located in the Middle Volga river in Russia. Accurate forecasts of water inflow volume, maximum discharge and other flow characteristics are of great value for this basin, especially before the beginning of the spring freshet season that lasts here from April to June. The semi-distributed hydrological model ECOMAG was used to develop long-term ensemble forecast of daily water inflow into the Cheboksary reservoir. To describe variability of the meteorological conditions and construct ensemble of possible weather scenarios for the lead-time of the forecast, two approaches were applied. The first one utilizes 50 weather scenarios observed in the previous years (similar to the ensemble streamflow prediction (ESP) procedure), the second one uses 1000 synthetic scenarios simulated by a stochastic weather generator. We investigated the evolution of forecast uncertainty reduction, expressed as forecast efficiency, over various consequent forecast issue dates and lead time. We analyzed the Nash-Sutcliffe efficiency of inflow hindcasts for the period 1982 to 2016 starting from 1st of March with 15 days frequency for lead-time of 1 to 6 months. This resulted in the forecast efficiency matrix with issue dates versus lead-time that allows for predictability identification of the basin. The matrix was constructed separately for observed and synthetic weather ensembles.
SSL Pricing and Efficacy Trend Analysis for Utility Program Planning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tuenge, J. R.
2013-10-01
Report to help utilities and energy efficiency organizations forecast the order in which important SSL applications will become cost-effective and estimate when each "tipping point" will be reached. Includes performance trend analysis from DOE's LED Lighting Facts® and CALiPER programs plus cost analysis from various sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolinger, Mark; Wiser, Ryan; Golove, William
2003-08-13
Against the backdrop of increasingly volatile natural gas prices, renewable energy resources, which by their nature are immune to natural gas fuel price risk, provide a real economic benefit. Unlike many contracts for natural gas-fired generation, renewable generation is typically sold under fixed-price contracts. Assuming that electricity consumers value long-term price stability, a utility or other retail electricity supplier that is looking to expand its resource portfolio (or a policymaker interested in evaluating different resource options) should therefore compare the cost of fixed-price renewable generation to the hedged or guaranteed cost of new natural gas-fired generation, rather than to projectedmore » costs based on uncertain gas price forecasts. To do otherwise would be to compare apples to oranges: by their nature, renewable resources carry no natural gas fuel price risk, and if the market values that attribute, then the most appropriate comparison is to the hedged cost of natural gas-fired generation. Nonetheless, utilities and others often compare the costs of renewable to gas-fired generation using as their fuel price input long-term gas price forecasts that are inherently uncertain, rather than long-term natural gas forward prices that can actually be locked in. This practice raises the critical question of how these two price streams compare. If they are similar, then one might conclude that forecast-based modeling and planning exercises are in fact approximating an apples-to-apples comparison, and no further consideration is necessary. If, however, natural gas forward prices systematically differ from price forecasts, then the use of such forecasts in planning and modeling exercises will yield results that are biased in favor of either renewable (if forwards < forecasts) or natural gas-fired generation (if forwards > forecasts). In this report we compare the cost of hedging natural gas price risk through traditional gas-based hedging instruments (e.g., futures, swaps, and fixed-price physical supply contracts) to contemporaneous forecasts of spot natural gas prices, with the purpose of identifying any systematic differences between the two. Although our data set is quite limited, we find that over the past three years, forward gas prices for durations of 2-10 years have been considerably higher than most natural gas spot price forecasts, including the reference case forecasts developed by the Energy Information Administration (EIA). This difference is striking, and implies that resource planning and modeling exercises based on these forecasts over the past three years have yielded results that are biased in favor of gas-fired generation (again, presuming that long-term stability is desirable). As discussed later, these findings have important ramifications for resource planners, energy modelers, and policy-makers.« less
Novel approach for streamflow forecasting using a hybrid ANFIS-FFA model
NASA Astrophysics Data System (ADS)
Yaseen, Zaher Mundher; Ebtehaj, Isa; Bonakdari, Hossein; Deo, Ravinesh C.; Danandeh Mehr, Ali; Mohtar, Wan Hanna Melini Wan; Diop, Lamine; El-shafie, Ahmed; Singh, Vijay P.
2017-11-01
The present study proposes a new hybrid evolutionary Adaptive Neuro-Fuzzy Inference Systems (ANFIS) approach for monthly streamflow forecasting. The proposed method is a novel combination of the ANFIS model with the firefly algorithm as an optimizer tool to construct a hybrid ANFIS-FFA model. The results of the ANFIS-FFA model is compared with the classical ANFIS model, which utilizes the fuzzy c-means (FCM) clustering method in the Fuzzy Inference Systems (FIS) generation. The historical monthly streamflow data for Pahang River, which is a major river system in Malaysia that characterized by highly stochastic hydrological patterns, is used in the study. Sixteen different input combinations with one to five time-lagged input variables are incorporated into the ANFIS-FFA and ANFIS models to consider the antecedent seasonal variations in historical streamflow data. The mean absolute error (MAE), root mean square error (RMSE) and correlation coefficient (r) are used to evaluate the forecasting performance of ANFIS-FFA model. In conjunction with these metrics, the refined Willmott's Index (Drefined), Nash-Sutcliffe coefficient (ENS) and Legates and McCabes Index (ELM) are also utilized as the normalized goodness-of-fit metrics. Comparison of the results reveals that the FFA is able to improve the forecasting accuracy of the hybrid ANFIS-FFA model (r = 1; RMSE = 0.984; MAE = 0.364; ENS = 1; ELM = 0.988; Drefined = 0.994) applied for the monthly streamflow forecasting in comparison with the traditional ANFIS model (r = 0.998; RMSE = 3.276; MAE = 1.553; ENS = 0.995; ELM = 0.950; Drefined = 0.975). The results also show that the ANFIS-FFA is not only superior to the ANFIS model but also exhibits a parsimonious modelling framework for streamflow forecasting by incorporating a smaller number of input variables required to yield the comparatively better performance. It is construed that the FFA optimizer can thus surpass the accuracy of the traditional ANFIS model in general, and is able to remove the false (inaccurately) forecasted data in the ANFIS model for extremely low flows. The present results have wider implications not only for streamflow forecasting purposes, but also for other hydro-meteorological forecasting variables requiring only the historical data input data, and attaining a greater level of predictive accuracy with the incorporation of the FFA algorithm as an optimization tool in an ANFIS model.
Short-term energy outlook, Annual supplement 1995
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-07-25
This supplement is published once a year as a complement to the Short- Term Energy Outlook, Quarterly Projections. The purpose of the Supplement is to review the accuracy of the forecasts published in the Outlook, make comparisons with other independent energy forecasts, and examine current energy topics that affect the forecasts. Chap. 2 analyzes the response of the US petroleum industry to the recent four Federal environmental rules on motor gasoline. Chap. 3 compares the EIA base or mid case energy projections for 1995 and 1996 (as published in the first quarter 1995 Outlook) with recent projections made by fourmore » other major forecasting groups. Chap. 4 evaluates the overall accuracy. Chap. 5 presents the methology used in the Short- Term Integrated Forecasting Model for oxygenate supply/demand balances. Chap. 6 reports theoretical and empirical results from a study of non-transportation energy demand by sector. The empirical analysis involves the short-run energy demand in the residential, commercial, industrial, and electrical utility sectors in US.« less
NASA Astrophysics Data System (ADS)
Ángel Prósper Fernández, Miguel; Casal, Carlos Otero; Canoura Fernández, Felipe; Miguez-Macho, Gonzalo
2017-04-01
Regional meteorological models are becoming a generalized tool for forecasting wind resource, due to their capacity to simulate local flow dynamics impacting wind farm production. This study focuses on the production forecast and validation of a real onshore wind farm using high horizontal and vertical resolution WRF (Weather Research and Forecasting) model simulations. The wind farm is located in Galicia, in the northwest of Spain, in a complex terrain region with high wind resource. Utilizing the Fitch scheme, specific for wind farms, a period of one year is simulated with a daily operational forecasting set-up. Power and wind predictions are obtained and compared with real data provided by the management company. Results show that WRF is able to yield good wind power operational predictions for this kind of wind farms, due to a good representation of the planetary boundary layer behaviour of the region and the good performance of the Fitch scheme under these conditions.
NASA Astrophysics Data System (ADS)
Maslova, I.; Ticlavilca, A. M.; McKee, M.
2012-12-01
There has been an increased interest in wavelet-based streamflow forecasting models in recent years. Often overlooked in this approach are the circularity assumptions of the wavelet transform. We propose a novel technique for minimizing the wavelet decomposition boundary condition effect to produce long-term, up to 12 months ahead, forecasts of streamflow. A simulation study is performed to evaluate the effects of different wavelet boundary rules using synthetic and real streamflow data. A hybrid wavelet-multivariate relevance vector machine model is developed for forecasting the streamflow in real-time for Yellowstone River, Uinta Basin, Utah, USA. The inputs of the model utilize only the past monthly streamflow records. They are decomposed into components formulated in terms of wavelet multiresolution analysis. It is shown that the model model accuracy can be increased by using the wavelet boundary rule introduced in this study. This long-term streamflow modeling and forecasting methodology would enable better decision-making and managing water availability risk.
Integrating Solar PV in Utility System Operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mills, A.; Botterud, A.; Wu, J.
2013-10-31
This study develops a systematic framework for estimating the increase in operating costs due to uncertainty and variability in renewable resources, uses the framework to quantify the integration costs associated with sub-hourly solar power variability and uncertainty, and shows how changes in system operations may affect these costs. Toward this end, we present a statistical method for estimating the required balancing reserves to maintain system reliability along with a model for commitment and dispatch of the portfolio of thermal and renewable resources at different stages of system operations. We estimate the costs of sub-hourly solar variability, short-term forecast errors, andmore » day-ahead (DA) forecast errors as the difference in production costs between a case with “realistic” PV (i.e., subhourly solar variability and uncertainty are fully included in the modeling) and a case with “well behaved” PV (i.e., PV is assumed to have no sub-hourly variability and can be perfectly forecasted). In addition, we highlight current practices that allow utilities to compensate for the issues encountered at the sub-hourly time frame with increased levels of PV penetration. In this analysis we use the analytical framework to simulate utility operations with increasing deployment of PV in a case study of Arizona Public Service Company (APS), a utility in the southwestern United States. In our analysis, we focus on three processes that are important in understanding the management of PV variability and uncertainty in power system operations. First, we represent the decisions made the day before the operating day through a DA commitment model that relies on imperfect DA forecasts of load and wind as well as PV generation. Second, we represent the decisions made by schedulers in the operating day through hour-ahead (HA) scheduling. Peaking units can be committed or decommitted in the HA schedules and online units can be redispatched using forecasts that are improved relative to DA forecasts, but still imperfect. Finally, we represent decisions within the operating hour by schedulers and transmission system operators as real-time (RT) balancing. We simulate the DA and HA scheduling processes with a detailed unit-commitment (UC) and economic dispatch (ED) optimization model. This model creates a least-cost dispatch and commitment plan for the conventional generating units using forecasts and reserve requirements as inputs. We consider only the generation units and load of the utility in this analysis; we do not consider opportunities to trade power with neighboring utilities. We also do not consider provision of reserves from renewables or from demand-side options. We estimate dynamic reserve requirements in order to meet reliability requirements in the RT operations, considering the uncertainty and variability in load, solar PV, and wind resources. Balancing reserve requirements are based on the 2.5th and 97.5th percentile of 1-min deviations from the HA schedule in a previous year. We then simulate RT deployment of balancing reserves using a separate minute-by-minute simulation of deviations from the HA schedules in the operating year. In the simulations we assume that balancing reserves can be fully deployed in 10 min. The minute-by-minute deviations account for HA forecasting errors and the actual variability of the load, wind, and solar generation. Using these minute-by-minute deviations and deployment of balancing reserves, we evaluate the impact of PV on system reliability through the calculation of the standard reliability metric called Control Performance Standard 2 (CPS2). Broadly speaking, the CPS2 score measures the percentage of 10-min periods in which a balancing area is able to balance supply and demand within a specific threshold. Compliance with the North American Electric Reliability Corporation (NERC) reliability standards requires that the CPS2 score must exceed 90% (i.e., the balancing area must maintain adequate balance for 90% of the 10-min periods). The combination of representing DA forecast errors in the DA commitments, using 1-min PV data to simulate RT balancing, and estimates of reliability performance through the CPS2 metric, all factors that are important to operating systems with increasing amounts of PV, makes this study unique in its scope.« less
An Early Prediction of Sunspot Cycle 25
NASA Astrophysics Data System (ADS)
Nandy, D.; Bhowmik, P.
2017-12-01
The Sun's magnetic activity governs our space environment, creates space weather and impacts our technologies and climate. With increasing reliance on space- and ground-based technologies that are subject to space weather, the need to be able to forecast the future activity of the Sun has assumed increasing importance. However, such long-range, decadal-scale space weather prediction has remained a great challenge as evident in the diverging forecasts for solar cycle 24. Based on recently acquired understanding of the physics of solar cycle predictability, we have devised a scheme to extend the forecasting window of solar cycles. Utilizing this we present an early forecast for sunspot cycle 25 which would be of use for space mission planning, satellite life-time estimates, and assessment of the long-term impacts of space weather on technological assets and planetary atmospheres.
Improving Weather Research and Forecasting Model Initial Conditions via Surface Pressure Analysis
2015-09-01
Obsgrid) that creates input data for the Advanced Research version of the Weather Research and Forecasting model ( WRF -ARW) is modified to perform a...surface pressure objective analysis to allow surface analyses of other fields to be more fully utilized in the WRF -ARW initial conditions. Nested 27-, 9...of surface pressure unnecessarily limits the application of other surface analyses into the WRF initial conditions and contributes to the creation of
Visualizing and Integrating AFSCN Utilization into a Common Operational Picture
NASA Astrophysics Data System (ADS)
Hays, B.; Carlile, A.; Mitchell, T.
The Department of Defense (DoD) and the 50th Space Network Operations Group Studies and Analysis branch (50th SCS/SCXI), located at Schriever AFB Colorado, face the unique challenge of forecasting the expected near term and future utilization of the Air Force Satellite Control Network (AFSCN). The forecasting timeframe covers the planned load from the current date to ten years out. The various satellite missions, satellite requirements, orbital regions, and ground architecture dynamics provide the model inputs and constraints that are used in generating the forecasted load. The AFSCN is the largest network the Air Force uses to control satellites worldwide. Each day, network personnel perform over 500 scheduled events-from satellite maneuvers to critical data downloads. The Forecasting Objective is to provide leadership with the insights necessary to manage the network today and tomorrow. For both today's needs and future needs, SCXI develops AFSCN utilization forecasts to optimize the ground system's coverage and capacity to meet user satellite requirements. SCXI also performs satellite program specific studies to determine network support feasibility. STK and STK Scheduler form the core of the tools used by SCXI. To establish this tool suite, we had to evaluate, evolve, and validate both the COTS products and our own developed code and processes. This began with calibrating the network model to emulate the real life scheduling environment of the AFSCN. Multiple STK Scheduler optimizing (de-confliction) algorithms, including Multi-Pass, Sequential, Random, and Neural, were evaluated and adjusted to determine applicability to the model and the accuracy of the prediction. Additionally, the scheduling Figure of Merit (FOM), which permits custom weighting of various parameters, was analyzed and tested to achieve the most accurate real life result. With the inherent capabilities of STK and the ability to wrap and automate output, SCXI is now able to visually communicate satellite loads in a manner never seen before in AFSCN management meetings. Scenarios such as regional antenna load stress, satellite missed opportunities, and the overall network "big picture" can be visually displayed in 3D versus the textual and line graph methods used for many years. This is the first step towards an integrated space awareness picture with an operational focus. SCXI is working on taking the visual forecast concept farther and begin fusing multiple sources of data to build a 50 SW Common Operating Picture (COP). The vision is to integrate more effective orbital determination processes, resource outages, current and forecasted satellite mission requirements, and future architectural changes into a real-time visual status to enable quick and responsive decisions. This COP would be utilized in a Wing Operations Center to provide up to the minute network status on where satellites are, which ground resources are in contact with them, and what resources are down. The ability to quickly absorb and process this data will enhance decision analysis and save valuable time in both day to day operations and wartime scenarios.
Estimating the budget impact of orphan drugs in Sweden and France 2013–2020
2014-01-01
Background The growth in expenditure on orphan medicinal products (OMP) across Europe has been identified as a concern. Estimates of future expenditure in Europe have suggested that OMPs could account for a significant proportion of total pharmaceutical expenditure in some countries, but few of these forecasts have been well validated. This analysis aims to establish a robust forecast of the future budget impact of OMPs on the healthcare systems in Sweden and France. Methods A dynamic forecasting model was created to estimate the budget impact of OMPs in Sweden and France between 2013 and 2020. The model used historical data on OMP designation and approval rates to predict the number of new OMPs coming to the market. Average OMP sales were estimated for each year post-launch by regression analysis of historical sales data. Total forecast sales were compared with expected sales of all pharmaceuticals in each country to quantify the relative budget impact. Results The model predicts that by 2020, 152 OMPs will have marketing authorization in Europe. The base case OMP budget impacts are forecast to grow from 2.7% in Sweden and 3.2% in France of total drug expenditure in 2013 to 4.1% in Sweden and 4.9% in France by 2020. The principal driver of expenditure growth is the number of new OMPs obtaining OMP designation. This is tempered by the slowing success rate for new approvals and the loss of intellectual property protection on existing orphan medicines. Given the forward-looking nature of the analysis, uncertainty exists around model parameters and sensitivity analysis found peak year budget impact varying between 2% and 11%. Conclusion The budget impact of OMPs in Sweden and France is likely to remain sustainable over time and a relatively small proportion of total pharmaceutical expenditure. This forecast could be affected by changes in the success rate for OMP approvals, average cost of OMPs, and the type of companies developing OMPs. PMID:24524281
Estimating the budget impact of orphan drugs in Sweden and France 2013-2020.
Hutchings, Adam; Schey, Carina; Dutton, Richard; Achana, Felix; Antonov, Karolina
2014-02-13
The growth in expenditure on orphan medicinal products (OMP) across Europe has been identified as a concern. Estimates of future expenditure in Europe have suggested that OMPs could account for a significant proportion of total pharmaceutical expenditure in some countries, but few of these forecasts have been well validated. This analysis aims to establish a robust forecast of the future budget impact of OMPs on the healthcare systems in Sweden and France. A dynamic forecasting model was created to estimate the budget impact of OMPs in Sweden and France between 2013 and 2020. The model used historical data on OMP designation and approval rates to predict the number of new OMPs coming to the market. Average OMP sales were estimated for each year post-launch by regression analysis of historical sales data. Total forecast sales were compared with expected sales of all pharmaceuticals in each country to quantify the relative budget impact. The model predicts that by 2020, 152 OMPs will have marketing authorization in Europe. The base case OMP budget impacts are forecast to grow from 2.7% in Sweden and 3.2% in France of total drug expenditure in 2013 to 4.1% in Sweden and 4.9% in France by 2020. The principal driver of expenditure growth is the number of new OMPs obtaining OMP designation. This is tempered by the slowing success rate for new approvals and the loss of intellectual property protection on existing orphan medicines. Given the forward-looking nature of the analysis, uncertainty exists around model parameters and sensitivity analysis found peak year budget impact varying between 2% and 11%. The budget impact of OMPs in Sweden and France is likely to remain sustainable over time and a relatively small proportion of total pharmaceutical expenditure. This forecast could be affected by changes in the success rate for OMP approvals, average cost of OMPs, and the type of companies developing OMPs.
Utilization of Model Predictive Control to Balance Power Absorption Against Load Accumulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abbas, Nikhar; Tom, Nathan M
2017-06-03
Wave energy converter (WEC) control strategies have been primarily focused on maximizing power absorption. The use of model predictive control strategies allows for a finite-horizon, multiterm objective function to be solved. This work utilizes a multiterm objective function to maximize power absorption while minimizing the structural loads on the WEC system. Furthermore, a Kalman filter and autoregressive model were used to estimate and forecast the wave exciting force and predict the future dynamics of the WEC. The WEC's power-take-off time-averaged power and structural loads under a perfect forecast assumption in irregular waves were compared against results obtained from the Kalmanmore » filter and autoregressive model to evaluate model predictive control performance.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abbas, Nikhar; Tom, Nathan
Wave energy converter (WEC) control strategies have been primarily focused on maximizing power absorption. The use of model predictive control strategies allows for a finite-horizon, multiterm objective function to be solved. This work utilizes a multiterm objective function to maximize power absorption while minimizing the structural loads on the WEC system. Furthermore, a Kalman filter and autoregressive model were used to estimate and forecast the wave exciting force and predict the future dynamics of the WEC. The WEC's power-take-off time-averaged power and structural loads under a perfect forecast assumption in irregular waves were compared against results obtained from the Kalmanmore » filter and autoregressive model to evaluate model predictive control performance.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freedman, Jeffrey M.; Manobianco, John; Schroeder, John
This Final Report presents a comprehensive description, findings, and conclusions for the Wind Forecast Improvement Project (WFIP) -- Southern Study Area (SSA) work led by AWS Truepower (AWST). This multi-year effort, sponsored by the Department of Energy (DOE) and National Oceanographic and Atmospheric Administration (NOAA), focused on improving short-term (15-minute - 6 hour) wind power production forecasts through the deployment of an enhanced observation network of surface and remote sensing instrumentation and the use of a state-of-the-art forecast modeling system. Key findings from the SSA modeling and forecast effort include: 1. The AWST WFIP modeling system produced an overall 10more » - 20% improvement in wind power production forecasts over the existing Baseline system, especially during the first three forecast hours; 2. Improvements in ramp forecast skill, particularly for larger up and down ramps; 3. The AWST WFIP data denial experiments showed mixed results in the forecasts incorporating the experimental network instrumentation; however, ramp forecasts showed significant benefit from the additional observations, indicating that the enhanced observations were key to the model systems’ ability to capture phenomena responsible for producing large short-term excursions in power production; 4. The OU CAPS ARPS simulations showed that the additional WFIP instrument data had a small impact on their 3-km forecasts that lasted for the first 5-6 hours, and increasing the vertical model resolution in the boundary layer had a greater impact, also in the first 5 hours; and 5. The TTU simulations were inconclusive as to which assimilation scheme (3DVAR versus EnKF) provided better forecasts, and the additional observations resulted in some improvement to the forecasts in the first 1 - 3 hours.« less
Bessa, Ricardo; Möhrlen, Corinna; Fundel, Vanessa; ...
2017-09-14
Around the world wind energy is starting to become a major energy provider in electricity markets, as well as participating in ancillary services markets to help maintain grid stability. The reliability of system operations and smooth integration of wind energy into electricity markets has been strongly supported by years of improvement in weather and wind power forecasting systems. Deterministic forecasts are still predominant in utility practice although truly optimal decisions and risk hedging are only possible with the adoption of uncertainty forecasts. One of the main barriers for the industrial adoption of uncertainty forecasts is the lack of understanding ofmore » its information content (e.g., its physical and statistical modeling) and standardization of uncertainty forecast products, which frequently leads to mistrust towards uncertainty forecasts and their applicability in practice. Our paper aims at improving this understanding by establishing a common terminology and reviewing the methods to determine, estimate, and communicate the uncertainty in weather and wind power forecasts. This conceptual analysis of the state of the art highlights that: (i) end-users should start to look at the forecast's properties in order to map different uncertainty representations to specific wind energy-related user requirements; (ii) a multidisciplinary team is required to foster the integration of stochastic methods in the industry sector. Furthermore, a set of recommendations for standardization and improved training of operators are provided along with examples of best practices.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bessa, Ricardo; Möhrlen, Corinna; Fundel, Vanessa
Around the world wind energy is starting to become a major energy provider in electricity markets, as well as participating in ancillary services markets to help maintain grid stability. The reliability of system operations and smooth integration of wind energy into electricity markets has been strongly supported by years of improvement in weather and wind power forecasting systems. Deterministic forecasts are still predominant in utility practice although truly optimal decisions and risk hedging are only possible with the adoption of uncertainty forecasts. One of the main barriers for the industrial adoption of uncertainty forecasts is the lack of understanding ofmore » its information content (e.g., its physical and statistical modeling) and standardization of uncertainty forecast products, which frequently leads to mistrust towards uncertainty forecasts and their applicability in practice. Our paper aims at improving this understanding by establishing a common terminology and reviewing the methods to determine, estimate, and communicate the uncertainty in weather and wind power forecasts. This conceptual analysis of the state of the art highlights that: (i) end-users should start to look at the forecast's properties in order to map different uncertainty representations to specific wind energy-related user requirements; (ii) a multidisciplinary team is required to foster the integration of stochastic methods in the industry sector. Furthermore, a set of recommendations for standardization and improved training of operators are provided along with examples of best practices.« less
Buitrago, Jaime; Asfour, Shihab
2017-01-01
Short-term load forecasting is crucial for the operations planning of an electrical grid. Forecasting the next 24 h of electrical load in a grid allows operators to plan and optimize their resources. The purpose of this study is to develop a more accurate short-term load forecasting method utilizing non-linear autoregressive artificial neural networks (ANN) with exogenous multi-variable input (NARX). The proposed implementation of the network is new: the neural network is trained in open-loop using actual load and weather data, and then, the network is placed in closed-loop to generate a forecast using the predicted load as the feedback input.more » Unlike the existing short-term load forecasting methods using ANNs, the proposed method uses its own output as the input in order to improve the accuracy, thus effectively implementing a feedback loop for the load, making it less dependent on external data. Using the proposed framework, mean absolute percent errors in the forecast in the order of 1% have been achieved, which is a 30% improvement on the average error using feedforward ANNs, ARMAX and state space methods, which can result in large savings by avoiding commissioning of unnecessary power plants. Finally, the New England electrical load data are used to train and validate the forecast prediction.« less
Experiments with a three-dimensional statistical objective analysis scheme using FGGE data
NASA Technical Reports Server (NTRS)
Baker, Wayman E.; Bloom, Stephen C.; Woollen, John S.; Nestler, Mark S.; Brin, Eugenia
1987-01-01
A three-dimensional (3D), multivariate, statistical objective analysis scheme (referred to as optimum interpolation or OI) has been developed for use in numerical weather prediction studies with the FGGE data. Some novel aspects of the present scheme include: (1) a multivariate surface analysis over the oceans, which employs an Ekman balance instead of the usual geostrophic relationship, to model the pressure-wind error cross correlations, and (2) the capability to use an error correlation function which is geographically dependent. A series of 4-day data assimilation experiments are conducted to examine the importance of some of the key features of the OI in terms of their effects on forecast skill, as well as to compare the forecast skill using the OI with that utilizing a successive correction method (SCM) of analysis developed earlier. For the three cases examined, the forecast skill is found to be rather insensitive to varying the error correlation function geographically. However, significant differences are noted between forecasts from a two-dimensional (2D) version of the OI and those from the 3D OI, with the 3D OI forecasts exhibiting better forecast skill. The 3D OI forecasts are also more accurate than those from the SCM initial conditions. The 3D OI with the multivariate oceanic surface analysis was found to produce forecasts which were slightly more accurate, on the average, than a univariate version.
Forecast Inaccuracies in Power Plant Projects From Project Managers' Perspectives
NASA Astrophysics Data System (ADS)
Sanabria, Orlando
Guided by organizational theory, this phenomenological study explored the factors affecting forecast preparation and inaccuracies during the construction of fossil fuel-fired power plants in the United States. Forecast inaccuracies can create financial stress and uncertain profits during the project construction phase. A combination of purposeful and snowball sampling supported the selection of participants. Twenty project managers with over 15 years of experience in power generation and project experience across the United States were interviewed within a 2-month period. From the inductive codification and descriptive analysis, 5 themes emerged: (a) project monitoring, (b) cost control, (c) management review frequency, (d) factors to achieve a precise forecast, and (e) factors causing forecast inaccuracies. The findings of the study showed the factors necessary to achieve a precise forecast includes a detailed project schedule, accurate labor cost estimates, monthly project reviews and risk assessment, and proper utilization of accounting systems to monitor costs. The primary factors reported as causing forecast inaccuracies were cost overruns by subcontractors, scope gaps, labor cost and availability of labor, and equipment and material cost. Results of this study could improve planning accuracy and the effective use of resources during construction of power plants. The study results could contribute to social change by providing a framework to project managers to lessen forecast inaccuracies, and promote construction of power plants that will generate employment opportunities and economic development.
A novel hybrid forecasting model for PM₁₀ and SO₂ daily concentrations.
Wang, Ping; Liu, Yong; Qin, Zuodong; Zhang, Guisheng
2015-02-01
Air-quality forecasting in urban areas is difficult because of the uncertainties in describing both the emission and meteorological fields. The use of incomplete information in the training phase restricts practical air-quality forecasting. In this paper, we propose a hybrid artificial neural network and a hybrid support vector machine, which effectively enhance the forecasting accuracy of an artificial neural network (ANN) and support vector machine (SVM) by revising the error term of the traditional methods. The hybrid methodology can be described in two stages. First, we applied the ANN or SVM forecasting system with historical data and exogenous parameters, such as meteorological variables. Then, the forecasting target was revised by the Taylor expansion forecasting model using the residual information of the error term in the previous stage. The innovation involved in this approach is that it sufficiently and validly utilizes the useful residual information on an incomplete input variable condition. The proposed method was evaluated by experiments using a 2-year dataset of daily PM₁₀ (particles with a diameter of 10 μm or less) concentrations and SO₂ (sulfur dioxide) concentrations from four air pollution monitoring stations located in Taiyuan, China. The theoretical analysis and experimental results demonstrated that the forecasting accuracy of the proposed model is very promising. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buitrago, Jaime; Asfour, Shihab
Short-term load forecasting is crucial for the operations planning of an electrical grid. Forecasting the next 24 h of electrical load in a grid allows operators to plan and optimize their resources. The purpose of this study is to develop a more accurate short-term load forecasting method utilizing non-linear autoregressive artificial neural networks (ANN) with exogenous multi-variable input (NARX). The proposed implementation of the network is new: the neural network is trained in open-loop using actual load and weather data, and then, the network is placed in closed-loop to generate a forecast using the predicted load as the feedback input.more » Unlike the existing short-term load forecasting methods using ANNs, the proposed method uses its own output as the input in order to improve the accuracy, thus effectively implementing a feedback loop for the load, making it less dependent on external data. Using the proposed framework, mean absolute percent errors in the forecast in the order of 1% have been achieved, which is a 30% improvement on the average error using feedforward ANNs, ARMAX and state space methods, which can result in large savings by avoiding commissioning of unnecessary power plants. Finally, the New England electrical load data are used to train and validate the forecast prediction.« less
NASA Astrophysics Data System (ADS)
Herman, J. D.; Steinschneider, S.; Nayak, M. A.
2017-12-01
Short-term weather forecasts are not codified into the operating policies of federal, multi-purpose reservoirs, despite their potential to improve service provision. This is particularly true for facilities that provide flood protection and water supply, since the potential flood damages are often too severe to accept the risk of inaccurate forecasts. Instead, operators must maintain empty storage capacity to mitigate flood risk, even if the system is currently in drought, as occurred in California from 2012-2016. This study investigates the potential for forecast-informed operating rules to improve water supply efficiency while maintaining flood protection, combining state-of-the-art weather hindcasts with a novel tree-based policy optimization framework. We hypothesize that forecasts need only accurately predict the occurrence of a storm, rather than its intensity, to be effective in regions like California where wintertime, synoptic-scale storms dominate the flood regime. We also investigate the potential for downstream groundwater injection to improve the utility of forecasts. These hypotheses are tested in a case study of Folsom Reservoir on the American River. Because available weather hindcasts are relatively short (10-20 years), we propose a new statistical framework to develop synthetic forecasts to assess the risk associated with inaccurate forecasts. The efficiency of operating policies is tested across a range of scenarios that include varying forecast skill and additional groundwater pumping capacity. Results suggest that the combined use of groundwater storage and short-term weather forecasts can substantially improve the tradeoff between water supply and flood control objectives in large, multi-purpose reservoirs in California.
Eser, Alexander; Primas, Christian; Reinisch, Sieglinde; Vogelsang, Harald; Novacek, Gottfried; Mould, Diane R; Reinisch, Walter
2018-01-30
Despite a robust exposure-response relationship of infliximab in inflammatory bowel disease (IBD), attempts to adjust dosing to individually predicted serum concentrations of infliximab (SICs) are lacking. Compared with labor-intensive conventional software for pharmacokinetic (PK) modeling (eg, NONMEM) dashboards are easy-to-use programs incorporating complex Bayesian statistics to determine individual pharmacokinetics. We evaluated various infliximab detection assays and the number of samples needed to precisely forecast individual SICs using a Bayesian dashboard. We assessed long-term infliximab retention in patients being dosed concordantly versus discordantly with Bayesian dashboard recommendations. Three hundred eighty-two serum samples from 117 adult IBD patients on infliximab maintenance therapy were analyzed by 3 commercially available assays. Data from each assay was modeled using NONMEM and a Bayesian dashboard. PK parameter precision and residual variability were assessed. Forecast concentrations from both systems were compared with observed concentrations. Infliximab retention was assessed by prediction for dose intensification via Bayesian dashboard versus real-life practice. Forecast precision of SICs varied between detection assays. At least 3 SICs from a reliable assay are needed for an accurate forecast. The Bayesian dashboard performed similarly to NONMEM to predict SICs. Patients dosed concordantly with Bayesian dashboard recommendations had a significantly longer median drug survival than those dosed discordantly (51.5 versus 4.6 months, P < .0001). The Bayesian dashboard helps to assess the diagnostic performance of infliximab detection assays. Three, not single, SICs provide sufficient information for individualized dose adjustment when incorporated into the Bayesian dashboard. Treatment adjusted to forecasted SICs is associated with longer drug retention of infliximab. © 2018, The American College of Clinical Pharmacology.
Integrated Forecast-Decision Systems For River Basin Planning and Management
NASA Astrophysics Data System (ADS)
Georgakakos, A. P.
2005-12-01
A central application of climatology, meteorology, and hydrology is the generation of reliable forecasts for water resources management. In principle, effective use of forecasts could improve water resources management by providing extra protection against floods, mitigating the adverse effects of droughts, generating more hydropower, facilitating recreational activities, and minimizing the impacts of extreme events on the environment and the ecosystems. In practice, however, realization of these benefits depends on three requisite elements. First is the skill and reliability of forecasts. Second is the existence of decision support methods/systems with the ability to properly utilize forecast information. And third is the capacity of the institutional infrastructure to incorporate the information provided by the decision support systems into the decision making processes. This presentation discusses several decision support systems (DSS) using ensemble forecasting that have been developed by the Georgia Water Resources Institute for river basin management. These DSS are currently operational in Africa, Europe, and the US and address integrated water resources and energy planning and management in river basins with multiple water uses, multiple relevant temporal and spatial scales, and multiple decision makers. The article discusses the methods used and advocates that the design, development, and implementation of effective forecast-decision support systems must bring together disciplines, people, and institutions necessary to address today's complex water resources challenges.
NASA Astrophysics Data System (ADS)
Mohite, A. R.; Beria, H.; Behera, A. K.; Chatterjee, C.; Singh, R.
2016-12-01
Flood forecasting using hydrological models is an important and cost-effective non-structural flood management measure. For forecasting at short lead times, empirical models using real-time precipitation estimates have proven to be reliable. However, their skill depreciates with increasing lead time. Coupling a hydrologic model with real-time rainfall forecasts issued from numerical weather prediction (NWP) systems could increase the lead time substantially. In this study, we compared 1-5 days precipitation forecasts from India Meteorological Department (IMD) Multi-Model Ensemble (MME) with European Center for Medium Weather forecast (ECMWF) NWP forecasts for over 86 major river basins in India. We then evaluated the hydrologic utility of these forecasts over Basantpur catchment (approx. 59,000 km2) of the Mahanadi River basin. Coupled MIKE 11 RR (NAM) and MIKE 11 hydrodynamic (HD) models were used for the development of flood forecast system (FFS). RR model was calibrated using IMD station rainfall data. Cross-sections extracted from SRTM 30 were used as input to the MIKE 11 HD model. IMD started issuing operational MME forecasts from the year 2008, and hence, both the statistical and hydrologic evaluation were carried out from 2008-2014. The performance of FFS was evaluated using both the NWP datasets separately for the year 2011, which was a large flood year in Mahanadi River basin. We will present figures and metrics for statistical (threshold based statistics, skill in terms of correlation and bias) and hydrologic (Nash Sutcliffe efficiency, mean and peak error statistics) evaluation. The statistical evaluation will be at pan-India scale for all the major river basins and the hydrologic evaluation will be for the Basantpur catchment of the Mahanadi River basin.
From Research to Operations: Transitioning Noaa's Lake Erie Harmful Algal Bloom Forecast System
NASA Astrophysics Data System (ADS)
Kavanaugh, K. E.; Stumpf, R. P.
2016-02-01
A key priority of NOAA's Harmful Algal Bloom Operational Forecast System (HAB-OFS) is to leverage the Ecological Forecasting Roadmap to systematically transition to operations scientifically mature HAB forecasts in regions of the country where there is a strong user need identified and an operational framework can be supported. While in the demonstration phase, the Lake Erie HAB forecast has proven its utility. Over the next two years, NOAA will be transitioning the Lake Erie HAB forecast to operations with an initial operating capability established in the HAB OFS' operational infrastructure by the 2016 bloom season. Blooms of cyanobacteria are a recurring problem in Lake Erie, and the dominant bloom forming species, Microcystis aeruginosa, produces a toxin called microcystin that is poisonous to humans, livestock and pets. Once the toxins have contaminated the source water used for drinking water, it is costly for public water suppliers to remove them. As part of the Lake Erie HAB forecast demonstration, NOAA has provided information regarding the cyanobacterial blooms in a biweekly Experimental HAB Bulletin, which includes information about the current and forecasted distribution, toxicity, potential for vertical mixing or scum formation, mixing of the water column, and predictions of bloom decline. Coastal resource managers, public water suppliers and public health officials use the Experimental HAB Bulletins to respond to and mitigate the impacts of cyanobacterial blooms. The transition to operations will benefit stakeholders through ensuring that future Lake Erie HAB forecast products are sustained, systematic, reliable, and robust. Once operational, the forecasts will continue to be assessed and improvements will be made based on the results of emerging scientific research. In addition, the lessons learned from the Lake Erie transition will be used to streamline the process for future HAB forecasts presently in development.
Simulation studies of the application of SEASAT data in weather and state of sea forecasting models
NASA Technical Reports Server (NTRS)
Cardone, V. J.; Greenwood, J. A.
1979-01-01
The design and analysis of SEASAT simulation studies in which the error structure of conventional analyses and forecasts is modeled realistically are presented. The development and computer implementation of a global spectral ocean wave model is described. The design of algorithms for the assimilation of theoretical wind data into computers and for the utilization of real wind data and wave height data in a coupled computer system are presented.
Comparative verification between GEM model and official aviation terminal forecasts
NASA Technical Reports Server (NTRS)
Miller, Robert G.
1988-01-01
The Generalized Exponential Markov (GEM) model uses the local standard airways observation (SAO) to predict hour-by-hour the following elements: temperature, pressure, dew point depression, first and second cloud-layer height and amount, ceiling, total cloud amount, visibility, wind, and present weather conditions. GEM is superior to persistence at all projections for all elements in a large independent sample. A minute-by-minute GEM forecasting system utilizing the Automated Weather Observation System (AWOS) is under development.
A hybrid wavelet transform based short-term wind speed forecasting approach.
Wang, Jujie
2014-01-01
It is important to improve the accuracy of wind speed forecasting for wind parks management and wind power utilization. In this paper, a novel hybrid approach known as WTT-TNN is proposed for wind speed forecasting. In the first step of the approach, a wavelet transform technique (WTT) is used to decompose wind speed into an approximate scale and several detailed scales. In the second step, a two-hidden-layer neural network (TNN) is used to predict both approximated scale and detailed scales, respectively. In order to find the optimal network architecture, the partial autocorrelation function is adopted to determine the number of neurons in the input layer, and an experimental simulation is made to determine the number of neurons within each hidden layer in the modeling process of TNN. Afterwards, the final prediction value can be obtained by the sum of these prediction results. In this study, a WTT is employed to extract these different patterns of the wind speed and make it easier for forecasting. To evaluate the performance of the proposed approach, it is applied to forecast Hexi Corridor of China's wind speed. Simulation results in four different cases show that the proposed method increases wind speed forecasting accuracy.
Use of High-resolution WRF Simulations to Forecast Lightning Threat
NASA Technical Reports Server (NTRS)
McCaul, William E.; LaCasse, K.; Goodman, S. J.
2006-01-01
Recent observational studies have confirmed the existence of a robust statistical relationship between lightning flash rates and the amount of large precipitating ice hydrometeors in storms. This relationship is exploited, in conjunction with the capabilities of recent forecast models such as WRF, to forecast the threat of lightning from convective storms using the output fields from the model forecasts. The simulated vertical flux of graupel at -15C is used in this study as a proxy for charge separation processes and their associated lightning risk. Six-h simulations are conducted for a number of case studies for which three-dimensional lightning validation data from the North Alabama Lightning Mapping Array are available. Experiments indicate that initialization of the WRF model on a 2 km grid using Eta boundary conditions, Doppler radar radial velocity and reflectivity fields, and METAR and ACARS data yield the most realistic simulations. An array of subjective and objective statistical metrics are employed to document the utility of the WRF forecasts. The simulation results are also compared to other more traditional means of forecasting convective storms, such as those based on inspection of the convective available potential energy field.
High-Resolution WRF Forecasts of Lightning Threat
NASA Technical Reports Server (NTRS)
Goodman, S. J.; McCaul, E. W., Jr.; LaCasse, K.
2007-01-01
Tropical Rainfall Measuring Mission (TRMM)lightning and precipitation observations have confirmed the existence of a robust relationship between lightning flash rates and the amount of large precipitating ice hydrometeors in storms. This relationship is exploited, in conjunction with the capabilities of the Weather Research and Forecast (WRF) model, to forecast the threat of lightning from convective storms using the output fields from the model forecasts. The simulated vertical flux of graupel at -15C is used in this study as a proxy for charge separation processes and their associated lightning risk. Initial experiments using 6-h simulations are conducted for a number of case studies for which three-dimensional lightning validation data from the North Alabama Lightning Mapping Array are available. The WRF has been initialized on a 2 km grid using Eta boundary conditions, Doppler radar radial velocity and reflectivity fields, and METAR and ACARS data. An array of subjective and objective statistical metrics is employed to document the utility of the WRF forecasts. The simulation results are also compared to other more traditional means of forecasting convective storms, such as those based on inspection of the convective available potential energy field.
Daily rainfall forecasting for one year in a single run using Singular Spectrum Analysis
NASA Astrophysics Data System (ADS)
Unnikrishnan, Poornima; Jothiprakash, V.
2018-06-01
Effective modelling and prediction of smaller time step rainfall is reported to be very difficult owing to its highly erratic nature. Accurate forecast of daily rainfall for longer duration (multi time step) may be exceptionally helpful in the efficient planning and management of water resources systems. Identification of inherent patterns in a rainfall time series is also important for an effective water resources planning and management system. In the present study, Singular Spectrum Analysis (SSA) is utilized to forecast the daily rainfall time series pertaining to Koyna watershed in Maharashtra, India, for 365 days after extracting various components of the rainfall time series such as trend, periodic component, noise and cyclic component. In order to forecast the time series for longer time step (365 days-one window length), the signal and noise components of the time series are forecasted separately and then added together. The results of the study show that the method of SSA could extract the various components of the time series effectively and could also forecast the daily rainfall time series for longer duration such as one year in a single run with reasonable accuracy.
A Hybrid Wavelet Transform Based Short-Term Wind Speed Forecasting Approach
Wang, Jujie
2014-01-01
It is important to improve the accuracy of wind speed forecasting for wind parks management and wind power utilization. In this paper, a novel hybrid approach known as WTT-TNN is proposed for wind speed forecasting. In the first step of the approach, a wavelet transform technique (WTT) is used to decompose wind speed into an approximate scale and several detailed scales. In the second step, a two-hidden-layer neural network (TNN) is used to predict both approximated scale and detailed scales, respectively. In order to find the optimal network architecture, the partial autocorrelation function is adopted to determine the number of neurons in the input layer, and an experimental simulation is made to determine the number of neurons within each hidden layer in the modeling process of TNN. Afterwards, the final prediction value can be obtained by the sum of these prediction results. In this study, a WTT is employed to extract these different patterns of the wind speed and make it easier for forecasting. To evaluate the performance of the proposed approach, it is applied to forecast Hexi Corridor of China's wind speed. Simulation results in four different cases show that the proposed method increases wind speed forecasting accuracy. PMID:25136699
Data-driven forecasting algorithms for building energy consumption
NASA Astrophysics Data System (ADS)
Noh, Hae Young; Rajagopal, Ram
2013-04-01
This paper introduces two forecasting methods for building energy consumption data that are recorded from smart meters in high resolution. For utility companies, it is important to reliably forecast the aggregate consumption profile to determine energy supply for the next day and prevent any crisis. The proposed methods involve forecasting individual load on the basis of their measurement history and weather data without using complicated models of building system. The first method is most efficient for a very short-term prediction, such as the prediction period of one hour, and uses a simple adaptive time-series model. For a longer-term prediction, a nonparametric Gaussian process has been applied to forecast the load profiles and their uncertainty bounds to predict a day-ahead. These methods are computationally simple and adaptive and thus suitable for analyzing a large set of data whose pattern changes over the time. These forecasting methods are applied to several sets of building energy consumption data for lighting and heating-ventilation-air-conditioning (HVAC) systems collected from a campus building at Stanford University. The measurements are collected every minute, and corresponding weather data are provided hourly. The results show that the proposed algorithms can predict those energy consumption data with high accuracy.
