Forecasting human exposure to atmospheric pollutants in Portugal - A modelling approach
NASA Astrophysics Data System (ADS)
Borrego, C.; Sá, E.; Monteiro, A.; Ferreira, J.; Miranda, A. I.
2009-12-01
Air pollution has become one main environmental concern because of its known impact on human health. Aiming to inform the population about the air they are breathing, several air quality modelling systems have been developed and tested allowing the assessment and forecast of air pollution ambient levels in many countries. However, every day, an individual is exposed to different concentrations of atmospheric pollutants as he/she moves from and to different outdoor and indoor places (the so-called microenvironments). Therefore, a more efficient way to prevent the population from the health risks caused by air pollution should be based on exposure rather than air concentrations estimations. The objective of the present study is to develop a methodology to forecast the human exposure of the Portuguese population based on the air quality forecasting system available and validated for Portugal since 2005. Besides that, a long-term evaluation of human exposure estimates aims to be obtained using one-year of this forecasting system application. Additionally, a hypothetical 50% emission reduction scenario has been designed and studied as a contribution to study emission reduction strategies impact on human exposure. To estimate the population exposure the forecasting results of the air quality modelling system MM5-CHIMERE have been combined with the population spatial distribution over Portugal and their time-activity patterns, i.e. the fraction of the day time spent in specific indoor and outdoor places. The population characterization concerning age, work, type of occupation and related time spent was obtained from national census and available enquiries performed by the National Institute of Statistics. A daily exposure estimation module has been developed gathering all these data and considering empirical indoor/outdoor relations from literature to calculate the indoor concentrations in each one of the microenvironments considered, namely home, office/school, and other indoors (leisure activities like shopping areas, gym, theatre/cinema and restaurants). The results show how this developed modelling system can be useful to anticipate air pollution episodes and to estimate their effects on human health on a long-term basis. The two metropolitan areas of Porto and Lisbon are identified as the most critical ones in terms of air pollution effects on human health over Portugal in a long-term as well as in a short-term perspective. The coexistence of high concentration values and high population density is the key factor for these stressed areas. Regarding the 50% emission reduction scenario, the model results are significantly different for both pollutants: there is a small overall reduction in the individual exposure values of PM 10 (<10 μg m -3 h), but for O 3, in contrast, there is an extended area where exposure values increase with emission reduction. This detailed knowledge is a prerequisite for the development of effective policies to reduce the foreseen adverse impact of air pollution on human health and to act on time.
Aquatic Sentinels Forecasting Human Exposure To Emerging Contaminants
Most of us have heard the axiom, “canary in the coal mine”. These melodious exposure indicators - a necessity in U.K. mines well into the 20th century - were especially sensitive to methane and carbon monoxide gases, and would cease singing (and oftentimes die) at le...
Developing air quality forecasts
NASA Astrophysics Data System (ADS)
Lee, Pius; Saylor, Rick; Meagher, James
2012-05-01
Third International Workshop on Air Quality Forecasting Research; Potomac, Maryland, 29 November to 1 December 2011 Elevated concentrations of both near-surface ozone (O3) and fine particulate matter smaller than 2.5 micrometers in diameter have been implicated in increased mortality and other human health impacts. In light of these known influences on human health, many governments around the world have instituted air quality forecasting systems to provide their citizens with advance warning of impending poor air quality so that they can take actions to limit exposure. In an effort to improve the performance of air quality forecasting systems and provide a forum for the exchange of the latest research in air quality modeling, the International Workshop on Air Quality Forecasting Research (IWAQFR) was established in 2009 and is cosponsored by the U.S. National Oceanic and Atmospheric Administration (NOAA), Environment Canada (EC), and the World Meteorological Organization (WMO). The steering committee for IWAQFR's establishment was composed of Véronique Bouchet, Mike Howe, and Craig Stoud (EC); Greg Carmichael (University of Iowa); Paula Davidson and Jim Meagher (NOAA); and Liisa Jalkanen (WMO). The most recent workshop took place in Maryland.
High throughput heuristics for prioritizing human exposure to environmental chemicals.
Wambaugh, John F; Wang, Anran; Dionisio, Kathie L; Frame, Alicia; Egeghy, Peter; Judson, Richard; Setzer, R Woodrow
2014-11-04
The risk posed to human health by any of the thousands of untested anthropogenic chemicals in our environment is a function of both the hazard presented by the chemical and the extent of exposure. However, many chemicals lack estimates of exposure intake, limiting the understanding of health risks. We aim to develop a rapid heuristic method to determine potential human exposure to chemicals for application to the thousands of chemicals with little or no exposure data. We used Bayesian methodology to infer ranges of exposure consistent with biomarkers identified in urine samples from the U.S. population by the National Health and Nutrition Examination Survey (NHANES). We performed linear regression on inferred exposure for demographic subsets of NHANES demarked by age, gender, and weight using chemical descriptors and use information from multiple databases and structure-based calculators. Five descriptors are capable of explaining roughly 50% of the variability in geometric means across 106 NHANES chemicals for all the demographic groups, including children aged 6-11. We use these descriptors to estimate human exposure to 7968 chemicals, the majority of which have no other quantitative exposure prediction. For thousands of chemicals with no other information, this approach allows forecasting of average exposure intake of environmental chemicals.
A Decision Support Framework for Evaluation of Engineered ...
Engineered nanomaterials (ENM) are currently being developed and applied at rates that far exceed our ability to evaluate their potential for environmental or human health risks. The gap between material development and capacity for assessment grows wider every day. Transformative approaches are required that enhance our ability to forecast potential exposure and adverse health risks based on limited information such as the physical and chemical parameters of ENM, their proposed uses, and functional assays reflective of key ENM - environmental interactions. We are developing a framework that encompasses the potential for release of nanomaterials across a product life cycle, environmental transport, transformations and fate, exposure to sensitive species, including humans, and the potential for causing adverse effects. Each component of the framework is conceive of as a sequential segmented model depicting the movement, transformations and actions of ENM through environmental or biological compartments, and along which targeted functional assays can be developed that are indicative of projected rates of ENM movement or action. The eventual goal is to allow simple predictive models to be built that incorporate the data from key functional assays and thereby allow rapid screening of the projected margin of exposure for proposed applications of ENM enabled products. In this way, cases where a substantially safe margin of exposure is forecast can be reduced in
A VISION FOR A BEACH FORECASTING TOOL
The societal value of safe access to swimmable water is intuitive and in many countries it is a legal right. Threats to water quality reduce these recreational opportunities. The risk comes from exposure to waterborne pathogens from a myriad of sources, both human and animal. ...
NASA Astrophysics Data System (ADS)
Fischer, E. V.; Ford, B.; Lassman, W.; Pierce, J. R.; Pfister, G.; Volckens, J.; Magzamen, S.; Gan, R.
2015-12-01
Exposure to high concentrations of particulate matter (PM) present during acute pollution events is associated with adverse health effects. While many anthropogenic pollution sources are regulated in the United States, emissions from wildfires are difficult to characterize and control. With wildfire frequency and intensity in the western U.S. projected to increase, it is important to more precisely determine the effect that wildfire emissions have on human health, and whether improved forecasts of these air pollution events can mitigate the health risks associated with wildfires. One of the challenges associated with determining health risks associated with wildfire emissions is that the low spatial resolution of surface monitors means that surface measurements may not be representative of a population's exposure, due to steep concentration gradients. To obtain better estimates of ambient exposure levels for health studies, a chemical transport model (CTM) can be used to simulate the evolution of a wildfire plume as it travels over populated regions downwind. Improving the performance of a CTM would allow the development of a new forecasting framework that could better help decision makers estimate and potentially mitigate future health impacts. We use the Weather Research and Forecasting model with online chemistry (WRF-Chem) to simulate wildfire plume evolution. By varying the model resolution, meteorology reanalysis initial conditions, and biomass burning inventories, we are able to explore the sensitivity of model simulations to these various parameters. Satellite observations are used first to evaluate model skill, and then to constrain the model results. These data are then used to estimate population-level exposure, with the aim of better characterizing the effects that wildfire emissions have on human health.
Radiation -- A Cosmic Hazard to Human Habitation in Space
NASA Technical Reports Server (NTRS)
Lewis, Ruthan; Pellish, Jonathan
2017-01-01
Radiation exposure is one of the greatest environmental threats to the performance and success of human and robotic space missions. Radiation permeates all space and aeronautical systems, challenges optimal and reliable performance, and tests survival and survivability. We will discuss the broad scope of research, technological, and operational considerations to forecast and mitigate the effects of the radiation environment for deep space and planetary exploration.
New Data from EPA's Exposure Forecasting (ExpoCast) Project (ISES meeting)
The health risks posed by the chemicals in our environment depends on both chemical hazard and exposure. However, relatively few chemicals have estimates of exposure intake, limiting risk estimations for thousands of chemicals. The U.S. EPA Exposure Forecasting (ExpoCast) projec...
Evaluating Rapid Models for High-Throughput Exposure Forecasting (SOT)
High throughput exposure screening models can provide quantitative predictions for thousands of chemicals; however these predictions must be systematically evaluated for predictive ability. Without the capability to make quantitative, albeit uncertain, forecasts of exposure, the ...
High Throughput Heuristics for Prioritizing Human Exposure to ...
The risk posed to human health by any of the thousands of untested anthropogenic chemicals in our environment is a function of both the potential hazard presented by the chemical, and the possibility of being exposed. Without the capacity to make quantitative, albeit uncertain, forecasts of exposure, the putative risk of adverse health effect from a chemical cannot be evaluated. We used Bayesian methodology to infer ranges of exposure intakes that are consistent with biomarkers of chemical exposures identified in urine samples from the U.S. population by the National Health and Nutrition Examination Survey (NHANES). We perform linear regression on inferred exposure for demographic subsets of NHANES demarked by age, gender, and weight using high throughput chemical descriptors gleaned from databases and chemical structure-based calculators. We find that five of these descriptors are capable of explaining roughly 50% of the variability across chemicals for all the demographic groups examined, including children aged 6-11. For the thousands of chemicals with no other source of information, this approach allows rapid and efficient prediction of average exposure intake of environmental chemicals. The methods described by this manuscript provide a highly improved methodology for HTS of human exposure to environmental chemicals. The manuscript includes a ranking of 7785 environmental chemicals with respect to potential human exposure, including most of the Tox21 in vit
A changing climate: impacts on human exposures to O3 using ...
Predicting the impacts of changing climate on human exposure to air pollution requires future scenarios that account for changes in ambient pollutant concentrations, population sizes and distributions, and housing stocks. An integrated methodology to model changes in human exposures due to these impacts was developed by linking climate, air quality, land-use, and human exposure models. This methodology was then applied to characterize changes in predicted human exposures to O3 under multiple future scenarios. Regional climate projections for the U.S. were developed by downscaling global circulation model (GCM) scenarios for three of the Intergovernmental Panel on Climate Change’s (IPCC’s) Representative Concentration Pathways (RCPs) using the Weather Research and Forecasting (WRF) model. The regional climate results were in turn used to generate air quality (concentration) projections using the Community Multiscale Air Quality (CMAQ) model. For each of the climate change scenarios, future U.S. census-tract level population distributions from the Integrated Climate and Land Use Scenarios (ICLUS) model for four future scenarios based on the IPCC’s Special Report on Emissions Scenarios (SRES) storylines were used. These climate, air quality, and population projections were used as inputs to EPA’s Air Pollutants Exposure (APEX) model for 12 U.S. cities. Probability density functions show changes in the population distribution of 8 h maximum daily O3 exposur
Algorithm aversion: people erroneously avoid algorithms after seeing them err.
Dietvorst, Berkeley J; Simmons, Joseph P; Massey, Cade
2015-02-01
Research shows that evidence-based algorithms more accurately predict the future than do human forecasters. Yet when forecasters are deciding whether to use a human forecaster or a statistical algorithm, they often choose the human forecaster. This phenomenon, which we call algorithm aversion, is costly, and it is important to understand its causes. We show that people are especially averse to algorithmic forecasters after seeing them perform, even when they see them outperform a human forecaster. This is because people more quickly lose confidence in algorithmic than human forecasters after seeing them make the same mistake. In 5 studies, participants either saw an algorithm make forecasts, a human make forecasts, both, or neither. They then decided whether to tie their incentives to the future predictions of the algorithm or the human. Participants who saw the algorithm perform were less confident in it, and less likely to choose it over an inferior human forecaster. This was true even among those who saw the algorithm outperform the human.
The term "contaminant of emerging concern" is being used within the Office of Water to replace "emerging contaminant", a term that has been used loosely since the mid-1990s by EPA and others to identify chemicals and other substances that have no regulatory standard, have been re...
"Going the Extra Mile in Downscaling: Why Downscaling is not ...
This presentation provides an example of doing additional work for preprocessing global climate model data for use in regional climate modeling simulations with the Weather Research and Forecasting (WRF) model. In this presentation, results from 15 months of downscaling the Community Earth System Model (CESM) were shown, both using the out-of-the-box downscaling of CESM and also with a modification to setting the inland lake temperatures. The National Exposure Research Laboratory (NERL) Atmospheric Modeling and Analysis Division (AMAD) conducts research in support of EPA mission to protect human health and the environment. AMAD research program is engaged in developing and evaluating predictive atmospheric models on all spatial and temporal scales for forecasting the air quality and for assessing changes in air quality and air pollutant exposures, as affected by changes in ecosystem management and regulatory decisions. AMAD is responsible for providing a sound scientific and technical basis for regulatory policies based on air quality models to improve ambient air quality. The models developed by AMAD are being used by EPA, NOAA, and the air pollution community in understanding and forecasting not only the magnitude of the air pollution problem, but also in developing emission control policies and regulations for air quality improvements.
Completing the Link between Exposure Science and ...
Driven by major scientific advances in analytical methods, biomonitoring, computation, and a newly articulated vision for a greater impact in public health, the field of exposure science is undergoing a rapid transition from a field of observation to a field of prediction. Deployment of an organizational and predictive framework for exposure science analogous to the “systems approaches” used in the biological sciences is a necessary step in this evolution. Here we propose the aggregate exposure pathway (AEP) concept as the natural and complementary companion in the exposure sciences to the adverse outcome pathway (AOP) concept in the toxicological sciences. Aggregate exposure pathways offer an intuitive framework to organize exposure data within individual units of prediction common to the field, setting the stage for exposure forecasting. Looking farther ahead, we envision direct linkages between aggregate exposure pathways and adverse outcome pathways, completing the source to outcome continuum for more meaningful integration of exposure assessment and hazard identification. Together, the two frameworks form and inform a decision-making framework with the flexibility for risk-based, hazard-based, or exposure-based decision making. The National Exposure Research Laboratory (NERL) Human Exposure and Atmospheric Sciences Division (HEASD) conducts research in support of EPA mission to protect human health and the environment. HEASD research program supports G
This study presents the first evaluation of the performance of the Eta-CMAQ air quality forecast model to predict a variety of widely used seasonal mean and cumulative O3 exposure indices associated with vegetation using the U.S. AIRNow O3 observations.
Individual pollen exposure measurements: are they feasible?
Berger, Uwe; Kmenta, Maximilian; Bastl, Katharina
2014-06-01
The purpose of the recent review is to give insight into recent attempts to measure individual pollen exposure and to give advice for interpreting such data. It is well recognized that there are various challenges in monitoring the atmospheric content of pollen in the air. Although pollen data gathered by Hirst type spore traps and evaluated by human expertise are of inestimable value because of long-time data series and as the basic foundation for pollen information services as well as for diagnosis and therapy of pollen allergies, there is a need for more precise information for individual pollen allergy sufferers. Different types of individual pollen exposure measurement samplers are presented, and estimates are offered. Further developments, especially standardization of personal pollen samplers, are needed. Improvements should lead to more usability. Because of a variety of factors, a pollen count will always stay a pollen count, and a pollen forecast is not a symptom forecast, something pollen allergy sufferers actually desire. Thus, a different promising path to individualized pollen information was recently chosen: personal pollen information is now possible based on personal symptom data and regional pollen data. In future, personal pollen data could complete this achievement.
Characterization of marine debris in North Carolina salt marshes.
Viehman, Shay; Vander Pluym, Jenny L; Schellinger, Jennifer
2011-12-01
Marine debris composition, density, abundance, and accumulation were evaluated in salt marshes in Carteret County, North Carolina seasonally between 2007 and 2009. We assessed relationships between human use patterns and debris type. Wave effects on marine debris density were examined using a GIS-based forecasting tool. We assessed the influence of site wave exposure, period, and height on debris quantity. Presence and abundance of debris were related to wave exposure, vegetation type and proximity of the strata to human population and human use patterns. Plastic pieces accounted for the majority of all debris. Small debris (0-5 cm) was primarily composed of foam pieces and was frequently affiliated with natural wrack. Large debris (>100 cm) was encountered in all marsh habitat types surveyed and was primarily composed of anthropogenic wood and derelict fishing gear. Marsh cleanup efforts should be targeted to specific habitat types or debris types to minimize further damage to sensitive habitats. Published by Elsevier Ltd.
Money, Eric S; Barton, Lauren E; Dawson, Joseph; Reckhow, Kenneth H; Wiesner, Mark R
2014-03-01
The adaptive nature of the Forecasting the Impacts of Nanomaterials in the Environment (FINE) Bayesian network is explored. We create an updated FINE model (FINEAgNP-2) for predicting aquatic exposure concentrations of silver nanoparticles (AgNP) by combining the expert-based parameters from the baseline model established in previous work with literature data related to particle behavior, exposure, and nano-ecotoxicology via parameter learning. We validate the AgNP forecast from the updated model using mesocosm-scale field data and determine the sensitivity of several key variables to changes in environmental conditions, particle characteristics, and particle fate. Results show that the prediction accuracy of the FINEAgNP-2 model increased approximately 70% over the baseline model, with an error rate of only 20%, suggesting that FINE is a reliable tool to predict aquatic concentrations of nano-silver. Sensitivity analysis suggests that fractal dimension, particle diameter, conductivity, time, and particle fate have the most influence on aquatic exposure given the current knowledge; however, numerous knowledge gaps can be identified to suggest further research efforts that will reduce the uncertainty in subsequent exposure and risk forecasts. Copyright © 2013 Elsevier B.V. All rights reserved.
Intervening to reduce the future burden of occupational cancer in britain: what could work?
Hutchings, Sally; Cherrie, John W; Van Tongeren, Martie; Rushton, Lesley
2012-10-01
In Britain, 14 carcinogenic agents and occupational circumstances currently account for 86% of estimated occupation attributable cancer. The future burden associated with these carcinogens has been forecast, using attributable fractions for forecast scenarios representing patterns of past and predicted future exposure, and exposure levels representing the introduction of new occupational exposure limits, increased levels of compliance with these limits and other reductions in worker exposure. Without intervention, occupational attributable cancers are forecast to remain at more than 10,000 by 2060. With modest intervention over 2,600, or with stricter interventions more than 8,200 cancers could be avoided by 2060 although because of long latency no impact will be seen until at least 10 years after intervention. Effective interventions assessed in this study include reducing workplace exposure limits and improving compliance with these limits. Cancers associated with asbestos, diesel engine exhaust, polycyclic aromatic hydrocarbons, work as a painter, radon, and solar radiation are forecast to continue, with construction remaining the prime industry of concern. Although exposure levels to the established carcinogens are falling, workers are remaining exposed at low levels at which there is still a cancer risk, although the aging population also contributes to rising cancer numbers, These forecasts can be used to assess the relative costs to society of different occupational carcinogenic agents, and the relative merits and savings associated with alternative intervention strategies. The methods are adaptable for different data circumstances, other types of interventions and could be extended to environmental carcinogens and other chronic diseases.
Urban Air Quality Modelling with AURORA: Prague and Bratislava
NASA Astrophysics Data System (ADS)
Veldeman, N.; Viaene, P.; De Ridder, K.; Peelaerts, W.; Lauwaet, D.; Muhammad, N.; Blyth, L.
2012-04-01
The European Commission, in its strategy to protect the health of the European citizens, states that in order to assess the impact of air pollution on public health, information on long-term exposure to air pollution should be available. Currently, indicators of air quality are often being generated using measured pollutant concentrations. While air quality monitoring stations data provide accurate time series information at specific locations, air quality models have the advantage of being able to assess the spatial variability of air quality (for different resolutions) and predict air quality in the future based on different scenarios. When running such air quality models at a high spatial and temporal resolution, one can simulate the actual situation as closely as possible, allowing for a detailed assessment of the risk of exposure to citizens from different pollutants. AURORA (Air quality modelling in Urban Regions using an Optimal Resolution Approach), a prognostic 3-dimensional Eulerian chemistry-transport model, is designed to simulate urban- to regional-scale atmospheric pollutant concentration and exposure fields. The AURORA model also allows to calculate the impact of changes in land use (e.g. planting of trees) or of emission reduction scenario's on air quality. AURORA is currently being applied within the ESA atmospheric GMES service, PASODOBLE (http://www.myair-eu.org), that delivers information on air quality, greenhouse gases, stratospheric ozone, … At present there are two operational AURORA services within PASODOBLE. Within the "Air quality forecast service" VITO delivers daily air quality forecasts for Belgium at a resolution of 5 km and for the major Belgian cities: Brussels, Ghent, Antwerp, Liege and Charleroi. Furthermore forecast services are provided for Prague, Czech Republic and Bratislava, Slovakia, both at a resolution of 1 km. The "Urban/regional air quality assessment service" provides urban- and regional-scale maps (hourly resolution) for air pollution and human exposure statistics for an entire year. So far we concentrated on Brussels, Belgium and the Rotterdam harbour area, The Netherlands. In this contribution we focus on the operational forecast services. Reference Lefebvre W. et al. (2011) Validation of the MIMOSA-AURORA-IFDM model chain for policy support: Modeling concentrations of elemental carbon in Flanders, Atmospheric Environment 45, 6705-6713
Evaluation of a wildfire smoke forecasting system as a tool for public health protection.
Yao, Jiayun; Brauer, Michael; Henderson, Sarah B
2013-10-01
Exposure to wildfire smoke has been associated with cardiopulmonary health impacts. Climate change will increase the severity and frequency of smoke events, suggesting a need for enhanced public health protection. Forecasts of smoke exposure can facilitate public health responses. We evaluated the utility of a wildfire smoke forecasting system (BlueSky) for public health protection by comparing its forecasts with observations and assessing their associations with population-level indicators of respiratory health in British Columbia, Canada. We compared BlueSky PM2.5 forecasts with PM2.5 measurements from air quality monitors, and BlueSky smoke plume forecasts with plume tracings from National Oceanic and Atmospheric Administration Hazard Mapping System remote sensing data. Daily counts of the asthma drug salbutamol sulfate dispensations and asthma-related physician visits were aggregated for each geographic local health area (LHA). Daily continuous measures of PM2.5 and binary measures of smoke plume presence, either forecasted or observed, were assigned to each LHA. Poisson regression was used to estimate the association between exposure measures and health indicators. We found modest agreement between forecasts and observations, which was improved during intense fire periods. A 30-μg/m3 increase in BlueSky PM2.5 was associated with an 8% increase in salbutamol dispensations and a 5% increase in asthma-related physician visits. BlueSky plume coverage was associated with 5% and 6% increases in the two health indicators, respectively. The effects were similar for observed smoke, and generally stronger in very smoky areas. BlueSky forecasts showed modest agreement with retrospective measures of smoke and were predictive of respiratory health indicators, suggesting they can provide useful information for public health protection.
Windblown Dust Deposition Forecasting and Spread of Contamination around Mine Tailings.
Stovern, Michael; Guzmán, Héctor; Rine, Kyle P; Felix, Omar; King, Matthew; Ela, Wendell P; Betterton, Eric A; Sáez, Avelino Eduardo
2016-02-01
Wind erosion, transport and deposition of windblown dust from anthropogenic sources, such as mine tailings impoundments, can have significant effects on the surrounding environment. The lack of vegetation and the vertical protrusion of the mine tailings above the neighboring terrain make the tailings susceptible to wind erosion. Modeling the erosion, transport and deposition of particulate matter from mine tailings is a challenge for many reasons, including heterogeneity of the soil surface, vegetative canopy coverage, dynamic meteorological conditions and topographic influences. In this work, a previously developed Deposition Forecasting Model (DFM) that is specifically designed to model the transport of particulate matter from mine tailings impoundments is verified using dust collection and topsoil measurements. The DFM is initialized using data from an operational Weather Research and Forecasting (WRF) model. The forecast deposition patterns are compared to dust collected by inverted-disc samplers and determined through gravimetric, chemical composition and lead isotopic analysis. The DFM is capable of predicting dust deposition patterns from the tailings impoundment to the surrounding area. The methodology and approach employed in this work can be generalized to other contaminated sites from which dust transport to the local environment can be assessed as a potential route for human exposure.
Windblown Dust Deposition Forecasting and Spread of Contamination around Mine Tailings
Stovern, Michael; Guzmán, Héctor; Rine, Kyle P.; Felix, Omar; King, Matthew; Ela, Wendell P.; Betterton, Eric A.; Sáez, Avelino Eduardo
2017-01-01
Wind erosion, transport and deposition of windblown dust from anthropogenic sources, such as mine tailings impoundments, can have significant effects on the surrounding environment. The lack of vegetation and the vertical protrusion of the mine tailings above the neighboring terrain make the tailings susceptible to wind erosion. Modeling the erosion, transport and deposition of particulate matter from mine tailings is a challenge for many reasons, including heterogeneity of the soil surface, vegetative canopy coverage, dynamic meteorological conditions and topographic influences. In this work, a previously developed Deposition Forecasting Model (DFM) that is specifically designed to model the transport of particulate matter from mine tailings impoundments is verified using dust collection and topsoil measurements. The DFM is initialized using data from an operational Weather Research and Forecasting (WRF) model. The forecast deposition patterns are compared to dust collected by inverted-disc samplers and determined through gravimetric, chemical composition and lead isotopic analysis. The DFM is capable of predicting dust deposition patterns from the tailings impoundment to the surrounding area. The methodology and approach employed in this work can be generalized to other contaminated sites from which dust transport to the local environment can be assessed as a potential route for human exposure. PMID:29082035
Operational forecasting of human-biometeorological conditions
NASA Astrophysics Data System (ADS)
Giannaros, T. M.; Lagouvardos, K.; Kotroni, V.; Matzarakis, A.
2018-03-01
This paper presents the development of an operational forecasting service focusing on human-biometeorological conditions. The service is based on the coupling of numerical weather prediction models with an advanced human-biometeorological model. Human thermal perception and stress forecasts are issued on a daily basis for Greece, in both point and gridded format. A user-friendly presentation approach is adopted for communicating the forecasts to the public via the worldwide web. The development of the presented service highlights the feasibility of replacing standard meteorological parameters and/or indices used in operational weather forecasting activities for assessing the thermal environment. This is of particular significance for providing effective, human-biometeorology-oriented, warnings for both heat waves and cold outbreaks.
Forecast-based Interventions Can Reduce the Health and Economic Burden of Wildfires
We simulated public health forecast-based interventions during a wildfire smoke episode in rural North Carolina to show the potential for use of modeled smoke forecasts toward reducing the health burden and showed a significant economic benefit of reducing exposures. Daily and co...
Evaluation of a Wildfire Smoke Forecasting System as a Tool for Public Health Protection
Brauer, Michael; Henderson, Sarah B.
2013-01-01
Background: Exposure to wildfire smoke has been associated with cardiopulmonary health impacts. Climate change will increase the severity and frequency of smoke events, suggesting a need for enhanced public health protection. Forecasts of smoke exposure can facilitate public health responses. Objectives: We evaluated the utility of a wildfire smoke forecasting system (BlueSky) for public health protection by comparing its forecasts with observations and assessing their associations with population-level indicators of respiratory health in British Columbia, Canada. Methods: We compared BlueSky PM2.5 forecasts with PM2.5 measurements from air quality monitors, and BlueSky smoke plume forecasts with plume tracings from National Oceanic and Atmospheric Administration Hazard Mapping System remote sensing data. Daily counts of the asthma drug salbutamol sulfate dispensations and asthma-related physician visits were aggregated for each geographic local health area (LHA). Daily continuous measures of PM2.5 and binary measures of smoke plume presence, either forecasted or observed, were assigned to each LHA. Poisson regression was used to estimate the association between exposure measures and health indicators. Results: We found modest agreement between forecasts and observations, which was improved during intense fire periods. A 30-μg/m3 increase in BlueSky PM2.5 was associated with an 8% increase in salbutamol dispensations and a 5% increase in asthma-related physician visits. BlueSky plume coverage was associated with 5% and 6% increases in the two health indicators, respectively. The effects were similar for observed smoke, and generally stronger in very smoky areas. Conclusions: BlueSky forecasts showed modest agreement with retrospective measures of smoke and were predictive of respiratory health indicators, suggesting they can provide useful information for public health protection. Citation: Yao J, Brauer M, Henderson SB. 2013. Evaluation of a wildfire smoke forecasting system as a tool for public health protection. Environ Health Perspect 121:1142–1147; http://dx.doi.org/10.1289/ehp.1306768 PMID:23906969
Flare forecasting at the Met Office Space Weather Operations Centre
NASA Astrophysics Data System (ADS)
Murray, S. A.; Bingham, S.; Sharpe, M.; Jackson, D. R.
2017-04-01
The Met Office Space Weather Operations Centre produces 24/7/365 space weather guidance, alerts, and forecasts to a wide range of government and commercial end-users across the United Kingdom. Solar flare forecasts are one of its products, which are issued multiple times a day in two forms: forecasts for each active region on the solar disk over the next 24 h and full-disk forecasts for the next 4 days. Here the forecasting process is described in detail, as well as first verification of archived forecasts using methods commonly used in operational weather prediction. Real-time verification available for operational flare forecasting use is also described. The influence of human forecasters is highlighted, with human-edited forecasts outperforming original model results and forecasting skill decreasing over longer forecast lead times.
1997-11-08
Most public-health assessments of climate-control policies have focused on long-term impacts of global change. Our interdisciplinary working group assesses likely short-term impacts on public health. We combined models of energy consumption, carbon emissions, and associated atmospheric particulate-matter (PM) concentration under two different forecasts: business-as-usual (BAU); and a hypothetical climate-policy scenario, where developed and developing countries undertake significant reductions in carbon emissions. We predict that by 2020, 700,000 avoidable deaths (90% CI 385,000-1,034,000) will occur annually as a result of additional PM exposure under the BAU forecasts when compared with the climate-policy scenario. From 2000 to 2020, the cumulative impact on public health related to the difference in PM exposure could total 8 million deaths globally (90% CI 4.4-11.9 million). In the USA alone, the avoidable number of annual deaths from PM exposure in 2020 (without climate-change-control policy) would equal in magnitude deaths associated with human immunodeficiency diseases or all liver diseases in 1995. The mortality estimates are indicative of the magnitude of the likely health benefits of the climate-policy scenario examined and are not precise predictions of avoidable deaths. While characterized by considerable uncertainty, the short-term public-health impacts of reduced PM exposures associated with greenhouse-gas reductions are likely to be substantial even under the most conservative set of assumptions.
The Value of Humans in the Operational River Forecasting Enterprise
NASA Astrophysics Data System (ADS)
Pagano, T. C.
2012-04-01
The extent of human control over operational river forecasts, such as by adjusting model inputs and outputs, varies from nearly completely automated systems to those where forecasts are generated after discussion among a group of experts. Historical and realtime data availability, the complexity of hydrologic processes, forecast user needs, and forecasting institution support/resource availability (e.g. computing power, money for model maintenance) influence the character and effectiveness of operational forecasting systems. Automated data quality algorithms, if used at all, are typically very basic (e.g. checks for impossible values); substantial human effort is devoted to cleaning up forcing data using subjective methods. Similarly, although it is an active research topic, nearly all operational forecasting systems struggle to make quantitative use of Numerical Weather Prediction model-based precipitation forecasts, instead relying on the assessment of meteorologists. Conversely, while there is a strong tradition in meteorology of making raw model outputs available to forecast users via the Internet, this is rarely done in hydrology; Operational river forecasters express concerns about exposing users to raw guidance, due to the potential for misinterpretation and misuse. However, this limits the ability of users to build their confidence in operational products through their own value-added analyses. Forecasting agencies also struggle with provenance (i.e. documenting the production process and archiving the pieces that went into creating a forecast) although this is necessary for quantifying the benefits of human involvement in forecasting and diagnosing weak links in the forecasting chain. In hydrology, the space between model outputs and final operational products is nearly unstudied by the academic community, although some studies exist in other fields such as meteorology.
Moran, Kelly Renee; Fairchild, Geoffrey; Generous, Nicholas; ...
2016-11-14
Mathematical models, such as those that forecast the spread of epidemics or predict the weather, must overcome the challenges of integrating incomplete and inaccurate data in computer simulations, estimating the probability of multiple possible scenarios, incorporating changes in human behavior and/or the pathogen, and environmental factors. In the past 3 decades, the weather forecasting community has made significant advances in data collection, assimilating heterogeneous data steams into models and communicating the uncertainty of their predictions to the general public. Epidemic modelers are struggling with these same issues in forecasting the spread of emerging diseases, such as Zika virus infection andmore » Ebola virus disease. While weather models rely on physical systems, data from satellites, and weather stations, epidemic models rely on human interactions, multiple data sources such as clinical surveillance and Internet data, and environmental or biological factors that can change the pathogen dynamics. We describe some of similarities and differences between these 2 fields and how the epidemic modeling community is rising to the challenges posed by forecasting to help anticipate and guide the mitigation of epidemics. Here, we conclude that some of the fundamental differences between these 2 fields, such as human behavior, make disease forecasting more challenging than weather forecasting.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moran, Kelly Renee; Fairchild, Geoffrey; Generous, Nicholas
Mathematical models, such as those that forecast the spread of epidemics or predict the weather, must overcome the challenges of integrating incomplete and inaccurate data in computer simulations, estimating the probability of multiple possible scenarios, incorporating changes in human behavior and/or the pathogen, and environmental factors. In the past 3 decades, the weather forecasting community has made significant advances in data collection, assimilating heterogeneous data steams into models and communicating the uncertainty of their predictions to the general public. Epidemic modelers are struggling with these same issues in forecasting the spread of emerging diseases, such as Zika virus infection andmore » Ebola virus disease. While weather models rely on physical systems, data from satellites, and weather stations, epidemic models rely on human interactions, multiple data sources such as clinical surveillance and Internet data, and environmental or biological factors that can change the pathogen dynamics. We describe some of similarities and differences between these 2 fields and how the epidemic modeling community is rising to the challenges posed by forecasting to help anticipate and guide the mitigation of epidemics. Here, we conclude that some of the fundamental differences between these 2 fields, such as human behavior, make disease forecasting more challenging than weather forecasting.« less
Moran, Kelly R.; Fairchild, Geoffrey; Generous, Nicholas; Hickmann, Kyle; Osthus, Dave; Priedhorsky, Reid; Hyman, James; Del Valle, Sara Y.
2016-01-01
Mathematical models, such as those that forecast the spread of epidemics or predict the weather, must overcome the challenges of integrating incomplete and inaccurate data in computer simulations, estimating the probability of multiple possible scenarios, incorporating changes in human behavior and/or the pathogen, and environmental factors. In the past 3 decades, the weather forecasting community has made significant advances in data collection, assimilating heterogeneous data steams into models and communicating the uncertainty of their predictions to the general public. Epidemic modelers are struggling with these same issues in forecasting the spread of emerging diseases, such as Zika virus infection and Ebola virus disease. While weather models rely on physical systems, data from satellites, and weather stations, epidemic models rely on human interactions, multiple data sources such as clinical surveillance and Internet data, and environmental or biological factors that can change the pathogen dynamics. We describe some of similarities and differences between these 2 fields and how the epidemic modeling community is rising to the challenges posed by forecasting to help anticipate and guide the mitigation of epidemics. We conclude that some of the fundamental differences between these 2 fields, such as human behavior, make disease forecasting more challenging than weather forecasting. PMID:28830111
Seasonal forecast of St. Louis encephalitis virus transmission, Florida.
Shaman, Jeffrey; Day, Jonathan F; Stieglitz, Marc; Zebiak, Stephen; Cane, Mark
2004-05-01
Disease transmission forecasts can help minimize human and domestic animal health risks by indicating where disease control and prevention efforts should be focused. For disease systems in which weather-related variables affect pathogen proliferation, dispersal, or transmission, the potential for disease forecasting exists. We present a seasonal forecast of St. Louis encephalitis virus transmission in Indian River County, Florida. We derive an empiric relationship between modeled land surface wetness and levels of SLEV transmission in humans. We then use these data to forecast SLEV transmission with a seasonal lead. Forecast skill is demonstrated, and a real-time seasonal forecast of epidemic SLEV transmission is presented. This study demonstrates how weather and climate forecast skill-verification analyses may be applied to test the predictability of an empiric disease forecast model.
Seasonal Forecast of St. Louis Encephalitis Virus Transmission, Florida
Day, Jonathan F.; Stieglitz, Marc; Zebiak, Stephen; Cane, Mark
2004-01-01
Disease transmission forecasts can help minimize human and domestic animal health risks by indicating where disease control and prevention efforts should be focused. For disease systems in which weather-related variables affect pathogen proliferation, dispersal, or transmission, the potential for disease forecasting exists. We present a seasonal forecast of St. Louis encephalitis virus transmission in Indian River County, Florida. We derive an empirical relationship between modeled land surface wetness and levels of SLEV transmission in humans. We then use these data to forecast SLEV transmission with a seasonal lead. Forecast skill is demonstrated, and a real-time seasonal forecast of epidemic SLEV transmission is presented. This study demonstrates how weather and climate forecast skill verification analyses may be applied to test the predictability of an empirical disease forecast model. PMID:15200812
"Updates to Model Algorithms & Inputs for the Biogenic ...
We have developed new canopy emission algorithms and land use data for BEIS. Simulations with BEIS v3.4 and these updates in CMAQ v5.0.2 are compared these changes to the Model of Emissions of Gases and Aerosols from Nature (MEGAN) and evaluated the simulations against observations. This has resulted in improvements in model evaluations of modeled isoprene, NOx, and O3. The National Exposure Research Laboratory (NERL) Atmospheric Modeling and Analysis Division (AMAD) conducts research in support of EPA mission to protect human health and the environment. AMAD research program is engaged in developing and evaluating predictive atmospheric models on all spatial and temporal scales for forecasting the air quality and for assessing changes in air quality and air pollutant exposures, as affected by changes in ecosystem management and regulatory decisions. AMAD is responsible for providing a sound scientific and technical basis for regulatory policies based on air quality models to improve ambient air quality. The models developed by AMAD are being used by EPA, NOAA, and the air pollution community in understanding and forecasting not only the magnitude of the air pollution problem, but also in developing emission control policies and regulations for air quality improvements.
"Total Deposition (TDEP) Maps" | Science Inventory | US EPA
The presentation provides an update on the use of a hybrid methodology that relies on measured values from national monitoring networks and modeled values from CMAQ to produce of maps of total deposition for use in critical loads and other ecological assessments. Additionally, comparisons of the deposition values from the hybrid approach are compared with deposition estimates from other methodologies. The National Exposure Research Laboratory (NERL) Atmospheric Modeling and Analysis Division (AMAD) conducts research in support of EPA mission to protect human health and the environment. AMAD research program is engaged in developing and evaluating predictive atmospheric models on all spatial and temporal scales for forecasting the air quality and for assessing changes in air quality and air pollutant exposures, as affected by changes in ecosystem management and regulatory decisions. AMAD is responsible for providing a sound scientific and technical basis for regulatory policies based on air quality models to improve ambient air quality. The models developed by AMAD are being used by EPA, NOAA, and the air pollution community in understanding and forecasting not only the magnitude of the air pollution problem, but also in developing emission control policies and regulations for air quality improvements.
ExpoCast Framework for Rapid Exposure Forecasts (ISES ExpoDat symposium presentation)
The U.S. E.P.A. ExpoCast project uses high throughput exposure models (simulation) and any easily-obtained exposure heuristics to generate forward predictions of potential exposures from chemical properties. By comparison with exposures inferred via reverse pharmacokinetic modeli...
ERIC Educational Resources Information Center
Richards, R.; Reeder, A. I.; Bulliard, J.-L.
2004-01-01
Melanoma and skin cancer are largely attributable to over-exposure to solar ultraviolet radiation (UVR). Reports of UVR levels within media weather forecasts appear to be well received by the public and have good potential to communicate the need for appropriate sun protection to a broad audience. This study describes provision of UVR messages by…
Ensemble forecast of human West Nile virus cases and mosquito infection rates
NASA Astrophysics Data System (ADS)
Defelice, Nicholas B.; Little, Eliza; Campbell, Scott R.; Shaman, Jeffrey
2017-02-01
West Nile virus (WNV) is now endemic in the continental United States; however, our ability to predict spillover transmission risk and human WNV cases remains limited. Here we develop a model depicting WNV transmission dynamics, which we optimize using a data assimilation method and two observed data streams, mosquito infection rates and reported human WNV cases. The coupled model-inference framework is then used to generate retrospective ensemble forecasts of historical WNV outbreaks in Long Island, New York for 2001-2014. Accurate forecasts of mosquito infection rates are generated before peak infection, and >65% of forecasts accurately predict seasonal total human WNV cases up to 9 weeks before the past reported case. This work provides the foundation for implementation of a statistically rigorous system for real-time forecast of seasonal outbreaks of WNV.
Ensemble forecast of human West Nile virus cases and mosquito infection rates.
DeFelice, Nicholas B; Little, Eliza; Campbell, Scott R; Shaman, Jeffrey
2017-02-24
West Nile virus (WNV) is now endemic in the continental United States; however, our ability to predict spillover transmission risk and human WNV cases remains limited. Here we develop a model depicting WNV transmission dynamics, which we optimize using a data assimilation method and two observed data streams, mosquito infection rates and reported human WNV cases. The coupled model-inference framework is then used to generate retrospective ensemble forecasts of historical WNV outbreaks in Long Island, New York for 2001-2014. Accurate forecasts of mosquito infection rates are generated before peak infection, and >65% of forecasts accurately predict seasonal total human WNV cases up to 9 weeks before the past reported case. This work provides the foundation for implementation of a statistically rigorous system for real-time forecast of seasonal outbreaks of WNV.
Modelling survival: exposure pattern, species sensitivity and uncertainty.