A Data-Driven Approach for Daily Real-Time Estimates and Forecasts of Near-Surface Soil Moisture
NASA Technical Reports Server (NTRS)
Koster, Randal D.; Reichle, Rolf H.; Mahanama, Sarith P. P.
2017-01-01
NASAs Soil Moisture Active Passive (SMAP) mission provides global surface soil moisture retrievals with a revisit time of 2-3 days and a latency of 24 hours. Here, to enhance the utility of the SMAP data, we present an approach for improving real-time soil moisture estimates (nowcasts) and for forecasting soil moisture several days into the future. The approach, which involves using an estimate of loss processes (evaporation and drainage) and precipitation to evolve the most recent SMAP retrieval forward in time, is evaluated against subsequent SMAP retrievals themselves. The nowcast accuracy over the continental United States (CONUS) is shown to be markedly higher than that achieved with the simple yet common persistence approach. The accuracy of soil moisture forecasts, which rely on precipitation forecasts rather than on precipitation measurements, is reduced relative to nowcast accuracy but is still significantly higher than that obtained through persistence.
Forecasting need and demand for home health care: a selective review
Sharma, Rabinder K.
1980-01-01
Three models for forecasting home health care (HHC) needs are analyzed: HSA/SP model (Health Systems Agency of Southwestern Pennsylvania); Florida model (Florida State Department of Health and Rehabilitative Services); and Rhode Island model (Rhode Island Department of Community Affairs). A utilization approach to forecasting is also presented. In the HSA/SP and Florida models, need for HHC is based on a certain proportion of (a) hospital admissions and (b) patients entering HHC from other sources. The major advantage of these models is that they are relatively easy to use and explain; their major weaknesses are an imprecise definition of need and an incomplete model specification. The Rhode Island approach defines need for HHC in terms of the health status of the population as measured by chronic activity limitations. The major strengths of this approach are its explicit assumptions and its emphasis on consumer needs. The major drawback is that it requires considerable local area data. The utilization approach is based on extrapolation from observed utilization experience of the target population. Its main limitation is that it is based on current market imperfections; its major advantage is that it exposes existing deficiencies in HHC. The author concludes that each approach should be tested empirically in order to refine it, and that need and demand approaches be used jointly in the planning process. PMID:6893631
Duchenne muscular dystrophy drugs face tough path to approval.
Hodgkinson, L; Sorbera, L; Graul, A I
2016-03-01
Highly anticipated as new disease-modifying treatments for Duchenne muscular dystrophy (DMD), therapeutics by BioMarin Pharmaceutical (Kyndrisa™; drisapersen) and Sarepta Therapeutics (eteplirsen; AVI-4658) both recently received negative FDA reviews and are now facing battles for approval in the U.S. At present, BioMarin is committed to working with the FDA to forge a pathway to approval following the failure of its NDA, while Sarepta awaits the formal decision on its NDA, which is expected by late May 2016. Despite the critical nature of both reviews, analysts consider that there is still a narrow possibility of approval of both drugs. According to Consensus forecasts from Thomson Reuters Cortellis for Competitive Intelligence, Kyndrisa is forecast to achieve sales of USD 533.71 million in 2021. Copyright 2016 Prous Science, S.A.U. or its licensors. All rights reserved.
Forecasting influenza in Hong Kong with Google search queries and statistical model fusion
Ramirez Ramirez, L. Leticia; Nezafati, Kusha; Zhang, Qingpeng; Tsui, Kwok-Leung
2017-01-01
Background The objective of this study is to investigate predictive utility of online social media and web search queries, particularly, Google search data, to forecast new cases of influenza-like-illness (ILI) in general outpatient clinics (GOPC) in Hong Kong. To mitigate the impact of sensitivity to self-excitement (i.e., fickle media interest) and other artifacts of online social media data, in our approach we fuse multiple offline and online data sources. Methods Four individual models: generalized linear model (GLM), least absolute shrinkage and selection operator (LASSO), autoregressive integrated moving average (ARIMA), and deep learning (DL) with Feedforward Neural Networks (FNN) are employed to forecast ILI-GOPC both one week and two weeks in advance. The covariates include Google search queries, meteorological data, and previously recorded offline ILI. To our knowledge, this is the first study that introduces deep learning methodology into surveillance of infectious diseases and investigates its predictive utility. Furthermore, to exploit the strength from each individual forecasting models, we use statistical model fusion, using Bayesian model averaging (BMA), which allows a systematic integration of multiple forecast scenarios. For each model, an adaptive approach is used to capture the recent relationship between ILI and covariates. Results DL with FNN appears to deliver the most competitive predictive performance among the four considered individual models. Combing all four models in a comprehensive BMA framework allows to further improve such predictive evaluation metrics as root mean squared error (RMSE) and mean absolute predictive error (MAPE). Nevertheless, DL with FNN remains the preferred method for predicting locations of influenza peaks. Conclusions The proposed approach can be viewed a feasible alternative to forecast ILI in Hong Kong or other countries where ILI has no constant seasonal trend and influenza data resources are limited. The proposed methodology is easily tractable and computationally efficient. PMID:28464015
NASA Astrophysics Data System (ADS)
Cione, Joseph; Pietrafes, Leonard J.
The lateral motion of the Gulf Stream off the eastern seaboard of the United States during the winter season can act to dramatically enhance the low-level baroclinicity within the coastal zone during periods of offshore cold advection. The ralative close proximity of the Gulf Stream current off the mid-Atlantic coast can result in the rapid and intense destabilization of the marine atmospheric boundary layer directly above and shoreward of the Gulf Stream within this region. This airmass modification period often precedes either wintertime coastal cyclogenesis or the cyclonic re-development of existing mid-latitude cyclones. A climatological study investigating the relationship between the severity of the pre-storm, cold advection period and subsequent cyclogenic intensification was undertaken by Cione et al. in 1993. Findings from this study illustrate that the thermal structure of the continental airmass as well as the position of the Gulf Stream front relative to land during the pre-storm period (i.e., 24-48 h prior to the initial cyclonic intensification) are linked to the observed rate of surface cyclonic deepening for storms that either advected into or initially developed within the Carolina-southeast Virginia offshore coastal zone. It is a major objective of this research to test the potential operational utility of this pre-storm low level baroclinic linkage to subsequent cyclogenesis in an actual National Weather Service (NWS) coastal winter storm forecast setting.The ability to produce coastal surface cyclone intensity forecasts recently became available to North Carolina State University researchers and NWS forecasters. This statistical forecast guidance utilizes regression relationships derived from a nine-season (January 1982-April 1990), 116-storm study conducted previously. During the period between February 1994 and February 1996, the Atlantic Surface Cyclone Intensification Index (ASCII) was successfully implemented in an operational setting by the NWS at the Raleigh-Durham (RAH) forecast office for 10 winter storms. Analysis of these ASCII forecasts will be presented.
Bayesian Forecasting Tool to Predict the Need for Antidote in Acute Acetaminophen Overdose.
Desrochers, Julie; Wojciechowski, Jessica; Klein-Schwartz, Wendy; Gobburu, Jogarao V S; Gopalakrishnan, Mathangi
2017-08-01
Acetaminophen (APAP) overdose is the leading cause of acute liver injury in the United States. Patients with elevated plasma acetaminophen concentrations (PACs) require hepatoprotective treatment with N-acetylcysteine (NAC). These patients have been primarily risk-stratified using the Rumack-Matthew nomogram. Previous studies of acute APAP overdoses found that the nomogram failed to accurately predict the need for the antidote. The objectives of this study were to develop a population pharmacokinetic (PK) model for APAP following acute overdose and evaluate the utility of population PK model-based Bayesian forecasting in NAC administration decisions. Limited APAP concentrations from a retrospective cohort of acute overdosed subjects from the Maryland Poison Center were used to develop the population PK model and to investigate the effect of type of APAP products and other prognostic factors. The externally validated population PK model was used a prior for Bayesian forecasting to predict the individual PK profile when one or two observed PACs were available. The utility of Bayesian forecasted APAP concentration-time profiles inferred from one (first) or two (first and second) PAC observations were also tested in their ability to predict the observed NAC decisions. A one-compartment model with first-order absorption and elimination adequately described the data with single activated charcoal and APAP products as significant covariates on absorption and bioavailability. The Bayesian forecasted individual concentration-time profiles had acceptable bias (6.2% and 9.8%) and accuracy (40.5% and 41.9%) when either one or two PACs were considered, respectively. The sensitivity and negative predictive value of the Bayesian forecasted NAC decisions using one PAC were 84% and 92.6%, respectively. The population PK analysis provided a platform for acceptably predicting an individual's concentration-time profile following acute APAP overdose with at least one PAC, and the individual's covariate profile, and can potentially be used for making early NAC administration decisions. © 2017 Pharmacotherapy Publications, Inc.
Probability Forecasting Using Monte Carlo Simulation
NASA Astrophysics Data System (ADS)
Duncan, M.; Frisbee, J.; Wysack, J.
2014-09-01
Space Situational Awareness (SSA) is defined as the knowledge and characterization of all aspects of space. SSA is now a fundamental and critical component of space operations. Increased dependence on our space assets has in turn lead to a greater need for accurate, near real-time knowledge of all space activities. With the growth of the orbital debris population, satellite operators are performing collision avoidance maneuvers more frequently. Frequent maneuver execution expends fuel and reduces the operational lifetime of the spacecraft. Thus the need for new, more sophisticated collision threat characterization methods must be implemented. The collision probability metric is used operationally to quantify the collision risk. The collision probability is typically calculated days into the future, so that high risk and potential high risk conjunction events are identified early enough to develop an appropriate course of action. As the time horizon to the conjunction event is reduced, the collision probability changes. A significant change in the collision probability will change the satellite mission stakeholder's course of action. So constructing a method for estimating how the collision probability will evolve improves operations by providing satellite operators with a new piece of information, namely an estimate or 'forecast' of how the risk will change as time to the event is reduced. Collision probability forecasting is a predictive process where the future risk of a conjunction event is estimated. The method utilizes a Monte Carlo simulation that produces a likelihood distribution for a given collision threshold. Using known state and state uncertainty information, the simulation generates a set possible trajectories for a given space object pair. Each new trajectory produces a unique event geometry at the time of close approach. Given state uncertainty information for both objects, a collision probability value can be computed for every trail. This yields a collision probability distribution given known, predicted uncertainty. This paper presents the details of the collision probability forecasting method. We examine various conjunction event scenarios and numerically demonstrate the utility of this approach in typical event scenarios. We explore the utility of a probability-based track scenario simulation that models expected tracking data frequency as the tasking levels are increased. The resulting orbital uncertainty is subsequently used in the forecasting algorithm.
NASA Astrophysics Data System (ADS)
Karlovits, G. S.; Villarini, G.; Bradley, A.; Vecchi, G. A.
2014-12-01
Forecasts of seasonal precipitation and temperature can provide information in advance of potentially costly disruptions caused by flood and drought conditions. The consequences of these adverse hydrometeorological conditions may be mitigated through informed planning and response, given useful and skillful forecasts of these conditions. However, the potential value and applicability of these forecasts is unavoidably linked to their forecast quality. In this work we evaluate the skill of four global circulation models (GCMs) part of the North American Multi-Model Ensemble (NMME) project in forecasting seasonal precipitation and temperature over the continental United States. The GCMs we consider are the Geophysical Fluid Dynamics Laboratory (GFDL)-CM2.1, NASA Global Modeling and Assimilation Office (NASA-GMAO)-GEOS-5, The Center for Ocean-Land-Atmosphere Studies - Rosenstiel School of Marine & Atmospheric Science (COLA-RSMAS)-CCSM3, Canadian Centre for Climate Modeling and Analysis (CCCma) - CanCM4. These models are available at a resolution of 1-degree and monthly, with a minimum forecast lead time of nine months, up to one year. These model ensembles are compared against gridded monthly temperature and precipitation data created by the PRISM Climate Group, which represent the reference observation dataset in this work. Aspects of forecast quality are quantified using a diagnostic skill score decomposition that allows the evaluation of the potential skill and conditional and unconditional biases associated with these forecasts. The evaluation of the decomposed GCM forecast skill over the continental United States, by season and by lead time allows for a better understanding of the utility of these models for flood and drought predictions. Moreover, it also represents a diagnostic tool that could provide model developers feedback about strengths and weaknesses of their models.
Portals for Real-Time Earthquake Data and Forecasting: Challenge and Promise (Invited)
NASA Astrophysics Data System (ADS)
Rundle, J. B.; Holliday, J. R.; Graves, W. R.; Feltstykket, R.; Donnellan, A.; Glasscoe, M. T.
2013-12-01
Earthquake forecasts have been computed by a variety of countries world-wide for over two decades. For the most part, forecasts have been computed for insurance, reinsurance and underwriters of catastrophe bonds. However, recent events clearly demonstrate that mitigating personal risk is becoming the responsibility of individual members of the public. Open access to a variety of web-based forecasts, tools, utilities and information is therefore required. Portals for data and forecasts present particular challenges, and require the development of both apps and the client/server architecture to deliver the basic information in real time. The basic forecast model we consider is the Natural Time Weibull (NTW) method (JBR et al., Phys. Rev. E, 86, 021106, 2012). This model uses small earthquakes (';seismicity-based models') to forecast the occurrence of large earthquakes, via data-mining algorithms combined with the ANSS earthquake catalog. This method computes large earthquake probabilities using the number of small earthquakes that have occurred in a region since the last large earthquake. Localizing these forecasts in space so that global forecasts can be computed in real time presents special algorithmic challenges, which we describe in this talk. Using 25 years of data from the ANSS California-Nevada catalog of earthquakes, we compute real-time global forecasts at a grid scale of 0.1o. We analyze and monitor the performance of these models using the standard tests, which include the Reliability/Attributes and Receiver Operating Characteristic (ROC) tests. It is clear from much of the analysis that data quality is a major limitation on the accurate computation of earthquake probabilities. We discuss the challenges of serving up these datasets over the web on web-based platforms such as those at www.quakesim.org , www.e-decider.org , and www.openhazards.com.
The Economic Impact of Biosimilars on Chronic Immune-Mediated Inflammatory Diseases.
Pentek, Marta; Zrubka, Zsombor; Gulacsi, Laszlo
2017-01-01
Biological drugs represent highly effective but costly treatments for chronic immunemediated inflammatory diseases posing substantial burden on health care budgets. Introduction of biosimilars since 2013 has brought forward the potential of market competition, and as a societal benefit, the hope of increased access at a lower cost. We aim to provide a descriptive review on economic aspects and market changes related to the introduction of biosimilar drugs. Our focus is on chronic immune-mediated inflammatory conditions in rheumatology, gastroenterology and dermatology. Based on available literature data, we discuss the determinants of access to biological treatment, summarize the available health economic evidences with special focus on cost-utility and budget impact analyses. Market penetration of biosimilars and their overall impact on biological markets are analyzed. Biosimilar markets are country specific due to differences in the regulatory and reimbursement systems. Cost-utility analyses suggest, that given the lower price of biosimilars, formerly established biological treatment sequence practices and the eligibility criteria for biological treatment deserve reconsideration. Budget impact analyses forecasted significant budget savings in various diagnoses and countries, providing opportunity for the treatment of more patients. Biosimilars may contribute to better patient-access and provide savings to governments. To increase their acceptability, further clinical evidences and real world experiences are needed, as well as education of physicians and patients. The high biosimilar penetration rates in Norway, Denmark and Poland suggest that policies which support interchanging from the reference product may be important drivers of biosimilar uptake. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Towards an improved ensemble precipitation forecast: A probabilistic post-processing approach
NASA Astrophysics Data System (ADS)
Khajehei, Sepideh; Moradkhani, Hamid
2017-03-01
Recently, ensemble post-processing (EPP) has become a commonly used approach for reducing the uncertainty in forcing data and hence hydrologic simulation. The procedure was introduced to build ensemble precipitation forecasts based on the statistical relationship between observations and forecasts. More specifically, the approach relies on a transfer function that is developed based on a bivariate joint distribution between the observations and the simulations in the historical period. The transfer function is used to post-process the forecast. In this study, we propose a Bayesian EPP approach based on copula functions (COP-EPP) to improve the reliability of the precipitation ensemble forecast. Evaluation of the copula-based method is carried out by comparing the performance of the generated ensemble precipitation with the outputs from an existing procedure, i.e. mixed type meta-Gaussian distribution. Monthly precipitation from Climate Forecast System Reanalysis (CFS) and gridded observation from Parameter-Elevation Relationships on Independent Slopes Model (PRISM) have been employed to generate the post-processed ensemble precipitation. Deterministic and probabilistic verification frameworks are utilized in order to evaluate the outputs from the proposed technique. Distribution of seasonal precipitation for the generated ensemble from the copula-based technique is compared to the observation and raw forecasts for three sub-basins located in the Western United States. Results show that both techniques are successful in producing reliable and unbiased ensemble forecast, however, the COP-EPP demonstrates considerable improvement in the ensemble forecast in both deterministic and probabilistic verification, in particular in characterizing the extreme events in wet seasons.
Ensemble-based methods for forecasting census in hospital units
2013-01-01
Background The ability to accurately forecast census counts in hospital departments has considerable implications for hospital resource allocation. In recent years several different methods have been proposed forecasting census counts, however many of these approaches do not use available patient-specific information. Methods In this paper we present an ensemble-based methodology for forecasting the census under a framework that simultaneously incorporates both (i) arrival trends over time and (ii) patient-specific baseline and time-varying information. The proposed model for predicting census has three components, namely: current census count, number of daily arrivals and number of daily departures. To model the number of daily arrivals, we use a seasonality adjusted Poisson Autoregressive (PAR) model where the parameter estimates are obtained via conditional maximum likelihood. The number of daily departures is predicted by modeling the probability of departure from the census using logistic regression models that are adjusted for the amount of time spent in the census and incorporate both patient-specific baseline and time varying patient-specific covariate information. We illustrate our approach using neonatal intensive care unit (NICU) data collected at Women & Infants Hospital, Providence RI, which consists of 1001 consecutive NICU admissions between April 1st 2008 and March 31st 2009. Results Our results demonstrate statistically significant improved prediction accuracy for 3, 5, and 7 day census forecasts and increased precision of our forecasting model compared to a forecasting approach that ignores patient-specific information. Conclusions Forecasting models that utilize patient-specific baseline and time-varying information make the most of data typically available and have the capacity to substantially improve census forecasts. PMID:23721123
Ensemble-based methods for forecasting census in hospital units.
Koestler, Devin C; Ombao, Hernando; Bender, Jesse
2013-05-30
The ability to accurately forecast census counts in hospital departments has considerable implications for hospital resource allocation. In recent years several different methods have been proposed forecasting census counts, however many of these approaches do not use available patient-specific information. In this paper we present an ensemble-based methodology for forecasting the census under a framework that simultaneously incorporates both (i) arrival trends over time and (ii) patient-specific baseline and time-varying information. The proposed model for predicting census has three components, namely: current census count, number of daily arrivals and number of daily departures. To model the number of daily arrivals, we use a seasonality adjusted Poisson Autoregressive (PAR) model where the parameter estimates are obtained via conditional maximum likelihood. The number of daily departures is predicted by modeling the probability of departure from the census using logistic regression models that are adjusted for the amount of time spent in the census and incorporate both patient-specific baseline and time varying patient-specific covariate information. We illustrate our approach using neonatal intensive care unit (NICU) data collected at Women & Infants Hospital, Providence RI, which consists of 1001 consecutive NICU admissions between April 1st 2008 and March 31st 2009. Our results demonstrate statistically significant improved prediction accuracy for 3, 5, and 7 day census forecasts and increased precision of our forecasting model compared to a forecasting approach that ignores patient-specific information. Forecasting models that utilize patient-specific baseline and time-varying information make the most of data typically available and have the capacity to substantially improve census forecasts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finley, Cathy
2014-04-30
This report contains the results from research aimed at improving short-range (0-6 hour) hub-height wind forecasts in the NOAA weather forecast models through additional data assimilation and model physics improvements for use in wind energy forecasting. Additional meteorological observing platforms including wind profilers, sodars, and surface stations were deployed for this study by NOAA and DOE, and additional meteorological data at or near wind turbine hub height were provided by South Dakota State University and WindLogics/NextEra Energy Resources over a large geographical area in the U.S. Northern Plains for assimilation into NOAA research weather forecast models. The resulting improvements inmore » wind energy forecasts based on the research weather forecast models (with the additional data assimilation and model physics improvements) were examined in many different ways and compared with wind energy forecasts based on the current operational weather forecast models to quantify the forecast improvements important to power grid system operators and wind plant owners/operators participating in energy markets. Two operational weather forecast models (OP_RUC, OP_RAP) and two research weather forecast models (ESRL_RAP, HRRR) were used as the base wind forecasts for generating several different wind power forecasts for the NextEra Energy wind plants in the study area. Power forecasts were generated from the wind forecasts in a variety of ways, from very simple to quite sophisticated, as they might be used by a wide range of both general users and commercial wind energy forecast vendors. The error characteristics of each of these types of forecasts were examined and quantified using bulk error statistics for both the local wind plant and the system aggregate forecasts. The wind power forecast accuracy was also evaluated separately for high-impact wind energy ramp events. The overall bulk error statistics calculated over the first six hours of the forecasts at both the individual wind plant and at the system-wide aggregate level over the one year study period showed that the research weather model-based power forecasts (all types) had lower overall error rates than the current operational weather model-based power forecasts, both at the individual wind plant level and at the system aggregate level. The bulk error statistics of the various model-based power forecasts were also calculated by season and model runtime/forecast hour as power system operations are more sensitive to wind energy forecast errors during certain times of year and certain times of day. The results showed that there were significant differences in seasonal forecast errors between the various model-based power forecasts. The results from the analysis of the various wind power forecast errors by model runtime and forecast hour showed that the forecast errors were largest during the times of day that have increased significance to power system operators (the overnight hours and the morning/evening boundary layer transition periods), but the research weather model-based power forecasts showed improvement over the operational weather model-based power forecasts at these times.« less
NASA Astrophysics Data System (ADS)
Tommasi, D.; Stock, C. A.
2016-02-01
It is well established that environmental fluctuations affect the productivity of numerous fish stocks. Recent advances in prediction capability of dynamical global forecast systems, such as the state of the art NOAA Geophysical Fluid dynamics Laboratory (GFDL) 2.5-FLOR model, allow for climate predictions of fisheries-relevant variables at temporal scales relevant to the fishery management decision making process. We demonstrate that the GFDL FLOR model produces skillful seasonal SST anomaly predictions over the continental shelf , where most of the global fish yield is generated. The availability of skillful SST projections at this "fishery relevant" scale raises the potential for better constrained estimates of future fish biomass and improved harvest decisions. We assessed the utility of seasonal SST coastal shelf predictions for fisheries management using the case study of Pacific sardine. This fishery was selected because it is one of the few to already incorporate SST into its harvest guideline, and show a robust recruitment-SST relationship. We quantified the effectiveness of management under the status quo harvest guideline (HG) and under alternative HGs including future information at different levels of uncertainty. Usefulness of forecast SST to management was dependent on forecast uncertainty. If the standard deviation of the SST anomaly forecast residuals was less than 0.65, the alternative HG produced higher long-term yield and stock biomass, and reduced the probability of either catch or stock biomass falling below management-set threshold values as compared to the status quo. By contrast, probability of biomass falling to extremely low values increased as compared to the status quo for all alternative HGs except for a perfectly known future SST case. To safeguard against occurrence of such low probability but costly events, a harvest cutoff biomass also has to be implemented into the HG.
Report of the International Commission on Earthquake Forecasting for Civil Protection (Invited)
NASA Astrophysics Data System (ADS)
Jordan, T. H.
2009-12-01
The destructive L’Aquila earthquake of 6 April 2009 (Mw 6.3) illustrates the challenges of operational earthquake forecasting. The earthquake ruptured a mapped normal fault in a region identified by long-term forecasting models as one of the most seismically dangerous in Italy; it was the strongest of a rich sequence that started several months earlier and included a M3.9 foreshock less than five hours prior to the mainshock. According to widely circulated news reports, the earthquake had been predicted by a local resident using unpublished radon-based techniques, provoking a public controversy prior to the event that intensified in its wake. Several weeks after the earthquake, the Italian Department of Civil Protection appointed an international commission with the mandate to report on the current state of knowledge of prediction and forecasting and guidelines for operational utilization. The commission included geoscientists from China, France, Germany, Greece, Italy, Japan, Russia, United Kingdom, and United States with experience in earthquake forecasting and prediction. This presentation by the chair of the commission will report on its findings and recommendations.
Nonlinear problems in data-assimilation : Can synchronization help?
NASA Astrophysics Data System (ADS)
Tribbia, J. J.; Duane, G. S.
2009-12-01
Over the past several years, operational weather centers have initiated ensemble prediction and assimilation techniques to estimate the error covariance of forecasts in the short and the medium range. The ensemble techniques used are based on linear methods. The theory This technique s been shown to be a useful indicator of skill in the linear range where forecast errors are small relative to climatological variance. While this advance has been impressive, there are still ad hoc aspects of its use in practice, like the need for covariance inflation which are troubling. Furthermore, to be of utility in the nonlinear range an ensemble assimilation and prediction method must be capable of giving probabilistic information for the situation where a probability density forecast becomes multi-modal. A prototypical, simplest example of such a situation is the planetary-wave regime transition where the pdf is bimodal. Our recent research show how the inconsistencies and extensions of linear methodology can be consistently treated using the paradigm of synchronization which views the problems of assimilation and forecasting as that of optimizing the forecast model state with respect to the future evolution of the atmosphere.
Short time ahead wind power production forecast
NASA Astrophysics Data System (ADS)
Sapronova, Alla; Meissner, Catherine; Mana, Matteo
2016-09-01
An accurate prediction of wind power output is crucial for efficient coordination of cooperative energy production from different sources. Long-time ahead prediction (from 6 to 24 hours) of wind power for onshore parks can be achieved by using a coupled model that would bridge the mesoscale weather prediction data and computational fluid dynamics. When a forecast for shorter time horizon (less than one hour ahead) is anticipated, an accuracy of a predictive model that utilizes hourly weather data is decreasing. That is because the higher frequency fluctuations of the wind speed are lost when data is averaged over an hour. Since the wind speed can vary up to 50% in magnitude over a period of 5 minutes, the higher frequency variations of wind speed and direction have to be taken into account for an accurate short-term ahead energy production forecast. In this work a new model for wind power production forecast 5- to 30-minutes ahead is presented. The model is based on machine learning techniques and categorization approach and using the historical park production time series and hourly numerical weather forecast.
An Empirical Study of Logistics Organization, Electronic Linkage, and Performance
1993-01-01
utilization of transportation resources, and improved quality management. Researchers have proposed an information technology (IT) implementation model for...management, more efficient utilization of transportation resources, and improved quality management. Researchers have proposed an information...coordination of (1) facility structure, (2) forecasting and order management, (3) transportation , (4) inventory, and (5) warehousing and packaging. The
Meeting the Energy Challenges of the 1990s. Experts Define the Key Policy Issues.
1992-03-01
Forecast of Low Emission Fuel Usage-Liquid 79 Fuels Figure 2.10: Forecast of Low Emission Fuel Usage- 81 Gaseous Fuels Figure 2.11: Global Warming From...environmental problems caused by acid rain, smog, and global warming , he said. According to Mr. Lovins, utilities as well as their customers benefit from...made in relation to these effects. The panel- ists addressed the links between global warming and the fossil fuels that now produce nearly 90 percent
1985-09-01
Extratropical Storm ," Draft Report. Atlas, David. 1964. "Advances in Radar Meteorology," Advances in Geophysics, Vol 10, Academic Press, N.Y., pp 318-478. Barnes...forecasting purposes, data on storm morphology, direction of movement, and rate of movement are re- quired in addition to the data cited above. 7...or storm duration. He also showed that, for a given sampling error, the gage density needed for warm season storms was two to three times greater than
Domestic & International Air Cargo Activity: National and Selected Hub Forecasts.
1979-11-01
111371 1991 1887811 2?. 768 :297968 Forecast utilizes 1972 dollar GNP from Wharton’s annual model, December 6, 1978, Post-Meeting Control Solution...mile based on 1973 revenue ton-miles reported in the DOT/CAB, Air Carrier Traffic Statistics. South America - RSA - simple average of American (Latin...9518 F (2/11) = 129.347 DW = 1.41 (b) South America (ESA) 4 = 11.8926 + 18.2908* (GDPSA.C) - 8.94307* ( RSA ) 4 (0.14) (6.08) (-0.46) R2 .8717 F (2/11
Building the Sun4Cast System: Improvements in Solar Power Forecasting
Haupt, Sue Ellen; Kosovic, Branko; Jensen, Tara; ...
2017-06-16
The Sun4Cast System results from a research-to-operations project built on a value chain approach, and benefiting electric utilities’ customers, society, and the environment by improving state-of-the-science solar power forecasting capabilities. As integration of solar power into the national electric grid rapidly increases, it becomes imperative to improve forecasting of this highly variable renewable resource. Thus, a team of researchers from public, private, and academic sectors partnered to develop and assess a new solar power forecasting system, Sun4Cast. The partnership focused on improving decision-making for utilities and independent system operators, ultimately resulting in improved grid stability and cost savings for consumers.more » The project followed a value chain approach to determine key research and technology needs to reach desired results. Sun4Cast integrates various forecasting technologies across a spectrum of temporal and spatial scales to predict surface solar irradiance. Anchoring the system is WRF-Solar, a version of the Weather Research and Forecasting (WRF) numerical weather prediction (NWP) model optimized for solar irradiance prediction. Forecasts from multiple NWP models are blended via the Dynamic Integrated Forecast (DICast) System, the basis of the system beyond about 6 h. For short-range (0-6 h) forecasts, Sun4Cast leverages several observation-based nowcasting technologies. These technologies are blended via the Nowcasting Expert System Integrator (NESI). The NESI and DICast systems are subsequently blended to produce short to mid-term irradiance forecasts for solar array locations. The irradiance forecasts are translated into power with uncertainties quantified using an analog ensemble approach, and are provided to the industry partners for real-time decision-making. The Sun4Cast system ran operationally throughout 2015 and results were assessed. As a result, this paper analyzes the collaborative design process, discusses the project results, and provides recommendations for best-practice solar forecasting.« less
Rubin, D.M.
1992-01-01
Forecasting of one-dimensional time series previously has been used to help distinguish periodicity, chaos, and noise. This paper presents two-dimensional generalizations for making such distinctions for spatial patterns. The techniques are evaluated using synthetic spatial patterns and then are applied to a natural example: ripples formed in sand by blowing wind. Tests with the synthetic patterns demonstrate that the forecasting techniques can be applied to two-dimensional spatial patterns, with the same utility and limitations as when applied to one-dimensional time series. One limitation is that some combinations of periodicity and randomness exhibit forecasting signatures that mimic those of chaos. For example, sine waves distorted with correlated phase noise have forecasting errors that increase with forecasting distance, errors that, are minimized using nonlinear models at moderate embedding dimensions, and forecasting properties that differ significantly between the original and surrogates. Ripples formed in sand by flowing air or water typically vary in geometry from one to another, even when formed in a flow that is uniform on a large scale; each ripple modifies the local flow or sand-transport field, thereby influencing the geometry of the next ripple downcurrent. Spatial forecasting was used to evaluate the hypothesis that such a deterministic process - rather than randomness or quasiperiodicity - is responsible for the variation between successive ripples. This hypothesis is supported by a forecasting error that increases with forecasting distance, a greater accuracy of nonlinear relative to linear models, and significant differences between forecasts made with the original ripples and those made with surrogate patterns. Forecasting signatures cannot be used to distinguish ripple geometry from sine waves with correlated phase noise, but this kind of structure can be ruled out by two geometric properties of the ripples: Successive ripples are highly correlated in wavelength, and ripple crests display dislocations such as branchings and mergers. ?? 1992 American Institute of Physics.
Building the Sun4Cast System: Improvements in Solar Power Forecasting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haupt, Sue Ellen; Kosovic, Branko; Jensen, Tara
The Sun4Cast System results from a research-to-operations project built on a value chain approach, and benefiting electric utilities’ customers, society, and the environment by improving state-of-the-science solar power forecasting capabilities. As integration of solar power into the national electric grid rapidly increases, it becomes imperative to improve forecasting of this highly variable renewable resource. Thus, a team of researchers from public, private, and academic sectors partnered to develop and assess a new solar power forecasting system, Sun4Cast. The partnership focused on improving decision-making for utilities and independent system operators, ultimately resulting in improved grid stability and cost savings for consumers.more » The project followed a value chain approach to determine key research and technology needs to reach desired results. Sun4Cast integrates various forecasting technologies across a spectrum of temporal and spatial scales to predict surface solar irradiance. Anchoring the system is WRF-Solar, a version of the Weather Research and Forecasting (WRF) numerical weather prediction (NWP) model optimized for solar irradiance prediction. Forecasts from multiple NWP models are blended via the Dynamic Integrated Forecast (DICast) System, the basis of the system beyond about 6 h. For short-range (0-6 h) forecasts, Sun4Cast leverages several observation-based nowcasting technologies. These technologies are blended via the Nowcasting Expert System Integrator (NESI). The NESI and DICast systems are subsequently blended to produce short to mid-term irradiance forecasts for solar array locations. The irradiance forecasts are translated into power with uncertainties quantified using an analog ensemble approach, and are provided to the industry partners for real-time decision-making. The Sun4Cast system ran operationally throughout 2015 and results were assessed. As a result, this paper analyzes the collaborative design process, discusses the project results, and provides recommendations for best-practice solar forecasting.« less
Forecasting space weather: Can new econometric methods improve accuracy?
NASA Astrophysics Data System (ADS)
Reikard, Gordon
2011-06-01
Space weather forecasts are currently used in areas ranging from navigation and communication to electric power system operations. The relevant forecast horizons can range from as little as 24 h to several days. This paper analyzes the predictability of two major space weather measures using new time series methods, many of them derived from econometrics. The data sets are the A p geomagnetic index and the solar radio flux at 10.7 cm. The methods tested include nonlinear regressions, neural networks, frequency domain algorithms, GARCH models (which utilize the residual variance), state transition models, and models that combine elements of several techniques. While combined models are complex, they can be programmed using modern statistical software. The data frequency is daily, and forecasting experiments are run over horizons ranging from 1 to 7 days. Two major conclusions stand out. First, the frequency domain method forecasts the A p index more accurately than any time domain model, including both regressions and neural networks. This finding is very robust, and holds for all forecast horizons. Combining the frequency domain method with other techniques yields a further small improvement in accuracy. Second, the neural network forecasts the solar flux more accurately than any other method, although at short horizons (2 days or less) the regression and net yield similar results. The neural net does best when it includes measures of the long-term component in the data.
NASA Astrophysics Data System (ADS)
Rahmat, R. F.; Nasution, F. R.; Seniman; Syahputra, M. F.; Sitompul, O. S.
2018-02-01
Weather is condition of air in a certain region at a relatively short period of time, measured with various parameters such as; temperature, air preasure, wind velocity, humidity and another phenomenons in the atmosphere. In fact, extreme weather due to global warming would lead to drought, flood, hurricane and other forms of weather occasion, which directly affects social andeconomic activities. Hence, a forecasting technique is to predict weather with distinctive output, particullary mapping process based on GIS with information about current weather status in certain cordinates of each region with capability to forecast for seven days afterward. Data used in this research are retrieved in real time from the server openweathermap and BMKG. In order to obtain a low error rate and high accuracy of forecasting, the authors use Bayesian Model Averaging (BMA) method. The result shows that the BMA method has good accuracy. Forecasting error value is calculated by mean square error shows (MSE). The error value emerges at minumum temperature rated at 0.28 and maximum temperature rated at 0.15. Meanwhile, the error value of minimum humidity rates at 0.38 and the error value of maximum humidity rates at 0.04. Afterall, the forecasting error rate of wind speed is at 0.076. The lower the forecasting error rate, the more optimized the accuracy is.
NASA Technical Reports Server (NTRS)
Crow, W. T.; Chen, F.; Reichle, R. H.; Liu, Q.
2017-01-01
Recent advances in remote sensing and land data assimilation purport to improve the quality of antecedent soil moisture information available for operational hydrologic forecasting. We objectively validate this claim by calculating the strength of the relationship between storm-scale runoff ratio (i.e., total stream flow divided by total rainfall accumulation in depth units) and pre-storm surface soil moisture estimates from a range of surface soil moisture data products. Results demonstrate that both satellite-based, L-band microwave radiometry and the application of land data assimilation techniques have significantly improved the utility of surface soil moisture data sets for forecasting stream flow response to future rainfall events.
Crow, W T; Chen, F; Reichle, R H; Liu, Q
2017-06-16
Recent advances in remote sensing and land data assimilation purport to improve the quality of antecedent soil moisture information available for operational hydrologic forecasting. We objectively validate this claim by calculating the strength of the relationship between storm-scale runoff ratio (i.e., total stream flow divided by total rainfall accumulation in depth units) and pre-storm surface soil moisture estimates from a range of surface soil moisture data products. Results demonstrate that both satellite-based, L-band microwave radiometry and the application of land data assimilation techniques have significantly improved the utility of surface soil moisture data sets for forecasting stream flow response to future rainfall events.
Crow, W.T.; Chen, F.; Reichle, R.H.; Liu, Q.
2018-01-01
Recent advances in remote sensing and land data assimilation purport to improve the quality of antecedent soil moisture information available for operational hydrologic forecasting. We objectively validate this claim by calculating the strength of the relationship between storm-scale runoff ratio (i.e., total stream flow divided by total rainfall accumulation in depth units) and pre-storm surface soil moisture estimates from a range of surface soil moisture data products. Results demonstrate that both satellite-based, L-band microwave radiometry and the application of land data assimilation techniques have significantly improved the utility of surface soil moisture data sets for forecasting stream flow response to future rainfall events. PMID:29657342
Holmes, Erin R; Tipton, David J; Desselle, Shane P
2002-01-01
The purpose of this study was to forecast the impact of Internet pharmacy commerce on various stakeholders. A panel of experts assembled from a list of academicians in the social and administrative pharmaceutical sciences participated in a three-iteration Delphi procedure. Feedback from the aggregate responses of the panel was used to construct questionnaires employed in subsequent iterations of the Delphi. The panel converged to form a consensus upon a variety of issues. They forecasted the attainment of a 10-15% share in the market of prescription and over-the-counter pharmaceuticals through on-line purchases, the formation of strategic alliances among stakeholders in the drug distribution process, a shift in marketing strategies by brick-and-mortar stores, an increase in the prevalence of niching among pharmacy service providers and a subsequent growth in the implementation of cognitive services throughout the industry. With few exceptions, the forecast produced by the Delphi panel appears to be coming to fruition.
Jatau, Bolajoko; Avong, Yohanna; Ogundahunsi, Olumide; Shah, Safieh; Tayler Smith, Katherine; Van den Bergh, Rafael; Zachariah, Rony; van Griensven, Johan; Ekong, Ernest; Dakum, Patrick
2015-01-01
Background The World Health Organisation (WHO) introduced the twelve early warning indicators for monitoring and evaluating drug Procurement and Supply management (PSM) systems, intended to prevent drug stock-outs and overstocking. Nigeria- one of the high Multi Drug Resistant Tuberculosis (MDR-TB) burden countries, scaled-up treatment in 2012 with the concurrent implementation of a PSM system. Method We evaluated how well this system functioned using the WHO indicators, including all seven MDR-TB treatment centres in the country that were functional throughout 2013. Results The quantity of MDR-TB drugs ordered for 2013 matched the annual forecast and all central orders placed during the year were delivered in full and on time. Drug consumption was 81%–106% of the quantity allocated for routine consumption. Timely submission of complete inventory reports ranged from 86–100%, late submissions being 5–15 days late. Forty to 71% of treatment centres placed a drug order when stock was below the minimum level of three months. The proportion of drug orders received at the treatment centres in full and on time ranged from 29–80%, late orders being 1–19 days late. Conclusion The PSM was found to be performing well in terms of forecasting and procurement of MDR-TB drugs, but there were shortcomings in drug distribution, reporting at treatment centre level and in drug order placements. Despite these gaps, there were no stock outs. These findings indicate that where it matters most, namely ensuring that no drug stock outs affect patient management, the PSM system is effective. Addressing the observed shortcomings will help to strengthen the existing PSM system in anticipation of a growing MDR-TB case burden in the country. PMID:26098673
Ballarin, Antonio; Posteraro, Brunella; Demartis, Giuseppe; Gervasi, Simona; Panzarella, Fabrizio; Torelli, Riccardo; Paroni Sterbini, Francesco; Morandotti, Grazia; Posteraro, Patrizia; Ricciardi, Walter; Gervasi Vidal, Kristian A; Sanguinetti, Maurizio
2014-12-06
Mathematical or statistical tools are capable to provide a valid help to improve surveillance systems for healthcare and non-healthcare-associated bacterial infections. The aim of this work is to evaluate the time-varying auto-adaptive (TVA) algorithm-based use of clinical microbiology laboratory database to forecast medically important drug-resistant bacterial infections. Using TVA algorithm, six distinct time series were modelled, each one representing the number of episodes per single 'ESKAPE' (E nterococcus faecium, S taphylococcus aureus, K lebsiella pneumoniae, A cinetobacter baumannii, P seudomonas aeruginosa and E nterobacter species) infecting pathogen, that had occurred monthly between 2002 and 2011 calendar years at the Università Cattolica del Sacro Cuore general hospital. Monthly moving averaged numbers of observed and forecasted ESKAPE infectious episodes were found to show a complete overlapping of their respective smoothed time series curves. Overall good forecast accuracy was observed, with percentages ranging from 82.14% for E. faecium infections to 90.36% for S. aureus infections. Our approach may regularly provide physicians with forecasted bacterial infection rates to alert them about the spread of antibiotic-resistant bacterial species, especially when clinical microbiological results of patients' specimens are delayed.
NASA Astrophysics Data System (ADS)
Li, D.; Fang, N. Z.
2017-12-01
Dallas-Fort Worth Metroplex (DFW) has a population of over 7 million depending on many water supply reservoirs. The reservoir inflow plays a vital role in water supply decision making process and long-term strategic planning for the region. This paper demonstrates a method of utilizing deep learning algorithms and multi-general circulation model (GCM) platform to forecast reservoir inflow for three reservoirs within the DFW: Eagle Mountain Lake, Lake Benbrook and Lake Arlington. Ensemble empirical mode decomposition was firstly employed to extract the features, which were then represented by the deep belief networks (DBNs). The first 75 years of the historical data (1940 -2015) were used to train the model, while the last 2 years of the data (2016-2017) were used for the model validation. The weights of each DBN gained from the training process were then applied to establish a neural network (NN) that was able to forecast reservoir inflow. Feature predictors used for the forecasting model were generated from weather forecast results of the downscaled multi-GCM platform for the North Texas region. By comparing root mean square error (RMSE) and mean bias error (MBE) with the observed data, the authors found that the deep learning with downscaled multi-GCM platform is an effective approach in the reservoir inflow forecasting.
NASA Astrophysics Data System (ADS)
Zarekarizi, M.; Moradkhani, H.; Yan, H.
2017-12-01
The Operational Probabilistic Drought Forecasting System (OPDFS) is an online tool recently developed at Portland State University for operational agricultural drought forecasting. This is an integrated statistical-dynamical framework issuing probabilistic drought forecasts monthly for the lead times of 1, 2, and 3 months. The statistical drought forecasting method utilizes copula functions in order to condition the future soil moisture values on the antecedent states. Due to stochastic nature of land surface properties, the antecedent soil moisture states are uncertain; therefore, data assimilation system based on Particle Filtering (PF) is employed to quantify the uncertainties associated with the initial condition of the land state, i.e. soil moisture. PF assimilates the satellite soil moisture data to Variable Infiltration Capacity (VIC) land surface model and ultimately updates the simulated soil moisture. The OPDFS builds on the NOAA's seasonal drought outlook by offering drought probabilities instead of qualitative ordinal categories and provides the user with the probability maps associated with a particular drought category. A retrospective assessment of the OPDFS showed that the forecasting of the 2012 Great Plains and 2014 California droughts were possible at least one month in advance. The OPDFS offers a timely assistance to water managers, stakeholders and decision-makers to develop resilience against uncertain upcoming droughts.
Arditte Hall, Kimberly A; Joormann, Jutta; Siemer, Matthias; Timpano, Kiara R
2018-07-01
People tend to overestimate the intensity and duration of affect (i.e., impact bias) when making predictions about their own and others' responding, termed affective and empathic forecasting, respectively. Research links impact biases to clinical symptoms of affective disorders, but little work has been done to examine how social anxiety is related to affective and empathic forecasting biases. The current investigation included two studies examining these associations in independent samples of young adults with dimensionally distributed social anxiety symptoms. Study 1 (N = 100) examined the associations between social anxiety and affective and empathic forecasts in response to a series of novel hypothetical vignettes in which a second-person narrator (i.e., the self) elicited anger, disgust, or happiness from another person (i.e., the other). Study 2 utilized an innovative experimental paradigm involving N = 68 participant dyads. Overall, results supported the existence of affective and empathic forecasting biases. Further, symptoms of social anxiety were associated with the tendency to overestimate one's own and others' negative affect and underestimate others' positive affect. Such forecasting biases may help to explain the avoidance that is characteristic of individuals with social anxiety and could represent a fruitful target of cognitive behavioral intervention. Copyright © 2018 Elsevier Ltd. All rights reserved.
Jiang, Huaiguang; Zhang, Yingchen; Muljadi, Eduard; ...
2016-01-01
This paper proposes an approach for distribution system load forecasting, which aims to provide highly accurate short-term load forecasting with high resolution utilizing a support vector regression (SVR) based forecaster and a two-step hybrid parameters optimization method. Specifically, because the load profiles in distribution systems contain abrupt deviations, a data normalization is designed as the pretreatment for the collected historical load data. Then an SVR model is trained by the load data to forecast the future load. For better performance of SVR, a two-step hybrid optimization algorithm is proposed to determine the best parameters. In the first step of themore » hybrid optimization algorithm, a designed grid traverse algorithm (GTA) is used to narrow the parameters searching area from a global to local space. In the second step, based on the result of the GTA, particle swarm optimization (PSO) is used to determine the best parameters in the local parameter space. After the best parameters are determined, the SVR model is used to forecast the short-term load deviation in the distribution system. The performance of the proposed approach is compared to some classic methods in later sections of the paper.« less
Systems modeling and analysis for Saudi Arabian electric power requirements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Mohawes, N.A.
This thesis addresses the long-range generation planning problem in Saudi Arabia up to the year 2000. The first part presents various models for electric energy consumption in the residential and industrial sectors. These models can be used by the decision makers for the purposes of policy analysis, evaluation, and forecasting. Forecasts of energy in each sector are obtained from two different models for each sector. These models are based on two forecasting techniques: (1) Hybrid econometric/time series model. The idea of adaptive smoothing was utilized to produce forecasts under several scenarios. (2) Box-Jenkins time series technique. Box-Jenkins models and forecastsmore » are developed for the monthly number of electric consumers and the monthly energy consumption per consumer. The results obtained indicate that high energy consumption is expected during the coming two decades which necessitate serious energy assessment and optimization. Optimization of a mix of energy sources was considered using the group multiattribute utility (MAU) function. The results of MAU for three classes of decision makers (managerial, technical, and consumers) are developed through personal interactions. The computer package WASP was also used to develop a tentative optimum plan. According to this plan, four heavy-water nuclear power plants (800 MW) and four light-water nuclear power plants (1200 MW) have to be introduced by the year 2000 in addition to sixteen oil-fired power plants (400 MW) and nine gas turbines (100 MW).« less
NASA Astrophysics Data System (ADS)
Brown, James; Seo, Dong-Jun
2010-05-01
Operational forecasts of hydrometeorological and hydrologic variables often contain large uncertainties, for which ensemble techniques are increasingly used. However, the utility of ensemble forecasts depends on the unbiasedness of the forecast probabilities. We describe a technique for quantifying and removing biases from ensemble forecasts of hydrometeorological and hydrologic variables, intended for use in operational forecasting. The technique makes no a priori assumptions about the distributional form of the variables, which is often unknown or difficult to model parametrically. The aim is to estimate the conditional cumulative distribution function (ccdf) of the observed variable given a (possibly biased) real-time ensemble forecast from one or several forecasting systems (multi-model ensembles). The technique is based on Bayesian optimal linear estimation of indicator variables, and is analogous to indicator cokriging (ICK) in geostatistics. By developing linear estimators for the conditional expectation of the observed variable at many thresholds, ICK provides a discrete approximation of the full ccdf. Since ICK minimizes the conditional error variance of the indicator expectation at each threshold, it effectively minimizes the Continuous Ranked Probability Score (CRPS) when infinitely many thresholds are employed. However, the ensemble members used as predictors in ICK, and other bias-correction techniques, are often highly cross-correlated, both within and between models. Thus, we propose an orthogonal transform of the predictors used in ICK, which is analogous to using their principal components in the linear system of equations. This leads to a well-posed problem in which a minimum number of predictors are used to provide maximum information content in terms of the total variance explained. The technique is used to bias-correct precipitation ensemble forecasts from the NCEP Global Ensemble Forecast System (GEFS), for which independent validation results are presented. Extension to multimodel ensembles from the NCEP GFS and Short Range Ensemble Forecast (SREF) systems is also proposed.
Zuppa, Athena; Vijayakumar, Sundararajan; Jayaraman, Bhuvana; Patel, Dimple; Narayan, Mahesh; Vijayakumar, Kalpana; Mondick, John T; Barrett, Jeffrey S
2007-09-01
Drug utilization in the inpatient setting can provide a mechanism to assess drug prescribing trends, efficiency, and cost-effectiveness of hospital formularies and examine subpopulations for which prescribing habits may be different. Such data can be used to correlate trends with time-dependent or seasonal changes in clinical event rates or the introduction of new pharmaceuticals. It is now possible to provide a robust, dynamic analysis of drug utilization in a large pediatric inpatient setting through the creation of a Web-based hospital drug utilization system that retrieves source data from our accounting database. The production implementation provides a dynamic and historical account of drug utilization at the authors' institution. The existing application can easily be extended to accommodate a multi-institution environment. The creation of a national or even global drug utilization network would facilitate the examination of geographical and/or socioeconomic influences in drug utilization and prescribing practices in general.
Forecast of dengue incidence using temperature and rainfall.
Hii, Yien Ling; Zhu, Huaiping; Ng, Nawi; Ng, Lee Ching; Rocklöv, Joacim
2012-01-01
An accurate early warning system to predict impending epidemics enhances the effectiveness of preventive measures against dengue fever. The aim of this study was to develop and validate a forecasting model that could predict dengue cases and provide timely early warning in Singapore. We developed a time series Poisson multivariate regression model using weekly mean temperature and cumulative rainfall over the period 2000-2010. Weather data were modeled using piecewise linear spline functions. We analyzed various lag times between dengue and weather variables to identify the optimal dengue forecasting period. Autoregression, seasonality and trend were considered in the model. We validated the model by forecasting dengue cases for week 1 of 2011 up to week 16 of 2012 using weather data alone. Model selection and validation were based on Akaike's Information Criterion, standardized Root Mean Square Error, and residuals diagnoses. A Receiver Operating Characteristics curve was used to analyze the sensitivity of the forecast of epidemics. The optimal period for dengue forecast was 16 weeks. Our model forecasted correctly with errors of 0.3 and 0.32 of the standard deviation of reported cases during the model training and validation periods, respectively. It was sensitive enough to distinguish between outbreak and non-outbreak to a 96% (CI = 93-98%) in 2004-2010 and 98% (CI = 95%-100%) in 2011. The model predicted the outbreak in 2011 accurately with less than 3% possibility of false alarm. We have developed a weather-based dengue forecasting model that allows warning 16 weeks in advance of dengue epidemics with high sensitivity and specificity. We demonstrate that models using temperature and rainfall could be simple, precise, and low cost tools for dengue forecasting which could be used to enhance decision making on the timing, scale of vector control operations, and utilization of limited resources.
Major Risks, Uncertain Outcomes: Making Ensemble Forecasts Work for Multiple Audiences
NASA Astrophysics Data System (ADS)
Semmens, K. A.; Montz, B.; Carr, R. H.; Maxfield, K.; Ahnert, P.; Shedd, R.; Elliott, J.
2017-12-01
When extreme river levels are possible in a community, effective communication of weather and hydrologic forecasts is critical to protect life and property. Residents, emergency personnel, and water resource managers need to make timely decisions about how and when to prepare. Uncertainty in forecasting is a critical component of this decision-making, but often poses a confounding factor for public and professional understanding of forecast products. In 2016 and 2017, building on previous research about the use of uncertainty forecast products, and with funding from NOAA's CSTAR program, East Carolina University and Nurture Nature Center (a non-profit organization with a focus on flooding issues, based in Easton, PA) conducted a research project to understand how various audiences use and interpret ensemble forecasts showing a range of hydrologic forecast possibilities. These audiences include community residents, emergency managers and water resource managers. The research team held focus groups in Jefferson County, WV and Frederick County, MD, to test a new suite of products from the National Weather Service's Hydrologic Ensemble Forecast System (HEFS). HEFS is an ensemble system that provides short and long-range forecasts, ranging from 6 hours to 1 year, showing uncertainty in hydrologic forecasts. The goal of the study was to assess the utility of the HEFS products, identify the barriers to proper understanding of the products, and suggest modifications to product design that could improve the understandability and accessibility for residential, emergency managers, and water resource managers. The research team worked with the Sterling, VA Weather Forecast Office and the Middle Atlantic River Forecast center to develop a weather scenario as the basis of the focus group discussions, which also included pre and post session surveys. This presentation shares the findings from those focus group discussions and surveys, including recommendations for revisions to HEFS products to improve accessibility of the forecast tools for various audiences. The presentation will provide a broad perspective on the range of graphic design considerations that affected how the public responded to products and will provide an overview of lessons learned about how product design can influence decision-making by users.
Utility of flood warning systems for emergency management
NASA Astrophysics Data System (ADS)
Molinari, Daniela; Ballio, Francesco; Menoni, Scira
2010-05-01
The presentation is focused on a simple and crucial question for warning systems: are flood and hydrological modelling and forecasting helpful to manage flood events? Indeed, it is well known that a warning process can be invalidated by inadequate forecasts so that the accuracy and robustness of the previsional model is a key issue for any flood warning procedure. However, one problem still arises at this perspective: when forecasts can be considered to be adequate? According to Murphy (1993, Wea. Forecasting 8, 281-293), forecasts hold no intrinsic value but they acquire it through their ability to influence the decisions made by their users. Moreover, we can add that forecasts value depends on the particular problem at stake showing, this way, a multifaceted nature. As a result, forecasts verification should not be seen as a universal process, instead it should be tailored to the particular context in which forecasts are implemented. This presentation focuses on warning problems in mountain regions, whereas the short time which is distinctive of flood events makes the provision of adequate forecasts particularly significant. In this context, the quality of a forecast is linked to its capability to reduce the impact of a flood by improving the correctness of the decision about issuing (or not) a warning as well as of the implementation of a proper set of actions aimed at lowering potential flood damages. The present study evaluates the performance of a real flood forecasting system from this perspective. In detail, a back analysis of past flood events and available verification tools have been implemented. The final objective was to evaluate the system ability to support appropriate decisions with respect not only to the flood characteristics but also to the peculiarities of the area at risk as well as to the uncertainty of forecasts. This meant to consider also flood damages and forecasting uncertainty among the decision variables. Last but not least, the presentation explains how the procedure implemented in the case study could support the definition of a proper warning rule.
Forecasting state-level premature deaths from alcohol, drugs, and suicides using Google Trends data.
Parker, Jason; Cuthbertson, Courtney; Loveridge, Scott; Skidmore, Mark; Dyar, Will
2017-04-15
Vital statistics on the number of, alcohol-induced death (AICD) drug-induced death (DICD), and suicides at the local-level are only available after a substantial lag of up to two years after the events occur. We (1) investigate how well Google Trends search data explain variation in state-level rates in the US, and (2) use this method to forecast these rates of death for 2015 as official data are not yet available. We tested the degree to which Google Trends data on 27 terms can be fit to CDC data using L 1 -regularization on AICD, DICD, and suicide. Using Google Trends data, we forecast 2015 AICD, DICD, and suicide rates. L 1 -regularization fit the pre-2015 data much better than the alternative model using state-level unemployment and income variables. Google Trends data account for substantial variation in growth of state-level rates of death: 30.9% for AICD, 23.9% for DICD, and 21.8% for suicide rates. Every state except Hawaii is forecasted to increase in all three of these rates in 2015. The model predicts state, not local or individual behavior, and is dependent on continued availability of Google Trends data. The method predicts state-level AICD, DICD, and suicide rates better than the alternative model. The study findings suggest that this methodology can be developed into a public health surveillance system for behavioral health-related causes of death. State-level predictions could be used to inform state interventions aimed at reducing AICD, DICD, and suicide. Copyright © 2017. Published by Elsevier B.V.
Giovannelli, J; Loury, P; Lainé, M; Spaccaferri, G; Hubert, B; Chaud, P
2015-05-01
To describe and evaluate the forecasts of the load that pandemic A(H1N1)2009 influenza would have on the general practitioners (GP) and hospital care systems, especially during its peak, in the Nord-Pas-de-Calais (NPDC) region, France. Modelling study. The epidemic curve was modelled using an assumption of normal distribution of cases. The values for the forecast parameters were estimated from a literature review of observed data from the Southern hemisphere and French Overseas Territories, where the pandemic had already occurred. Two scenarios were considered, one realistic, the other pessimistic, enabling the authors to evaluate the 'reasonable worst case'. Forecasts were then assessed by comparing them with observed data in the NPDC region--of 4 million people. The realistic scenarios forecasts estimated 300,000 cases, 1500 hospitalizations, 225 intensive care units (ICU) admissions for the pandemic wave; 115 hospital beds and 45 ICU beds would be required per day during the peak. The pessimistic scenario's forecasts were 2-3 times higher than the realistic scenario's forecasts. Observed data were: 235,000 cases, 1585 hospitalizations, 58 ICU admissions; and a maximum of 11.6 ICU beds per day. The realistic scenario correctly estimated the temporal distribution of GP and hospitalized cases but overestimated the number of cases admitted to ICU. Obtaining more robust data for parameters estimation--particularly the rate of ICU admission among the population that the authors recommend to use--may provide better forecasts. Copyright © 2015 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Dong, Sheng; Chi, Kun; Zhang, Qiyi; Zhang, Xiangdong
2012-03-01
Compared with traditional real-time forecasting, this paper proposes a Grey Markov Model (GMM) to forecast the maximum water levels at hydrological stations in the estuary area. The GMM combines the Grey System and Markov theory into a higher precision model. The GMM takes advantage of the Grey System to predict the trend values and uses the Markov theory to forecast fluctuation values, and thus gives forecast results involving two aspects of information. The procedure for forecasting annul maximum water levels with the GMM contains five main steps: 1) establish the GM (1, 1) model based on the data series; 2) estimate the trend values; 3) establish a Markov Model based on relative error series; 4) modify the relative errors caused in step 2, and then obtain the relative errors of the second order estimation; 5) compare the results with measured data and estimate the accuracy. The historical water level records (from 1960 to 1992) at Yuqiao Hydrological Station in the estuary area of the Haihe River near Tianjin, China are utilized to calibrate and verify the proposed model according to the above steps. Every 25 years' data are regarded as a hydro-sequence. Eight groups of simulated results show reasonable agreement between the predicted values and the measured data. The GMM is also applied to the 10 other hydrological stations in the same estuary. The forecast results for all of the hydrological stations are good or acceptable. The feasibility and effectiveness of this new forecasting model have been proved in this paper.
The perils of healthcare workforce forecasting: a case study of the Philadelphia metropolitan area.
Smith, David Barton; Aaronson, William
2003-01-01
In 1996, a widely circulated and influential forecast for the Philadelphia Metropolitan Area stated that a decline in hospital and healthcare employment in the region would occur over the next five years. It also suggested that this decline would exacerbate the problem of an oversupply of nurses seeking hospital employment. The forecast reflected a regional leadership and expert consensus on the impact of the managed care transformation on workforce needs and was supported by short-term statistical trends in regional utilization and employment. Confounding these predictions was the fact that hospital and healthcare employment actually grew. By the end of 2001, hospitals in the region were experiencing problems in recruiting sufficient numbers of nurses, pharmacists, and technicians. The forecast failed to anticipate the impact of a strong regional economy on supply and underestimated the resilience of underlying forces that have driven the long-term growth in healthcare workforce demand. More effective ongoing monitoring can help moderate the fluctuation of workforce shortages and surpluses.
NASA Astrophysics Data System (ADS)
Luo, Hongyuan; Wang, Deyun; Yue, Chenqiang; Liu, Yanling; Guo, Haixiang
2018-03-01
In this paper, a hybrid decomposition-ensemble learning paradigm combining error correction is proposed for improving the forecast accuracy of daily PM10 concentration. The proposed learning paradigm is consisted of the following two sub-models: (1) PM10 concentration forecasting model; (2) error correction model. In the proposed model, fast ensemble empirical mode decomposition (FEEMD) and variational mode decomposition (VMD) are applied to disassemble original PM10 concentration series and error sequence, respectively. The extreme learning machine (ELM) model optimized by cuckoo search (CS) algorithm is utilized to forecast the components generated by FEEMD and VMD. In order to prove the effectiveness and accuracy of the proposed model, two real-world PM10 concentration series respectively collected from Beijing and Harbin located in China are adopted to conduct the empirical study. The results show that the proposed model performs remarkably better than all other considered models without error correction, which indicates the superior performance of the proposed model.
NASA Technical Reports Server (NTRS)
Case, Jonathan L.; Wheeler, Mark M.; Merceret, Francis J. (Technical Monitor)
2002-01-01
The nocturnal land breeze at the Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) is both operationally significant and challenging to forecast. The occurrence and timing of land breezes impact low-level winds, atmospheric stability, low temperatures, and fog development. Accurate predictions of the land breeze are critical for toxic material dispersion forecasts associated with space launch missions, since wind direction and low-level stability can change noticeably with the onset of a land breeze. This report presents a seven-year observational study of land breezes over east-central Florida from 1995 to 2001. This comprehensive analysis was enabled by the high-resolution tower observations over KSC/CCAFS. Five-minute observations of winds, temperature, and moisture along with 9 15-MHz Doppler Radar Wind Profiler data were used to analyze specific land-breeze cases, while the tower data were used to construct a composite climatology. Utilities derived from this climatology were developed to assist forecasters in determining the land-breeze occurrence, timing, and movement based on predicted meteorological conditions.
Overview of Hydrometeorologic Forecasting Procedures at BC Hydro
NASA Astrophysics Data System (ADS)
McCollor, D.
2004-12-01
Energy utility companies must balance production from limited sources with increasing demand from industrial, business, and residential consumers. The utility planning process requires a balanced, efficient, and effective distribution of energy from source to consumer. Therefore utility planners must consider the impact of weather on energy production and consumption. Hydro-electric companies should be particularly tuned to weather because their source of energy is water, and water supply depends on precipitation. BC Hydro operates as the largest hydro-electric company in western Canada, managing over 30 reservoirs within the province of British Columbia, and generating electricity for 1.6 million people. BC Hydro relies on weather forecasts of watershed precipitation and temperature to drive hydrologic reservoir inflow models and of urban temperatures to meet energy demand requirements. Operations and planning specialists in the company rely on current, value-added weather forecasts for extreme high-inflow events, daily reservoir operations planning, and long-term water resource management. Weather plays a dominant role for BC Hydro financial planners in terms of sensitive economic responses. For example, a two percent change in hydropower generation, due in large part to annual precipitation patterns, results in an annual net change of \\50 million in earnings. A five percent change in temperature produces a \\5 million change in yearly earnings. On a daily basis, significant precipitation events or temperature extremes involve potential profit/loss decisions in the tens of thousands of dollars worth of power generation. These factors are in addition to environmental and societal costs that must be considered equally as part of a triple bottom line reporting structure. BC Hydro water resource managers require improved meteorological information from recent advancements in numerical weather prediction. At BC Hydro, methods of providing meteorological forecast data are changing as new downscaling and ensemble techniques evolve to improve environmental information supplied to water managers.
NASA Technical Reports Server (NTRS)
Post, Jonathan V.
1990-01-01
For particularly innovative space exploration missions, unusual requirements are levied on the structural components of the spacecraft. In many cases, the preferred solution is the utilization of unusual materials. This trend is forecast to continue. Several hypothetic examples are discussed.
Short-term Forecasting Tools for Agricultural Nutrient Management.
Easton, Zachary M; Kleinman, Peter J A; Buda, Anthony R; Goering, Dustin; Emberston, Nichole; Reed, Seann; Drohan, Patrick J; Walter, M Todd; Guinan, Pat; Lory, John A; Sommerlot, Andrew R; Sharpley, Andrew
2017-11-01
The advent of real-time, short-term farm management tools is motivated by the need to protect water quality above and beyond the general guidance offered by existing nutrient management plans. Advances in high-performance computing and hydrologic or climate modeling have enabled rapid dissemination of real-time information that can assist landowners and conservation personnel with short-term management planning. This paper reviews short-term decision support tools for agriculture that are under various stages of development and implementation in the United States: (i) Wisconsin's Runoff Risk Advisory Forecast (RRAF) System, (ii) New York's Hydrologically Sensitive Area Prediction Tool, (iii) Virginia's Saturated Area Forecast Model, (iv) Pennsylvania's Fertilizer Forecaster, (v) Washington's Application Risk Management (ARM) System, and (vi) Missouri's Design Storm Notification System. Although these decision support tools differ in their underlying model structure, the resolution at which they are applied, and the hydroclimates to which they are relevant, all provide forecasts (range 24-120 h) of runoff risk or soil moisture saturation derived from National Weather Service Forecast models. Although this review highlights the need for further development of robust and well-supported short-term nutrient management tools, their potential for adoption and ultimate utility requires an understanding of the appropriate context of application, the strategic and operational needs of managers, access to weather forecasts, scales of application (e.g., regional vs. field level), data requirements, and outreach communication structure. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
NASA Technical Reports Server (NTRS)
Prive, Nikki C.; Errico, Ronald M.
2013-01-01
A series of experiments that explore the roles of model and initial condition error in numerical weather prediction are performed using an observing system simulation experiment (OSSE) framework developed at the National Aeronautics and Space Administration Global Modeling and Assimilation Office (NASA/GMAO). The use of an OSSE allows the analysis and forecast errors to be explicitly calculated, and different hypothetical observing networks can be tested with ease. In these experiments, both a full global OSSE framework and an 'identical twin' OSSE setup are utilized to compare the behavior of the data assimilation system and evolution of forecast skill with and without model error. The initial condition error is manipulated by varying the distribution and quality of the observing network and the magnitude of observation errors. The results show that model error has a strong impact on both the quality of the analysis field and the evolution of forecast skill, including both systematic and unsystematic model error components. With a realistic observing network, the analysis state retains a significant quantity of error due to systematic model error. If errors of the analysis state are minimized, model error acts to rapidly degrade forecast skill during the first 24-48 hours of forward integration. In the presence of model error, the impact of observation errors on forecast skill is small, but in the absence of model error, observation errors cause a substantial degradation of the skill of medium range forecasts.
Probabilistic eruption forecasting at short and long time scales
NASA Astrophysics Data System (ADS)
Marzocchi, Warner; Bebbington, Mark S.
2012-10-01
Any effective volcanic risk mitigation strategy requires a scientific assessment of the future evolution of a volcanic system and its eruptive behavior. Some consider the onus should be on volcanologists to provide simple but emphatic deterministic forecasts. This traditional way of thinking, however, does not deal with the implications of inherent uncertainties, both aleatoric and epistemic, that are inevitably present in observations, monitoring data, and interpretation of any natural system. In contrast to deterministic predictions, probabilistic eruption forecasting attempts to quantify these inherent uncertainties utilizing all available information to the extent that it can be relied upon and is informative. As with many other natural hazards, probabilistic eruption forecasting is becoming established as the primary scientific basis for planning rational risk mitigation actions: at short-term (hours to weeks or months), it allows decision-makers to prioritize actions in a crisis; and at long-term (years to decades), it is the basic component for land use and emergency planning. Probabilistic eruption forecasting consists of estimating the probability of an eruption event and where it sits in a complex multidimensional time-space-magnitude framework. In this review, we discuss the key developments and features of models that have been used to address the problem.
A clustering-based fuzzy wavelet neural network model for short-term load forecasting.
Kodogiannis, Vassilis S; Amina, Mahdi; Petrounias, Ilias
2013-10-01
Load forecasting is a critical element of power system operation, involving prediction of the future level of demand to serve as the basis for supply and demand planning. This paper presents the development of a novel clustering-based fuzzy wavelet neural network (CB-FWNN) model and validates its prediction on the short-term electric load forecasting of the Power System of the Greek Island of Crete. The proposed model is obtained from the traditional Takagi-Sugeno-Kang fuzzy system by replacing the THEN part of fuzzy rules with a "multiplication" wavelet neural network (MWNN). Multidimensional Gaussian type of activation functions have been used in the IF part of the fuzzyrules. A Fuzzy Subtractive Clustering scheme is employed as a pre-processing technique to find out the initial set and adequate number of clusters and ultimately the number of multiplication nodes in MWNN, while Gaussian Mixture Models with the Expectation Maximization algorithm are utilized for the definition of the multidimensional Gaussians. The results corresponding to the minimum and maximum power load indicate that the proposed load forecasting model provides significantly accurate forecasts, compared to conventional neural networks models.
Improved Modeling Tools Development for High Penetration Solar
DOE Office of Scientific and Technical Information (OSTI.GOV)
Washom, Byron; Meagher, Kevin
2014-12-11
One of the significant objectives of the High Penetration solar research is to help the DOE understand, anticipate, and minimize grid operation impacts as more solar resources are added to the electric power system. For Task 2.2, an effective, reliable approach to predicting solar energy availability for energy generation forecasts using the University of California, San Diego (UCSD) Sky Imager technology has been demonstrated. Granular cloud and ramp forecasts for the next 5 to 20 minutes over an area of 10 square miles were developed. Sky images taken every 30 seconds are processed to determine cloud locations and cloud motionmore » vectors yielding future cloud shadow locations respective to distributed generation or utility solar power plants in the area. The performance of the method depends on cloud characteristics. On days with more advective cloud conditions, the developed method outperforms persistence forecasts by up to 30% (based on mean absolute error). On days with dynamic conditions, the method performs worse than persistence. Sky Imagers hold promise for ramp forecasting and ramp mitigation in conjunction with inverter controls and energy storage. The pre-commercial Sky Imager solar forecasting algorithm was documented with licensing information and was a Sunshot website highlight.« less
Forecasting Behavior in Smart Homes Based on Sleep and Wake Patterns
Williams, Jennifer A.; Cook, Diane J.
2017-01-01
Background The goal of this research is to use smart home technology to assist people who are recovering from injuries or coping with disabilities to live independently. Objective We introduce an algorithm to model and forecast wake and sleep behaviors that are exhibited by the participant. Furthermore, we propose that sleep behavior is impacted by and can be modeled from wake behavior, and vice versa. Methods This paper describes the Behavior Forecasting (BF) algorithm. BF consists of 1) defining numeric values that reflect sleep and wake behavior, 2) forecasting wake and sleep values from past behavior, 3) analyzing the effect of wake behavior on sleep and vice versa, and 4) improving prediction performance by using both wake and sleep scores. Results The BF method was evaluated with data collected from 20 smart homes. We found that regardless of the forecasting method utilized, wake behavior and sleep behavior can be modeled with a minimum accuracy of 84%. Additionally, normalizing the wake and sleep scores drastically improves the accuracy to 99%. Conclusions The results show that we can effectively model wake and sleep behaviors in a smart environment. Furthermore, wake behaviors can be predicted from sleep behaviors and vice versa. PMID:27689555
Forecasting behavior in smart homes based on sleep and wake patterns.
Williams, Jennifer A; Cook, Diane J
2017-01-01
The goal of this research is to use smart home technology to assist people who are recovering from injuries or coping with disabilities to live independently. We introduce an algorithm to model and forecast wake and sleep behaviors that are exhibited by the participant. Furthermore, we propose that sleep behavior is impacted by and can be modeled from wake behavior, and vice versa. This paper describes the Behavior Forecasting (BF) algorithm. BF consists of 1) defining numeric values that reflect sleep and wake behavior, 2) forecasting wake and sleep values from past behavior, 3) analyzing the effect of wake behavior on sleep and vice versa, and 4) improving prediction performance by using both wake and sleep scores. The BF method was evaluated with data collected from 20 smart homes. We found that regardless of the forecasting method utilized, wake behavior and sleep behavior can be modeled with a minimum accuracy of 84%. Additionally, normalizing the wake and sleep scores drastically improves the accuracy to 99%. The results show that we can effectively model wake and sleep behaviors in a smart environment. Furthermore, wake behaviors can be predicted from sleep behaviors and vice versa.
Barlas, İbrahim Ömer; Sezgin, Orhan; Dandara, Collet; Türköz, Gözde; Yengel, Emre; Cindi, Zinhle; Ankaralı, Handan; Şardaş, Semra
2016-10-01
Pharmacogenomics harnesses the utility of a patient's genome (n = 1) in decisions on which therapeutic drugs and in what amounts should be administered. Often, patients with shared ancestry present with comparable genetic profiles that predict drug response. However, populations are not static, thus, often, population mobility through migration, especially enmasse as is seen for refugees, changes the pharmacogenetic profiles of resultant populations and therefore observed responses to commonly used therapeutic drugs. For example, in the aftermath of the Syrian civil war since 2011, millions have fled their homes to neighboring countries in the Middle East. The growing permanence of refugees and mass migrations is a call to shift our focus in the life sciences community from old models of pharmaceutical innovation. These seismic social changes demand faster decisions for "population-to-population bridging," whereby novel drugs developed in or for particular regions/countries can meet with rational regulatory decisions/approval in world regions impacted by migrant/refugee populations whose profiles are dynamic, such as in the Eastern Mediterranean region at present. Thus, it is important to characterize and report on the prevalence of pharmacogenes that affect commonly used medications and predict if population changes may call for attention to particular differences that may impact health of patients. Thus, we report here on four single-nucleotide polymorphism (SNP) variations in CYP2C9 and CYP2C19 genes among Mersin-Turkish healthy volunteers in the Mersin Province in the Eastern Mediterranean region that is currently hosting a vast number of migrant populations from Syria. Both CYP2C9 and CYP2C19 are very important pharmacogene molecular targets. We compare and report here on the observed SNP genetic variation in our sample with data on 12 world populations from dbSNP and discuss the feasibility of forecasting the pharmacokinetics of drugs utilized by migrant communities in Mersin and the Eastern Mediterranean region. This study can serve as a catalyst to invest in research in Syrian populations currently living in the Eastern Mediterranean. The findings have salience for rapid and rational regulatory decision-making for worldwide precision medicine and, specifically, "pharmacogenovigilance-guided bridging of pharmacokinetics" across world populations in the current era of planetary scale migration.
NASA Astrophysics Data System (ADS)
Moore, A. W.; Bock, Y.; Geng, J.; Gutman, S. I.; Laber, J. L.; Morris, T.; Offield, D. G.; Small, I.; Squibb, M. B.
2012-12-01
We describe a system under development for generating ultra-low latency tropospheric delay and precipitable water vapor (PWV) estimates in situ at a prototype network of geodetic GPS sites in southern California, and demonstrating their utility in forecasting severe storms commonly associated with flooding and debris flow events along the west coast of North America through infusion of this meteorological data at NOAA National Weather Service (NWS) Forecast Offices and the NOAA Earth System Research Laboratory (ESRL). The first continuous geodetic GPS network was established in southern California in the early 1990s and much of it was converted to real-time (latency <1s) high-rate (1Hz) mode over the following decades. GPS stations are multi-purpose and can also provide estimates of tropospheric zenith delays, which can be converted into mm-accuracy PWV using collocated pressure and temperature measurements, the basis for GPS meteorology (Bevis et al. 1992, 1994; Duan et al. 1996) as implemented by NOAA with a nationwide distribution of about 300 GPS-Met stations providing PW estimates at subhourly resolution currently used in operational weather forecasting in the U.S. We improve upon the current paradigm of transmitting large quantities of raw data back to a central facility for processing into higher-order products. By operating semi-autonomously, each station will provide low-latency, high-fidelity and compact data products within the constraints of the narrow communications bandwidth that often occurs in the aftermath of natural disasters. The onsite ambiguity-resolved precise point positioning solutions are enabled by a power-efficient, low-cost, plug-in Geodetic Module for fusion of data from in situ sensors including GPS and a low-cost MEMS meteorological sensor package. The decreased latency (~5 minutes) PW estimates will provide the detailed knowledge of the distribution and magnitude of PW that NWS forecasters require to monitor and predict severe winter storms, landfalling atmospheric rivers, and summer thunderstorms associated with the North American monsoon. On the national level, the ESRL will evaluate the utility of ultra-low resolution GNSS observations to improve NOAA's warning and forecast capabilities. The overall objective is to better forecast, assess, and mitigate natural hazards through the flow of information from multiple geodetic stations to scientists, mission planners, decision makers, and first responders.
Transitioning NPOESS Data to Weather Offices: The SPoRT Paradigm with EOS Data
NASA Technical Reports Server (NTRS)
Jedlovec, Gary
2009-01-01
Real-time satellite information provides one of many data sources used by NWS weather forecast offices (WFOs) to diagnose current weather conditions and to assist in short-term forecast preparation. While GOES satellite data provides relatively coarse spatial resolution coverage of the continental U.S. on a 10-15 minute repeat cycle, polar orbiting imagery has the potential to provide snapshots of weather conditions at high-resolution in many spectral channels. Additionally, polar orbiting sounding data can provide additional information on the thermodynamic structure of the atmosphere in data sparse regions of at asynoptic observation times. The NASA Short-term Prediction Research and Transition (SPoRT) project has demonstrated the utility of polar orbiting MODIS and AIRS data on the Terra and Aqua satellites to improve weather diagnostics and short-term forecasting on the regional and local scales. SPoRT scientists work directly forecasters at selected WFOS in the Southern Region (SR) to help them ingest these unique data streams into their AWIPS system, understand how to use the data (through on-site and distance learn techniques), and demonstrate the utility of these products to address significant forecast problems. This process also prepares forecasters for the use of similar observational capabilities from NPOESS operational sensors. NPOESS environmental data records (EDRs) from the Visible 1 Infrared Imager I Radiometer Suite (VIIRS), the Cross-track Infrared Sounder (CrlS) and Advanced Technology Microwave Sounder (ATMS) instruments and additional value-added products produced by NESDIS will be available in near real-time and made available to WFOs to extend their use of NASA EOS data into the NPOESS era. These new data streams will be integrated into the NWs's new AWIPS II decision support tools. The AWIPS I1 system to be unveiled in WFOs in 2009 will be a JAVA-based decision support system which preserves the functionality of the existing systems and offers unique development opportunities for new data sources and applications in the Service Orientated Architecture ISOA) environment. This paper will highlight some of the SPoRT activities leading to the integration of VllRS and CrIS/ATMS data into the display capabilities of these new systems to support short-term forecasting problems at WFOs.
Reshaping drug development using 3D printing.
Awad, Atheer; Trenfield, Sarah J; Goyanes, Alvaro; Gaisford, Simon; Basit, Abdul W
2018-05-24
The pharmaceutical industry stands on the brink of a revolution, calling for the recognition and embracement of novel techniques. 3D printing (3DP) is forecast to reshape the way in which drugs are designed, manufactured, and used. Although a clear trend towards personalised fabrication is perceived, here we accentuate the merits and shortcomings of each technology, providing insights into aspects such as the efficiency of production, global supply, and logistics. Contemporary opportunities for 3DP in drug discovery and pharmaceutical development and manufacturing are unveiled, offering a forward-looking view on its potential uses as a digitised tool for personalised dispensing of drugs. Copyright © 2018 Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2011 CFR
2011-01-01
... distribution borrowers that are unaffiliated with a power supply borrower, or by distribution borrowers that are members of a power supply borrower that has a total utility plant less than $500 million and that is not itself a member of another power supply borrower with a total utility plant of $500 million or...
NASA Technical Reports Server (NTRS)
Hoffman, Ross N.; Nehrkorn, Thomas; Grassotti, Christopher
1997-01-01
We proposed a novel characterization of errors for numerical weather predictions. In its simplest form we decompose the error into a part attributable to phase errors and a remainder. The phase error is represented in the same fashion as a velocity field and is required to vary slowly and smoothly with position. A general distortion representation allows for the displacement and amplification or bias correction of forecast anomalies. Characterizing and decomposing forecast error in this way has two important applications, which we term the assessment application and the objective analysis application. For the assessment application, our approach results in new objective measures of forecast skill which are more in line with subjective measures of forecast skill and which are useful in validating models and diagnosing their shortcomings. With regard to the objective analysis application, meteorological analysis schemes balance forecast error and observational error to obtain an optimal analysis. Presently, representations of the error covariance matrix used to measure the forecast error are severely limited. For the objective analysis application our approach will improve analyses by providing a more realistic measure of the forecast error. We expect, a priori, that our approach should greatly improve the utility of remotely sensed data which have relatively high horizontal resolution, but which are indirectly related to the conventional atmospheric variables. In this project, we are initially focusing on the assessment application, restricted to a realistic but univariate 2-dimensional situation. Specifically, we study the forecast errors of the sea level pressure (SLP) and 500 hPa geopotential height fields for forecasts of the short and medium range. Since the forecasts are generated by the GEOS (Goddard Earth Observing System) data assimilation system with and without ERS 1 scatterometer data, these preliminary studies serve several purposes. They (1) provide a testbed for the use of the distortion representation of forecast errors, (2) act as one means of validating the GEOS data assimilation system and (3) help to describe the impact of the ERS 1 scatterometer data.
NASA Astrophysics Data System (ADS)
Hill, A.; Weiss, C.; Ancell, B. C.
2017-12-01
The basic premise of observation targeting is that additional observations, when gathered and assimilated with a numerical weather prediction (NWP) model, will produce a more accurate forecast related to a specific phenomenon. Ensemble-sensitivity analysis (ESA; Ancell and Hakim 2007; Torn and Hakim 2008) is a tool capable of accurately estimating the proper location of targeted observations in areas that have initial model uncertainty and large error growth, as well as predicting the reduction of forecast variance due to the assimilated observation. ESA relates an ensemble of NWP model forecasts, specifically an ensemble of scalar forecast metrics, linearly to earlier model states. A thorough investigation is presented to determine how different factors of the forecast process are impacting our ability to successfully target new observations for mesoscale convection forecasts. Our primary goals for this work are to determine: (1) If targeted observations hold more positive impact over non-targeted (i.e. randomly chosen) observations; (2) If there are lead-time constraints to targeting for convection; (3) How inflation, localization, and the assimilation filter influence impact prediction and realized results; (4) If there exist differences between targeted observations at the surface versus aloft; and (5) how physics errors and nonlinearity may augment observation impacts.Ten cases of dryline-initiated convection between 2011 to 2013 are simulated within a simplified OSSE framework and presented here. Ensemble simulations are produced from a cycling system that utilizes the Weather Research and Forecasting (WRF) model v3.8.1 within the Data Assimilation Research Testbed (DART). A "truth" (nature) simulation is produced by supplying a 3-km WRF run with GFS analyses and integrating the model forward 90 hours, from the beginning of ensemble initialization through the end of the forecast. Target locations for surface and radiosonde observations are computed 6, 12, and 18 hours into the forecast based on a chosen scalar forecast response metric (e.g., maximum reflectivity at convection initiation). A variety of experiments are designed to achieve the aforementioned goals and will be presented, along with their results, detailing the feasibility of targeting for mesoscale convection forecasts.
Near Real{time Data Assimilation for the HYSPLIT Aerosol Dispersion Model
NASA Astrophysics Data System (ADS)
Kalpakis, K.; Yang, S.; Yesha, Y.
2010-12-01
Konstantinos Kalpakis, Shiming Yang, and Yaacov Yesha Department of Computer Science and Electrical Engineering University of Maryland Baltimore County 1000 Hilltop Circle, Baltimore, MD, U.S.A. {kalpakis, shiming1, yayeshag}@csee.umbc.edu ABSTRACT We are working on an IBM-funded project seeking to develop a prototype system for real-time plume dispersion and fire and smoke detection and monitoring. Our prototype system utilizes HYSPLIT and observation data from various sources. HYSPLIT is a model developed by NOAA's Air Resources Laboratory for forecasting aerosol trajectories, dispersion, and concentration from emission sources. It is used extensively by NOAA to routinely provide a number of data products. We develop a data assimilation system for assimilating observational data into the forecasting model in order to improve its forecasting accuracy. Our system is based on the Local Ensemble Transform Kalman Filter (LETKF) algorithm and it is computationally efficient. We evaluate our data assimilation system with real in-situ observational data, and find that our system improves upon HYSPLIT's forecast by reducing the normalized mean squared error and the bias. We are also experimenting with assimilating MODIS data with HYSPLIT model forecasts. To this end, we extrapolate ground concentrations from MODIS Aerosol Optical Depth (AOD) data. Our extrapolation approach relies on spatially localized linear regressions of aerosol concentrations from ground stations in the Air Quality System (AQS) network and MODIS AOD data. We expect that assimilating the extrapolated concentrations leads into further improvements of HYSPLIT forecasts. Furthermore, we are investigating using additional sources of in-situ and remotely sensed observations, such as GOES AOD 30-minute data, and UAV data from the Ikhana AMS fire missions. These sources provide higher spatial resolution and more frequent temporal coverage. Moreover, GOES and UAVs provide near-real time data which should be useful in improving HYSPLIT forecasts of smoke from wildfires. Currently, the Ikhana AMS fire missions team provides L1B data which are very useful in themselves, but no level 2 to the best of our knowledge. For our application, it would very useful to have an AOD data product for these datasets. A possible path for deriving AOD data the AMS sensor onboard UAVs would be to utilize the DRL code for deriving the MODIS AOD from MODIS L1B data, due to the sensor similarities. Developing such code would be very useful for wildfire smoke prediction applications. Our near real-time data assimilation system helps in bridging the gap between predictions and real-time observations, for more accurate and timely aerosol dispersion forecasts. Keywords: data assimilation, HYSPLIT, forecast model performance, real-time, ensemble Kalman filter, aerosol dispersion and concentration.
Shi, Yuan; Liu, Xu; Kok, Suet-Yheng; Rajarethinam, Jayanthi; Liang, Shaohong; Yap, Grace; Chong, Chee-Seng; Lee, Kim-Sung; Tan, Sharon S Y; Chin, Christopher Kuan Yew; Lo, Andrew; Kong, Waiming; Ng, Lee Ching; Cook, Alex R
2016-09-01
With its tropical rainforest climate, rapid urbanization, and changing demography and ecology, Singapore experiences endemic dengue; the last large outbreak in 2013 culminated in 22,170 cases. In the absence of a vaccine on the market, vector control is the key approach for prevention. We sought to forecast the evolution of dengue epidemics in Singapore to provide early warning of outbreaks and to facilitate the public health response to moderate an impending outbreak. We developed a set of statistical models using least absolute shrinkage and selection operator (LASSO) methods to forecast the weekly incidence of dengue notifications over a 3-month time horizon. This forecasting tool used a variety of data streams and was updated weekly, including recent case data, meteorological data, vector surveillance data, and population-based national statistics. The forecasting methodology was compared with alternative approaches that have been proposed to model dengue case data (seasonal autoregressive integrated moving average and step-down linear regression) by fielding them on the 2013 dengue epidemic, the largest on record in Singapore. Operationally useful forecasts were obtained at a 3-month lag using the LASSO-derived models. Based on the mean average percentage error, the LASSO approach provided more accurate forecasts than the other methods we assessed. We demonstrate its utility in Singapore's dengue control program by providing a forecast of the 2013 outbreak for advance preparation of outbreak response. Statistical models built using machine learning methods such as LASSO have the potential to markedly improve forecasting techniques for recurrent infectious disease outbreaks such as dengue. Shi Y, Liu X, Kok SY, Rajarethinam J, Liang S, Yap G, Chong CS, Lee KS, Tan SS, Chin CK, Lo A, Kong W, Ng LC, Cook AR. 2016. Three-month real-time dengue forecast models: an early warning system for outbreak alerts and policy decision support in Singapore. Environ Health Perspect 124:1369-1375; http://dx.doi.org/10.1289/ehp.1509981.
Human-model hybrid Korean air quality forecasting system.
Chang, Lim-Seok; Cho, Ara; Park, Hyunju; Nam, Kipyo; Kim, Deokrae; Hong, Ji-Hyoung; Song, Chang-Keun
2016-09-01
The Korean national air quality forecasting system, consisting of the Weather Research and Forecasting, the Sparse Matrix Operator Kernel Emissions, and the Community Modeling and Analysis (CMAQ), commenced from August 31, 2013 with target pollutants of particulate matters (PM) and ozone. Factors contributing to PM forecasting accuracy include CMAQ inputs of meteorological field and emissions, forecasters' capacity, and inherent CMAQ limit. Four numerical experiments were conducted including two global meteorological inputs from the Global Forecast System (GFS) and the Unified Model (UM), two emissions from the Model Intercomparison Study Asia (MICS-Asia) and the Intercontinental Chemical Transport Experiment (INTEX-B) for the Northeast Asia with Clear Air Policy Support System (CAPSS) for South Korea, and data assimilation of the Monitoring Atmospheric Composition and Climate (MACC). Significant PM underpredictions by using both emissions were found for PM mass and major components (sulfate and organic carbon). CMAQ predicts PM2.5 much better than PM10 (NMB of PM2.5: -20~-25%, PM10: -43~-47%). Forecasters' error usually occurred at the next day of high PM event. Once CMAQ fails to predict high PM event the day before, forecasters are likely to dismiss the model predictions on the next day which turns out to be true. The best combination of CMAQ inputs is the set of UM global meteorological field, MICS-Asia and CAPSS 2010 emissions with the NMB of -12.3%, the RMSE of 16.6μ/m(3) and the R(2) of 0.68. By using MACC data as an initial and boundary condition, the performance skill of CMAQ would be improved, especially in the case of undefined coarse emission. A variety of methods such as ensemble and data assimilation are considered to improve further the accuracy of air quality forecasting, especially for high PM events to be comparable to for all cases. The growing utilization of the air quality forecast induced the public strongly to demand that the accuracy of the national forecasting be improved. In this study, we investigated the problems in the current forecasting as well as various alternatives to solve the problems. Such efforts to improve the accuracy of the forecast are expected to contribute to the protection of public health by increasing the availability of the forecast system.