Ashauer, Roman; Albert, Carlo; Augustine, Starrlight; Cedergreen, Nina; Charles, Sandrine; Ducrot, Virginie; Focks, Andreas; Gabsi, Faten; Gergs, André; Goussen, Benoit; Jager, Tjalling; Kramer, Nynke I; Nyman, Anna-Maija; Poulsen, Veronique; Reichenberger, Stefan; Schäfer, Ralf B; Van den Brink, Paul J; Veltman, Karin; Vogel, Sören; Zimmer, Elke I; Preuss, Thomas G
2016-07-06
The General Unified Threshold model for Survival (GUTS) integrates previously published toxicokinetic-toxicodynamic models and estimates survival with explicitly defined assumptions. Importantly, GUTS accounts for time-variable exposure to the stressor. We performed three studies to test the ability of GUTS to predict survival of aquatic organisms across different pesticide exposure patterns, time scales and species. Firstly, using synthetic data, we identified experimental data requirements which allow for the estimation of all parameters of the GUTS proper model. Secondly, we assessed how well GUTS, calibrated with short-term survival data of Gammarus pulex exposed to four pesticides, can forecast effects of longer-term pulsed exposures. Thirdly, we tested the ability of GUTS to estimate 14-day median effect concentrations of malathion for a range of species and use these estimates to build species sensitivity distributions for different exposure patterns. We find that GUTS adequately predicts survival across exposure patterns that vary over time. When toxicity is assessed for time-variable concentrations species may differ in their responses depending on the exposure profile. This can result in different species sensitivity rankings and safe levels. The interplay of exposure pattern and species sensitivity deserves systematic investigation in order to better understand how organisms respond to stress, including humans.
Modelling survival: exposure pattern, species sensitivity and uncertainty
NASA Astrophysics Data System (ADS)
Ashauer, Roman; Albert, Carlo; Augustine, Starrlight; Cedergreen, Nina; Charles, Sandrine; Ducrot, Virginie; Focks, Andreas; Gabsi, Faten; Gergs, André; Goussen, Benoit; Jager, Tjalling; Kramer, Nynke I.; Nyman, Anna-Maija; Poulsen, Veronique; Reichenberger, Stefan; Schäfer, Ralf B.; van den Brink, Paul J.; Veltman, Karin; Vogel, Sören; Zimmer, Elke I.; Preuss, Thomas G.
2016-07-01
The General Unified Threshold model for Survival (GUTS) integrates previously published toxicokinetic-toxicodynamic models and estimates survival with explicitly defined assumptions. Importantly, GUTS accounts for time-variable exposure to the stressor. We performed three studies to test the ability of GUTS to predict survival of aquatic organisms across different pesticide exposure patterns, time scales and species. Firstly, using synthetic data, we identified experimental data requirements which allow for the estimation of all parameters of the GUTS proper model. Secondly, we assessed how well GUTS, calibrated with short-term survival data of Gammarus pulex exposed to four pesticides, can forecast effects of longer-term pulsed exposures. Thirdly, we tested the ability of GUTS to estimate 14-day median effect concentrations of malathion for a range of species and use these estimates to build species sensitivity distributions for different exposure patterns. We find that GUTS adequately predicts survival across exposure patterns that vary over time. When toxicity is assessed for time-variable concentrations species may differ in their responses depending on the exposure profile. This can result in different species sensitivity rankings and safe levels. The interplay of exposure pattern and species sensitivity deserves systematic investigation in order to better understand how organisms respond to stress, including humans.
Forecasting the spatial transmission of influenza in the United States.
Pei, Sen; Kandula, Sasikiran; Yang, Wan; Shaman, Jeffrey
2018-03-13
Recurrent outbreaks of seasonal and pandemic influenza create a need for forecasts of the geographic spread of this pathogen. Although it is well established that the spatial progression of infection is largely attributable to human mobility, difficulty obtaining real-time information on human movement has limited its incorporation into existing infectious disease forecasting techniques. In this study, we develop and validate an ensemble forecast system for predicting the spatiotemporal spread of influenza that uses readily accessible human mobility data and a metapopulation model. In retrospective state-level forecasts for 35 US states, the system accurately predicts local influenza outbreak onset,-i.e., spatial spread, defined as the week that local incidence increases above a baseline threshold-up to 6 wk in advance of this event. In addition, the metapopulation prediction system forecasts influenza outbreak onset, peak timing, and peak intensity more accurately than isolated location-specific forecasts. The proposed framework could be applied to emergent respiratory viruses and, with appropriate modifications, other infectious diseases.
Prestemon, Jeffrey P.; Butry, David T.; Thomas, Douglas S.
2017-01-01
Research shows that some categories of human-ignited wildfires might be forecastable, due to their temporal clustering, with the possibility that resources could be pre-deployed to help reduce the incidence of such wildfires. We estimated several kinds of incendiary and other human-ignited wildfire forecast models at the weekly time step for tribal land units in the United States, evaluating their forecast skill out of sample. Analyses show that an Autoregressive Conditional Poisson (ACP) model of both incendiary and non-incendiary human-ignited wildfires is more accurate out of sample compared to alternatives, and the simplest of the ACP models performed the best. Additionally, an ensemble of these and simpler, less analytically intensive approaches performed even better. Wildfire hotspot forecast models using all model types were evaluated in a simulation mode to assess the net benefits of forecasts in the context of law enforcement resource reallocations. Our analyses show that such hotspot tools could yield large positive net benefits for the tribes in terms of suppression expenditures averted for incendiary wildfires but that the hotspot tools were less likely to be beneficial for addressing outbreaks of non-incendiary human-ignited wildfires. PMID:28769549
Prestemon, Jeffrey P; Butry, David T; Thomas, Douglas S
2016-01-01
Research shows that some categories of human-ignited wildfires might be forecastable, due to their temporal clustering, with the possibility that resources could be pre-deployed to help reduce the incidence of such wildfires. We estimated several kinds of incendiary and other human-ignited wildfire forecast models at the weekly time step for tribal land units in the United States, evaluating their forecast skill out of sample. Analyses show that an Autoregressive Conditional Poisson (ACP) model of both incendiary and non-incendiary human-ignited wildfires is more accurate out of sample compared to alternatives, and the simplest of the ACP models performed the best. Additionally, an ensemble of these and simpler, less analytically intensive approaches performed even better. Wildfire hotspot forecast models using all model types were evaluated in a simulation mode to assess the net benefits of forecasts in the context of law enforcement resource reallocations. Our analyses show that such hotspot tools could yield large positive net benefits for the tribes in terms of suppression expenditures averted for incendiary wildfires but that the hotspot tools were less likely to be beneficial for addressing outbreaks of non-incendiary human-ignited wildfires.
Moran, Kelly R; Fairchild, Geoffrey; Generous, Nicholas; Hickmann, Kyle; Osthus, Dave; Priedhorsky, Reid; Hyman, James; Del Valle, Sara Y
2016-12-01
Mathematical models, such as those that forecast the spread of epidemics or predict the weather, must overcome the challenges of integrating incomplete and inaccurate data in computer simulations, estimating the probability of multiple possible scenarios, incorporating changes in human behavior and/or the pathogen, and environmental factors. In the past 3 decades, the weather forecasting community has made significant advances in data collection, assimilating heterogeneous data steams into models and communicating the uncertainty of their predictions to the general public. Epidemic modelers are struggling with these same issues in forecasting the spread of emerging diseases, such as Zika virus infection and Ebola virus disease. While weather models rely on physical systems, data from satellites, and weather stations, epidemic models rely on human interactions, multiple data sources such as clinical surveillance and Internet data, and environmental or biological factors that can change the pathogen dynamics. We describe some of similarities and differences between these 2 fields and how the epidemic modeling community is rising to the challenges posed by forecasting to help anticipate and guide the mitigation of epidemics. We conclude that some of the fundamental differences between these 2 fields, such as human behavior, make disease forecasting more challenging than weather forecasting. Published by Oxford University Press for the Infectious Diseases Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Jeff Prestemon; David T. Butry; Douglas S. Thomas
2016-01-01
Research shows that some categories of human-ignited wildfires may be forecastable, owing to their temporal clustering, with the possibility that resources could be predeployed to help reduce the incidence of such wildfires. We estimated several kinds of incendiary and other human-ignited wildfire forecast models at the weekly time step for tribal land units in the...
Use of temperature to improve West Nile virus forecasts
Schneider, Zachary D.; Caillouet, Kevin A.; Campbell, Scott R.; Damian, Dan; Irwin, Patrick; Jones, Herff M. P.; Townsend, John
2018-01-01
Ecological and laboratory studies have demonstrated that temperature modulates West Nile virus (WNV) transmission dynamics and spillover infection to humans. Here we explore whether inclusion of temperature forcing in a model depicting WNV transmission improves WNV forecast accuracy relative to a baseline model depicting WNV transmission without temperature forcing. Both models are optimized using a data assimilation method and two observed data streams: mosquito infection rates and reported human WNV cases. Each coupled model-inference framework is then used to generate retrospective ensemble forecasts of WNV for 110 outbreak years from among 12 geographically diverse United States counties. The temperature-forced model improves forecast accuracy for much of the outbreak season. From the end of July until the beginning of October, a timespan during which 70% of human cases are reported, the temperature-forced model generated forecasts of the total number of human cases over the next 3 weeks, total number of human cases over the season, the week with the highest percentage of infectious mosquitoes, and the peak percentage of infectious mosquitoes that on average increased absolute forecast accuracy 5%, 10%, 12%, and 6%, respectively, over the non-temperature forced baseline model. These results indicate that use of temperature forcing improves WNV forecast accuracy and provide further evidence that temperature influences rates of WNV transmission. The findings provide a foundation for implementation of a statistically rigorous system for real-time forecast of seasonal WNV outbreaks and their use as a quantitative decision support tool for public health officials and mosquito control programs. PMID:29522514
Methodology for Air Quality Forecast Downscaling from Regional- to Street-Scale
NASA Astrophysics Data System (ADS)
Baklanov, Alexander; Nuterman, Roman; Mahura, Alexander; Amstrup, Bjarne; Hansen Saas, Bent; Havskov Sørensen, Jens; Lorenzen, Thomas; Weismann, Jakob
2010-05-01
The most serious air pollution events occur in cities where there is a combination of high population density and air pollution, e.g. from vehicles. The pollutants can lead to serious human health problems, including asthma, irritation of the lungs, bronchitis, pneumonia, decreased resistance to respiratory infections, and premature death. In particular air pollution is associated with increase in cardiovascular disease and lung cancer. In 2000 WHO estimated that between 2.5 % and 11 % of total annual deaths are caused by exposure to air pollution. However, European-scale air quality models are not suited for local forecasts, as their grid-cell is typically of the order of 5 to 10km and they generally lack detailed representation of urban effects. Two suites are used in the framework of the EC FP7 project MACC (Monitoring of Atmosphere Composition and Climate) to demonstrate how downscaling from the European MACC ensemble to local-scale air quality forecast will be carried out: one will illustrate capabilities for the city of Copenhagen (Denmark); the second will focus on the city of Bucharest (Romania). This work is devoted to the first suite, where methodological aspects of downscaling from regional (European/ Denmark) to urban scale (Copenhagen), and from the urban down to street scale. The first results of downscaling according to the proposed methodology are presented. The potential for downscaling of European air quality forecasts by operating urban and street-level forecast models is evaluated. This will bring a strong support for continuous improvement of the regional forecast modelling systems for air quality in Europe, and underline clear perspectives for the future regional air quality core and downstream services for end-users. At the end of the MACC project, requirements on "how-to-do" downscaling of European air-quality forecasts to the city and street levels with different approaches will be formulated.
Leveraging Publically Available Chemical Functional Use Data in Support of Exposure Prediction
The U.S. EPA Exposure Forecasting (ExpoCast) project aims to provide rapid screening-level exposure predictions for thousands of chemicals, most of which lack detailed exposure data. Chemical functional use - the role a chemical plays in processes or products (e.g. solvent, ant...
ERIC Educational Resources Information Center
Hoffman, Benjamin B.
Forecasting models for maximizing postsecondary futures and applications of the model are considered. The forecasting of broad human futures has many parallels to human futures in the field of medical prognosis. The concept of "exasperated negative" is used to refer to the suppression of critical information about a negative future with…
Application of Wavelet Filters in an Evaluation of ...
Air quality model evaluation can be enhanced with time-scale specific comparisons of outputs and observations. For example, high-frequency (hours to one day) time scale information in observed ozone is not well captured by deterministic models and its incorporation into model performance metrics lead one to devote resources to stochastic variations in model outputs. In this analysis, observations are compared with model outputs at seasonal, weekly, diurnal and intra-day time scales. Filters provide frequency specific information that can be used to compare the strength (amplitude) and timing (phase) of observations and model estimates. The National Exposure Research Laboratory′s (NERL′s) Atmospheric Modeling and Analysis Division (AMAD) conducts research in support of EPA′s mission to protect human health and the environment. AMAD′s research program is engaged in developing and evaluating predictive atmospheric models on all spatial and temporal scales for forecasting the Nation′s air quality and for assessing changes in air quality and air pollutant exposures, as affected by changes in ecosystem management and regulatory decisions. AMAD is responsible for providing a sound scientific and technical basis for regulatory policies based on air quality models to improve ambient air quality. The models developed by AMAD are being used by EPA, NOAA, and the air pollution community in understanding and forecasting not only the magnitude of the air pollu
Morrison, Kathryn T; Shaddick, Gavin; Henderson, Sarah B; Buckeridge, David L
2016-08-15
This paper outlines a latent process model for forecasting multiple health outcomes arising from a common environmental exposure. Traditionally, surveillance models in environmental health do not link health outcome measures, such as morbidity or mortality counts, to measures of exposure, such as air pollution. Moreover, different measures of health outcomes are treated as independent, while it is known that they are correlated with one another over time as they arise in part from a common underlying exposure. We propose modelling an environmental exposure as a latent process, and we describe the implementation of such a model within a hierarchical Bayesian framework and its efficient computation using integrated nested Laplace approximations. Through a simulation study, we compare distinct univariate models for each health outcome with a bivariate approach. The bivariate model outperforms the univariate models in bias and coverage of parameter estimation, in forecast accuracy and in computational efficiency. The methods are illustrated with a case study using healthcare utilization and air pollution data from British Columbia, Canada, 2003-2011, where seasonal wildfires produce high levels of air pollution, significantly impacting population health. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Use of Temperature to Improve West Nile Virus Forecasts
NASA Astrophysics Data System (ADS)
Shaman, J. L.; DeFelice, N.; Schneider, Z.; Little, E.; Barker, C.; Caillouet, K.; Campbell, S.; Damian, D.; Irwin, P.; Jones, H.; Townsend, J.
2017-12-01
Ecological and laboratory studies have demonstrated that temperature modulates West Nile virus (WNV) transmission dynamics and spillover infection to humans. Here we explore whether the inclusion of temperature forcing in a model depicting WNV transmission improves WNV forecast accuracy relative to a baseline model depicting WNV transmission without temperature forcing. Both models are optimized using a data assimilation method and two observed data streams: mosquito infection rates and reported human WNV cases. Each coupled model-inference framework is then used to generate retrospective ensemble forecasts of WNV for 110 outbreak years from among 12 geographically diverse United States counties. The temperature-forced model improves forecast accuracy for much of the outbreak season. From the end of July until the beginning of October, a timespan during which 70% of human cases are reported, the temperature-forced model generated forecasts of the total number of human cases over the next 3 weeks, total number of human cases over the season, the week with the highest percentage of infectious mosquitoes, and the peak percentage of infectious mosquitoes that were on average 5%, 10%, 12%, and 6% more accurate, respectively, than the baseline model. These results indicate that use of temperature forcing improves WNV forecast accuracy and provide further evidence that temperatures influence rates of WNV transmission. The findings help build a foundation for implementation of a statistically rigorous system for real-time forecast of seasonal WNV outbreaks and their use as a quantitative decision support tool for public health officials and mosquito control programs.
Denkins, P; Badhwar, G; Obot, V; Wilson, B; Jejelewo, O
2001-01-01
NASA is very interested in improving its ability to monitor and forecast the radiation levels that pose a health risk to space-walking astronauts as they construct the International Space Station and astronauts that will participate in long-term and deep-space missions. Human exploratory missions to the moon and Mars within the next quarter century, will expose crews to transient radiation from solar particle events which include high-energy galactic cosmic rays and high-energy protons. Because the radiation levels in space are high and solar activity is presently unpredictable, adequate shielding is needed to minimize the deleterious health effects of exposure to radiation. Today, numerous models have been developed and used to predict radiation exposure. Such a model is the Space Environment Information Systems (SPENVIS) modeling program, developed by the Belgian Institute for Space Aeronautics. SPENVIS, which has been assessed to be an excellent tool in characterizing the radiation environment for microelectronics and investigating orbital debris, is being evaluated for its usefulness with determining the dose and dose-equivalent for human exposure. Thus far. the calculations for dose-depth relations under varying shielding conditions have been in agreement with calculations done using HZETRN and PDOSE, which are well-known and widely used models for characterizing the environments for human exploratory missions. There is disagreement when assessing the impact of secondary radiation particles since SPENVIS does a crude estimation of the secondary radiation particles when calculating LET versus Flux. SPENVIS was used to model dose-depth relations for the blood-forming organs. Radiation sickness and cancer are life-threatening consequences resulting from radiation exposure. In space. exposure to radiation generally includes all of the critical organs. Biological and toxicological impacts have been included for discussion along with alternative risk mitigation methods--shielding and anti-carcinogens. c 2001. Elsevier Science Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Denkins, P.; Badhwar, G.; Obot, V.; Wilson, B.; Jejelewo, O.
2001-01-01
NASA is very interested in improving its ability to monitor and forecast the radiation levels that pose a health risk to space-walking astronauts as they construct the International Space Station and astronauts that will participate in long-term and deep-space missions. Human exploratory missions to the moon and Mars within the next quarter century, will expose crews to transient radiation from solar particle events which include high-energy galactic cosmic rays and high-energy protons. Because the radiation levels in space are high and solar activity is presently unpredictable, adequate shielding is needed to minimize the deleterious health effects of exposure to radiation. Today, numerous models have been developed and used to predict radiation exposure. Such a model is the Space Environment Information Systems (SPENVIS) modeling program, developed by the Belgian Institute for Space Aeronautics. SPENVIS, which has been assessed to be an excellent tool in characterizing the radiation environment for microelectronics and investigating orbital debris, is being evaluated for its usefulness with determining the dose and dose-equivalent for human exposure. Thus far. the calculations for dose-depth relations under varying shielding conditions have been in agreement with calculations done using HZETRN and PDOSE, which are well-known and widely used models for characterizing the environments for human exploratory missions. There is disagreement when assessing the impact of secondary radiation particles since SPENVIS does a crude estimation of the secondary radiation particles when calculating LET versus Flux. SPENVIS was used to model dose-depth relations for the blood-forming organs. Radiation sickness and cancer are life-threatening consequences resulting from radiation exposure. In space. exposure to radiation generally includes all of the critical organs. Biological and toxicological impacts have been included for discussion along with alternative risk mitigation methods--shielding and anti-carcinogens. c 2001. Elsevier Science Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Denkins, Pamela; Badhwar, Gautam; Obot, Victor; Wilson, Bobby; Jejelewo, Olufisayo
2001-08-01
NASA is very interested in improving its ability to monitor and forecast the radiation levels that pose a health risk to space-walking astronauts as they construct the International Space Station and astronauts that will participate in long-term and deep-space missions. Human exploratory missions to the moon and Mars within the next quarter century, will expose crews to transient radiation from solar particle events which include high-energy galactic cosmic rays and high-energy protons. Because the radiation levels in space are high and solar activity is presently unpredictable, adequate shielding is needed to minimize the deleterious health effects of exposure to radiation. Today, numerous models have been developed and used to predict radiation exposure. Such a model is the Space Environment Information Systems (SPENVIS) modeling program, developed by the Belgian Institute for Space Aeronautics. SPENVIS, which has been assessed to be an excellent tool in characterizing the radiation environment for microelectronics and investigating orbital debris, is being evaluated for its usefulness with determining the dose and dose-equivalent for human exposure. Thus far, the calculations for dose-depth relations under varying shielding conditions have been in agreement with calculations done using HZETRN and PDOSE, which are well-known and widely used models for characterizing the environments for human exploratory missions. There is disagreement when assessing the impact of secondary radiation particles since SPENVIS does a crude estimation of the secondary radiation particles when calculating LET versus Flux. SPENVIS was used to model dose-depth relations for the blood-forming organs. Radiation sickness and cancer are life-threatening consequences resulting from radiation exposure. In space, exposure to radiation generally includes all of the critical organs. Biological and toxicological impacts have been included for discussion along with alternative risk mitigation methods — shielding and anti-carcinogens.
Modelling survival: exposure pattern, species sensitivity and uncertainty
Ashauer, Roman; Albert, Carlo; Augustine, Starrlight; Cedergreen, Nina; Charles, Sandrine; Ducrot, Virginie; Focks, Andreas; Gabsi, Faten; Gergs, André; Goussen, Benoit; Jager, Tjalling; Kramer, Nynke I.; Nyman, Anna-Maija; Poulsen, Veronique; Reichenberger, Stefan; Schäfer, Ralf B.; Van den Brink, Paul J.; Veltman, Karin; Vogel, Sören; Zimmer, Elke I.; Preuss, Thomas G.
2016-01-01
The General Unified Threshold model for Survival (GUTS) integrates previously published toxicokinetic-toxicodynamic models and estimates survival with explicitly defined assumptions. Importantly, GUTS accounts for time-variable exposure to the stressor. We performed three studies to test the ability of GUTS to predict survival of aquatic organisms across different pesticide exposure patterns, time scales and species. Firstly, using synthetic data, we identified experimental data requirements which allow for the estimation of all parameters of the GUTS proper model. Secondly, we assessed how well GUTS, calibrated with short-term survival data of Gammarus pulex exposed to four pesticides, can forecast effects of longer-term pulsed exposures. Thirdly, we tested the ability of GUTS to estimate 14-day median effect concentrations of malathion for a range of species and use these estimates to build species sensitivity distributions for different exposure patterns. We find that GUTS adequately predicts survival across exposure patterns that vary over time. When toxicity is assessed for time-variable concentrations species may differ in their responses depending on the exposure profile. This can result in different species sensitivity rankings and safe levels. The interplay of exposure pattern and species sensitivity deserves systematic investigation in order to better understand how organisms respond to stress, including humans. PMID:27381500
Smoke Ready Toolbox for Wildfires
This site provides an online Smoke Ready Toolbox for Wildfires, which lists resources and tools that provide information on health impacts from smoke exposure, current fire conditions and forecasts and strategies to reduce exposure to smoke.
A human judgment approach to epidemiological forecasting
Farrow, David C.; Brooks, Logan C.; Rosenfeld, Roni
2017-01-01
Infectious diseases impose considerable burden on society, despite significant advances in technology and medicine over the past century. Advanced warning can be helpful in mitigating and preparing for an impending or ongoing epidemic. Historically, such a capability has lagged for many reasons, including in particular the uncertainty in the current state of the system and in the understanding of the processes that drive epidemic trajectories. Presently we have access to data, models, and computational resources that enable the development of epidemiological forecasting systems. Indeed, several recent challenges hosted by the U.S. government have fostered an open and collaborative environment for the development of these technologies. The primary focus of these challenges has been to develop statistical and computational methods for epidemiological forecasting, but here we consider a serious alternative based on collective human judgment. We created the web-based “Epicast” forecasting system which collects and aggregates epidemic predictions made in real-time by human participants, and with these forecasts we ask two questions: how accurate is human judgment, and how do these forecasts compare to their more computational, data-driven alternatives? To address the former, we assess by a variety of metrics how accurately humans are able to predict influenza and chikungunya trajectories. As for the latter, we show that real-time, combined human predictions of the 2014–2015 and 2015–2016 U.S. flu seasons are often more accurate than the same predictions made by several statistical systems, especially for short-term targets. We conclude that there is valuable predictive power in collective human judgment, and we discuss the benefits and drawbacks of this approach. PMID:28282375
A human judgment approach to epidemiological forecasting.
Farrow, David C; Brooks, Logan C; Hyun, Sangwon; Tibshirani, Ryan J; Burke, Donald S; Rosenfeld, Roni
2017-03-01
Infectious diseases impose considerable burden on society, despite significant advances in technology and medicine over the past century. Advanced warning can be helpful in mitigating and preparing for an impending or ongoing epidemic. Historically, such a capability has lagged for many reasons, including in particular the uncertainty in the current state of the system and in the understanding of the processes that drive epidemic trajectories. Presently we have access to data, models, and computational resources that enable the development of epidemiological forecasting systems. Indeed, several recent challenges hosted by the U.S. government have fostered an open and collaborative environment for the development of these technologies. The primary focus of these challenges has been to develop statistical and computational methods for epidemiological forecasting, but here we consider a serious alternative based on collective human judgment. We created the web-based "Epicast" forecasting system which collects and aggregates epidemic predictions made in real-time by human participants, and with these forecasts we ask two questions: how accurate is human judgment, and how do these forecasts compare to their more computational, data-driven alternatives? To address the former, we assess by a variety of metrics how accurately humans are able to predict influenza and chikungunya trajectories. As for the latter, we show that real-time, combined human predictions of the 2014-2015 and 2015-2016 U.S. flu seasons are often more accurate than the same predictions made by several statistical systems, especially for short-term targets. We conclude that there is valuable predictive power in collective human judgment, and we discuss the benefits and drawbacks of this approach.
NASA Astrophysics Data System (ADS)
Aulov, Oleg
This dissertation presents a novel approach that utilizes quantifiable social media data as a human aware, near real-time observing system, coupled with geophysical predictive models for improved response to disasters and extreme events. It shows that social media data has the potential to significantly improve disaster management beyond informing the public, and emphasizes the importance of different roles that social media can play in management, monitoring, modeling and mitigation of natural and human-caused extreme disasters. In the proposed approach Social Media users are viewed as "human sensors" that are "deployed" in the field, and their posts are considered to be "sensor observations", thus different social media outlets all together form a Human Sensor Network. We utilized the "human sensor" observations, as boundary value forcings, to show improved geophysical model forecasts of extreme disaster events when combined with other scientific data such as satellite observations and sensor measurements. Several recent extreme disasters are presented as use case scenarios. In the case of the Deepwater Horizon oil spill disaster of 2010 that devastated the Gulf of Mexico, the research demonstrates how social media data from Flickr can be used as a boundary forcing condition of GNOME oil spill plume forecast model, and results in an order of magnitude forecast improvement. In the case of Hurricane Sandy NY/NJ landfall impact of 2012, we demonstrate how the model forecasts, when combined with social media data in a single framework, can be used for near real-time forecast validation, damage assessment and disaster management. Owing to inherent uncertainties in the weather forecasts, the NOAA operational surge model only forecasts the worst-case scenario for flooding from any given hurricane. Geolocated and time-stamped Instagram photos and tweets allow near real-time assessment of the surge levels at different locations, which can validate model forecasts, give timely views of the actual levels of surge, as well as provide an upper bound beyond which the surge did not spread. Additionally, we developed AsonMaps---a crisis-mapping tool that combines dynamic model forecast outputs with social media observations and physical measurements to define the regions of event impacts.
NASA Astrophysics Data System (ADS)
Vislocky, Robert L.; Fritsch, J. Michael
1997-12-01
A prototype advanced model output statistics (MOS) forecast system that was entered in the 1996-97 National Collegiate Weather Forecast Contest is described and its performance compared to that of widely available objective guidance and to contest participants. The prototype system uses an optimal blend of aviation (AVN) and nested grid model (NGM) MOS forecasts, explicit output from the NGM and Eta guidance, and the latest surface weather observations from the forecast site. The forecasts are totally objective and can be generated quickly on a personal computer. Other "objective" forms of guidance tracked in the contest are 1) the consensus forecast (i.e., the average of the forecasts from all of the human participants), 2) the combination of NGM raw output (for precipitation forecasts) and NGM MOS guidance (for temperature forecasts), and 3) the combination of Eta Model raw output (for precipitation forecasts) and AVN MOS guidance (for temperature forecasts).Results show that the advanced MOS system finished in 20th place out of 737 original entrants, or better than approximately 97% of the human forecasters who entered the contest. Moreover, the advanced MOS system was slightly better than consensus (23d place). The fact that an objective forecast system finished ahead of consensus is a significant accomplishment since consensus is traditionally a very formidable "opponent" in forecast competitions. Equally significant is that the advanced MOS system was superior to the traditional guidance products available from the National Centers for Environmental Prediction (NCEP). Specifically, the combination of NGM raw output and NGM MOS guidance finished in 175th place, and the combination of Eta Model raw output and AVN MOS guidance finished in 266th place. The latter result is most intriguing since the proposed elimination of all NGM products would likely result in a serious degradation of objective products disseminated by NCEP, unless they are replaced with equal or better substitutes. On the other hand, the positive performance of the prototype advanced MOS system shows that it is possible to create a single objective product that is not only superior to currently available objective guidance products, but is also on par with some of the better human forecasters.
Venkatesan, Arjun K.; Halden, Rolf U.
2014-01-01
Thousands of chemicals have been identified as contaminants of emerging concern (CECs), but prioritizing them concerning ecological and human health risks is challenging. We explored the use of sewage treatment plants as chemical observatories to conveniently identify persistent and bioaccumulative CECs, including toxic organohalides. Nationally representative samples of sewage sludge (biosolids) were analyzed for 231 CECs, of which 123 were detected. Ten of the top 11 most abundant CECs in biosolids were found to be high-production volume chemicals, eight of which representing priority chemicals, including three flame retardants, three surfactants and two antimicrobials. A comparison of chemicals detected in nationally representative biological specimens from humans and municipal biosolids revealed 70% overlap. This observed co-occurrence of contaminants in both matrices suggests that the analysis of sewage sludge can inform human health risk assessments by providing current information on toxic exposures in human populations and associated body burdens of harmful environmental pollutants. PMID:24429544
Evaluation of noise pollution level based upon community exposure and response data
NASA Technical Reports Server (NTRS)
Edmiston, R. D.
1972-01-01
The results and procedures are reported from an evaluation of noise pollution level as a predictor of annoyance, based on aircraft noise exposure and community response data. The measures of noise exposure presented include composite noise rating, noise exposure forecast, noise and number index. A proposed measure as a universal noise exposure measure for noise pollution level (L sub NP) is discussed.
Prediction of Chemical Function: Model Development and Application
The United States Environmental Protection Agency’s Exposure Forecaster (ExpoCast) project is developing both statistical and mechanism-based computational models for predicting exposures to thousands of chemicals, including those in consumer products. The high-throughput (...
NASA Technical Reports Server (NTRS)
Baevsky, R. M.; Bennett, B. S.; Bungo, M. W.; Charles, J. B.; Goldberger, A. L.; Nikulina, G. A.
1997-01-01
This article presents selected findings obtained with Holter monitoring from two crew members of the expedition, performed during a 175-day space mission on board orbital space station "MIR." Using mathematical processing of daily cardiointervals files, 5-minute sections of records were analyzed consecutively. Then, the average daily values of indices, the average-per-every-eight-hours values (morning, evening, night) and mean values per hour were computed. The results of analysis showed that prolonged exposure of man to microgravity conditions leads to important functional alteration in human neuroautonomic regulatory mechanisms. Both crew members had significant increase of heart rate, the rise of stress index, the decrease in power of the spectrum in the range of respiratory sinus arrhythmia. These marked signs of activation of the sympathetic section of the vegetative nervous system showed individual variations. The analysis of the daily collection of cardiointervals with Holter monitoring allows us to understand and forecast the functional feasibilities of the human organism under a variety of stress conditions associated with acute and chronic microgravity exposure.
Olarinmoye, Ayodeji O; Ojo, Johnson F; Fasunla, Ayotunde J; Ishola, Olayinka O; Dakinah, Fahnboah G; Mulbah, Charles K; Al-Hezaimi, Khalid; Olugasa, Babasola O
2017-08-01
We developed time trend model, determined treatment outcome and estimated annual human deaths among dog bite victims (DBVs) from 2010 to 2013 in Monrovia, Liberia. Data obtained from clinic records included victim's age, gender and site of bite marks, site name of residence of rabies-exposed patients, promptness of care sought, initial treatment and post-exposure-prophylaxis (PEP) compliance. We computed DBV time-trend plot, seasonal index and year 2014 case forecast. Associated annual human death (AHD) was estimated using a standardized decision tree model. Of the 775 DBVs enlisted, care seeking time was within 24h of injury in 328 (42.32%) DBVs. Victim's residential location, site of bite mark, and time dependent variables were significantly associated with treatment outcome (p< 0.05). The equation X^ t =28.278-0.365t models the trend of DBVs. The high (n=705, 90.97%) defaulted PEP and average 155 AHD from rabies implied urgent need for policy formulation on national programme for rabies prevention in Liberia. Copyright © 2017 Elsevier Ltd. All rights reserved.
Forecasting seeing and parameters of long-exposure images by means of ARIMA
NASA Astrophysics Data System (ADS)
Kornilov, Matwey V.
2016-02-01
Atmospheric turbulence is the one of the major limiting factors for ground-based astronomical observations. In this paper, the problem of short-term forecasting seeing is discussed. The real data that were obtained by atmospheric optical turbulence (OT) measurements above Mount Shatdzhatmaz in 2007-2013 have been analysed. Linear auto-regressive integrated moving average (ARIMA) models are used for the forecasting. A new procedure for forecasting the image characteristics of direct astronomical observations (central image intensity, full width at half maximum, radius encircling 80 % of the energy) has been proposed. Probability density functions of the forecast of these quantities are 1.5-2 times thinner than the respective unconditional probability density functions. Overall, this study found that the described technique could adequately describe temporal stochastic variations of the OT power.
“Nitrogen Budgets for the Mississippi River Basin using the ...
Presentation on the results from the 3 linked models, EPIC (USDA), CMAQ and NEWS to analyze a scenario of increased corn production related to biofuels together with Clean Air Act emission reductions across the US and the resultant effect on nitrogen loading to the Gulf of Mexico from the Mississippi River Basin. This is a demonstration of a capability to connect the N cascade bringing air, land, water together. EPIC = Environmental Policy Integrated Climate model, CMAQ = Community Multiscale Air Quality model, NEWS = Nutrient Export of WaterSheds model. The National Exposure Research Laboratory (NERL) Atmospheric Modeling and Analysis Division (AMAD) conducts research in support of EPA mission to protect human health and the environment. AMAD research program is engaged in developing and evaluating predictive atmospheric models on all spatial and temporal scales for forecasting the air quality and for assessing changes in air quality and air pollutant exposures, as affected by changes in ecosystem management and regulatory decisions. AMAD is responsible for providing a sound scientific and technical basis for regulatory policies based on air quality models to improve ambient air quality. The models developed by AMAD are being used by EPA, NOAA, and the air pollution community in understanding and forecasting not only the magnitude of the air pollution problem, but also in developing emission control policies and regulations for air quality improvements.
“AQMEII Status Update” | Science Inventory | US EPA
“AQMEII Status Update”This presentation provided an overview and status update of the Air Quality Model Evaluation International Initative (AQMEII) to participants of a workshop of the Task Force on Hemispheric Transport of Air Pollution (TF-HTAP) . In addition, the presentation also outlines the objectives and potential timeline for a possible next phase of AQMEII that would involve a collaboration with the current modeling activities of TF-HTAP. The purpose of the presentation was to provide participants at the HTAP meeting with an overview of current AQMEII activities and timelines and to obtain feedback from HTAP workshop participants regarding HTAP timelines. The National Exposure Research Laboratory (NERL) Atmospheric Modeling and Analysis Division (AMAD) conducts research in support of EPA mission to protect human health and the environment. AMAD research program is engaged in developing and evaluating predictive atmospheric models on all spatial and temporal scales for forecasting the air quality and for assessing changes in air quality and air pollutant exposures, as affected by changes in ecosystem management and regulatory decisions. AMAD is responsible for providing a sound scientific and technical basis for regulatory policies based on air quality models to improve ambient air quality. The models developed by AMAD are being used by EPA, NOAA, and the air pollution community in understanding and forecasting not only the magnitude of the air po
Environmentally Related Diseases and the Possibility of Valuation of Their Social Costs
Hajok, Ilona; Marchwińska, Ewa; Dziubanek, Grzegorz; Kuraszewska, Bernadeta; Piekut, Agata
2014-01-01
The risks of the morbidity of the asbestos-related lung cancer was estimated in the general population of Poles as the result of increased exposure to asbestos fibers during the removal of asbestos-cement products and the possibility of the valuation of the social costs related to this risk. The prediction of the new incidences was made using linear regression model. The forecast shows that to the end of 2030 about 3,500 new cases of lung cancer can be expected as a result of occupational exposure to asbestos in the past which makes together with paraoccupational exposure about 14.000 new cases. The forecast shows the increasing number of asbestos-related lung cancer in Poland and indicates the priority areas where preventive action should be implemented. PMID:25374934
Population exposure to hazardous air quality due to the 2015 fires in Equatorial Asia.
Crippa, P; Castruccio, S; Archer-Nicholls, S; Lebron, G B; Kuwata, M; Thota, A; Sumin, S; Butt, E; Wiedinmyer, C; Spracklen, D V
2016-11-16
Vegetation and peatland fires cause poor air quality and thousands of premature deaths across densely populated regions in Equatorial Asia. Strong El-Niño and positive Indian Ocean Dipole conditions are associated with an increase in the frequency and intensity of wildfires in Indonesia and Borneo, enhancing population exposure to hazardous concentrations of smoke and air pollutants. Here we investigate the impact on air quality and population exposure of wildfires in Equatorial Asia during Fall 2015, which were the largest over the past two decades. We performed high-resolution simulations using the Weather Research and Forecasting model with Chemistry based on a new fire emission product. The model captures the spatio-temporal variability of extreme pollution episodes relative to space- and ground-based observations and allows for identification of pollution sources and transport over Equatorial Asia. We calculate that high particulate matter concentrations from fires during Fall 2015 were responsible for persistent exposure of 69 million people to unhealthy air quality conditions. Short-term exposure to this pollution may have caused 11,880 (6,153-17,270) excess mortalities. Results from this research provide decision-relevant information to policy makers regarding the impact of land use changes and human driven deforestation on fire frequency and population exposure to degraded air quality.
Population exposure to hazardous air quality due to the 2015 fires in Equatorial Asia
Crippa, P.; Castruccio, S.; Archer-Nicholls, S.; Lebron, G. B.; Kuwata, M.; Thota, A.; Sumin, S.; Butt, E.; Wiedinmyer, C.; Spracklen, D. V.
2016-01-01
Vegetation and peatland fires cause poor air quality and thousands of premature deaths across densely populated regions in Equatorial Asia. Strong El-Niño and positive Indian Ocean Dipole conditions are associated with an increase in the frequency and intensity of wildfires in Indonesia and Borneo, enhancing population exposure to hazardous concentrations of smoke and air pollutants. Here we investigate the impact on air quality and population exposure of wildfires in Equatorial Asia during Fall 2015, which were the largest over the past two decades. We performed high-resolution simulations using the Weather Research and Forecasting model with Chemistry based on a new fire emission product. The model captures the spatio-temporal variability of extreme pollution episodes relative to space- and ground-based observations and allows for identification of pollution sources and transport over Equatorial Asia. We calculate that high particulate matter concentrations from fires during Fall 2015 were responsible for persistent exposure of 69 million people to unhealthy air quality conditions. Short-term exposure to this pollution may have caused 11,880 (6,153–17,270) excess mortalities. Results from this research provide decision-relevant information to policy makers regarding the impact of land use changes and human driven deforestation on fire frequency and population exposure to degraded air quality. PMID:27848989
Forecasting cyanobacteria dominance in Canadian temperate lakes.
Persaud, Anurani D; Paterson, Andrew M; Dillon, Peter J; Winter, Jennifer G; Palmer, Michelle; Somers, Keith M
2015-03-15
Predictive models based on broad scale, spatial surveys typically identify nutrients and climate as the most important predictors of cyanobacteria abundance; however these models generally have low predictive power because at smaller geographic scales numerous other factors may be equally or more important. At the lake level, for example, the ability to forecast cyanobacteria dominance is of tremendous value to lake managers as they can use such models to communicate exposure risks associated with recreational and drinking water use, and possible exposure to algal toxins, in advance of bloom occurrence. We used detailed algal, limnological and meteorological data from two temperate lakes in south-central Ontario, Canada to determine the factors that are closely linked to cyanobacteria dominance, and to develop easy to use models to forecast cyanobacteria biovolume. For Brandy Lake (BL), the strongest and most parsimonious model for forecasting % cyanobacteria biovolume (% CB) included water column stability, hypolimnetic TP, and % cyanobacteria biovolume two weeks prior. For Three Mile Lake (TML), the best model for forecasting % CB included water column stability, hypolimnetic TP concentration, and 7-d mean wind speed. The models for forecasting % CB in BL and TML are fundamentally different in their lag periods (BL = lag 1 model and TML = lag 2 model) and in some predictor variables despite the close proximity of the study lakes. We speculate that three main factors (nutrient concentrations, water transparency and lake morphometry) may have contributed to differences in the models developed, and may account for variation observed in models derived from large spatial surveys. Our results illustrate that while forecast models can be developed to determine when cyanobacteria will dominate within two temperate lakes, the models require detailed, lake-specific calibration to be effective as risk-management tools. Copyright © 2015 Elsevier Ltd. All rights reserved.
Understanding and seasonal forecasting of hydrological drought in the Anthropocene
NASA Astrophysics Data System (ADS)
Yuan, Xing; Zhang, Miao; Wang, Linying; Zhou, Tian
2017-11-01
Hydrological drought is not only caused by natural hydroclimate variability but can also be directly altered by human interventions including reservoir operation, irrigation, groundwater exploitation, etc. Understanding and forecasting of hydrological drought in the Anthropocene are grand challenges due to complicated interactions among climate, hydrology and humans. In this paper, five decades (1961-2010) of naturalized and observed streamflow datasets are used to investigate hydrological drought characteristics in a heavily managed river basin, the Yellow River basin in north China. Human interventions decrease the correlation between hydrological and meteorological droughts, and make the hydrological drought respond to longer timescales of meteorological drought. Due to large water consumptions in the middle and lower reaches, there are 118-262 % increases in the hydrological drought frequency, up to 8-fold increases in the drought severity, 21-99 % increases in the drought duration and the drought onset is earlier. The non-stationarity due to anthropogenic climate change and human water use basically decreases the correlation between meteorological and hydrological droughts and reduces the effect of human interventions on hydrological drought frequency while increasing the effect on drought duration and severity. A set of 29-year (1982-2010) hindcasts from an established seasonal hydrological forecasting system are used to assess the forecast skill of hydrological drought. In the naturalized condition, the climate-model-based approach outperforms the climatology method in predicting the 2001 severe hydrological drought event. Based on the 29-year hindcasts, the former method has a Brier skill score of 11-26 % against the latter for the probabilistic hydrological drought forecasting. In the Anthropocene, the skill for both approaches increases due to the dominant influence of human interventions that have been implicitly incorporated by the hydrological post-processing, while the difference between the two predictions decreases. This suggests that human interventions can outweigh the climate variability for the hydrological drought forecasting in the Anthropocene, and the predictability for human interventions needs more attention.
High Throughput Pharmacokinetics for Environmental Chemicals (FutureToxII)
Pharmacokinetic (PK) models are critical to determine whether chemical exposures produce potentially hazardous tissue concentrations. For bioactivity identified in vitro (e.g. ToxCast) – hazardous or not – PK models can forecast exposure thresholds, below which no significant bio...