Applying Binary Forecasting Approaches to Induced Seismicity in the Western Canada Sedimentary Basin
NASA Astrophysics Data System (ADS)
Kahue, R.; Shcherbakov, R.
2016-12-01
The Western Canada Sedimentary Basin has been chosen as a focus due to an increase in the recent observed seismicity there which is most likely linked to anthropogenic activities related to unconventional oil and gas exploration. Seismicity caused by these types of activities is called induced seismicity. The occurrence of moderate to larger induced earthquakes in areas where critical infrastructure is present can be potentially problematic. Here we use a binary forecast method to analyze past seismicity and well production data in order to quantify future areas of increased seismicity. This method splits the given region into spatial cells. The binary forecast method used here has been suggested in the past to retroactively forecast large earthquakes occurring globally in areas called alarm cells. An alarm cell, or alert zone, is a bin in which there is a higher likelihood for earthquakes to occur based on previous data. The first method utilizes the cumulative Benioff strain, based on earthquakes that had occurred in each bin above a given magnitude over a time interval called the training period. The second method utilizes the cumulative well production data within each bin. Earthquakes that occurred within an alert zone in the retrospective forecast period contribute to the hit rate, while alert zones that did not have an earthquake occur within them in the forecast period contribute to the false alarm rate. In the resulting analysis the hit rate and false alarm rate are determined after optimizing and modifying the initial parameters using the receiver operating characteristic diagram. It is found that when modifying the cell size and threshold magnitude parameters within various training periods, hit and false alarm rates are obtained for specific regions in Western Canada using both recent seismicity and cumulative well production data. Certain areas are thus shown to be more prone to potential larger earthquakes based on both datasets. This has implications for the potential link between oil and gas production and induced seismicity observed in the Western Canada Sedimentary Basin.
NASA Astrophysics Data System (ADS)
Engeland, Kolbjorn; Steinsland, Ingelin
2014-05-01
This study introduces a methodology for the construction of probabilistic inflow forecasts for multiple catchments and lead times, and investigates criterions for evaluation of multi-variate forecasts. A post-processing approach is used, and a Gaussian model is applied for transformed variables. The post processing model has two main components, the mean model and the dependency model. The mean model is used to estimate the marginal distributions for forecasted inflow for each catchment and lead time, whereas the dependency models was used to estimate the full multivariate distribution of forecasts, i.e. co-variances between catchments and lead times. In operational situations, it is a straightforward task to use the models to sample inflow ensembles which inherit the dependencies between catchments and lead times. The methodology was tested and demonstrated in the river systems linked to the Ulla-Førre hydropower complex in southern Norway, where simultaneous probabilistic forecasts for five catchments and ten lead times were constructed. The methodology exhibits sufficient flexibility to utilize deterministic flow forecasts from a numerical hydrological model as well as statistical forecasts such as persistent forecasts and sliding window climatology forecasts. It also deals with variation in the relative weights of these forecasts with both catchment and lead time. When evaluating predictive performance in original space using cross validation, the case study found that it is important to include the persistent forecast for the initial lead times and the hydrological forecast for medium-term lead times. Sliding window climatology forecasts become more important for the latest lead times. Furthermore, operationally important features in this case study such as heteroscedasticity, lead time varying between lead time dependency and lead time varying between catchment dependency are captured. Two criterions were used for evaluating the added value of the dependency model. The first one was the Energy score (ES) that is a multi-dimensional generalization of continuous rank probability score (CRPS). ES was calculated for all lead-times and catchments together, for each catchment across all lead times and for each lead time across all catchments. The second criterion was to use CRPS for forecasted inflows accumulated over several lead times and catchments. The results showed that ES was not very sensitive to correct covariance structure, whereas CRPS for accumulated flows where more suitable for evaluating the dependency model. This indicates that it is more appropriate to evaluate relevant univariate variables that depends on the dependency structure then to evaluate the multivariate forecast directly.
Asteroid Studies: A 35-Year Forecast
NASA Astrophysics Data System (ADS)
Rivkin, A. S.; Denevi, B. W.; Klima, R. L.; Ernst, C. M.; Chabot, N. L.; Barnouin, O. S.; Cohen, B. A.
2017-02-01
We are in an active time for asteroid studies, which fall at the intersection of science, planetary defense, human exploration, and in situ resource utilization. We look forward and extrapolate what the future may hold for asteroid science.
Towards Actionable Waterborne and Vector-borne Disease Forecasts
NASA Astrophysics Data System (ADS)
Zaitchik, B. F.
2015-12-01
Numerous studies have shown that remote sensing (RS) and Earth System Models (ESM) can make important contributions to the analysis, monitoring and prediction of waterborne and vector-borne illnesses. Unsurprisingly, however, the great majority of these studies have been proof-of-concept investigations, and vanishingly few have been translated into operational and utilized disease early warning systems. To some extent this is simply an example of the general challenge of translating research findings into decision-relevant operations. Disease early warning, however, entails specific challenges that distinguish it from many other fields of environmental monitoring and prediction. Some of these challenges stem from predictability and data constraints, while others relate to the difficulty of communicating predictions and the particularly high price of false alarms. This presentation will review progress on the translation of analysis to decision making, identify avenues for enhancing forecast utility, and propose priorities for future RS and ESM investments in disease monitoring and prediction.
Perception of Generic Prescription Drugs and Utilization of Generic Drug Discount Programs
Omojasola, Anthony; Hernandez, Mike; Sansgiry, Sujit; Jones, Lovell
2012-01-01
Objective Our study aimed to assess patient’s perceptions of generic drugs and utilization of generic drug discount programs. Design, Setting and Participants A survey was administered to adult participants at community health centers and community-based organizations in Houston, Texas, USA (n=525). Main Outcome Measures Multivariate logistic regression was used to quantify the strength of association between generic drug perception and utilization of generic drug discount programs. Results Respondents who agreed that “Generic prescription drugs are as effective as brand name prescription drugs,” were 3 times as likely to utilize generic drug discount programs (AOR: 3.0, 95% CI: 1.8–4.8, P<.001). Compared to non-Hispanic Whites, African Americans (OR: 10.2; 95% CI: 1.4–76.4) and Hispanics (OR: 10.3; 95% CI: 1.3–79.4) were 10 times as likely to agree that generic drugs have more side effects than brand name drugs. Conclusion Race/ethnicity had no impact in utilization of generic drug discount programs, despite racial disparities in perception toward generic drugs’ side effects and generic drugs being inferior to brand name drugs. PMID:23140080
Verification of Ensemble Forecasts for the New York City Operations Support Tool
NASA Astrophysics Data System (ADS)
Day, G.; Schaake, J. C.; Thiemann, M.; Draijer, S.; Wang, L.
2012-12-01
The New York City water supply system operated by the Department of Environmental Protection (DEP) serves nine million people. It covers 2,000 square miles of portions of the Catskill, Delaware, and Croton watersheds, and it includes nineteen reservoirs and three controlled lakes. DEP is developing an Operations Support Tool (OST) to support its water supply operations and planning activities. OST includes historical and real-time data, a model of the water supply system complete with operating rules, and lake water quality models developed to evaluate alternatives for managing turbidity in the New York City Catskill reservoirs. OST will enable DEP to manage turbidity in its unfiltered system while satisfying its primary objective of meeting the City's water supply needs, in addition to considering secondary objectives of maintaining ecological flows, supporting fishery and recreation releases, and mitigating downstream flood peaks. The current version of OST relies on statistical forecasts of flows in the system based on recent observed flows. To improve short-term decision making, plans are being made to transition to National Weather Service (NWS) ensemble forecasts based on hydrologic models that account for short-term weather forecast skill, longer-term climate information, as well as the hydrologic state of the watersheds and recent observed flows. To ensure that the ensemble forecasts are unbiased and that the ensemble spread reflects the actual uncertainty of the forecasts, a statistical model has been developed to post-process the NWS ensemble forecasts to account for hydrologic model error as well as any inherent bias and uncertainty in initial model states, meteorological data and forecasts. The post-processor is designed to produce adjusted ensemble forecasts that are consistent with the DEP historical flow sequences that were used to develop the system operating rules. A set of historical hindcasts that is representative of the real-time ensemble forecasts is needed to verify that the post-processed forecasts are unbiased, statistically reliable, and preserve the skill inherent in the "raw" NWS ensemble forecasts. A verification procedure and set of metrics will be presented that provide an objective assessment of ensemble forecasts. The procedure will be applied to both raw ensemble hindcasts and to post-processed ensemble hindcasts. The verification metrics will be used to validate proper functioning of the post-processor and to provide a benchmark for comparison of different types of forecasts. For example, current NWS ensemble forecasts are based on climatology, using each historical year to generate a forecast trace. The NWS Hydrologic Ensemble Forecast System (HEFS) under development will utilize output from both the National Oceanic Atmospheric Administration (NOAA) Global Ensemble Forecast System (GEFS) and the Climate Forecast System (CFS). Incorporating short-term meteorological forecasts and longer-term climate forecast information should provide sharper, more accurate forecasts. Hindcasts from HEFS will enable New York City to generate verification results to validate the new forecasts and further fine-tune system operating rules. Project verification results will be presented for different watersheds across a range of seasons, lead times, and flow levels to assess the quality of the current ensemble forecasts.
Low validity of Google Trends for behavioral forecasting of national suicide rates.
Tran, Ulrich S; Andel, Rita; Niederkrotenthaler, Thomas; Till, Benedikt; Ajdacic-Gross, Vladeta; Voracek, Martin
2017-01-01
Recent research suggests that search volumes of the most popular search engine worldwide, Google, provided via Google Trends, could be associated with national suicide rates in the USA, UK, and some Asian countries. However, search volumes have mostly been studied in an ad hoc fashion, without controls for spurious associations. This study evaluated the validity and utility of Google Trends search volumes for behavioral forecasting of suicide rates in the USA, Germany, Austria, and Switzerland. Suicide-related search terms were systematically collected and respective Google Trends search volumes evaluated for availability. Time spans covered 2004 to 2010 (USA, Switzerland) and 2004 to 2012 (Germany, Austria). Temporal associations of search volumes and suicide rates were investigated with time-series analyses that rigorously controlled for spurious associations. The number and reliability of analyzable search volume data increased with country size. Search volumes showed various temporal associations with suicide rates. However, associations differed both across and within countries and mostly followed no discernable patterns. The total number of significant associations roughly matched the number of expected Type I errors. These results suggest that the validity of Google Trends search volumes for behavioral forecasting of national suicide rates is low. The utility and validity of search volumes for the forecasting of suicide rates depend on two key assumptions ("the population that conducts searches consists mostly of individuals with suicidal ideation", "suicide-related search behavior is strongly linked with suicidal behavior"). We discuss strands of evidence that these two assumptions are likely not met. Implications for future research with Google Trends in the context of suicide research are also discussed.
The Super Tuesday Outbreak: Forecast Sensitivities to Single-Moment Microphysics Schemes
NASA Technical Reports Server (NTRS)
Molthan, Andrew L.; Case, Jonathan L.; Dembek, Scott R.; Jedlovec, Gary J.; Lapenta, William M.
2008-01-01
Forecast precipitation and radar characteristics are used by operational centers to guide the issuance of advisory products. As operational numerical weather prediction is performed at increasingly finer spatial resolution, convective precipitation traditionally represented by sub-grid scale parameterization schemes is now being determined explicitly through single- or multi-moment bulk water microphysics routines. Gains in forecasting skill are expected through improved simulation of clouds and their microphysical processes. High resolution model grids and advanced parameterizations are now available through steady increases in computer resources. As with any parameterization, their reliability must be measured through performance metrics, with errors noted and targeted for improvement. Furthermore, the use of these schemes within an operational framework requires an understanding of limitations and an estimate of biases so that forecasters and model development teams can be aware of potential errors. The National Severe Storms Laboratory (NSSL) Spring Experiments have produced daily, high resolution forecasts used to evaluate forecast skill among an ensemble with varied physical parameterizations and data assimilation techniques. In this research, high resolution forecasts of the 5-6 February 2008 Super Tuesday Outbreak are replicated using the NSSL configuration in order to evaluate two components of simulated convection on a large domain: sensitivities of quantitative precipitation forecasts to assumptions within a single-moment bulk water microphysics scheme, and to determine if these schemes accurately depict the reflectivity characteristics of well-simulated, organized, cold frontal convection. As radar returns are sensitive to the amount of hydrometeor mass and the distribution of mass among variably sized targets, radar comparisons may guide potential improvements to a single-moment scheme. In addition, object-based verification metrics are evaluated for their utility in gauging model performance and QPF variability.
Roshani, G H; Karami, A; Salehizadeh, A; Nazemi, E
2017-11-01
The problem of how to precisely measure the volume fractions of oil-gas-water mixtures in a pipeline remains as one of the main challenges in the petroleum industry. This paper reports the capability of Radial Basis Function (RBF) in forecasting the volume fractions in a gas-oil-water multiphase system. Indeed, in the present research, the volume fractions in the annular three-phase flow are measured based on a dual energy metering system including the 152 Eu and 137 Cs and one NaI detector, and then modeled by a RBF model. Since the summation of volume fractions are constant (equal to 100%), therefore it is enough for the RBF model to forecast only two volume fractions. In this investigation, three RBF models are employed. The first model is used to forecast the oil and water volume fractions. The next one is utilized to forecast the water and gas volume fractions, and the last one to forecast the gas and oil volume fractions. In the next stage, the numerical data obtained from MCNP-X code must be introduced to the RBF models. Then, the average errors of these three models are calculated and compared. The model which has the least error is picked up as the best predictive model. Based on the results, the best RBF model, forecasts the oil and water volume fractions with the mean relative error of less than 0.5%, which indicates that the RBF model introduced in this study ensures an effective enough mechanism to forecast the results. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Saleh, Firas; Ramaswamy, Venkatsundar; Georgas, Nickitas; Blumberg, Alan F.; Pullen, Julie
2016-07-01
This paper investigates the uncertainties in hourly streamflow ensemble forecasts for an extreme hydrological event using a hydrological model forced with short-range ensemble weather prediction models. A state-of-the art, automated, short-term hydrologic prediction framework was implemented using GIS and a regional scale hydrological model (HEC-HMS). The hydrologic framework was applied to the Hudson River basin ( ˜ 36 000 km2) in the United States using gridded precipitation data from the National Centers for Environmental Prediction (NCEP) North American Regional Reanalysis (NARR) and was validated against streamflow observations from the United States Geologic Survey (USGS). Finally, 21 precipitation ensemble members of the latest Global Ensemble Forecast System (GEFS/R) were forced into HEC-HMS to generate a retrospective streamflow ensemble forecast for an extreme hydrological event, Hurricane Irene. The work shows that ensemble stream discharge forecasts provide improved predictions and useful information about associated uncertainties, thus improving the assessment of risks when compared with deterministic forecasts. The uncertainties in weather inputs may result in false warnings and missed river flooding events, reducing the potential to effectively mitigate flood damage. The findings demonstrate how errors in the ensemble median streamflow forecast and time of peak, as well as the ensemble spread (uncertainty) are reduced 48 h pre-event by utilizing the ensemble framework. The methodology and implications of this work benefit efforts of short-term streamflow forecasts at regional scales, notably regarding the peak timing of an extreme hydrologic event when combined with a flood threshold exceedance diagram. Although the modeling framework was implemented on the Hudson River basin, it is flexible and applicable in other parts of the world where atmospheric reanalysis products and streamflow data are available.
Ferrand, Yann; Kelton, Christina M L; Guo, Jeff J; Levy, Martin S; Yu, Yan
2011-03-01
Medicaid programs' spending on antidepressants increased from $159 million in 1991 to $2 billion in 2005. The National Institute for Health Care Management attributed this expenditure growth to increases in drug utilization, entry of newer higher-priced antidepressants, and greater prescription drug insurance coverage. Rising enrollment in Medicaid has also contributed to this expenditure growth. This research examines the impact of specific events, including branded-drug and generic entry, a black box warning, direct-to-consumer advertising (DTCA), and new indication approval, on Medicaid spending on antidepressants. Using quarterly expenditure data for 1991-2005 from the national Medicaid pharmacy claims database maintained by the Centers for Medicare and Medicaid Services, a time-series autoregressive integrated moving average (ARIMA) intervention analysis was performed on 6 specific antidepressant drugs and on overall antidepressant spending. Twenty-nine potentially relevant interventions and their dates of occurrence were identified from the literature. Each was tested for an impact on the time series. Forecasts from the models were compared with a holdout sample of actual expenditure data. Interventions with significant impacts on Medicaid expenditures included the patent expiration of Prozac® (P<0.01) and the entry of generic paroxetine producers (P=0.04), which reduced expenditures on Prozac® and Paxil®, respectively, and the 1997 increase in DTCA (P=0.05), which increased spending on Wellbutrin®. Except for Paxil®, the ARIMA models had low prediction errors. Generic entry at the aggregate level did not lead to a reduction in overall expenditures (P>0.05), implying that the expanding market for antidepressants overwhelmed the effect of generic competition. Copyright © 2011 Elsevier Inc. All rights reserved.
Drug utilization and medication costs at the end of life.
Pont, Lisa; Jansen, Kristian; Schaufel, Margrete Aase; Haugen, Dagny Faksvåg; Ruths, Sabine
2016-01-01
In the end stages of life, drug treatment goals shift to symptom control and quality of life and as such changes in drug utilization are expected. The aim of this paper is to review the extent to which costs are considered in drug utilization research at the end of life, with a particular focus on the outcome measures being used. This systematic review identified seven studies across varied settings studies reporting both drug utilization and medication cost outcome measures. The main factors identified that impacted medication use and cost were the time period considered and the provision of specialist palliative care services. Combining drug utilization and medication cost outcomes is critical for the allocation of healthcare resources and the development of a sound health policy.
Optimal Power Flow for Distribution Systems under Uncertain Forecasts: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dall'Anese, Emiliano; Baker, Kyri; Summers, Tyler
2016-12-01
The paper focuses on distribution systems featuring renewable energy sources and energy storage devices, and develops an optimal power flow (OPF) approach to optimize the system operation in spite of forecasting errors. The proposed method builds on a chance-constrained multi-period AC OPF formulation, where probabilistic constraints are utilized to enforce voltage regulation with a prescribed probability. To enable a computationally affordable solution approach, a convex reformulation of the OPF task is obtained by resorting to i) pertinent linear approximations of the power flow equations, and ii) convex approximations of the chance constraints. Particularly, the approximate chance constraints provide conservative boundsmore » that hold for arbitrary distributions of the forecasting errors. An adaptive optimization strategy is then obtained by embedding the proposed OPF task into a model predictive control framework.« less
Forecast Method of Solar Irradiance with Just-In-Time Modeling
NASA Astrophysics Data System (ADS)
Suzuki, Takanobu; Goto, Yusuke; Terazono, Takahiro; Wakao, Shinji; Oozeki, Takashi
PV power output mainly depends on the solar irradiance which is affected by various meteorological factors. So, it is required to predict solar irradiance in the future for the efficient operation of PV systems. In this paper, we develop a novel approach for solar irradiance forecast, in which we introduce to combine the black-box model (JIT Modeling) with the physical model (GPV data). We investigate the predictive accuracy of solar irradiance over wide controlled-area of each electric power company by utilizing the measured data on the 44 observation points throughout Japan offered by JMA and the 64 points around Kanto by NEDO. Finally, we propose the application forecast method of solar irradiance to the point which is difficulty in compiling the database. And we consider the influence of different GPV default time on solar irradiance prediction.
Seasonal forecasts of groundwater levels in Lanyang Plain in Taiwan
NASA Astrophysics Data System (ADS)
Chang, Ya-Chi; Lin, Yi-Chiu
2017-04-01
Groundwater plays a critical and important role in world's freshwater resources and it is also an important part of Taiwan's water supply for domestic, agricultural and industrial use. Prolonged dry climatic conditions can induce groundwater drought and may have huge impact on water resources. Therefore, this study utilizes seasonal rainfall forecasts from the Model for Prediction Across Scales (MPAS) to simulate groundwater levels in Lanyang Plain in Taiwan up to three months into future. The MPAS is setup with 120 km uniform grid and the physics schemes including WSM6 micorphysics scheme, Kain-Fritsch cumulus scheme, RRTMG radiation scheme, and YSU planetary boundary layer scheme are used to provide the rainfall forecasts. Results of this study can provide a reference for water resources management to ensure the sustainability of groundwater resources in Lanyang Plain.
A High Resolution Tropical Cyclone Power Outage Forecasting Model for the Continental United States
NASA Astrophysics Data System (ADS)
Pino, J. V.; Quiring, S. M.; Guikema, S.; Shashaani, S.; Linger, S.; Backhaus, S.
2017-12-01
Tropical cyclones cause extensive damage to the power infrastructure system throughout the United States. This damage can leave millions without power for extended periods of time, as most recently seen with Hurricane Matthew (2016). Accurate and timely prediction of power outages are essential for utility companies, emergency management agencies, and governmental organizations. Here we present a high-resolution (250 m x 250 m) hurricane power outage model for the United States. The model uses only publicly-available data to make predictions. It uses forecasts of storm variables such as maximum 3-second wind gust, duration of strong winds > 20 m s-2, soil moisture, and precipitation. It also incorporates static environmental variables such as elevation characteristics, land cover type, population density, tree species data, and root zone depth. A web tool was established for use by the Department of Energy (DOE) so that the model can be used for real-time outage forecasting or for synthetic tropical cyclones as an exercise in emergency management. This web tool provides DOE decision-makers with high impact analytic results and products that can be disseminated to federal, local, and state agencies. The results then aid utility companies in their pre- and post-storm activities, thus decreasing restoration times and lowering costs.
Learning temporal rules to forecast instability in continuously monitored patients
Dubrawski, Artur; Wang, Donghan; Hravnak, Marilyn; Clermont, Gilles; Pinsky, Michael R
2017-01-01
Inductive machine learning, and in particular extraction of association rules from data, has been successfully used in multiple application domains, such as market basket analysis, disease prognosis, fraud detection, and protein sequencing. The appeal of rule extraction techniques stems from their ability to handle intricate problems yet produce models based on rules that can be comprehended by humans, and are therefore more transparent. Human comprehension is a factor that may improve adoption and use of data-driven decision support systems clinically via face validity. In this work, we explore whether we can reliably and informatively forecast cardiorespiratory instability (CRI) in step-down unit (SDU) patients utilizing data from continuous monitoring of physiologic vital sign (VS) measurements. We use a temporal association rule extraction technique in conjunction with a rule fusion protocol to learn how to forecast CRI in continuously monitored patients. We detail our approach and present and discuss encouraging empirical results obtained using continuous multivariate VS data from the bedside monitors of 297 SDU patients spanning 29 346 hours (3.35 patient-years) of observation. We present example rules that have been learned from data to illustrate potential benefits of comprehensibility of the extracted models, and we analyze the empirical utility of each VS as a potential leading indicator of an impending CRI event. PMID:27274020
NASA Astrophysics Data System (ADS)
Becker-Reshef, Inbal
In recent years there has been a dramatic increase in the demand for timely, comprehensive global agricultural intelligence. The issue of food security has rapidly risen to the top of government agendas around the world as the recent lack of food access led to unprecedented food prices, hunger, poverty, and civil conflict. Timely information on global crop production is indispensable for combating the growing stress on the world's crop production, for stabilizing food prices, developing effective agricultural policies, and for coordinating responses to regional food shortages. Earth Observations (EO) data offer a practical means for generating such information as they provide global, timely, cost-effective, and synoptic information on crop condition and distribution. Their utility for crop production forecasting has long been recognized and demonstrated across a wide range of scales and geographic regions. Nevertheless it is widely acknowledged that EO data could be better utilized within the operational monitoring systems and thus there is a critical need for research focused on developing practical robust methods for agricultural monitoring. Within this context this dissertation focused on advancing EO-based methods for crop yield forecasting and on demonstrating the potential relevance for adopting EO-based crop forecasts for providing timely reliable agricultural intelligence. This thesis made contributions to this field by developing and testing a robust EO-based method for wheat production forecasting at state to national scales using available and easily accessible data. The model was developed in Kansas (KS) using coarse resolution normalized difference vegetation index (NDVI) time series data in conjunction with out-of-season wheat masks and was directly applied in Ukraine to assess its transferability. The model estimated yields within 7% in KS and 10% in Ukraine of final estimates 6 weeks prior to harvest. The relevance of adopting such methods to provide timely reliable information to crop commodity markets is demonstrated through a 2010 case study.
ADDME – Avoiding Drug Development Mistakes Early: central nervous system drug discovery perspective
Tsaioun, Katya; Bottlaender, Michel; Mabondzo, Aloise
2009-01-01
The advent of early absorption, distribution, metabolism, excretion, and toxicity (ADMET) screening has increased the attrition rate of weak drug candidates early in the drug-discovery process, and decreased the proportion of compounds failing in clinical trials for ADMET reasons. This paper reviews the history of ADMET screening and its place in pharmaceutical development, and central nervous system drug discovery in particular. Assays that have been developed in response to specific needs and improvements in technology that result in higher throughput and greater accuracy of prediction of human mechanisms of absorption and toxicity are discussed. The paper concludes with the authors' forecast of new models that will better predict human efficacy and toxicity. PMID:19534730
Statewide crash analysis and forecasting.
DOT National Transportation Integrated Search
2008-11-20
There is a need for the development of safety analysis tools to allow Penn DOT to better assess the safety performance of road : segments in the Commonwealth. The project utilized a safety management system database at Penn DOT that integrates crash,...
NASA Astrophysics Data System (ADS)
Perkins, W. A.; Hakim, G. J.
2016-12-01
In this work, we examine the skill of a new approach to performing climate field reconstructions (CFRs) using a form of online paleoclimate data assimilation (PDA). Many previous studies have foregone climate model forecasts during assimilation due to the computational expense of running coupled global climate models (CGCMs), and the relatively low skill of these forecasts on longer timescales. Here we greatly diminish the computational costs by employing an empirical forecast model (known as a linear inverse model; LIM), which has been shown to have comparable skill to CGCMs. CFRs of annually averaged 2m air temperature anomalies are compared between the Last Millennium Reanalysis framework (no forecasting or "offline"), a persistence forecast, and four LIM forecasting experiments over the instrumental period (1850 - 2000). We test LIM calibrations for observational (Berkeley Earth), reanalysis (20th Century Reanalysis), and CMIP5 climate model (CCSM4 and MPI) data. Generally, we find that the usage of LIM forecasts for online PDA increases reconstruction agreement with the instrumental record for both spatial and global mean temperature (GMT). The detrended GMT skill metrics show the most dramatic increases in skill with coefficient of efficiency (CE) improvements over the no-forecasting benchmark averaging 57%. LIM experiments display a common pattern of spatial field increases in CE skill over northern hemisphere land areas and in the high-latitude North Atlantic - Barents Sea corridor (Figure 1). However, the non-GCM-calibrated LIMs introduce other deficiencies into the spatial skill of these reconstructions, likely due to aspects of the LIM calibration process. Overall, the CMIP5 LIMs have the best performance when considering both spatial fields and GMT. A comparison with the persistence forecast experiment suggests that improvements are associated with the usage of the LIM forecasts, and not simple persistence of temperature anomalies over time. These results show that the use of LIM forecasting can help add further dynamical constraint to CFRs. As we move forward, this will be an important factor in fully utilizing dynamically consistent information from the proxy record while reconstructing the past millennium.
NASA Astrophysics Data System (ADS)
Zhang, Li
With the deregulation of the electric power market in New England, an independent system operator (ISO) has been separated from the New England Power Pool (NEPOOL). The ISO provides a regional spot market, with bids on various electricity-related products and services submitted by utilities and independent power producers. A utility can bid on the spot market and buy or sell electricity via bilateral transactions. Good estimation of market clearing prices (MCP) will help utilities and independent power producers determine bidding and transaction strategies with low risks, and this is crucial for utilities to compete in the deregulated environment. MCP prediction, however, is difficult since bidding strategies used by participants are complicated and MCP is a non-stationary process. The main objective of this research is to provide efficient short-term load and MCP forecasting and corresponding confidence interval estimation methodologies. In this research, the complexity of load and MCP with other factors is investigated, and neural networks are used to model the complex relationship between input and output. With improved learning algorithm and on-line update features for load forecasting, a neural network based load forecaster was developed, and has been in daily industry use since summer 1998 with good performance. MCP is volatile because of the complexity of market behaviors. In practice, neural network based MCP predictors usually have a cascaded structure, as several key input factors need to be estimated first. In this research, the uncertainties involved in a cascaded neural network structure for MCP prediction are analyzed, and prediction distribution under the Bayesian framework is developed. A fast algorithm to evaluate the confidence intervals by using the memoryless Quasi-Newton method is also developed. The traditional back-propagation algorithm for neural network learning needs to be improved since MCP is a non-stationary process. The extended Kalman filter (EKF) can be used as an integrated adaptive learning and confidence interval estimation algorithm for neural networks, with fast convergence and small confidence intervals. However, EKF learning is computationally expensive because it involves high dimensional matrix manipulations. A modified U-D factorization within the decoupled EKF (DEKF-UD) framework is developed in this research. The computational efficiency and numerical stability are significantly improved.
Code of Federal Regulations, 2010 CFR
2010-10-01
... PRESCRIPTION DRUG BENEFIT Cost Control and Quality Improvement Requirements § 423.153 Drug utilization... 42 Public Health 3 2010-10-01 2010-10-01 false Drug utilization management, quality assurance, and medication therapy management programs (MTMPs). 423.153 Section 423.153 Public Health CENTERS FOR MEDICARE...
Roberts-Gray, Cindy; Sweitzer, Sara J; Ranjit, Nalini; Potratz, Christa; Rood, Magdalena; Romo-Palafox, Maria Jose; Byrd-Williams, Courtney E; Briley, Margaret E; Hoelscher, Deanna M
2017-08-01
A cluster-randomized trial at 30 early care and education centers (Intervention = 15, waitlist Control = 15) showed the Lunch Is in the Bag intervention increased parents' packing of fruits, vegetables, and whole grains in their preschool children's bag lunches (parent-child dyads = 351 Intervention, 282 Control). To examine the utility of structuring the trial's process evaluation to forecast use, sustainability, and readiness of the intervention for wider dissemination and implementation. Pretrial, the research team simulated user experience to forecast use of the intervention. Multiattribute evaluation of user experience measured during the trial assessed use and sustainability of the intervention. Thematic analysis of posttrial interviews with users evaluated sustained use and readiness for wider dissemination. Moderate use was forecast by the research team. Multiattribute evaluation of activity logs, surveys, and observations during the trial indicated use consistent with the forecast except that prevalence of parents reading the newsletters was greater (83% vs. 50%) and hearing their children talk about the classroom was less (4% vs. 50%) than forecast. Early care and education center-level likelihood of sustained use was projected to be near zero. Posttrial interviews indicated use was sustained at zero centers. Structuring the efficacy trial's process evaluation as a progression of assessments of user experience produced generally accurate forecasts of use and sustainability of the intervention at the trial sites. This approach can assist interpretation of trial outcomes, aid decisions about dissemination of the intervention, and contribute to translational science for improving health.
Client-Friendly Forecasting: Seasonal Runoff Predictions Using Out-of-the-Box Indices
NASA Astrophysics Data System (ADS)
Weil, P.
2013-12-01
For more than a century, statistical relationships have been recognized between atmospheric conditions at locations separated by thousands of miles, referred to as teleconnections. Some of the recognized teleconnections provide useful information about expected hydrologic conditions, so certain records of atmospheric conditions are quantified and published as hydroclimate indices. Certain hydroclimate indices can serve as strong leading indicators of climate patterns over North America and can be used to make skillful forecasts of seasonal runoff. The methodology described here creates a simple-to-use model that utilizes easily accessed data to make forecasts of April through September runoff months before the runoff season begins. For this project, forecasting models were developed for two snowmelt-driven river systems in Colorado and Wyoming. In addition to the global hydroclimate indices, the methodology uses several local hydrologic variables including the previous year's drought severity, headwater snow water equivalent and the reservoir contents for the major reservoirs in each basin. To improve the skill of the forecasts, logistic regression is used to develop a model that provides the likelihood that a year will fall into the upper, middle or lower tercile of historical flows. Categorical forecasting has two major advantages over modeling of specific flow amounts: (1) with less prediction outcomes models tend to have better predictive skill and (2) categorical models are very useful to clients and agencies with specific flow thresholds that dictate major changes in water resources management. The resulting methodology and functional forecasting model product is highly portable, applicable to many major river systems and easily explained to a non-technical audience.
Detection and forecasting of oyster norovirus outbreaks: recent advances and future perspectives.
Wang, Jiao; Deng, Zhiqiang
2012-09-01
Norovirus is a highly infectious pathogen that is commonly found in oysters growing in fecally contaminated waters. Norovirus outbreaks can cause the closure of oyster harvesting waters and acute gastroenteritis in humans associated with consumption of contaminated raw oysters. Extensive efforts and progresses have been made in detection and forecasting of oyster norovirus outbreaks over the past decades. The main objective of this paper is to provide a literature review of methods and techniques for detecting and forecasting oyster norovirus outbreaks and thereby to identify the future directions for improving the detection and forecasting of norovirus outbreaks. It is found that (1) norovirus outbreaks display strong seasonality with the outbreak peak occurring commonly in December-March in the U.S. and April-May in the Europe; (2) norovirus outbreaks are affected by multiple environmental factors, including but not limited to precipitation, temperature, solar radiation, wind, and salinity; (3) various modeling approaches may be employed to forecast norovirus outbreaks, including Bayesian models, regression models, Artificial Neural Networks, and process-based models; and (4) diverse techniques are available for near real-time detection of norovirus outbreaks, including multiplex PCR, seminested PCR, real-time PCR, quantitative PCR, and satellite remote sensing. The findings are important to the management of oyster growing waters and to future investigations into norovirus outbreaks. It is recommended that a combined approach of sensor-assisted real time monitoring and modeling-based forecasting should be utilized for an efficient and effective detection and forecasting of norovirus outbreaks caused by consumption of contaminated oysters. Copyright © 2012 Elsevier Ltd. All rights reserved.
Do drug formulary policies reflect evidence of value?
Neumann, Peter J; Lin, Pei-Jung; Greenberg, Dan; Berger, Marc; Teutsch, Steven; Mansley, Edward; Weinstein, Milton C; Rosen, Allison B
2006-01-01
To investigate the extent to which preferred drug lists and tiered formularies reflect evidence of value, as measured in published cost-utility analyses (CUAs). Using 1998-2001 data from a large registry of cost-effectiveness analyses, we examined the 2004 Florida Medicaid preferred drug list and the 2004 Harvard Pilgrim Pharmacy Program 3-tier formulary, and compared cost-utility ratios (standardized to 2002 US dollars) of drugs with preferred and nonpreferred status. Few drugs on the formularies had any cost-utility data available. Of those that did, median cost-utility ratios were somewhat higher (less favorable) for Florida's preferred drugs compared with the nonpreferred drugs (25,465 dollars vs 13,085 dollars; P = .09). Ratios did not differ for drugs on tiers 1 and 2 of the Harvard Pilgrim formulary, although they were higher for tier 3 and for excluded drugs (18,309 dollars, 18,846 dollars, 52,119 dollars, and 22,580 dollars, respectively; P = .01). Among therapies reported to be cost-saving or to have cost-utility ratios below 50,000 dollars, 77% had favored status in Florida Medicaid and 73% in Harvard Pilgrim. Among dominated drug interventions (reported to be more costly and less effective than alternatives), 95% had favored status in Florida Medicaid and 56% in Harvard Pilgrim. This study underscores the paucity of published cost-utility data available to formulary committees. Some discrepancies prevail between the value of drugs, as reflected in published cost-utility ratios, and the formulary placement policies of 2 large health plans.
von Ferber, L; Luciano, A; Köster, I; Krappweis, J
1992-11-01
Drugs in primary health care are often prescribed for nonrational reasons. Drug utilization research investigates the prescription of drugs with an eye to medical, social and economic causes and consequences of the prescribed drug's utilization. The results of this research show distinct differences in drug utilization in different age groups and between men and women. Indication and dosage appear irrational from a textbook point of view. This indicates nonpharmacological causes of drug utilization. To advice successfully changes for the better quality assessment groups of primary health care physicians get information about their established behavior by analysis of their prescriptions. The discussion and the comparisons in the group allow them to recognize their irrational prescribing and the social, psychological and economic reasons behind it. Guidelines for treatment are worked out which take into account the primary health care physician's situation. After a year with 6 meetings of the quality assessment groups the education process is evaluated by another drug utilization analysis on the basis of the physicians prescription. The evaluation shows a remarkable improvement of quality and cost effectiveness of the drug therapy of the participating physicians.
Systems and Techniques for Identifying and Avoiding Ice
NASA Technical Reports Server (NTRS)
Hansman, R. John
1995-01-01
In-flight icing is one of the most difficult aviation weather hazards facing general aviation. Because most aircraft in the general aviation category are not certified for flight into known icing conditions, techniques for identifying and avoiding in-flight ice are important to maintain safety while increasing the utility and dispatch capability which is part of the AGATE vision. This report summarizes a brief study effort which: (1) Reviewed current ice identification, forecasting, and avoidance techniques; (2) Assessed feasibility of improved forecasting and ice avoidance procedures; and (3) Identified key issues for the development of improved capability with regard to in-flight icing.
Applications of LANCE Data at SPoRT
NASA Technical Reports Server (NTRS)
Molthan, Andrew
2014-01-01
Short term Prediction Research and Transition (SPoRT) Center: Mission: Apply NASA and NOAA measurement systems and unique Earth science research to improve the accuracy of short term weather prediction at the regional/local scale. Goals: Evaluate and assess the utility of NASA and NOAA Earth science data and products and unique research capabilities to address operational weather forecast problems; Provide an environment which enables the development and testing of new capabilities to improve short term weather forecasts on a regional scale; Help ensure successful transition of new capabilities to operational weather entities for the benefit of society
NASA Technical Reports Server (NTRS)
Gentry, R. C.; Rodgers, E.; Steranka, J.; Shenk, W. E.
1978-01-01
A regression technique was developed to forecast 24 hour changes of the maximum winds for weak (maximum winds less than or equal to 65 Kt) and strong (maximum winds greater than 65 Kt) tropical cyclones by utilizing satellite measured equivalent blackbody temperatures around the storm alone and together with the changes in maximum winds during the preceding 24 hours and the current maximum winds. Independent testing of these regression equations shows that the mean errors made by the equations are lower than the errors in forecasts made by the peristence techniques.
World oilseed situation and U. S. export opportunities, December 1983. Foreign agriculture circular
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1983-12-01
A slight increase in world oilseed production above last month's forecast, to 163.0 million tons, still leaves 1983/84 production over 9 percent below last year. Forecast utilization of oilseeds and products remain essentially unchanged from last month. Despite the relatively unchanged world oilseed and product balance, prices have weakened in recent weeks, raising expectations that additional price strength will be needed to bring about the required rationing of reduced world supplies. The other major element of uncertainty is Southern Hemisphere oilseed production, especially the Brazilian and Argentine 1984 soybean crops.
Calcaterra, Susan L; Keniston, Angela; Blum, Joshua; Crume, Tessa; Binswanger, Ingrid A
2015-01-01
Prior studies show an association between drug use and health care utilization. The relationship between specific drug type and emergent/urgent, inpatient, outpatient, and behavioral health care utilization has not been examined. We aimed to determine if multiple drug use was associated with increased utilization of behavioral health care. To assess health care utilization, we conducted a retrospective cohort study of patients who accessed health care at a safety-net medical center and affiliated clinics. Using electronic health records, we categorized patients who used stimulants, opioids, or multiple drugs based on urine toxicology screening tests and/or International Classification of Diseases, 9th Revision (ICD-9). Remaining patients were categorized as patients without identified drug use. Health care utilization by drug use group and visit type was determined using a negative binomial regression model. Associations were reported as incidence rate ratios. Utilization was described by rates of health care-related visits for inpatient, emergent/urgent, outpatient, and behavioral health care among patients who used drugs, categorized by drug types, compared with patients without identified drug use. Of 95,198 index visits, 4.6% (n=4340) were by patients who used drugs. Opioid and multiple drug users had significantly higher rates of behavioral health care visits than patients without identified drug use (opioid incidence rate ratio [IRR]=7.2; 95% confidence interval [CI]: 3.8-13.8; multiple drug use IRR=5.6, 95% CI: 3.3-9.7). Patients who used stimulants were less likely to use behavioral health services (IRR=1.3, 95% CI: 0.9-2.0) when compared with opioid and multiple drug users, but were more likely to use inpatient (IRR=1.6, 95% CI: 1.4-1.8) and emergent/urgent care (IRR=1.4, 95% CI: 1.3-1.5) services as compared with patients without identified drug use. Integrated medical and mental health care and drug treatment may reduce utilization of costly health care services and improve patient outcomes. How to capture and deliver primary care and behavioral health care to patients who use stimulants needs further investigation.
International Aftershock Forecasting: Lessons from the Gorkha Earthquake
NASA Astrophysics Data System (ADS)
Michael, A. J.; Blanpied, M. L.; Brady, S. R.; van der Elst, N.; Hardebeck, J.; Mayberry, G. C.; Page, M. T.; Smoczyk, G. M.; Wein, A. M.
2015-12-01
Following the M7.8 Gorhka, Nepal, earthquake of April 25, 2015 the USGS issued a series of aftershock forecasts. The initial impetus for these forecasts was a request from the USAID Office of US Foreign Disaster Assistance to support their Disaster Assistance Response Team (DART) which coordinated US Government disaster response, including search and rescue, with the Government of Nepal. Because of the possible utility of the forecasts to people in the region and other response teams, the USGS released these forecasts publicly through the USGS Earthquake Program web site. The initial forecast used the Reasenberg and Jones (Science, 1989) model with generic parameters developed for active deep continental regions based on the Garcia et al. (BSSA, 2012) tectonic regionalization. These were then updated to reflect a lower productivity and higher decay rate based on the observed aftershocks, although relying on teleseismic observations, with a high magnitude-of-completeness, limited the amount of data. After the 12 May M7.3 aftershock, the forecasts used an Epidemic Type Aftershock Sequence model to better characterize the multiple sources of earthquake clustering. This model provided better estimates of aftershock uncertainty. These forecast messages were crafted based on lessons learned from the Christchurch earthquake along with input from the U.S. Embassy staff in Kathmandu. Challenges included how to balance simple messaging with forecasts over a variety of time periods (week, month, and year), whether to characterize probabilities with words such as those suggested by the IPCC (IPCC, 2010), how to word the messages in a way that would translate accurately into Nepali and not alarm the public, and how to present the probabilities of unlikely but possible large and potentially damaging aftershocks, such as the M7.3 event, which had an estimated probability of only 1-in-200 for the week in which it occurred.
NASA Astrophysics Data System (ADS)
Clark, Elizabeth; Wood, Andy; Nijssen, Bart; Mendoza, Pablo; Newman, Andy; Nowak, Kenneth; Arnold, Jeffrey
2017-04-01
In an automated forecast system, hydrologic data assimilation (DA) performs the valuable function of correcting raw simulated watershed model states to better represent external observations, including measurements of streamflow, snow, soil moisture, and the like. Yet the incorporation of automated DA into operational forecasting systems has been a long-standing challenge due to the complexities of the hydrologic system, which include numerous lags between state and output variations. To help demonstrate that such methods can succeed in operational automated implementations, we present results from the real-time application of an ensemble particle filter (PF) for short-range (7 day lead) ensemble flow forecasts in western US river basins. We use the System for Hydromet Applications, Research and Prediction (SHARP), developed by the National Center for Atmospheric Research (NCAR) in collaboration with the University of Washington, U.S. Army Corps of Engineers, and U.S. Bureau of Reclamation. SHARP is a fully automated platform for short-term to seasonal hydrologic forecasting applications, incorporating uncertainty in initial hydrologic conditions (IHCs) and in hydrometeorological predictions through ensemble methods. In this implementation, IHC uncertainty is estimated by propagating an ensemble of 100 temperature and precipitation time series through conceptual and physically-oriented models. The resulting ensemble of derived IHCs exhibits a broad range of possible soil moisture and snow water equivalent (SWE) states. The PF selects and/or weights and resamples the IHCs that are most consistent with external streamflow observations, and uses the particles to initialize a streamflow forecast ensemble driven by ensemble precipitation and temperature forecasts downscaled from the Global Ensemble Forecast System (GEFS). We apply this method in real-time for several basins in the western US that are important for water resources management, and perform a hindcast experiment to evaluate the utility of PF-based data assimilation on streamflow forecasts skill. This presentation describes findings, including a comparison of sequential and non-sequential particle weighting methods.
Forecasting distribution of numbers of large fires
Eidenshink, Jeffery C.; Preisler, Haiganoush K.; Howard, Stephen; Burgan, Robert E.
2014-01-01
Systems to estimate forest fire potential commonly utilize one or more indexes that relate to expected fire behavior; however they indicate neither the chance that a large fire will occur, nor the expected number of large fires. That is, they do not quantify the probabilistic nature of fire danger. In this work we use large fire occurrence information from the Monitoring Trends in Burn Severity project, and satellite and surface observations of fuel conditions in the form of the Fire Potential Index, to estimate two aspects of fire danger: 1) the probability that a 1 acre ignition will result in a 100+ acre fire, and 2) the probabilities of having at least 1, 2, 3, or 4 large fires within a Predictive Services Area in the forthcoming week. These statistical processes are the main thrust of the paper and are used to produce two daily national forecasts that are available from the U.S. Geological Survey, Earth Resources Observation and Science Center and via the Wildland Fire Assessment System. A validation study of our forecasts for the 2013 fire season demonstrated good agreement between observed and forecasted values.