Inference and forecast of H7N9 influenza in China, 2013 to 2015.
Li, Ruiyun; Bai, Yuqi; Heaney, Alex; Kandula, Sasikiran; Cai, Jun; Zhao, Xuyi; Xu, Bing; Shaman, Jeffrey
2017-02-16
The recent emergence of A(H7N9) avian influenza poses a significant challenge to public health in China and around the world; however, understanding of the transmission dynamics and progression of influenza A(H7N9) infection in domestic poultry, as well as spillover transmission to humans, remains limited. Here, we develop a mathematical model-Bayesian inference system which combines a simple epidemic model and data assimilation method, and use it in conjunction with data on observed human influenza A(H7N9) cases from 19 February 2013 to 19 September 2015 to estimate key epidemiological parameters and to forecast infection in both poultry and humans. Our findings indicate a high outbreak attack rate of 33% among poultry but a low rate of chicken-to-human spillover transmission. In addition, we generated accurate forecasts of the peak timing and magnitude of human influenza A(H7N9) cases. This work demonstrates that transmission dynamics within an avian reservoir can be estimated and that real-time forecast of spillover avian influenza in humans is possible. This article is copyright of The Authors, 2017.
Validation of the CME Geomagnetic Forecast Alerts Under the COMESEP Alert System
NASA Astrophysics Data System (ADS)
Dumbović, Mateja; Srivastava, Nandita; Rao, Yamini K.; Vršnak, Bojan; Devos, Andy; Rodriguez, Luciano
2017-08-01
Under the European Union 7th Framework Programme (EU FP7) project Coronal Mass Ejections and Solar Energetic Particles (COMESEP, http://comesep.aeronomy.be), an automated space weather alert system has been developed to forecast solar energetic particles (SEP) and coronal mass ejection (CME) risk levels at Earth. The COMESEP alert system uses the automated detection tool called Computer Aided CME Tracking (CACTus) to detect potentially threatening CMEs, a drag-based model (DBM) to predict their arrival, and a CME geoeffectiveness tool (CGFT) to predict their geomagnetic impact. Whenever CACTus detects a halo or partial halo CME and issues an alert, the DBM calculates its arrival time at Earth and the CGFT calculates its geomagnetic risk level. The geomagnetic risk level is calculated based on an estimation of the CME arrival probability and its likely geoeffectiveness, as well as an estimate of the geomagnetic storm duration. We present the evaluation of the CME risk level forecast with the COMESEP alert system based on a study of geoeffective CMEs observed during 2014. The validation of the forecast tool is made by comparing the forecasts with observations. In addition, we test the success rate of the automatic forecasts (without human intervention) against the forecasts with human intervention using advanced versions of the DBM and CGFT (independent tools available at the Hvar Observatory website, http://oh.geof.unizg.hr). The results indicate that the success rate of the forecast in its current form is unacceptably low for a realistic operation system. Human intervention improves the forecast, but the false-alarm rate remains unacceptably high. We discuss these results and their implications for possible improvement of the COMESEP alert system.
NASA Astrophysics Data System (ADS)
Daniels, R. M.; Jacobs, J. M.; Paranjpye, R.; Lanerolle, L. W.
2016-02-01
The Pathogens group of the NOAA Ecological Forecasting Roadmap has begun a range of efforts to monitor and predict potential pathogen occurrences in shellfish and in U.S. Coastal waters. NOAA/NCOSS along with NMFS/NWFSC have led the Pathogens group and the development of web based tools and forecasts for both Vibrio vulnificus and Vibrio parahaemolyticus. A strong relationship with FDA has allowed the team to develop forecasts that will serve U.S. shellfish harvesters and consumers. NOAA/NOS/CSDL has provided modeling expertise to help the group use the hydrodynamic models and their forecasts of physical variables that drive the ecological predictions. The NOAA/NWS/Ocean Prediction Center has enabled these ecological forecasting efforts by providing the infrastructure, computing knowledge and experience in an operational culture. Daily forecasts have been demonstrated and are available from the web for the Chesapeake Bay, Delaware Bay, Northern Gulf of Mexico, Tampa Bay, Puget Sound and Long Island Sound. The forecast systems run on a daily basis being fed by NOS model data from the NWS/NCEP super computers. New forecast tools including V. parahaemolyticus post harvest growth and doubling time in ambient air temperature will be described.
Validation of the CME Geomagnetic forecast alerts under COMESEP alert system
NASA Astrophysics Data System (ADS)
Dumbovic, Mateja; Srivastava, Nandita; Khodia, Yamini; Vršnak, Bojan; Devos, Andy; Rodriguez, Luciano
2017-04-01
An automated space weather alert system has been developed under the EU FP7 project COMESEP (COronal Mass Ejections and Solar Energetic Particles: http://comesep.aeronomy.be) to forecast solar energetic particles (SEP) and coronal mass ejection (CME) risk levels at Earth. COMESEP alert system uses automated detection tool CACTus to detect potentially threatening CMEs, drag-based model (DBM) to predict their arrival and CME geo-effectiveness tool (CGFT) to predict their geomagnetic impact. Whenever CACTus detects a halo or partial halo CME and issues an alert, DBM calculates its arrival time at Earth and CGFT calculates its geomagnetic risk level. Geomagnetic risk level is calculated based on an estimation of the CME arrival probability and its likely geo-effectiveness, as well as an estimate of the geomagnetic-storm duration. We present the evaluation of the CME risk level forecast with COMESEP alert system based on a study of geo-effective CMEs observed during 2014. The validation of the forecast tool is done by comparing the forecasts with observations. In addition, we test the success rate of the automatic forecasts (without human intervention) against the forecasts with human intervention using advanced versions of DBM and CGFT (self standing tools available at Hvar Observatory website: http://oh.geof.unizg.hr). The results implicate that the success rate of the forecast is higher with human intervention and using more advanced tools. This work has received funding from the European Commission FP7 Project COMESEP (263252). We acknowledge the support of Croatian Science Foundation under the project 6212 „Solar and Stellar Variability".
[Medical human resources planning in Europe: A literature review of the forecasting models].
Benahmed, N; Deliège, D; De Wever, A; Pirson, M
2018-02-01
Healthcare is a labor-intensive sector in which half of the expenses are dedicated to human resources. Therefore, policy makers, at national and internal levels, attend to the number of practicing professionals and the skill mix. This paper aims to analyze the European forecasting model for supply and demand of physicians. To describe the forecasting tools used for physician planning in Europe, a grey literature search was done in the OECD, WHO, and European Union libraries. Electronic databases such as Pubmed, Medine, Embase and Econlit were also searched. Quantitative methods for forecasting medical supply rely mainly on stock-and-flow simulations and less often on systemic dynamics. Parameters included in forecasting models exhibit wide variability for data availability and quality. The forecasting of physician needs is limited to healthcare consumption and rarely considers overall needs and service targets. Besides quantitative methods, horizon scanning enables an evaluation of the changes in supply and demand in an uncertain future based on qualitative techniques such as semi-structured interviews, Delphi Panels, or focus groups. Finally, supply and demand forecasting models should be regularly updated. Moreover, post-hoc analyze is also needed but too rarely implemented. Medical human resource planning in Europe is inconsistent. Political implementation of the results of forecasting projections is essential to insure efficient planning. However, crucial elements such as mobility data between Member States are poorly understood, impairing medical supply regulation policies. These policies are commonly limited to training regulations, while horizontal and vertical substitution is less frequently taken into consideration. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
High Throughput Exposure Forecasts for Environmental Chemical Risk (SOT RASS)
Email Announcement to RASS: On December 11th we have rescheduled the webinar regarding progress and advances in exposure assessment, which was cancelled due to the government shutdown in October. Dr. Elaine Hubal, Deputy Director of the Chemical Safety for Sustainability (CSS) n...
Toward risk reduction: predicting the future burden of occupational cancer.
Hutchings, Sally; Rushton, Lesley
2011-05-01
Interventions to reduce cancers related to certain occupations should be evidence-based. The authors have developed a method for forecasting the future burden of occupational cancer to inform strategies for risk reduction. They project risk exposure periods, accounting for cancer latencies of up to 50 years, forward in time to estimate attributable fractions for a series of forecast target years given past and projected exposure trends and under targeted reduction scenarios. Adjustment factors for changes in exposed numbers and levels are applied in estimation intervals within the risk-exposure periods. The authors illustrate the methods by using a range of scenarios for reducing lung cancer due to occupational exposure to respirable crystalline silica. Attributable fractions for lung cancer due to respirable crystalline silica could be potentially reduced from 2.07% in 2010 to nearly 0% by 2060, depending on the timing and success of interventions. Focusing on achieving compliance with current exposure standards in small industries can be more effective than setting standards at a lower level. The method can be used to highlight high-risk carcinogens, industries, and occupations. It is adaptable for other countries and other exposure situations in the general environment and can be extended to include socioeconomic impact assessment.
Emerging Tools to Estimate and to Predict Exposures to ...
The timely assessment of the human and ecological risk posed by thousands of existing and emerging commercial chemicals is a critical challenge facing EPA in its mission to protect public health and the environment The US EPA has been conducting research to enhance methods used to estimate and forecast exposures for tens of thousands of chemicals. This research is aimed at both assessing risks and supporting life cycle analysis, by developing new models and tools for high throughput exposure screening and prioritization, as well as databases that support these and other tools, especially regarding consumer products. The models and data address usage, and take advantage of quantitative structural activity relationships (QSARs) for both inherent chemical properties and function (why the chemical is a product ingredient). To make them more useful and widely available, the new tools, data and models are designed to be: • Flexible • Intraoperative • Modular (useful to more than one, stand-alone application) • Open (publicly available software) Presented at the Society for Risk Analysis Forum: Risk Governance for Key Enabling Technologies, Venice, Italy, March 1-3, 2017
Deo, Ravinesh C; Downs, Nathan; Parisi, Alfio V; Adamowski, Jan F; Quilty, John M
2017-05-01
Exposure to erythemally-effective solar ultraviolet radiation (UVR) that contributes to malignant keratinocyte cancers and associated health-risk is best mitigated through innovative decision-support systems, with global solar UV index (UVI) forecast necessary to inform real-time sun-protection behaviour recommendations. It follows that the UVI forecasting models are useful tools for such decision-making. In this study, a model for computationally-efficient data-driven forecasting of diffuse and global very short-term reactive (VSTR) (10-min lead-time) UVI, enhanced by drawing on the solar zenith angle (θ s ) data, was developed using an extreme learning machine (ELM) algorithm. An ELM algorithm typically serves to address complex and ill-defined forecasting problems. UV spectroradiometer situated in Toowoomba, Australia measured daily cycles (0500-1700h) of UVI over the austral summer period. After trialling activations functions based on sine, hard limit, logarithmic and tangent sigmoid and triangular and radial basis networks for best results, an optimal ELM architecture utilising logarithmic sigmoid equation in hidden layer, with lagged combinations of θ s as the predictor data was developed. ELM's performance was evaluated using statistical metrics: correlation coefficient (r), Willmott's Index (WI), Nash-Sutcliffe efficiency coefficient (E NS ), root mean square error (RMSE), and mean absolute error (MAE) between observed and forecasted UVI. Using these metrics, the ELM model's performance was compared to that of existing methods: multivariate adaptive regression spline (MARS), M5 Model Tree, and a semi-empirical (Pro6UV) clear sky model. Based on RMSE and MAE values, the ELM model (0.255, 0.346, respectively) outperformed the MARS (0.310, 0.438) and M5 Model Tree (0.346, 0.466) models. Concurring with these metrics, the Willmott's Index for the ELM, MARS and M5 Model Tree models were 0.966, 0.942 and 0.934, respectively. About 57% of the ELM model's absolute errors were small in magnitude (±0.25), whereas the MARS and M5 Model Tree models generated 53% and 48% of such errors, respectively, indicating the latter models' errors to be distributed in larger magnitude error range. In terms of peak global UVI forecasting, with half the level of error, the ELM model outperformed MARS and M5 Model Tree. A comparison of the magnitude of hourly-cumulated errors of 10-min lead time forecasts for diffuse and global UVI highlighted ELM model's greater accuracy compared to MARS, M5 Model Tree or Pro6UV models. This confirmed the versatility of an ELM model drawing on θ s data for VSTR forecasting of UVI at near real-time horizon. When applied to the goal of enhancing expert systems, ELM-based accurate forecasts capable of reacting quickly to measured conditions can enhance real-time exposure advice for the public, mitigating the potential for solar UV-exposure-related disease. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.
Satellite based Ocean Forecasting, the SOFT project
NASA Astrophysics Data System (ADS)
Stemmann, L.; Tintoré, J.; Moneris, S.
2003-04-01
The knowledge of future oceanic conditions would have enormous impact on human marine related areas. For such reasons, a number of international efforts are being carried out to obtain reliable and manageable ocean forecasting systems. Among the possible techniques that can be used to estimate the near future states of the ocean, an ocean forecasting system based on satellite imagery is developped through the Satelitte based Ocean ForecasTing project (SOFT). SOFT, established by the European Commission, considers the development of a forecasting system of the ocean space-time variability based on satellite data by using Artificial Intelligence techniques. This system will be merged with numerical simulation approaches, via assimilation techniques, to get a hybrid SOFT-numerical forecasting system of improved performance. The results of the project will provide efficient forecasting of sea-surface temperature structures, currents, dynamic height, and biological activity associated to chlorophyll fields. All these quantities could give valuable information on the planning and management of human activities in marine environments such as navigation, fisheries, pollution control, or coastal management. A detailed identification of present or new needs and potential end-users concerned by such an operational tool is being performed. The project would study solutions adapted to these specific needs.
Incidence of lip cancer in the male Norwegian agricultural population.
Nordby, K C; Andersen, A; Kristensen, P
2004-08-01
To explore lip cancer (LC) associations with work environmental exposures in a record-linkage study of Norwegian farmers. We hypothesize immunosuppressive substances (e.g. mycotoxins, pesticides) to influence LC incidence. A cohort of 131,243 male Norwegian farmers born 1925-1971 was established by cross-linkage of national registers and followed up through 1999 for incident LC, (ICD-7 site 140) in the Cancer Registry of Norway. Farm production data from agricultural censuses 1969-1979 and meteorological data on solar radiation and fungal forecasts (events of wet and temperate conditions known to favour fungal growth and mycotoxin formation) served as exposure proxies. Adjusted rate ratios (RR) and 95% confidence intervals (CI) were estimated using Poisson regression. We identified 108 LC cases (rate 4.4 per 100,000 person-years). We found LC to be moderately associated with horses on the farm (RR = 1.6, CI = 1.0-2.4), construction work employment (RR = 1.7, CI = 1.1-2.6), pesticide use (RR = 0.7, CI = 0.4-1.0), grain production (RR = 1.3, CI = 0.9-2.1) and increasing levels of fungal forecasts (RR = 1.6, CI = 0.9-2.8 in the highest two quartiles). Moderate associations of LC with grain production and fungal forecasts and the negative association with pesticide could possibly be explained by exposure to immunosuppressive mycotoxins. Some of the associations observed could be explained by solar exposure. Copyright 2004 Kluwer Academic Publishers
Trichothecene mycotoxins and their determinants in settled dust related to grain production.
Nordby, Karl-Christian; Halstensen, Anne Straumfors; Elen, Oleif; Clasen, Per-Erik; Langseth, Wenche; Kristensen, Petter; Eduard, Wijnand
2004-01-01
We hypothesise that inhalant exposure to mycotoxins causes developmental outcomes and certain hormone-related cancers that are associated with grain farming in an epidemiological study. The aim of the present study was to identify and validate determinants of measured trichothecene mycotoxins in grain dust as work environmental trichothecene exposure indicators. Settled grain dust was collected in 92 Norwegian farms during seasons of 1999 and 2000. Production characteristics and climatic data were studied as determinants of trichothecenes in settled dust samples obtained during the production of barley (N = 59), oats (N = 32), and spring wheat (N = 13). Median concentrations of trichothecenes in grain dust were <20, 54, and < 50 mg/kg (ranges < 20-340, < 30-2400, and < 50-1200) for deoxynivalenol (DON), HT-2 toxin (HT-2) and T-2 toxin (T-2) respectively. Late blight potato rot (fungal) forecasts have been broadcast in Norway to help prevent this potato disease. Fungal forecasts representing wet, temperate, and humid meteorological conditions were identified as strong determinants of trichothecene mycotoxins in settled grain dust in this study. Differences in cereal species, production properties and districts contributed less to explain mycotoxin concentrations. Fungal forecasts are validated as indicators of mycotoxin exposure of grain farmers and their use in epidemiological studies may be warranted.
Updates on EPA’s High-Throughput Exposure Forecast (ExpoCast) Research Project (CPCP)
Recent research advances by the ORD ExpoCast project (CSS Rapid Exposure and Dosimetry) are presented to the computational toxicology community in the context of prioritizing chemicals on a risk-basis using joint ExpoCast and ToxCast predictions. Recent publications by Wambaugh e...
Release of ToxCastDB and ExpoCastDB databases
EPA has released two databases - the Toxicity Forecaster database (ToxCastDB) and a database of chemical exposure studies (ExpoCastDB) - that scientists and the public can use to access chemical toxicity and exposure data. ToxCastDB users can search and download data from over 50...
NASA Astrophysics Data System (ADS)
Poletti, Maria Laura; Pignone, Flavio; Rebora, Nicola; Silvestro, Francesco
2017-04-01
The exposure of the urban areas to flash-floods is particularly significant to Mediterranean coastal cities, generally densely-inhabited. Severe rainfall events often associated to intense and organized thunderstorms produced, during the last century, flash-floods and landslides causing serious damages to urban areas and in the worst events led to human losses. The temporal scale of these events has been observed strictly linked to the size of the catchments involved: in the Mediterranean area a great number of catchments that pass through coastal cities have a small drainage area (less than 100 km2) and a corresponding hydrologic response timescale in the order of a few hours. A suitable nowcasting chain is essential for the on time forecast of this kind of events. In fact meteorological forecast systems are unable to predict precipitation at the scale of these events, small both at spatial (few km) and temporal (hourly) scales. Nowcasting models, covering the time interval of the following two hours starting from the observation try to extend the predictability limits of the forecasting models in support of real-time flood alert system operations. This work aims to present the use of hydrological models coupled with nowcasting techniques. The nowcasting model PhaSt furnishes an ensemble of equi-probable future precipitation scenarios on time horizons of 1-3 h starting from the most recent radar observations. The coupling of the nowcasting model PhaSt with the hydrological model Continuum allows to forecast the flood with a few hours in advance. In this way it is possible to generate different discharge prediction for the following hours and associated return period maps: these maps can be used as a support in the decisional process for the warning system.
NASA Technical Reports Server (NTRS)
1985-01-01
Operational forecasters have habitually been plagued with the problems associated with acquisition, display, and dissemination of data used in preparing forecasts. The centralized storm information system (CSIS) experiment provided an operational forecaster with an interactive computer system which could perform these preliminary tasks more quickly and accurately than any human could. CSIS objectives pertaining to improved severe storms forecasting and warning procedures are addressed.
Dispersion modeling of accidental releases of toxic gases - utility for the fire brigades.
NASA Astrophysics Data System (ADS)
Stenzel, S.; Baumann-Stanzer, K.
2009-09-01
Several air dispersion models are available for prediction and simulation of the hazard areas associated with accidental releases of toxic gases. The most model packages (commercial or free of charge) include a chemical database, an intuitive graphical user interface (GUI) and automated graphical output for effective presentation of results. The models are designed especially for analyzing different accidental toxic release scenarios ("worst-case scenarios”), preparing emergency response plans and optimal countermeasures as well as for real-time risk assessment and management. The research project RETOMOD (reference scenarios calculations for toxic gas releases - model systems and their utility for the fire brigade) was conducted by the Central Institute for Meteorology and Geodynamics (ZAMG) in cooperation with the Viennese fire brigade, OMV Refining & Marketing GmbH and Synex Ries & Greßlehner GmbH. RETOMOD was funded by the KIRAS safety research program of the Austrian Ministry of Transport, Innovation and Technology (www.kiras.at). The main tasks of this project were 1. Sensitivity study and optimization of the meteorological input for modeling of the hazard areas (human exposure) during the accidental toxic releases. 2. Comparison of several model packages (based on reference scenarios) in order to estimate the utility for the fire brigades. For the purpose of our study the following models were tested and compared: ALOHA (Areal Location of Hazardous atmosphere, EPA), MEMPLEX (Keudel av-Technik GmbH), Trace (Safer System), Breeze (Trinity Consulting), SAM (Engineering office Lohmeyer). A set of reference scenarios for Chlorine, Ammoniac, Butane and Petrol were proceed, with the models above, in order to predict and estimate the human exposure during the event. Furthermore, the application of the observation-based analysis and forecasting system INCA, developed in the Central Institute for Meteorology and Geodynamics (ZAMG) in case of toxic release was investigated. INCA (Integrated Nowcasting through Comprehensive Analysis) data are calculated operationally with 1 km horizontal resolution and based on the weather forecast model ALADIN. The meteorological field's analysis with INCA include: Temperature, Humidity, Wind, Precipitation, Cloudiness and Global Radiation. In the frame of the project INCA data were compared with measurements from the meteorological observational network, conducted at traffic-near sites in Vienna. INCA analysis and very short term forecast fields (up to 6 hours) are found to be an advanced possibility to provide on-line meteorological input for the model package used by the fire brigade. Since the input requirements differ from model to model, and the outputs are based on unequal criteria for toxic area and exposure, a high degree of caution in the interpretation of the model results is required - especially in the case of slow wind speeds, stable atmospheric condition, and flow deflection by buildings in the urban area or by complex topography.
NASA Astrophysics Data System (ADS)
Chardon, J.; Mathevet, T.; Le Lay, M.; Gailhard, J.
2012-04-01
In the context of a national energy company (EDF : Electricité de France), hydro-meteorological forecasts are necessary to ensure safety and security of installations, meet environmental standards and improve water ressources management and decision making. Hydrological ensemble forecasts allow a better representation of meteorological and hydrological forecasts uncertainties and improve human expertise of hydrological forecasts, which is essential to synthesize available informations, coming from different meteorological and hydrological models and human experience. An operational hydrological ensemble forecasting chain has been developed at EDF since 2008 and is being used since 2010 on more than 30 watersheds in France. This ensemble forecasting chain is characterized ensemble pre-processing (rainfall and temperature) and post-processing (streamflow), where a large human expertise is solicited. The aim of this paper is to compare 2 hydrological ensemble post-processing methods developed at EDF in order improve ensemble forecasts reliability (similar to Monatanari &Brath, 2004; Schaefli et al., 2007). The aim of the post-processing methods is to dress hydrological ensemble forecasts with hydrological model uncertainties, based on perfect forecasts. The first method (called empirical approach) is based on a statistical modelisation of empirical error of perfect forecasts, by streamflow sub-samples of quantile class and lead-time. The second method (called dynamical approach) is based on streamflow sub-samples of quantile class and streamflow variation, and lead-time. On a set of 20 watersheds used for operational forecasts, results show that both approaches are necessary to ensure a good post-processing of hydrological ensemble, allowing a good improvement of reliability, skill and sharpness of ensemble forecasts. The comparison of the empirical and dynamical approaches shows the limits of the empirical approach which is not able to take into account hydrological dynamic and processes, i. e. sample heterogeneity. For a same streamflow range corresponds different processes such as rising limbs or recession, where uncertainties are different. The dynamical approach improves reliability, skills and sharpness of forecasts and globally reduces confidence intervals width. When compared in details, the dynamical approach allows a noticeable reduction of confidence intervals during recessions where uncertainty is relatively lower and a slight increase of confidence intervals during rising limbs or snowmelt where uncertainty is greater. The dynamic approach, validated by forecaster's experience that considered the empirical approach not discriminative enough, improved forecaster's confidence and communication of uncertainties. Montanari, A. and Brath, A., (2004). A stochastic approach for assessing the uncertainty of rainfall-runoff simulations. Water Resources Research, 40, W01106, doi:10.1029/2003WR002540. Schaefli, B., Balin Talamba, D. and Musy, A., (2007). Quantifying hydrological modeling errors through a mixture of normal distributions. Journal of Hydrology, 332, 303-315.
The forecaster's added value in QPF
NASA Astrophysics Data System (ADS)
Turco, M.; Milelli, M.
2010-03-01
To the authors' knowledge there are relatively few studies that try to answer this question: "Are humans able to add value to computer-generated forecasts and warnings?". Moreover, the answers are not always positive. In particular some postprocessing method is competitive or superior to human forecast. Within the alert system of ARPA Piemonte it is possible to study in an objective manner if the human forecaster is able to add value with respect to computer-generated forecasts. Every day the meteorology group of the Centro Funzionale of Regione Piemonte produces the HQPF (Human Quantitative Precipitation Forecast) in terms of an areal average and maximum value for each of the 13 warning areas, which have been created according to meteo-hydrological criteria. This allows the decision makers to produce an evaluation of the expected effects by comparing these HQPFs with predefined rainfall thresholds. Another important ingredient in this study is the very dense non-GTS (Global Telecommunication System) network of rain gauges available that makes possible a high resolution verification. In this work we compare the performances of the latest three years of QPF derived from the meteorological models COSMO-I7 (the Italian version of the COSMO Model, a mesoscale model developed in the framework of the COSMO Consortium) and IFS (the ECMWF global model) with the HQPF. In this analysis it is possible to introduce the hypothesis test developed by Hamill (1999), in which a confidence interval is calculated with the bootstrap method in order to establish the real difference between the skill scores of two competitive forecasts. It is important to underline that the conclusions refer to the analysis of the Piemonte operational alert system, so they cannot be directly taken as universally true. But we think that some of the main lessons that can be derived from this study could be useful for the meteorological community. In details, the main conclusions are the following: - despite the overall improvement in global scale and the fact that the resolution of the limited area models has increased considerably over recent years, the QPF produced by the meteorological models involved in this study has not improved enough to allow its direct use: the subjective HQPF continues to offer the best performance for the period +24 h/+48 h (i.e. the warning period in the Piemonte system); - in the forecast process, the step where humans have the largest added value with respect to mathematical models, is the communication. In fact the human characterization and communication of the forecast uncertainty to end users cannot be replaced by any computer code; - eventually, although there is no novelty in this study, we would like to show that the correct application of appropriated statistical techniques permits a better definition and quantification of the errors and, mostly important, allows a correct (unbiased) communication between forecasters and decision makers.
An experimental system for flood risk forecasting and monitoring at global scale
NASA Astrophysics Data System (ADS)
Dottori, Francesco; Alfieri, Lorenzo; Kalas, Milan; Lorini, Valerio; Salamon, Peter
2017-04-01
Global flood forecasting and monitoring systems are nowadays a reality and are being applied by a wide range of users and practitioners in disaster risk management. Furthermore, there is an increasing demand from users to integrate flood early warning systems with risk based forecasting, combining streamflow estimations with expected inundated areas and flood impacts. Finally, emerging technologies such as crowdsourcing and social media monitoring can play a crucial role in flood disaster management and preparedness. Here, we present some recent advances of an experimental procedure for near-real time flood mapping and impact assessment. The procedure translates in near real-time the daily streamflow forecasts issued by the Global Flood Awareness System (GloFAS) into event-based flood hazard maps, which are then combined with exposure and vulnerability information at global scale to derive risk forecast. Impacts of the forecasted flood events are evaluated in terms of flood prone areas, potential economic damage, and affected population, infrastructures and cities. To increase the reliability of our forecasts we propose the integration of model-based estimations with an innovative methodology for social media monitoring, which allows for real-time verification and correction of impact forecasts. Finally, we present the results of preliminary tests which show the potential of the proposed procedure in supporting emergency response and management.
NASA Astrophysics Data System (ADS)
Yuchi, Weiran; Yao, Jiayun; McLean, Kathleen E.; Stull, Roland; Pavlovic, Radenko; Davignon, Didier; Moran, Michael D.; Henderson, Sarah B.
2016-11-01
Fine particulate matter (PM2.5) generated by forest fires has been associated with a wide range of adverse health outcomes, including exacerbation of respiratory diseases and increased risk of mortality. Due to the unpredictable nature of forest fires, it is challenging for public health authorities to reliably evaluate the magnitude and duration of potential exposures before they occur. Smoke forecasting tools are a promising development from the public health perspective, but their widespread adoption is limited by their inherent uncertainties. Observed measurements from air quality monitoring networks and remote sensing platforms are more reliable, but they are inherently retrospective. It would be ideal to reduce the uncertainty in smoke forecasts by integrating any available observations. This study takes spatially resolved PM2.5 estimates from an empirical model that integrates air quality measurements with satellite data, and averages them with PM2.5 predictions from two smoke forecasting systems. Two different indicators of population respiratory health are then used to evaluate whether the blending improved the utility of the smoke forecasts. Among a total of six models, including two single forecasts and four blended forecasts, the blended estimates always performed better than the forecast values alone. Integrating measured observations into smoke forecasts could improve public health preparedness for smoke events, which are becoming more frequent and intense as the climate changes.
Operational Prototype Development of a Global Aircraft Radiation Exposure Nowcast
NASA Astrophysics Data System (ADS)
Mertens, Christopher; Kress, Brian; Wiltberger, Michael; Tobiska, W. Kent; Bouwer, Dave
Galactic cosmic rays (GCR) and solar energetic particles (SEP) are the primary sources of human exposure to high linear energy transfer (LET) radiation in the atmosphere. High-LET radiation is effective at directly breaking DNA strands in biological tissue, or producing chemically active radicals in tissue that alter the cell function, both of which can lead to cancer or other adverse health effects. A prototype operational nowcast model of air-crew radiation exposure is currently under development and funded by NASA. The model predicts air-crew radiation exposure levels from both GCR and SEP that may accompany solar storms. The new air-crew radiation exposure model is called the Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) model. NAIRAS will provide global, data-driven, real-time exposure predictions of biologically harmful radiation at aviation altitudes. Observations are utilized from the ground (neutron monitors), from the atmosphere (the NCEP Global Forecast System), and from space (NASA/ACE and NOAA/GOES). Atmospheric observations characterize the overhead mass shielding and the ground-and space-based observations provide boundary conditions on the incident GCR and SEP particle flux distributions for transport and dosimetry calculations. Radiation exposure rates are calculated using the NASA physics-based HZETRN (High Charge (Z) and Energy TRaNsport) code. An overview of the NAIRAS model is given: the concept, design, prototype implementation status, data access, and example results. Issues encountered thus far and known and/or anticipated hurdles to research to operations transition are also discussed.
Real-time Social Internet Data to Guide Forecasting Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Del Valle, Sara Y.
Our goal is to improve decision support by monitoring and forecasting events using social media, mathematical models, and quantifying model uncertainty. Our approach is real-time, data-driven forecasts with quantified uncertainty: Not just for weather anymore. Information flow from human observations of events through an Internet system and classification algorithms is used to produce quantitatively uncertain forecast. In summary, we want to develop new tools to extract useful information from Internet data streams, develop new approaches to assimilate real-time information into predictive models, validate approaches by forecasting events, and our ultimate goal is to develop an event forecasting system using mathematicalmore » approaches and heterogeneous data streams.« less
Residential Saudi load forecasting using analytical model and Artificial Neural Networks
NASA Astrophysics Data System (ADS)
Al-Harbi, Ahmad Abdulaziz
In recent years, load forecasting has become one of the main fields of study and research. Short Term Load Forecasting (STLF) is an important part of electrical power system operation and planning. This work investigates the applicability of different approaches; Artificial Neural Networks (ANNs) and hybrid analytical models to forecast residential load in Kingdom of Saudi Arabia (KSA). These two techniques are based on model human modes behavior formulation. These human modes represent social, religious, official occasions and environmental parameters impact. The analysis is carried out on residential areas for three regions in two countries exposed to distinct people activities and weather conditions. The collected data are for Al-Khubar and Yanbu industrial city in KSA, in addition to Seattle, USA to show the validity of the proposed models applied on residential load. For each region, two models are proposed. First model is next hour load forecasting while second model is next day load forecasting. Both models are analyzed using the two techniques. The obtained results for ANN next hour models yield very accurate results for all areas while relatively reasonable results are achieved when using hybrid analytical model. For next day load forecasting, the two approaches yield satisfactory results. Comparative studies were conducted to prove the effectiveness of the models proposed.
Forecasting Exposure in Order to Use High Throughput Hazard Data in a Risk-based Context (WC9)
The ToxCast program and Tox21 consortium have evaluated over 8000 chemicals using in vitro high-throughput screening (HTS) to identify potential hazards. Complementary exposure science needed to assess risk, and the U.S. Environmental Protection Agency (EPA)’s ExpoCast initiative...
There is a growing need in the field of exposure science for monitoring methods that rapidly screen environmental media for suspect contaminants. Measurement and analysis platforms, based on high resolution mass spectrometry (HRMS), now exist to meet this need. Here we describe r...
NASA Astrophysics Data System (ADS)
Tessler, Z. D.; Vorosmarty, C. J.
2016-12-01
Deltas are highly sensitive to local human activities, land subsidence, regional water management, global sea-level rise, and climate extremes. We present a new delta flood exposure and risk framework for estimating the sensitivity of deltas to relative sea-level rise. We have applied this framework to a set of global environmental, geophysical, and social indicators over 48 major river deltas to quantify how contemporary risks vary across delta systems. The risk modeling framework incorporates upstream sediment flux and coastal land subsidence models, global empirical estimates of contemporary storm surge exposure, and population distribution and growth. Future scenarios are used to test the impacts on coastal flood risk of upstream dam construction, coastal population growth, accelerated sea-level rise, and enhanced storm surge. Results suggest a wide range of outcomes across different delta systems within each scenario. Deltas in highly engineered watersheds (Mississippi, Rhine) exhibit less sensitivity to increased dams due to saturation of sediment retention effects, though planned or under-construction dams are expected to have a substantial impact in the Yangtze, Irrawaddy, and Magdalena deltas. Population growth and sea-level rise are expected to be the dominant drivers of increased human risk in most deltas, with important exceptions in several countries, particularly China, where population are forecast to contract over the next several decades.
An Optimization of Inventory Demand Forecasting in University Healthcare Centre
NASA Astrophysics Data System (ADS)
Bon, A. T.; Ng, T. K.
2017-01-01
Healthcare industry becomes an important field for human beings nowadays as it concerns about one’s health. With that, forecasting demand for health services is an important step in managerial decision making for all healthcare organizations. Hence, a case study was conducted in University Health Centre to collect historical demand data of Panadol 650mg for 68 months from January 2009 until August 2014. The aim of the research is to optimize the overall inventory demand through forecasting techniques. Quantitative forecasting or time series forecasting model was used in the case study to forecast future data as a function of past data. Furthermore, the data pattern needs to be identified first before applying the forecasting techniques. Trend is the data pattern and then ten forecasting techniques are applied using Risk Simulator Software. Lastly, the best forecasting techniques will be find out with the least forecasting error. Among the ten forecasting techniques include single moving average, single exponential smoothing, double moving average, double exponential smoothing, regression, Holt-Winter’s additive, Seasonal additive, Holt-Winter’s multiplicative, seasonal multiplicative and Autoregressive Integrated Moving Average (ARIMA). According to the forecasting accuracy measurement, the best forecasting technique is regression analysis.
Air Pollution Forecasts: An Overview
Bai, Lu; Wang, Jianzhou; Lu, Haiyan
2018-01-01
Air pollution is defined as a phenomenon harmful to the ecological system and the normal conditions of human existence and development when some substances in the atmosphere exceed a certain concentration. In the face of increasingly serious environmental pollution problems, scholars have conducted a significant quantity of related research, and in those studies, the forecasting of air pollution has been of paramount importance. As a precaution, the air pollution forecast is the basis for taking effective pollution control measures, and accurate forecasting of air pollution has become an important task. Extensive research indicates that the methods of air pollution forecasting can be broadly divided into three classical categories: statistical forecasting methods, artificial intelligence methods, and numerical forecasting methods. More recently, some hybrid models have been proposed, which can improve the forecast accuracy. To provide a clear perspective on air pollution forecasting, this study reviews the theory and application of those forecasting models. In addition, based on a comparison of different forecasting methods, the advantages and disadvantages of some methods of forecasting are also provided. This study aims to provide an overview of air pollution forecasting methods for easy access and reference by researchers, which will be helpful in further studies. PMID:29673227
Air Pollution Forecasts: An Overview.
Bai, Lu; Wang, Jianzhou; Ma, Xuejiao; Lu, Haiyan
2018-04-17
Air pollution is defined as a phenomenon harmful to the ecological system and the normal conditions of human existence and development when some substances in the atmosphere exceed a certain concentration. In the face of increasingly serious environmental pollution problems, scholars have conducted a significant quantity of related research, and in those studies, the forecasting of air pollution has been of paramount importance. As a precaution, the air pollution forecast is the basis for taking effective pollution control measures, and accurate forecasting of air pollution has become an important task. Extensive research indicates that the methods of air pollution forecasting can be broadly divided into three classical categories: statistical forecasting methods, artificial intelligence methods, and numerical forecasting methods. More recently, some hybrid models have been proposed, which can improve the forecast accuracy. To provide a clear perspective on air pollution forecasting, this study reviews the theory and application of those forecasting models. In addition, based on a comparison of different forecasting methods, the advantages and disadvantages of some methods of forecasting are also provided. This study aims to provide an overview of air pollution forecasting methods for easy access and reference by researchers, which will be helpful in further studies.
Influenza forecasting in human populations: a scoping review.
Chretien, Jean-Paul; George, Dylan; Shaman, Jeffrey; Chitale, Rohit A; McKenzie, F Ellis
2014-01-01
Forecasts of influenza activity in human populations could help guide key preparedness tasks. We conducted a scoping review to characterize these methodological approaches and identify research gaps. Adapting the PRISMA methodology for systematic reviews, we searched PubMed, CINAHL, Project Euclid, and Cochrane Database of Systematic Reviews for publications in English since January 1, 2000 using the terms "influenza AND (forecast* OR predict*)", excluding studies that did not validate forecasts against independent data or incorporate influenza-related surveillance data from the season or pandemic for which the forecasts were applied. We included 35 publications describing population-based (N = 27), medical facility-based (N = 4), and regional or global pandemic spread (N = 4) forecasts. They included areas of North America (N = 15), Europe (N = 14), and/or Asia-Pacific region (N = 4), or had global scope (N = 3). Forecasting models were statistical (N = 18) or epidemiological (N = 17). Five studies used data assimilation methods to update forecasts with new surveillance data. Models used virological (N = 14), syndromic (N = 13), meteorological (N = 6), internet search query (N = 4), and/or other surveillance data as inputs. Forecasting outcomes and validation metrics varied widely. Two studies compared distinct modeling approaches using common data, 2 assessed model calibration, and 1 systematically incorporated expert input. Of the 17 studies using epidemiological models, 8 included sensitivity analysis. This review suggests need for use of good practices in influenza forecasting (e.g., sensitivity analysis); direct comparisons of diverse approaches; assessment of model calibration; integration of subjective expert input; operational research in pilot, real-world applications; and improved mutual understanding among modelers and public health officials.
Influenza Forecasting in Human Populations: A Scoping Review
Chretien, Jean-Paul; George, Dylan; Shaman, Jeffrey; Chitale, Rohit A.; McKenzie, F. Ellis
2014-01-01
Forecasts of influenza activity in human populations could help guide key preparedness tasks. We conducted a scoping review to characterize these methodological approaches and identify research gaps. Adapting the PRISMA methodology for systematic reviews, we searched PubMed, CINAHL, Project Euclid, and Cochrane Database of Systematic Reviews for publications in English since January 1, 2000 using the terms “influenza AND (forecast* OR predict*)”, excluding studies that did not validate forecasts against independent data or incorporate influenza-related surveillance data from the season or pandemic for which the forecasts were applied. We included 35 publications describing population-based (N = 27), medical facility-based (N = 4), and regional or global pandemic spread (N = 4) forecasts. They included areas of North America (N = 15), Europe (N = 14), and/or Asia-Pacific region (N = 4), or had global scope (N = 3). Forecasting models were statistical (N = 18) or epidemiological (N = 17). Five studies used data assimilation methods to update forecasts with new surveillance data. Models used virological (N = 14), syndromic (N = 13), meteorological (N = 6), internet search query (N = 4), and/or other surveillance data as inputs. Forecasting outcomes and validation metrics varied widely. Two studies compared distinct modeling approaches using common data, 2 assessed model calibration, and 1 systematically incorporated expert input. Of the 17 studies using epidemiological models, 8 included sensitivity analysis. This review suggests need for use of good practices in influenza forecasting (e.g., sensitivity analysis); direct comparisons of diverse approaches; assessment of model calibration; integration of subjective expert input; operational research in pilot, real-world applications; and improved mutual understanding among modelers and public health officials. PMID:24714027
NASA Astrophysics Data System (ADS)
Lowe, R.; Ballester, J.; Robine, J.; Herrmann, F. R.; Jupp, T. E.; Stephenson, D.; Rodó, X.
2013-12-01
Users of climate information often require probabilistic information on which to base their decisions. However, communicating information contained within a probabilistic forecast presents a challenge. In this paper we demonstrate a novel visualisation technique to display ternary probabilistic forecasts on a map in order to inform decision making. In this method, ternary probabilistic forecasts, which assign probabilities to a set of three outcomes (e.g. low, medium, and high risk), are considered as a point in a triangle of barycentric coordinates. This allows a unique colour to be assigned to each forecast from a continuum of colours defined on the triangle. Colour saturation increases with information gain relative to the reference forecast (i.e. the long term average). This provides additional information to decision makers compared with conventional methods used in seasonal climate forecasting, where one colour is used to represent one forecast category on a forecast map (e.g. red = ';dry'). We use the tool to present climate-related mortality projections across Europe. Temperature and humidity are related to human mortality via location-specific transfer functions, calculated using historical data. Daily mortality data at the NUTS2 level for 16 countries in Europe were obtain from 1998-2005. Transfer functions were calculated for 54 aggregations in Europe, defined using criteria related to population and climatological similarities. Aggregations are restricted to fall within political boundaries to avoid problems related to varying adaptation policies between countries. A statistical model is fit to cold and warm tails to estimate future mortality using forecast temperatures, in a Bayesian probabilistic framework. Using predefined categories of temperature-related mortality risk, we present maps of probabilistic projections for human mortality at seasonal to decadal time scales. We demonstrate the information gained from using this technique compared to more traditional methods to display ternary probabilistic forecasts. This technique allows decision makers to identify areas where the model predicts with certainty area-specific heat waves or cold snaps, in order to effectively target resources to those areas most at risk, for a given season or year. It is hoped that this visualisation tool will facilitate the interpretation of the probabilistic forecasts not only for public health decision makers but also within a multi-sectoral climate service framework.
Crowdsourcing reproducible seizure forecasting in human and canine epilepsy
Wagenaar, Joost; Abbot, Drew; Adkins, Phillip; Bosshard, Simone C.; Chen, Min; Tieng, Quang M.; He, Jialune; Muñoz-Almaraz, F. J.; Botella-Rocamora, Paloma; Pardo, Juan; Zamora-Martinez, Francisco; Hills, Michael; Wu, Wei; Korshunova, Iryna; Cukierski, Will; Vite, Charles; Patterson, Edward E.; Litt, Brian; Worrell, Gregory A.
2016-01-01
See Mormann and Andrzejak (doi:10.1093/brain/aww091) for a scientific commentary on this article. Accurate forecasting of epileptic seizures has the potential to transform clinical epilepsy care. However, progress toward reliable seizure forecasting has been hampered by lack of open access to long duration recordings with an adequate number of seizures for investigators to rigorously compare algorithms and results. A seizure forecasting competition was conducted on kaggle.com using open access chronic ambulatory intracranial electroencephalography from five canines with naturally occurring epilepsy and two humans undergoing prolonged wide bandwidth intracranial electroencephalographic monitoring. Data were provided to participants as 10-min interictal and preictal clips, with approximately half of the 60 GB data bundle labelled (interictal/preictal) for algorithm training and half unlabelled for evaluation. The contestants developed custom algorithms and uploaded their classifications (interictal/preictal) for the unknown testing data, and a randomly selected 40% of data segments were scored and results broadcasted on a public leader board. The contest ran from August to November 2014, and 654 participants submitted 17 856 classifications of the unlabelled test data. The top performing entry scored 0.84 area under the classification curve. Following the contest, additional held-out unlabelled data clips were provided to the top 10 participants and they submitted classifications for the new unseen data. The resulting area under the classification curves were well above chance forecasting, but did show a mean 6.54 ± 2.45% (min, max: 0.30, 20.2) decline in performance. The kaggle.com model using open access data and algorithms generated reproducible research that advanced seizure forecasting. The overall performance from multiple contestants on unseen data was better than a random predictor, and demonstrates the feasibility of seizure forecasting in canine and human epilepsy. PMID:27034258
JPSS Preparations at the Satellite Proving Ground for Marine, Precipitation, and Satellite Analysis
NASA Technical Reports Server (NTRS)
Folmer, Michael J.; Berndt, E.; Clark, J.; Orrison, A.; Kibler, J.; Sienkiewicz, J.; Nelson, J.; Goldberg, M.; Sjoberg, W.
2016-01-01
The ocean prediction center at the national hurricane center's tropical analysis and forecast Branch, the Weather Prediction center and the Satellite analysis branch of NESDIS make up the Satellite Proving Ground for Marine, Precipitation and Satellite Analysis. These centers had early exposure to JPSS products using the S-NPP Satellite that was launched in 2011. Forecasters continue to evaluate new products in anticipation for the launch of JPSS-1 sometime in 2017.
NASA Astrophysics Data System (ADS)
Rodriguez, Delphy; Valari, Myrto; Markakis, Konstantinos; Payan, Sébastien
2016-04-01
Currently, ambient pollutant concentrations at monitoring sites are routinely measured by local networks, such as AIRPARIF in Paris, France. Pollutant concentration fields are also simulated with regional-scale chemistry transport models such as CHIMERE (http://www.lmd.polytechnique.fr/chimere) under air-quality forecasting platforms (e.g. Prev'Air http://www.prevair.org) or research projects. These data may be combined with more or less sophisticated techniques to provide a fairly good representation of pollutant concentration spatial gradients over urban areas. Here we focus on human exposure to atmospheric contaminants. Based on census data on population dynamics and demographics, modeled outdoor concentrations and infiltration of outdoor air-pollution indoors we have developed a population exposure model for ozone and PM2.5. A critical challenge in the field of population exposure modeling is model validation since personal exposure data are expensive and therefore, rare. However, recent research has made low cost mobile sensors fairly common and therefore personal exposure data should become more and more accessible. In view of planned cohort field-campaigns where such data will be available over the Paris region, we propose in the present study a statistical framework that makes the comparison between modeled and measured exposures meaningful. Our ultimate goal is to evaluate the exposure model by comparing modeled exposures to monitor data. The scientific question we address here is how to downscale modeled data that are estimated on the county population scale at the individual scale which is appropriate to the available measurements. To assess this question we developed a Bayesian hierarchical framework that assimilates actual individual data into population statistics and updates the probability estimate.
Pappenberger, F; Jendritzky, G; Staiger, H; Dutra, E; Di Giuseppe, F; Richardson, D S; Cloke, H L
2015-03-01
Although over a hundred thermal indices can be used for assessing thermal health hazards, many ignore the human heat budget, physiology and clothing. The Universal Thermal Climate Index (UTCI) addresses these shortcomings by using an advanced thermo-physiological model. This paper assesses the potential of using the UTCI for forecasting thermal health hazards. Traditionally, such hazard forecasting has had two further limitations: it has been narrowly focused on a particular region or nation and has relied on the use of single 'deterministic' forecasts. Here, the UTCI is computed on a global scale, which is essential for international health-hazard warnings and disaster preparedness, and it is provided as a probabilistic forecast. It is shown that probabilistic UTCI forecasts are superior in skill to deterministic forecasts and that despite global variations, the UTCI forecast is skilful for lead times up to 10 days. The paper also demonstrates the utility of probabilistic UTCI forecasts on the example of the 2010 heat wave in Russia.
Medium Range Flood Forecasting for Agriculture Damage Reduction
NASA Astrophysics Data System (ADS)
Fakhruddin, S. H. M.
2014-12-01
Early warning is a key element for disaster risk reduction. In recent decades, major advancements have been made in medium range and seasonal flood forecasting. This progress provides a great opportunity to reduce agriculture damage and improve advisories for early action and planning for flood hazards. This approach can facilitate proactive rather than reactive management of the adverse consequences of floods. In the agricultural sector, for instance, farmers can take a diversity of options such as changing cropping patterns, applying fertilizer, irrigating and changing planting timing. An experimental medium range (1-10 day) flood forecasting model has been developed for Bangladesh and Thailand. It provides 51 sets of discharge ensemble forecasts of 1-10 days with significant persistence and high certainty. This type of forecast could assist farmers and other stakeholders for differential preparedness activities. These ensembles probabilistic flood forecasts have been customized based on user-needs for community-level application focused on agriculture system. The vulnerabilities of agriculture system were calculated based on exposure, sensitivity and adaptive capacity. Indicators for risk and vulnerability assessment were conducted through community consultations. The forecast lead time requirement, user-needs, impacts and management options for crops were identified through focus group discussions, informal interviews and community surveys. This paper illustrates potential applications of such ensembles for probabilistic medium range flood forecasts in a way that is not commonly practiced globally today.
An experimental system for flood risk forecasting at global scale
NASA Astrophysics Data System (ADS)
Alfieri, L.; Dottori, F.; Kalas, M.; Lorini, V.; Bianchi, A.; Hirpa, F. A.; Feyen, L.; Salamon, P.
2016-12-01
Global flood forecasting and monitoring systems are nowadays a reality and are being applied by an increasing range of users and practitioners in disaster risk management. Furthermore, there is an increasing demand from users to integrate flood early warning systems with risk based forecasts, combining streamflow estimations with expected inundated areas and flood impacts. To this end, we have developed an experimental procedure for near-real time flood mapping and impact assessment based on the daily forecasts issued by the Global Flood Awareness System (GloFAS). The methodology translates GloFAS streamflow forecasts into event-based flood hazard maps based on the predicted flow magnitude and the forecast lead time and a database of flood hazard maps with global coverage. Flood hazard maps are then combined with exposure and vulnerability information to derive flood risk. Impacts of the forecasted flood events are evaluated in terms of flood prone areas, potential economic damage, and affected population, infrastructures and cities. To further increase the reliability of the proposed methodology we integrated model-based estimations with an innovative methodology for social media monitoring, which allows for real-time verification of impact forecasts. The preliminary tests provided good results and showed the potential of the developed real-time operational procedure in helping emergency response and management. In particular, the link with social media is crucial for improving the accuracy of impact predictions.
Activities of the Japanese space weather forecast center at Communications Research Laboratory.
Watari, Shinichi; Tomita, Fumihiko
2002-12-01
The International Space Environment Service (ISES) is an international organization for space weather forecasts and belongs to the International Union of Radio Science (URSI). There are eleven ISES forecast centers in the world, and Communications Research Laboratory (CRL) runs the Japanese one. We make forecasts on the space environment and deliver them over the phones and through the Internet. Our forecasts could be useful for human activities in space. Currently solar activity is near maximum phase of the solar cycle 23. We report the several large disturbances of space environment occurred in 2001, during which low-latitude auroras were observed several times in Japan.
Brody, Gene H; Miller, Gregory E; Yu, Tianyi; Beach, Steven R H; Chen, Edith
2016-04-01
This study tested the hypothesis that supportive family environments during adolescence buffer exposure to racial discrimination, reducing its impact on biological weathering and its manifestation in cellular aging. Perceived racial discrimination, support in the family environment, and confounder variables were assessed for 3 consecutive years across adolescence in two independent cohorts of African American youth from rural Georgia. DNA was extracted from peripheral blood mononuclear cells collected during young adulthood. Patterns of methylation were used to index the epigenetic ages of these cells and the extent to which they differed from participants' chronological ages. Among youth in supportive family environments, exposure to higher levels of racial discrimination did not forecast greater epigenetic aging. Among youth in less supportive family environments, exposure to higher levels of racial discrimination did forecast greater epigenetic aging. The associations emerged independently of confounder variables, and the results were replicated across the two cohorts. © The Author(s) 2016.
Brody, Gene H.; Miller, Gregory E.; Yu, Tianyi; Beach, Steven R. H.; Chen, Edith
2015-01-01
This study tested the hypothesis that supportive family environments during adolescence will buffer exposure to racial discrimination, reducing its impact on biological weathering and its manifestation in cellular aging. Indicators of racial discrimination, supportive family environments, and covariates were collected for 3 consecutive years across adolescence from 2 independent cohorts of African American youth from rural Georgia. DNA was extracted from peripheral blood mononuclear cells collected during young adulthood. Patterns of methylation were used to index epigenetic ages of these cells and the extent to which they differed from participants’ chronological ages. Among youth in supportive family environments, exposure to high levels of racial discrimination did not forecast epigenetic aging. Among youth in less supportive family environments, exposure to high levels of racial discrimination forecast faster epigenetic aging. The results did not change when confounder variables were included in the data analyses, and the results were replicated across cohorts. PMID:26917213
Evaluation of Flood Forecast and Warning in Elbe river basin - Impact of Forecaster's Strategy
NASA Astrophysics Data System (ADS)
Danhelka, Jan; Vlasak, Tomas
2010-05-01
Czech Hydrometeorological Institute (CHMI) is responsible for flood forecasting and warning in the Czech Republic. To meet that issue CHMI operates hydrological forecasting systems and publish flow forecast in selected profiles. Flood forecast and warning is an output of system that links observation (flow and atmosphere), data processing, weather forecast (especially NWP's QPF), hydrological modeling and modeled outputs evaluation and interpretation by forecaster. Forecast users are interested in final output without separating uncertainties of separate steps of described process. Therefore an evaluation of final operational forecasts was done for profiles within Elbe river basin produced by AquaLog forecasting system during period 2002 to 2008. Effects of uncertainties of observation, data processing and especially meteorological forecasts were not accounted separately. Forecast of flood levels exceedance (peak over the threshold) during forecasting period was the main criterion as flow increase forecast is of the highest importance. Other evaluation criteria included peak flow and volume difference. In addition Nash-Sutcliffe was computed separately for each time step (1 to 48 h) of forecasting period to identify its change with the lead time. Textual flood warnings are issued for administrative regions to initiate flood protection actions in danger of flood. Flood warning hit rate was evaluated at regions level and national level. Evaluation found significant differences of model forecast skill between forecasting profiles, particularly less skill was evaluated at small headwater basins due to domination of QPF uncertainty in these basins. The average hit rate was 0.34 (miss rate = 0.33, false alarm rate = 0.32). However its explored spatial difference is likely to be influenced also by different fit of parameters sets (due to different basin characteristics) and importantly by different impact of human factor. Results suggest that the practice of interactive model operation, experience and forecasting strategy differs between responsible forecasting offices. Warning is based on model outputs interpretation by hydrologists-forecaster. Warning hit rate reached 0.60 for threshold set to lowest flood stage of which 0.11 was underestimation of flood degree (miss 0.22, false alarm 0.28). Critical success index of model forecast was 0.34, while the same criteria for warning reached 0.55. We assume that the increase accounts not only to change of scale from single forecasting point to region for warning, but partly also to forecaster's added value. There is no official warning strategy preferred in the Czech Republic (f.e. tolerance towards higher false alarm rate). Therefore forecaster decision and personal strategy is of great importance. Results show quite successful warning for 1st flood level exceedance, over-warning for 2nd flood level, but under-warning for 3rd (highest) flood level. That suggests general forecaster's preference of medium level warning (2nd flood level is legally determined to be the start of the flood and flood protection activities). In conclusion human forecaster's experience and analysis skill increases flood warning performance notably. However society preference should be specifically addressed in the warning strategy definition to support forecaster's decision making.
Van Meijgaard, Jeroen; Fielding, Jonathan E; Kominski, Gerald F
2009-01-01
A comprehensive population health-forecasting model has the potential to interject new and valuable information about the future health status of the population based on current conditions, socioeconomic and demographic trends, and potential changes in policies and programs. Our Health Forecasting Model uses a continuous-time microsimulation framework to simulate individuals' lifetime histories by using birth, risk exposures, disease incidence, and death rates to mark changes in the state of the individual. The model generates a reference forecast of future health in California, including details on physical activity, obesity, coronary heart disease, all-cause mortality, and medical expenditures. We use the model to answer specific research questions, inform debate on important policy issues in public health, support community advocacy, and provide analysis on the long-term impact of proposed changes in policies and programs, thus informing stakeholders at all levels and supporting decisions that can improve the health of populations.
The Importance of Human Resource Planning in Industrial Enterprises
NASA Astrophysics Data System (ADS)
Koltnerová, Kristína; Chlpeková, Andrea; Samáková, Jana
2012-12-01
Human resource planning in the business practice should represent generally used and key activity for human resource management because human resource planning helps to make optimum utilisation of the human resources in the enterprise and it helps to avoid wastage of human resources. Human resource planning allows to forecast the future manpower requirements and also to forecast the number and type of employees who will be required by the enterprise in a near future. In the long term period, success of any enterprise depends on whether the right people are in the right places at the right time, which is the nature of human resource planning. The aim of this contribution is to explain the importance of human resource planning and to outline results of questionnaire survey which it was realized in industrial enterprises.
Wildland fire smoke and human health.
Cascio, Wayne E
2018-05-15
The natural cycle of landscape fire maintains the ecological health of the land, yet adverse health effects associated with exposure to emissions from wildfire produce public health and clinical challenges. Systematic reviews conclude that a positive association exists between exposure to wildfire smoke or wildfire particulate matter (PM 2.5 ) and all-cause mortality and respiratory morbidity. Respiratory morbidity includes asthma, chronic obstructive pulmonary disease (COPD), bronchitis and pneumonia. The epidemiological data linking wildfire smoke exposure to cardiovascular mortality and morbidity is mixed, and inconclusive. More studies are needed to define the risk for common and costly clinical cardiovascular outcomes. Susceptible populations include people with respiratory and possibly cardiovascular diseases, middle-aged and older adults, children, pregnant women and the fetus. The increasing frequency of large wildland fires, the expansion of the wildland-urban interface, the area between unoccupied land and human development; and an increasing and aging U.S. population are increasing the number of people at-risk from wildfire smoke, thus highlighting the necessity for broadening stakeholder cooperation to address the health effects of wildfire. While much is known, many questions remain and require further population-based, clinical and occupational health research. Health effects measured over much wider geographical areas and for longer periods time will better define the risk for adverse health outcomes, identify the sensitive populations and assess the influence of social factors on the relationship between exposure and health outcomes. Improving exposure models and access to large clinical databases foreshadow improved risk analysis facilitating more effective risk management. Fuel and smoke management remains an important component for protecting population health. Improved smoke forecasting and translation of environmental health science into communication of actionable information for use by public health officials, healthcare professionals and the public is needed to motivate behaviors that lower exposure and protect public health, particularly among those at high risk. Published by Elsevier B.V.
Mapping allergenic pollen vegetation in UK to study environmental exposure and human health.
McInnes, Rachel N; Hemming, Deborah; Burgess, Peter; Lyndsay, Donna; Osborne, Nicholas J; Skjøth, Carsten Ambelas; Thomas, Sam; Vardoulakis, Sotiris
2017-12-01
Allergenic pollen is produced by the flowers of a number of trees, grasses and weeds found throughout the UK. Exposure to such pollen grains can exacerbate pollen-related asthma and allergenic conditions such as allergic rhinitis (hay fever). Maps showing the location of these allergenic taxa have many applications: they can be used to provide advice on risk assessments; combined with health data to inform research on health impacts such as respiratory hospital admissions; combined with weather data to improve pollen forecasting systems; or as inputs to pollen emission models. In this study we present 1km resolution maps of 12 taxa of trees, grass and weeds found in the UK. We have selected the main species recorded by the UK pollen network. The taxa mapped in this study were: Alnus (alder), Fraxinus (ash), Betula (birch), Corylus (hazel), Quercus (oak), Pinus (pine) and Salix (willow), Poaceae (grass), Artemisia (mugwort), Plantago (plantain), Rumex (dock, sorrels) and Urtica (nettle). We also focus on one high population centre and present maps showing local level detail around the city of London. Our results show the different geographical distributions of the 12 taxa of trees, weeds and grass, which can be used to study plants in the UK associated with allergy and allergic asthma. These maps have been produced in order to study environmental exposure and human health, although there are many possible applications. This novel method not only provides maps of many different plant types, but also at high resolution across regions of the UK, and we uniquely present 12 key plant taxa using a consistent methodology. To consider the impact on human health due to exposure of the pollen grains, it is important to consider the timing of pollen release, and its dispersal, as well as the effect on air quality, which is also discussed here. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.
Economic Value of Weather and Climate Forecasts
NASA Astrophysics Data System (ADS)
Katz, Richard W.; Murphy, Allan H.
1997-06-01
Weather and climate extremes can significantly impact the economics of a region. This book examines how weather and climate forecasts can be used to mitigate the impact of the weather on the economy. Interdisciplinary in scope, it explores the meteorological, economic, psychological, and statistical aspects of weather prediction. Chapters by area specialists provide a comprehensive view of this timely topic. They encompass forecasts over a wide range of temporal scales, from weather over the next few hours to the climate months or seasons ahead, and address the impact of these forecasts on human behavior. Economic Value of Weather and Climate Forecasts seeks to determine the economic benefits of existing weather forecasting systems and the incremental benefits of improving these systems, and will be an interesting and essential text for economists, statisticians, and meteorologists.
NASA Astrophysics Data System (ADS)
Shaman, J.; Stieglitz, M.; Zebiak, S.; Cane, M.; Day, J. F.
2002-12-01
We present an ensemble local hydrologic forecast derived from the seasonal forecasts of the International Research Institute (IRI) for Climate Prediction. Three- month seasonal forecasts were used to resample historical meteorological conditions and generate ensemble forcing datasets for a TOPMODEL-based hydrology model. Eleven retrospective forecasts were run at a Florida and New York site. Forecast skill was assessed for mean area modeled water table depth (WTD), i.e. near surface soil wetness conditions, and compared with WTD simulated with observed data. Hydrology model forecast skill was evident at the Florida site but not at the New York site. At the Florida site, persistence of hydrologic conditions and local skill of the IRI seasonal forecast contributed to the local hydrologic forecast skill. This forecast will permit probabilistic prediction of future hydrologic conditions. At the Florida site, we have also quantified the link between modeled WTD (i.e. drought) and the amplification and transmission of St. Louis Encephalitis virus (SLEV). We derive an empirical relationship between modeled land surface wetness and levels of SLEV transmission associated with human clinical cases. We then combine the seasonal forecasts of local, modeled WTD with this empirical relationship and produce retrospective probabilistic seasonal forecasts of epidemic SLEV transmission in Florida. Epidemic SLEV transmission forecast skill is demonstrated. These findings will permit real-time forecast of drought and resultant SLEV transmission in Florida.
GEOSS interoperability for Weather, Ocean and Water
NASA Astrophysics Data System (ADS)
Richardson, David; Nyenhuis, Michael; Zsoter, Ervin; Pappenberger, Florian
2013-04-01
"Understanding the Earth system — its weather, climate, oceans, atmosphere, water, land, geodynamics, natural resources, ecosystems, and natural and human-induced hazards — is crucial to enhancing human health, safety and welfare, alleviating human suffering including poverty, protecting the global environment, reducing disaster losses, and achieving sustainable development. Observations of the Earth system constitute critical input for advancing this understanding." With this in mind, the Group on Earth Observations (GEO) started implementing the Global Earth Observation System of Systems (GEOSS). GEOWOW, short for "GEOSS interoperability for Weather, Ocean and Water", is supporting this objective. GEOWOW's main challenge is to improve Earth observation data discovery, accessibility and exploitability, and to evolve GEOSS in terms of interoperability, standardization and functionality. One of the main goals behind the GEOWOW project is to demonstrate the value of the TIGGE archive in interdisciplinary applications, providing a vast amount of useful and easily accessible information to the users through the GEO Common Infrastructure (GCI). GEOWOW aims at developing funcionalities that will allow easy discovery, access and use of TIGGE archive data and of in-situ observations, e.g. from the Global Runoff Data Centre (GRDC), to support applications such as river discharge forecasting.TIGGE (THORPEX Interactive Grand Global Ensemble) is a key component of THORPEX: a World Weather Research Programme to accelerate the improvements in the accuracy of 1-day to 2 week high-impact weather forecasts for the benefit of humanity. The TIGGE archive consists of ensemble weather forecast data from ten global NWP centres, starting from October 2006, which has been made available for scientific research. The TIGGE archive has been used to analyse hydro-meteorological forecasts of flooding in Europe as well as in China. In general the analysis has been favourable in terms of forecast skill and concluded that the use of a multi-model forecast is beneficial. Long term analysis of individual centres, such as the European Centre for Medium-Range Weather Forecasts (ECMWF), has been conducted in the past. However, no long term and large scale study has been performed so far with inclusion of different global numerical models. Here we present some initial results from such a study.
It has been reported that ambient ozone (O3), either alone or in concurrence with acid rain precursors, accounts for up to 90% of U.S. crop losses resulting from exposure to all major air pollutants. Crop damage due to O3 exposure is of particular concern as...
... Preventing Frostbite To help prevent frostbite in cold weather: Stay updated on weather forecasts. If it's extremely cold, even brief exposure ... Medical History Cold, Ice, and Snow Safety Cold-Weather Sports and Your Family First-Aid Kit What ...
Application of Medium and Seasonal Flood Forecasts for Agriculture Damage Assessment
NASA Astrophysics Data System (ADS)
Fakhruddin, Shamsul; Ballio, Francesco; Menoni, Scira
2015-04-01
Early warning is a key element for disaster risk reduction. In recent decades, major advancements have been made in medium range and seasonal flood forecasting. This progress provides a great opportunity to reduce agriculture damage and improve advisories for early action and planning for flood hazards. This approach can facilitate proactive rather than reactive management of the adverse consequences of floods. In the agricultural sector, for instance, farmers can take a diversity of options such as changing cropping patterns, applying fertilizer, irrigating and changing planting timing. An experimental medium range (1-10 day) and seasonal (20-25 days) flood forecasting model has been developed for Thailand and Bangladesh. It provides 51 sets of discharge ensemble forecasts of 1-10 days with significant persistence and high certainty and qualitative outlooks for 20-25 days. This type of forecast could assist farmers and other stakeholders for differential preparedness activities. These ensembles probabilistic flood forecasts have been customized based on user-needs for community-level application focused on agriculture system. The vulnerabilities of agriculture system were calculated based on exposure, sensitivity and adaptive capacity. Indicators for risk and vulnerability assessment were conducted through community consultations. The forecast lead time requirement, user-needs, impacts and management options for crops were identified through focus group discussions, informal interviews and community surveys. This paper illustrates potential applications of such ensembles for probabilistic medium range and seasonal flood forecasts in a way that is not commonly practiced globally today.
Flood Forecast Accuracy and Decision Support System Approach: the Venice Case
NASA Astrophysics Data System (ADS)
Canestrelli, A.; Di Donato, M.
2016-02-01
In the recent years numerical models for weather predictions have experienced continuous advances in technology. As a result, all the disciplines making use of weather forecasts have made significant steps forward. In the case of the Safeguard of Venice, a large effort has been put in order to improve the forecast of tidal levels. In this context, the Istituzione Centro Previsioni e Segnalazioni Maree (ICPSM) of the Venice Municipality has developed and tested many different forecast models, both of the statistical and deterministic type, and has shown to produce very accurate forecasts. For Venice, the maximum admissible forecast error should be (ideally) of the order of ten centimeters at 24 hours. The entity of the forecast error clearly affects the decisional process, which mainly consists of alerting the population, activating the movable barriers installed at the three tidal inlets and contacting the port authority. This process becomes more challenging whenever the weather predictions, and therefore the water level forecasts, suddenly change. These new forecasts have to be quickly transformed into operational tasks. Therefore, it is of the utter importance to set up scheduled alerts and emergency plans by means of easy-to-follow procedures. On this direction, Technital has set up a Decision Support System based on expert procedures that minimizes the human mistakes and, as a consequence, reduces the risk of flooding of the historical center. Moreover, the Decision Support System can communicate predefined alerts to all the interested subjects. The System uses the water levels forecasts produced by the ICPSM by taking into account the accuracy at different leading times. The Decision Support System has been successfully tested with 8 years of data, 6 of them in real time. Venice experience shows that the Decision Support System is an essential tool which assesses the risks associated with a particular event, provides clear operational procedures and minimizes the impact of natural floods on human lives, private properties and historical monuments.
NASA Astrophysics Data System (ADS)
Turco, M.; Milelli, M.
2009-09-01
To the authors' knowledge there are relatively few studies that try to answer this topic: "Are humans able to add value to computer-generated forecasts and warnings ?". Moreover, the answers are not always positive. In particular some postprocessing method is competitive or superior to human forecast (see for instance Baars et al., 2005, Charba et al., 2002, Doswell C., 2003, Roebber et al., 1996, Sanders F., 1986). Within the alert system of ARPA Piemonte it is possible to study in an objective manner if the human forecaster is able to add value with respect to computer-generated forecasts. Every day the meteorology group of the Centro Funzionale of Regione Piemonte produces the HQPF (Human QPF) in terms of an areal average for each of the 13 regional warning areas, which have been created according to meteo-hydrological criteria. This allows the decision makers to produce an evaluation of the expected effects by comparing these HQPFs with predefined rainfall thresholds. Another important ingredient in this study is the very dense non-GTS network of rain gauges available that makes possible a high resolution verification. In this context the most useful verification approach is the measure of the QPF and HQPF skills by first converting precipitation expressed as continuous amounts into ‘‘exceedance'' categories (yes-no statements indicating whether precipitation equals or exceeds selected thresholds) and then computing the performances for each threshold. In particular in this work we compare the performances of the latest three years of QPF derived from two meteorological models COSMO-I7 (the Italian version of the COSMO Model, a mesoscale model developed in the framework of the COSMO Consortium) and IFS (the ECMWF global model) with the HQPF. In this analysis it is possible to introduce the hypothesis test developed by Hamill (1999), in which a confidence interval is calculated with the bootstrap method in order to establish the real difference between the skill scores of two competitive forecast. It is important to underline that the conclusions refer to the analysis of the Piemonte operational alert system, so they cannot be directly taken as universally true. But we think that some of the main lessons that can be derived from this study could be useful for the meteorological community. In details, the main conclusions are the following: - despite the overall improvement in global scale and the fact that the resolution of the limited area models has increased considerably over recent years, the QPF produced by the meteorological models involved in this study has not improved enough to allow its direct use, that is, the subjective HQPF continues to offer the best performance; - in the forecast process, the step where humans have the largest added value with respect to mathematical models, is the communication. In fact the human characterisation and communication of the forecast uncertainty to end users cannot be replaced by any computer code; - eventually, although there is no novelty in this study, we would like to show that the correct application of appropriated statistical techniques permits a better definition and quantification of the errors and, mostly important, allows a correct (unbiased) communication between forecasters and decision makers.
The development of ecological forecasts, namely, methodologies to predict the chemical, biological, and physical changes in terrestrial and aquatic ecosystems is desirable so that effective strategies for reducing the adverse impacts of human activities and extreme natural events...
Crowdsourcing reproducible seizure forecasting in human and canine epilepsy.
Brinkmann, Benjamin H; Wagenaar, Joost; Abbot, Drew; Adkins, Phillip; Bosshard, Simone C; Chen, Min; Tieng, Quang M; He, Jialune; Muñoz-Almaraz, F J; Botella-Rocamora, Paloma; Pardo, Juan; Zamora-Martinez, Francisco; Hills, Michael; Wu, Wei; Korshunova, Iryna; Cukierski, Will; Vite, Charles; Patterson, Edward E; Litt, Brian; Worrell, Gregory A
2016-06-01
SEE MORMANN AND ANDRZEJAK DOI101093/BRAIN/AWW091 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE : Accurate forecasting of epileptic seizures has the potential to transform clinical epilepsy care. However, progress toward reliable seizure forecasting has been hampered by lack of open access to long duration recordings with an adequate number of seizures for investigators to rigorously compare algorithms and results. A seizure forecasting competition was conducted on kaggle.com using open access chronic ambulatory intracranial electroencephalography from five canines with naturally occurring epilepsy and two humans undergoing prolonged wide bandwidth intracranial electroencephalographic monitoring. Data were provided to participants as 10-min interictal and preictal clips, with approximately half of the 60 GB data bundle labelled (interictal/preictal) for algorithm training and half unlabelled for evaluation. The contestants developed custom algorithms and uploaded their classifications (interictal/preictal) for the unknown testing data, and a randomly selected 40% of data segments were scored and results broadcasted on a public leader board. The contest ran from August to November 2014, and 654 participants submitted 17 856 classifications of the unlabelled test data. The top performing entry scored 0.84 area under the classification curve. Following the contest, additional held-out unlabelled data clips were provided to the top 10 participants and they submitted classifications for the new unseen data. The resulting area under the classification curves were well above chance forecasting, but did show a mean 6.54 ± 2.45% (min, max: 0.30, 20.2) decline in performance. The kaggle.com model using open access data and algorithms generated reproducible research that advanced seizure forecasting. The overall performance from multiple contestants on unseen data was better than a random predictor, and demonstrates the feasibility of seizure forecasting in canine and human epilepsy.media-1vid110.1093/brain/aww045_video_abstractaww045_video_abstract. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain.
Coherent mortality forecasts for a group of populations: An extension of the Lee-Carter method
Li, Nan; Lee, Ronald
2005-01-01
Mortality patterns and trajectories in closely related populations are likely to be similar in some respects, and differences are unlikely to increase in the long run. It should therefore be possible to improve the mortality forecasts for individual countries by taking into account the patterns in a larger group. Using the Human Mortality Database, we apply the Lee-Carter model to a group of populations, allowing each its own age pattern and level of mortality but imposing shared rates of change by age. Our forecasts also allow divergent patterns to continue for a while before tapering off. We forecast greater longevity gains for the US and lesser ones for Japan relative to separate forecasts. PMID:16235614
Using a Hybrid Model to Forecast the Prevalence of Schistosomiasis in Humans.
Zhou, Lingling; Xia, Jing; Yu, Lijing; Wang, Ying; Shi, Yun; Cai, Shunxiang; Nie, Shaofa
2016-03-23
We previously proposed a hybrid model combining both the autoregressive integrated moving average (ARIMA) and the nonlinear autoregressive neural network (NARNN) models in forecasting schistosomiasis. Our purpose in the current study was to forecast the annual prevalence of human schistosomiasis in Yangxin County, using our ARIMA-NARNN model, thereby further certifying the reliability of our hybrid model. We used the ARIMA, NARNN and ARIMA-NARNN models to fit and forecast the annual prevalence of schistosomiasis. The modeling time range included was the annual prevalence from 1956 to 2008 while the testing time range included was from 2009 to 2012. The mean square error (MSE), mean absolute error (MAE) and mean absolute percentage error (MAPE) were used to measure the model performance. We reconstructed the hybrid model to forecast the annual prevalence from 2013 to 2016. The modeling and testing errors generated by the ARIMA-NARNN model were lower than those obtained from either the single ARIMA or NARNN models. The predicted annual prevalence from 2013 to 2016 demonstrated an initial decreasing trend, followed by an increase. The ARIMA-NARNN model can be well applied to analyze surveillance data for early warning systems for the control and elimination of schistosomiasis.
Global Impacts and Regional Actions: Preparing for the 1997-98 El Niño.
NASA Astrophysics Data System (ADS)
Buizer, James L.; Foster, Josh; Lund, David
2000-09-01
It has been estimated that severe El Niño-related flooding and droughts in Africa, Latin America, North America, and Southeast Asia resulted in more than 22 000 lives lost and in excess of $36 billion in damages during 1997-98. As one of the most severe events this century, the 1997-98 El Niño was unique not only in terms of physical magnitude, but also in terms of human response. This response was made possible by recent advances in climate-observing and forecasting systems, creation and dissemination of forecast information by institutions such as the International Research Institute for Climate Prediction and NOAA's Climate Prediction Center, and individuals in climate-sensitive sectors willing to act on forecast information by incorporating it into their decision-making. The supporting link between the forecasts and their practical application was a product of efforts by several national and international organizations, and a primary focus of the United States National Oceanic and Atmospheric Administration Office of Global Programs (NOAA/OGP).NOAA/OGP over the last decade has supported pilot projects in Latin America, the Caribbean, the South Pacific, Southeast Asia, and Africa to improve transfer of forecast information to climate sensitive sectors, study linkages between climate and human health, and distribute climate information products in certain areas. Working with domestic and international partners, NOAA/OGP helped organize a total of 11 Climate Outlook Fora around the world during the 1997-98 El Niño. At each Outlook Forum, climatologists and meteorologists created regional, consensus-based, seasonal precipitation forecasts and representatives from climate-sensitive sectors discussed options for applying forecast information. Additional ongoing activities during 1997-98 included research programs focused on the social and economic impacts of climate change and the regional manifestations of global-scale climate variations and their effect on decision-making in climate-sensitive sectors in the United States.The overall intent of NOAA/OGP's activities was to make experimental forecast information broadly available to potential users, and to foster a learning process on how seasonal-to-interannual forecasts could be applied in sectors susceptible to climate variability. This process allowed users to explore the capabilities and limitations of climate forecasts currently available, and forecast producers to receive feedback on the utility of their products. Through activities in which NOAA/OGP and its partners were involved, it became clear that further application of forecast information will be aided by improved forecast accuracy and detail, creation of common validation techniques, continued training in forecast generation and application, alternate methods for presenting forecast information, and a systematic strategy for creation and dissemination of forecast products.The overall intent of NOAA/OGP's activities was to make experimental forecast information broadly available to potential users, and to foster a learning process on how seasonal-to-interannual forecasts could be applied in sectors susceptible to climate variability. This process allowed users to explore the capabilities and limitations of climate forecasts currently available, and forecast producers to receive feedback on the utility of their products. Through activities in which NOAA/OGP and its partners were involved, it became clear that further application of forecast information will be aided by improved forecast accuracy and detail, creation of common validation techniques, continued training in forecast generation and application, alternate methods for presenting forecast information, and a systematic strategy for creation and dissemination of forecast products.
NASA Technical Reports Server (NTRS)
Cawthorn, J. M.; Brown, C. G.
1974-01-01
A study has been conducted of the future noise environment of Patric Henry Airport and its neighboring communities projected for the year 1990. An assessment was made of the impact of advanced noise reduction technologies which are currently being considered. These advanced technologies include a two-segment landing approach procedure and aircraft hardware modifications or retrofits which would add sound absorbent material in the nacelles of the engines or which would replace the present two- and three-stage fans with a single-stage fan of larger diameter. Noise Exposure Forecast (NEF) contours were computed for the baseline (nonretrofitted) aircraft for the projected traffic volume and fleet mix for the year 1990. These NEF contours are presented along with contours for a variety of retrofit options. Comparisons of the baseline with the noise reduction options are given in terms of total land area exposed to 30 and 40 NEF levels. Results are also presented of the effects on noise exposure area of the total number of daily operations.
NASA Astrophysics Data System (ADS)
Regonda, Satish Kumar; Seo, Dong-Jun; Lawrence, Bill; Brown, James D.; Demargne, Julie
2013-08-01
We present a statistical procedure for generating short-term ensemble streamflow forecasts from single-valued, or deterministic, streamflow forecasts produced operationally by the U.S. National Weather Service (NWS) River Forecast Centers (RFCs). The resulting ensemble streamflow forecast provides an estimate of the predictive uncertainty associated with the single-valued forecast to support risk-based decision making by the forecasters and by the users of the forecast products, such as emergency managers. Forced by single-valued quantitative precipitation and temperature forecasts (QPF, QTF), the single-valued streamflow forecasts are produced at a 6-h time step nominally out to 5 days into the future. The single-valued streamflow forecasts reflect various run-time modifications, or "manual data assimilation", applied by the human forecasters in an attempt to reduce error from various sources in the end-to-end forecast process. The proposed procedure generates ensemble traces of streamflow from a parsimonious approximation of the conditional multivariate probability distribution of future streamflow given the single-valued streamflow forecast, QPF, and the most recent streamflow observation. For parameter estimation and evaluation, we used a multiyear archive of the single-valued river stage forecast produced operationally by the NWS Arkansas-Red River Basin River Forecast Center (ABRFC) in Tulsa, Oklahoma. As a by-product of parameter estimation, the procedure provides a categorical assessment of the effective lead time of the operational hydrologic forecasts for different QPF and forecast flow conditions. To evaluate the procedure, we carried out hindcasting experiments in dependent and cross-validation modes. The results indicate that the short-term streamflow ensemble hindcasts generated from the procedure are generally reliable within the effective lead time of the single-valued forecasts and well capture the skill of the single-valued forecasts. For smaller basins, however, the effective lead time is significantly reduced by short basin memory and reduced skill in the single-valued QPF.
NASA Astrophysics Data System (ADS)
Johnston, J. M.
2013-12-01
Freshwater habitats provide fishable, swimmable and drinkable resources and are a nexus of geophysical and biological processes. These processes in turn influence the persistence and sustainability of populations, communities and ecosystems. Climate change and landuse change encompass numerous stressors of potential exposure, including the introduction of toxic contaminants, invasive species, and disease in addition to physical drivers such as temperature and hydrologic regime. A systems approach that includes the scientific and technologic basis of assessing the health of ecosystems is needed to effectively protect human health and the environment. The Integrated Environmental Modeling Framework 'iemWatersheds' has been developed as a consistent and coherent means of forecasting the cumulative impact of co-occurring stressors. The Framework consists of three facilitating technologies: Data for Environmental Modeling (D4EM) that automates the collection and standardization of input data; the Framework for Risk Assessment of Multimedia Environmental Systems (FRAMES) that manages the flow of information between linked models; and the Supercomputer for Model Uncertainty and Sensitivity Evaluation (SuperMUSE) that provides post-processing and analysis of model outputs, including uncertainty and sensitivity analysis. Five models are linked within the Framework to provide multimedia simulation capabilities for hydrology and water quality processes: the Soil Water Assessment Tool (SWAT) predicts surface water and sediment runoff and associated contaminants; the Watershed Mercury Model (WMM) predicts mercury runoff and loading to streams; the Water quality Analysis and Simulation Program (WASP) predicts water quality within the stream channel; the Habitat Suitability Index (HSI) model scores physicochemical habitat quality for individual fish species; and the Bioaccumulation and Aquatic System Simulator (BASS) predicts fish growth, population dynamics and bioaccumulation of toxic substances. The capability of the Framework to address cumulative impacts will be demonstrated for freshwater ecosystem services and mountaintop mining.
Operational hydrological forecasting in Bavaria. Part I: Forecast uncertainty
NASA Astrophysics Data System (ADS)
Ehret, U.; Vogelbacher, A.; Moritz, K.; Laurent, S.; Meyer, I.; Haag, I.
2009-04-01
In Bavaria, operational flood forecasting has been established since the disastrous flood of 1999. Nowadays, forecasts based on rainfall information from about 700 raingauges and 600 rivergauges are calculated and issued for nearly 100 rivergauges. With the added experience of the 2002 and 2005 floods, awareness grew that the standard deterministic forecast, neglecting the uncertainty associated with each forecast is misleading, creating a false feeling of unambiguousness. As a consequence, a system to identify, quantify and communicate the sources and magnitude of forecast uncertainty has been developed, which will be presented in part I of this study. In this system, the use of ensemble meteorological forecasts plays a key role which will be presented in part II. Developing the system, several constraints stemming from the range of hydrological regimes and operational requirements had to be met: Firstly, operational time constraints obviate the variation of all components of the modeling chain as would be done in a full Monte Carlo simulation. Therefore, an approach was chosen where only the most relevant sources of uncertainty were dynamically considered while the others were jointly accounted for by static error distributions from offline analysis. Secondly, the dominant sources of uncertainty vary over the wide range of forecasted catchments: In alpine headwater catchments, typically of a few hundred square kilometers in size, rainfall forecast uncertainty is the key factor for forecast uncertainty, with a magnitude dynamically changing with the prevailing predictability of the atmosphere. In lowland catchments encompassing several thousands of square kilometers, forecast uncertainty in the desired range (usually up to two days) is mainly dependent on upstream gauge observation quality, routing and unpredictable human impact such as reservoir operation. The determination of forecast uncertainty comprised the following steps: a) From comparison of gauge observations and several years of archived forecasts, overall empirical error distributions termed 'overall error' were for each gauge derived for a range of relevant forecast lead times. b) The error distributions vary strongly with the hydrometeorological situation, therefore a subdivision into the hydrological cases 'low flow, 'rising flood', 'flood', flood recession' was introduced. c) For the sake of numerical compression, theoretical distributions were fitted to the empirical distributions using the method of moments. Here, the normal distribution was generally best suited. d) Further data compression was achieved by representing the distribution parameters as a function (second-order polynome) of lead time. In general, the 'overall error' obtained from the above procedure is most useful in regions where large human impact occurs and where the influence of the meteorological forecast is limited. In upstream regions however, forecast uncertainty is strongly dependent on the current predictability of the atmosphere, which is contained in the spread of an ensemble forecast. Including this dynamically in the hydrological forecast uncertainty estimation requires prior elimination of the contribution of the weather forecast to the 'overall error'. This was achieved by calculating long series of hydrometeorological forecast tests, where rainfall observations were used instead of forecasts. The resulting error distribution is termed 'model error' and can be applied on hydrological ensemble forecasts, where ensemble rainfall forecasts are used as forcing. The concept will be illustrated by examples (good and bad ones) covering a wide range of catchment sizes, hydrometeorological regimes and quality of hydrological model calibration. The methodology to combine the static and dynamic shares of uncertainty will be presented in part II of this study.