NASA Astrophysics Data System (ADS)
Abunama, Taher; Othman, Faridah
2017-06-01
Analysing the fluctuations of wastewater inflow rates in sewage treatment plants (STPs) is essential to guarantee a sufficient treatment of wastewater before discharging it to the environment. The main objectives of this study are to statistically analyze and forecast the wastewater inflow rates into the Bandar Tun Razak STP in Kuala Lumpur, Malaysia. A time series analysis of three years’ weekly influent data (156weeks) has been conducted using the Auto-Regressive Integrated Moving Average (ARIMA) model. Various combinations of ARIMA orders (p, d, q) have been tried to select the most fitted model, which was utilized to forecast the wastewater inflow rates. The linear regression analysis was applied to testify the correlation between the observed and predicted influents. ARIMA (3, 1, 3) model was selected with the highest significance R-square and lowest normalized Bayesian Information Criterion (BIC) value, and accordingly the wastewater inflow rates were forecasted to additional 52weeks. The linear regression analysis between the observed and predicted values of the wastewater inflow rates showed a positive linear correlation with a coefficient of 0.831.
SCADA-based Operator Support System for Power Plant Equipment Fault Forecasting
NASA Astrophysics Data System (ADS)
Mayadevi, N.; Ushakumari, S. S.; Vinodchandra, S. S.
2014-12-01
Power plant equipment must be monitored closely to prevent failures from disrupting plant availability. Online monitoring technology integrated with hybrid forecasting techniques can be used to prevent plant equipment faults. A self learning rule-based expert system is proposed in this paper for fault forecasting in power plants controlled by supervisory control and data acquisition (SCADA) system. Self-learning utilizes associative data mining algorithms on the SCADA history database to form new rules that can dynamically update the knowledge base of the rule-based expert system. In this study, a number of popular associative learning algorithms are considered for rule formation. Data mining results show that the Tertius algorithm is best suited for developing a learning engine for power plants. For real-time monitoring of the plant condition, graphical models are constructed by K-means clustering. To build a time-series forecasting model, a multi layer preceptron (MLP) is used. Once created, the models are updated in the model library to provide an adaptive environment for the proposed system. Graphical user interface (GUI) illustrates the variation of all sensor values affecting a particular alarm/fault, as well as the step-by-step procedure for avoiding critical situations and consequent plant shutdown. The forecasting performance is evaluated by computing the mean absolute error and root mean square error of the predictions.
Quan, Hao; Srinivasan, Dipti; Khosravi, Abbas
2015-09-01
Penetration of renewable energy resources, such as wind and solar power, into power systems significantly increases the uncertainties on system operation, stability, and reliability in smart grids. In this paper, the nonparametric neural network-based prediction intervals (PIs) are implemented for forecast uncertainty quantification. Instead of a single level PI, wind power forecast uncertainties are represented in a list of PIs. These PIs are then decomposed into quantiles of wind power. A new scenario generation method is proposed to handle wind power forecast uncertainties. For each hour, an empirical cumulative distribution function (ECDF) is fitted to these quantile points. The Monte Carlo simulation method is used to generate scenarios from the ECDF. Then the wind power scenarios are incorporated into a stochastic security-constrained unit commitment (SCUC) model. The heuristic genetic algorithm is utilized to solve the stochastic SCUC problem. Five deterministic and four stochastic case studies incorporated with interval forecasts of wind power are implemented. The results of these cases are presented and discussed together. Generation costs, and the scheduled and real-time economic dispatch reserves of different unit commitment strategies are compared. The experimental results show that the stochastic model is more robust than deterministic ones and, thus, decreases the risk in system operations of smart grids.
Assimilation of Tropical Cyclone Track and Wind Radius Data with an Ensemble Kalman Filter
NASA Astrophysics Data System (ADS)
Kunii, M.
2014-12-01
Improving tropical cyclone (TC) forecasts is one of the most important issues in meteorology, but TC intensity forecasts are a challenging task. Because the lack of observations near TCs usually results in degraded accuracy of initial fields, utilizing TC advisory data in data assimilation typically has started with an ensemble Kalman filtering (EnKF). In this study, TC intensity and position information was directly assimilated using the EnKF, and the impact of these observations was investigated by comparing different assimilation strategies. Another experiment with TC wind radius data was carried out to examine the influence of TC shape parameters. Sensitivity experiments indicated that the assimilation of TC intensity and position data yielded results that were superior to those based on conventional assimilation of TC minimum sea level pressure as a standard surface pressure observation. Assimilation of TC radius data modified TC outer circulations closer to observations. The impacts of these TC parameters were also evaluated using the case of Typhoon Talas in 2011. The TC intensity, position, and wind radius data led to improved TC track forecasts and thence to improved precipitation forecasts. These results imply that initialization with these TC-related observations benefits TC forecasts, offering promise for the prevention and mitigation of natural disasters caused by TCs.
Valizadeh, Nariman; El-Shafie, Ahmed; Mirzaei, Majid; Galavi, Hadi; Mukhlisin, Muhammad; Jaafar, Othman
2014-01-01
Water level forecasting is an essential topic in water management affecting reservoir operations and decision making. Recently, modern methods utilizing artificial intelligence, fuzzy logic, and combinations of these techniques have been used in hydrological applications because of their considerable ability to map an input-output pattern without requiring prior knowledge of the criteria influencing the forecasting procedure. The artificial neurofuzzy interface system (ANFIS) is one of the most accurate models used in water resource management. Because the membership functions (MFs) possess the characteristics of smoothness and mathematical components, each set of input data is able to yield the best result using a certain type of MF in the ANFIS models. The objective of this study is to define the different ANFIS model by applying different types of MFs for each type of input to forecast the water level in two case studies, the Klang Gates Dam and Rantau Panjang station on the Johor river in Malaysia, to compare the traditional ANFIS model with the new introduced one in two different situations, reservoir and stream, showing the new approach outweigh rather than the traditional one in both case studies. This objective is accomplished by evaluating the model fitness and performance in daily forecasting.
NASA Technical Reports Server (NTRS)
Raymond, William H.; Olson, William S.; Callan, Geary
1995-01-01
In this study, diabatic forcing, and liquid water assimilation techniques are tested in a semi-implicit hydrostatic regional forecast model containing explicit representations of grid-scale cloud water and rainwater. Diabatic forcing, in conjunction with diabatic contributions in the initialization, is found to help the forecast retain the diabatic signal found in the liquid water or heating rate data, consequently reducing the spinup time associated with grid-scale precipitation processes. Both observational Special Sensor Microwave/Imager (SSM/I) and model-generated data are used. A physical retrieval method incorporating SSM/I radiance data is utilized to estimate the 3D distribution of precipitating storms. In the retrieval method the relationship between precipitation distributions and upwelling microwave radiances is parameterized, based upon cloud ensemble-radiative model simulations. Regression formulae relating vertically integrated liquid and ice-phase precipitation amounts to latent heating rates are also derived from the cloud ensemble simulations. Thus, retrieved SSM/I precipitation structures can be used in conjunction with the regression-formulas to infer the 3D distribution of latent heating rates. These heating rates are used directly in the forecast model to help initiate Tropical Storm Emily (21 September 1987). The 14-h forecast of Emily's development yields atmospheric precipitation water contents that compare favorably with coincident SSM/I estimates.
NASA Astrophysics Data System (ADS)
Zhou, Jianzhong; Zhang, Hairong; Zhang, Jianyun; Zeng, Xiaofan; Ye, Lei; Liu, Yi; Tayyab, Muhammad; Chen, Yufan
2017-07-01
An accurate flood forecasting with long lead time can be of great value for flood prevention and utilization. This paper develops a one-way coupled hydro-meteorological modeling system consisting of the mesoscale numerical weather model Weather Research and Forecasting (WRF) model and the Chinese Xinanjiang hydrological model to extend flood forecasting lead time in the Jinshajiang River Basin, which is the largest hydropower base in China. Focusing on four typical precipitation events includes: first, the combinations and mode structures of parameterization schemes of WRF suitable for simulating precipitation in the Jinshajiang River Basin were investigated. Then, the Xinanjiang model was established after calibration and validation to make up the hydro-meteorological system. It was found that the selection of the cloud microphysics scheme and boundary layer scheme has a great impact on precipitation simulation, and only a proper combination of the two schemes could yield accurate simulation effects in the Jinshajiang River Basin and the hydro-meteorological system can provide instructive flood forecasts with long lead time. On the whole, the one-way coupled hydro-meteorological model could be used for precipitation simulation and flood prediction in the Jinshajiang River Basin because of its relatively high precision and long lead time.
Time-Series Approaches for Forecasting the Number of Hospital Daily Discharged Inpatients.
Ting Zhu; Li Luo; Xinli Zhang; Yingkang Shi; Wenwu Shen
2017-03-01
For hospitals where decisions regarding acceptable rates of elective admissions are made in advance based on expected available bed capacity and emergency requests, accurate predictions of inpatient bed capacity are especially useful for capacity reservation purposes. As given, the remaining unoccupied beds at the end of each day, bed capacity of the next day can be obtained by examining the forecasts of the number of discharged patients during the next day. The features of fluctuations in daily discharges like trend, seasonal cycles, special-day effects, and autocorrelation complicate decision optimizing, while time-series models can capture these features well. This research compares three models: a model combining seasonal regression and ARIMA, a multiplicative seasonal ARIMA (MSARIMA) model, and a combinatorial model based on MSARIMA and weighted Markov Chain models in generating forecasts of daily discharges. The models are applied to three years of discharge data of an entire hospital. Several performance measures like the direction of the symmetry value, normalized mean squared error, and mean absolute percentage error are utilized to capture the under- and overprediction in model selection. The findings indicate that daily discharges can be forecast by using the proposed models. A number of important practical implications are discussed, such as the use of accurate forecasts in discharge planning, admission scheduling, and capacity reservation.
Mirzaei, Majid; Jaafar, Othman
2014-01-01
Water level forecasting is an essential topic in water management affecting reservoir operations and decision making. Recently, modern methods utilizing artificial intelligence, fuzzy logic, and combinations of these techniques have been used in hydrological applications because of their considerable ability to map an input-output pattern without requiring prior knowledge of the criteria influencing the forecasting procedure. The artificial neurofuzzy interface system (ANFIS) is one of the most accurate models used in water resource management. Because the membership functions (MFs) possess the characteristics of smoothness and mathematical components, each set of input data is able to yield the best result using a certain type of MF in the ANFIS models. The objective of this study is to define the different ANFIS model by applying different types of MFs for each type of input to forecast the water level in two case studies, the Klang Gates Dam and Rantau Panjang station on the Johor river in Malaysia, to compare the traditional ANFIS model with the new introduced one in two different situations, reservoir and stream, showing the new approach outweigh rather than the traditional one in both case studies. This objective is accomplished by evaluating the model fitness and performance in daily forecasting. PMID:24790567
NASA Technical Reports Server (NTRS)
Smith, K. R.; Boness, F. H.
1972-01-01
The impact of advanced satellite meteorology on long range weather forecasts, agriculture, commerce, and resource utilization are examined. All data are geared to obtaining a picture of various user needs and possible benefits.
47 CFR 52.15 - Central office code administration.
Code of Federal Regulations, 2011 CFR
2011-10-01
... assignment databases; (3) Conducting the Numbering Resource Utilization and Forecast (NRUF) data collection... telecommunications carrier that receives numbering resources from the NANPA, a Pooling Administrator or another... Administrator. (2) State commissions may investigate and determine whether service providers have activated...
47 CFR 52.15 - Central office code administration.
Code of Federal Regulations, 2014 CFR
2014-10-01
... assignment databases; (3) Conducting the Numbering Resource Utilization and Forecast (NRUF) data collection... telecommunications carrier that receives numbering resources from the NANPA, a Pooling Administrator or another... Administrator. (2) State commissions may investigate and determine whether service providers have activated...
47 CFR 52.15 - Central office code administration.
Code of Federal Regulations, 2013 CFR
2013-10-01
... assignment databases; (3) Conducting the Numbering Resource Utilization and Forecast (NRUF) data collection... telecommunications carrier that receives numbering resources from the NANPA, a Pooling Administrator or another... Administrator. (2) State commissions may investigate and determine whether service providers have activated...
How do I know if my forecasts are better? Using benchmarks in hydrological ensemble prediction
NASA Astrophysics Data System (ADS)
Pappenberger, F.; Ramos, M. H.; Cloke, H. L.; Wetterhall, F.; Alfieri, L.; Bogner, K.; Mueller, A.; Salamon, P.
2015-03-01
The skill of a forecast can be assessed by comparing the relative proximity of both the forecast and a benchmark to the observations. Example benchmarks include climatology or a naïve forecast. Hydrological ensemble prediction systems (HEPS) are currently transforming the hydrological forecasting environment but in this new field there is little information to guide researchers and operational forecasters on how benchmarks can be best used to evaluate their probabilistic forecasts. In this study, it is identified that the forecast skill calculated can vary depending on the benchmark selected and that the selection of a benchmark for determining forecasting system skill is sensitive to a number of hydrological and system factors. A benchmark intercomparison experiment is then undertaken using the continuous ranked probability score (CRPS), a reference forecasting system and a suite of 23 different methods to derive benchmarks. The benchmarks are assessed within the operational set-up of the European Flood Awareness System (EFAS) to determine those that are 'toughest to beat' and so give the most robust discrimination of forecast skill, particularly for the spatial average fields that EFAS relies upon. Evaluating against an observed discharge proxy the benchmark that has most utility for EFAS and avoids the most naïve skill across different hydrological situations is found to be meteorological persistency. This benchmark uses the latest meteorological observations of precipitation and temperature to drive the hydrological model. Hydrological long term average benchmarks, which are currently used in EFAS, are very easily beaten by the forecasting system and the use of these produces much naïve skill. When decomposed into seasons, the advanced meteorological benchmarks, which make use of meteorological observations from the past 20 years at the same calendar date, have the most skill discrimination. They are also good at discriminating skill in low flows and for all catchment sizes. Simpler meteorological benchmarks are particularly useful for high flows. Recommendations for EFAS are to move to routine use of meteorological persistency, an advanced meteorological benchmark and a simple meteorological benchmark in order to provide a robust evaluation of forecast skill. This work provides the first comprehensive evidence on how benchmarks can be used in evaluation of skill in probabilistic hydrological forecasts and which benchmarks are most useful for skill discrimination and avoidance of naïve skill in a large scale HEPS. It is recommended that all HEPS use the evidence and methodology provided here to evaluate which benchmarks to employ; so forecasters can have trust in their skill evaluation and will have confidence that their forecasts are indeed better.
Can Walmart make us healthier? Prescription drug prices and health care utilization.
Borrescio-Higa, Florencia
2015-12-01
This paper analyzes how prices in the retail pharmaceutical market affect health care utilization. Specifically, I study the impact of Walmart's $4 Prescription Drug Program on utilization of antihypertensive drugs and on hospitalizations for conditions amenable to drug therapy. Identification relies on the change in the availability of cheap drugs introduced by Walmart's program, exploiting variation in the distance to the nearest Walmart across ZIP codes in a difference-in-differences framework. I find that living close to a source of cheap drugs increases utilization of antihypertensive medications by 7 percent and decreases the probability of an avoidable hospitalization by 6.2 percent. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Molthan, A. L.; Haynes, J. A.; Case, J. L.; Jedlovec, G. L.; Lapenta, W. M.
2008-01-01
As computational power increases, operational forecast models are performing simulations with higher spatial resolution allowing for the transition from sub-grid scale cloud parameterizations to an explicit forecast of cloud characteristics and precipitation through the use of single- or multi-moment bulk water microphysics schemes. investments in space-borne and terrestrial remote sensing have developed the NASA CloudSat Cloud Profiling Radar and the NOAA National Weather Service NEXRAD system, each providing observations related to the bulk properties of clouds and precipitation through measurements of reflectivity. CloudSat and NEXRAD system radars observed light to moderate snowfall in association with a cold-season, midlatitude cyclone traversing the Central United States in February 2007. These systems are responsible for widespread cloud cover and various types of precipitation, are of economic consequence, and pose a challenge to operational forecasters. This event is simulated with the Weather Research and Forecast (WRF) Model, utilizing the NASA Goddard Cumulus Ensemble microphysics scheme. Comparisons are made between WRF-simulated and observed reflectivity available from the CloudSat and NEXRAD systems. The application of CloudSat reflectivity is made possible through the QuickBeam radiative transfer model, with cautious application applied in light of single scattering characteristics and spherical target assumptions. Significant differences are noted within modeled and observed cloud profiles, based upon simulated reflectivity, and modifications to the single-moment scheme are tested through a supplemental WRF forecast that incorporates a temperature dependent snow crystal size distribution.
Assimilation of ZDR Columns for Improving the Spin-Up and Forecasts of Convective Storms
NASA Astrophysics Data System (ADS)
Carlin, J.; Gao, J.; Snyder, J.; Ryzhkov, A.
2017-12-01
A primary motivation for assimilating radar reflectivity data is the reduction of spin-up time for modeled convection. To accomplish this, cloud analysis techniques seek to induce and sustain convective updrafts in storm-scale models by inserting temperature and moisture increments and hydrometeor mixing ratios into the model analysis from simple relations with reflectivity. Polarimetric radar data provide additional insight into the microphysical and dynamic structure of convection. In particular, the radar meteorology community has known for decades that convective updrafts cause, and are typically co-located with, differential reflectivity (ZDR) columns - vertical protrusions of enhanced ZDR above the environmental 0˚C level. Despite these benefits, limited work has been done thus far to assimilate dual-polarization radar data into numerical weather prediction models. In this study, we explore the utility of assimilating ZDR columns to improve storm-scale model analyses and forecasts of convection. We modify the existing Advanced Regional Prediction System's (ARPS) cloud analysis routine to adjust model temperature and moisture state variables using detected ZDR columns as proxies for convective updrafts, and compare the resultant cycled analyses and forecasts with those from the original reflectivity-based cloud analysis formulation. Results indicate qualitative and quantitative improvements from assimilating ZDR columns, including more coherent analyzed updrafts, forecast updraft helicity swaths that better match radar-derived rotation tracks, more realistic forecast reflectivity fields, and larger equitable threat scores. These findings support the use of dual-polarization radar signatures to improve storm-scale model analyses and forecasts.
Forecasting influenza outbreak dynamics in Melbourne from Internet search query surveillance data.
Moss, Robert; Zarebski, Alexander; Dawson, Peter; McCaw, James M
2016-07-01
Accurate forecasting of seasonal influenza epidemics is of great concern to healthcare providers in temperate climates, as these epidemics vary substantially in their size, timing and duration from year to year, making it a challenge to deliver timely and proportionate responses. Previous studies have shown that Bayesian estimation techniques can accurately predict when an influenza epidemic will peak many weeks in advance, using existing surveillance data, but these methods must be tailored both to the target population and to the surveillance system. Our aim was to evaluate whether forecasts of similar accuracy could be obtained for metropolitan Melbourne (Australia). We used the bootstrap particle filter and a mechanistic infection model to generate epidemic forecasts for metropolitan Melbourne (Australia) from weekly Internet search query surveillance data reported by Google Flu Trends for 2006-14. Optimal observation models were selected from hundreds of candidates using a novel approach that treats forecasts akin to receiver operating characteristic (ROC) curves. We show that the timing of the epidemic peak can be accurately predicted 4-6 weeks in advance, but that the magnitude of the epidemic peak and the overall burden are much harder to predict. We then discuss how the infection and observation models and the filtering process may be refined to improve forecast robustness, thereby improving the utility of these methods for healthcare decision support. © 2016 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.
Equation-free mechanistic ecosystem forecasting using empirical dynamic modeling
Ye, Hao; Beamish, Richard J.; Glaser, Sarah M.; Grant, Sue C. H.; Hsieh, Chih-hao; Richards, Laura J.; Schnute, Jon T.; Sugihara, George
2015-01-01
It is well known that current equilibrium-based models fall short as predictive descriptions of natural ecosystems, and particularly of fisheries systems that exhibit nonlinear dynamics. For example, model parameters assumed to be fixed constants may actually vary in time, models may fit well to existing data but lack out-of-sample predictive skill, and key driving variables may be misidentified due to transient (mirage) correlations that are common in nonlinear systems. With these frailties, it is somewhat surprising that static equilibrium models continue to be widely used. Here, we examine empirical dynamic modeling (EDM) as an alternative to imposed model equations and that accommodates both nonequilibrium dynamics and nonlinearity. Using time series from nine stocks of sockeye salmon (Oncorhynchus nerka) from the Fraser River system in British Columbia, Canada, we perform, for the the first time to our knowledge, real-data comparison of contemporary fisheries models with equivalent EDM formulations that explicitly use spawning stock and environmental variables to forecast recruitment. We find that EDM models produce more accurate and precise forecasts, and unlike extensions of the classic Ricker spawner–recruit equation, they show significant improvements when environmental factors are included. Our analysis demonstrates the strategic utility of EDM for incorporating environmental influences into fisheries forecasts and, more generally, for providing insight into how environmental factors can operate in forecast models, thus paving the way for equation-free mechanistic forecasting to be applied in management contexts. PMID:25733874
21 CFR 14.171 - Utilization of an advisory committee on the initiative of FDA.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Utilization of an advisory committee on the initiative of FDA. 14.171 Section 14.171 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH... Human Prescription Drugs § 14.171 Utilization of an advisory committee on the initiative of FDA. (a) Any...
Medium-range, objective predictions of thunderstorm location and severity for aviation
NASA Technical Reports Server (NTRS)
Wilson, G. S.; Turner, R. E.
1981-01-01
This paper presents a computerized technique for medium-range (12-48h) prediction of both the location and severity of thunderstorms utilizing atmospheric predictions from the National Meteorological Center's limited-area fine-mesh model (LFM). A regional-scale analysis scheme is first used to examine the spatial and temporal distributions of forecasted variables associated with the structure and dynamics of mesoscale systems over an area of approximately 10 to the 6th sq km. The final prediction of thunderstorm location and severity is based upon an objective combination of these regionally analyzed variables. Medium-range thunderstorm predictions are presented for the late afternoon period of April 10, 1979, the day of the Wichita Falls, Texas tornado. Conventional medium-range thunderstorm forecasts, made from observed data, are presented with the case study to demonstrate the possible application of this objective technique in improving 12-48 h thunderstorm forecasts for aviation.
NASA Technical Reports Server (NTRS)
Sand, F.; Christie, R.
1975-01-01
Extending the crop survey application of remote sensing from small experimental regions to state and national levels requires that a sample of agricultural fields be chosen for remote sensing of crop acreage, and that a statistical estimate be formulated with measurable characteristics. The critical requirements for the success of the application are reviewed in this report. The problem of sampling in the presence of cloud cover is discussed. Integration of remotely sensed information about crops into current agricultural crop forecasting systems is treated on the basis of the USDA multiple frame survey concepts, with an assumed addition of a new frame derived from remote sensing. Evolution of a crop forecasting system which utilizes LANDSAT and future remote sensing systems is projected for the 1975-1990 time frame.
Ability of crime, demographic and business data to forecast areas of increased violence.
Bowen, Daniel A; Mercer Kollar, Laura M; Wu, Daniel T; Fraser, David A; Flood, Charles E; Moore, Jasmine C; Mays, Elizabeth W; Sumner, Steven A
2018-05-24
Identifying geographic areas and time periods of increased violence is of considerable importance in prevention planning. This study compared the performance of multiple data sources to prospectively forecast areas of increased interpersonal violence. We used 2011-2014 data from a large metropolitan county on interpersonal violence (homicide, assault, rape and robbery) and forecasted violence at the level of census block-groups and over a one-month moving time window. Inputs to a Random Forest model included historical crime records from the police department, demographic data from the US Census Bureau, and administrative data on licensed businesses. Among 279 block groups, a model utilizing all data sources was found to prospectively improve the identification of the top 5% most violent block-group months (positive predictive value = 52.1%; negative predictive value = 97.5%; sensitivity = 43.4%; specificity = 98.2%). Predictive modelling with simple inputs can help communities more efficiently focus violence prevention resources geographically.
Low validity of Google Trends for behavioral forecasting of national suicide rates
Niederkrotenthaler, Thomas; Till, Benedikt; Ajdacic-Gross, Vladeta; Voracek, Martin
2017-01-01
Recent research suggests that search volumes of the most popular search engine worldwide, Google, provided via Google Trends, could be associated with national suicide rates in the USA, UK, and some Asian countries. However, search volumes have mostly been studied in an ad hoc fashion, without controls for spurious associations. This study evaluated the validity and utility of Google Trends search volumes for behavioral forecasting of suicide rates in the USA, Germany, Austria, and Switzerland. Suicide-related search terms were systematically collected and respective Google Trends search volumes evaluated for availability. Time spans covered 2004 to 2010 (USA, Switzerland) and 2004 to 2012 (Germany, Austria). Temporal associations of search volumes and suicide rates were investigated with time-series analyses that rigorously controlled for spurious associations. The number and reliability of analyzable search volume data increased with country size. Search volumes showed various temporal associations with suicide rates. However, associations differed both across and within countries and mostly followed no discernable patterns. The total number of significant associations roughly matched the number of expected Type I errors. These results suggest that the validity of Google Trends search volumes for behavioral forecasting of national suicide rates is low. The utility and validity of search volumes for the forecasting of suicide rates depend on two key assumptions (“the population that conducts searches consists mostly of individuals with suicidal ideation”, “suicide-related search behavior is strongly linked with suicidal behavior”). We discuss strands of evidence that these two assumptions are likely not met. Implications for future research with Google Trends in the context of suicide research are also discussed. PMID:28813490
Bugliosi, R; Spera, G; La Torre, A; Campoli, L; Scaglione, M
2006-01-01
Most of the forecasting models of Plasmopara viticola infections are based upon empiric correlations between meteorological/environmental data and pathogen outbreak. These models generally overestimate the risk of infections and induce to treat the vineyard even if it should be not necessary. In rare cases they underrate the risk of infection leaving the pathogen to breakout. Starting from these considerations we have decided to approach the problem from another point of view utilizing Artificial Intelligence techniques for data elaboration and analysis. Meanwhile the same data have been studied with a more classic approach with statistical tools to verify the impact of a large data collection on the standard data analysis methods. A network of RTUs (Remote Terminal Units) distributed all over the Italian national territory transmits 12 environmental parameters every 15 minutes via radio or via GPRS to a centralized Data Base. Other pedologic data is collected directly from the field and sent via Internet to the centralized data base utilizing Personal Digital Assistants (PDAs) running a specific software. Data is stored after having been preprocessed, to guarantee the quality of the information. The subsequent analysis has been realized mostly with Artificial Neural Networks (ANNs). Collecting and analizing data in this way will probably bring us to the possibility of preventing Plasmospara viticola infection starting from the environmental conditions in this very complex context. The aim of this work is to forecast the infection avoiding the ineffective use of the plant protection products in agriculture. Applying different analysis models we will try to find the best ANN capable of forecasting with an high level of affordability.
Understanding the Influence of Climate Forecasts on Farmer Decisions as Planned Behavior
NASA Astrophysics Data System (ADS)
Artikov, Ikrom; Hoffman, Stacey J.; Lynne, Gary D.; Pytlik Zillig, Lisa M.; Hu, Qi; Tomkins, Alan J.; Hubbard, Kenneth G.; Hayes, Michael J.; Waltman, William
2006-09-01
Results of a set of four regression models applied to recent survey data of farmers in eastern Nebraska suggest the causes that drive farmer intentions of using weather and climate information and forecasts in farming decisions. The model results quantify the relative importance of attitude, social norm, perceived behavioral control, and financial capability in explaining the influence of climate-conditions information and short-term and long-term forecasts on agronomic, crop insurance, and crop marketing decisions. Attitude, serving as a proxy for the utility gained from the use of such information, had the most profound positive influence on the outcome of all the decisions, followed by norms. The norms in the community, as a proxy for the utility gained from allowing oneself to be influenced by others, played a larger role in agronomic decisions than in insurance or marketing decisions. In addition, the interaction of controllability (accuracy, availability, reliability, timeliness of weather and climate information), self-efficacy (farmer ability and understanding), and general preference for control was shown to be a substantive cause. Yet control variables also have an economic side: The farm-sales variable as a measure of financial ability and motivation intensified and clarified the role of control while also enhancing the statistical robustness of the attitude and norms variables in better clarifying how they drive the influence. Overall, the integrated model of planned behavior from social psychology and derived demand from economics, that is, the “planned demand model,” is more powerful than models based on either of these approaches alone. Taken together, these results suggest that the “human dimension” needs to be better recognized so as to improve effective use of climate and weather forecasts and information for farming decision making.
Bluml, Benjamin M; Brock, Kelly A; Hamstra, Scott; Tonrey, Lisa
2018-02-01
The goal of the initiative was to evaluate the impact of an innovative practice model on identification of unmet vaccination needs and vaccination rates. This was accomplished through a prospective, multisite, observational study in 8 community pharmacy practices with adults receiving an influenza vaccine with a documented vaccination forecast review from October 22, 2015 through March 22, 2016. When patients presented for influenza vaccinations, pharmacists utilized immunization information systems (IIS) data at the point of care to identify unmet vaccination needs, educate patients, and improve vaccination rates. The main outcome measures were the number of vaccination forecast reviews, patients educated, unmet vaccination needs identified and resolved, and vaccines administered. Pharmacists reviewed vaccination forecasts generated by clinical decision-support technology based on patient information documented in the IIS for 1080 patients receiving influenza vaccinations. The vaccination forecasts predicted there were 1566 additional vaccinations due at the time patients were receiving the influenza vaccine. Pharmacist assessments identified 36 contraindications and 196 potential duplications, leaving a net of 1334 unmet vaccination needs eligible for vaccination. In all, 447 of the 1334 unmet vaccinations needs were resolved during the 6-month study period, and the remainder of patients received information about their vaccination needs and recommendations to follow up for their vaccinations. Integration of streamlined principle-centered processes of care in immunization practices that allow pharmacists to utilize actionable point-of-care data resulted in identification of unmet vaccination needs, education of patients about their vaccination needs, a 41.4% increase in the number of vaccines administered, and significant improvements in routinely recommended adult vaccination rates.
Satellite Proving Ground for the GOES-R Geostationary Lightning Mapper (GLM)
NASA Technical Reports Server (NTRS)
Goodman, Steven J.; Gurka, James; Bruning, E. C.; Blakeslee, J. R.; Rabin, Robert; Buechler, D.
2009-01-01
The key mission of the Satellite Proving Ground is to demonstrate new satellite observing data, products and capabilities in the operational environment to be ready on Day 1 to use the GOES-R suite of measurements. Algorithms, tools, and techniques must be tested, validated, and assessed by end users for their utility before they are finalized and incorporated into forecast operations. The GOES-R Proving Ground for the Geostationary Lightning Mapper (GLM) focuses on evaluating how the infusion of the new technology, algorithms, decision aids, or tailored products integrate with other available tools (weather radar and ground strike networks; nowcasting systems, mesoscale analysis, and numerical weather prediction models) in the hands of the forecaster responsible for issuing forecasts and warning products. Additionally, the testing concept fosters operation and development staff interactions which will improve training materials and support documentation development. Real-time proxy total lightning data from regional VHF lightning mapping arrays (LMA) in Northern Alabama, Central Oklahoma, Cape Canaveral Florida, and the Washington, DC Greater Metropolitan Area are the cornerstone for the GLM Proving Ground. The proxy data will simulate the 8 km Event, Group and Flash data that will be generated by GLM. Tailored products such as total flash density at 1-2 minute intervals will be provided for display in AWIPS-2 to select NWS forecast offices and national centers such as the Storm Prediction Center. Additional temporal / spatial combinations are being investigated in coordination with operational needs and case-study proxy data and prototype visualizations may also be generated from the NASA heritage Lightning Imaging Sensor and Optical Transient Detector data. End users will provide feedback on the utility of products in their operational environment, identify use cases and spatial/temporal scales of interest, and provide feedback to the developers for adjusted or new products.
Papin, Jason A.
2017-01-01
Antibiotic regimens often include the sequential changing of drugs to limit the development and evolution of resistance of bacterial pathogens. It remains unclear how history of adaptation to one antibiotic can influence the resistance profiles when bacteria subsequently adapt to a different antibiotic. Here, we experimentally evolved Pseudomonas aeruginosa to six 2-drug sequences. We observed drug order–specific effects, whereby adaptation to the first drug can limit the rate of subsequent adaptation to the second drug, adaptation to the second drug can restore susceptibility to the first drug, or final resistance levels depend on the order of the 2-drug sequence. These findings demonstrate how resistance not only depends on the current drug regimen but also the history of past regimens. These order-specific effects may allow for rational forecasting of the evolutionary dynamics of bacteria given knowledge of past adaptations and provide support for the need to consider the history of past drug exposure when designing strategies to mitigate resistance and combat bacterial infections. PMID:28792497
Adaptation of Mesoscale Weather Models to Local Forecasting
NASA Technical Reports Server (NTRS)
Manobianco, John T.; Taylor, Gregory E.; Case, Jonathan L.; Dianic, Allan V.; Wheeler, Mark W.; Zack, John W.; Nutter, Paul A.
2003-01-01
Methodologies have been developed for (1) configuring mesoscale numerical weather-prediction models for execution on high-performance computer workstations to make short-range weather forecasts for the vicinity of the Kennedy Space Center (KSC) and the Cape Canaveral Air Force Station (CCAFS) and (2) evaluating the performances of the models as configured. These methodologies have been implemented as part of a continuing effort to improve weather forecasting in support of operations of the U.S. space program. The models, methodologies, and results of the evaluations also have potential value for commercial users who could benefit from tailoring their operations and/or marketing strategies based on accurate predictions of local weather. More specifically, the purpose of developing the methodologies for configuring the models to run on computers at KSC and CCAFS is to provide accurate forecasts of winds, temperature, and such specific thunderstorm-related phenomena as lightning and precipitation. The purpose of developing the evaluation methodologies is to maximize the utility of the models by providing users with assessments of the capabilities and limitations of the models. The models used in this effort thus far include the Mesoscale Atmospheric Simulation System (MASS), the Regional Atmospheric Modeling System (RAMS), and the National Centers for Environmental Prediction Eta Model ( Eta for short). The configuration of the MASS and RAMS is designed to run the models at very high spatial resolution and incorporate local data to resolve fine-scale weather features. Model preprocessors were modified to incorporate surface, ship, buoy, and rawinsonde data as well as data from local wind towers, wind profilers, and conventional or Doppler radars. The overall evaluation of the MASS, Eta, and RAMS was designed to assess the utility of these mesoscale models for satisfying the weather-forecasting needs of the U.S. space program. The evaluation methodology includes objective and subjective verification methodologies. Objective (e.g., statistical) verification of point forecasts is a stringent measure of model performance, but when used alone, it is not usually sufficient for quantifying the value of the overall contribution of the model to the weather-forecasting process. This is especially true for mesoscale models with enhanced spatial and temporal resolution that may be capable of predicting meteorologically consistent, though not necessarily accurate, fine-scale weather phenomena. Therefore, subjective (phenomenological) evaluation, focusing on selected case studies and specific weather features, such as sea breezes and precipitation, has been performed to help quantify the added value that cannot be inferred solely from objective evaluation.
NASA Astrophysics Data System (ADS)
Sankarasubramanian, A.; Lall, Upmanu; Souza Filho, Francisco Assis; Sharma, Ashish
2009-11-01
Probabilistic, seasonal to interannual streamflow forecasts are becoming increasingly available as the ability to model climate teleconnections is improving. However, water managers and practitioners have been slow to adopt such products, citing concerns with forecast skill. Essentially, a management risk is perceived in "gambling" with operations using a probabilistic forecast, while a system failure upon following existing operating policies is "protected" by the official rules or guidebook. In the presence of a prescribed system of prior allocation of releases under different storage or water availability conditions, the manager has little incentive to change. Innovation in allocation and operation is hence key to improved risk management using such forecasts. A participatory water allocation process that can effectively use probabilistic forecasts as part of an adaptive management strategy is introduced here. Users can express their demand for water through statements that cover the quantity needed at a particular reliability, the temporal distribution of the "allocation," the associated willingness to pay, and compensation in the event of contract nonperformance. The water manager then assesses feasible allocations using the probabilistic forecast that try to meet these criteria across all users. An iterative process between users and water manager could be used to formalize a set of short-term contracts that represent the resulting prioritized water allocation strategy over the operating period for which the forecast was issued. These contracts can be used to allocate water each year/season beyond long-term contracts that may have precedence. Thus, integrated supply and demand management can be achieved. In this paper, a single period multiuser optimization model that can support such an allocation process is presented. The application of this conceptual model is explored using data for the Jaguaribe Metropolitan Hydro System in Ceara, Brazil. The performance relative to the current allocation process is assessed in the context of whether such a model could support the proposed short-term contract based participatory process. A synthetic forecasting example is also used to explore the relative roles of forecast skill and reservoir storage in this framework.
NASA Astrophysics Data System (ADS)
Engeland, K.; Steinsland, I.
2012-04-01
This work is driven by the needs of next generation short term optimization methodology for hydro power production. Stochastic optimization are about to be introduced; i.e. optimizing when available resources (water) and utility (prices) are uncertain. In this paper we focus on the available resources, i.e. water, where uncertainty mainly comes from uncertainty in future runoff. When optimizing a water system all catchments and several lead times have to be considered simultaneously. Depending on the system of hydropower reservoirs, it might be a set of headwater catchments, a system of upstream /downstream reservoirs where water used from one catchment /dam arrives in a lower catchment maybe days later, or a combination of both. The aim of this paper is therefore to construct a simultaneous probabilistic forecast for several catchments and lead times, i.e. to provide a predictive distribution for the forecasts. Stochastic optimization methods need samples/ensembles of run-off forecasts as input. Hence, it should also be possible to sample from our probabilistic forecast. A post-processing approach is taken, and an error model based on Box- Cox transformation, power transform and a temporal-spatial copula model is used. It accounts for both between catchment and between lead time dependencies. In operational use it is strait forward to sample run-off ensembles from this models that inherits the catchment and lead time dependencies. The methodology is tested and demonstrated in the Ulla-Førre river system, and simultaneous probabilistic forecasts for five catchments and ten lead times are constructed. The methodology has enough flexibility to model operationally important features in this case study such as hetroscadasety, lead-time varying temporal dependency and lead-time varying inter-catchment dependency. Our model is evaluated using CRPS for marginal predictive distributions and energy score for joint predictive distribution. It is tested against deterministic run-off forecast, climatology forecast and a persistent forecast, and is found to be the better probabilistic forecast for lead time grater then two. From an operational point of view the results are interesting as the between catchment dependency gets stronger with longer lead-times.
Routine High-Resolution Forecasts/Analyses for the Pacific Disaster Center: User Manual
NASA Technical Reports Server (NTRS)
Roads, John; Han, J.; Chen, S.; Burgan, R.; Fujioka, F.; Stevens, D.; Funayama, D.; Chambers, C.; Bingaman, B.; McCord, C.;
2001-01-01
Enclosed herein is our HWCMO user manual. This manual constitutes the final report for our NASA/PDC grant, NASA NAG5-8730, "Routine High Resolution Forecasts/Analysis for the Pacific Disaster Center". Since the beginning of the grant, we have routinely provided experimental high resolution forecasts from the RSM/MSM for the Hawaii Islands, while working to upgrade the system to include: (1) a more robust input of NCEP analyses directly from NCEP; (2) higher vertical resolution, with increased forecast accuracy; (3) faster delivery of forecast products and extension of initial 1-day forecasts to 2 days; (4) augmentation of our basic meteorological and simplified fireweather forecasts to firedanger and drought forecasts; (5) additional meteorological forecasts with an alternate mesoscale model (MM5); and (6) the feasibility of using our modeling system to work in higher-resolution domains and other regions. In this user manual, we provide a general overview of the operational system and the mesoscale models as well as more detailed descriptions of the models. A detailed description of daily operations and a cost analysis is also provided. Evaluations of the models are included although it should be noted that model evaluation is a continuing process and as potential problems are identified, these can be used as the basis for making model improvements. Finally, we include our previously submitted answers to particular PDC questions (Appendix V). All of our initially proposed objectives have basically been met. In fact, a number of useful applications (VOG, air pollution transport) are already utilizing our experimental output and we believe there are a number of other applications that could make use of our routine forecast/analysis products. Still, work still remains to be done to further develop this experimental weather, climate, fire danger and drought prediction system. In short, we would like to be a part of a future PDC team, if at all possible, to further develop and apply the system for the Hawaiian and other Pacific Islands as well as the entire Pacific Basin.
Shi, Yuan; Liu, Xu; Kok, Suet-Yheng; Rajarethinam, Jayanthi; Liang, Shaohong; Yap, Grace; Chong, Chee-Seng; Lee, Kim-Sung; Tan, Sharon S.Y.; Chin, Christopher Kuan Yew; Lo, Andrew; Kong, Waiming; Ng, Lee Ching; Cook, Alex R.
2015-01-01
Background: With its tropical rainforest climate, rapid urbanization, and changing demography and ecology, Singapore experiences endemic dengue; the last large outbreak in 2013 culminated in 22,170 cases. In the absence of a vaccine on the market, vector control is the key approach for prevention. Objectives: We sought to forecast the evolution of dengue epidemics in Singapore to provide early warning of outbreaks and to facilitate the public health response to moderate an impending outbreak. Methods: We developed a set of statistical models using least absolute shrinkage and selection operator (LASSO) methods to forecast the weekly incidence of dengue notifications over a 3-month time horizon. This forecasting tool used a variety of data streams and was updated weekly, including recent case data, meteorological data, vector surveillance data, and population-based national statistics. The forecasting methodology was compared with alternative approaches that have been proposed to model dengue case data (seasonal autoregressive integrated moving average and step-down linear regression) by fielding them on the 2013 dengue epidemic, the largest on record in Singapore. Results: Operationally useful forecasts were obtained at a 3-month lag using the LASSO-derived models. Based on the mean average percentage error, the LASSO approach provided more accurate forecasts than the other methods we assessed. We demonstrate its utility in Singapore’s dengue control program by providing a forecast of the 2013 outbreak for advance preparation of outbreak response. Conclusions: Statistical models built using machine learning methods such as LASSO have the potential to markedly improve forecasting techniques for recurrent infectious disease outbreaks such as dengue. Citation: Shi Y, Liu X, Kok SY, Rajarethinam J, Liang S, Yap G, Chong CS, Lee KS, Tan SS, Chin CK, Lo A, Kong W, Ng LC, Cook AR. 2016. Three-month real-time dengue forecast models: an early warning system for outbreak alerts and policy decision support in Singapore. Environ Health Perspect 124:1369–1375; http://dx.doi.org/10.1289/ehp.1509981 PMID:26662617
Rebuttal of "Polar bear population forecasts: a public-policy forecasting audit"
Amstrup, Steven C.; Caswell, Hal; DeWeaver, Eric; Stirling, Ian; Douglas, David C.; Marcot, Bruce G.; Hunter, Christine M.
2009-01-01
Observed declines in the Arctic sea ice have resulted in a variety of negative effects on polar bears (Ursus maritimus). Projections for additional future declines in sea ice resulted in a proposal to list polar bears as a threatened species under the United States Endangered Species Act. To provide information for the Department of the Interior's listing-decision process, the US Geological Survey (USGS) produced a series of nine research reports evaluating the present and future status of polar bears throughout their range. In response, Armstrong et al. [Armstrong, J. S., K. C. Green, W. Soon. 2008. Polar bear population forecasts: A public-policy forecasting audit. Interfaces 38(5) 382–405], which we will refer to as AGS, performed an audit of two of these nine reports. AGS claimed that the general circulation models upon which the USGS reports relied were not valid forecasting tools, that USGS researchers were not objective or lacked independence from policy decisions, that they did not utilize all available information in constructing their forecasts, and that they violated numerous principles of forecasting espoused by AGS. AGS (p. 382) concluded that the two USGS reports were "unscientific and inconsequential to decision makers." We evaluate the AGS audit and show how AGS are mistaken or misleading on every claim. We provide evidence that general circulation models are useful in forecasting future climate conditions and that corporate and government leaders are relying on these models to do so. We clarify the strict independence of the USGS from the listing decision. We show that the allegations of failure to follow the principles of forecasting espoused by AGS are either incorrect or are based on misconceptions about the Arctic environment, polar bear biology, or statistical and mathematical methods. We conclude by showing that the AGS principles of forecasting are too ambiguous and subjective to be used as a reliable basis for auditing scientific investigations. In summary, we show that the AGS audit offers no valid criticism of the USGS conclusion that global warming poses a serious threat to the future welfare of polar bears and that it only serves to distract from reasoned public-policy debate.
PROJECTIONS OF REGIONAL FUEL OIL AND NATURAL GAS PRICES
The report presents delivered regional oil and natural gas price forecasts for the industrial and electric utility sectors. Delivered energy price projections by Federal region through the year 2045 are provided for distillate fuel oil, residual fuel oil, and natural gas. Methodo...
satellite communications utilizing the C-band. It's primary purpose is for providing internal communications services. The NOAAPORT satellite communications system is operated by GTE Corp., under contract to the NWS . The system uses satellite transmitting (i.e. "uplink") equipment at NWS forecast offices
Lenert, Leslie; Lurie, Jon; Coleman, Robert; Klosterman, Heidrun; Blaschke, Terrence
1990-01-01
In this paper, we will describe an advanced drug dosing program, Aminoglycoside Therapy Manager that reasons using Bayesian pharmacokinetic modeling and symbolic modeling of patient status and drug response. Our design is similar to the design of the Digitalis Therapy Advisor program, but extends previous work by incorporating a Bayesian pharmacokinetic model, a “meta-level” analysis of drug concentrations to identify sampling errors and changes in pharmacokinetics, and including the results of the “meta-level” analysis in reasoning for dosing and therapeutic monitoring recommendations. The program is user friendly and runs on low cost general-purpose hardware. Validation studies show that the program is as accurate in predicting future drug concentrations as an expert using commercial Bayesian forecasting software.
Covariance Manipulation for Conjunction Assessment
NASA Technical Reports Server (NTRS)
Hejduk, M. D.
2016-01-01
The manipulation of space object covariances to try to provide additional or improved information to conjunction risk assessment is not an uncommon practice. Types of manipulation include fabricating a covariance when it is missing or unreliable to force the probability of collision (Pc) to a maximum value ('PcMax'), scaling a covariance to try to improve its realism or see the effect of covariance volatility on the calculated Pc, and constructing the equivalent of an epoch covariance at a convenient future point in the event ('covariance forecasting'). In bringing these methods to bear for Conjunction Assessment (CA) operations, however, some do not remain fully consistent with best practices for conducting risk management, some seem to be of relatively low utility, and some require additional information before they can contribute fully to risk analysis. This study describes some basic principles of modern risk management (following the Kaplan construct) and then examines the PcMax and covariance forecasting paradigms for alignment with these principles; it then further examines the expected utility of these methods in the modern CA framework. Both paradigms are found to be not without utility, but only in situations that are somewhat carefully circumscribed.
The Transition of NASA EOS Datasets to WFO Operations: A Model for Future Technology Transfer
NASA Technical Reports Server (NTRS)
Darden, C.; Burks, J.; Jedlovec, G.; Haines, S.
2007-01-01
The collocation of a National Weather Service (NWS) Forecast Office with atmospheric scientists from NASA/Marshall Space Flight Center (MSFC) in Huntsville, Alabama has afforded a unique opportunity for science sharing and technology transfer. Specifically, the NWS office in Huntsville has interacted closely with research scientists within the SPORT (Short-term Prediction and Research and Transition) Center at MSFC. One significant technology transfer that has reaped dividends is the transition of unique NASA EOS polar orbiting datasets into NWS field operations. NWS forecasters primarily rely on the AWIPS (Advanced Weather Information and Processing System) decision support system for their day to day forecast and warning decision making. Unfortunately, the transition of data from operational polar orbiters or low inclination orbiting satellites into AWIPS has been relatively slow due to a variety of reasons. The ability to integrate these high resolution NASA datasets into operations has yielded several benefits. The MODIS (MODerate-resolution Imaging Spectrometer ) instrument flying on the Aqua and Terra satellites provides a broad spectrum of multispectral observations at resolutions as fine as 250m. Forecasters routinely utilize these datasets to locate fine lines, boundaries, smoke plumes, locations of fog or haze fields, and other mesoscale features. In addition, these important datasets have been transitioned to other WFOs for a variety of local uses. For instance, WFO Great Falls Montana utilizes the MODIS snow cover product for hydrologic planning purposes while several coastal offices utilize the output from the MODIS and AMSR-E instruments to supplement observations in the data sparse regions of the Gulf of Mexico and western Atlantic. In the short term, these datasets have benefited local WFOs in a variety of ways. In the longer term, the process by which these unique datasets were successfully transitioned to operations will benefit the planning and implementation of products and datasets derived from both NPP and NPOESS. This presentation will provide a brief overview of current WFO usage of satellite data, the transition of datasets between SPORT and the N W S , and lessons learned for future transition efforts.
Use of multiattribute utility theory for formulary management in a health system.
Chung, Seonyoung; Kim, Sooyon; Kim, Jeongmee; Sohn, Kieho
2010-01-15
The application, utility, and flexibility of the multiattribute utility theory (MAUT) when used as a formulary decision methodology in a Korean medical center were evaluated. A drug analysis model using MAUT consisting of 10 steps was designed for two drug classes of dihydropyridine calcium channel blockers (CCBs) and angiotensin II receptor blockers (ARBs). These two drug classes contain the most diverse agents among cardiovascular drugs on Samsung Medical Center's drug formulary. The attributes identified for inclusion in the drug analysis model were effectiveness, safety, patient convenience, and cost, with relative weights of 50%, 30%, 10%, and 10%, respectively. The factors were incorporated into the model to quantify the contribution of each attribute. For each factor, a utility scale of 0-100 was established, and the total utility score for each alternative was calculated. An attempt was made to make the model adaptable to changing health care and regulatory circumstances. The analysis revealed amlodipine besylate to be an alternative agent, with the highest total utility score among the dihydropyridine CCBs, while barnidipine hydrochloride had the lowest score. For ARBs, losartan potassium had the greatest total utility score, while olmesartan medoxomil had the lowest. A drug analysis model based on the MAUT was successfully developed and used in making formulary decisions for dihydropyridine CCBs and ARBs for a Korean health system. The model incorporates sufficient utility and flexibility of a drug's attributes and can be used as an alternative decision-making tool for formulary management in health systems.
A Four-Stage Hybrid Model for Hydrological Time Series Forecasting
Di, Chongli; Yang, Xiaohua; Wang, Xiaochao
2014-01-01
Hydrological time series forecasting remains a difficult task due to its complicated nonlinear, non-stationary and multi-scale characteristics. To solve this difficulty and improve the prediction accuracy, a novel four-stage hybrid model is proposed for hydrological time series forecasting based on the principle of ‘denoising, decomposition and ensemble’. The proposed model has four stages, i.e., denoising, decomposition, components prediction and ensemble. In the denoising stage, the empirical mode decomposition (EMD) method is utilized to reduce the noises in the hydrological time series. Then, an improved method of EMD, the ensemble empirical mode decomposition (EEMD), is applied to decompose the denoised series into a number of intrinsic mode function (IMF) components and one residual component. Next, the radial basis function neural network (RBFNN) is adopted to predict the trend of all of the components obtained in the decomposition stage. In the final ensemble prediction stage, the forecasting results of all of the IMF and residual components obtained in the third stage are combined to generate the final prediction results, using a linear neural network (LNN) model. For illustration and verification, six hydrological cases with different characteristics are used to test the effectiveness of the proposed model. The proposed hybrid model performs better than conventional single models, the hybrid models without denoising or decomposition and the hybrid models based on other methods, such as the wavelet analysis (WA)-based hybrid models. In addition, the denoising and decomposition strategies decrease the complexity of the series and reduce the difficulties of the forecasting. With its effective denoising and accurate decomposition ability, high prediction precision and wide applicability, the new model is very promising for complex time series forecasting. This new forecast model is an extension of nonlinear prediction models. PMID:25111782
NASA Astrophysics Data System (ADS)
Allawi, Mohammed Falah; Jaafar, Othman; Mohamad Hamzah, Firdaus; Mohd, Nuruol Syuhadaa; Deo, Ravinesh C.; El-Shafie, Ahmed
2017-10-01
Existing forecast models applied for reservoir inflow forecasting encounter several drawbacks, due to the difficulty of the underlying mathematical procedures being to cope with and to mimic the naturalization and stochasticity of the inflow data patterns. In this study, appropriate adjustments to the conventional coactive neuro-fuzzy inference system (CANFIS) method are proposed to improve the mathematical procedure, thus enabling a better detection of the high nonlinearity patterns found in the reservoir inflow training data. This modification includes the updating of the back propagation algorithm, leading to a consequent update of the membership rules and the induction of the centre-weighted set rather than the global weighted set used in feature extraction. The modification also aids in constructing an integrated model that is able to not only detect the nonlinearity in the training data but also the wide range of features within the training data records used to simulate the forecasting model. To demonstrate the model's efficacy, the proposed CANFIS method has been applied to forecast monthly inflow data at Aswan High Dam (AHD), located in southern Egypt. Comparative analyses of the forecasting skill of the modified CANFIS and the conventional ANFIS model are carried out with statistical score indicators to assess the reliability of the developed method. The statistical metrics support the better performance of the developed CANFIS model, which significantly outperforms the ANFIS model to attain a low relative error value (23%), mean absolute error (1.4 BCM month-1), root mean square error (1.14 BCM month-1), and a relative large coefficient of determination (0.94). The present study ascertains the better utility of the modified CANFIS model in respect to the traditional ANFIS model applied in reservoir inflow forecasting for a semi-arid region.
NASA Astrophysics Data System (ADS)
Delaney, C.; Mendoza, J.; Jasperse, J.; Hartman, R. K.; Whitin, B.; Kalansky, J.
2017-12-01
Forecast informed reservoir operations (FIRO) is a methodology that incorporates short to mid-range precipitation and flow forecasts to inform the flood operations of reservoirs. The Ensemble Forecast Operations (EFO) alternative is a probabilistic approach of FIRO that incorporates 15-day ensemble streamflow predictions (ESPs) made by NOAA's California-Nevada River Forecast Center (CNRFC). With the EFO approach, release decisions are made to manage forecasted risk of reaching critical operational thresholds. A water management model was developed for Lake Mendocino, a 111,000 acre-foot reservoir located near Ukiah, California, to conduct a mock operation test trial of the EFO alternative for 2017. Lake Mendocino is a dual use reservoir, which is owned and operated for flood control by the United States Army Corps of Engineers and is operated for water supply by the Sonoma County Water Agency. Due to recent changes in the operations of an upstream hydroelectric facility, this reservoir has suffered from water supply reliability issues since 2007. The operational trial utilized real-time ESPs prepared by the CNRFC and observed flow information to simulate hydrologic conditions in Lake Mendocino and a 50-mile downstream reach of the Russian River to the City of Healdsburg. Results of the EFO trial demonstrate a 6% increase in reservoir storage at the end of trial period (May 10) relative to observed conditions. Additionally, model results show no increase in flows above flood stage for points downstream of Lake Mendocino. Results of this investigation and other studies demonstrate that the EFO alternative may be a viable flood control operations approach for Lake Mendocino and warrants further investigation through additional modeling and analysis.
Use of JPSS ATMS, CrIS, and VIIRS data to Improve Tropical Cyclone Track and Intensity Forecasting
NASA Astrophysics Data System (ADS)
Chirokova, G.; Demaria, M.; DeMaria, R.; Knaff, J. A.; Dostalek, J.; Musgrave, K. D.; Beven, J. L.
2015-12-01
JPSS data provide unique information that could be critical for the forecasting of tropical cyclone (TC) track and intensity and is currently underutilized. Preliminary results from several TC applications using data from the Advanced Technology Microwave Sounder (ATMS), the Cross-Track Infrared Sounder (CrIS), and the Visible Infrared Imaging Radiometer Suite (VIIRS), carried by the Suomi National Polar-Orbiting Partnership satellite (SNPP), will be discussed. The first group of applications, which includes applications for moisture flux and for eye-detection, aims to improve rapid intensification (RI) forecasts, which is one of the highest priorities within NOAA. The applications could be used by forecasters directly and will also provide additional input to the Rapid Intensification Index (RII), the statistical-dynamical tool for forecasting RI events that is operational at the National Hurricane Center. The moisture flux application uses bias-corrected ATMS-MIRS (Microwave Integrated Retrieval System) and NUCAPS (NOAA Unique CrIS ATMS Processing System), retrievals that provide very accurate temperature and humidity soundings in the TC environment to detect dry air intrusions. The objective automated eye-detection application uses geostationary and VIIRS data in combination with machine learning and computer vision techniques for determining the onset of eye formation which is very important for TC intensity forecast but is usually determined by subjective methods. First version of the algorithm showed very promising results with a 75% success rate. The second group of applications develops tools to better utilize VIIRS data, including day-night band (DNB) imagery, for tropical cyclone forecasting. Disclaimer: The views, opinions, and findings contained in this article are those of the authors and should not be construed as an official National Oceanic and Atmospheric Administration (NOAA) or U.S. Government position, policy, or decision.
A four-stage hybrid model for hydrological time series forecasting.
Di, Chongli; Yang, Xiaohua; Wang, Xiaochao
2014-01-01
Hydrological time series forecasting remains a difficult task due to its complicated nonlinear, non-stationary and multi-scale characteristics. To solve this difficulty and improve the prediction accuracy, a novel four-stage hybrid model is proposed for hydrological time series forecasting based on the principle of 'denoising, decomposition and ensemble'. The proposed model has four stages, i.e., denoising, decomposition, components prediction and ensemble. In the denoising stage, the empirical mode decomposition (EMD) method is utilized to reduce the noises in the hydrological time series. Then, an improved method of EMD, the ensemble empirical mode decomposition (EEMD), is applied to decompose the denoised series into a number of intrinsic mode function (IMF) components and one residual component. Next, the radial basis function neural network (RBFNN) is adopted to predict the trend of all of the components obtained in the decomposition stage. In the final ensemble prediction stage, the forecasting results of all of the IMF and residual components obtained in the third stage are combined to generate the final prediction results, using a linear neural network (LNN) model. For illustration and verification, six hydrological cases with different characteristics are used to test the effectiveness of the proposed model. The proposed hybrid model performs better than conventional single models, the hybrid models without denoising or decomposition and the hybrid models based on other methods, such as the wavelet analysis (WA)-based hybrid models. In addition, the denoising and decomposition strategies decrease the complexity of the series and reduce the difficulties of the forecasting. With its effective denoising and accurate decomposition ability, high prediction precision and wide applicability, the new model is very promising for complex time series forecasting. This new forecast model is an extension of nonlinear prediction models.
NASA Astrophysics Data System (ADS)
Li, Yu; Giuliani, Matteo; Castelletti, Andrea
2016-04-01
Recent advances in modelling of coupled ocean-atmosphere dynamics significantly improved skills of long-term climate forecast from global circulation models (GCMs). These more accurate weather predictions are supposed to be a valuable support to farmers in optimizing farming operations (e.g. crop choice, cropping and watering time) and for more effectively coping with the adverse impacts of climate variability. Yet, assessing how actually valuable this information can be to a farmer is not straightforward and farmers' response must be taken into consideration. Indeed, in the context of agricultural systems potentially useful forecast information should alter stakeholders' expectation, modify their decisions, and ultimately produce an impact on their performance. Nevertheless, long-term forecast are mostly evaluated in terms of accuracy (i.e., forecast quality) by comparing hindcast and observed values and only few studies investigated the operational value of forecast looking at the gain of utility within the decision-making context, e.g. by considering the derivative of forecast information, such as simulated crop yields or simulated soil moisture, which are essential to farmers' decision-making process. In this study, we contribute a step further in the assessment of the operational value of long-term weather forecasts products by embedding these latter into farmers' behavioral models. This allows a more critical assessment of the forecast value mediated by the end-users' perspective, including farmers' risk attitudes and behavioral patterns. Specifically, we evaluate the operational value of thirteen state-of-the-art long-range forecast products against climatology forecast and empirical prediction (i.e. past year climate and historical average) within an integrated agronomic modeling framework embedding an implicit model of the farmers' decision-making process. Raw ensemble datasets are bias-corrected and downscaled using a stochastic weather generator, in order to address the mismatch of the spatio-temporal scale between forecast data from GCMs and our model. For each product, the experiment is composed by two cascade simulations: 1) an ex-ante simulation using forecast data, and 2) an ex-post simulation with observations. Multi-year simulations are performed to account for climate variability, and the operational value of the different forecast products is evaluated against the perfect foresight on the basis of expected crop productivity as well as the final decisions under different decision-making criterions. Our results show that not all products generate beneficial effects to farmers' performance, and the forecast errors might be amplified due to farmers' decision-making process and risk attitudes, yielding little or even worse performance compared with the empirical approaches.
NASA Technical Reports Server (NTRS)
Lapenta, William M.; Wohlman, Richard; Bradshaw, Tom; Burks, Jason; Jedlovec, Gary; Goodman, Steve; Darden, Chris; Meyer, Paul
2003-01-01
The NASA Short-term Prediction Research and Transition (SPoRT) Center seeks to accelerate the infusion of NASA Earth Science Enterprise (ESE) observations, data assimilation and modeling research into NWS forecast operations and decision-making. To meet long-term program expectations, it is not sufficient simply to give forecasters sophisticated workstations or new forecast products without fully assessing the ways in which they will be utilized. Close communication must be established between the research and operational communities so that developers have a complete understanding of user needs. In turn, forecasters must obtain a more comprehensive knowledge of the modeling and sensing tools available to them. A major goal of the SPoRT Program is to develop metrics and conduct assessment studies with NWS forecasters to evaluate the impacts and benefits of ESE experimental products on forecast skill. At a glance the task seems relatively straightforward. However, performing assessment of experimental products in an operational environment is demanding. Given the tremendous time constraints placed on NWS forecasters, it is imperative that forecaster input be obtained in a concise unobtrusive manor. Great care must also be taken to ensure that forecasters understand their participation will eventually benefit them and WFO operations in general. Two requirements of the assessment plan developed under the SPoRT activity are that it 1) Can be implemented within the WFO environment; and 2) Provide tangible results for BOTH the research and operational communities. Supplemental numerical quantitative precipitation forecasts (QPF) were chosen as the first experimental SPoRT product to be evaluated during a Pilot Assessment Program conducted 1 May 2003 within the Huntsville AL National Weather Service Forecast Office. Forecast time periods were broken up into six- hour bins ranging from zero to twenty-four hours. Data were made available for display in AWIPS on an operational basis so they could be efficiently incorporated into the forecast process. The methodology used to assess the value of experimental QPFs compared to available operational products is best described as a three-tier approach involving both forecasters and research scientists. Tier-one is a web-based survey completed by duty forecasters on the aviation and public desks. The survey compiles information on how the experimental product was used in the forecast decision making process. Up to 6 responses per twenty-four hours can be compiled during a precipitation event. Tier-two consists of an event post mortem and experimental product assessment performed daily by the NASA/NWS Liaison. Tier-three is a detailed breakdown/analysis of specific events targeted by either the NWS SO0 or SPoRT team members. The task is performed by both NWS and NASA research scientists and may be conducted once every couple of months. The findings from the Pilot Assessment Program will be reported at the meeting.
NASA Astrophysics Data System (ADS)
Fujisawa, Mariko
2016-04-01
Climate forecasts have been developed to assist decision making in sectors averse to, and affected by, climate risks, and agriculture is one of those. In agriculture and food security, climate information is now used on a range of timescales, from days (weather), months (seasonal outlooks) to decades (climate change scenarios). Former researchers have shown that when seasonal climate forecast information was provided to farmers prior to decision making, farmers adapted by changing their choice of planting seeds and timing or area planted. However, it is not always clear that the end-users' needs for climate information are met and there might be a large gap between information supplied and needed. It has been pointed out that even when forecasts were available, they were often not utilized by farmers and extension services because of lack of trust in the forecast or the forecasts did not reach the targeted farmers. Many studies have focused on the use of either seasonal forecasts or longer term climate change prediction, but little research has been done on the medium term, that is, 1 to 10 year future climate information. The agriculture and food system sector is one potential user of medium term information, as land use policy and cropping systems selection may fall into this time scale and may affect farmers' decision making process. Assuming that reliable information is provided and it is utilized by farmers for decision making, it might contribute to resilient farming and indeed to longer term food security. To this end, we try to determine the effect of medium term climate information on farmers' strategic decision making process. We explored the end-users' needs for climate information and especially the possible role of medium term information in agricultural system, by conducting interview surveys with farmers and agricultural experts. In this study, the cases of apple production in South Africa, maize production in Malawi and rice production in Tanzania will be presented. With case studies of various crops, we also aim to identify what climatic factors and timescale of prediction may be critical to what crop types of farmers, which may be of value to climate prediction community to further develop climate prediction useful for agricultural system.
Probabilistic rainfall warning system with an interactive user interface
NASA Astrophysics Data System (ADS)
Koistinen, Jarmo; Hohti, Harri; Kauhanen, Janne; Kilpinen, Juha; Kurki, Vesa; Lauri, Tuomo; Nurmi, Pertti; Rossi, Pekka; Jokelainen, Miikka; Heinonen, Mari; Fred, Tommi; Moisseev, Dmitri; Mäkelä, Antti
2013-04-01
A real time 24/7 automatic alert system is in operational use at the Finnish Meteorological Institute (FMI). It consists of gridded forecasts of the exceedance probabilities of rainfall class thresholds in the continuous lead time range of 1 hour to 5 days. Nowcasting up to six hours applies ensemble member extrapolations of weather radar measurements. With 2.8 GHz processors using 8 threads it takes about 20 seconds to generate 51 radar based ensemble members in a grid of 760 x 1226 points. Nowcasting exploits also lightning density and satellite based pseudo rainfall estimates. The latter ones utilize convective rain rate (CRR) estimate from Meteosat Second Generation. The extrapolation technique applies atmospheric motion vectors (AMV) originally developed for upper wind estimation with satellite images. Exceedance probabilities of four rainfall accumulation categories are computed for the future 1 h and 6 h periods and they are updated every 15 minutes. For longer forecasts exceedance probabilities are calculated for future 6 and 24 h periods during the next 4 days. From approximately 1 hour to 2 days Poor man's Ensemble Prediction System (PEPS) is used applying e.g. the high resolution short range Numerical Weather Prediction models HIRLAM and AROME. The longest forecasts apply EPS data from the European Centre for Medium Range Weather Forecasts (ECMWF). The blending of the ensemble sets from the various forecast sources is performed applying mixing of accumulations with equal exceedance probabilities. The blending system contains a real time adaptive estimator of the predictability of radar based extrapolations. The uncompressed output data are written to file for each member, having total size of 10 GB. Ensemble data from other sources (satellite, lightning, NWP) are converted to the same geometry as the radar data and blended as was explained above. A verification system utilizing telemetering rain gauges has been established. Alert dissemination e.g. for citizens and professional end users applies SMS messages and, in near future, smartphone maps. The present interactive user interface facilitates free selection of alert sites and two warning thresholds (any rain, heavy rain) at any location in Finland. The pilot service was tested by 1000-3000 users during summers 2010 and 2012. As an example of dedicated end-user services gridded exceedance scenarios (of probabilities 5 %, 50 % and 90 %) of hourly rainfall accumulations for the next 3 hours have been utilized as an online input data for the influent model at the Greater Helsinki Wastewater Treatment Plant.
NASA Astrophysics Data System (ADS)
Cerrai, D.; Anagnostou, E. N.; Wanik, D. W.; Bhuiyan, M. A. E.; Zhang, X.; Yang, J.; Astitha, M.; Frediani, M. E.; Schwartz, C. S.; Pardakhti, M.
2016-12-01
The overwhelming majority of human activities need reliable electric power. Severe weather events can cause power outages, resulting in substantial economic losses and a temporary worsening of living conditions. Accurate prediction of these events and the communication of forecasted impacts to the affected utilities is necessary for efficient emergency preparedness and mitigation. The University of Connecticut Outage Prediction Model (OPM) uses regression tree models, high-resolution weather reanalysis and real-time weather forecasts (WRF and NCAR ensemble), airport station data, vegetation and electric grid characteristics and historical outage data to forecast the number and spatial distribution of outages in the power distribution grid located within dense vegetation. Recent OPM improvements consist of improved storm classification and addition of new predictive weather-related variables and are demonstrated using a leave-one-storm-out cross-validation based on 130 severe extratropical storms and two hurricanes (Sandy and Irene) in the Northeast US. We show that it is possible to predict the number of trouble spots causing outages in the electric grid with a median absolute percentage error as low as 27% for some storm types, and at most around 40%, in a scale that varies between four orders of magnitude, from few outages to tens of thousands. This outage information can be communicated to the electric utility to manage allocation of crews and equipment and minimize the recovery time for an upcoming storm hazard.
Meteorological variables associated with deep slab avalanches on persistent weak layers
Marienthal, Alex; Hendrikx, Jordy; Birkeland, Karl; Irvine, Kathryn M.
2014-01-01
Deep slab avalanches are a particularly challenging avalanche forecasting problem. These avalanches are typically difficult to trigger, yet when they are triggered they tend to propagate far and result in large and destructive avalanches. For this work we define deep slab avalanches as those that fail on persistent weak layers deeper than 0.9m (3 feet), and that occur after February 1st. We utilized a 44-year record of avalanche control and meteorological data from Bridger Bowl Ski Area to test the usefulness of meteorological variables for predicting deep slab avalanches. As in previous studies, we used data from the days preceding deep slab cycles, but we also considered meteorological metrics over the early months of the season. We utilized classification trees for our analyses. Our results showed warmer temperatures in the prior twenty-four hours and more loading over the seven days before days with deep slab avalanches on persistent weak layers. In line with previous research, extended periods of above freezing temperatures led to days with deep wet slab avalanches on persistent weak layers. Seasons with either dry or wet avalanches on deep persistent weak layers typically had drier early months, and often had some significant snow depth prior to those dry months. This paper provides insights for ski patrollers, guides, and avalanche forecasters who struggle to forecast deep slab avalanches on persistent weak layers late in the season.
Nonlinear Prediction Model for Hydrologic Time Series Based on Wavelet Decomposition
NASA Astrophysics Data System (ADS)
Kwon, H.; Khalil, A.; Brown, C.; Lall, U.; Ahn, H.; Moon, Y.
2005-12-01
Traditionally forecasting and characterizations of hydrologic systems is performed utilizing many techniques. Stochastic linear methods such as AR and ARIMA and nonlinear ones such as statistical learning theory based tools have been extensively used. The common difficulty to all methods is the determination of sufficient and necessary information and predictors for a successful prediction. Relationships between hydrologic variables are often highly nonlinear and interrelated across the temporal scale. A new hybrid approach is proposed for the simulation of hydrologic time series combining both the wavelet transform and the nonlinear model. The present model employs some merits of wavelet transform and nonlinear time series model. The Wavelet Transform is adopted to decompose a hydrologic nonlinear process into a set of mono-component signals, which are simulated by nonlinear model. The hybrid methodology is formulated in a manner to improve the accuracy of a long term forecasting. The proposed hybrid model yields much better results in terms of capturing and reproducing the time-frequency properties of the system at hand. Prediction results are promising when compared to traditional univariate time series models. An application of the plausibility of the proposed methodology is provided and the results conclude that wavelet based time series model can be utilized for simulating and forecasting of hydrologic variable reasonably well. This will ultimately serve the purpose of integrated water resources planning and management.
NASA Technical Reports Server (NTRS)
Kirk, Donnie; Wolfe, Amy; Ba, Adama; Nyquist, Mckenzie; Rhodes, Tyler; Toner, Caitlin; Cabosky, Rachel; Gotschalk, Emily; Gregory, Brad; Kendall, Candace
2016-01-01
Mangroves act as a transition zone between fresh and salt water habitats by filtering and indicating salinity levels along the coast of the Florida Everglades. However, dredging and canals built in the early 1900s depleted the Everglades of much of its freshwater resources. In an attempt to assist in maintaining the health of threatened habitats, efforts have been made within Everglades National Park to rebalance the ecosystem and adhere to sustainably managing mangrove forests. The Everglades Ecological Forecasting II team utilized Google Earth Engine API and satellite imagery from Landsat 5, 7, and 8 to continuously create land-change maps over a 25 year period, and to allow park officials to continue producing maps in the future. In order to make the process replicable for project partners at Everglades National Park, the team was able to conduct a supervised classification approach to display mangrove regions in 1995, 2000, 2005, 2010 and 2015. As freshwater was depleted, mangroves encroached further inland and freshwater marshes declined. The current extent map, along with transition maps helped create forecasting models that show mangrove encroachment further inland in the year 2030 as well. This project highlights the changes to the Everglade habitats in relation to a changing climate and hydrological changes throughout the park.
NASA Astrophysics Data System (ADS)
Sembiring, L.; Van Ormondt, M.; Van Dongeren, A. R.; Roelvink, J. A.
2017-07-01
Rip currents are one of the most dangerous coastal hazards for swimmers. In order to minimize the risk, a coastal operational-process based-model system can be utilized in order to provide forecast of nearshore waves and currents that may endanger beach goers. In this paper, an operational model for rip current prediction by utilizing nearshore bathymetry obtained from video image technique is demonstrated. For the nearshore scale model, XBeach1 is used with which tidal currents, wave induced currents (including the effect of the wave groups) can be simulated simultaneously. Up-to-date bathymetry will be obtained using video images technique, cBathy 2. The system will be tested for the Egmond aan Zee beach, located in the northern part of the Dutch coastline. This paper will test the applicability of bathymetry obtained from video technique to be used as input for the numerical modelling system by comparing simulation results using surveyed bathymetry and model results using video bathymetry. Results show that the video technique is able to produce bathymetry converging towards the ground truth observations. This bathymetry validation will be followed by an example of operational forecasting type of simulation on predicting rip currents. Rip currents flow fields simulated over measured and modeled bathymetries are compared in order to assess the performance of the proposed forecast system.
Zhang, Hao; Hu, Huimei; Wu, Christina; Yu, Hai; Dong, Hengjin
2015-01-01
Background High drug costs due to supplier-induced demand (SID) obstruct healthcare accessibility in China. Drug prescriptions can generate markup-related profits, and the low prices of other medical services can lead to labor-force underestimations; therefore, physicians are keen to prescribe drugs rather than services. Thus, in China, a public hospital reform has been instituted to cancel markups and increase service prices. Methods A retrospective pre/post-reform study was conducted in ZJ province to assess the impact of the reform on healthcare expenditures and utilization, ultimately to inform policy development and decision-making. The main indicators are healthcare expenditures and utilization. Results Post-reform, drug expenditures per visit decreased by 8.2% and 15.36% in outpatient and inpatient care, respectively; service expenditures per visit increased by 23.03% and 27.69% in outpatient and inpatient care, respectively. Drug utilization per visit increased by 5.58% in outpatient care and underwent no significant change in inpatient care. Both were lower than the theoretical drug-utilization level, which may move along the demand curve because of patient-initiated demand (PID); this indicates that SID-promoted drug utilization may decrease. Finally, service utilization per visit increased by 6% in outpatient care and by 13.10% in inpatient care; both were higher than the theoretical level moving along the demand curve, and this indicates that SID-promoted service utilization may increase. Conclusion The reform reduces drug-prescription profits by eliminating drug markups; additionally, it compensates for service costs by increasing service prices. Post-reform, the SID of drug prescriptions decreased, which may reduce drug-resource waste. The SID of services increased, with potentially positive and negative effects: accessibility to services may be promoted when physicians provide more services, but the risk of resource waste may also increase. This warrants further research. It is recommended that comprehensive measures that control SID and promote physician enthusiasm be carried out concurrently. PMID:26588244
Zhang, Hao; Hu, Huimei; Wu, Christina; Yu, Hai; Dong, Hengjin
2015-01-01
High drug costs due to supplier-induced demand (SID) obstruct healthcare accessibility in China. Drug prescriptions can generate markup-related profits, and the low prices of other medical services can lead to labor-force underestimations; therefore, physicians are keen to prescribe drugs rather than services. Thus, in China, a public hospital reform has been instituted to cancel markups and increase service prices. A retrospective pre/post-reform study was conducted in ZJ province to assess the impact of the reform on healthcare expenditures and utilization, ultimately to inform policy development and decision-making. The main indicators are healthcare expenditures and utilization. Post-reform, drug expenditures per visit decreased by 8.2% and 15.36% in outpatient and inpatient care, respectively; service expenditures per visit increased by 23.03% and 27.69% in outpatient and inpatient care, respectively. Drug utilization per visit increased by 5.58% in outpatient care and underwent no significant change in inpatient care. Both were lower than the theoretical drug-utilization level, which may move along the demand curve because of patient-initiated demand (PID); this indicates that SID-promoted drug utilization may decrease. Finally, service utilization per visit increased by 6% in outpatient care and by 13.10% in inpatient care; both were higher than the theoretical level moving along the demand curve, and this indicates that SID-promoted service utilization may increase. The reform reduces drug-prescription profits by eliminating drug markups; additionally, it compensates for service costs by increasing service prices. Post-reform, the SID of drug prescriptions decreased, which may reduce drug-resource waste. The SID of services increased, with potentially positive and negative effects: accessibility to services may be promoted when physicians provide more services, but the risk of resource waste may also increase. This warrants further research. It is recommended that comprehensive measures that control SID and promote physician enthusiasm be carried out concurrently.
The impact of sea surface currents in wave power potential modeling
NASA Astrophysics Data System (ADS)
Zodiatis, George; Galanis, George; Kallos, George; Nikolaidis, Andreas; Kalogeri, Christina; Liakatas, Aristotelis; Stylianou, Stavros
2015-11-01
The impact of sea surface currents to the estimation and modeling of wave energy potential over an area of increased economic interest, the Eastern Mediterranean Sea, is investigated in this work. High-resolution atmospheric, wave, and circulation models, the latter downscaled from the regional Mediterranean Forecasting System (MFS) of the Copernicus marine service (former MyOcean regional MFS system), are utilized towards this goal. The modeled data are analyzed by means of a variety of statistical tools measuring the potential changes not only in the main wave characteristics, but also in the general distribution of the wave energy and the wave parameters that mainly affect it, when using sea surface currents as a forcing to the wave models. The obtained results prove that the impact of the sea surface currents is quite significant in wave energy-related modeling, as well as temporally and spatially dependent. These facts are revealing the necessity of the utilization of the sea surface currents characteristics in renewable energy studies in conjunction with their meteo-ocean forecasting counterparts.
NASA Astrophysics Data System (ADS)
Yildiz, Baran; Bilbao, Jose I.; Dore, Jonathon; Sproul, Alistair B.
2018-05-01
Smart grid components such as smart home and battery energy management systems, high penetration of renewable energy systems, and demand response activities, require accurate electricity demand forecasts for the successful operation of the electricity distribution networks. For example, in order to optimize residential PV generation and electricity consumption and plan battery charge-discharge regimes by scheduling household appliances, forecasts need to target and be tailored to individual household electricity loads. The recent uptake of smart meters allows easier access to electricity readings at very fine resolutions; hence, it is possible to utilize this source of available data to create forecast models. In this paper, models which predominantly use smart meter data alongside with weather variables, or smart meter based models (SMBM), are implemented to forecast individual household loads. Well-known machine learning models such as artificial neural networks (ANN), support vector machines (SVM) and Least-Square SVM are implemented within the SMBM framework and their performance is compared. The analysed household stock consists of 14 households from the state of New South Wales, Australia, with at least a year worth of 5 min. resolution data. In order for the results to be comparable between different households, our study first investigates household load profiles according to their volatility and reveals the relationship between load standard deviation and forecast performance. The analysis extends previous research by evaluating forecasts over four different data resolution; 5, 15, 30 and 60 min, each resolution analysed for four different horizons; 1, 6, 12 and 24 h ahead. Both, data resolution and forecast horizon, proved to have significant impact on the forecast performance and the obtained results provide important insights for the operation of various smart grid applications. Finally, it is shown that the load profile of some households vary significantly across different days; as a result, providing a single model for the entire period may result in limited performance. By the use of a pre-clustering step, similar daily load profiles are grouped together according to their standard deviation, and instead of applying one SMBM for the entire data-set of a particular household, separate SMBMs are applied to each one of the clusters. This preliminary clustering step increases the complexity of the analysis however it results in significant improvements in forecast performance.
Burke, Sara E.; Dovidio, John F.; Levina, Olga S.; Uusküla, Anneli; Niccolai, Linda M.; Heimer, Robert
2016-01-01
Marked overlap between the HIV and injection drug use epidemics in St. Petersburg, Russia, puts many people in need of health services at risk for stigmatization based on both characteristics simultaneously. The current study examined the independent and interactive effects of internalized HIV and drug stigmas on health status and health service utilization among 383 people with HIV who inject drugs in St. Petersburg. Participants self-reported internalized HIV stigma, internalized drug stigma, health status (subjective rating and symptom count), health service utilization (HIV care and drug treatment), sociodemographic characteristics, and health/behavioral history. For both forms of internalized stigma, greater stigma was correlated with poorer health and lower likelihood of service utilization. HIV and drug stigmas interacted to predict symptom count, HIV care, and drug treatment such that individuals internalizing high levels of both stigmas were at elevated risk for experiencing poor health and less likely to access health services. PMID:26050155
Therapeutic Drug Monitoring of the Newer Anti-Epilepsy Medications
Krasowski, Matthew D.
2010-01-01
In the past twenty years, 14 new antiepileptic drugs have been approved for use in the United States and/or Europe. These drugs are eslicarbazepine acetate, felbamate, gabapentin, lacosamide, lamotrigine, levetiracetam, oxcarbazepine, pregabalin, rufinamide, stiripentol, tiagabine, topiramate, vigabatrin and zonisamide. In general, the clinical utility of therapeutic drug monitoring has not been established in clinical trials for these new anticonvulsants, and clear guidelines for drug monitoring have yet to be defined. The antiepileptic drugs with the strongest justifications for drug monitoring are lamotrigine, oxcarbazepine, stiripentol, and zonisamide. Stiripentol and tiagabine are strongly protein bound and are candidates for free drug monitoring. Therapeutic drug monitoring has lower utility for gabapentin, pregabalin, and vigabatrin. Measurement of salivary drug concentrations has potential utility for therapeutic drug monitoring of lamotrigine, levetiracetam, and topiramate. Therapeutic drug monitoring of the new antiepileptic drugs will be discussed in managing patients with epilepsy. PMID:20640233
NASA Astrophysics Data System (ADS)
Franz, K. J.; Bowman, A. L.; Hogue, T. S.; Kim, J.; Spies, R.
2011-12-01
In the face of a changing climate, growing populations, and increased human habitation in hydrologically risky locations, both short- and long-range planners increasingly require robust and reliable streamflow forecast information. Current operational forecasting utilizes watershed-scale, conceptual models driven by ground-based (commonly point-scale) observations of precipitation and temperature and climatological potential evapotranspiration (PET) estimates. The PET values are derived from historic pan evaporation observations and remain static from year-to-year. The need for regional dynamic PET values is vital for improved operational forecasting. With the advent of satellite remote sensing and the adoption of a more flexible operational forecast system by the National Weather Service, incorporation of advanced data products is now more feasible than in years past. In this study, we will test a previously developed satellite-derived PET product (UCLA MODIS-PET) in the National Weather Service forecast models and compare the model results to current methods. The UCLA MODIS-PET method is based on the Priestley-Taylor formulation, is driven with MODIS satellite products, and produces a daily, 250m PET estimate. The focus area is eight headwater basins in the upper Midwest U.S. There is a need to develop improved forecasting methods for this region that are able to account for climatic and landscape changes more readily and effectively than current methods. This region is highly flood prone yet sensitive to prolonged dry periods in late summer and early fall, and is characterized by a highly managed landscape, which has drastically altered the natural hydrologic cycle. Our goal is to improve model simulations, and thereby, the initial conditions prior to the start of a forecast through the use of PET values that better reflect actual watershed conditions. The forecast models are being tested in both distributed and lumped mode.
NASA Astrophysics Data System (ADS)
Jedlovec, G.; Molthan, A.; Zavodsky, B.; Case, J.; Lafontaine, F.
2010-12-01
The NASA Short-term Prediction Research and Transition (SPoRT) Center focuses on the transition of unique observations and research capabilities to the operational weather community, with a goal of improving short-term forecasts on a regional scale. Advances in research computing have lead to “Climate in a Box” systems, with hardware configurations capable of producing high resolution, near real-time weather forecasts, but with footprints, power, and cooling requirements that are comparable to desktop systems. The SPoRT Center has developed several capabilities for incorporating unique NASA research capabilities and observations with real-time weather forecasts. Planned utilization includes the development of a fully-cycled data assimilation system used to drive 36-48 hour forecasts produced by the NASA Unified version of the Weather Research and Forecasting (WRF) model (NU-WRF). The horsepower provided by the “Climate in a Box” system is expected to facilitate the assimilation of vertical profiles of temperature and moisture provided by the Atmospheric Infrared Sounder (AIRS) aboard the NASA Aqua satellite. In addition, the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments aboard NASA’s Aqua and Terra satellites provide high-resolution sea surface temperatures and vegetation characteristics. The development of MODIS normalized difference vegetation index (NVDI) composites for use within the NASA Land Information System (LIS) will assist in the characterization of vegetation, and subsequently the surface albedo and processes related to soil moisture. Through application of satellite simulators, NASA satellite instruments can be used to examine forecast model errors in cloud cover and other characteristics. Through the aforementioned application of the “Climate in a Box” system and NU-WRF capabilities, an end goal is the establishment of a real-time forecast system that fully integrates modeling and analysis capabilities developed within the NASA SPoRT Center, with benefits provided to the operational forecasting community.
Water and Power Systems Co-optimization under a High Performance Computing Framework
NASA Astrophysics Data System (ADS)
Xuan, Y.; Arumugam, S.; DeCarolis, J.; Mahinthakumar, K.
2016-12-01
Water and energy systems optimizations are traditionally being treated as two separate processes, despite their intrinsic interconnections (e.g., water is used for hydropower generation, and thermoelectric cooling requires a large amount of water withdrawal). Given the challenges of urbanization, technology uncertainty and resource constraints, and the imminent threat of climate change, a cyberinfrastructure is needed to facilitate and expedite research into the complex management of these two systems. To address these issues, we developed a High Performance Computing (HPC) framework for stochastic co-optimization of water and energy resources to inform water allocation and electricity demand. The project aims to improve conjunctive management of water and power systems under climate change by incorporating improved ensemble forecast models of streamflow and power demand. First, by downscaling and spatio-temporally disaggregating multimodel climate forecasts from General Circulation Models (GCMs), temperature and precipitation forecasts are obtained and input into multi-reservoir and power systems models. Extended from Optimus (Optimization Methods for Universal Simulators), the framework drives the multi-reservoir model and power system model, Temoa (Tools for Energy Model Optimization and Analysis), and uses Particle Swarm Optimization (PSO) algorithm to solve high dimensional stochastic problems. The utility of climate forecasts on the cost of water and power systems operations is assessed and quantified based on different forecast scenarios (i.e., no-forecast, multimodel forecast and perfect forecast). Analysis of risk management actions and renewable energy deployments will be investigated for the Catawba River basin, an area with adequate hydroclimate predicting skill and a critical basin with 11 reservoirs that supplies water and generates power for both North and South Carolina. Further research using this scalable decision supporting framework will provide understanding and elucidate the intricate and interdependent relationship between water and energy systems and enhance the security of these two critical public infrastructures.
NASA Astrophysics Data System (ADS)
Pulusani, Praneeth R.
As the number of electric vehicles on the road increases, current power grid infrastructure will not be able to handle the additional load. Some approaches in the area of Smart Grid research attempt to mitigate this, but those approaches alone will not be sufficient. Those approaches and traditional solution of increased power production can result in an insufficient and imbalanced power grid. It can lead to transformer blowouts, blackouts and blown fuses, etc. The proposed solution will supplement the ``Smart Grid'' to create a more sustainable power grid. To solve or mitigate the magnitude of the problem, measures can be taken that depend on weather forecast models. For instance, wind and solar forecasts can be used to create first order Markov chain models that will help predict the availability of additional power at certain times. These models will be used in conjunction with the information processing layer and bidirectional signal processing components of electric vehicle charging systems, to schedule the amount of energy transferred per time interval at various times. The research was divided into three distinct components: (1) Renewable Energy Supply Forecast Model, (2) Energy Demand Forecast from PEVs, and (3) Renewable Energy Resource Estimation. For the first component, power data from a local wind turbine, and weather forecast data from NOAA were used to develop a wind energy forecast model, using a first order Markov chain model as the foundation. In the second component, additional macro energy demand from PEVs in the Greater Rochester Area was forecasted by simulating concurrent driving routes. In the third component, historical data from renewable energy sources was analyzed to estimate the renewable resources needed to offset the energy demand from PEVs. The results from these models and components can be used in the smart grid applications for scheduling and delivering energy. Several solutions are discussed to mitigate the problem of overloading transformers, lack of energy supply, and higher utility costs.
NASA Astrophysics Data System (ADS)
Saleh, F.; Ramaswamy, V.; Georgas, N.; Blumberg, A. F.; Wang, Y.
2016-12-01
Advances in computational resources and modeling techniques are opening the path to effectively integrate existing complex models. In the context of flood prediction, recent extreme events have demonstrated the importance of integrating components of the hydrosystem to better represent the interactions amongst different physical processes and phenomena. As such, there is a pressing need to develop holistic and cross-disciplinary modeling frameworks that effectively integrate existing models and better represent the operative dynamics. This work presents a novel Hydrologic-Hydraulic-Hydrodynamic Ensemble (H3E) flood prediction framework that operationally integrates existing predictive models representing coastal (New York Harbor Observing and Prediction System, NYHOPS), hydrologic (US Army Corps of Engineers Hydrologic Modeling System, HEC-HMS) and hydraulic (2-dimensional River Analysis System, HEC-RAS) components. The state-of-the-art framework is forced with 125 ensemble meteorological inputs from numerical weather prediction models including the Global Ensemble Forecast System, the European Centre for Medium-Range Weather Forecasts (ECMWF), the Canadian Meteorological Centre (CMC), the Short Range Ensemble Forecast (SREF) and the North American Mesoscale Forecast System (NAM). The framework produces, within a 96-hour forecast horizon, on-the-fly Google Earth flood maps that provide critical information for decision makers and emergency preparedness managers. The utility of the framework was demonstrated by retrospectively forecasting an extreme flood event, hurricane Sandy in the Passaic and Hackensack watersheds (New Jersey, USA). Hurricane Sandy caused significant damage to a number of critical facilities in this area including the New Jersey Transit's main storage and maintenance facility. The results of this work demonstrate that ensemble based frameworks provide improved flood predictions and useful information about associated uncertainties, thus improving the assessment of risks as when compared to a deterministic forecast. The work offers perspectives for short-term flood forecasts, flood mitigation strategies and best management practices for climate change scenarios.