Forecasting the Emergency Department Patients Flow.
Afilal, Mohamed; Yalaoui, Farouk; Dugardin, Frédéric; Amodeo, Lionel; Laplanche, David; Blua, Philippe
2016-07-01
Emergency department (ED) have become the patient's main point of entrance in modern hospitals causing it frequent overcrowding, thus hospital managers are increasingly paying attention to the ED in order to provide better quality service for patients. One of the key elements for a good management strategy is demand forecasting. In this case, forecasting patients flow, which will help decision makers to optimize human (doctors, nurses…) and material(beds, boxs…) resources allocation. The main interest of this research is forecasting daily attendance at an emergency department. The study was conducted on the Emergency Department of Troyes city hospital center, France, in which we propose a new practical ED patients classification that consolidate the CCMU and GEMSA categories into one category and innovative time-series based models to forecast long and short term daily attendance. The models we developed for this case study shows very good performances (up to 91,24 % for the annual Total flow forecast) and robustness to epidemic periods.
A simplified real time method to forecast semi-enclosed basins storm surge
NASA Astrophysics Data System (ADS)
Pasquali, D.; Di Risio, M.; De Girolamo, P.
2015-11-01
Semi-enclosed basins are often prone to storm surge events. Indeed, their meteorological exposition, the presence of large continental shelf and their shape can lead to strong sea level set-up. A real time system aimed at forecasting storm surge may be of great help to protect human activities (i.e. to forecast flooding due to storm surge events), to manage ports and to safeguard coasts safety. This paper aims at illustrating a simple method able to forecast storm surge events in semi-enclosed basins in real time. The method is based on a mixed approach in which the results obtained by means of a simplified physics based model with low computational costs are corrected by means of statistical techniques. The proposed method is applied to a point of interest located in the Northern part of the Adriatic Sea. The comparison of forecasted levels against observed values shows the satisfactory reliability of the forecasts.
Using Earth Observation to Forecast Human and Animal Vector-Borne Disease Outbreaks
USDA-ARS?s Scientific Manuscript database
Earth observing technologies, including data from with earth-orbiting satellites, coupled with new investigations and a better understanding of the impact of environmental factors on transmission dynamics of mosquito-borne diseases permitted us to forecast Rift Valley fever (RVF) outbreaks in animal...
Using DSG to Build the Capability of Space Weather Forecasting in Deep Space
NASA Astrophysics Data System (ADS)
DeLuca, E. E.; Golub, L.; Korreck, K.; Savage, S.; McKenzie, D. D.; Rachmeler, L.; Winebarger, A.; Martens, P.
2018-02-01
The prospect of astronaut missions to deep space and off the Sun-Earth line raises new challenges for space weather awareness and forecasting. We need to identify the requirements and pathways that will allow us to protect human life and equipment.
Lal, Aparna
2016-01-01
Contemporary spatial modelling tools can help examine how environmental exposures such as climate and land use together with socio-economic factors sustain infectious disease transmission in humans. Spatial methods can account for interactions across global and local scales, geographic clustering and continuity of the exposure surface, key characteristics of many environmental influences. Using cryptosporidiosis as an example, this review illustrates how, in resource rich settings, spatial tools have been used to inform targeted intervention strategies and forecast future disease risk with scenarios of environmental change. When used in conjunction with molecular studies, they have helped determine location-specific infection sources and environmental transmission pathways. There is considerable scope for such methods to be used to identify data/infrastructure gaps and establish a baseline of disease burden in resource-limited settings. Spatial methods can help integrate public health and environmental science by identifying the linkages between the physical and socio-economic environment and health outcomes. Understanding the environmental and social context for disease spread is important for assessing the public health implications of projected environmental change. PMID:26848669
Lal, Aparna
2016-02-02
Contemporary spatial modelling tools can help examine how environmental exposures such as climate and land use together with socio-economic factors sustain infectious disease transmission in humans. Spatial methods can account for interactions across global and local scales, geographic clustering and continuity of the exposure surface, key characteristics of many environmental influences. Using cryptosporidiosis as an example, this review illustrates how, in resource rich settings, spatial tools have been used to inform targeted intervention strategies and forecast future disease risk with scenarios of environmental change. When used in conjunction with molecular studies, they have helped determine location-specific infection sources and environmental transmission pathways. There is considerable scope for such methods to be used to identify data/infrastructure gaps and establish a baseline of disease burden in resource-limited settings. Spatial methods can help integrate public health and environmental science by identifying the linkages between the physical and socio-economic environment and health outcomes. Understanding the environmental and social context for disease spread is important for assessing the public health implications of projected environmental change.
NASA Astrophysics Data System (ADS)
Murray, S.; Guerra, J. A.
2017-12-01
One essential component of operational space weather forecasting is the prediction of solar flares. Early flare forecasting work focused on statistical methods based on historical flaring rates, but more complex machine learning methods have been developed in recent years. A multitude of flare forecasting methods are now available, however it is still unclear which of these methods performs best, and none are substantially better than climatological forecasts. Current operational space weather centres cannot rely on automated methods, and generally use statistical forecasts with a little human intervention. Space weather researchers are increasingly looking towards methods used in terrestrial weather to improve current forecasting techniques. Ensemble forecasting has been used in numerical weather prediction for many years as a way to combine different predictions in order to obtain a more accurate result. It has proved useful in areas such as magnetospheric modelling and coronal mass ejection arrival analysis, however has not yet been implemented in operational flare forecasting. Here we construct ensemble forecasts for major solar flares by linearly combining the full-disk probabilistic forecasts from a group of operational forecasting methods (ASSA, ASAP, MAG4, MOSWOC, NOAA, and Solar Monitor). Forecasts from each method are weighted by a factor that accounts for the method's ability to predict previous events, and several performance metrics (both probabilistic and categorical) are considered. The results provide space weather forecasters with a set of parameters (combination weights, thresholds) that allow them to select the most appropriate values for constructing the 'best' ensemble forecast probability value, according to the performance metric of their choice. In this way different forecasts can be made to fit different end-user needs.
An Operational System for Surveillance and Ecological Forecasting of West Nile Virus Outbreaks
NASA Astrophysics Data System (ADS)
Wimberly, M. C.; Davis, J. K.; Vincent, G.; Hess, A.; Hildreth, M. B.
2017-12-01
Mosquito-borne disease surveillance has traditionally focused on tracking human cases along with the abundance and infection status of mosquito vectors. For many of these diseases, vector and host population dynamics are also sensitive to climatic factors, including temperature fluctuations and the availability of surface water for mosquito breeding. Thus, there is a potential to strengthen surveillance and predict future outbreaks by monitoring environmental risk factors using broad-scale sensor networks that include earth-observing satellites. The South Dakota Mosquito Information System (SDMIS) project combines entomological surveillance with gridded meteorological data from NASA's North American Land Data Assimilation System (NLDAS) to generate weekly risk maps for West Nile virus (WNV) in the north-central United States. Critical components include a mosquito infection model that smooths the noisy infection rate and compensates for unbalanced sampling, and a human infection model that combines the entomological risk estimates with lagged effects of meteorological variables from the North American Land Data Assimilation System (NLDAS). Two types of forecasts are generated: long-term forecasts of statewide risk extending through the entire WNV season, and short-term forecasts of the geographic pattern of WNV risk in the upcoming week. Model forecasts are connected to public health actions through decision support matrices that link predicted risk levels to a set of phased responses. In 2016, the SDMIS successfully forecast an early start to the WNV season and a large outbreak of WNV cases following several years of low transmission. An evaluation of the 2017 forecasts will also be presented. Our experiences with the SDMIS highlight several important lessons that can inform future efforts at disease early warning. These include the value of integrating climatic models with recent observations of infection, the critical role of automated workflows to facilitate the timely integration of multiple data streams, the need for effective synthesis and visualization of forecasts, and the importance of linking forecasts to specific public health responses.
Affective forecasting in an orangutan: predicting the hedonic outcome of novel juice mixes.
Sauciuc, Gabriela-Alina; Persson, Tomas; Bååth, Rasmus; Bobrowicz, Katarzyna; Osvath, Mathias
2016-11-01
Affective forecasting is an ability that allows the prediction of the hedonic outcome of never-before experienced situations, by mentally recombining elements of prior experiences into possible scenarios, and pre-experiencing what these might feel like. It has been hypothesised that this ability is uniquely human. For example, given prior experience with the ingredients, but in the absence of direct experience with the mixture, only humans are said to be able to predict that lemonade tastes better with sugar than without it. Non-human animals, on the other hand, are claimed to be confined to predicting-exclusively and inflexibly-the outcome of previously experienced situations. Relying on gustatory stimuli, we devised a non-verbal method for assessing affective forecasting and tested comparatively one Sumatran orangutan and ten human participants. Administered as binary choices, the test required the participants to mentally construct novel juice blends from familiar ingredients and to make hedonic predictions concerning the ensuing mixes. The orangutan's performance was within the range of that shown by the humans. Both species made consistent choices that reflected independently measured taste preferences for the stimuli. Statistical models fitted to the data confirmed the predictive accuracy of such a relationship. The orangutan, just like humans, thus seems to have been able to make hedonic predictions concerning never-before experienced events.
The forecaster's added value in QPF
NASA Astrophysics Data System (ADS)
Turco, M.; Milelli, M.
2009-04-01
To the authors' knowledge there are relatively few studies that try to answer this topic: "Are humans able to add value to computer-generated forecasts and warnings ?". Moreover, the answers are not always positive. In particular some postprocessing method is competitive or superior to human forecast (see for instance Baars et al., 2005, Charba et al., 2002, Doswell C., 2003, Roebber et al., 1996, Sanders F., 1986). Within the alert system of ARPA Piemonte it is possible to study in an objective manner if the human forecaster is able to add value with respect to computer-generated forecasts. Every day the meteorology group of the Centro Funzionale of Regione Piemonte produces the HQPF (Human QPF) in terms of an areal average for each of the 13 regional warning areas, which have been created according to meteo-hydrological criteria. This allows the decision makers to produce an evaluation of the expected effects by comparing these HQPFs with predefined rainfall thresholds. Another important ingredient in this study is the very dense non-GTS network of rain gauges available that makes possible a high resolution verification. In this context the most useful verification approach is the measure of the QPF and HQPF skills by first converting precipitation expressed as continuous amounts into ‘‘exceedance'' categories (yes-no statements indicating whether precipitation equals or exceeds selected thresholds) and then computing the performances for each threshold. In particular in this work we compare the performances of the latest three years of QPF derived from two meteorological models COSMO-I7 (the Italian version of the COSMO Model, a mesoscale model developed in the framework of the COSMO Consortium) and IFS (the ECMWF global model) with the HQPF. In this analysis it is possible to introduce the hypothesis test developed by Hamill (1999), in which a confidence interval is calculated with the bootstrap method in order to establish the real difference between the skill scores of two competitive forecast. It is important to underline that the conclusions refer to the analysis of the Piemonte operational alert system, so they cannot be directly taken as universally true. But we think that some of the main lessons that can be derived from this study could be useful for the meteorological community. In details, the main conclusions are the following: · despite the overall improvement in global scale and the fact that the resolution of the limited area models has increased considerably over recent years, the QPF produced by the meteorological models involved in this study has not improved enough to allow its direct use: the subjective HQPF continues to offer the best performance; · in the forecast process, the step where humans have the largest added value with respect to mathematical models, is the communication. In fact the human characterisation and communication of the forecast uncertainty to end users cannot be replaced by any computer code; · the QPFs verification is one of the most important activities of a Centro Funzionale because it allows a better understanding of the model behaviour in the different meteorological configurations, highlights the systematic characteristics, and helps in evaluating the reliability, in average or extreme values, over long term or in current situations; · eventually, although there is no novelty in this study, we would like to show that the correct application of appropriated statistical tecniques permits a better definition and quantification of the errors and, mostly important, allows a correct (unbiased) communication between forecasters and decision makers.
How much are you prepared to PAY for a forecast?
NASA Astrophysics Data System (ADS)
Arnal, Louise; Coughlan, Erin; Ramos, Maria-Helena; Pappenberger, Florian; Wetterhall, Fredrik; Bachofen, Carina; van Andel, Schalk Jan
2015-04-01
Probabilistic hydro-meteorological forecasts are a crucial element of the decision-making chain in the field of flood prevention. The operational use of probabilistic forecasts is increasingly promoted through the development of new novel state-of-the-art forecast methods and numerical skill is continuously increasing. However, the value of such forecasts for flood early-warning systems is a topic of diverging opinions. Indeed, the word value, when applied to flood forecasting, is multifaceted. It refers, not only to the raw cost of acquiring and maintaining a probabilistic forecasting system (in terms of human and financial resources, data volume and computational time), but also and most importantly perhaps, to the use of such products. This game aims at investigating this point. It is a willingness to pay game, embedded in a risk-based decision-making experiment. Based on a ``Red Cross/Red Crescent, Climate Centre'' game, it is a contribution to the international Hydrologic Ensemble Prediction Experiment (HEPEX). A limited number of probabilistic forecasts will be auctioned to the participants; the price of these forecasts being market driven. All participants (irrespective of having bought or not a forecast set) will then be taken through a decision-making process to issue warnings for extreme rainfall. This game will promote discussions around the topic of the value of forecasts for decision-making in the field of flood prevention.
Biggerstaff, Matthew; Johansson, Michael; Alper, David; Brooks, Logan C; Chakraborty, Prithwish; Farrow, David C; Hyun, Sangwon; Kandula, Sasikiran; McGowan, Craig; Ramakrishnan, Naren; Rosenfeld, Roni; Shaman, Jeffrey; Tibshirani, Rob; Tibshirani, Ryan J; Vespignani, Alessandro; Yang, Wan; Zhang, Qian; Reed, Carrie
2018-02-24
Accurate forecasts could enable more informed public health decisions. Since 2013, CDC has worked with external researchers to improve influenza forecasts by coordinating seasonal challenges for the United States and the 10 Health and Human Service Regions. Forecasted targets for the 2014-15 challenge were the onset week, peak week, and peak intensity of the season and the weekly percent of outpatient visits due to influenza-like illness (ILI) 1-4 weeks in advance. We used a logarithmic scoring rule to score the weekly forecasts, averaged the scores over an evaluation period, and then exponentiated the resulting logarithmic score. Poor forecasts had a score near 0, and perfect forecasts a score of 1. Five teams submitted forecasts from seven different models. At the national level, the team scores for onset week ranged from <0.01 to 0.41, peak week ranged from 0.08 to 0.49, and peak intensity ranged from <0.01 to 0.17. The scores for predictions of ILI 1-4 weeks in advance ranged from 0.02-0.38 and was highest 1 week ahead. Forecast skill varied by HHS region. Forecasts can predict epidemic characteristics that inform public health actions. CDC, state and local health officials, and researchers are working together to improve forecasts. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
White, C. J.; Franks, S. W.; McEvoy, D.
2015-06-01
Meteorological and hydrological centres around the world are looking at ways to improve their capacity to be able to produce and deliver skilful and reliable forecasts of high-impact extreme rainfall and flooding events on a range of prediction timescales (e.g. sub-daily, daily, multi-week, seasonal). Making improvements to extended-range rainfall and flood forecast models, assessing forecast skill and uncertainty, and exploring how to apply flood forecasts and communicate their benefits to decision-makers are significant challenges facing the forecasting and water resources management communities. This paper presents some of the latest science and initiatives from Australia on the development, application and communication of extreme rainfall and flood forecasts on the extended-range "subseasonal-to-seasonal" (S2S) forecasting timescale, with a focus on risk-based decision-making, increasing flood risk awareness and preparedness, capturing uncertainty, understanding human responses to flood forecasts and warnings, and the growing adoption of "climate services". The paper also demonstrates how forecasts of flood events across a range of prediction timescales could be beneficial to a range of sectors and society, most notably for disaster risk reduction (DRR) activities, emergency management and response, and strengthening community resilience. Extended-range S2S extreme flood forecasts, if presented as easily accessible, timely and relevant information are a valuable resource to help society better prepare for, and subsequently cope with, extreme flood events.
Air Quality Forecasts Using the NASA GEOS Model
NASA Technical Reports Server (NTRS)
Keller, Christoph A.; Knowland, K. Emma; Nielsen, Jon E.; Orbe, Clara; Ott, Lesley; Pawson, Steven; Saunders, Emily; Duncan, Bryan; Follette-Cook, Melanie; Liu, Junhua;
2018-01-01
We provide an introduction to a new high-resolution (0.25 degree) global composition forecast produced by NASA's Global Modeling and Assimilation office. The NASA Goddard Earth Observing System version 5 (GEOS-5) model has been expanded to provide global near-real-time forecasts of atmospheric composition at a horizontal resolution of 0.25 degrees (25 km). Previously, this combination of detailed chemistry and resolution was only provided by regional models. This system combines the operational GEOS-5 weather forecasting model with the state-of-the-science GEOS-Chem chemistry module (version 11) to provide detailed chemical analysis of a wide range of air pollutants such as ozone, carbon monoxide, nitrogen oxides, and fine particulate matter (PM2.5). The resolution of the forecasts is the highest resolution compared to current, publically-available global composition forecasts. Evaluation and validation of modeled trace gases and aerosols compared to surface and satellite observations will be presented for constituents relative to health air quality standards. Comparisons of modeled trace gases and aerosols against satellite observations show that the model produces realistic concentrations of atmospheric constituents in the free troposphere. Model comparisons against surface observations highlight the model's capability to capture the diurnal variability of air pollutants under a variety of meteorological conditions. The GEOS-5 composition forecasting system offers a new tool for scientists and the public health community, and is being developed jointly with several government and non-profit partners. Potential applications include air quality warnings, flight campaign planning and exposure studies using the archived analysis fields.
USDA-ARS?s Scientific Manuscript database
We willexamine how climate teleconnect ions and variability impact vector biology and vector borne disease ecology, and demonstrate that global climate monitoring can be used to anticipate and forecast epidemics and epizootics. In this context we willexamine significant worldwide weather anomalies t...
NASA Astrophysics Data System (ADS)
Jones, M.; Longenecker, H. E., III
2017-12-01
The 2017 hurricane season brought the unprecedented landfall of three Category 4 hurricanes (Harvey, Irma and Maria). FEMA is responsible for coordinating the federal response and recovery efforts for large disasters such as these. FEMA depends on timely and accurate depth grids to estimate hazard exposure, model damage assessments, plan flight paths for imagery acquisition, and prioritize response efforts. In order to produce riverine or coastal depth grids based on observed flooding, the methodology requires peak crest water levels at stream gauges, tide gauges, high water marks, and best-available elevation data. Because peak crest data isn't available until the apex of a flooding event and high water marks may take up to several weeks for field teams to collect for a large-scale flooding event, final observed depth grids are not available to FEMA until several days after a flood has begun to subside. Within the last decade NOAA's National Weather Service (NWS) has implemented the Advanced Hydrologic Prediction Service (AHPS), a web-based suite of accurate forecast products that provide hydrograph forecasts at over 3,500 stream gauge locations across the United States. These forecasts have been newly implemented into an automated depth grid script tool, using predicted instead of observed water levels, allowing FEMA access to flood hazard information up to 3 days prior to a flooding event. Water depths are calculated from the AHPS predicted flood stages and are interpolated at 100m spacing along NHD hydrolines within the basin of interest. A water surface elevation raster is generated from these water depths using an Inverse Distance Weighted interpolation. Then, elevation (USGS NED 30m) is subtracted from the water surface elevation raster so that the remaining values represent the depth of predicted flooding above the ground surface. This automated process requires minimal user input and produced forecasted depth grids that were comparable to post-event observed depth grids and remote sensing-derived flood extents for the 2017 hurricane season. These newly available forecasted models were used for pre-event response planning and early estimated hazard exposure counts, allowing FEMA to plan for and stand up operations several days sooner than previously possible.
Yu, Haofei; Stuart, Amy L
2017-01-15
'Smart' growth and electric vehicles are potential solutions to the negative impacts of worldwide urbanization on air pollution and health. However, the effects of planning strategies on distinct types of pollutants, and on human exposures, remain understudied. The goal of this work was to investigate the potential impacts of alternative urban designs for the area around Tampa, Florida USA, on emissions, ambient concentrations, and exposures to oxides of nitrogen (NO x ), 1,3-butadiene, and benzene. We studied three potential future scenarios: sprawling growth, compact growth, and 100% vehicle fleet electrification with compact growth. We projected emissions in the seven-county region to 2050 based on One Bay regional visioning plan data. We estimated pollutant concentrations in the county that contains Tampa using the CALPUFF dispersion model. We applied residential population projections to forecast acute (highest hour) and chronic (annual average) exposure. The compact scenario was projected to result in lower regional emissions of all pollutants than sprawl, with differences of -18%, -3%, and -14% for NO x , butadiene, and benzene, respectively. Within Hillsborough County, the compact form also had lower emissions, concentrations, and exposures than sprawl for NO x (-16%/-5% for acute/chronic exposures, respectively), but higher exposures for butadiene (+41%/+30%) and benzene (+21%/+9%). The addition of complete vehicle fleet electrification to the compact scenario mitigated these in-county increases for the latter pollutants, lowering predicted exposures to butadiene (-25%/-39%) and benzene (-5%/-19%), but also resulted in higher exposures to NO x (+81%/+30%) due to increased demand on power plants. These results suggest that compact forms may have mixed impacts on exposures and health. 'Smart' urban designs should consider multiple pollutants and the diverse mix of pollutant sources. Cleaner power generation will also likely be needed to support aggressive adoption of electric vehicles. Copyright © 2016 Elsevier B.V. All rights reserved.
Yuan, Xing
2016-06-22
This is the second paper of a two-part series on introducing an experimental seasonal hydrological forecasting system over the Yellow River basin in northern China. While the natural hydrological predictability in terms of initial hydrological conditions (ICs) is investigated in a companion paper, the added value from eight North American Multimodel Ensemble (NMME) climate forecast models with a grand ensemble of 99 members is assessed in this paper, with an implicit consideration of human-induced uncertainty in the hydrological models through a post-processing procedure. The forecast skill in terms of anomaly correlation (AC) for 2 m air temperature and precipitation does not necessarily decrease overmore » leads but is dependent on the target month due to a strong seasonality for the climate over the Yellow River basin. As there is more diversity in the model performance for the temperature forecasts than the precipitation forecasts, the grand NMME ensemble mean forecast has consistently higher skill than the best single model up to 6 months for the temperature but up to 2 months for the precipitation. The NMME climate predictions are downscaled to drive the variable infiltration capacity (VIC) land surface hydrological model and a global routing model regionalized over the Yellow River basin to produce forecasts of soil moisture, runoff and streamflow. And the NMME/VIC forecasts are compared with the Ensemble Streamflow Prediction method (ESP/VIC) through 6-month hindcast experiments for each calendar month during 1982–2010. As verified by the VIC offline simulations, the NMME/VIC is comparable to the ESP/VIC for the soil moisture forecasts, and the former has higher skill than the latter only for the forecasts at long leads and for those initialized in the rainy season. The forecast skill for runoff is lower for both forecast approaches, but the added value from NMME/VIC is more obvious, with an increase of the average AC by 0.08–0.2. To compare with the observed streamflow, both the hindcasts from NMME/VIC and ESP/VIC are post-processed through a linear regression model fitted by using VIC offline-simulated streamflow. The post-processed NMME/VIC reduces the root mean squared error (RMSE) from the post-processed ESP/VIC by 5–15 %. And the reduction occurs mostly during the transition from wet to dry seasons. As a result, with the consideration of the uncertainty in the hydrological models, the added value from climate forecast models is decreased especially at short leads, suggesting the necessity of improving the large-scale hydrological models in human-intervened river basins.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, Xing
This is the second paper of a two-part series on introducing an experimental seasonal hydrological forecasting system over the Yellow River basin in northern China. While the natural hydrological predictability in terms of initial hydrological conditions (ICs) is investigated in a companion paper, the added value from eight North American Multimodel Ensemble (NMME) climate forecast models with a grand ensemble of 99 members is assessed in this paper, with an implicit consideration of human-induced uncertainty in the hydrological models through a post-processing procedure. The forecast skill in terms of anomaly correlation (AC) for 2 m air temperature and precipitation does not necessarily decrease overmore » leads but is dependent on the target month due to a strong seasonality for the climate over the Yellow River basin. As there is more diversity in the model performance for the temperature forecasts than the precipitation forecasts, the grand NMME ensemble mean forecast has consistently higher skill than the best single model up to 6 months for the temperature but up to 2 months for the precipitation. The NMME climate predictions are downscaled to drive the variable infiltration capacity (VIC) land surface hydrological model and a global routing model regionalized over the Yellow River basin to produce forecasts of soil moisture, runoff and streamflow. And the NMME/VIC forecasts are compared with the Ensemble Streamflow Prediction method (ESP/VIC) through 6-month hindcast experiments for each calendar month during 1982–2010. As verified by the VIC offline simulations, the NMME/VIC is comparable to the ESP/VIC for the soil moisture forecasts, and the former has higher skill than the latter only for the forecasts at long leads and for those initialized in the rainy season. The forecast skill for runoff is lower for both forecast approaches, but the added value from NMME/VIC is more obvious, with an increase of the average AC by 0.08–0.2. To compare with the observed streamflow, both the hindcasts from NMME/VIC and ESP/VIC are post-processed through a linear regression model fitted by using VIC offline-simulated streamflow. The post-processed NMME/VIC reduces the root mean squared error (RMSE) from the post-processed ESP/VIC by 5–15 %. And the reduction occurs mostly during the transition from wet to dry seasons. As a result, with the consideration of the uncertainty in the hydrological models, the added value from climate forecast models is decreased especially at short leads, suggesting the necessity of improving the large-scale hydrological models in human-intervened river basins.« less
Declining Prevalence of Disease Vectors Under Climate Change
NASA Astrophysics Data System (ADS)
Escobar, Luis E.; Romero-Alvarez, Daniel; Leon, Renato; Lepe-Lopez, Manuel A.; Craft, Meggan E.; Borbor-Cordova, Mercy J.; Svenning, Jens-Christian
2016-12-01
More than half of the world population is at risk of vector-borne diseases including dengue fever, chikungunya, zika, yellow fever, leishmaniasis, chagas disease, and malaria, with highest incidences in tropical regions. In Ecuador, vector-borne diseases are present from coastal and Amazonian regions to the Andes Mountains; however, a detailed characterization of the distribution of their vectors has never been carried out. We estimate the distribution of 14 vectors of the above vector-borne diseases under present-day and future climates. Our results consistently suggest that climate warming is likely threatening some vector species with extinction, locally or completely. These results suggest that climate change could reduce the burden of specific vector species. Other vector species are likely to shift and constrain their geographic range to the highlands in Ecuador potentially affecting novel areas and populations. These forecasts show the need for development of early prevention strategies for vector species currently absent in areas projected as suitable under future climate conditions. Informed interventions could reduce the risk of human exposure to vector species with distributional shifts, in response to current and future climate changes. Based on the mixed effects of future climate on human exposure to disease vectors, we argue that research on vector-borne diseases should be cross-scale and include climatic, demographic, and landscape factors, as well as forces facilitating disease transmission at fine scales.
Using a Hybrid Model to Forecast the Prevalence of Schistosomiasis in Humans
Zhou, Lingling; Xia, Jing; Yu, Lijing; Wang, Ying; Shi, Yun; Cai, Shunxiang; Nie, Shaofa
2016-01-01
Background: We previously proposed a hybrid model combining both the autoregressive integrated moving average (ARIMA) and the nonlinear autoregressive neural network (NARNN) models in forecasting schistosomiasis. Our purpose in the current study was to forecast the annual prevalence of human schistosomiasis in Yangxin County, using our ARIMA-NARNN model, thereby further certifying the reliability of our hybrid model. Methods: We used the ARIMA, NARNN and ARIMA-NARNN models to fit and forecast the annual prevalence of schistosomiasis. The modeling time range included was the annual prevalence from 1956 to 2008 while the testing time range included was from 2009 to 2012. The mean square error (MSE), mean absolute error (MAE) and mean absolute percentage error (MAPE) were used to measure the model performance. We reconstructed the hybrid model to forecast the annual prevalence from 2013 to 2016. Results: The modeling and testing errors generated by the ARIMA-NARNN model were lower than those obtained from either the single ARIMA or NARNN models. The predicted annual prevalence from 2013 to 2016 demonstrated an initial decreasing trend, followed by an increase. Conclusions: The ARIMA-NARNN model can be well applied to analyze surveillance data for early warning systems for the control and elimination of schistosomiasis. PMID:27023573
Operational Forecasting and Warning systems for Coastal hazards in Korea
NASA Astrophysics Data System (ADS)
Park, Kwang-Soon; Kwon, Jae-Il; Kim, Jin-Ah; Heo, Ki-Young; Jun, Kicheon
2017-04-01
Coastal hazards caused by both Mother Nature and humans cost tremendous social, economic and environmental damages. To mitigate these damages many countries have been running the operational forecasting or warning systems. Since 2009 Korea Operational Oceanographic System (KOOS) has been developed by the leading of Korea Institute of Ocean Science and Technology (KIOST) in Korea and KOOS has been operated in 2012. KOOS is consists of several operational modules of numerical models and real-time observations and produces the basic forecasting variables such as winds, tides, waves, currents, temperature and salinity and so on. In practical application systems include storm surges, oil spills, and search and rescue prediction models. In particular, abnormal high waves (swell-like high-height waves) have occurred in the East coast of Korea peninsula during winter season owing to the local meteorological condition over the East Sea, causing property damages and the loss of human lives. In order to improve wave forecast accuracy even very local wave characteristics, numerical wave modeling system using SWAN is established with data assimilation module using 4D-EnKF and sensitivity test has been conducted. During the typhoon period for the prediction of sever waves and the decision making support system for evacuation of the ships, a high-resolution wave forecasting system has been established and calibrated.
NASA Astrophysics Data System (ADS)
Hudspeth, W. B.; Sanchez-Silva, R.; Cavner, J. A.
2010-12-01
New Mexico's Environmental Public Health Tracking System (EPHTS), funded by the Centers for Disease Control (CDC) Environmental Public Health Tracking Network (EPHTN), aims to improve health awareness and services by linking health effects data with levels and frequency of environmental exposure. As a public health decision-support system, EPHTS systems include: state-of-the-art statistical analysis tools; geospatial visualization tools; data discovery, extraction, and delivery tools; and environmental/public health linkage information. As part of its mandate, EPHTS issues public health advisories and forecasts of environmental conditions that have consequences for human health. Through a NASA-funded partnership between the University of New Mexico and the University of Arizona, NASA Earth Science results are fused into two existing models (the Dust Regional Atmospheric Model (DREAM) and the Community Multiscale Air Quality (CMAQ) model) in order to improve forecasts of atmospheric dust, ozone, and aerosols. The results and products derived from the outputs of these models are made available to an Open Source mapping component of the New Mexico EPHTS. In particular, these products are integrated into a Django content management system using GeoDjango, GeoAlchemy, and other OGC-compliant geospatial libraries written in the Python and C++ programming languages. Capabilities of the resultant mapping system include indicator-based thematic mapping, data delivery, and analytical capabilities. DREAM and CMAQ outputs can be inspected, via REST calls, through temporal and spatial subsetting of the atmospheric concentration data across analytical units employed by the public health community. This paper describes details of the architecture and integration of NASA Earth Science into the EPHTS decision-support system.
NASA Astrophysics Data System (ADS)
Navares, Ricardo; Aznarte, José Luis
2017-04-01
In this paper, we approach the problem of predicting the concentrations of Poaceae pollen which define the main pollination season in the city of Madrid. A classification-based approach, based on a computational intelligence model (random forests), is applied to forecast the dates in which risk concentration levels are to be observed. Unlike previous works, the proposal extends the range of forecasting horizons up to 6 months ahead. Furthermore, the proposed model allows to determine the most influential factors for each horizon, making no assumptions about the significance of the weather features. The performace of the proposed model proves it as a successful tool for allergy patients in preventing and minimizing the exposure to risky pollen concentrations and for researchers to gain a deeper insight on the factors driving the pollination season.
Navares, Ricardo; Aznarte, José Luis
2017-04-01
In this paper, we approach the problem of predicting the concentrations of Poaceae pollen which define the main pollination season in the city of Madrid. A classification-based approach, based on a computational intelligence model (random forests), is applied to forecast the dates in which risk concentration levels are to be observed. Unlike previous works, the proposal extends the range of forecasting horizons up to 6 months ahead. Furthermore, the proposed model allows to determine the most influential factors for each horizon, making no assumptions about the significance of the weather features. The performace of the proposed model proves it as a successful tool for allergy patients in preventing and minimizing the exposure to risky pollen concentrations and for researchers to gain a deeper insight on the factors driving the pollination season.
Environmental noise forecasting based on support vector machine
NASA Astrophysics Data System (ADS)
Fu, Yumei; Zan, Xinwu; Chen, Tianyi; Xiang, Shihan
2018-01-01
As an important pollution source, the noise pollution is always the researcher's focus. Especially in recent years, the noise pollution is seriously harmful to the human beings' environment, so the research about the noise pollution is a very hot spot. Some noise monitoring technologies and monitoring systems are applied in the environmental noise test, measurement and evaluation. But, the research about the environmental noise forecasting is weak. In this paper, a real-time environmental noise monitoring system is introduced briefly. This monitoring system is working in Mianyang City, Sichuan Province. It is monitoring and collecting the environmental noise about more than 20 enterprises in this district. Based on the large amount of noise data, the noise forecasting by the Support Vector Machine (SVM) is studied in detail. Compared with the time series forecasting model and the artificial neural network forecasting model, the SVM forecasting model has some advantages such as the smaller data size, the higher precision and stability. The noise forecasting results based on the SVM can provide the important and accuracy reference to the prevention and control of the environmental noise.
Beyond Climate and Weather Science: Expanding the Forecasting Family to Serve Societal Needs
NASA Astrophysics Data System (ADS)
Barron, E. J.
2009-05-01
The ability to "anticipate" the future is what makes information from the Earth sciences valuable to society - whether it is the prediction of severe weather or the future availability of water resources in response to climate change. An improved ability to anticipate or forecast has the potential to serve society by simultaneously improving our ability to (1) promote economic vitality, (2) enable environmental stewardship, (3) protect life and property, as well as (4) improve our fundamental knowledge of the earth system. The potential is enormous, yet many appear ready to move quickly toward specific mitigation and adaptation strategies assuming that the science is settled. Five important weakness must be addressed first: (1) the formation of a true "climate services" function and capability, (2) the deliberate investment in expanding the family of forecasting elements to incorporate a broader array of environmental factors and impacts, (3) the investment in the sciences that connect climate to society, (4) a deliberate focus on the problems associated with scale, in particular the difference between the scale of predictive models and the scale associated with societal decisions, and (5) the evolution from climate services and model predictions to the equivalent of "environmental intelligence centers." The objective is to bring the discipline of forecasting to a broader array of environmental challenges. Assessments of the potential impacts of global climate change on societal sectors such as water, human health, and agriculture provide good examples of this challenge. We have the potential to move from a largely reactive mode in addressing adverse health outcomes, for example, to one in which the ties between climate, land cover, infectious disease vectors, and human health are used to forecast and predict adverse human health conditions. The potential exists for a revolution in forecasting, that entrains a much broader set of societal needs and solutions. The argument is made that (for example) the current capabilities in the prediction of environmental health is similar to the capabilities (and potential) of weather forecasting in the 1960's.
NASA Astrophysics Data System (ADS)
Bates, Alyssa Victoria
Tornado outbreaks have significant human impact, so it is imperative forecasts of these phenomena are accurate. As a synoptic setup lays the foundation for a forecast, synoptic-scale aspects of Storm Prediction Center (SPC) outbreak forecasts of varying accuracy were assessed. The percentages of the number of tornado outbreaks within SPC 10% tornado probability polygons were calculated. False alarm events were separately considered. The outbreaks were separated into quartiles using a point-in-polygon algorithm. Statistical composite fields were created to represent the synoptic conditions of these groups and facilitate comparison. Overall, temperature advection had the greatest differences between the groups. Additionally, there were significant differences in the jet streak strengths and amounts of vertical wind shear. The events forecasted with low accuracy consisted of the weakest synoptic-scale setups. These results suggest it is possible that events with weak synoptic setups should be regarded as areas of concern by tornado outbreak forecasters.
City scale pollen concentration variability
NASA Astrophysics Data System (ADS)
van der Molen, Michiel; van Vliet, Arnold; Krol, Maarten
2016-04-01
Pollen are emitted in the atmosphere both in the country-side and in cities. Yet the majority of the population is exposed to pollen in cities. Allergic reactions may be induced by short-term exposure to pollen. This raises the question how variable pollen concentration in cities are in temporally and spatially, and how much of the pollen in cities are actually produced in the urban region itself. We built a high resolution (1 × 1 km) pollen dispersion model based on WRF-Chem to study a city's pollen budget and the spatial and temporal variability in concentration. It shows that the concentrations are highly variable, as a result of source distribution, wind direction and boundary layer mixing, as well as the release rate as a function of temperature, turbulence intensity and humidity. Hay Fever Forecasts based on such high resolution emission and physical dispersion modelling surpass traditional hay fever warning methods based on temperature sum methods. The model gives new insights in concentration variability, personal and community level exposure and prevention. The model will be developped into a new forecast tool to serve allergic people to minimize their exposure and reduce nuisance, coast of medication and sick leave. This is an innovative approach in hay fever warning systems.
Macintyre, Helen L; Heaviside, Clare; Neal, Lucy S; Agnew, Paul; Thornes, John; Vardoulakis, Sotiris
2016-12-01
Exposure to particulate air pollution is known to have negative impacts on human health. Long-term exposure to anthropogenic particulate matter is associated with the equivalent of around 29,000 deaths a year in the UK. However, short-lived air pollution episodes on the order of a few days are also associated with increased daily mortality and emergency hospital admissions for respiratory and cardiovascular conditions. The UK experienced widespread high levels of particulate air pollution in March-April 2014; observations of hourly mean PM 2.5 concentrations reached up to 83μgm -3 at urban background sites. We performed an exposure and health impact assessment of the spring air pollution, focusing on two episodes with the highest concentrations of PM 2.5 (12-14 March and 28 March-3 April 2014). Across these two episodes of elevated air pollution, totalling 10days, around 600 deaths were brought forward from short-term exposure to PM 2.5 , representing 3.9% of total all-cause (excluding external) mortality during these days. Using observed levels of PM 2.5 from other years, we estimate that this is 2.0 to 2.7 times the mortality burden associated with typical urban background levels of PM 2.5 at this time of year. Our results highlight the potential public health impacts and may aid planning for health care resources when such an episode is forecast. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
Air Quality Forecasts Using the NASA GEOS Model: A Unified Tool from Local to Global Scales
NASA Technical Reports Server (NTRS)
Knowland, E. Emma; Keller, Christoph; Nielsen, J. Eric; Orbe, Clara; Ott, Lesley; Pawson, Steven; Saunders, Emily; Duncan, Bryan; Cook, Melanie; Liu, Junhua;
2017-01-01
We provide an introduction to a new high-resolution (0.25 degree) global composition forecast produced by NASA's Global Modeling and Assimilation office. The NASA Goddard Earth Observing System version 5 (GEOS-5) model has been expanded to provide global near-real-time forecasts of atmospheric composition at a horizontal resolution of 0.25 degrees (approximately 25 km). Previously, this combination of detailed chemistry and resolution was only provided by regional models. This system combines the operational GEOS-5 weather forecasting model with the state-of-the-science GEOS-Chem chemistry module (version 11) to provide detailed chemical analysis of a wide range of air pollutants such as ozone, carbon monoxide, nitrogen oxides, and fine particulate matter (PM2.5). The resolution of the forecasts is the highest resolution compared to current, publically-available global composition forecasts. Evaluation and validation of modeled trace gases and aerosols compared to surface and satellite observations will be presented for constituents relative to health air quality standards. Comparisons of modeled trace gases and aerosols against satellite observations show that the model produces realistic concentrations of atmospheric constituents in the free troposphere. Model comparisons against surface observations highlight the model's capability to capture the diurnal variability of air pollutants under a variety of meteorological conditions. The GEOS-5 composition forecasting system offers a new tool for scientists and the public health community, and is being developed jointly with several government and non-profit partners. Potential applications include air quality warnings, flight campaign planning and exposure studies using the archived analysis fields.
Educational Planning and Human Resources Development with Reference to Arab Countries.
ERIC Educational Resources Information Center
Galaleldin, Mohamed Al Awad
Human resources development sees human beings as the means to socioeconomic development. This differs from human development which sees human beings as the immediate and ultimate goals and ends of socio-economic development. Arab states have tended to utilize the human resources development approach as part of their forecasting of manpower…
Benefits of Using Remote Sensing for Health Alerts and Chronic Respiratory Exposures
NASA Technical Reports Server (NTRS)
Luvall, J. C.
2010-01-01
Respiratory diseases such as asthma can be triggered by environmental conditions that can be monitored using Earth observing data and environmental forecast models. Frequent dust storms in the southwestern United States, the annual cycle of juniper pollen events in the spring, and increased aerosol and ozone concentrations in summer, are health concerns shared by the community at large. Being able to forecast the occurrence of these events would help the health care community prepare for increased visits to emergency rooms, as well as allow public health officials to issue alerts to affected persons. This information also is important to epidemiologists for analyzing long-term trends and impacts of these events on the health and well-being of the community. Earth observing data collected by remote sensing platforms are important for improving the performance of models that can forecast these events, and in turn, improve products and information for decision-making by public health authorities. This presentation will discuss the benefits of using remote sensing data for forecasting environmental events that can adversely affect individuals with respiratory ailments. The presentations will include a brief discussion on relevant Earth observing data, the forecast models used, and societal benefits of the resulting products and information. Several NASA-funded projects will be highlighted as examples
[Characteristics of quantitative values of regional factors of exposure in the studied areas].
Rakhmanin, Iu A; Shashina, T A; Ungurianu, T N; Novikov, S M; Skvortsova, N S; Matsiuk, A V; Legostaeva, T B; Antipanova, N A
2012-01-01
In the paper the results of a comparative evaluation of the Russian and the standard, recommended by US EPA, factors of population exposure in seven areas of different federal districts of Russia are presented. Concerning the adult population differences reach 3.5 times, for children (1-6 years) - 4.2 times. An example of the effect of regional differences and standard factors on levels of exposure and risk is considered. Promising areas for further research on regional factors to improve the accuracy and reliability of the forecast assessments of the risks to public health have been identified.
[Physically-based model of pesticide application for risk assessment of agricultural workers].