NASA Technical Reports Server (NTRS)
Jedlovec, Gary J.; Molthan, Andrew L.; Zavodsky, Bradley; Case, Jonathan L.; LaFontaine, Frank J.
2010-01-01
The NASA Short-term Prediction Research and Transition (SPoRT) Center focuses on the transition of unique observations and research capabilities to the operational weather community, with a goal of improving short-term forecasts on a regional scale. Advances in research computing have lead to "Climate in a Box" systems, with hardware configurations capable of producing high resolution, near real-time weather forecasts, but with footprints, power, and cooling requirements that are comparable to desktop systems. The SPoRT Center has developed several capabilities for incorporating unique NASA research capabilities and observations with real-time weather forecasts. Planned utilization includes the development of a fully-cycled data assimilation system used to drive 36-48 hour forecasts produced by the NASA Unified version of the Weather Research and Forecasting (WRF) model (NU-WRF). The horsepower provided by the "Climate in a Box" system is expected to facilitate the assimilation of vertical profiles of temperature and moisture provided by the Atmospheric Infrared Sounder (AIRS) aboard the NASA Aqua satellite. In addition, the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments aboard NASA s Aqua and Terra satellites provide high-resolution sea surface temperatures and vegetation characteristics. The development of MODIS normalized difference vegetation index (NVDI) composites for use within the NASA Land Information System (LIS) will assist in the characterization of vegetation, and subsequently the surface albedo and processes related to soil moisture. Through application of satellite simulators, NASA satellite instruments can be used to examine forecast model errors in cloud cover and other characteristics. Through the aforementioned application of the "Climate in a Box" system and NU-WRF capabilities, an end goal is the establishment of a real-time forecast system that fully integrates modeling and analysis capabilities developed within the NASA SPoRT Center, with benefits provided to the operational forecasting community.
JPSS Products, Applications and Training
NASA Astrophysics Data System (ADS)
Torres, J. R.; Connell, B. H.; Miller, S. D.
2017-12-01
The Joint Polar Satellite System (JPSS) is a new generation polar-orbiting operational environmental satellite system that will monitor the weather and environment around the globe. JPSS will provide technological and scientific improvements in environmental monitoring via high resolution satellite imagery and derived products that stand to improve weather forecasting capabilities for National Weather Service (NWS) forecasters and complement operational Geostationary satellites. JPSS will consist of four satellites, JPSS-1 through JPSS-4, where JPSS-1 is due to launch in Fall 2017. A predecessor, prototype and operational risk-reduction for JPSS is the Suomi-National Polar-orbiting Partnership (S-NPP) satellite, launched on 28 October 2011. The following instruments on-board S-NPP will also be hosted on JPSS-1: Visible Infrared Imaging Radiometer Suite (VIIRS), Cross-track Infrared Sounder (CrIS), Advanced Technology Microwave Sounder (ATMS), Ozone Mapping and Profiler Suite (OMPS) and the Clouds and Earth's Radiant Energy System (CERES). JPSS-1 instruments will provide satellite imagery, products and applications to users. The applications include detecting water and ice clouds, snow, sea surface temperatures, fog, fire, severe weather, vegetation health, aerosols, and sensing reflected lunar and emitted visible-wavelength light during the nighttime via the Day/Night Band (DNB) sensor included on VIIRS. Currently, there are only a few polar products that are operational for forecasters, however, more products will become available in the near future via Advanced Weather Interactive Processing System-II (AWIPS-II)-a forecasting analysis software package that forecasters can use to analyze meteorological data. To complement the polar products an wealth of training materials are currently in development. Denoted as the Satellite Foundational Course for JPSS (SatFC-J), this training will benefit NWS forecasters to utilize satellite data in their forecasts and daily operations as they discover their operational value in the NWS forecast process. As JPSS-1 launch nears, training materials will be produced in the form of modules, videos, quick guides, fact sheets, and hands-on exercises.
NASA Astrophysics Data System (ADS)
Tang, L.; Titov, V. V.; Chamberlin, C. D.
2009-12-01
The study describes the development, testing and applications of site-specific tsunami inundation models (forecast models) for use in NOAA's tsunami forecast and warning system. The model development process includes sensitivity studies of tsunami wave characteristics in the nearshore and inundation, for a range of model grid setups, resolutions and parameters. To demonstrate the process, four forecast models in Hawaii, at Hilo, Kahului, Honolulu, and Nawiliwili are described. The models were validated with fourteen historical tsunamis and compared with numerical results from reference inundation models of higher resolution. The accuracy of the modeled maximum wave height is greater than 80% when the observation is greater than 0.5 m; when the observation is below 0.5 m the error is less than 0.3 m. The error of the modeled arrival time of the first peak is within 3% of the travel time. The developed forecast models were further applied to hazard assessment from simulated magnitude 7.5, 8.2, 8.7 and 9.3 tsunamis based on subduction zone earthquakes in the Pacific. The tsunami hazard assessment study indicates that use of a seismic magnitude alone for a tsunami source assessment is inadequate to achieve such accuracy for tsunami amplitude forecasts. The forecast models apply local bathymetric and topographic information, and utilize dynamic boundary conditions from the tsunami source function database, to provide site- and event-specific coastal predictions. Only by combining a Deep-ocean Assessment and Reporting of Tsunami-constrained tsunami magnitude with site-specific high-resolution models can the forecasts completely cover the evolution of earthquake-generated tsunami waves: generation, deep ocean propagation, and coastal inundation. Wavelet analysis of the tsunami waves suggests the coastal tsunami frequency responses at different sites are dominated by the local bathymetry, yet they can be partially related to the locations of the tsunami sources. The study also demonstrates the nonlinearity between offshore and nearshore maximum wave amplitudes.
Rwagitinywa, Joseph; Sommet, Agnès; Palmaro, Aurore; Montastruc, Jean-Louis; Lapeyre-Mestre, Maryse
2018-03-01
Simulation studies showed that generic antiretroviral (ARV) drug utilization could lead to significant cost reduction of HIV treatment in developed world. This study aimed to quantify ARV utilization and costs in European countries between 2006 and 2015. We also assessed the impact of generic ARV drug utilization on cost reduction in real-life. ARV drug utilization in 14 European countries (France, Italy, Germany, Denmark, Netherlands, Norway, Sweden, Finland, Iceland, Croatia, Czech Republic, Estonia, Latvia, and Lithuania) were analysed using defined daily dose (DDD)/1000 inhabitants/year. ARV drug cost was estimated in million euro/year and euro/1000 inhabitants/year. The impact of generics on cost reduction was assessed in three countries: France, Denmark, and Czech Republic, using four parameters: expected savings, observed savings, brand price-reduction savings and overall savings. Between 2006 and 2015, median ARV drug utilization increased from 234 DDDs per 1000 inhabitants per year (IQR 124-388) to 385 (229-670). The median cost increased from €3751/1000 inhabitants/year (1109-4681) to €9158 (3269-10,646). Between 2013 and 2015, overall savings of €0.9, €1.6, and €33.7 million were respectively observed in Denmark, Czech Republic, and France. Overall savings observed in real-life from generic ARV drugs in Denmark were related to high rate of low-price generic utilization, contrarily to France and Czech Republic where these were more related to brand price-reduction than generic utilization itself. Copyright © 2018 Elsevier B.V. All rights reserved.
Paradis, Pierre Emmanuel; Latrémouille-Viau, Dominick; Moore, Yuliya; Mishagina, Natalia; Lafeuille, Marie-Hélène; Lefebvre, Patrick; Gaudig, Maren; Duh, Mei Sheng
2009-07-01
To explore the effects of generic substitution of the antiepileptic drug (AED) topiramate (Topamax) in Canada; to convert observed Canadian costs into the settings of France, Germany, Italy, and the United Kingdom (UK); and to forecast the economic impact of generic topiramate entry in these four European countries. Health claims from Régie de l'assurance maladie du Québec (RAMQ) plan (1/2006-9/2008) and IMS Health data (1998-2008) were used. Patients with epilepsy and > or = 2 topiramate dispensings were selected. An open-cohort design was used to classify observation into mutually-exclusive periods of branded versus generic use of topiramate. Canadian healthcare utilization and costs (2007 CAN$/person-year) were compared between periods using multivariate models. Annualized per-patient costs (2007 euro or 2007 pound sterling/person-year) were converted using Canadian utilization rates, European prices and service-use ratios. Non-parametric bootstrap served to assess statistical significance of cost differences. Topiramate market was forecasted following generic entry (09/2009-09/2010) using autoregressive models based on the European experience. The economic impact of generic topiramate entry was estimated for each country. A total of 1164 patients (mean age: 39.8 years, 61.7% female) were observed for 2.6 years on average. After covariates adjustment, generic-use periods were associated with increased pharmacy dispensings (other AEDs: +0.95/person-year, non-AEDs: +12.28/person-year, p < 0.001), hospitalizations ( + 0.08/person-year, p = 0.015), and lengths of hospital stays (+0.51 days/person-year, p < 0.001). Adjusted costs, excluding topiramate, were CAN$1060/person-year higher during generic use (p = 0.005). Converted per-patient costs excluding topiramate were significantly higher for generic relative to brand periods in all European countries (adjusted cost differences per person-year: 706-815 euro, p < 0.001 for all comparisons). System-wide costs would increase from 3.5 to 24.4% one year after generic entry. Study limitations include the absence of indirect costs, possible claim inaccuracies, and IMS data limitations. Higher health costs were projected for G4 European countries from the Canadian experience following the generic entry of topiramate.
Data Assimilation and Regional Forecasts Using Atmospheric InfraRed Sounder (AIRS) Profiles
NASA Technical Reports Server (NTRS)
Chou, Shih-Hung; Zavodsky, Bradley; Jedlovec, Gary
2009-01-01
In data sparse regions, remotely-sensed observations can be used to improve analyses, which in turn should lead to better forecasts. One such source comes from the Atmospheric Infrared Sounder (AIRS), which together with the Advanced Microwave Sounding Unit (AMSU), provides temperature and moisture profiles with an accuracy comparable to that of radiosondes. The purpose of this paper is to describe a procedure to optimally assimilate AIRS thermodynamic profiles--obtained from the version 5.0 Earth Observing System (EOS) science team retrieval algorithm-into a regional configuration of the Weather Research and Forecasting (WRF) model using WRF-Var. The paper focuses on development of background error covariances for the regional domain and background field type, a methodology for ingesting AIRS profiles as separate over-land and over-water retrievals with different error characteristics, and utilization of level-by-level quality indicators to select only the highest quality data. The assessment of the impact of the AIRS profiles on WRF-Var analyses will focus on intelligent use of the quality indicators, optimized tuning of the WRF-Var, and comparison of analysis soundings to radiosondes. The analyses will be used to conduct a month-long series of regional forecasts over the continental U.S. The long-tern1 impact of AIRS profiles on forecast will be assessed against verifying radiosonde and stage IV precipitation data.
Data Assimilation and Regional Forecasts using Atmospheric InfraRed Sounder (AIRS) Profiles
NASA Technical Reports Server (NTRS)
Zabodsky, Brad; Chou, Shih-Hung; Jedlovec, Gary J.
2009-01-01
In data sparse regions, remotely-sensed observations can be used to improve analyses, which in turn should lead to better forecasts. One such source comes from the Atmospheric Infrared Sounder (AIRS), which, together with the Advanced Microwave Sounding Unit (AMSU), provides temperature and moisture profiles with an accuracy comparable to that of radionsondes. The purpose of this poster is to describe a procedure to optimally assimilate AIRS thermodynamic profiles, obtained from the version 5.0 Earth Observing System (EOS) science team retrieval algorithm, into a regional configuration of the Weather Research and Forecasting (WRF) model using WRF-Var. The poster focuses on development of background error covariances for the regional domain and background field type, a methodology for ingesting AIRS profiles as separate over-land and over-water retrievals with different error characteristics, and utilization of level-by-level quality indicators to select only the highest quality data. The assessment of the impact of the AIRS profiles on WRF-Var analyses will focus on intelligent use of the quality indicators, optimized tuning of the WRF-Var, and comparison of analysis soundings to radiosondes. The analyses are used to conduct a month-long series of regional forecasts over the continental U.S. The long-term impact of AIRS profiles on forecast will be assessed against NAM analyses and stage IV precipitation data.
Forecasting short-term data center network traffic load with convolutional neural networks.
Mozo, Alberto; Ordozgoiti, Bruno; Gómez-Canaval, Sandra
2018-01-01
Efficient resource management in data centers is of central importance to content service providers as 90 percent of the network traffic is expected to go through them in the coming years. In this context we propose the use of convolutional neural networks (CNNs) to forecast short-term changes in the amount of traffic crossing a data center network. This value is an indicator of virtual machine activity and can be utilized to shape the data center infrastructure accordingly. The behaviour of network traffic at the seconds scale is highly chaotic and therefore traditional time-series-analysis approaches such as ARIMA fail to obtain accurate forecasts. We show that our convolutional neural network approach can exploit the non-linear regularities of network traffic, providing significant improvements with respect to the mean absolute and standard deviation of the data, and outperforming ARIMA by an increasingly significant margin as the forecasting granularity is above the 16-second resolution. In order to increase the accuracy of the forecasting model, we exploit the architecture of the CNNs using multiresolution input distributed among separate channels of the first convolutional layer. We validate our approach with an extensive set of experiments using a data set collected at the core network of an Internet Service Provider over a period of 5 months, totalling 70 days of traffic at the one-second resolution.
Bildirici, Melike; Ersin, Özgür
2014-01-01
The study has two aims. The first aim is to propose a family of nonlinear GARCH models that incorporate fractional integration and asymmetric power properties to MS-GARCH processes. The second purpose of the study is to augment the MS-GARCH type models with artificial neural networks to benefit from the universal approximation properties to achieve improved forecasting accuracy. Therefore, the proposed Markov-switching MS-ARMA-FIGARCH, APGARCH, and FIAPGARCH processes are further augmented with MLP, Recurrent NN, and Hybrid NN type neural networks. The MS-ARMA-GARCH family and MS-ARMA-GARCH-NN family are utilized for modeling the daily stock returns in an emerging market, the Istanbul Stock Index (ISE100). Forecast accuracy is evaluated in terms of MAE, MSE, and RMSE error criteria and Diebold-Mariano equal forecast accuracy tests. The results suggest that the fractionally integrated and asymmetric power counterparts of Gray's MS-GARCH model provided promising results, while the best results are obtained for their neural network based counterparts. Further, among the models analyzed, the models based on the Hybrid-MLP and Recurrent-NN, the MS-ARMA-FIAPGARCH-HybridMLP, and MS-ARMA-FIAPGARCH-RNN provided the best forecast performances over the baseline single regime GARCH models and further, over the Gray's MS-GARCH model. Therefore, the models are promising for various economic applications.
Multidimensional k-nearest neighbor model based on EEMD for financial time series forecasting
NASA Astrophysics Data System (ADS)
Zhang, Ningning; Lin, Aijing; Shang, Pengjian
2017-07-01
In this paper, we propose a new two-stage methodology that combines the ensemble empirical mode decomposition (EEMD) with multidimensional k-nearest neighbor model (MKNN) in order to forecast the closing price and high price of the stocks simultaneously. The modified algorithm of k-nearest neighbors (KNN) has an increasingly wide application in the prediction of all fields. Empirical mode decomposition (EMD) decomposes a nonlinear and non-stationary signal into a series of intrinsic mode functions (IMFs), however, it cannot reveal characteristic information of the signal with much accuracy as a result of mode mixing. So ensemble empirical mode decomposition (EEMD), an improved method of EMD, is presented to resolve the weaknesses of EMD by adding white noise to the original data. With EEMD, the components with true physical meaning can be extracted from the time series. Utilizing the advantage of EEMD and MKNN, the new proposed ensemble empirical mode decomposition combined with multidimensional k-nearest neighbor model (EEMD-MKNN) has high predictive precision for short-term forecasting. Moreover, we extend this methodology to the case of two-dimensions to forecast the closing price and high price of the four stocks (NAS, S&P500, DJI and STI stock indices) at the same time. The results indicate that the proposed EEMD-MKNN model has a higher forecast precision than EMD-KNN, KNN method and ARIMA.
NASA Astrophysics Data System (ADS)
Ryu, Young; Lim, Yoon-Jin; Ji, Hee-Sook; Park, Hyun-Hee; Chang, Eun-Chul; Kim, Baek-Jo
2017-11-01
In flash flood forecasting, it is necessary to consider not only traditional meteorological variables such as precipitation, evapotranspiration, and soil moisture, but also hydrological components such as streamflow. To address this challenge, the application of high resolution coupled atmospheric-hydrological models is emerging as a promising alternative. This study demonstrates the feasibility of linking a coupled atmospheric-hydrological model (WRF/WRFHydro) with 150-m horizontal grid spacing for flash flood forecasting in Korea. The study area is the Namgang Dam basin in Southern Korea, a mountainous area located downstream of Jiri Mountain (1915 m in height). Under flash flood conditions, the simulated precipitation over the entire basin is comparable to the domain-averaged precipitation, but discharge data from WRF-Hydro shows some differences in the total available water and the temporal distribution of streamflow (given by the timing of the streamflow peak following precipitation), compared to observations. On the basis of sensitivity tests, the parameters controlling the infiltration of excess precipitation and channel roughness depending on stream order are refined and their influence on temporal distribution of streamflow is addressed with intent to apply WRF-Hydro to flash flood forecasting in the Namgang Dam basin. The simulation results from the WRF-Hydro model with optimized parameters demonstrate the potential utility of a coupled atmospheric-hydrological model for forecasting heavy rain-induced flash flooding over the Korean Peninsula.
Dynamic Forecasting of Zika Epidemics Using Google Trends
Jin, Yuan; Huang, Yong; Lin, Baihan; An, Xiaoping; Feng, Dan; Tong, Yigang
2017-01-01
We developed a dynamic forecasting model for Zika virus (ZIKV), based on real-time online search data from Google Trends (GTs). It was designed to provide Zika virus disease (ZVD) surveillance and detection for Health Departments, and predictive numbers of infection cases, which would allow them sufficient time to implement interventions. In this study, we found a strong correlation between Zika-related GTs and the cumulative numbers of reported cases (confirmed, suspected and total cases; p<0.001). Then, we used the correlation data from Zika-related online search in GTs and ZIKV epidemics between 12 February and 20 October 2016 to construct an autoregressive integrated moving average (ARIMA) model (0, 1, 3) for the dynamic estimation of ZIKV outbreaks. The forecasting results indicated that the predicted data by ARIMA model, which used the online search data as the external regressor to enhance the forecasting model and assist the historical epidemic data in improving the quality of the predictions, are quite similar to the actual data during ZIKV epidemic early November 2016. Integer-valued autoregression provides a useful base predictive model for ZVD cases. This is enhanced by the incorporation of GTs data, confirming the prognostic utility of search query based surveillance. This accessible and flexible dynamic forecast model could be used in the monitoring of ZVD to provide advanced warning of future ZIKV outbreaks. PMID:28060809
Bildirici, Melike; Ersin, Özgür
2014-01-01
The study has two aims. The first aim is to propose a family of nonlinear GARCH models that incorporate fractional integration and asymmetric power properties to MS-GARCH processes. The second purpose of the study is to augment the MS-GARCH type models with artificial neural networks to benefit from the universal approximation properties to achieve improved forecasting accuracy. Therefore, the proposed Markov-switching MS-ARMA-FIGARCH, APGARCH, and FIAPGARCH processes are further augmented with MLP, Recurrent NN, and Hybrid NN type neural networks. The MS-ARMA-GARCH family and MS-ARMA-GARCH-NN family are utilized for modeling the daily stock returns in an emerging market, the Istanbul Stock Index (ISE100). Forecast accuracy is evaluated in terms of MAE, MSE, and RMSE error criteria and Diebold-Mariano equal forecast accuracy tests. The results suggest that the fractionally integrated and asymmetric power counterparts of Gray's MS-GARCH model provided promising results, while the best results are obtained for their neural network based counterparts. Further, among the models analyzed, the models based on the Hybrid-MLP and Recurrent-NN, the MS-ARMA-FIAPGARCH-HybridMLP, and MS-ARMA-FIAPGARCH-RNN provided the best forecast performances over the baseline single regime GARCH models and further, over the Gray's MS-GARCH model. Therefore, the models are promising for various economic applications. PMID:24977200
Dynamic Forecasting of Zika Epidemics Using Google Trends.
Teng, Yue; Bi, Dehua; Xie, Guigang; Jin, Yuan; Huang, Yong; Lin, Baihan; An, Xiaoping; Feng, Dan; Tong, Yigang
2017-01-01
We developed a dynamic forecasting model for Zika virus (ZIKV), based on real-time online search data from Google Trends (GTs). It was designed to provide Zika virus disease (ZVD) surveillance and detection for Health Departments, and predictive numbers of infection cases, which would allow them sufficient time to implement interventions. In this study, we found a strong correlation between Zika-related GTs and the cumulative numbers of reported cases (confirmed, suspected and total cases; p<0.001). Then, we used the correlation data from Zika-related online search in GTs and ZIKV epidemics between 12 February and 20 October 2016 to construct an autoregressive integrated moving average (ARIMA) model (0, 1, 3) for the dynamic estimation of ZIKV outbreaks. The forecasting results indicated that the predicted data by ARIMA model, which used the online search data as the external regressor to enhance the forecasting model and assist the historical epidemic data in improving the quality of the predictions, are quite similar to the actual data during ZIKV epidemic early November 2016. Integer-valued autoregression provides a useful base predictive model for ZVD cases. This is enhanced by the incorporation of GTs data, confirming the prognostic utility of search query based surveillance. This accessible and flexible dynamic forecast model could be used in the monitoring of ZVD to provide advanced warning of future ZIKV outbreaks.
A computerized system to measure and predict air quality for emission control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crooks, G.; Ciccone, A.; Frattolillo, P.
1997-12-31
A Supplementary Emission Control (SEC) system has been developed on behalf of the Association Industrielle de l`Est de Montreal (AIEM). The objective of the SEC is to avoid exceedences of the Montreal Urban Community (MUC) 24 hour ambient Air Quality Standard (AQS) for sulphur dioxide in the industrial East Montreal area. The SEC system is comprised of: 3 continuous SO{sub 2} monitoring stations with data loggers and remote communications; a meteorological tower with data logger and modem for acquiring local meteorology; communications with Environment Canada to download meteorological forecast data; a polling PC for data retrieval; and Windows NT basedmore » software running on the AIEM computer server. The SEC software utilizes relational databases to store and maintain measured SO{sub 2} concentration data, emission data, as well as observed and forecast meteorological data. The SEC system automatically executes a numerical dispersion model to forecast SO{sub 2} concentrations up to six hours in the future. Based on measured SO{sub 2} concentrations at the monitoring stations and the six hour forecast concentrations, the system determines if local sources should reduce their emission levels to avoid potential exceedences of the AQS. The SEC system also includes a Graphical User Interface (GUI) for user access to the system. The SEC system and software are described, and the accuracy of the system at forecasting SO{sub 2} concentrations is examined.« less
Forecasting short-term data center network traffic load with convolutional neural networks
Ordozgoiti, Bruno; Gómez-Canaval, Sandra
2018-01-01
Efficient resource management in data centers is of central importance to content service providers as 90 percent of the network traffic is expected to go through them in the coming years. In this context we propose the use of convolutional neural networks (CNNs) to forecast short-term changes in the amount of traffic crossing a data center network. This value is an indicator of virtual machine activity and can be utilized to shape the data center infrastructure accordingly. The behaviour of network traffic at the seconds scale is highly chaotic and therefore traditional time-series-analysis approaches such as ARIMA fail to obtain accurate forecasts. We show that our convolutional neural network approach can exploit the non-linear regularities of network traffic, providing significant improvements with respect to the mean absolute and standard deviation of the data, and outperforming ARIMA by an increasingly significant margin as the forecasting granularity is above the 16-second resolution. In order to increase the accuracy of the forecasting model, we exploit the architecture of the CNNs using multiresolution input distributed among separate channels of the first convolutional layer. We validate our approach with an extensive set of experiments using a data set collected at the core network of an Internet Service Provider over a period of 5 months, totalling 70 days of traffic at the one-second resolution. PMID:29408936
Flexible reserve markets for wind integration
NASA Astrophysics Data System (ADS)
Fernandez, Alisha R.
The increased interconnection of variable generation has motivated the use of improved forecasting to more accurately predict future production with the purpose to lower total system costs for balancing when the expected output exceeds or falls short of the actual output. Forecasts are imperfect, and the forecast errors associated with utility-scale generation from variable generators need new balancing capabilities that cannot be handled by existing ancillary services. Our work focuses on strategies for integrating large amounts of wind generation under the flex reserve market, a market that would called upon for short-term energy services during an under or oversupply of wind generation to maintain electric grid reliability. The flex reserve market would be utilized for time intervals that fall in-between the current ancillary services markets that would be longer than second-to-second energy services for maintaining system frequency and shorter than reserve capacity services that are called upon for several minutes up to an hour during an unexpected contingency on the grid. In our work, the wind operator would access the flex reserve market as an energy service to correct for unanticipated forecast errors, akin to paying the generators participating in the market to increase generation during a shortfall or paying the other generators to decrease generation during an excess of wind generation. Such a market does not currently exist in the Mid-Atlantic United States. The Pennsylvania-New Jersey-Maryland Interconnection (PJM) is the Mid-Atlantic electric grid case study that was used to examine if a flex reserve market can be utilized for integrating large capacities of wind generation in a lowcost manner for those providing, purchasing and dispatching these short-term balancing services. The following work consists of three studies. The first examines the ability of a hydroelectric facility to provide short-term forecast error balancing services via a flex reserve market, identifying the operational constraints that inhibit a multi-purpose dam facility to meet the desired flexible energy demand. The second study transitions from the hydroelectric facility as the decision maker providing flex reserve services to the wind plant as the decision maker purchasing these services. In this second study, methods for allocating the costs of flex reserve services under different wind policy scenarios are explored that aggregate farms into different groupings to identify the least-cost strategy for balancing the costs of hourly day-ahead forecast errors. The least-cost strategy may be different for an individual wind plant and for the system operator, noting that the least-cost strategy is highly sensitive to cost allocation and aggregation schemes. The latter may also cause cross-subsidies in the cost for balancing wind forecast errors among the different wind farms. The third study builds from the second, with the objective to quantify the amount of flex reserves needed for balancing future forecast errors using a probabilistic approach (quantile regression) to estimating future forecast errors. The results further examine the usefulness of separate flexible markets PJM could use for balancing oversupply and undersupply events, similar to the regulation up and down markets used in Europe. These three studies provide the following results and insights to large-scale wind integration using actual PJM wind farm data that describe the markets and generators within PJM. • Chapter 2 provides an in-depth analysis of the valuable, yet highly-constrained, energy services multi-purpose hydroelectric facilities can provide, though the opportunity cost for providing these services can result in large deviations from the reservoir policies with minimal revenue gain in comparison to dedicating the whole of dam capacity to providing day-ahead, baseload generation. • Chapter 3 quantifies the system-wide efficiency gains and the distributive effects of PJM's decision to act as a single balancing authority, which means that it procures ancillary services across its entire footprint simultaneously. This can be contrasted to Midwest Independent System Operator (MISO), which has several balancing authorities operating under its footprint. • Chapter 4 uses probabilistic methods to estimate the uncertainty in the forecast errors and the quantity of energy needed to balance these forecast errors at a certain percentile. Current practice is to use a point forecast that describes the conditional expectation of the dependent variable at each time step. The approach here uses quantile regression to describe the relationship between independent variable and the conditional quantiles (equivalently the percentiles) of the dependent variable. An estimate of the conditional density is performed, which contains information about the covariate relationship of the sign of the forecast errors (negative for too much wind generation and positive for too little wind generation) and the wind power forecast. This additional knowledge may be implemented in the decision process to more accurately schedule day-ahead wind generation bids and provide an example for using separate markets for balancing an oversupply and undersupply of generation. Such methods are currently used for coordinating large footprints of wind generation in Europe.
NASA Technical Reports Server (NTRS)
Meng, Huan; Ferraro, Ralph; Kongoli, Cezar; Yan, Banghua; Zavodsky, Bradley; Zhao, Limin; Dong, Jun; Wang, Nai-Yu
2015-01-01
(AMSU), Microwave Humidity Sounder (MHS) and Advance Technology Microwave Sounder (ATMS). ATMS is the follow-on sensor to AMSU and MHS. Currently, an AMSU and MHS based land snowfall rate (SFR) product is running operationally at NOAA/NESDIS. Based on the AMSU/MHS SFR, an ATMS SFR algorithm has also been developed. The algorithm performs retrieval in three steps: snowfall detection, retrieval of cloud properties, and estimation of snow particle terminal velocity and snowfall rate. The snowfall detection component utilizes principal component analysis and a logistic regression model. It employs a combination of temperature and water vapor sounding channels to detect the scattering signal from falling snow and derives the probability of snowfall. Cloud properties are retrieved using an inversion method with an iteration algorithm and a two-stream radiative transfer model. A method adopted to calculate snow particle terminal velocity. Finally, snowfall rate is computed by numerically solving a complex integral. The SFR products are being used mainly in two communities: hydrology and weather forecast. Global blended precipitation products traditionally do not include snowfall derived from satellites because such products were not available operationally in the past. The ATMS and AMSU/MHS SFR now provide the winter precipitation information for these blended precipitation products. Weather forecasters mainly rely on radar and station observations for snowfall forecast. The SFR products can fill in gaps where no conventional snowfall data are available to forecasters. The products can also be used to confirm radar and gauge snowfall data and increase forecasters' confidence in their prediction.
Quantifying the Economic and Grid Reliability Impacts of Improved Wind Power Forecasting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Qin; Martinez-Anido, Carlo Brancucci; Wu, Hongyu
Wind power forecasting is an important tool in power system operations to address variability and uncertainty. Accurately doing so is important to reducing the occurrence and length of curtailment, enhancing market efficiency, and improving the operational reliability of the bulk power system. This research quantifies the value of wind power forecasting improvements in the IEEE 118-bus test system as modified to emulate the generation mixes of Midcontinent, California, and New England independent system operator balancing authority areas. To measure the economic value, a commercially available production cost modeling tool was used to simulate the multi-timescale unit commitment (UC) and economicmore » dispatch process for calculating the cost savings and curtailment reductions. To measure the reliability improvements, an in-house tool, FESTIV, was used to calculate the system's area control error and the North American Electric Reliability Corporation Control Performance Standard 2. The approach allowed scientific reproducibility of results and cross-validation of the tools. A total of 270 scenarios were evaluated to accommodate the variation of three factors: generation mix, wind penetration level, and wind fore-casting improvements. The modified IEEE 118-bus systems utilized 1 year of data at multiple timescales, including the day-ahead UC, 4-hour-ahead UC, and 5-min real-time dispatch. The value of improved wind power forecasting was found to be strongly tied to the conventional generation mix, existence of energy storage devices, and the penetration level of wind energy. The simulation results demonstrate that wind power forecasting brings clear benefits to power system operations.« less
NASA Astrophysics Data System (ADS)
Pattanayak, Sujata; Mohanty, U. C.
2018-06-01
The paper intends to present the development of the extended weather research forecasting data assimilation (WRFDA) system in the framework of the non-hydrostatic mesoscale model core of weather research forecasting system (WRF-NMM), as an imperative aspect of numerical modeling studies. Though originally the WRFDA provides improved initial conditions for advanced research WRF, we have successfully developed a unified WRFDA utility that can be used by the WRF-NMM core, as well. After critical evaluation, it has been strategized to develop a code to merge WRFDA framework and WRF-NMM output. In this paper, we have provided a few selected implementations and initial results through single observation test, and background error statistics like eigenvalues, eigenvector and length scale among others, which showcase the successful development of extended WRFDA code for WRF-NMM model. Furthermore, the extended WRFDA system is applied for the forecast of three severe cyclonic storms: Nargis (27 April-3 May 2008), Aila (23-26 May 2009) and Jal (4-8 November 2010) formed over the Bay of Bengal. Model results are compared and contrasted within the analysis fields and later on with high-resolution model forecasts. The mean initial position error is reduced by 33% with WRFDA as compared to GFS analysis. The vector displacement errors in track forecast are reduced by 33, 31, 30 and 20% to 24, 48, 72 and 96 hr forecasts respectively, in data assimilation experiments as compared to control run. The model diagnostics indicates successful implementation of WRFDA within the WRF-NMM system.
HEPEX - achievements and challenges!
NASA Astrophysics Data System (ADS)
Pappenberger, Florian; Ramos, Maria-Helena; Thielen, Jutta; Wood, Andy; Wang, Qj; Duan, Qingyun; Collischonn, Walter; Verkade, Jan; Voisin, Nathalie; Wetterhall, Fredrik; Vuillaume, Jean-Francois Emmanuel; Lucatero Villasenor, Diana; Cloke, Hannah L.; Schaake, John; van Andel, Schalk-Jan
2014-05-01
HEPEX is an international initiative bringing together hydrologists, meteorologists, researchers and end-users to develop advanced probabilistic hydrological forecast techniques for improved flood, drought and water management. HEPEX was launched in 2004 as an independent, cooperative international scientific activity. During the first meeting, the overarching goal was defined as: "to develop and test procedures to produce reliable hydrological ensemble forecasts, and to demonstrate their utility in decision making related to the water, environmental and emergency management sectors." The applications of hydrological ensemble predictions span across large spatio-temporal scales, ranging from short-term and localized predictions to global climate change and regional modeling. Within the HEPEX community, information is shared through its blog (www.hepex.org), meetings, testbeds and intercompaison experiments, as well as project reportings. Key questions of HEPEX are: * What adaptations are required for meteorological ensemble systems to be coupled with hydrological ensemble systems? * How should the existing hydrological ensemble prediction systems be modified to account for all sources of uncertainty within a forecast? * What is the best way for the user community to take advantage of ensemble forecasts and to make better decisions based on them? This year HEPEX celebrates its 10th year anniversary and this poster will present a review of the main operational and research achievements and challenges prepared by Hepex contributors on data assimilation, post-processing of hydrologic predictions, forecast verification, communication and use of probabilistic forecasts in decision-making. Additionally, we will present the most recent activities implemented by Hepex and illustrate how everyone can join the community and participate to the development of new approaches in hydrologic ensemble prediction.
NASA Technical Reports Server (NTRS)
Pulkkinen, A.; Mahmood, S.; Ngwira, C.; Balch, C.; Lordan, R.; Fugate, D.; Jacobs, W.; Honkonen, I.
2015-01-01
A NASA Goddard Space Flight Center Heliophysics Science Division-led team that includes NOAA Space Weather Prediction Center, the Catholic University of America, Electric Power Research Institute (EPRI), and Electric Research and Management, Inc., recently partnered with the Department of Homeland Security (DHS) Science and Technology Directorate (S&T) to better understand the impact of Geomagnetically Induced Currents (GIC) on the electric power industry. This effort builds on a previous NASA-sponsored Applied Sciences Program for predicting GIC, known as Solar Shield. The focus of the new DHS S&T funded effort is to revise and extend the existing Solar Shield system to enhance its forecasting capability and provide tailored, timely, actionable information for electric utility decision makers. To enhance the forecasting capabilities of the new Solar Shield, a key undertaking is to extend the prediction system coverage across Contiguous United States (CONUS), as the previous version was only applicable to high latitudes. The team also leverages the latest enhancements in space weather modeling capacity residing at Community Coordinated Modeling Center to increase the Technological Readiness Level, or Applications Readiness Level of the system http://www.nasa.gov/sites/default/files/files/ExpandedARLDefinitions4813.pdf.
NASA Technical Reports Server (NTRS)
1977-01-01
A demonstration experiment is being planned to show that frost and freeze prediction improvements are possible utilizing timely Synchronous Meteorological Satellite temperature measurements and that this information can affect Florida citrus grower operations and decisions. An economic experiment was carried out which will monitor citrus growers' decisions, actions, costs and losses, and meteorological forecasts and actual weather events and will establish the economic benefits of improved temperature forecasts. A summary is given of the economic experiment, the results obtained to date, and the work which still remains to be done. Specifically, the experiment design is described in detail as are the developed data collection methodology and procedures, sampling plan, data reduction techniques, cost and loss models, establishment of frost severity measures, data obtained from citrus growers, National Weather Service, and Federal Crop Insurance Corp., resulting protection costs and crop losses for the control group sample, extrapolation of results of control group to the Florida citrus industry and the method for normalization of these results to a normal or average frost season so that results may be compared with anticipated similar results from test group measurements.
Kuo, R J; Wu, P; Wang, C P
2002-09-01
Sales forecasting plays a very prominent role in business strategy. Numerous investigations addressing this problem have generally employed statistical methods, such as regression or autoregressive and moving average (ARMA). However, sales forecasting is very complicated owing to influence by internal and external environments. Recently, artificial neural networks (ANNs) have also been applied in sales forecasting since their promising performances in the areas of control and pattern recognition. However, further improvement is still necessary since unique circumstances, e.g. promotion, cause a sudden change in the sales pattern. Thus, this study utilizes a proposed fuzzy neural network (FNN), which is able to eliminate the unimportant weights, for the sake of learning fuzzy IF-THEN rules obtained from the marketing experts with respect to promotion. The result from FNN is further integrated with the time series data through an ANN. Both the simulated and real-world problem results show that FNN with weight elimination can have lower training error compared with the regular FNN. Besides, real-world problem results also indicate that the proposed estimation system outperforms the conventional statistical method and single ANN in accuracy.
DOT National Transportation Integrated Search
1979-06-01
Contents: A form of utility function for the UMOT model; An analysis of transportation/land use interactions; Toward a methodology to shape urban structure; Approaches for improving urban travel forecasts; Quasi-dynamic urban location models with end...
DOT National Transportation Integrated Search
2003-08-01
Over the past half-century, the progress of travel behavior research and travel demand forecasting has been spear : headed and continuously propelled by the micro-economic theories, specifically utility maximization. There is no : denial that the tra...
The impact of physician-level drug budgets on prescribing behavior.
Fischer, Katharina Elisabeth; Koch, Taika; Kostev, Karel; Stargardt, Tom
2018-03-01
To contain pharmaceutical spending, drug budgets have been introduced across health systems. Apart from analyzing whether drug budgets fulfill their overall goal of reducing spending, changes in the cost and quality of prescribing and the enforcement mechanisms put in place need evaluation to assess the effectiveness of drug budgets at the physician level. In this study, we aim to analyze the cost and quality of prescribing conditional on the level of utilization of the drug budget and in view of varying levels of enforcement in cases of overspending. We observed drug budget utilization in a panel of 440 physicians in three federal states of Germany from 2005 to 2011. At the physician level, we retrospectively calculated drug budgets, the level of drug budget utilization, and differentiated by varying levels of enforcement where physicians overspent their budgets (i.e., more than 115/125% of the drug budget). Using lagged dependent-variable regression models, we analyzed whether the level of drug budget utilization in the previous year affected current prescribing in terms of various indicators to describe the cost and quality of prescribing. We controlled for patient and physician characteristics. The mean drug budget utilization is 92.3%. The level of drug budget utilization influences selected dimensions of cost and quality of prescribing (i.e., generic share (estimate 0.000215; p = 0.0246), concentration of generic brands (estimate 0.000585; p = 0.0056) and therapeutic substances (estimate -0.000060; p < 0.0001) and the share of potentially inappropriate medicines in the elderly (estimate 0.001; p < 0.0001)), whereas the level of enforcement does not. Physicians seem to gradually adjust their prescription patterns, especially in terms of generic substitution.
Yu, Yuncui; Jia, Lulu; Meng, Yao; Hu, Lihua; Liu, Yiwei; Nie, Xiaolu; Zhang, Meng; Zhang, Xuan; Han, Sheng; Peng, Xiaoxia; Wang, Xiaoling
2018-04-01
Establishing a comprehensive clinical evaluation system is critical in enacting national drug policy and promoting rational drug use. In China, the 'Clinical Comprehensive Evaluation System for Pediatric Drugs' (CCES-P) project, which aims to compare drugs based on clinical efficacy and cost effectiveness to help decision makers, was recently proposed; therefore, a systematic and objective method is required to guide the process. An evidence-based multi-criteria decision analysis model that involved an analytic hierarchy process (AHP) was developed, consisting of nine steps: (1) select the drugs to be reviewed; (2) establish the evaluation criterion system; (3) determine the criterion weight based on the AHP; (4) construct the evidence body for each drug under evaluation; (5) select comparative measures and calculate the original utility score; (6) place a common utility scale and calculate the standardized utility score; (7) calculate the comprehensive utility score; (8) rank the drugs; and (9) perform a sensitivity analysis. The model was applied to the evaluation of three different inhaled corticosteroids (ICSs) used for asthma management in children (a total of 16 drugs with different dosage forms and strengths or different manufacturers). By applying the drug analysis model, the 16 ICSs under review were successfully scored and evaluated. Budesonide suspension for inhalation (drug ID number: 7) ranked the highest, with comprehensive utility score of 80.23, followed by fluticasone propionate inhaled aerosol (drug ID number: 16), with a score of 79.59, and budesonide inhalation powder (drug ID number: 6), with a score of 78.98. In the sensitivity analysis, the ranking of the top five and lowest five drugs remains unchanged, suggesting this model is generally robust. An evidence-based drug evaluation model based on AHP was successfully developed. The model incorporates sufficient utility and flexibility for aiding the decision-making process, and can be a useful tool for the CCES-P.
Using Seasonal Forecasts for medium-term Electricity Demand Forecasting on Italy
NASA Astrophysics Data System (ADS)
De Felice, M.; Alessandri, A.; Ruti, P.
2012-12-01
Electricity demand forecast is an essential tool for energy management and operation scheduling for electric utilities. In power engineering, medium-term forecasting is defined as the prediction up to 12 months ahead, and commonly is performed considering weather climatology and not actual forecasts. This work aims to analyze the predictability of electricity demand on seasonal time scale, considering seasonal samples, i.e. average on three months. Electricity demand data has been provided by Italian Transmission System Operator for eight different geographical areas, in Fig. 1 for each area is shown the average yearly demand anomaly for each season. This work uses data for each summer during 1990-2010 and all the datasets have been pre-processed to remove trends and reduce the influence of calendar and economic effects. The choice of focusing this research on the summer period is due to the critical peaks of demand that power grid is subject during hot days. Weather data have been included considering observations provided by ECMWF ERA-INTERIM reanalyses. Primitive variables (2-metres temperature, pressure, etc) and derived variables (cooling and heating degree days) have been averaged for summer months. A particular attention has been given to the influence of persistence of positive temperature anomaly and a derived variable which count the number of consecutive days of extreme-days has been used. Electricity demand forecast has been performed using linear and nonlinear regression methods and stepwise model selection procedures have been used to perform a variable selection with respect to performance measures. Significance tests on multiple linear regression showed the importance of cooling degree days during summer in the North-East and South of Italy with an increase of statistical significance after 2003, a result consistent with the diffusion of air condition and ventilation equipment in the last decade. Finally, using seasonal climate forecasts we evaluate the performances of electricity demand forecast performed with predicted variables on Italian regions with encouraging results on the South of Italy. This work gives an initial assessment on the predictability of electricity demand on seasonal time scale, evaluating the relevance of climate information provided by seasonal forecasts for electricity management during high-demand periods.;
Web-Based Real Time Earthquake Forecasting and Personal Risk Management
NASA Astrophysics Data System (ADS)
Rundle, J. B.; Holliday, J. R.; Graves, W. R.; Turcotte, D. L.; Donnellan, A.
2012-12-01
Earthquake forecasts have been computed by a variety of countries and economies world-wide for over two decades. For the most part, forecasts have been computed for insurance, reinsurance and underwriters of catastrophe bonds. One example is the Working Group on California Earthquake Probabilities that has been responsible for the official California earthquake forecast since 1988. However, in a time of increasingly severe global financial constraints, we are now moving inexorably towards personal risk management, wherein mitigating risk is becoming the responsibility of individual members of the public. Under these circumstances, open access to a variety of web-based tools, utilities and information is a necessity. Here we describe a web-based system that has been operational since 2009 at www.openhazards.com and www.quakesim.org. Models for earthquake physics and forecasting require input data, along with model parameters. The models we consider are the Natural Time Weibull (NTW) model for regional earthquake forecasting, together with models for activation and quiescence. These models use small earthquakes ('seismicity-based models") to forecast the occurrence of large earthquakes, either through varying rates of small earthquake activity, or via an accumulation of this activity over time. These approaches use data-mining algorithms combined with the ANSS earthquake catalog. The basic idea is to compute large earthquake probabilities using the number of small earthquakes that have occurred in a region since the last large earthquake. Each of these approaches has computational challenges associated with computing forecast information in real time. Using 25 years of data from the ANSS California-Nevada catalog of earthquakes, we show that real-time forecasting is possible at a grid scale of 0.1o. We have analyzed the performance of these models using Reliability/Attributes and standard Receiver Operating Characteristic (ROC) tests. We show how the Reliability and ROC tests allow us to judge data completeness and estimate error. It is clear from much of the analysis that data quality is a major limitation on the accurate computation of earthquake probabilities. We discuss the challenges and pitfalls in serving up these datasets over the web.