Rubino, F M; Mandic-Rajcevic, S; Vianello, G; Brambilla, G; Colosio, C
2012-01-01
Due to their unavoidable toxicity to non-target organisms, including man, the not of Plant Protection Products requires a thorough risk assessment to rationally advise safe use procedures and protection equipment by farmers. Most information on active substances and formulations, such as dermal absorption rates and exposure limits are available in the large body of regulatory data. Physically-based computational models can be used to forecast risk in real-life conditions (preventive assessment by 'exposure profiles'), to drive the cost-effective use of products and equipment and to understand the sources of unexpected exposure.
NASA Astrophysics Data System (ADS)
Wood, A. W.; Clark, E.; Mendoza, P. A.; Nijssen, B.; Newman, A. J.; Clark, M. P.; Arnold, J.; Nowak, K. C.
2016-12-01
Many if not most national operational short-to-medium range streamflow prediction systems rely on a forecaster-in-the-loop approach in which some parts of the forecast workflow are automated, but others require the hands-on-effort of an experienced human forecaster. This approach evolved out of the need to correct for deficiencies in the models and datasets that were available for forecasting, and often leads to skillful predictions despite the use of relatively simple, conceptual models. On the other hand, the process is not reproducible, which limits opportunities to assess and incorporate process variations, and the effort required to make forecasts in this way is an obstacle to expanding forecast services - e.g., though adding new forecast locations or more frequent forecast updates, running more complex models, or producing forecast ensembles and hindcasts that can support verification. In the last decade, the hydrologic forecasting community has begun to develop more centralized, `over-the-loop' systems. The quality of these new forecast products will depend on their ability to leverage research in areas including earth system modeling, parameter estimation, data assimilation, statistical post-processing, weather and climate prediction, verification, and uncertainty estimation through the use of ensembles. Currently, the operational streamflow forecasting and water management communities have little experience with the strengths and weaknesses of over-the-loop approaches, even as the systems are being rolled out in major operational forecasting centers. There is thus a need both to evaluate these forecasting advances and to demonstrate their potential in a public arena, raising awareness in forecast user communities and development programs alike. To address this need, the National Center for Atmospheric Research is collaborating with the University of Washington, the Bureau of Reclamation and the US Army Corps of Engineers, using the NCAR 'System for Hydromet Analysis, Research, and Prediction' (SHARP) to implement, assess and demonstrate real-time over-the-loop forecasts. We present early hindcast and verification results from SHARP for short to medium range streamflow forecasts in a number of US case study watersheds.
NASA Astrophysics Data System (ADS)
Saharia, M.; Wood, A.; Clark, M. P.; Bennett, A.; Nijssen, B.; Clark, E.; Newman, A. J.
2017-12-01
Most operational streamflow forecasting systems rely on a forecaster-in-the-loop approach in which some parts of the forecast workflow require an experienced human forecaster. But this approach faces challenges surrounding process reproducibility, hindcasting capability, and extension to large domains. The operational hydrologic community is increasingly moving towards `over-the-loop' (completely automated) large-domain simulations yet recent developments indicate a widespread lack of community knowledge about the strengths and weaknesses of such systems for forecasting. A realistic representation of land surface hydrologic processes is a critical element for improving forecasts, but often comes at the substantial cost of forecast system agility and efficiency. While popular grid-based models support the distributed representation of land surface processes, intermediate-scale Hydrologic Unit Code (HUC)-based modeling could provide a more efficient and process-aligned spatial discretization, reducing the need for tradeoffs between model complexity and critical forecasting requirements such as ensemble methods and comprehensive model calibration. The National Center for Atmospheric Research is collaborating with the University of Washington, the Bureau of Reclamation and the USACE to implement, assess, and demonstrate real-time, over-the-loop distributed streamflow forecasting for several large western US river basins and regions. In this presentation, we present early results from short to medium range hydrologic and streamflow forecasts for the Pacific Northwest (PNW). We employ a real-time 1/16th degree daily ensemble model forcings as well as downscaled Global Ensemble Forecasting System (GEFS) meteorological forecasts. These datasets drive an intermediate-scale configuration of the Structure for Unifying Multiple Modeling Alternatives (SUMMA) model, which represents the PNW using over 11,700 HUCs. The system produces not only streamflow forecasts (using the MizuRoute channel routing tool) but also distributed model states such as soil moisture and snow water equivalent. We also describe challenges in distributed model-based forecasting, including the application and early results of real-time hydrologic data assimilation.
NASA Astrophysics Data System (ADS)
Li, Yu; Giuliani, Matteo; Castelletti, Andrea
2017-09-01
Recent advances in weather and climate (W&C) services are showing increasing forecast skills over seasonal and longer timescales, potentially providing valuable support in informing decisions in a variety of economic sectors. Quantifying this value, however, might not be straightforward as better forecast quality does not necessarily imply better decisions by the end users, especially when forecasts do not reach their final users, when providers are not trusted, or when forecasts are not appropriately understood. In this study, we contribute an assessment framework to evaluate the operational value of W&C services for informing agricultural practices by complementing traditional forecast quality assessments with a coupled human-natural system behavioural model which reproduces farmers' decisions. This allows a more critical assessment of the forecast value mediated by the end users' perspective, including farmers' risk attitudes and behavioural factors. The application to an agricultural area in northern Italy shows that the quality of state-of-the-art W&C services is still limited in predicting the weather and the crop yield of the incoming agricultural season, with ECMWF annual products simulated by the IFS/HOPE model resulting in the most skillful product in the study area. However, we also show that the accuracy of estimating crop yield and the probability of making optimal decisions are not necessarily linearly correlated, with the overall assessment procedure being strongly impacted by the behavioural attitudes of farmers, which can produce rank reversals in the quantification of the W&C services operational value depending on the different perceptions of risk and uncertainty.
Score Matrix for HWBI Forecast Model
2000-2010 Annual State-Scale Service and Domain scores used to support the approach for forecasting EPA's Human Well-Being Index. A modeling approach was developed based relationship function equations derived from select economic, social and ecosystem final goods and service scores and calculated human well-being index and related domain scores. These data are being used in a secondary capacity. The foundational data and scoring techniques were originally described in: a) U.S. EPA. 2012. Indicators and Methods for Constructing a U.S. Human Well-being Index (HWBI) for Ecosystem Services Research. Report. EPA/600/R-12/023. pp. 121; and b) U.S. EPA. 2014. Indicators and Methods for Evaluating Economic, Ecosystem and Social Services Provisioning. Report. EPA/600/R-14/184. pp. 174. Mode Smith, L. M., Harwell, L. C., Summers, J. K., Smith, H. M., Wade, C. M., Straub, K. R. and J.L. Case (2014).This dataset is associated with the following publication:Summers , K., L. Harwell , and L. Smith. A Model For Change: An Approach for Forecasting Well-Being From Service-Based Decisions. ECOLOGICAL INDICATORS. Elsevier Science Ltd, New York, NY, USA, 69: 295-309, (2016).
Short-term solar flare prediction using image-case-based reasoning
NASA Astrophysics Data System (ADS)
Liu, Jin-Fu; Li, Fei; Zhang, Huai-Peng; Yu, Da-Ren
2017-10-01
Solar flares strongly influence space weather and human activities, and their prediction is highly complex. The existing solutions such as data based approaches and model based approaches have a common shortcoming which is the lack of human engagement in the forecasting process. An image-case-based reasoning method is introduced to achieve this goal. The image case library is composed of SOHO/MDI longitudinal magnetograms, the images from which exhibit the maximum horizontal gradient, the length of the neutral line and the number of singular points that are extracted for retrieving similar image cases. Genetic optimization algorithms are employed for optimizing the weight assignment for image features and the number of similar image cases retrieved. Similar image cases and prediction results derived by majority voting for these similar image cases are output and shown to the forecaster in order to integrate his/her experience with the final prediction results. Experimental results demonstrate that the case-based reasoning approach has slightly better performance than other methods, and is more efficient with forecasts improved by humans.
Iterative near-term ecological forecasting: Needs, opportunities, and challenges
Dietze, Michael C.; Fox, Andrew; Beck-Johnson, Lindsay; Betancourt, Julio L.; Hooten, Mevin B.; Jarnevich, Catherine S.; Keitt, Timothy H.; Kenney, Melissa A.; Laney, Christine M.; Larsen, Laurel G.; Loescher, Henry W.; Lunch, Claire K.; Pijanowski, Bryan; Randerson, James T.; Read, Emily; Tredennick, Andrew T.; Vargas, Rodrigo; Weathers, Kathleen C.; White, Ethan P.
2018-01-01
Two foundational questions about sustainability are “How are ecosystems and the services they provide going to change in the future?” and “How do human decisions affect these trajectories?” Answering these questions requires an ability to forecast ecological processes. Unfortunately, most ecological forecasts focus on centennial-scale climate responses, therefore neither meeting the needs of near-term (daily to decadal) environmental decision-making nor allowing comparison of specific, quantitative predictions to new observational data, one of the strongest tests of scientific theory. Near-term forecasts provide the opportunity to iteratively cycle between performing analyses and updating predictions in light of new evidence. This iterative process of gaining feedback, building experience, and correcting models and methods is critical for improving forecasts. Iterative, near-term forecasting will accelerate ecological research, make it more relevant to society, and inform sustainable decision-making under high uncertainty and adaptive management. Here, we identify the immediate scientific and societal needs, opportunities, and challenges for iterative near-term ecological forecasting. Over the past decade, data volume, variety, and accessibility have greatly increased, but challenges remain in interoperability, latency, and uncertainty quantification. Similarly, ecologists have made considerable advances in applying computational, informatic, and statistical methods, but opportunities exist for improving forecast-specific theory, methods, and cyberinfrastructure. Effective forecasting will also require changes in scientific training, culture, and institutions. The need to start forecasting is now; the time for making ecology more predictive is here, and learning by doing is the fastest route to drive the science forward.
Iterative near-term ecological forecasting: Needs, opportunities, and challenges.
Dietze, Michael C; Fox, Andrew; Beck-Johnson, Lindsay M; Betancourt, Julio L; Hooten, Mevin B; Jarnevich, Catherine S; Keitt, Timothy H; Kenney, Melissa A; Laney, Christine M; Larsen, Laurel G; Loescher, Henry W; Lunch, Claire K; Pijanowski, Bryan C; Randerson, James T; Read, Emily K; Tredennick, Andrew T; Vargas, Rodrigo; Weathers, Kathleen C; White, Ethan P
2018-02-13
Two foundational questions about sustainability are "How are ecosystems and the services they provide going to change in the future?" and "How do human decisions affect these trajectories?" Answering these questions requires an ability to forecast ecological processes. Unfortunately, most ecological forecasts focus on centennial-scale climate responses, therefore neither meeting the needs of near-term (daily to decadal) environmental decision-making nor allowing comparison of specific, quantitative predictions to new observational data, one of the strongest tests of scientific theory. Near-term forecasts provide the opportunity to iteratively cycle between performing analyses and updating predictions in light of new evidence. This iterative process of gaining feedback, building experience, and correcting models and methods is critical for improving forecasts. Iterative, near-term forecasting will accelerate ecological research, make it more relevant to society, and inform sustainable decision-making under high uncertainty and adaptive management. Here, we identify the immediate scientific and societal needs, opportunities, and challenges for iterative near-term ecological forecasting. Over the past decade, data volume, variety, and accessibility have greatly increased, but challenges remain in interoperability, latency, and uncertainty quantification. Similarly, ecologists have made considerable advances in applying computational, informatic, and statistical methods, but opportunities exist for improving forecast-specific theory, methods, and cyberinfrastructure. Effective forecasting will also require changes in scientific training, culture, and institutions. The need to start forecasting is now; the time for making ecology more predictive is here, and learning by doing is the fastest route to drive the science forward.
Metrics for the Evaluation the Utility of Air Quality Forecasting
NASA Astrophysics Data System (ADS)
Sumo, T. M.; Stockwell, W. R.
2013-12-01
Global warming is expected to lead to higher levels of air pollution and therefore the forecasting of both long-term and daily air quality is an important component for the assessment of the costs of climate change and its impact on human health. Some of the risks associated with poor air quality days (where the Air Pollution Index is greater than 100), include hospital visits and mortality. Accurate air quality forecasting has the potential to allow sensitive groups to take appropriate precautions. This research builds metrics for evaluating the utility of air quality forecasting in terms of its potential impacts. Our analysis of air quality models focuses on the Washington, DC/Baltimore, MD region over the summertime ozone seasons between 2010 and 2012. The metrics that are relevant to our analysis include: (1) The number of times that a high ozone or particulate matter (PM) episode is correctly forecasted, (2) the number of times that high ozone or PM episode is forecasted when it does not occur and (3) the number of times when the air quality forecast predicts a cleaner air episode when the air was observed to have high ozone or PM. Our evaluation of the performance of air quality forecasts include those forecasts of ozone and particulate matter and data available from the U.S. Environmental Protection Agency (EPA)'s AIRNOW. We also examined observational ozone and particulate matter data available from Clean Air Partners. Overall the forecast models perform well for our region and time interval.
When Brain Beats Behavior: Neuroforecasting Crowdfunding Outcomes
Yoon, Carolyn
2017-01-01
Although traditional economic and psychological theories imply that individual choice best scales to aggregate choice, primary components of choice reflected in neural activity may support even more generalizable forecasts. Crowdfunding represents a significant and growing platform for funding new and unique projects, causes, and products. To test whether neural activity could forecast market-level crowdfunding outcomes weeks later, 30 human subjects (14 female) decided whether to fund proposed projects described on an Internet crowdfunding website while undergoing scanning with functional magnetic resonance imaging. Although activity in both the nucleus accumbens (NAcc) and medial prefrontal cortex predicted individual choices to fund on a trial-to-trial basis in the neuroimaging sample, only NAcc activity generalized to forecast market funding outcomes weeks later on the Internet. Behavioral measures from the neuroimaging sample, however, did not forecast market funding outcomes. This pattern of associations was replicated in a second study. These findings demonstrate that a subset of the neural predictors of individual choice can generalize to forecast market-level crowdfunding outcomes—even better than choice itself. SIGNIFICANCE STATEMENT Forecasting aggregate behavior with individual neural data has proven elusive; even when successful, neural forecasts have not historically supplanted behavioral forecasts. In the current research, we find that neural responses can forecast market-level choice and outperform behavioral measures in a novel Internet crowdfunding context. Targeted as well as model-free analyses convergently indicated that nucleus accumbens activity can support aggregate forecasts. Beyond providing initial evidence for neuropsychological processes implicated in crowdfunding choices, these findings highlight the ability of neural features to forecast aggregate choice, which could inform applications relevant to business and policy. PMID:28821681
Feasibility of Forecasting Highway Safety in Support of Safety Incentive and Safety Target Programs.
DOT National Transportation Integrated Search
2007-11-01
Using the frequency of fatal crashes from the current observation period (e.g. month, year, etc.) as the : prediction of expected future performance does not account for changes in safety that result from : increases in exposure (population, addition...
Watson, Stella C; Liu, Yan; Lund, Robert B; Gettings, Jenna R; Nordone, Shila K; McMahan, Christopher S; Yabsley, Michael J
2017-01-01
This paper models the prevalence of antibodies to Borrelia burgdorferi in domestic dogs in the United States using climate, geographic, and societal factors. We then use this model to forecast the prevalence of antibodies to B. burgdorferi in dogs for 2016. The data available for this study consists of 11,937,925 B. burgdorferi serologic test results collected at the county level within the 48 contiguous United States from 2011-2015. Using the serologic data, a baseline B. burgdorferi antibody prevalence map was constructed through the use of spatial smoothing techniques after temporal aggregation; i.e., head-banging and Kriging. In addition, several covariates purported to be associated with B. burgdorferi prevalence were collected on the same spatio-temporal granularity, and include forestation, elevation, water coverage, temperature, relative humidity, precipitation, population density, and median household income. A Bayesian spatio-temporal conditional autoregressive (CAR) model was used to analyze these data, for the purposes of identifying significant risk factors and for constructing disease forecasts. The fidelity of the forecasting technique was assessed using historical data, and a Lyme disease forecast for dogs in 2016 was constructed. The correlation between the county level model and baseline B. burgdorferi antibody prevalence estimates from 2011 to 2015 is 0.894, illustrating that the Bayesian spatio-temporal CAR model provides a good fit to these data. The fidelity of the forecasting technique was assessed in the usual fashion; i.e., the 2011-2014 data was used to forecast the 2015 county level prevalence, with comparisons between observed and predicted being made. The weighted (to acknowledge sample size) correlation between 2015 county level observed prevalence and 2015 forecasted prevalence is 0.978. A forecast for the prevalence of B. burgdorferi antibodies in domestic dogs in 2016 is also provided. The forecast presented from this model can be used to alert veterinarians in areas likely to see above average B. burgdorferi antibody prevalence in dogs in the upcoming year. In addition, because dogs and humans can be exposed to ticks in similar habitats, these data may ultimately prove useful in predicting areas where human Lyme disease risk may emerge.
Watson, Stella C.; Liu, Yan; Lund, Robert B.; Gettings, Jenna R.; Nordone, Shila K.; McMahan, Christopher S.
2017-01-01
This paper models the prevalence of antibodies to Borrelia burgdorferi in domestic dogs in the United States using climate, geographic, and societal factors. We then use this model to forecast the prevalence of antibodies to B. burgdorferi in dogs for 2016. The data available for this study consists of 11,937,925 B. burgdorferi serologic test results collected at the county level within the 48 contiguous United States from 2011-2015. Using the serologic data, a baseline B. burgdorferi antibody prevalence map was constructed through the use of spatial smoothing techniques after temporal aggregation; i.e., head-banging and Kriging. In addition, several covariates purported to be associated with B. burgdorferi prevalence were collected on the same spatio-temporal granularity, and include forestation, elevation, water coverage, temperature, relative humidity, precipitation, population density, and median household income. A Bayesian spatio-temporal conditional autoregressive (CAR) model was used to analyze these data, for the purposes of identifying significant risk factors and for constructing disease forecasts. The fidelity of the forecasting technique was assessed using historical data, and a Lyme disease forecast for dogs in 2016 was constructed. The correlation between the county level model and baseline B. burgdorferi antibody prevalence estimates from 2011 to 2015 is 0.894, illustrating that the Bayesian spatio-temporal CAR model provides a good fit to these data. The fidelity of the forecasting technique was assessed in the usual fashion; i.e., the 2011-2014 data was used to forecast the 2015 county level prevalence, with comparisons between observed and predicted being made. The weighted (to acknowledge sample size) correlation between 2015 county level observed prevalence and 2015 forecasted prevalence is 0.978. A forecast for the prevalence of B. burgdorferi antibodies in domestic dogs in 2016 is also provided. The forecast presented from this model can be used to alert veterinarians in areas likely to see above average B. burgdorferi antibody prevalence in dogs in the upcoming year. In addition, because dogs and humans can be exposed to ticks in similar habitats, these data may ultimately prove useful in predicting areas where human Lyme disease risk may emerge. PMID:28472096
A scoping review of malaria forecasting: past work and future directions
Zinszer, Kate; Verma, Aman D; Charland, Katia; Brewer, Timothy F; Brownstein, John S; Sun, Zhuoyu; Buckeridge, David L
2012-01-01
Objectives There is a growing body of literature on malaria forecasting methods and the objective of our review is to identify and assess methods, including predictors, used to forecast malaria. Design Scoping review. Two independent reviewers searched information sources, assessed studies for inclusion and extracted data from each study. Information sources Search strategies were developed and the following databases were searched: CAB Abstracts, EMBASE, Global Health, MEDLINE, ProQuest Dissertations & Theses and Web of Science. Key journals and websites were also manually searched. Eligibility criteria for included studies We included studies that forecasted incidence, prevalence or epidemics of malaria over time. A description of the forecasting model and an assessment of the forecast accuracy of the model were requirements for inclusion. Studies were restricted to human populations and to autochthonous transmission settings. Results We identified 29 different studies that met our inclusion criteria for this review. The forecasting approaches included statistical modelling, mathematical modelling and machine learning methods. Climate-related predictors were used consistently in forecasting models, with the most common predictors being rainfall, relative humidity, temperature and the normalised difference vegetation index. Model evaluation was typically based on a reserved portion of data and accuracy was measured in a variety of ways including mean-squared error and correlation coefficients. We could not compare the forecast accuracy of models from the different studies as the evaluation measures differed across the studies. Conclusions Applying different forecasting methods to the same data, exploring the predictive ability of non-environmental variables, including transmission reducing interventions and using common forecast accuracy measures will allow malaria researchers to compare and improve models and methods, which should improve the quality of malaria forecasting. PMID:23180505
Improving Global Building Exposure Data for Disaster Forecasting, Mitigation, and Response
NASA Astrophysics Data System (ADS)
Chen, R. S.; Huyck, C.; Lewis, G.; Becker, M.; Vinay, S.; Tralli, D.; Eguchi, R.
2013-12-01
This paper describes an exploratory study being performed under the NASA Applied Sciences Program where the goal is to integrate Earth science data and information for disaster forecasting, mitigation and response. Specifically, we are delivering EO-derived built environment data and information for use in catastrophe (CAT) models and loss estimation tools. CAT models and loss estimation tools typically use GIS exposure databases to characterize the real-world environment. These datasets are often a source of great uncertainty in the loss estimates, particularly in international events, because the data are incomplete, and sometimes inaccurate and disparate in quality from one region to another. Preliminary research by project team members as part of the Global Earthquake Model (GEM) consortium suggests that a strong relationship exists between the height and volume of built-up areas and NASA data products from the Suomi National Polar-Orbiting Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS), the Moderate Resolution Imaging Spectroradiometer (MODIS), and the NASA Socioeconomic Data and Applications Center (SEDAC). Applying this knowledge within the framework of the GEM Global Exposure Database (GED) is significantly enhancing our ability to quantify building exposure, particularly in developing countries and emerging insurance markets. Global insurance products that have a more comprehensive basis for assessing risk and exposure - as from EO-derived data and information assimilated into CAT models and loss estimation tools - will help a) help to transform the way in which we measure, monitor and assess the vulnerability of our communities globally, and in turn, b) help encourage the investments needed - especially in the developing world - stimulating economic growth and actions that would lead to a more disaster-resilient world. Improved building exposure data will also be valuable for near-real time applications such as emergency response planning and post-disaster damage and needs assessment.
Forecasting the magnitude and onset of El Niño based on climate network
NASA Astrophysics Data System (ADS)
Meng, Jun; Fan, Jingfang; Ashkenazy, Yosef; Bunde, Armin; Havlin, Shlomo
2018-04-01
El Niño is probably the most influential climate phenomenon on inter-annual time scales. It affects the global climate system and is associated with natural disasters; it has serious consequences in many aspects of human life. However, the forecasting of the onset and in particular the magnitude of El Niño are still not accurate enough, at least more than half a year ahead. Here, we introduce a new forecasting index based on climate network links representing the similarity of low frequency temporal temperature anomaly variations between different sites in the Niño 3.4 region. We find that significant upward trends in our index forecast the onset of El Niño approximately 1 year ahead, and the highest peak since the end of last El Niño in our index forecasts the magnitude of the following event. We study the forecasting capability of the proposed index on several datasets, including, ERA-Interim, NCEP Reanalysis I, PCMDI-AMIP 1.1.3 and ERSST.v5.
The WFIRST Galaxy Survey Exposure Time Calculator
NASA Technical Reports Server (NTRS)
Hirata, Christopher M.; Gehrels, Neil; Kneib, Jean-Paul; Kruk, Jeffrey; Rhodes, Jason; Wang, Yun; Zoubian, Julien
2013-01-01
This document describes the exposure time calculator for the Wide-Field Infrared Survey Telescope (WFIRST) high-latitude survey. The calculator works in both imaging and spectroscopic modes. In addition to the standard ETC functions (e.g. background and SN determination), the calculator integrates over the galaxy population and forecasts the density and redshift distribution of galaxy shapes usable for weak lensing (in imaging mode) and the detected emission lines (in spectroscopic mode). The source code is made available for public use.
Radiological Monitoring for Instructors. Student Workbook. Revised.
ERIC Educational Resources Information Center
Office of Civil Defense (DOD), Washington, DC.
This student workbook includes the necessary materials and some of the references needed by each student during the conduct of the Radiological Monitoring for Instructors (RMI) course. The contents include a radiation exposure record, instrument exercise materials, fallout forecasting problems, dose and dose rate problems, source handling…
Forecasting Flare Activity Using Deep Convolutional Neural Networks
NASA Astrophysics Data System (ADS)
Hernandez, T.
2017-12-01
Current operational flare forecasting relies on human morphological analysis of active regions and the persistence of solar flare activity through time (i.e. that the Sun will continue to do what it is doing right now: flaring or remaining calm). In this talk we present the results of applying deep Convolutional Neural Networks (CNNs) to the problem of solar flare forecasting. CNNs operate by training a set of tunable spatial filters that, in combination with neural layer interconnectivity, allow CNNs to automatically identify significant spatial structures predictive for classification and regression problems. We will start by discussing the applicability and success rate of the approach, the advantages it has over non-automated forecasts, and how mining our trained neural network provides a fresh look into the mechanisms behind magnetic energy storage and release.
Shukla, Shraddhanand; Funk, Christopher C.; Hoell, Andrew
2014-01-01
In this study we implement and evaluate a simple 'hybrid' forecast approach that uses constructed analogs (CA) to improve the National Multi-Model Ensemble's (NMME) March–April–May (MAM) precipitation forecasts over equatorial eastern Africa (hereafter referred to as EA, 2°S to 8°N and 36°E to 46°E). Due to recent declines in MAM rainfall, increases in population, land degradation, and limited technological advances, this region has become a recent epicenter of food insecurity. Timely and skillful precipitation forecasts for EA could help decision makers better manage their limited resources, mitigate socio-economic losses, and potentially save human lives. The 'hybrid approach' described in this study uses the CA method to translate dynamical precipitation and sea surface temperature (SST) forecasts over the Indian and Pacific Oceans (specifically 30°S to 30°N and 30°E to 270°E) into terrestrial MAM precipitation forecasts over the EA region. In doing so, this approach benefits from the post-1999 teleconnection that exists between precipitation and SSTs over the Indian and tropical Pacific Oceans (Indo-Pacific) and EA MAM rainfall. The coupled atmosphere-ocean dynamical forecasts used in this study were drawn from the NMME. We demonstrate that while the MAM precipitation forecasts (initialized in February) skill of the NMME models over the EA region itself is negligible, the ranked probability skill score of hybrid CA forecasts based on Indo-Pacific NMME precipitation and SST forecasts reach up to 0.45.
Satellite Altimetry based River Forecasting of Transboundary Flow
NASA Astrophysics Data System (ADS)
Hossain, F.; Siddique-E-Akbor, A.; Lee, H.; Shum, C.; Biancamaria, S.
2012-12-01
Forecasting of this transboundary flow in downstream nations however remains notoriously difficult due to the lack of basin-wide in-situ hydrologic measurements or its real-time sharing among nations. In addition, human regulation of upstream flow through diversion projects and dams, make hydrologic models less effective for forecasting on their own. Using the Ganges-Brahmaputra (GB) basin as an example, this study assesses the feasibility of using JASON-2 satellite altimetry for forecasting such transboundary flow at locations further inside the downstream nation of Bangladesh by propagating forecasts derived from upstream (Indian) locations through a hydrodynamic river model. The 5-day forecast of river levels at upstream boundary points inside Bangladesh are used to initialize daily simulation of the hydrodynamic river model and yield the 5-day forecast river level further downstream inside Bangladesh. The forecast river levels are then compared with the 5-day-later "now cast" simulation by the river model based on in-situ river level at the upstream boundary points in Bangladesh. Future directions for satellite-based forecasting of flow are also briefly overviewed.round tracks or virtual stations of JASON-2 (J2) altimeter over the GB basin shown in yellow lines. The locations where the track crosses a river and used for deriving forecasting rating curves is shown with a circle and station number (magenta- Brahmaputra basin; blue - Ganges basin). Circles without a station number represent the broader view of sampling by JASON-2 if all the ground tracks on main stem rivers and neighboring tributaries of Ganges and Brahmaputra are considered.
When Brain Beats Behavior: Neuroforecasting Crowdfunding Outcomes.
Genevsky, Alexander; Yoon, Carolyn; Knutson, Brian
2017-09-06
Although traditional economic and psychological theories imply that individual choice best scales to aggregate choice, primary components of choice reflected in neural activity may support even more generalizable forecasts. Crowdfunding represents a significant and growing platform for funding new and unique projects, causes, and products. To test whether neural activity could forecast market-level crowdfunding outcomes weeks later, 30 human subjects (14 female) decided whether to fund proposed projects described on an Internet crowdfunding website while undergoing scanning with functional magnetic resonance imaging. Although activity in both the nucleus accumbens (NAcc) and medial prefrontal cortex predicted individual choices to fund on a trial-to-trial basis in the neuroimaging sample, only NAcc activity generalized to forecast market funding outcomes weeks later on the Internet. Behavioral measures from the neuroimaging sample, however, did not forecast market funding outcomes. This pattern of associations was replicated in a second study. These findings demonstrate that a subset of the neural predictors of individual choice can generalize to forecast market-level crowdfunding outcomes-even better than choice itself. SIGNIFICANCE STATEMENT Forecasting aggregate behavior with individual neural data has proven elusive; even when successful, neural forecasts have not historically supplanted behavioral forecasts. In the current research, we find that neural responses can forecast market-level choice and outperform behavioral measures in a novel Internet crowdfunding context. Targeted as well as model-free analyses convergently indicated that nucleus accumbens activity can support aggregate forecasts. Beyond providing initial evidence for neuropsychological processes implicated in crowdfunding choices, these findings highlight the ability of neural features to forecast aggregate choice, which could inform applications relevant to business and policy. Copyright © 2017 Genevsky et al.
From Research to Operations: Transitioning Noaa's Lake Erie Harmful Algal Bloom Forecast System
NASA Astrophysics Data System (ADS)
Kavanaugh, K. E.; Stumpf, R. P.
2016-02-01
A key priority of NOAA's Harmful Algal Bloom Operational Forecast System (HAB-OFS) is to leverage the Ecological Forecasting Roadmap to systematically transition to operations scientifically mature HAB forecasts in regions of the country where there is a strong user need identified and an operational framework can be supported. While in the demonstration phase, the Lake Erie HAB forecast has proven its utility. Over the next two years, NOAA will be transitioning the Lake Erie HAB forecast to operations with an initial operating capability established in the HAB OFS' operational infrastructure by the 2016 bloom season. Blooms of cyanobacteria are a recurring problem in Lake Erie, and the dominant bloom forming species, Microcystis aeruginosa, produces a toxin called microcystin that is poisonous to humans, livestock and pets. Once the toxins have contaminated the source water used for drinking water, it is costly for public water suppliers to remove them. As part of the Lake Erie HAB forecast demonstration, NOAA has provided information regarding the cyanobacterial blooms in a biweekly Experimental HAB Bulletin, which includes information about the current and forecasted distribution, toxicity, potential for vertical mixing or scum formation, mixing of the water column, and predictions of bloom decline. Coastal resource managers, public water suppliers and public health officials use the Experimental HAB Bulletins to respond to and mitigate the impacts of cyanobacterial blooms. The transition to operations will benefit stakeholders through ensuring that future Lake Erie HAB forecast products are sustained, systematic, reliable, and robust. Once operational, the forecasts will continue to be assessed and improvements will be made based on the results of emerging scientific research. In addition, the lessons learned from the Lake Erie transition will be used to streamline the process for future HAB forecasts presently in development.
NASA Astrophysics Data System (ADS)
Cobourn, W. Geoffrey
2010-08-01
An enhanced PM 2.5 air quality forecast model based on nonlinear regression (NLR) and back-trajectory concentrations has been developed for use in the Louisville, Kentucky metropolitan area. The PM 2.5 air quality forecast model is designed for use in the warm season, from May through September, when PM 2.5 air quality is more likely to be critical for human health. The enhanced PM 2.5 model consists of a basic NLR model, developed for use with an automated air quality forecast system, and an additional parameter based on upwind PM 2.5 concentration, called PM24. The PM24 parameter is designed to be determined manually, by synthesizing backward air trajectory and regional air quality information to compute 24-h back-trajectory concentrations. The PM24 parameter may be used by air quality forecasters to adjust the forecast provided by the automated forecast system. In this study of the 2007 and 2008 forecast seasons, the enhanced model performed well using forecasted meteorological data and PM24 as input. The enhanced PM 2.5 model was compared with three alternative models, including the basic NLR model, the basic NLR model with a persistence parameter added, and the NLR model with persistence and PM24. The two models that included PM24 were of comparable accuracy. The two models incorporating back-trajectory concentrations had lower mean absolute errors and higher rates of detecting unhealthy PM2.5 concentrations compared to the other models.
Approaches in Health Human Resource Forecasting: A Roadmap for Improvement.
Rafiei, Sima; Mohebbifar, Rafat; Hashemi, Fariba; Ezzatabadi, Mohammad Ranjbar; Farzianpour, Fereshteh
2016-09-01
Forecasting the demand and supply of health manpower in an accurate manner makes appropriate planning possible. The aim of this paper was to review approaches and methods for health manpower forecasting and consequently propose the features that improve the effectiveness of this important process of health manpower planning. A literature review was conducted for studies published in English from 1990-2014 using Pub Med, Science Direct, Pro Quest, and Google Scholar databases. Review articles, qualitative studies, retrospective and prospective studies describing or applying various types of forecasting approaches and methods in health manpower forecasting were included in the review. The authors designed an extraction data sheet based on study questions to collect data on studies' references, designs, and types of forecasting approaches, whether discussed or applied, with their strengths and weaknesses. Forty studies were included in the review. As a result, two main categories of approaches (conceptual and analytical) for health manpower forecasting were identified. Each approach had several strengths and weaknesses. As a whole, most of them were faced with some challenges, such as being static and unable to capture dynamic variables in manpower forecasting and causal relationships. They also lacked the capacity to benefit from scenario making to assist policy makers in effective decision making. An effective forecasting approach is supposed to resolve all the deficits that exist in current approaches and meet the key features found in the literature in order to develop an open system and a dynamic and comprehensive method necessary for today complex health care systems.
NASA Astrophysics Data System (ADS)
BozorgMagham, Amir E.; Ross, Shane D.; Schmale, David G.
2013-09-01
The language of Lagrangian coherent structures (LCSs) provides a new means for studying transport and mixing of passive particles advected by an atmospheric flow field. Recent observations suggest that LCSs govern the large-scale atmospheric motion of airborne microorganisms, paving the way for more efficient models and management strategies for the spread of infectious diseases affecting plants, domestic animals, and humans. In addition, having reliable predictions of the timing of hyperbolic LCSs may contribute to improved aerobiological sampling of microorganisms with unmanned aerial vehicles and LCS-based early warning systems. Chaotic atmospheric dynamics lead to unavoidable forecasting errors in the wind velocity field, which compounds errors in LCS forecasting. In this study, we reveal the cumulative effects of errors of (short-term) wind field forecasts on the finite-time Lyapunov exponent (FTLE) fields and the associated LCSs when realistic forecast plans impose certain limits on the forecasting parameters. Objectives of this paper are to (a) quantify the accuracy of prediction of FTLE-LCS features and (b) determine the sensitivity of such predictions to forecasting parameters. Results indicate that forecasts of attracting LCSs exhibit less divergence from the archive-based LCSs than the repelling features. This result is important since attracting LCSs are the backbone of long-lived features in moving fluids. We also show under what circumstances one can trust the forecast results if one merely wants to know if an LCS passed over a region and does not need to precisely know the passage time.
Assessing Mammal Exposure to Climate Change in the Brazilian Amazon.
Ribeiro, Bruno R; Sales, Lilian P; De Marco, Paulo; Loyola, Rafael
2016-01-01
Human-induced climate change is considered a conspicuous threat to biodiversity in the 21st century. Species' response to climate change depends on their exposition, sensitivity and ability to adapt to novel climates. Exposure to climate change is however uneven within species' range, so that some populations may be more at risk than others. Identifying the regions most exposed to climate change is therefore a first and pivotal step on determining species' vulnerability across their geographic ranges. Here, we aimed at quantifying mammal local exposure to climate change across species' ranges. We identified areas in the Brazilian Amazon where mammals will be critically exposed to non-analogue climates in the future with different variables predicted by 15 global circulation climate forecasts. We also built a null model to assess the effectiveness of the Amazon protected areas in buffering the effects of climate change on mammals, using an innovative and more realistic approach. We found that 85% of species are likely to be exposed to non-analogue climatic conditions in more than 80% of their ranges by 2070. That percentage is even higher for endemic mammals; almost all endemic species are predicted to be exposed in more than 80% of their range. Exposure patterns also varied with different climatic variables and seem to be geographically structured. Western and northern Amazon species are more likely to experience temperature anomalies while northeastern species will be more affected by rainfall abnormality. We also observed an increase in the number of critically-exposed species from 2050 to 2070. Overall, our results indicate that mammals might face high exposure to climate change and that protected areas will probably not be efficient enough to avert those impacts.
Assessing Mammal Exposure to Climate Change in the Brazilian Amazon
Ribeiro, Bruno R.; Sales, Lilian P.; De Marco, Paulo; Loyola, Rafael
2016-01-01
Human-induced climate change is considered a conspicuous threat to biodiversity in the 21st century. Species’ response to climate change depends on their exposition, sensitivity and ability to adapt to novel climates. Exposure to climate change is however uneven within species’ range, so that some populations may be more at risk than others. Identifying the regions most exposed to climate change is therefore a first and pivotal step on determining species’ vulnerability across their geographic ranges. Here, we aimed at quantifying mammal local exposure to climate change across species’ ranges. We identified areas in the Brazilian Amazon where mammals will be critically exposed to non-analogue climates in the future with different variables predicted by 15 global circulation climate forecasts. We also built a null model to assess the effectiveness of the Amazon protected areas in buffering the effects of climate change on mammals, using an innovative and more realistic approach. We found that 85% of species are likely to be exposed to non-analogue climatic conditions in more than 80% of their ranges by 2070. That percentage is even higher for endemic mammals; almost all endemic species are predicted to be exposed in more than 80% of their range. Exposure patterns also varied with different climatic variables and seem to be geographically structured. Western and northern Amazon species are more likely to experience temperature anomalies while northeastern species will be more affected by rainfall abnormality. We also observed an increase in the number of critically-exposed species from 2050 to 2070. Overall, our results indicate that mammals might face high exposure to climate change and that protected areas will probably not be efficient enough to avert those impacts. PMID:27829036
Operational hydrological forecasting in Bavaria. Part II: Ensemble forecasting
NASA Astrophysics Data System (ADS)
Ehret, U.; Vogelbacher, A.; Moritz, K.; Laurent, S.; Meyer, I.; Haag, I.
2009-04-01
In part I of this study, the operational flood forecasting system in Bavaria and an approach to identify and quantify forecast uncertainty was introduced. The approach is split into the calculation of an empirical 'overall error' from archived forecasts and the calculation of an empirical 'model error' based on hydrometeorological forecast tests, where rainfall observations were used instead of forecasts. The 'model error' can especially in upstream catchments where forecast uncertainty is strongly dependent on the current predictability of the atrmosphere be superimposed on the spread of a hydrometeorological ensemble forecast. In Bavaria, two meteorological ensemble prediction systems are currently tested for operational use: the 16-member COSMO-LEPS forecast and a poor man's ensemble composed of DWD GME, DWD Cosmo-EU, NCEP GFS, Aladin-Austria, MeteoSwiss Cosmo-7. The determination of the overall forecast uncertainty is dependent on the catchment characteristics: 1. Upstream catchment with high influence of weather forecast a) A hydrological ensemble forecast is calculated using each of the meteorological forecast members as forcing. b) Corresponding to the characteristics of the meteorological ensemble forecast, each resulting forecast hydrograph can be regarded as equally likely. c) The 'model error' distribution, with parameters dependent on hydrological case and lead time, is added to each forecast timestep of each ensemble member d) For each forecast timestep, the overall (i.e. over all 'model error' distribution of each ensemble member) error distribution is calculated e) From this distribution, the uncertainty range on a desired level (here: the 10% and 90% percentile) is extracted and drawn as forecast envelope. f) As the mean or median of an ensemble forecast does not necessarily exhibit meteorologically sound temporal evolution, a single hydrological forecast termed 'lead forecast' is chosen and shown in addition to the uncertainty bounds. This can be either an intermediate forecast between the extremes of the ensemble spread or a manually selected forecast based on a meteorologists advice. 2. Downstream catchments with low influence of weather forecast In downstream catchments with strong human impact on discharge (e.g. by reservoir operation) and large influence of upstream gauge observation quality on forecast quality, the 'overall error' may in most cases be larger than the combination of the 'model error' and an ensemble spread. Therefore, the overall forecast uncertainty bounds are calculated differently: a) A hydrological ensemble forecast is calculated using each of the meteorological forecast members as forcing. Here, additionally the corresponding inflow hydrograph from all upstream catchments must be used. b) As for an upstream catchment, the uncertainty range is determined by combination of 'model error' and the ensemble member forecasts c) In addition, the 'overall error' is superimposed on the 'lead forecast'. For reasons of consistency, the lead forecast must be based on the same meteorological forecast in the downstream and all upstream catchments. d) From the resulting two uncertainty ranges (one from the ensemble forecast and 'model error', one from the 'lead forecast' and 'overall error'), the envelope is taken as the most prudent uncertainty range. In sum, the uncertainty associated with each forecast run is calculated and communicated to the public in the form of 10% and 90% percentiles. As in part I of this study, the methodology as well as the useful- or uselessness of the resulting uncertainty ranges will be presented and discussed by typical examples.
Cognitive determinants of affective forecasting errors
Hoerger, Michael; Quirk, Stuart W.; Lucas, Richard E.; Carr, Thomas H.
2011-01-01
Often to the detriment of human decision making, people are prone to an impact bias when making affective forecasts, overestimating the emotional consequences of future events. The cognitive processes underlying the impact bias, and methods for correcting it, have been debated and warrant further exploration. In the present investigation, we examined both individual differences and contextual variables associated with cognitive processing in affective forecasting for an election. Results showed that the perceived importance of the event and working memory capacity were both associated with an increased impact bias for some participants, whereas retrieval interference had no relationship with bias. Additionally, an experimental manipulation effectively reduced biased forecasts, particularly among participants who were most distracted thinking about peripheral life events. These findings have direct theoretical implications for understanding the impact bias, highlight the importance of individual differences in affective forecasting, and have ramifications for future decision making research. The possible functional role of the impact bias is discussed within the context of evolutionary psychology. PMID:21912580
Teeguarden, Justin G; Tan, Yu-Mei; Edwards, Stephen W; Leonard, Jeremy A; Anderson, Kim A; Corley, Richard A; Kile, Molly L; Simonich, Staci M; Stone, David; Tanguay, Robert L; Waters, Katrina M; Harper, Stacey L; Williams, David E
2016-05-03
Driven by major scientific advances in analytical methods, biomonitoring, computation, and a newly articulated vision for a greater impact in public health, the field of exposure science is undergoing a rapid transition from a field of observation to a field of prediction. Deployment of an organizational and predictive framework for exposure science analogous to the "systems approaches" used in the biological sciences is a necessary step in this evolution. Here we propose the aggregate exposure pathway (AEP) concept as the natural and complementary companion in the exposure sciences to the adverse outcome pathway (AOP) concept in the toxicological sciences. Aggregate exposure pathways offer an intuitive framework to organize exposure data within individual units of prediction common to the field, setting the stage for exposure forecasting. Looking farther ahead, we envision direct linkages between aggregate exposure pathways and adverse outcome pathways, completing the source to outcome continuum for more meaningful integration of exposure assessment and hazard identification. Together, the two frameworks form and inform a decision-making framework with the flexibility for risk-based, hazard-based, or exposure-based decision making.
NASA Astrophysics Data System (ADS)
Park, Shinju; Berenguer, Marc; Sempere-Torres, Daniel; Baugh, Calum; Smith, Paul
2017-04-01
Flash floods induced by heavy rain are one of the hazardous natural events that significantly affect human lives. Because flash floods are characterized by their rapid onset, forecasting flash flood to lead an effective response requires accurate rainfall predictions with high spatial and temporal resolution and adequate representation of the hydrologic and hydraulic processes within a catchment that determine rainfall-runoff accumulations. We present extreme flash flood cases which occurred throughout Europe in 2015-2016 that were identified and forecasted by two real-time approaches: 1) the European Rainfall-Induced Hazard Assessment System (ERICHA) and 2) the European Runoff Index based on Climatology (ERIC). ERICHA is based on the nowcasts of accumulated precipitation generated from the pan-European radar composites produced by the EUMETNET project OPERA. It has the advantage of high-resolution precipitation inputs and rapidly updated forecasts (every 15 minutes), but limited forecast lead time (up to 8 hours). ERIC, on the other hand, provides 5-day forecasts based on the COSMO-LEPS NWP simulations updated 2 times a day but is only produced at a 7 km resolution. We compare the products from both systems and focus on showing the advantages, limitations and complementarities of ERICHA and ERIC for seamless high-resolution flash flood forecasting.
Forecasting extreme temperature health hazards in Europe
NASA Astrophysics Data System (ADS)
Di Napoli, Claudia; Pappenberger, Florian; Cloke, Hannah L.
2017-04-01
Extreme hot temperatures, such as those experienced during a heat wave, represent a dangerous meteorological hazard to human health. Heat disorders such as sunstroke are harmful to people of all ages and responsible for excess mortality in the affected areas. In 2003 more than 50,000 people died in western and southern Europe because of a severe and sustained episode of summer heat [1]. Furthermore, according to the Intergovernmental Panel on Climate Change heat waves are expected to get more frequent in the future thus posing an increasing threat to human lives. Developing appropriate tools for extreme hot temperatures prediction is therefore mandatory to increase public preparedness and mitigate heat-induced impacts. A recent study has shown that forecasts of the Universal Thermal Climate Index (UTCI) provide a valid overview of extreme temperature health hazards on a global scale [2]. UTCI is a parameter related to the temperature of the human body and its regulatory responses to the surrounding atmospheric environment. UTCI is calculated using an advanced thermo-physiological model that includes the human heat budget, physiology and clothing. To forecast UTCI the model uses meteorological inputs, such as 2m air temperature, 2m water vapour pressure and wind velocity at body height derived from 10m wind speed, from NWP models. Here we examine the potential of UTCI as an extreme hot temperature prediction tool for the European area. UTCI forecasts calculated using above-mentioned parameters from ECMWF models are presented. The skill in predicting UTCI for medium lead times is also analysed and discussed for implementation to international health-hazard warning systems. This research is supported by the ANYWHERE project (EnhANcing emergencY management and response to extreme WeatHER and climate Events) which is funded by the European Commission's HORIZON2020 programme. [1] Koppe C. et al., Heat waves: risks and responses. World Health Organization. Health and Global Environmental Change, Series No. 2, Copenhagen, Denmark, 2004. [2] Pappenberger F. et al., Global forecasting of thermal health hazards: the skill of probabilistic predictions of the Universal Thermal Climate Index (UTCI), International Journal of Biometeorology 59(3): 311-323, 2015.
NASA Astrophysics Data System (ADS)
Parker, L.; Minow, J.; Pulkkinen, A.; Fry, D.; Semones, E.; Allen, J.; St Cyr, C.; Mertens, C.; Jun, I.; Onsager, T.; Hock, R.
2018-02-01
NASA's Engineering and Space Center (NESC) is conducting an independent technical assessment of space environment monitoring and forecasting architecture options to support human and robotic deep space exploration.
Transforming community access to space science models
NASA Astrophysics Data System (ADS)
MacNeice, Peter; Hesse, Michael; Kuznetsova, Maria; Maddox, Marlo; Rastaetter, Lutz; Berrios, David; Pulkkinen, Antti
2012-04-01
Researching and forecasting the ever changing space environment (often referred to as space weather) and its influence on humans and their activities are model-intensive disciplines. This is true because the physical processes involved are complex, but, in contrast to terrestrial weather, the supporting observations are typically sparse. Models play a vital role in establishing a physically meaningful context for interpreting limited observations, testing theory, and producing both nowcasts and forecasts. For example, with accurate forecasting of hazardous space weather conditions, spacecraft operators can place sensitive systems in safe modes, and power utilities can protect critical network components from damage caused by large currents induced in transmission lines by geomagnetic storms.
Transforming Community Access to Space Science Models
NASA Technical Reports Server (NTRS)
MacNeice, Peter; Heese, Michael; Kunetsova, Maria; Maddox, Marlo; Rastaetter, Lutz; Berrios, David; Pulkkinen, Antti
2012-01-01
Researching and forecasting the ever changing space environment (often referred to as space weather) and its influence on humans and their activities are model-intensive disciplines. This is true because the physical processes involved are complex, but, in contrast to terrestrial weather, the supporting observations are typically sparse. Models play a vital role in establishing a physically meaningful context for interpreting limited observations, testing theory, and producing both nowcasts and forecasts. For example, with accurate forecasting of hazardous space weather conditions, spacecraft operators can place sensitive systems in safe modes, and power utilities can protect critical network components from damage caused by large currents induced in transmission lines by geomagnetic storms.
Gaunt, Ruth; Sindic, Denis; Leyens, Jacques-Philippe
2005-04-01
The authors examined the hypothesis that people forecast a longer duration of uniquely human secondary emotions for their in-group than for an out-group. The authors conducted a field experiment in the setting of the European soccer championship. They asked Belgian participants to forecast the intensity with which their in-group Belgian fans or the out-group Turkish fans would experience various primary and secondary emotions in response to their team's victory or loss immediately after the Turkey-Belgium match and three days later. The results support the hypothesis. Moreover, and as the authors expected, they found no differences in the participants' forecasts of primary emotions. The authors discussed the implications of these findings for intergroup relations in general and for soccer fans' behavior in particular.
Modelling large scale human activity in San Francisco
NASA Astrophysics Data System (ADS)
Gonzalez, Marta
2010-03-01
Diverse group of people with a wide variety of schedules, activities and travel needs compose our cities nowadays. This represents a big challenge for modeling travel behaviors in urban environments; those models are of crucial interest for a wide variety of applications such as traffic forecasting, spreading of viruses, or measuring human exposure to air pollutants. The traditional means to obtain knowledge about travel behavior is limited to surveys on travel journeys. The obtained information is based in questionnaires that are usually costly to implement and with intrinsic limitations to cover large number of individuals and some problems of reliability. Using mobile phone data, we explore the basic characteristics of a model of human travel: The distribution of agents is proportional to the population density of a given region, and each agent has a characteristic trajectory size contain information on frequency of visits to different locations. Additionally we use a complementary data set given by smart subway fare cards offering us information about the exact time of each passenger getting in or getting out of the subway station and the coordinates of it. This allows us to uncover the temporal aspects of the mobility. Since we have the actual time and place of individual's origin and destination we can understand the temporal patterns in each visited location with further details. Integrating two described data set we provide a dynamical model of human travels that incorporates different aspects observed empirically.
Sub-seasonal predictability of water scarcity at global and local scale
NASA Astrophysics Data System (ADS)
Wanders, N.; Wada, Y.; Wood, E. F.
2016-12-01
Forecasting the water demand and availability for agriculture and energy production has been neglected in previous research, partly due to the fact that most large-scale hydrological models lack the skill to forecast human water demands at sub-seasonal time scale. We study the potential of a sub-seasonal water scarcity forecasting system for improved water management decision making and improved estimates of water demand and availability. We have generated 32 years of global sub-seasonal multi-model water availability, demand and scarcity forecasts. The quality of the forecasts is compared to a reference forecast derived from resampling historic weather observations. The newly developed system has been evaluated for both the global scale and in a real-time local application in the Sacramento valley for the Trinity, Shasta and Oroville reservoirs, where the water demand for agriculture and hydropower is high. On the global scale we find that the reference forecast shows high initial forecast skill (up to 8 months) for water scarcity in the eastern US, Central Asia and Sub-Saharan Africa. Adding dynamical sub-seasonal forecasts results in a clear improvement for most regions in the world, increasing the forecasts' lead time by 2 or more months on average. The strongest improvements are found in the US, Brazil, Central Asia and Australia. For the Sacramento valley we can accurately predict anomalies in the reservoir inflow, hydropower potential and the downstream irrigation water demand 6 months in advance. This allow us to forecast potential water scarcity in the Sacramento valley and adjust the reservoir management to prevent deficits in energy or irrigation water availability. The newly developed forecast system shows that it is possible to reduce the vulnerability to upcoming water scarcity events and allows optimization of the distribution of the available water between the agricultural and energy sector half a year in advance.
Biggerstaff, Matthew; Alper, David; Dredze, Mark; Fox, Spencer; Fung, Isaac Chun-Hai; Hickmann, Kyle S; Lewis, Bryan; Rosenfeld, Roni; Shaman, Jeffrey; Tsou, Ming-Hsiang; Velardi, Paola; Vespignani, Alessandro; Finelli, Lyn
2016-07-22
Early insights into the timing of the start, peak, and intensity of the influenza season could be useful in planning influenza prevention and control activities. To encourage development and innovation in influenza forecasting, the Centers for Disease Control and Prevention (CDC) organized a challenge to predict the 2013-14 Unites States influenza season. Challenge contestants were asked to forecast the start, peak, and intensity of the 2013-2014 influenza season at the national level and at any or all Health and Human Services (HHS) region level(s). The challenge ran from December 1, 2013-March 27, 2014; contestants were required to submit 9 biweekly forecasts at the national level to be eligible. The selection of the winner was based on expert evaluation of the methodology used to make the prediction and the accuracy of the prediction as judged against the U.S. Outpatient Influenza-like Illness Surveillance Network (ILINet). Nine teams submitted 13 forecasts for all required milestones. The first forecast was due on December 2, 2013; 3/13 forecasts received correctly predicted the start of the influenza season within one week, 1/13 predicted the peak within 1 week, 3/13 predicted the peak ILINet percentage within 1 %, and 4/13 predicted the season duration within 1 week. For the prediction due on December 19, 2013, the number of forecasts that correctly forecasted the peak week increased to 2/13, the peak percentage to 6/13, and the duration of the season to 6/13. As the season progressed, the forecasts became more stable and were closer to the season milestones. Forecasting has become technically feasible, but further efforts are needed to improve forecast accuracy so that policy makers can reliably use these predictions. CDC and challenge contestants plan to build upon the methods developed during this contest to improve the accuracy of influenza forecasts.
NASA Astrophysics Data System (ADS)
Saide, Pablo E.; Carmichael, Gregory R.; Spak, Scott N.; Gallardo, Laura; Osses, Axel E.; Mena-Carrasco, Marcelo A.; Pagowski, Mariusz
2011-05-01
This study presents a system to predict high pollution events that develop in connection with enhanced subsidence due to coastal lows, particularly in winter over Santiago de Chile. An accurate forecast of these episodes is of interest since the local government is entitled by law to take actions in advance to prevent public exposure to PM10 concentrations in excess of 150 μg m -3 (24 h running averages). The forecasting system is based on accurately simulating carbon monoxide (CO) as a PM10/PM2.5 surrogate, since during episodes and within the city there is a high correlation (over 0.95) among these pollutants. Thus, by accurately forecasting CO, which behaves closely to a tracer on this scale, a PM estimate can be made without involving aerosol-chemistry modeling. Nevertheless, the very stable nocturnal conditions over steep topography associated with maxima in concentrations are hard to represent in models. Here we propose a forecast system based on the WRF-Chem model with optimum settings, determined through extensive testing, that best describe both meteorological and air quality available measurements. Some of the important configurations choices involve the boundary layer (PBL) scheme, model grid resolution (both vertical and horizontal), meteorological initial and boundary conditions and spatial and temporal distribution of the emissions. A forecast for the 2008 winter is performed showing that this forecasting system is able to perform similarly to the authority decision for PM10 and better than persistence when forecasting PM10 and PM2.5 high pollution episodes. Problems regarding false alarm predictions could be related to different uncertainties in the model such as day to day emission variability, inability of the model to completely resolve the complex topography and inaccuracy in meteorological initial and boundary conditions. Finally, according to our simulations, emissions from previous days dominate episode concentrations, which highlights the need for 48 h forecasts that can be achieved by the system presented here. This is in fact the largest advantage of the proposed system.
NASA Astrophysics Data System (ADS)
Wood, Andy; Clark, Elizabeth; Mendoza, Pablo; Nijssen, Bart; Newman, Andy; Clark, Martyn; Nowak, Kenneth; Arnold, Jeffrey
2017-04-01
Many if not most national operational streamflow prediction systems rely on a forecaster-in-the-loop approach that require the hands-on-effort of an experienced human forecaster. This approach evolved from the need to correct for long-standing deficiencies in the models and datasets used in forecasting, and the practice often leads to skillful flow predictions despite the use of relatively simple, conceptual models. Yet the 'in-the-loop' forecast process is not reproducible, which limits opportunities to assess and incorporate new techniques systematically, and the effort required to make forecasts in this way is an obstacle to expanding forecast services - e.g., though adding new forecast locations or more frequent forecast updates, running more complex models, or producing forecast and hindcasts that can support verification. In the last decade, the hydrologic forecasting community has begun develop more centralized, 'over-the-loop' systems. The quality of these new forecast products will depend on their ability to leverage research in areas including earth system modeling, parameter estimation, data assimilation, statistical post-processing, weather and climate prediction, verification, and uncertainty estimation through the use of ensembles. Currently, many national operational streamflow forecasting and water management communities have little experience with the strengths and weaknesses of over-the-loop approaches, even as such systems are beginning to be deployed operationally in centers such as ECMWF. There is thus a need both to evaluate these forecasting advances and to demonstrate their potential in a public arena, raising awareness in forecast user communities and development programs alike. To address this need, the US National Center for Atmospheric Research is collaborating with the University of Washington, the Bureau of Reclamation and the US Army Corps of Engineers, using the NCAR 'System for Hydromet Analysis Research and Prediction Applications' (SHARP) to implement, assess and demonstrate real-time over-the-loop ensemble flow forecasts in a range of US watersheds. The system relies on fully ensemble techniques, including: an 100-member ensemble of meteorological model forcings and an ensemble particle filter data assimilation for initializing watershed states; analog/regression-based downscaling of ensemble weather forecasts from GEFS; and statistical post-processing of ensemble forecast outputs, all of which run in real-time within a workflow managed by ECWMF's ecFlow libraries over large US regional domains. We describe SHARP and present early hindcast and verification results for short to seasonal range streamflow forecasts in a number of US case study watersheds.
So, Rita; Teakles, Andrew; Baik, Jonathan; Vingarzan, Roxanne; Jones, Keith
2018-05-01
Visibility degradation, one of the most noticeable indicators of poor air quality, can occur despite relatively low levels of particulate matter when the risk to human health is low. The availability of timely and reliable visibility forecasts can provide a more comprehensive understanding of the anticipated air quality conditions to better inform local jurisdictions and the public. This paper describes the development of a visibility forecasting modeling framework, which leverages the existing air quality and meteorological forecasts from Canada's operational Regional Air Quality Deterministic Prediction System (RAQDPS) for the Lower Fraser Valley of British Columbia. A baseline model (GM-IMPROVE) was constructed using the revised IMPROVE algorithm based on unprocessed forecasts from the RAQDPS. Three additional prototypes (UMOS-HYB, GM-MLR, GM-RF) were also developed and assessed for forecast performance of up to 48 hr lead time during various air quality and meteorological conditions. Forecast performance was assessed by examining their ability to provide both numerical and categorical forecasts in the form of 1-hr total extinction and Visual Air Quality Ratings (VAQR), respectively. While GM-IMPROVE generally overestimated extinction more than twofold, it had skill in forecasting the relative species contribution to visibility impairment, including ammonium sulfate and ammonium nitrate. Both statistical prototypes, GM-MLR and GM-RF, performed well in forecasting 1-hr extinction during daylight hours, with correlation coefficients (R) ranging from 0.59 to 0.77. UMOS-HYB, a prototype based on postprocessed air quality forecasts without additional statistical modeling, provided reasonable forecasts during most daylight hours. In terms of categorical forecasts, the best prototype was approximately 75 to 87% correct, when forecasting for a condensed three-category VAQR. A case study, focusing on a poor visual air quality yet low Air Quality Health Index episode, illustrated that the statistical prototypes were able to provide timely and skillful visibility forecasts with lead time up to 48 hr. This study describes the development of a visibility forecasting modeling framework, which leverages the existing air quality and meteorological forecasts from Canada's operational Regional Air Quality Deterministic Prediction System. The main applications include tourism and recreation planning, input into air quality management programs, and educational outreach. Visibility forecasts, when supplemented with the existing air quality and health based forecasts, can assist jurisdictions to anticipate the visual air quality impacts as perceived by the public, which can potentially assist in formulating the appropriate air quality bulletins and recommendations.
Time series modelling and forecasting of emergency department overcrowding.
Kadri, Farid; Harrou, Fouzi; Chaabane, Sondès; Tahon, Christian
2014-09-01
Efficient management of patient flow (demand) in emergency departments (EDs) has become an urgent issue for many hospital administrations. Today, more and more attention is being paid to hospital management systems to optimally manage patient flow and to improve management strategies, efficiency and safety in such establishments. To this end, EDs require significant human and material resources, but unfortunately these are limited. Within such a framework, the ability to accurately forecast demand in emergency departments has considerable implications for hospitals to improve resource allocation and strategic planning. The aim of this study was to develop models for forecasting daily attendances at the hospital emergency department in Lille, France. The study demonstrates how time-series analysis can be used to forecast, at least in the short term, demand for emergency services in a hospital emergency department. The forecasts were based on daily patient attendances at the paediatric emergency department in Lille regional hospital centre, France, from January 2012 to December 2012. An autoregressive integrated moving average (ARIMA) method was applied separately to each of the two GEMSA categories and total patient attendances. Time-series analysis was shown to provide a useful, readily available tool for forecasting emergency department demand.
Biological Invasions: A Challenge In Ecological Forecasting
NASA Technical Reports Server (NTRS)
Schnase, J. L.; Smith, J. A.; Stohlgren, T. J.; Graves, S.; Trees, C.; Rood, Richard (Technical Monitor)
2002-01-01
The spread of invasive species is one of the most daunting environmental, economic, and human-health problems facing the United States and the World today. It is one of several grand challenge environmental problems being considered by NASA's Earth Science Vision for 2025. The invasive species problem is complex and presents many challenges. Developing an invasive species predictive capability could significantly advance the science and technology of ecological forecasting.
How can we deal with ANN in flood forecasting? As a simulation model or updating kernel!
NASA Astrophysics Data System (ADS)
Hassan Saddagh, Mohammad; Javad Abedini, Mohammad
2010-05-01
Flood forecasting and early warning, as a non-structural measure for flood control, is often considered to be the most effective and suitable alternative to mitigate the damage and human loss caused by flood. Forecast results which are output of hydrologic, hydraulic and/or black box models should secure accuracy of flood values and timing, especially for long lead time. The application of the artificial neural network (ANN) in flood forecasting has received extensive attentions in recent years due to its capability to capture the dynamics inherent in complex processes including flood. However, results obtained from executing plain ANN as simulation model demonstrate dramatic reduction in performance indices as lead time increases. This paper is intended to monitor the performance indices as it relates to flood forecasting and early warning using two different methodologies. While the first method employs a multilayer neural network trained using back-propagation scheme to forecast output hydrograph of a hypothetical river for various forecast lead time up to 6.0 hr, the second method uses 1D hydrodynamic MIKE11 model as forecasting model and multilayer neural network as updating kernel to monitor and assess the performance indices compared to ANN alone in light of increase in lead time. Results presented in both graphical and tabular format indicate superiority of MIKE11 coupled with ANN as updating kernel compared to ANN as simulation model alone. While plain ANN produces more accurate results for short lead time, the errors increase expeditiously for longer lead time. The second methodology provides more accurate and reliable results for longer forecast lead time.
Approaches in Health Human Resource Forecasting: A Roadmap for Improvement
Rafiei, Sima; Mohebbifar, Rafat; Hashemi, Fariba; Ezzatabadi, Mohammad Ranjbar; Farzianpour, Fereshteh
2016-01-01
Introduction Forecasting the demand and supply of health manpower in an accurate manner makes appropriate planning possible. The aim of this paper was to review approaches and methods for health manpower forecasting and consequently propose the features that improve the effectiveness of this important process of health manpower planning. Methods A literature review was conducted for studies published in English from 1990–2014 using Pub Med, Science Direct, Pro Quest, and Google Scholar databases. Review articles, qualitative studies, retrospective and prospective studies describing or applying various types of forecasting approaches and methods in health manpower forecasting were included in the review. The authors designed an extraction data sheet based on study questions to collect data on studies’ references, designs, and types of forecasting approaches, whether discussed or applied, with their strengths and weaknesses Results Forty studies were included in the review. As a result, two main categories of approaches (conceptual and analytical) for health manpower forecasting were identified. Each approach had several strengths and weaknesses. As a whole, most of them were faced with some challenges, such as being static and unable to capture dynamic variables in manpower forecasting and causal relationships. They also lacked the capacity to benefit from scenario making to assist policy makers in effective decision making. Conclusions An effective forecasting approach is supposed to resolve all the deficits that exist in current approaches and meet the key features found in the literature in order to develop an open system and a dynamic and comprehensive method necessary for today complex health care systems. PMID:27790343
Forecasting the Human Pathogen Vibrio Parahaemolyticus in Shellfish Tissue within Long Island Sound
NASA Astrophysics Data System (ADS)
Whitney, M. M.; DeRosia-Banick, K.
2016-02-01
Vibrio parahaemolyticus (Vp) is a marine bacterium that occurs naturally in brackish and saltwater environments and may be found in higher concentrations in the warmest months. Vp is a growing threat to producing safe seafood. Consumption of shellfish with high Vp levels can result in gastrointestinal human illnesses. Management response to Vp-related illness outbreaks includes closure of shellfish growing areas. Water quality observations, Vp measurements, and model forecasts are key components to effective management of shellfish growing areas. There is a clear need for observations within the growing area themselves. These areas are offshore of coastal stations and typically inshore of the observing system moorings. New field observations in Long Island Sound (LIS) shellfish growing areas are described and their agreement with high-resolution satellite sea surface temperature data is discussed. A new dataset of Vp concentrations in shellfish tissue is used to determine the LIS-specific Vp vs. temperature relationship following methods in the FDA pre-harvest Vp risk model. This information is combined with output from a high-resolution hydrodynamic model of LIS to make daily forecasts of Vp levels. The influence of river inflows, the role of heat waves, and predictions for future warmer climates are discussed. The key elements of this observational-modeling approach to pathogen forecasting are extendable to other coastal systems.
THE USE OF AIR QUALITY FORECASTS TO ASSESS IMPACTS OF AIR POLLUTION ON CROPS
Assessing O3 damage to crops is challenging due to the difficulties in determining the reduction in crop yield that results from exposure to surface O3, for which monitors are limited and deployed mostly in non-rural areas. This work explores the potential b...
Forecasting wildlife response to rapid warming in the Alaskan Arctic
Van Hemert, Caroline R.; Flint, Paul L.; Udevitz, Mark S.; Koch, Joshua C.; Atwood, Todd C.; Oakley, Karen L.; Pearce, John M.
2015-01-01
Arctic wildlife species face a dynamic and increasingly novel environment because of climate warming and the associated increase in human activity. Both marine and terrestrial environments are undergoing rapid environmental shifts, including loss of sea ice, permafrost degradation, and altered biogeochemical fluxes. Forecasting wildlife responses to climate change can facilitate proactive decisions that balance stewardship with resource development. In this article, we discuss the primary and secondary responses to physical climate-related drivers in the Arctic, associated wildlife responses, and additional sources of complexity in forecasting wildlife population outcomes. Although the effects of warming on wildlife populations are becoming increasingly well documented in the scientific literature, clear mechanistic links are often difficult to establish. An integrated science approach and robust modeling tools are necessary to make predictions and determine resiliency to change. We provide a conceptual framework and introduce examples relevant for developing wildlife forecasts useful to management decisions.
NASA Astrophysics Data System (ADS)
Kneringer, Philipp; Dietz, Sebastian J.; Mayr, Georg J.; Zeileis, Achim
2018-04-01
Airport operations are sensitive to visibility conditions. Low-visibility events may lead to capacity reduction, delays and economic losses. Different levels of low-visibility procedures (lvp) are enacted to ensure aviation safety. A nowcast of the probabilities for each of the lvp categories helps decision makers to optimally schedule their operations. An ordered logistic regression (OLR) model is used to forecast these probabilities directly. It is applied to cold season forecasts at Vienna International Airport for lead times of 30-min out to 2 h. Model inputs are standard meteorological measurements. The skill of the forecasts is accessed by the ranked probability score. OLR outperforms persistence, which is a strong contender at the shortest lead times. The ranked probability score of the OLR is even better than the one of nowcasts from human forecasters. The OLR-based nowcasting system is computationally fast and can be updated instantaneously when new data become available.
Predictability of the Arctic sea ice edge
NASA Astrophysics Data System (ADS)
Goessling, H. F.; Tietsche, S.; Day, J. J.; Hawkins, E.; Jung, T.
2016-02-01
Skillful sea ice forecasts from days to years ahead are becoming increasingly important for the operation and planning of human activities in the Arctic. Here we analyze the potential predictability of the Arctic sea ice edge in six climate models. We introduce the integrated ice-edge error (IIEE), a user-relevant verification metric defined as the area where the forecast and the "truth" disagree on the ice concentration being above or below 15%. The IIEE lends itself to decomposition into an absolute extent error, corresponding to the common sea ice extent error, and a misplacement error. We find that the often-neglected misplacement error makes up more than half of the climatological IIEE. In idealized forecast ensembles initialized on 1 July, the IIEE grows faster than the absolute extent error. This means that the Arctic sea ice edge is less predictable than sea ice extent, particularly in September, with implications for the potential skill of end-user relevant forecasts.
Cockpit automation - In need of a philosophy
NASA Technical Reports Server (NTRS)
Wiener, E. L.
1985-01-01
Concern has been expressed over the rapid development and deployment of automatic devices in transport aircraft, due mainly to the human interface and particularly the role of automation in inducing human error. The paper discusses the need for coherent philosophies of automation, and proposes several approaches: (1) flight management by exception, which states that as long as a crew stays within the bounds of regulations, air traffic control and flight safety, it may fly as it sees fit; (2) exceptions by forecasting, where the use of forecasting models would predict boundary penetration, rather than waiting for it to happen; (3) goal-sharing, where a computer is informed of overall goals, and subsequently has the capability of checking inputs and aircraft position for consistency with the overall goal or intentions; and (4) artificial intelligence and expert systems, where intelligent machines could mimic human reason.
Why is metal bioaccumulation so variable? Biodynamics as a unifying concept
Luoma, Samuel N.; Rainbow, Philip S.
2005-01-01
Ecological risks from metal contaminants are difficult to document because responses differ among species, threats differ among metals, and environmental influences are complex. Unifying concepts are needed to better tie together such complexities. Here we suggest that a biologically based conceptualization, the biodynamic model, provides the necessary unification for a key aspect in risk: metal bioaccumulation (internal exposure). The model is mechanistically based, but empirically considers geochemical influences, biological differences, and differences among metals. Forecasts from the model agree closely with observations from nature, validating its basic assumptions. The biodynamic metal bioaccumulation model combines targeted, high-quality geochemical analyses from a site of interest with parametrization of key physiological constants for a species from that site. The physiological parameters include metal influx rates from water, influx rates from food, rate constants of loss, and growth rates (when high). We compiled results from 15 publications that forecast species-specific bioaccumulation, and compare the forecasts to bioaccumulation data from the field. These data consider concentrations that cover 7 orders of magnitude. They include 7 metals and 14 species of animals from 3 phyla and 11 marine, estuarine, and freshwater environments. The coefficient of determination (R2) between forecasts and independently observed bioaccumulation from the field was 0.98. Most forecasts agreed with observations within 2-fold. The agreement suggests that the basic assumptions of the biodynamic model are tenable. A unified explanation of metal bioaccumulation sets the stage for a realistic understanding of toxicity and ecological effects of metals in nature.
An operational procedure for rapid flood risk assessment in Europe
NASA Astrophysics Data System (ADS)
Dottori, Francesco; Kalas, Milan; Salamon, Peter; Bianchi, Alessandra; Alfieri, Lorenzo; Feyen, Luc
2017-07-01
The development of methods for rapid flood mapping and risk assessment is a key step to increase the usefulness of flood early warning systems and is crucial for effective emergency response and flood impact mitigation. Currently, flood early warning systems rarely include real-time components to assess potential impacts generated by forecasted flood events. To overcome this limitation, this study describes the benchmarking of an operational procedure for rapid flood risk assessment based on predictions issued by the European Flood Awareness System (EFAS). Daily streamflow forecasts produced for major European river networks are translated into event-based flood hazard maps using a large map catalogue derived from high-resolution hydrodynamic simulations. Flood hazard maps are then combined with exposure and vulnerability information, and the impacts of the forecasted flood events are evaluated in terms of flood-prone areas, economic damage and affected population, infrastructures and cities.An extensive testing of the operational procedure has been carried out by analysing the catastrophic floods of May 2014 in Bosnia-Herzegovina, Croatia and Serbia. The reliability of the flood mapping methodology is tested against satellite-based and report-based flood extent data, while modelled estimates of economic damage and affected population are compared against ground-based estimations. Finally, we evaluate the skill of risk estimates derived from EFAS flood forecasts with different lead times and combinations of probabilistic forecasts. Results highlight the potential of the real-time operational procedure in helping emergency response and management.
Barber, M Craig; Rashleigh, Brenda; Cyterski, Michael J
2016-01-01
Regional fishery conditions of Mid-Atlantic wadeable streams in the eastern United States are estimated using the Bioaccumulation and Aquatic System Simulator (BASS) bioaccumulation and fish community model and data collected by the US Environmental Protection Agency's Environmental Monitoring and Assessment Program (EMAP). Average annual biomasses and population densities and annual productions are estimated for 352 randomly selected streams. Realized bioaccumulation factors (BAF) and biomagnification factors (BMF), which are dependent on these forecasted biomasses, population densities, and productions, are also estimated by assuming constant water exposures to methylmercury and tetra-, penta-, hexa-, and hepta-chlorinated biphenyls. Using observed biomasses, observed densities, and estimated annual productions of total fish from 3 regions assumed to support healthy fisheries as benchmarks (eastern Tennessee and Catskill Mountain trout streams and Ozark Mountains smallmouth bass streams), 58% of the region's wadeable streams are estimated to be in marginal or poor condition (i.e., not healthy). Using simulated BAFs and EMAP Hg fish concentrations, we also estimate that approximately 24% of the game fish and subsistence fishing species that are found in streams having detectable Hg concentrations would exceed an acceptable human consumption criterion of 0.185 μg/g wet wt. Importantly, such streams have been estimated to represent 78.2% to 84.4% of the Mid-Atlantic's wadeable stream lengths. Our results demonstrate how a dynamic simulation model can support regional assessment and trends analysis for fisheries. © 2015 SETAC.
Forecasting disease risk for increased epidemic preparedness in public health
NASA Technical Reports Server (NTRS)
Myers, M. F.; Rogers, D. J.; Cox, J.; Flahault, A.; Hay, S. I.
2000-01-01
Emerging infectious diseases pose a growing threat to human populations. Many of the world's epidemic diseases (particularly those transmitted by intermediate hosts) are known to be highly sensitive to long-term changes in climate and short-term fluctuations in the weather. The application of environmental data to the study of disease offers the capability to demonstrate vector-environment relationships and potentially forecast the risk of disease outbreaks or epidemics. Accurate disease forecasting models would markedly improve epidemic prevention and control capabilities. This chapter examines the potential for epidemic forecasting and discusses the issues associated with the development of global networks for surveillance and prediction. Existing global systems for epidemic preparedness focus on disease surveillance using either expert knowledge or statistical modelling of disease activity and thresholds to identify times and areas of risk. Predictive health information systems would use monitored environmental variables, linked to a disease system, to be observed and provide prior information of outbreaks. The components and varieties of forecasting systems are discussed with selected examples, along with issues relating to further development.
Forecasting Disease Risk for Increased Epidemic Preparedness in Public Health
Myers, M.F.; Rogers, D.J.; Cox, J.; Flahault, A.; Hay, S.I.
2011-01-01
Emerging infectious diseases pose a growing threat to human populations. Many of the world’s epidemic diseases (particularly those transmitted by intermediate hosts) are known to be highly sensitive to long-term changes in climate and short-term fluctuations in the weather. The application of environmental data to the study of disease offers the capability to demonstrate vector–environment relationships and potentially forecast the risk of disease outbreaks or epidemics. Accurate disease forecasting models would markedly improve epidemic prevention and control capabilities. This chapter examines the potential for epidemic forecasting and discusses the issues associated with the development of global networks for surveillance and prediction. Existing global systems for epidemic preparedness focus on disease surveillance using either expert knowledge or statistical modelling of disease activity and thresholds to identify times and areas of risk. Predictive health information systems would use monitored environmental variables, linked to a disease system, to be observed and provide prior information of outbreaks. The components and varieties of forecasting systems are discussed with selected examples, along with issues relating to further development. PMID:10997211
Flash floods, hydro-geomorphic response and risk management
NASA Astrophysics Data System (ADS)
Braud, Isabelle; Borga, Marco; Gourley, Jonathan; Hürlimann, Marcel; Zappa, Massimilano; Gallart, Francesc
2016-10-01
Each year, natural disasters are responsible for fatalities and economic losses worldwide with 101 billion USD in economic losses and 7000 fatalities reported for 2014 (SwissRE, 2015). Even if earthquakes are responsible for most of these fatalities, flash floods and landslides are recognized as a significant source of threat to human lives (SwissRE, 2015). Jonkman (2005), in a global assessment of flood-related casualties, showed that flash floods lead to the highest mortality (number of fatalities divided by the number of affected people). They are also often associated with shallow landslides and geomorphic processes that can increase threat to human lives. Analysis of a global data set of fatalities from non-seismically triggered landslides (Petley, 2012) shows that 2620 fatal landslides were recorded worldwide in the period 2004-2010, causing a total of 32,322 recorded fatalities. In addition, heavy precipitation events, at the origin of flash floods and shallow landsliding are expected to increase in the future (e.g. Scoccimarro et al., 2016 for a recent study in Europe). Progress in flash floods and landslides understanding, forecasting and warning is therefore still needed to disentangle the complex interactions between hazards, exposure and vulnerability and to increase resilience (Borga et al., 2014).
Teeguarden, Justin. G.; Tan, Yu-Mei; Edwards, Stephen W.; Leonard, Jeremy A.; Anderson, Kim A.; Corley, Richard A.; Harding, Anna K; Kile, Molly L.; Simonich, Staci M; Stone, David; Tanguay, Robert L.; Waters, Katrina M.; Harper, Stacey L.; Williams, David E.
2016-01-01
Synopsis Driven by major scientific advances in analytical methods, biomonitoring, computational tools, and a newly articulated vision for a greater impact in public health, the field of exposure science is undergoing a rapid transition from a field of observation to a field of prediction. Deployment of an organizational and predictive framework for exposure science analogous to the “systems approaches” used in the biological sciences is a necessary step in this evolution. Here we propose the Aggregate Exposure Pathway (AEP) concept as the natural and complementary companion in the exposure sciences to the Adverse Outcome Pathway (AOP) concept in the toxicological sciences. Aggregate exposure pathways offer an intuitive framework to organize exposure data within individual units of prediction common to the field, setting the stage for exposure forecasting. Looking farther ahead, we envision direct linkages between aggregate exposure pathways and adverse outcome pathways, completing the source to outcome continuum for more efficient integration of exposure assessment and hazard identification. Together, the two pathways form and inform a decision-making framework with the flexibility for risk-based, hazard-based, or exposure-based decision making. PMID:26759916
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teeguarden, Justin G.; Tan, Yu -Mei; Edwards, Stephen W.
Here, driven by major scientific advances in analytical methods, biomonitoring, computation, and a newly articulated vision for a greater impact in public health, the field of exposure science is undergoing a rapid transition from a field of observation to a field of prediction. Deployment of an organizational and predictive framework for exposure science analogous to the “systems approaches” used in the biological sciences is a necessary step in this evolution. Here we propose the aggregate exposure pathway (AEP) concept as the natural and complementary companion in the exposure sciences to the adverse outcome pathway (AOP) concept in the toxicological sciences.more » Aggregate exposure pathways offer an intuitive framework to organize exposure data within individual units of prediction common to the field, setting the stage for exposure forecasting. Looking farther ahead, we envision direct linkages between aggregate exposure pathways and adverse outcome pathways, completing the source to outcome continuum for more meaningful integration of exposure assessment and hazard identification. Together, the two frameworks form and inform a decision-making framework with the flexibility for risk-based, hazard-based, or exposure-based decision making.« less
Teeguarden, Justin G.; Tan, Yu -Mei; Edwards, Stephen W.; ...
2016-01-13
Here, driven by major scientific advances in analytical methods, biomonitoring, computation, and a newly articulated vision for a greater impact in public health, the field of exposure science is undergoing a rapid transition from a field of observation to a field of prediction. Deployment of an organizational and predictive framework for exposure science analogous to the “systems approaches” used in the biological sciences is a necessary step in this evolution. Here we propose the aggregate exposure pathway (AEP) concept as the natural and complementary companion in the exposure sciences to the adverse outcome pathway (AOP) concept in the toxicological sciences.more » Aggregate exposure pathways offer an intuitive framework to organize exposure data within individual units of prediction common to the field, setting the stage for exposure forecasting. Looking farther ahead, we envision direct linkages between aggregate exposure pathways and adverse outcome pathways, completing the source to outcome continuum for more meaningful integration of exposure assessment and hazard identification. Together, the two frameworks form and inform a decision-making framework with the flexibility for risk-based, hazard-based, or exposure-based decision making.« less
Comparative Studies of Prediction Strategies for Solar X-ray Time Series
NASA Astrophysics Data System (ADS)
Muranushi, T.; Hattori, T.; Jin, Q.; Hishinuma, T.; Tominaga, M.; Nakagawa, K.; Fujiwara, Y.; Nakamura, T.; Sakaue, T.; Takahashi, T.; Seki, D.; Namekata, K.; Tei, A.; Ban, M.; Kawamura, A. D.; Hada-Muranushi, Y.; Asai, A.; Nemoto, S.; Shibata, K.
2016-12-01
Crucial virtues for operational space weather forecast are real-timeforecast ability, forecast precision and customizability to userneeds. The recent development of deep-learning makes it veryattractive to space weather, because (1) it learns gradually incomingdata, (2) it exhibits superior accuracy over conventional algorithmsin many fields, and (3) it makes the customization of the forecasteasier because it accepts raw images.However, the best deep-learning applications are only attainable bycareful human designers that understands both the mechanism of deeplearning and the application field. Therefore, we need to foster youngresearchers to enter the field of machine-learning aided forecast. So,we have held a seminar every Monday with undergraduate and graduatestudents from May to August 2016.We will review the current status of space weather science and theautomated real-time space weather forecast engine UFCORIN. Then, weintroduce the deep-learning space weather forecast environments wehave set up using Python and Chainer on students' laptop computers.We have started from simple image classification neural network, thenimplemented space-weather neural network that predicts future X-rayflux of the Sun based on the past X-ray lightcurve and magnetic fieldline-of-sight images.In order to perform each forecast faster, we have focused on simplelightcurve-to-lightcurve forecast, and performed comparative surveysby changing following parameters: The size and topology of the neural network Batchsize Neural network hyperparameters such as learning rates to optimize the preduction accuracy, and time for prediction.We have found how to design compact, fast but accurate neural networkto perform forecast. Our forecasters can perform predictionexperiment for four-year timespan in a few minutes, and achieveslog-scale errors of the order of 1. Our studies is ongoing, and inour talk we will review our progress till December.
Forecast-based interventions can reduce the health and economic burden of wildfires.
Rappold, Ana G; Fann, Neal L; Crooks, James; Huang, Jin; Cascio, Wayne E; Devlin, Robert B; Diaz-Sanchez, David
2014-09-16
We simulated public health forecast-based interventions during a wildfire smoke episode in rural North Carolina to show the potential for use of modeled smoke forecasts toward reducing the health burden and showed a significant economic benefit of reducing exposures. Daily and county wide intervention advisories were designed to occur when fine particulate matter (PM2.5) from smoke, forecasted 24 or 48 h in advance, was expected to exceed a predetermined threshold. Three different thresholds were considered in simulations, each with three different levels of adherence to the advisories. Interventions were simulated in the adult population susceptible to health exacerbations related to the chronic conditions of asthma and congestive heart failure. Associations between Emergency Department (ED) visits for these conditions and daily PM2.5 concentrations under each intervention were evaluated. Triggering interventions at lower PM2.5 thresholds (≤ 20 μg/m(3)) with good compliance yielded the greatest risk reduction. At the highest threshold levels (50 μg/m(3)) interventions were ineffective in reducing health risks at any level of compliance. The economic benefit of effective interventions exceeded $1 M in excess ED visits for asthma and heart failure, $2 M in loss of productivity, $100 K in respiratory conditions in children, and $42 million due to excess mortality.
Towards a street-level pollen concentration and exposure forecast
NASA Astrophysics Data System (ADS)
van der Molen, Michiel; Krol, Maarten; van Vliet, Arnold; Heuvelink, Gerard
2015-04-01
Atmospheric pollen are an increasing source of nuisance for people in industrialised countries and are associated with significant cost of medication and sick leave. Citizen pollen warnings are often based on emission mapping based on local temperature sum approaches or on long-range atmospheric model approaches. In practise, locally observed pollen may originate from both local sources (plants in streets and gardens) and from long-range transport. We argue that making this distinction is relevant because the diurnal and spatial variation in pollen concentrations is much larger for pollen from local sources than for pollen from long-range transport due to boundary layer processes. This may have an important impact on exposure of citizens to pollen and on mitigation strategies. However, little is known about the partitioning of pollen into local and long-range origin categories. Our objective is to study how the concentrations of pollen from different sources vary temporally and spatially, and how the source region influences exposure and mitigation strategies. We built a Hay Fever Forecast system (HFF) based on WRF-chem, Allergieradar.nl, and geo-statistical downscaling techniques. HFF distinguishes between local (individual trees) and regional sources (based on tree distribution maps). We show first results on how the diurnal variation of pollen concentrations depends on source proximity. Ultimately, we will compare the model with local pollen counts, patient nuisance scores and medicine use.