An OSSE on Mesoscale Model Assimilation of Simulated HIRAD-Observed Hurricane Surface Winds
NASA Technical Reports Server (NTRS)
Albers, Cerese; Miller, Timothy; Uhlhorn, Eric; Krishnamurti, T. N.
2012-01-01
The hazards of landfalling hurricanes are well known, but progress on improving the intensity forecasts of these deadly storms at landfall has been slow. Many cite a lack of high-resolution data sets taken inside the core of a hurricane, and the lack of reliable measurements in extreme conditions near the surface of hurricanes, as possible reasons why even the most state-of-the-art forecasting models cannot seem to forecast intensity changes better. The Hurricane Imaging Radiometer (HIRAD) is a new airborne microwave remote sensor for observing hurricanes, and is operated and researched by NASA Marshall Space Flight Center in partnership with the NOAA Atlantic Oceanographic and Meteorological Laboratory/Hurricane Research Division, the University of Central Florida, the University of Michigan, and the University of Alabama in Huntsville. This instrument?s purpose is to study the wind field of a hurricane, specifically observing surface wind speeds and rain rates, in what has traditionally been the most difficult areas for other instruments to study; the high wind and heavy rain regions. Dr. T. N. Krishnamurti has studied various data assimilation techniques for hurricane and monsoon rain rates, and this study builds off of results obtained from utilizing his style of physical initializations of rainfall observations, but obtaining reliable observations in heavy rain regions has always presented trouble to our research of high-resolution rainfall forecasting. Reliable data from these regions at such a high resolution and wide swath as HIRAD provides is potentially very valuable to mesoscale forecasting of hurricane intensity. This study shows how the data assimilation technique of Ensemble Kalman Filtering (EnKF) in the Weather Research and Forecasting (WRF) model can be used to incorporate wind, and later rain rate, data into a mesoscale model forecast of hurricane intensity. The study makes use of an Observing System Simulation Experiment (OSSE) with a simulated HIRAD dataset sampled during a hurricane and uses EnKF to forecast the track and intensity prediction of the hurricane. Comparisons to truth and error metrics are used to assess the model?s forecast performance.
NASA Astrophysics Data System (ADS)
Ghonima, M. S.; Yang, H.; Zhong, X.; Ozge, B.; Sahu, D. K.; Kim, C. K.; Babacan, O.; Hanna, R.; Kurtz, B.; Mejia, F. A.; Nguyen, A.; Urquhart, B.; Chow, C. W.; Mathiesen, P.; Bosch, J.; Wang, G.
2015-12-01
One of the main obstacles to high penetrations of solar power is the variable nature of solar power generation. To mitigate variability, grid operators have to schedule additional reliability resources, at considerable expense, to ensure that load requirements are met by generation. Thus despite the cost of solar PV decreasing, the cost of integrating solar power will increase as penetration of solar resources onto the electric grid increases. There are three principal tools currently available to mitigate variability impacts: (i) flexible generation, (ii) storage, either virtual (demand response) or physical devices and (iii) solar forecasting. Storage devices are a powerful tool capable of ensuring smooth power output from renewable resources. However, the high cost of storage is prohibitive and markets are still being designed to leverage their full potential and mitigate their limitation (e.g. empty storage). Solar forecasting provides valuable information on the daily net load profile and upcoming ramps (increasing or decreasing solar power output) thereby providing the grid advance warning to schedule ancillary generation more accurately, or curtail solar power output. In order to develop solar forecasting as a tool that can be utilized by the grid operators we identified two focus areas: (i) develop solar forecast technology and improve solar forecast accuracy and (ii) develop forecasts that can be incorporated within existing grid planning and operation infrastructure. The first issue required atmospheric science and engineering research, while the second required detailed knowledge of energy markets, and power engineering. Motivated by this background we will emphasize area (i) in this talk and provide an overview of recent advancements in solar forecasting especially in two areas: (a) Numerical modeling tools for coastal stratocumulus to improve scheduling in the day-ahead California energy market. (b) Development of a sky imager to provide short term forecasts (0-20 min ahead) to improve optimization and control of equipment on distribution feeders with high penetration of solar. Leveraging such tools that have seen extensive use in the atmospheric sciences supports the development of accurate physics-based solar forecast models. Directions for future research are also provided.
Predicting Near-surface Winds with WindNinja for Wind Energy Applications
NASA Astrophysics Data System (ADS)
Wagenbrenner, N. S.; Forthofer, J.; Shannon, K.; Butler, B.
2016-12-01
WindNinja is a high-resolution diagnostic wind model widely used by operational wildland fire managers to predict how near-surface winds may influence fire behavior. Many of the features which have made WindNinja successful for wildland fire are also important for wind energy applications. Some of these features include flexible runtime options which allow the user to initialize the model with coarser scale weather model forecasts, sparse weather station observations, or a simple domain-average wind for what-if scenarios; built-in data fetchers for required model inputs, including gridded terrain and vegetation data and operational weather model forecasts; relatively fast runtimes on simple hardware; an extremely user-friendly interface; and a number of output format options, including KMZ files for viewing in Google Earth and GeoPDFs which can be viewed in a GIS. The recent addition of a conservation of mass and momentum solver based on OpenFOAM libraries further increases the utility of WindNinja to modelers in the wind energy sector interested not just in mean wind predictions, but also in turbulence metrics. Here we provide an evaluation of WindNinja forecasts based on (1) operational weather model forecasts and (2) weather station observations provided by the MesoWest API. We also compare the high-resolution WindNinja forecasts to the coarser operational weather model forecasts. For this work we will use the High Resolution Rapid Refresh (HRRR) model and the North American Mesoscale (NAM) model. Forecasts will be evaluated with data collected in the Birch Creek valley of eastern Idaho, USA between June-October 2013. Near-surface wind, turbulence data, and vertical wind and temperature profiles were collected at very high spatial resolution during this field campaign specifically for use in evaluating high-resolution wind models like WindNinja. This work demonstrates the ability of WindNinja to generate very high-resolution wind forecasts for wind energy applications and evaluates the forecasts produced by two different initialization methods with data collected in a broad valley surrounded by complex terrain.
Load research manual. Volume 2: Fundamentals of implementing load research procedures
NASA Astrophysics Data System (ADS)
1980-11-01
This manual will assist electric utilities and state regulatory authorities in investigating customer electricity demand as part of cost-of-service studies, rate design, marketing research, system design, load forecasting, rate reform analysis, and load management research. Load research procedures are described in detail. Research programs at three utilities are compared: Carolina Power and Light Company, Long Island Lighting Company, and Southern California Edison Company. A load research bibliography and glossaries of load research and statistical terms are also included.
Meng, Qingyue; Cheng, Gang; Silver, Lynn; Sun, Xiaojie; Rehnberg, Clas; Tomson, Göran
2005-05-01
In China, 44.4% of total health expenditures in 2001 were for pharmaceuticals. Containment of pharmaceutical expenditures is a top priority for policy intervention. Control of drug retail prices was adopted by the Chinese government for this purpose. This study aims to examine the impact of this policy on the containment of hospital drug expenditures, and to analyze contributing factors. This is a retrospective pre/post-reform case study in two public hospitals. Financial records were reviewed to analyze changes in drug expenditures for all patients. A tracer condition, cerebral infarction, was selected for in-depth examination of changes in prices, utilization, expenditures and rationality of drugs. In the two hospitals, a total of 104 and 109 cerebral infarction cases, hospitalized respectively before and after the reform, were selected. Prescribed daily dose (PDD) was used for measuring drug utilization, and the contribution of price and utilization to changes in drug expenditures were decomposed. Rationality of drug use post-reform was reviewed based on published literature. Drug expenditures for all patients still increased rapidly in the two hospitals after implementation of the pricing policy. In the provincial hospital, drug expenditures per patient for cerebral infarction cases declined, but not significantly. This was mainly attributable to reduced utilization. In the municipal hospital, drug expenditure per patient increased by 50.1% after the reform, mainly due to greater drug utilization. Three to five fold higher drug expenditure per inpatient day in the provincial hospital was due to use of more expensive drugs. Of the top 15 drugs for treating cerebral infarction cases after the reform, 19.5% and 46.5% of the expenditures, in the provincial and municipal hospitals, respectively, were spent on drugs with prices set by the government. A large proportion of expenditures for the top 15 drugs, at least 65% and 41% in the provincial and municipal hospitals, respectively, was spent on allopathic drugs without an adequate evidence base of safety and efficacy supporting use for cerebral infarction. Control of retail prices, implemented in isolation, was not effective in containing hospital drug expenditures in these two Chinese hospitals. Utilization, more than price, determined drug expenditures. Improvement of rational use of drugs and correcting the present incentive structure for hospitals and drug prescribers may be important additional strategies for achieving containment of drug expenditures.
Guo, Wei-Feng; Zhang, Shao-Wu; Shi, Qian-Qian; Zhang, Cheng-Ming; Zeng, Tao; Chen, Luonan
2018-01-19
The advances in target control of complex networks not only can offer new insights into the general control dynamics of complex systems, but also be useful for the practical application in systems biology, such as discovering new therapeutic targets for disease intervention. In many cases, e.g. drug target identification in biological networks, we usually require a target control on a subset of nodes (i.e., disease-associated genes) with minimum cost, and we further expect that more driver nodes consistent with a certain well-selected network nodes (i.e., prior-known drug-target genes). Therefore, motivated by this fact, we pose and address a new and practical problem called as target control problem with objectives-guided optimization (TCO): how could we control the interested variables (or targets) of a system with the optional driver nodes by minimizing the total quantity of drivers and meantime maximizing the quantity of constrained nodes among those drivers. Here, we design an efficient algorithm (TCOA) to find the optional driver nodes for controlling targets in complex networks. We apply our TCOA to several real-world networks, and the results support that our TCOA can identify more precise driver nodes than the existing control-fucus approaches. Furthermore, we have applied TCOA to two bimolecular expert-curate networks. Source code for our TCOA is freely available from http://sysbio.sibcb.ac.cn/cb/chenlab/software.htm or https://github.com/WilfongGuo/guoweifeng . In the previous theoretical research for the full control, there exists an observation and conclusion that the driver nodes tend to be low-degree nodes. However, for target control the biological networks, we find interestingly that the driver nodes tend to be high-degree nodes, which is more consistent with the biological experimental observations. Furthermore, our results supply the novel insights into how we can efficiently target control a complex system, and especially many evidences on the practical strategic utility of TCOA to incorporate prior drug information into potential drug-target forecasts. Thus applicably, our method paves a novel and efficient way to identify the drug targets for leading the phenotype transitions of underlying biological networks.
Racial and ethnic disparities in antidepressant drug use.
Chen, Jie; Rizzo, John A
2008-12-01
Little is known about racial and ethnic disparities in health care utilization, expenditures and drug choice in the antidepressant market. This study investigates factors associated with the racial and ethnic disparities in antidepressant drug use. We seek to determine the extent to which disparities reflect differences in observable population characteristics versus heterogeneity across racial and ethnic groups. Among the population characteristics, we are interested in identifying which factors are most important in accounting for racial and ethnic disparities in antidepressant drug use. Using Medical Expenditure Panel Survey (MEPS) data from 1996-2003, we have an available sample of 10,416 Caucasian, 1,089 African American and 1,539 Hispanic antidepressant drug users aged 18 to 64 years. We estimate individual out-of-pocket payments, total prescription drug expenditures, drug utilization, the probability of taking generic versus brand name antidepressants, and the share of drugs that are older types of antidepressants (e.g., TCAs and MAOIs) for these individuals during a calendar year. Blinder-Oaxaca decomposition techniques are employed to determine the extent to which disparities reflect differences in observable population characteristics versus unobserved heterogeneity across racial and ethnic groups. Caucasians have the highest antidepressant drug expenditures and utilization. African-Americans have the lowest drug expenditures and Hispanics have the lowest drug utilization. Relative to Caucasians and Hispanics, African-Americans are more likely to purchase generics and use a higher share of older drugs (e.g., TCAs and MAOIs). Differences in observable characteristics explain most of the racial/ethnic differences in these outcomes, with the exception of drug utilization. Differences in health insurance and education levels are particularly important factors in explaining disparities. In contrast, differences in drug utilization largely reflect unobserved heterogeneity across these population groups. Substantive racial and ethnic disparities exist in all dimensions of antidepressant drug use examined. Observable population characteristics account for most of the differences in the expenditures, with health insurance and education key factors driving differences in spending. Observable characteristics are also important in explaining racial and ethnic disparities in the probability of purchasing generics and new vs old antidepressant drugs used. Differences in total utilization are not well-explained by observable characteristics, and may reflect unobserved heterogeneity such as unobserved physician-patient relationships, mistrust, and cultural factors. Reducing differences in observable characteristics such as health insurance and education will mitigate racial and ethnic disparities in expenditures on antidepressant drug use and in the types of antidepressant used (e.g., generics vs. brands; new vs old). But these factors will have less influence in reducing racial and ethnic disparities in overall antidepressant drug utilization. To limit differences in overall antidepressant drug use, policymakers must take into account cultural factors and other sources of heterogeneity.
Determinants of U.S. Prescription Drug Utilization using County Level Data.
Nianogo, Thierry; Okunade, Albert; Fofana, Demba; Chen, Weiwei
2016-05-01
Prescription drugs are the third largest component of U.S. healthcare expenditures. The 2006 Medicare Part D and the 2010 Affordable Care Act are catalysts for further growths in utilization becuase of insurance expansion effects. This research investigating the determinants of prescription drug utilization is timely, methodologically novel, and policy relevant. Differences in population health status, access to care, socioeconomics, demographics, and variations in per capita number of scripts filled at retail pharmacies across the U.S.A. justify fitting separate econometric models to county data of the states partitioned into low, medium, and high prescription drug users. Given the skewed distribution of per capita number of filled prescriptions (response variable), we fit the variance stabilizing Box-Cox power transformation regression models to 2011 county level data for investigating the correlates of prescription drug utilization separately for low, medium, and high utilization states. Maximum likelihood regression parameter estimates, including the optimal Box-Cox λ power transformations, differ across high (λ = 0.214), medium (λ = 0.942), and low (λ = 0.302) prescription drug utilization models. The estimated income elasticities of -0.634, 0.031, and -0.532 in high, medium, and low utilization models suggest that the economic behavior of prescriptions is not invariant across different utilization levels. Copyright © 2015 John Wiley & Sons, Ltd.
A Lagrangian stochastic model is proposed as a tool that can be utilized in forecasting remedial performance and estimating the benefits (in terms of flux and mass reduction) derived from a source zone remedial effort. The stochastic functional relationships that describe the hyd...
Revenue Forecasting to Integrate CCC Planning and Resource Allocation for Transformative Leadership
ERIC Educational Resources Information Center
Hovey, Ann
2012-01-01
In recent years the majority of California community colleges evaluated for re-accreditation received sanctions requiring documented improvement in the integration of college planning and budgeting processes. This study explores the challenges colleges face and the best practices utilized by successful colleges in implementing integrated…
When New Boundaries Abound: A Systematic Approach to Redistricting.
ERIC Educational Resources Information Center
Creighton, Roger L.; Irwin, Armond J.
1994-01-01
A systematic approach to school redistricting that was developed over the past half-dozen years utilizes a computer. Crucial to achieving successful results are accuracy of data, enrollment forecasting, and citizen participation. Outlines the major steps of a typical redistricting study. One figure illustrates the redistricting process. (MLF)
76 FR 30605 - Assessment and Collection of Regulatory Fees For Fiscal Year 2011
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-26
... the Wireless Telecommunications Bureau's Numbering Resource Utilization Forecast and Annual CMRS... compute their fee payment using the standard methodology \\32\\ that is currently in place for CMRS Wireless... Commission, Regulatory Fees Fact Sheet: What You Owe--Commercial Wireless Services for FY 2010 at 1 (released...
International Space Station External Contamination Environment for Space Science Utilization
NASA Technical Reports Server (NTRS)
Soares, Carlos E.; Mikatarian, Ronald R.; Steagall, Courtney A.; Huang, Alvin Y.; Koontz, Steven; Worthy, Erica
2014-01-01
The International Space Station (ISS) is the largest and most complex on-orbit platform for space science utilization in low Earth orbit. Multiple sites for external payloads, with exposure to the associated natural and induced environments, are available to support a variety of space science utilization objectives. Contamination is one of the induced environments that can impact performance, mission success and science utilization on the vehicle. The ISS has been designed, built and integrated with strict contamination requirements to provide low levels of induced contamination on external payload assets. This paper addresses the ISS induced contamination environment at attached payload sites, both at the requirements level as well as measurements made on returned hardware, and contamination forecasting maps being generated to support external payload topology studies and science utilization.
Houle, Timothy T; Turner, Dana P; Golding, Adrienne N; Porter, John A H; Martin, Vincent T; Penzien, Donald B; Tegeler, Charles H
2017-07-01
To develop and validate a prediction model that forecasts future migraine attacks for an individual headache sufferer. Many headache patients and physicians believe that precipitants of headache can be identified and avoided or managed to reduce the frequency of headache attacks. Of the numerous candidate triggers, perceived stress has received considerable attention for its association with the onset of headache in episodic and chronic headache sufferers. However, no evidence is available to support forecasting headache attacks within individuals using any of the candidate headache triggers. This longitudinal cohort with forecasting model development study enrolled 100 participants with episodic migraine with or without aura, and N = 95 contributed 4626 days of electronic diary data and were included in the analysis. Individual headache forecasts were derived from current headache state and current levels of stress using several aspects of the Daily Stress Inventory, a measure of daily hassles that is completed at the end of each day. The primary outcome measure was the presence/absence of any headache attack (head pain > 0 on a numerical rating scale of 0-10) over the next 24 h period. After removing missing data (n = 431 days), participants in the study experienced a headache attack on 1613/4195 (38.5%) days. A generalized linear mixed-effects forecast model using either the frequency of stressful events or the perceived intensity of these events fit the data well. This simple forecasting model possessed promising predictive utility with an AUC of 0.73 (95% CI 0.71-0.75) in the training sample and an AUC of 0.65 (95% CI 0.6-0.67) in a leave-one-out validation sample. This forecasting model had a Brier score of 0.202 and possessed good calibration between forecasted probabilities and observed frequencies but had only low levels of resolution (ie, sharpness). This study demonstrates that future headache attacks can be forecasted for a diverse group of individuals over time. Future work will enhance prediction through improvements in the assessment of stress as well as the development of other candidate domains to use in the models. © 2017 American Headache Society.
[Improvement and prediction of intestinal drug absorption].
Miyake, Masateru
2013-01-01
The suppository preparation, which can improve the absorption of poorly absorbable drugs safer than commercially available suppositories, was developed by utilizing sodium laurate and taurine. Additionally, the novel oral absorption-improving system was also established by utilizing polyamines and bile acids. Furthermore, to evaluate the efficacy of these new formulations and estimate the absorbability of new drug candidates in humans, the in vitro prediction system utilizing an isolated human intestinal tissues was developed and successfully predicted the fraction of dose absorbed for several model drugs. These findings would contribute to the development of new dosage forms and new drugs for oral administration.
Regional demand forecasting and simulation model: user's manual. Task 4, final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parhizgari, A M
1978-09-25
The Department of Energy's Regional Demand Forecasting Model (RDFOR) is an econometric and simulation system designed to estimate annual fuel-sector-region specific consumption of energy for the US. Its purposes are to (1) provide the demand side of the Project Independence Evaluation System (PIES), (2) enhance our empirical insights into the structure of US energy demand, and (3) assist policymakers in their decisions on and formulations of various energy policies and/or scenarios. This report provides a self-contained user's manual for interpreting, utilizing, and implementing RDFOR simulation software packages. Chapters I and II present the theoretical structure and the simulation of RDFOR,more » respectively. Chapter III describes several potential scenarios which are (or have been) utilized in the RDFOR simulations. Chapter IV presents an overview of the complete software package utilized in simulation. Chapter V provides the detailed explanation and documentation of this package. The last chapter describes step-by-step implementation of the simulation package using the two scenarios detailed in Chapter III. The RDFOR model contains 14 fuels: gasoline, electricity, natural gas, distillate and residual fuels, liquid gases, jet fuel, coal, oil, petroleum products, asphalt, petroleum coke, metallurgical coal, and total fuels, spread over residential, commercial, industrial, and transportation sectors.« less
Li, Peizhi; Wang, Yong; Dong, Qingli
2017-04-01
Cities in China suffer from severe smog and haze, and a forecasting system with high accuracy is of great importance to foresee the concentrations of the airborne particles. Compared with chemical transport models, the growing artificial intelligence models can simulate nonlinearities and interactive relationships and getting more accurate results. In this paper, the Kolmogorov-Zurbenko (KZ) filter is modified and firstly applied to construct the model using an artificial intelligence method. The concentration of inhalable particles and fine particulate matter in Dalian are used to analyze the filtered components and test the forecasting accuracy. Besides, an extended experiment is made by implementing a comprehensive comparison and a stability test using data in three other cities in China. Results testify the excellent performance of the developed hybrid models, which can be utilized to better understand the temporal features of pollutants and to perform a better air pollution control and management. Copyright © 2017 Elsevier B.V. All rights reserved.
A Feature Fusion Based Forecasting Model for Financial Time Series
Guo, Zhiqiang; Wang, Huaiqing; Liu, Quan; Yang, Jie
2014-01-01
Predicting the stock market has become an increasingly interesting research area for both researchers and investors, and many prediction models have been proposed. In these models, feature selection techniques are used to pre-process the raw data and remove noise. In this paper, a prediction model is constructed to forecast stock market behavior with the aid of independent component analysis, canonical correlation analysis, and a support vector machine. First, two types of features are extracted from the historical closing prices and 39 technical variables obtained by independent component analysis. Second, a canonical correlation analysis method is utilized to combine the two types of features and extract intrinsic features to improve the performance of the prediction model. Finally, a support vector machine is applied to forecast the next day's closing price. The proposed model is applied to the Shanghai stock market index and the Dow Jones index, and experimental results show that the proposed model performs better in the area of prediction than other two similar models. PMID:24971455
Tidal Triggering of Microearthquakes Over an Eruption Cycle at 9°50'N East Pacific Rise
NASA Astrophysics Data System (ADS)
Tan, Yen Joe; Tolstoy, Maya; Waldhauser, Felix; Bohnenstiehl, DelWayne R.
2018-02-01
Studies have found that earthquake timing often correlates with tides at mid-ocean ridges and some terrestrial settings. Studies have also suggested that tidal triggering may preferentially happen when a region is critically stressed, making it a potential tool to forecast earthquakes and volcanic eruptions. We examine tidal triggering of ˜100,000 microearthquakes near 9°50'N East Pacific Rise recorded between October 2003 and January 2007, which encompasses an eruption in January 2006. This allows us to look at how tidal triggering signal varies over an eruption cycle to examine its utility as a forecasting tool. We find that tidal triggering signal is strong but does not vary systematically in the 2+ years leading up to the eruption. However, tidal triggering signal disappears immediately posteruption. Our findings suggest that tidal triggering variation may not be useful for forecasting mid-ocean ridge eruptions over a 2+ year timescale but might be useful over a longer timescale.
NASA Technical Reports Server (NTRS)
1984-01-01
The Global Modeling and Simulation Branch (GMSB) of the Laboratory for Atmospheric Sciences (GLAS) is engaged in general circulation modeling studies related to global atmospheric and oceanographic research. The research activities discussed are organized into two disciplines: Global Weather/Observing Systems and Climate/Ocean-Air Interactions. The Global Weather activities are grouped in four areas: (1) Analysis and Forecast Studies, (2) Satellite Observing Systems, (3) Analysis and Model Development, (4) Atmospheric Dynamics and Diagnostic Studies. The GLAS Analysis/Forecast/Retrieval System was applied to both FGGE and post FGGE periods. The resulting analyses have already been used in a large number of theoretical studies of atmospheric dynamics, forecast impact studies and development of new or improved algorithms for the utilization of satellite data. Ocean studies have focused on the analysis of long-term global sea surface temperature data, for use in the study of the response of the atmosphere to sea surface temperature anomalies. Climate research has concentrated on the simulation of global cloudiness, and on the sensitivities of the climate to sea surface temperature and ground wetness anomalies.
FASTER - A tool for DSN forecasting and scheduling
NASA Technical Reports Server (NTRS)
Werntz, David; Loyola, Steven; Zendejas, Silvino
1993-01-01
FASTER (Forecasting And Scheduling Tool for Earth-based Resources) is a suite of tools designed for forecasting and scheduling JPL's Deep Space Network (DSN). The DSN is a set of antennas and other associated resources that must be scheduled for satellite communications, astronomy, maintenance, and testing. FASTER consists of MS-Windows based programs that replace two existing programs (RALPH and PC4CAST). FASTER was designed to be more flexible, maintainable, and user friendly. FASTER makes heavy use of commercial software to allow for customization by users. FASTER implements scheduling as a two pass process: the first pass calculates a predictive profile of resource utilization; the second pass uses this information to calculate a cost function used in a dynamic programming optimization step. This information allows the scheduler to 'look ahead' at activities that are not as yet scheduled. FASTER has succeeded in allowing wider access to data and tools, reducing the amount of effort expended and increasing the quality of analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, Kyri; Dall'Anese, Emiliano; Summers, Tyler
This paper outlines a data-driven, distributionally robust approach to solve chance-constrained AC optimal power flow problems in distribution networks. Uncertain forecasts for loads and power generated by photovoltaic (PV) systems are considered, with the goal of minimizing PV curtailment while meeting power flow and voltage regulation constraints. A data- driven approach is utilized to develop a distributionally robust conservative convex approximation of the chance-constraints; particularly, the mean and covariance matrix of the forecast errors are updated online, and leveraged to enforce voltage regulation with predetermined probability via Chebyshev-based bounds. By combining an accurate linear approximation of the AC power flowmore » equations with the distributionally robust chance constraint reformulation, the resulting optimization problem becomes convex and computationally tractable.« less
Prediction of laser cutting heat affected zone by extreme learning machine
NASA Astrophysics Data System (ADS)
Anicic, Obrad; Jović, Srđan; Skrijelj, Hivzo; Nedić, Bogdan
2017-01-01
Heat affected zone (HAZ) of the laser cutting process may be developed based on combination of different factors. In this investigation the HAZ forecasting, based on the different laser cutting parameters, was analyzed. The main goal was to predict the HAZ according to three inputs. The purpose of this research was to develop and apply the Extreme Learning Machine (ELM) to predict the HAZ. The ELM results were compared with genetic programming (GP) and artificial neural network (ANN). The reliability of the computational models were accessed based on simulation results and by using several statistical indicators. Based upon simulation results, it was demonstrated that ELM can be utilized effectively in applications of HAZ forecasting.
Evaluating the Impact of AIRS Observations on Regional Forecasts at the SPoRT Center
NASA Technical Reports Server (NTRS)
Zavodsky, Bradley
2011-01-01
NASA Short-term Prediction Research and Transition (SPoRT) Center collaborates with operational partners of different sizes and operational goals to improve forecasts using targeted projects and data sets. Modeling and DA activities focus on demonstrating utility of NASA data sets and capabilities within operational systems. SPoRT has successfully assimilated the Atmospheric Infrared Sounder (AIRS) radiance and profile data. A collaborative project is underway with the Joint Center for Satellite Data Assimilation (JCSDA) to use AIRS profiles to better understand the impact of AIRS radiances assimilated within Gridpoint Statistical Interpolation (GSI) in hopes of engaging the operational DA community in a reassessment of assimilation methodologies to more effectively assimilate hyperspectral radiances.
Leveraging LSTM for rapid intensifications prediction of tropical cyclones
NASA Astrophysics Data System (ADS)
Li, Y.; Yang, R.; Yang, C.; Yu, M.; Hu, F.; Jiang, Y.
2017-10-01
Tropical cyclones (TCs) usually cause severe damages and destructions. TC intensity forecasting helps people prepare for the extreme weather and could save lives and properties. Rapid Intensifications (RI) of TCs are the major error sources of TC intensity forecasting. A large number of factors, such as sea surface temperature and wind shear, affect the RI processes of TCs. Quite a lot of work have been done to identify the combination of conditions most favorable to RI. In this study, deep learning method is utilized to combine conditions for RI prediction of TCs. Experiments show that the long short-term memory (LSTM) network provides the ability to leverage past conditions to predict TC rapid intensifications.
Learning temporal rules to forecast instability in continuously monitored patients.
Guillame-Bert, Mathieu; Dubrawski, Artur; Wang, Donghan; Hravnak, Marilyn; Clermont, Gilles; Pinsky, Michael R
2017-01-01
Inductive machine learning, and in particular extraction of association rules from data, has been successfully used in multiple application domains, such as market basket analysis, disease prognosis, fraud detection, and protein sequencing. The appeal of rule extraction techniques stems from their ability to handle intricate problems yet produce models based on rules that can be comprehended by humans, and are therefore more transparent. Human comprehension is a factor that may improve adoption and use of data-driven decision support systems clinically via face validity. In this work, we explore whether we can reliably and informatively forecast cardiorespiratory instability (CRI) in step-down unit (SDU) patients utilizing data from continuous monitoring of physiologic vital sign (VS) measurements. We use a temporal association rule extraction technique in conjunction with a rule fusion protocol to learn how to forecast CRI in continuously monitored patients. We detail our approach and present and discuss encouraging empirical results obtained using continuous multivariate VS data from the bedside monitors of 297 SDU patients spanning 29 346 hours (3.35 patient-years) of observation. We present example rules that have been learned from data to illustrate potential benefits of comprehensibility of the extracted models, and we analyze the empirical utility of each VS as a potential leading indicator of an impending CRI event. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Tangborn, Wendell V.
1980-01-01
Snowmelt runoff is forecast with a statistical model that utilizes daily values of stream discharge, gaged precipitation, and maximum and minimum observations of air temperature. Synoptic observations of these variables are made at existing low- and medium-altitude weather stations, thus eliminating the difficulties and expense of new, high-altitude installations. Four model development steps are used to demonstrate the influence on prediction accuracy of basin storage, a preforecast test season, air temperature (to estimate ablation), and a prediction based on storage. Daily ablation is determined by a technique that employs both mean temperature and a radiative index. Radiation (both long- and short-wave components) is approximated by using the range in daily temperature, which is shown to be closely related to mean cloud cover. A technique based on the relationship between prediction error and prediction season weather utilizes short-term forecasts of precipitation and temperature to improve the final prediction. Verification of the model is accomplished by a split sampling technique for the 1960–1977 period. Short- term (5–15 days) predictions of runoff throughout the main snowmelt season are demonstrated for mountain drainages in western Washington, south-central Arizona, western Montana, and central California. The coefficient of prediction (Cp) based on actual, short-term predictions for 18 years is for Thunder Creek (Washington), 0.69; for South Fork Flathead River (Montana), 0.45; for the Black River (Arizona), 0.80; and for the Kings River (California), 0.80.
Resource utilization with insulin pump therapy for type 2 diabetes mellitus.
Lynch, Peter M; Riedel, Aylin Altan; Samant, Navendu; Fan, Ying; Peoples, Tim; Levinson, Jennifer; Lee, Scott W
2010-01-01
To evaluate the effects of switching from multiple daily injection (MDI) therapy to insulin pump therapy, also called continuous subcutaneous insulin infusion (CSII), on antidiabetic drug and healthcare resource utilization. This study was a retrospective analysis of administrative claims data from a large geographically diverse health plan in the United States from January 1, 2005, through April 30, 2008. Changes in antidiabetic drug use, antidiabetic drug switching and augmentation, and healthcare utilization during the baseline period and after CSII initiation were assessed using paired t test. There were 3649 possible subjects, of whom 943 met the criteria for analysis. The mean number of antidiabetic drugs used decreased by 46% after CSII initiation, and the mean reduction in antidiabetic drug utilization was 0.67; both were statistically significant. More than one-third of subjects who were taking antidiabetic drugs before CSII initiation discontinued oral therapy after CSII initiation. The number of subjects using multiple antidiabetic drugs significantly decreased after CSII initiation by 58%, and rates of switching or augmenting significantly decreased from 42% at baseline to 25% after CSII initiation.The rates of emergency department visits and inpatient admissions significantly decreased, and the rate of ambulatory visits significantly increased. CSII was associated with significant decreases in antidiabetic drug and healthcare resource utilization, contributing to stability of care. The evidence from this study indicates that CSII should be considered as an option for patients with type 2 diabetes mellitus who are using MDI and are experiencing a high degree of antidiabetic drug and healthcare resource utilization.
Roebuck, M Christopher; Liberman, Joshua N
2009-06-01
To study the impact of various elements of pharmacy benefit design on both the absolute and relative utilization of generics, brands, retail pharmacy, and mail service. Panel data on 1,074 plan sponsors covering 21.6 million individuals over 12 calendar quarters (2005-2007). A retrospective analysis of pharmacy claims. To control for potential endogeneity, linear fixed effects models were estimated for each of six dependent variables: the generic utilization rate, the brand utilization rate, the generic dispensing rate (GDR), the retail pharmacy utilization rate, the mail service utilization rate, and the mail distribution rate. Most member cost-share variables were nonlinearly associated with changes in prescription drug utilization. Marginal effects were generally greater in magnitude for brand out-of-pocket costs than for generic out-of-pocket costs. Time dummies, as well as other pharmacy benefit design elements, also yielded significant results. Prior estimates of the effect of member cost sharing on prescription drug utilization may be biased if complex benefit designs, mail service fulfillment, and unmeasured factors such as pharmaceutical pipelines are not accounted for. Commonly cited relative utilization metrics, such as GDR, may be misleading if not examined alongside absolute prescription drug utilization.
A Prescription for Drug Formulary Evaluation: An Application of Price Indexes
Glazer, Jacob; Huskamp, Haiden A.; McGuire, Thomas G.
2012-01-01
Existing economic approaches to the design and evaluation of health insurance do not readily apply to coverage decisions in the multi-tiered drug formularies characterizing drug coverage in private health insurance and Medicare. This paper proposes a method for evaluating a change in the value of a formulary to covered members based on the economic theory of price indexes. A formulary is cast as a set of demand-side prices, and our measure approximates the compensation (positive or negative) that would need to be paid to consumers to accept the new set of prices. The measure also incorporates any effect of the formulary change on plan drug acquisition costs and “offset effects” on non-drug services covered by the plan. Data needed to calculate formulary value are known or can be forecast by a health plan. We illustrate the method with data from a move from a two- to a three-tier formulary. PMID:23372543
Naci, Huseyin; Ioannidis, John P A
2015-01-01
Promising evidence from clinical studies of drug effects does not always translate to improvements in patient outcomes. In this review, we discuss why early evidence is often ill suited to the task of predicting the clinical utility of drugs. The current gap between initially described drug effects and their subsequent clinical utility results from deficits in the design, conduct, analysis, reporting, and synthesis of clinical studies-often creating conditions that generate favorable, but ultimately incorrect, conclusions regarding drug effects. There are potential solutions that could improve the relevance of clinical evidence in predicting the real-world effectiveness of drugs. What is needed is a new emphasis on clinical utility, with nonconflicted entities playing a greater role in the generation, synthesis, and interpretation of clinical evidence. Clinical studies should adopt strong design features, reflect clinical practice, and evaluate outcomes and comparisons that are meaningful to patients. Transformative changes to the research agenda may generate more meaningful and accurate evidence on drug effects to guide clinical decision making.
Operational Earthquake Forecasting: Proposed Guidelines for Implementation (Invited)
NASA Astrophysics Data System (ADS)
Jordan, T. H.
2010-12-01
The goal of operational earthquake forecasting (OEF) is to provide the public with authoritative information about how seismic hazards are changing with time. During periods of high seismic activity, short-term earthquake forecasts based on empirical statistical models can attain nominal probability gains in excess of 100 relative to the long-term forecasts used in probabilistic seismic hazard analysis (PSHA). Prospective experiments are underway by the Collaboratory for the Study of Earthquake Predictability (CSEP) to evaluate the reliability and skill of these seismicity-based forecasts in a variety of tectonic environments. How such information should be used for civil protection is by no means clear, because even with hundredfold increases, the probabilities of large earthquakes typically remain small, rarely exceeding a few percent over forecasting intervals of days or weeks. Civil protection agencies have been understandably cautious in implementing formal procedures for OEF in this sort of “low-probability environment.” Nevertheless, the need to move more quickly towards OEF has been underscored by recent experiences, such as the 2009 L’Aquila earthquake sequence and other seismic crises in which an anxious public has been confused by informal, inconsistent earthquake forecasts. Whether scientists like it or not, rising public expectations for real-time information, accelerated by the use of social media, will require civil protection agencies to develop sources of authoritative information about the short-term earthquake probabilities. In this presentation, I will discuss guidelines for the implementation of OEF informed by my experience on the California Earthquake Prediction Evaluation Council, convened by CalEMA, and the International Commission on Earthquake Forecasting, convened by the Italian government following the L’Aquila disaster. (a) Public sources of information on short-term probabilities should be authoritative, scientific, open, and timely, and they need to convey the epistemic uncertainties in the operational forecasts. (b) Earthquake probabilities should be based on operationally qualified, regularly updated forecasting systems. All operational procedures should be rigorously reviewed by experts in the creation, delivery, and utility of earthquake forecasts. (c) The quality of all operational models should be evaluated for reliability and skill by retrospective testing, and the models should be under continuous prospective testing in a CSEP-type environment against established long-term forecasts and a wide variety of alternative, time-dependent models. (d) Short-term models used in operational forecasting should be consistent with the long-term forecasts used in PSHA. (e) Alert procedures should be standardized to facilitate decisions at different levels of government and among the public, based in part on objective analysis of costs and benefits. (f) In establishing alert procedures, consideration should also be made of the less tangible aspects of value-of-information, such as gains in psychological preparedness and resilience. Authoritative statements of increased risk, even when the absolute probability is low, can provide a psychological benefit to the public by filling information vacuums that can lead to informal predictions and misinformation.
Bayesian Processor of Output for Probabilistic Quantitative Precipitation Forecasting
NASA Astrophysics Data System (ADS)
Krzysztofowicz, R.; Maranzano, C. J.
2006-05-01
The Bayesian Processor of Output (BPO) is a new, theoretically-based technique for probabilistic forecasting of weather variates. It processes output from a numerical weather prediction (NWP) model and optimally fuses it with climatic data in order to quantify uncertainty about a predictand. The BPO is being tested by producing Probabilistic Quantitative Precipitation Forecasts (PQPFs) for a set of climatically diverse stations in the contiguous U.S. For each station, the PQPFs are produced for the same 6-h, 12-h, and 24-h periods up to 84- h ahead for which operational forecasts are produced by the AVN-MOS (Model Output Statistics technique applied to output fields from the Global Spectral Model run under the code name AVN). The inputs into the BPO are estimated as follows. The prior distribution is estimated from a (relatively long) climatic sample of the predictand; this sample is retrieved from the archives of the National Climatic Data Center. The family of the likelihood functions is estimated from a (relatively short) joint sample of the predictor vector and the predictand; this sample is retrieved from the same archive that the Meteorological Development Laboratory of the National Weather Service utilized to develop the AVN-MOS system. This talk gives a tutorial introduction to the principles and procedures behind the BPO, and highlights some results from the testing: a numerical example of the estimation of the BPO, and a comparative verification of the BPO forecasts and the MOS forecasts. It concludes with a list of demonstrated attributes of the BPO (vis- à-vis the MOS): more parsimonious definitions of predictors, more efficient extraction of predictive information, better representation of the distribution function of predictand, and equal or better performance (in terms of calibration and informativeness).
Forecasting the (un)productivity of the 2014 M 6.0 South Napa aftershock sequence
Llenos, Andrea L.; Michael, Andrew J.
2017-01-01
The 24 August 2014 Mw 6.0 South Napa mainshock produced fewer aftershocks than expected for a California earthquake of its magnitude. In the first 4.5 days, only 59 M≥1.8 aftershocks occurred, the largest of which was an M 3.9 that happened a little over two days after the mainshock. We investigate the aftershock productivity of the South Napa sequence and compare it with other M≥5.5 California strike‐slip mainshock–aftershock sequences. While the productivity of the South Napa sequence is among the lowest, northern California mainshocks generally have fewer aftershocks than mainshocks further south, although the productivities vary widely in both regions. An epidemic‐type aftershock sequence (ETAS) model (Ogata, 1988) fit to Napa seismicity from 1980 to 23 August 2014 fits the sequence well and suggests that low‐productivity sequences are typical of this area. Utilizing regional variations in productivity could improve operational earthquake forecasting (OEF) by improving the model used immediately after the mainshock. We show this by comparing the daily rate of M≥2 aftershocks to forecasts made with the generic California model (Reasenberg and Jones, 1989; hereafter, RJ89), RJ89 models with productivity updated daily, a generic California ETAS model, an ETAS model based on premainshock seismicity, and ETAS models updated daily following the mainshock. RJ89 models for which only the productivity is updated provide better forecasts than the generic RJ89 California model, and the Napa‐specific ETAS models forecast the aftershock rates more accurately than either generic model. Therefore, forecasts that use localized initial parameters and that rapidly update the productivity may be better for OEF than using a generic model and/or updating all parameters.
Pelletier, Jon D.; Murray, A. Brad; Pierce, Jennifer L.; ...
2015-07-14
In the future, Earth will be warmer, precipitation events will be more extreme, global mean sea level will rise, and many arid and semiarid regions will be drier. Human modifications of landscapes will also occur at an accelerated rate as developed areas increase in size and population density. We now have gridded global forecasts, being continually improved, of the climatic and land use changes (C&LUC) that are likely to occur in the coming decades. However, besides a few exceptions, consensus forecasts do not exist for how these C&LUC will likely impact Earth-surface processes and hazards. In some cases, we havemore » the tools to forecast the geomorphic responses to likely future C&LUC. Fully exploiting these models and utilizing these tools will require close collaboration among Earth-surface scientists and Earth-system modelers. This paper assesses the state-of-the-art tools and data that are being used or could be used to forecast changes in the state of Earth's surface as a result of likely future C&LUC. We also propose strategies for filling key knowledge gaps, emphasizing where additional basic research and/or collaboration across disciplines are necessary. The main body of the paper addresses cross-cutting issues, including the importance of nonlinear/threshold-dominated interactions among topography, vegetation, and sediment transport, as well as the importance of alternate stable states and extreme, rare events for understanding and forecasting Earth-surface response to C&LUC. Five supplements delve into different scales or process zones (global-scale assessments and fluvial, aeolian, glacial/periglacial, and coastal process zones) in detail.« less
Flight Deck Weather Avoidance Decision Support: Implementation and Evaluation
NASA Technical Reports Server (NTRS)
Wu, Shu-Chieh; Luna, Rocio; Johnson, Walter W.
2013-01-01
Weather related disruptions account for seventy percent of the delays in the National Airspace System (NAS). A key component in the weather plan of the Next Generation of Air Transportation System (NextGen) is to assimilate observed weather information and probabilistic forecasts into the decision process of flight crews and air traffic controllers. In this research we explore supporting flight crew weather decision making through the development of a flight deck predicted weather display system that utilizes weather predictions generated by ground-based radar. This system integrates and presents this weather information, together with in-flight trajectory modification tools, within a cockpit display of traffic information (CDTI) prototype. that the CDTI features 2D and perspective 3D visualization models of weather. The weather forecast products that we implemented were the Corridor Integrated Weather System (CIWS) and the Convective Weather Avoidance Model (CWAM), both developed by MIT Lincoln Lab. We evaluated the use of CIWS and CWAM for flight deck weather avoidance in two part-task experiments. Experiment 1 compared pilots' en route weather avoidance performance in four weather information conditions that differed in the type and amount of predicted forecast (CIWS current weather only, CIWS current and historical weather, CIWS current and forecast weather, CIWS current and forecast weather and CWAM predictions). Experiment 2 compared the use of perspective 3D and 21/2D presentations of weather for flight deck weather avoidance. Results showed that pilots could take advantage of longer range predicted weather forecasts in performing en route weather avoidance but more research will be needed to determine what combinations of information are optimal and how best to present them.
NASA Astrophysics Data System (ADS)
Huang, Y.; Jiang, J.; Stacy, M.; Ricciuto, D. M.; Hanson, P. J.; Sundi, N.; Luo, Y.
2016-12-01
Ecological forecasting is critical in various aspects of our coupled human-nature systems, such as disaster risk reduction, natural resource management and climate change mitigation. Novel advancements are in urgent need to deepen our understandings of ecosystem dynamics, boost the predictive capacity of ecology, and provide timely and effective information for decision-makers in a rapidly changing world. Our Ecological Platform for Assimilation of Data (EcoPAD) facilitates the integration of current best knowledge from models, manipulative experimentations, observations and other modern techniques and provides both near real-time and long-term forecasting of ecosystem dynamics. As a case study, the web-based EcoPAD platform synchronizes real- or near real-time field measurements from the Spruce and Peatland Responses Under Climatic and Environmental Change Experiment (SPRUCE), a whole ecosystem warming and CO2 enrichment treatment experiment, assimilates multiple data streams into process based models, enhances timely feedback between modelers and experimenters, and ultimately improves ecosystem forecasting and makes best utilization of current knowledge. In addition to enable users to (i) estimate model parameters or state variables, (ii) quantify uncertainty of estimated parameters and projected states of ecosystems, (iii) evaluate model structures, (iv) assess sampling strategies, and (v) conduct ecological forecasting, EcoPAD-SPRUCE automated the workflow from real-time data acquisition, model simulation to result visualization. EcoPAD-SPRUCE promotes seamless feedback between modelers and experimenters, hand in hand to make better forecasting of future changes. The framework of EcoPAD-SPRUCE (with flexible API, Application Programming Interface) is easily portable and will benefit scientific communities, policy makers as well as the general public.