Air Quality Response Modeling for Decision Support | Science ...
Air quality management relies on photochemical models to predict the responses of pollutant concentrations to changes in emissions. Such modeling is especially important for secondary pollutants such as ozone and fine particulate matter which vary nonlinearly with changes in emissions. Numerous techniques for probing pollutant-emission relationships within photochemical models have been developed and deployed for a variety of decision support applications. However, atmospheric response modeling remains complicated by the challenge of validating sensitivity results against observable data. This manuscript reviews the state of the science of atmospheric response modeling as well as efforts to characterize the accuracy and uncertainty of sensitivity results. The National Exposure Research Laboratory′s (NERL′s) Atmospheric Modeling and Analysis Division (AMAD) conducts research in support of EPA′s mission to protect human health and the environment. AMAD′s research program is engaged in developing and evaluating predictive atmospheric models on all spatial and temporal scales for forecasting the Nation′s air quality and for assessing changes in air quality and air pollutant exposures, as affected by changes in ecosystem management and regulatory decisions. AMAD is responsible for providing a sound scientific and technical basis for regulatory policies based on air quality models to improve ambient air quality. The models developed by AMAD are being use
“Modeling Trends in Air Pollutant Concentrations over the ...
Regional model calculations over annual cycles have pointed to the need for accurately representing impacts of long-range transport. Linking regional and global scale models have met with mixed success as biases in the global model can propagate and influence regional calculations and often confound interpretation of model results. Since transport is efficient in the free-troposphere and since simulations over Continental scales and annual cycles provide sufficient opportunity for “atmospheric turn-over”, i.e., exchange between the free-troposphere and the boundary-layer, a conceptual framework is needed wherein interactions between processes occurring at various spatial and temporal scales can be consistently examined. The coupled WRF-CMAQ model is expanded to hemispheric scales and model simulations over period spanning 1990-current are analyzed to examine changes in hemispheric air pollution resulting from changes in emissions over this period. The National Exposure Research Laboratory (NERL) Atmospheric Modeling and Analysis Division (AMAD) conducts research in support of EPA mission to protect human health and the environment. AMAD research program is engaged in developing and evaluating predictive atmospheric models on all spatial and temporal scales for forecasting the air quality and for assessing changes in air quality and air pollutant exposures, as affected by changes in ecosystem management and regulatory decisions. AMAD is responsible for pr
NASA Astrophysics Data System (ADS)
Lutoff, C.; Anquetin, S.; Ruin, I.; Chassande, M.
2009-09-01
Flash floods are complex phenomena. The atmospheric and hydrological generating mechanisms of the phenomenon are not completely understood, leading to highly uncertain forecasts of and warnings for these events. On the other hand warning and crisis response to such violent and fast events is not a straightforward process. In both the social and physical aspect of the problem, space and time scales involved either in hydrometeorology, human behavior and social organizations sciences are of crucial importance. Forecasters, emergency managers, mayors, school superintendents, school transportation managers, first responders and road users, all have different time and space frameworks that they use to take emergency decision for themselves, their group or community. The integration of space and time scales of both the phenomenon and human activities is therefore a necessity to better deal with questions as forecasting lead-time and warning efficiency. The aim of this oral presentation is to focus on the spatio-temporal aspects of flash floods to improve our understanding of the event dynamic compared to the different scales of the social response. The authors propose a framework of analysis to compare the temporality of: i) the forecasts (from Méteo-France and from EFAS (Thielen et al., 2008)), ii) the meteorological and hydrological parameters, iii) the social response at different scales. The September 2005 event is particularly interesting for such analysis. The rainfall episode lasted nearly a week with two distinct phases separated by low intensity precipitations. Therefore the Méteo-France vigilance bulletin where somehow disconnected from the local flood’s impacts. Our analysis focuses on the timings of different types of local response, including the delicate issue of school transportation, in regard to the forecasts and the actual dynamic of the event.
NASA Astrophysics Data System (ADS)
Godoi Rezende Costa, C.; Castro, B. M.; Blumberg, A. F.; Leite, J. R. B., Sr.
2017-12-01
Santos City is subject to an average of 12 storm tide events per year. Such events bring coastal flooding able to threat human life and damage coastal infrastructure. Severe events have forced the interruption of ferry boat services and ship traffic through Santos Harbor, causing great impacts to Santos Port, the largest in South America, activities. Several studies have focused on the hydrodynamics of storm tide events but only a few of those studies have pursued an operational initiative to predict short term (< 3 days) sea level variability. The goals of this study are (i) to describe the design of an operational forecasting system built to predict sea surface elevation and currents in the Santos Estuarine System and (ii) to evaluate model performance in simulating observed sea surface elevation. The Santos Operational Forecasting System (SOFS) hydrodynamic module is based on the Stevens Institute Estuarine and Coastal Ocean Model (sECOM). The fully automated SOFS is designed to provide up to 71 h forecast of sea surface elevations and currents every day. The system automatically collects results from global models to run the SOFS nested into another sECOM based model for the South Brazil Bight (SBB). Global forecasting results used to force both models come from Mercator Ocean, released by Copernicus Marine Service, and from the Brazilian developments on the Regional Atmospheric Modeling System (BRAMS) stablished by the Center for Weather Forecasts and Climate Studies (with Portuguese acronym CPTEC). The complete routines task take about 8 hours of run time to finish. SOFS was able to hindcast a severe storm tide event that took place in Santos on August 21-22, 2016. Comparisons with observed sea level provided skills of 0.92 and maximum root mean square errors of 25 cm. The good agreement with observed data shows the potential of the designed system to predict storm tides and to support both human and assets protection.
Human-model hybrid Korean air quality forecasting system.
Chang, Lim-Seok; Cho, Ara; Park, Hyunju; Nam, Kipyo; Kim, Deokrae; Hong, Ji-Hyoung; Song, Chang-Keun
2016-09-01
The Korean national air quality forecasting system, consisting of the Weather Research and Forecasting, the Sparse Matrix Operator Kernel Emissions, and the Community Modeling and Analysis (CMAQ), commenced from August 31, 2013 with target pollutants of particulate matters (PM) and ozone. Factors contributing to PM forecasting accuracy include CMAQ inputs of meteorological field and emissions, forecasters' capacity, and inherent CMAQ limit. Four numerical experiments were conducted including two global meteorological inputs from the Global Forecast System (GFS) and the Unified Model (UM), two emissions from the Model Intercomparison Study Asia (MICS-Asia) and the Intercontinental Chemical Transport Experiment (INTEX-B) for the Northeast Asia with Clear Air Policy Support System (CAPSS) for South Korea, and data assimilation of the Monitoring Atmospheric Composition and Climate (MACC). Significant PM underpredictions by using both emissions were found for PM mass and major components (sulfate and organic carbon). CMAQ predicts PM2.5 much better than PM10 (NMB of PM2.5: -20~-25%, PM10: -43~-47%). Forecasters' error usually occurred at the next day of high PM event. Once CMAQ fails to predict high PM event the day before, forecasters are likely to dismiss the model predictions on the next day which turns out to be true. The best combination of CMAQ inputs is the set of UM global meteorological field, MICS-Asia and CAPSS 2010 emissions with the NMB of -12.3%, the RMSE of 16.6μ/m(3) and the R(2) of 0.68. By using MACC data as an initial and boundary condition, the performance skill of CMAQ would be improved, especially in the case of undefined coarse emission. A variety of methods such as ensemble and data assimilation are considered to improve further the accuracy of air quality forecasting, especially for high PM events to be comparable to for all cases. The growing utilization of the air quality forecast induced the public strongly to demand that the accuracy of the national forecasting be improved. In this study, we investigated the problems in the current forecasting as well as various alternatives to solve the problems. Such efforts to improve the accuracy of the forecast are expected to contribute to the protection of public health by increasing the availability of the forecast system.
Ensemble averaging and stacking of ARIMA and GSTAR model for rainfall forecasting
NASA Astrophysics Data System (ADS)
Anggraeni, D.; Kurnia, I. F.; Hadi, A. F.
2018-04-01
Unpredictable rainfall changes can affect human activities, such as in agriculture, aviation, shipping which depend on weather forecasts. Therefore, we need forecasting tools with high accuracy in predicting the rainfall in the future. This research focus on local forcasting of the rainfall at Jember in 2005 until 2016, from 77 rainfall stations. The rainfall here was not only related to the occurrence of the previous of its stations, but also related to others, it’s called the spatial effect. The aim of this research is to apply the GSTAR model, to determine whether there are some correlations of spatial effect between one to another stations. The GSTAR model is an expansion of the space-time model that combines the time-related effects, the locations (stations) in a time series effects, and also the location it self. The GSTAR model will also be compared to the ARIMA model that completely ignores the independent variables. The forcested value of the ARIMA and of the GSTAR models then being combined using the ensemble forecasting technique. The averaging and stacking method of ensemble forecasting method here provide us the best model with higher acuracy model that has the smaller RMSE (Root Mean Square Error) value. Finally, with the best model we can offer a better local rainfall forecasting in Jember for the future.
NASA Astrophysics Data System (ADS)
Block, P. J.; Gonzalez, E.; Bonnafous, L.
2011-12-01
Decision-making in water resources is inherently uncertain producing copious risks, ranging from operational (present) to planning (season-ahead) to design/adaptation (decadal) time-scales. These risks include human activity and climate variability/change. As the risks in designing and operating water systems and allocating available supplies vary systematically in time, prospects for predicting and managing such risks become increasingly attractive. Considerable effort has been undertaken to improve seasonal forecast skill and advocate for integration to reduce risk, however only minimal adoption is evident. Impediments are well defined, yet tailoring forecast products and allowing for flexible adoption assist in overcoming some obstacles. The semi-arid Elqui River basin in Chile is contending with increasing levels of water stress and demand coupled with insufficient investment in infrastructure, taxing its ability to meet agriculture, hydropower, and environmental requirements. The basin is fed from a retreating glacier, with allocation principles founded on a system of water rights and markets. A two-stage seasonal streamflow forecast at leads of one and two seasons prescribes the probability of reductions in the value of each water right, allowing water managers to inform their constituents in advance. A tool linking the streamflow forecast to a simple reservoir decision model also allows water managers to select a level of confidence in the forecast information.
Feria-Arroyo, Teresa P; Castro-Arellano, Ivan; Gordillo-Perez, Guadalupe; Cavazos, Ana L; Vargas-Sandoval, Margarita; Grover, Abha; Torres, Javier; Medina, Raul F; de León, Adalberto A Pérez; Esteve-Gassent, Maria D
2014-04-25
Disease risk maps are important tools that help ascertain the likelihood of exposure to specific infectious agents. Understanding how climate change may affect the suitability of habitats for ticks will improve the accuracy of risk maps of tick-borne pathogen transmission in humans and domestic animal populations. Lyme disease (LD) is the most prevalent arthropod borne disease in the US and Europe. The bacterium Borrelia burgdorferi causes LD and it is transmitted to humans and other mammalian hosts through the bite of infected Ixodes ticks. LD risk maps in the transboundary region between the U.S. and Mexico are lacking. Moreover, none of the published studies that evaluated the effect of climate change in the spatial and temporal distribution of I. scapularis have focused on this region. The area of study included Texas and a portion of northeast Mexico. This area is referred herein as the Texas-Mexico transboundary region. Tick samples were obtained from various vertebrate hosts in the region under study. Ticks identified as I. scapularis were processed to obtain DNA and to determine if they were infected with B. burgdorferi using PCR. A maximum entropy approach (MAXENT) was used to forecast the present and future (2050) distribution of B. burgdorferi-infected I. scapularis in the Texas-Mexico transboundary region by correlating geographic data with climatic variables. Of the 1235 tick samples collected, 109 were identified as I. scapularis. Infection with B. burgdorferi was detected in 45% of the I. scapularis ticks collected. The model presented here indicates a wide distribution for I. scapularis, with higher probability of occurrence along the Gulf of Mexico coast. Results of the modeling approach applied predict that habitat suitable for the distribution of I. scapularis in the Texas-Mexico transboundary region will remain relatively stable until 2050. The Texas-Mexico transboundary region appears to be part of a continuum in the pathogenic landscape of LD. Forecasting based on climate trends provides a tool to adapt strategies in the near future to mitigate the impact of LD related to its distribution and risk for transmission to human populations in the Mexico-US transboundary region.
ERIC Educational Resources Information Center
Peisachovich, Eva Hava; Nelles, L. J.; Johnson, Samantha; Nicholson, Laura; Gal, Raya; Kerr, Barbara; Celia, Popovic; Epstein, Iris; Da Silva, Celina
2017-01-01
Numerous forecasts suggest that professional-competence development depends on human encounters. Interaction between organizations, tasks, and individual providers influence human behaviour, affect organizations' or systems' performance, and are a key component of professional-competence development. Further, insufficient or ineffective…
A Model For Change: An Approach for Forecasting Well-Being ...
Every community decision incorporates a "forecasting" strategy (whether formal or implicit) to help visualize expected results and evaluate the potential “feelings” that people living in that community may have about those results. With more communities seeking to make decisions based on sustainable alternatives, forecasting efforts that examine potential impacts of decisions on overall community well-being may prove to be valuable for not only gaging future benefits and trade-offs, but also for recognizing a community’s affective response to the outcomes of those decisions. This paper describes a forecasting approach based on concepts introduced in the development of the U.S. Environmental Protection Agency’s (US EPA) Human Well-Being Index (HWBI) (Smith, et. al. 2014; Summers et al. 2014). The approach examines the relationships among selected economic, environmental and social services that can be directly impacted by community decisions and eight domains of human well-being. Using models developed from constructed- or fixed-effect step-wise and multiple regressions and eleven years of data (2000-2010), these relationship functions may be used to characterize likely direct impacts of decisions on future well-being as well as the possible intended and unintended secondary and tertiary effects relative to any main decision effects. This paper describes an approach to using HWBI in decision making models to characterize likely impacts of decisions on fut
Long-term population cycles in human societies.
Turchin, Peter
2009-04-01
Human population dynamics are usually conceptualized as either boundless growth or growth to an equilibrium. The implicit assumption underlying these paradigms is that any feedback processes regulating population density, if they exist, operate on a fast-time-scale, and therefore we do not expect to observe population oscillations in human population numbers. This review asks, are population processes in historical and prehistorical human populations characterized by second-order feedback loops, that is, regulation involving lags? If yes, then the implications for forecasting future population change are obvious--what may appear as inexplicable, exogenously driven reverses in population trends may actually be a result of feedbacks operating with substantial time lags. This survey of a variety of historical and archeological data indicates that slow oscillations in population numbers, with periods of roughly two to three centuries, are observed in a number of world regions and historical periods. Next, a potential explanation for this pattern, the demographic-structural theory, is discussed. Finally, the implications of these results for global population forecasts is discussed.
NASA Astrophysics Data System (ADS)
Hudspeth, W. B.; Budge, A.
2013-12-01
There is widespread recognition within the public health community that ongoing changes in climate are expected to increasingly pose threats to human health. Environmentally induced health risks to populations with respiratory illnesses are a growing concern globally. Of particular concern are dust and smoke events carrying PM2.5 and PM10 particle sizes, ozone, and pollen. There is considerable interest in documenting the precise linkages between changing patterns in the climate and how these shifts impact the prevalence of respiratory illnesses. The establishment of these linkages can drive the development of early warning and forecasting systems to alert health care professionals of impending air-quality events. As a component of a larger NASA-funded project on Integration of Airborne Dust Prediction Systems and Vegetation Phenology to Track Pollen for Asthma Alerts in Public Health Decision Support Systems, the Earth Data Analysis Center (EDAC) at the University of New Mexico, is developing web-based visualization and analysis services for forecasting pollen concentration data. This decision-support system, New Mexico's Environmental Public Health Tracking System (NMEPHTS), funded by the Centers for Disease Control (CDC) Environmental Public Health Tracking Network (EPHTN), aims to improve health awareness and services by linking health effects data with levels and frequency of environmental exposure. The forecast of atmospheric events with high pollen concentrations has employed a modified version of the DREAM (Dust Regional Atmospheric Model, a verified model for atmospheric dust transport modeling. In this application, PREAM (Pollen Regional Atmospheric Model) models pollen emission using a MODIS-derived phenology of Juniperus spp. communities. Model outputs are verified and validated with ground-based records of pollen release timing and quantities. Outputs of the PREAM model are post-processed and archived in EDAC's Geographic Storage, Transformation, and Retrieval Engine (GStore) database. The GStore geospatial services platform provides general purpose web services based upon the REST service model, and is capable of data discovery, access, and publication functions, metadata delivery functions, data transformation, and auto-generated OGC services for those data products that can support those services. These services are in turn ingested by New Mexico's EPHTN where end users in the public health community can then assess environmental-pubic health data associations. Advances in web mapping and related technologies open new doors for data providers and users that can deliver data and information in near-real time. In the public health community these technologies are being used to enhance disease and syndromic surveillance systems, visualize environmentally-related events such as pollen and dust events, and to provide focused mapping and analysis capabilities on the desktop. Here we present the current results of the project, and will focus on the challenges encountered in providing reliable and accurate forecast of pollen concentrations, as well as the experience of integrating output results and services into end user applications that can provide timely and meaningful alerts and forecasts.
Understanding and Seasonal Forecasting of multiscale droughts in China
NASA Astrophysics Data System (ADS)
Yuan, X.; Wang, L.; Wang, S.; Zhang, M.
2016-12-01
Droughts were climate anomalies that occurred naturally. But they have been altered by climate change and human interventions, and have covered a variety of spatiotemporal scales from seasonal/decadal droughts at regional to continental scales that are associated with large-scale climate anomalies and certain atmospheric circulation patterns, to flash droughts at local scales that are usually concurrent with heat extremes. Droughts have quite different implications across a number of sectors, with the considerations augmented from meteorological droughts to agricultural and hydrological droughts, where the latter could be affected by human activities directly. This raises a grand challenge to understand and predict droughts across scales in a changing environment. This presentation will be started by diagnosing an El Niño-induced meteorological drought that occurred over northern China (NC) last year, where the oceanic and atmospheric background are investigated, and the real-time prediction from Climate Forecast System version 2 (CFSv2) are diagnosed. The comparison between 2015 NC drought and other historical droughts are discussed, and a dynamical-statistical forecasting approach is being developed. Secondly, a rapidly developing agricultural drought event that termed as "flash droughts" accompanied by extreme heat, low soil moisture and high evapotranspiration (ET), occurred frequently around the world, and caused devastating impacts on crop yields and water supply. The increasing trend of flash droughts over China was tripled after the big El Niño event in 1997/98, but the warming hiatus does exist over many regions of China. The changes in flash droughts over China are being attributed by using multiple reanalysis data and the CMIP5 simulations. Lastly, the effects of human interventions on the drought propagation will be investigated over Yellow River basin in northern China. A comparison between SPI and standardized streamflow index indicates that the response of hydrological droughts to meteorological droughts becomes longer, and the duration and severity of hydrological droughts could be doubled or tripled with human interventions. The impact of human intervention on the hydrological drought predictability is being explored within the NMME/VIC forecasting framework.
Automated system for smoke dispersion prediction due to wild fires in Alaska
NASA Astrophysics Data System (ADS)
Kulchitsky, A.; Stuefer, M.; Higbie, L.; Newby, G.
2007-12-01
Community climate models have enabled development of specific environmental forecast systems. The University of Alaska (UAF) smoke group was created to adapt a smoke forecast system to the Alaska region. The US Forest Service (USFS) Missoula Fire Science Lab had developed a smoke forecast system based on the Weather Research and Forecasting (WRF) Model including chemistry (WRF/Chem). Following the successful experience of USFS, which runs their model operationally for the contiguous U.S., we develop a similar system for Alaska in collaboration with scientists from the USFS Missoula Fire Science Lab. Wildfires are a significant source of air pollution in Alaska because the climate and vegetation favor annual summer fires that burn huge areas. Extreme cases occurred in 2004, when an area larger than Maryland (more than 25000~km2) burned. Small smoke particles with a diameter less than 10~μm can penetrate deep into lungs causing health problems. Smoke also creates a severe restriction to air transport and has tremendous economical effect. The smoke dispersion and forecast system for Alaska was developed at the Geophysical Institute (GI) and the Arctic Region Supercomputing Center (ARSC), both at University of Alaska Fairbanks (UAF). They will help the public and plan activities a few days in advance to avoid dangerous smoke exposure. The availability of modern high performance supercomputers at ARSC allows us to create and run high-resolution, WRF-based smoke dispersion forecast for the entire State of Alaska. The core of the system is a Python program that manages the independent pieces. Our adapted Alaska system performs the following steps \\begin{itemize} Calculate the medium-resolution weather forecast using WRF/Met. Adapt the near real-time satellite-derived wildfire location and extent data that are received via direct broadcast from UAF's "Geographic Information Network of Alaska" (GINA) Calculate fuel moisture using WRF forecasts and National Fire Danger Rating System (NFDRS) fuel maps Calculate smoke emission components using a first order fire emission model Model the smoke plume rise yielding a vertically distribution that accounts for one-dimensional (vertical) concentrations of smoke constituents in the atmosphere above the fire Run WRF/Chem at high resolution for the forecast Use standard graphical tools to provide accessible smoke dispersion The system run twice each day at ARSC. The results will be freely available from a dedicated wildfire smoke web portal at ARSC.
A Hybrid Model for Predicting the Prevalence of Schistosomiasis in Humans of Qianjiang City, China
Wang, Ying; Lu, Zhouqin; Tian, Lihong; Tan, Li; Shi, Yun; Nie, Shaofa; Liu, Li
2014-01-01
Backgrounds/Objective Schistosomiasis is still a major public health problem in China, despite the fact that the government has implemented a series of strategies to prevent and control the spread of the parasitic disease. Advanced warning and reliable forecasting can help policymakers to adjust and implement strategies more effectively, which will lead to the control and elimination of schistosomiasis. Our aim is to explore the application of a hybrid forecasting model to track the trends of the prevalence of schistosomiasis in humans, which provides a methodological basis for predicting and detecting schistosomiasis infection in endemic areas. Methods A hybrid approach combining the autoregressive integrated moving average (ARIMA) model and the nonlinear autoregressive neural network (NARNN) model to forecast the prevalence of schistosomiasis in the future four years. Forecasting performance was compared between the hybrid ARIMA-NARNN model, and the single ARIMA or the single NARNN model. Results The modelling mean square error (MSE), mean absolute error (MAE) and mean absolute percentage error (MAPE) of the ARIMA-NARNN model was 0.1869×10−4, 0.0029, 0.0419 with a corresponding testing error of 0.9375×10−4, 0.0081, 0.9064, respectively. These error values generated with the hybrid model were all lower than those obtained from the single ARIMA or NARNN model. The forecasting values were 0.75%, 0.80%, 0.76% and 0.77% in the future four years, which demonstrated a no-downward trend. Conclusion The hybrid model has high quality prediction accuracy in the prevalence of schistosomiasis, which provides a methodological basis for future schistosomiasis monitoring and control strategies in the study area. It is worth attempting to utilize the hybrid detection scheme in other schistosomiasis-endemic areas including other infectious diseases. PMID:25119882
The Economic Value of Air Quality Forecasting
NASA Astrophysics Data System (ADS)
Anderson-Sumo, Tasha
Both long-term and daily air quality forecasts provide an essential component to human health and impact costs. According the American Lung Association, the estimated current annual cost of air pollution related illness in the United States, adjusted for inflation (3% per year), is approximately $152 billion. Many of the risks such as hospital visits and morality are associated with poor air quality days (where the Air Quality Index is greater than 100). Groups such as sensitive groups become more susceptible to the resulting conditions and more accurate forecasts would help to take more appropriate precautions. This research focuses on evaluating the utility of air quality forecasting in terms of its potential impacts by building on air quality forecasting and economical metrics. Our analysis includes data collected during the summertime ozone seasons between 2010 and 2012 from air quality models for the Washington, DC/Baltimore, MD region. The metrics that are relevant to our analysis include: (1) The number of times that a high ozone or particulate matter (PM) episode is correctly forecasted, (2) the number of times that high ozone or PM episode is forecasted when it does not occur and (3) the number of times when the air quality forecast predicts a cleaner air episode when the air was observed to have high ozone or PM. Our collection of data included available air quality model forecasts of ozone and particulate matter data from the U.S. Environmental Protection Agency (EPA)'s AIRNOW as well as observational data of ozone and particulate matter from Clean Air Partners. We evaluated the performance of the air quality forecasts with that of the observational data and found that the forecast models perform well for the Baltimore/Washington region and the time interval observed. We estimate the potential amount for the Baltimore/Washington region accrues to a savings of up to 5,905 lives and 5.9 billion dollars per year. This total assumes perfect compliance with bad air quality warning and forecast air quality forecasts. There is a difficulty presented with evaluating the economic utility of the forecasts. All may not comply and even with a low compliance rate of 5% and 72% as the average probability of detection of poor air quality days by the air quality models, we estimate that the forecasting program saves 412 lives or 412 million dollars per year for the region. The totals we found are great or greater than other typical yearly meteorological hazard programs such as tornado or hurricane forecasting and it is clear that the economic value of air quality forecasting in the Baltimore/Washington region is vital.
Local Climate Experts: The Influence of Local TV Weather Information on Climate Change Perceptions
Bloodhart, Brittany; Maibach, Edward; Myers, Teresa; Zhao, Xiaoquan
2015-01-01
Individuals who identify changes in their local climate are also more likely to report that they have personally experienced global climate change. One way that people may come to recognize that their local climate is changing is through information provided by local TV weather forecasters. Using random digit dialing, 2,000 adult local TV news viewers in Virginia were surveyed to determine whether routine exposure to local TV weather forecasts influences their perceptions of extreme weather in Virginia, and their perceptions about climate change more generally. Results indicate that paying attention to TV weather forecasts is associated with beliefs that extreme weather is becoming more frequent in Virginia, which in turn is associated with stronger beliefs and concerns about climate change. These associations were strongest for individuals who trust their local TV weathercaster as a source of information about climate change, and for those who identify as politically conservative or moderate. The findings add support to the literature suggesting that TV weathercasters can play an important role in educating the public about climate change. PMID:26551357
Local Climate Experts: The Influence of Local TV Weather Information on Climate Change Perceptions.
Bloodhart, Brittany; Maibach, Edward; Myers, Teresa; Zhao, Xiaoquan
2015-01-01
Individuals who identify changes in their local climate are also more likely to report that they have personally experienced global climate change. One way that people may come to recognize that their local climate is changing is through information provided by local TV weather forecasters. Using random digit dialing, 2,000 adult local TV news viewers in Virginia were surveyed to determine whether routine exposure to local TV weather forecasts influences their perceptions of extreme weather in Virginia, and their perceptions about climate change more generally. Results indicate that paying attention to TV weather forecasts is associated with beliefs that extreme weather is becoming more frequent in Virginia, which in turn is associated with stronger beliefs and concerns about climate change. These associations were strongest for individuals who trust their local TV weathercaster as a source of information about climate change, and for those who identify as politically conservative or moderate. The findings add support to the literature suggesting that TV weathercasters can play an important role in educating the public about climate change.
The impact of communicating information about air pollution events on public health.
McLaren, J; Williams, I D
2015-12-15
Short-term exposure to air pollution has been associated with exacerbation of asthma and chronic obstructive pulmonary disease (COPD). This study investigated the relationship between emergency hospital admissions for asthma, COPD and episodes of poor air quality in an English city (Southampton) from 2008-2013. The city's council provides a forecasting service for poor air quality to individuals with respiratory disease to reduce preventable admissions to hospital and this has been evaluated. Trends in nitrogen dioxide, ozone and particulate matter concentrations were related to hospital admissions data using regression analysis. The impacts of air quality on emergency admissions were quantified using the relative risks associated with each pollutant. Seasonal and weekly trends were apparent for both air pollution and hospital admissions, although there was a weak relationship between the two. The air quality forecasting service proved ineffective at reducing hospital admissions. Improvements to the health forecasting service are necessary to protect the health of susceptible individuals, as there is likely to be an increasing need for such services in the future. Copyright © 2015 Elsevier B.V. All rights reserved.
Waste to Watts and Water: Enabling Self-Contained Facilities Using Microbial Fuel Cells
2009-03-01
will require in future facilities is the ability to operate apart from the infrastructure net- work and line of communications (LOC) in a clean and ef...in future technologies, observes that “forecasters are im- prisoned by their times.”33 Humans tend to look at today’s crisis and project it into the...2030. In 2007 the United States Department of Energy (DOE) forecast international power demand to double by 2030.34 Today’s energy crisis is well
Potential effects of climate change on freshwater ecosystems of the New England/Mid-Atlantic Region
Marianne V. Moore; Michael L. Pace; John R. Mather; [and others; [Editor’s note: Patricia A. Flebbe is the SRS co-author for this publication.
1997-01-01
Numerous freshwater ecosystems, dense concentrations of humans along the eastern seaboard, extensive forests, and a history of intensive land use distinguish the New England/Mid-Atlantic Region. Human population densities are forecast to increase in portions of the region at the same time that climate is expected to be changing. Consequently, the effects of humans and...
Huang, Daizheng; Wu, Zhihui
2017-01-01
Accurately predicting the trend of outpatient visits by mathematical modeling can help policy makers manage hospitals effectively, reasonably organize schedules for human resources and finances, and appropriately distribute hospital material resources. In this study, a hybrid method based on empirical mode decomposition and back-propagation artificial neural networks optimized by particle swarm optimization is developed to forecast outpatient visits on the basis of monthly numbers. The data outpatient visits are retrieved from January 2005 to December 2013 and first obtained as the original time series. Second, the original time series is decomposed into a finite and often small number of intrinsic mode functions by the empirical mode decomposition technique. Third, a three-layer back-propagation artificial neural network is constructed to forecast each intrinsic mode functions. To improve network performance and avoid falling into a local minimum, particle swarm optimization is employed to optimize the weights and thresholds of back-propagation artificial neural networks. Finally, the superposition of forecasting results of the intrinsic mode functions is regarded as the ultimate forecasting value. Simulation indicates that the proposed method attains a better performance index than the other four methods. PMID:28222194
Huang, Daizheng; Wu, Zhihui
2017-01-01
Accurately predicting the trend of outpatient visits by mathematical modeling can help policy makers manage hospitals effectively, reasonably organize schedules for human resources and finances, and appropriately distribute hospital material resources. In this study, a hybrid method based on empirical mode decomposition and back-propagation artificial neural networks optimized by particle swarm optimization is developed to forecast outpatient visits on the basis of monthly numbers. The data outpatient visits are retrieved from January 2005 to December 2013 and first obtained as the original time series. Second, the original time series is decomposed into a finite and often small number of intrinsic mode functions by the empirical mode decomposition technique. Third, a three-layer back-propagation artificial neural network is constructed to forecast each intrinsic mode functions. To improve network performance and avoid falling into a local minimum, particle swarm optimization is employed to optimize the weights and thresholds of back-propagation artificial neural networks. Finally, the superposition of forecasting results of the intrinsic mode functions is regarded as the ultimate forecasting value. Simulation indicates that the proposed method attains a better performance index than the other four methods.
Multicomponent ensemble models to forecast induced seismicity
NASA Astrophysics Data System (ADS)
Király-Proag, E.; Gischig, V.; Zechar, J. D.; Wiemer, S.
2018-01-01
In recent years, human-induced seismicity has become a more and more relevant topic due to its economic and social implications. Several models and approaches have been developed to explain underlying physical processes or forecast induced seismicity. They range from simple statistical models to coupled numerical models incorporating complex physics. We advocate the need for forecast testing as currently the best method for ascertaining if models are capable to reasonably accounting for key physical governing processes—or not. Moreover, operational forecast models are of great interest to help on-site decision-making in projects entailing induced earthquakes. We previously introduced a standardized framework following the guidelines of the Collaboratory for the Study of Earthquake Predictability, the Induced Seismicity Test Bench, to test, validate, and rank induced seismicity models. In this study, we describe how to construct multicomponent ensemble models based on Bayesian weightings that deliver more accurate forecasts than individual models in the case of Basel 2006 and Soultz-sous-Forêts 2004 enhanced geothermal stimulation projects. For this, we examine five calibrated variants of two significantly different model groups: (1) Shapiro and Smoothed Seismicity based on the seismogenic index, simple modified Omori-law-type seismicity decay, and temporally weighted smoothed seismicity; (2) Hydraulics and Seismicity based on numerically modelled pore pressure evolution that triggers seismicity using the Mohr-Coulomb failure criterion. We also demonstrate how the individual and ensemble models would perform as part of an operational Adaptive Traffic Light System. Investigating seismicity forecasts based on a range of potential injection scenarios, we use forecast periods of different durations to compute the occurrence probabilities of seismic events M ≥ 3. We show that in the case of the Basel 2006 geothermal stimulation the models forecast hazardous levels of seismicity days before the occurrence of felt events.
Section on Observed Impacts on El Nino
NASA Technical Reports Server (NTRS)
Rosenzweig, Cynthia
2000-01-01
Agricultural applications of El Nino forecasts are already underway in some countries and need to be evaluated or re-evaluated. For example, in Peru, El Nino forecasts have been incorporated into national planning for the agricultural sector, and areas planted with rice and cotton (cotton being the more drought-tolerant crop) are adjusted accordingly. How well are this and other such programs working? Such evaluations will contribute to the governmental and intergovernmental institutions, including the Inter-American Institute for Global Change Research and the US National Ocean and Atmospheric Agency that are fostering programs to aid the effective use of forecasts. As El Nino climate forecasting grows out of the research mode into operational mode, the research focus shifts to include the design of appropriate modes of utilization. Awareness of and sensitivity to the costs of prediction errors also grow. For example, one major forecasting model failed to predict the very large El Nino event of 1997, when Pacific sea-surface temperatures were the highest on record. Although simple correlations between El Nino events and crop yields may be suggestive, more sophisticated work is needed to understand the subtleties of the interplay among the global climate system, regional climate patterns, and local agricultural systems. Honesty about the limitations of an forecast is essential, especially when human livelihoods are at stake. An end-to-end analysis links tools and expertise from the full sequence of ENSO cause-and-effect processes. Representatives from many disciplines are needed to achieve insights, e.g, oceanographers and atmospheric scientists who predict El Nino events, climatologists who drive global climate models with sea-surface temperature predictions, agronomists who translate regional climate connections in to crop yield forecasts, and economists who analyze market adjustments to the vagaries of climate and determine the value of climate forecasts. Methods include historical studies to understand past patterns and to test hindcasts of the prediction tools, crop modeling, spatial analysis and remote sensing. This research involves expanding, deepening, and applying the understanding of physical climate to the fields of agronomy and social science; and the reciprocal understanding of crop growth and farm economics to climatology. Delivery of a regional climate forecast with no information about how the climate forecast was derived limits its effectiveness. Explanation of a region's major climate driving forces helps to place a seasonal forecast in context. Then, a useful approach is to show historical responses to previous El Nino events, and projections, with uncertainty intervals, of crop response from dynamic process crop growth models. Regional ID forecasts should be updated with real-time weather conditions. Since every El Nino event is different, it is important to track, report and advise on each new event as it unfolds. The stability of human enterprises depends on understanding both the potentialities and the limits of predictability. Farmers rely on past experience to anticipate and respond to fluctuations in the biophysical systems on which their livelihoods depend. Now scientists are improving their ability to predict some major elements of climate variability. The improvements in the reliability of El Nino forecasts are encouraging, but seasonal forecasts for agriculture are not, and will probably never be completely infallible, due to the chaotic nature of the climate system. Uncertainties proliferate as we extend beyond Pacific sea-surface temperatures to climate teleconnections and agricultural outcomes. The goal of this research is to shed as a clear light as possible on these inherent uncertainties and thus to contribute to the development of appropriate responses to El Nino and other seasonal forecasts for a range of stakeholders, which, ultimately, includes food consumers everywhere.
Lunar Surface Mission Operations Scenario and Considerations
NASA Technical Reports Server (NTRS)
Arnold, Larissa S.; Torney, Susan E.; Rask, John Doug; Bleisath, Scott A.
2006-01-01
Planetary surface operations have been studied since the last visit of humans to the Moon, including conducting analog missions. Mission Operations lessons from these activities are summarized. Characteristics of forecasted surface operations are compared to current human mission operations approaches. Considerations for future designs of mission operations are assessed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teeguarden, Justin G.; Tan, Yu-Mei; Edwards, Stephen W.
Driven by major scientific advances in analytical methods, biomonitoring, and computational exposure assessment, and a newly articulated vision for a greater impact in public health, the field of exposure science is undergoing a rapid transition from a field of observation to a field of prediction. Deployment of an organizational and predictive framework for exposure science analogous to the computationally enabled “systems approaches” used in the biological sciences is a necessary step in this evolution. Here we propose the aggregate exposure pathway (AEP) concept as the natural and complementary companion in the exposure sciences to the adverse outcome pathway (AOP) conceptmore » in the toxicological sciences. The AEP framework offers an intuitive approach to successful organization of exposure science data within individual units of prediction common to the field, setting the stage for exposure forecasting. Looking farther ahead, we envision direct linkages between aggregate exposure pathway and adverse outcome pathways, completing the source to outcome continuum and setting the stage for more efficient integration of exposure science and toxicity testing information. Together these frameworks form and inform a decision making framework with the flexibility for risk-based, hazard-based or exposure-based decisions.« less
Gan, Ryan W; Ford, Bonne; Lassman, William; Pfister, Gabriele; Vaidyanathan, Ambarish; Fischer, Emily; Volckens, John; Pierce, Jeffrey R; Magzamen, Sheryl
2017-03-01
Climate forecasts predict an increase in frequency and intensity of wildfires. Associations between health outcomes and population exposure to smoke from Washington 2012 wildfires were compared using surface monitors, chemical-weather models, and a novel method blending three exposure information sources. The association between smoke particulate matter ≤2.5 μm in diameter (PM 2.5 ) and cardiopulmonary hospital admissions occurring in Washington from 1 July to 31 October 2012 was evaluated using a time-stratified case-crossover design. Hospital admissions aggregated by ZIP code were linked with population-weighted daily average concentrations of smoke PM 2.5 estimated using three distinct methods: a simulation with the Weather Research and Forecasting with Chemistry (WRF-Chem) model, a kriged interpolation of PM 2.5 measurements from surface monitors, and a geographically weighted ridge regression (GWR) that blended inputs from WRF-Chem, satellite observations of aerosol optical depth, and kriged PM 2.5 . A 10 μg/m 3 increase in GWR smoke PM 2.5 was associated with an 8% increased risk in asthma-related hospital admissions (odds ratio (OR): 1.076, 95% confidence interval (CI): 1.019-1.136); other smoke estimation methods yielded similar results. However, point estimates for chronic obstructive pulmonary disease (COPD) differed by smoke PM 2.5 exposure method: a 10 μg/m 3 increase using GWR was significantly associated with increased risk of COPD (OR: 1.084, 95%CI: 1.026-1.145) and not significant using WRF-Chem (OR: 0.986, 95%CI: 0.931-1.045). The magnitude (OR) and uncertainty (95%CI) of associations between smoke PM 2.5 and hospital admissions were dependent on estimation method used and outcome evaluated. Choice of smoke exposure estimation method used can impact the overall conclusion of the study.
Solar particle event predictions for manned Mars missions
NASA Technical Reports Server (NTRS)
Heckman, Gary
1986-01-01
Manned space missions to Mars require consideration of the effects of high radiation doses produced by solar particle events (SPE). Without some provision for protection, the radiation doses from such events can exceed standards for maximum exposure and may be life threatening. Several alternative ways of providing protection require a capability for predicting SPE in time to take some protective actions. The SPE may occur at any time during the eleven year solar cycle so that two year missions cannot be scheduled to insure avoiding them although they are less likely to occur at solar minimum. The present forecasts are sufficiently accurate to use for setting alert modes but are not accurate enough to make yes/no decisions that have major mission operational impacts. Forecasts made for one to two year periods can only be done as probabilistic forecasts where there is a chance of SPE occurring. These are current capabilities but are not likely to change significantly by the year 2000 with the exception of some improvement in the one to ten day forecasts. The effects of SPE are concentrated in solar longitudes near where their parent solar flares occur, which will require a manned Mars mission to carry its own small solar telescope to monitor the development of potentially dangerous solar activity. The preferred telescope complement includes a solar X-ray imager, a hydrogen-alpha scanner, and a solar magnetograph.
Space Environment (Natural and Induced)
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee Y.; George, Kerry A.; Cucinotta, Francis A.
2007-01-01
Considerable effort and improvement have been made in the study of ionizing radiation exposure occurring in various regions of space. Satellites and spacecrafts equipped with innovative instruments are continually refining particle data and providing more accurate information on the ionizing radiation environment. The major problem in accurate spectral definition of ionizing radiation appears to be the detailed energy spectra, especially at high energies, which is important parameter for accurate radiation risk assessment. Magnitude of risks posed by exposure to radiation in future space missions is subject to the accuracies of predictive forecast of event size of SPE, GCR environment, geomagnetic fields, and atmospheric radiation environment. Although heavy ion fragmentations and interactions are adequately resolved through laboratory study and model development, improvements in fragmentation cross sections for the light nuclei produced from HZE nuclei and their laboratory validation are still required to achieve the principal goal of planetary GCR simulation at a critical exposure site. More accurate prediction procedure for ionizing radiation environment can be made with a better understanding of the solar and space physics, fulfillment of required measurements for nuclear/atomic processes, and their validation and verification with spaceflights and heavy ion accelerators experiments. It is certainly true that the continued advancements in solar and space physics combining with physical measurements will strengthen the confidence of future manned exploration of solar system. Advancements in radiobiology will surely give the meaningful radiation hazard assessments for short and long term effects, by which appropriate and effective mitigation measures can be placed to ensure that humans safely live and work in the space, anywhere, anytime.
DEMONSTRATION OF HUMAN EXPOSURE TOOLS
The Human Exposure and Atmospheric Sciences Division (HEASD) of the National Exposure Research Laboratory (NERL) conducts research on exposure measurements, human activity patterns, exposure and dose models, and cumulative exposures critical for the Agency to make scientificall...
Multiannual forecasting of seasonal influenza dynamics reveals climatic and evolutionary drivers.
Axelsen, Jacob Bock; Yaari, Rami; Grenfell, Bryan T; Stone, Lewi
2014-07-01
Human influenza occurs annually in most temperate climatic zones of the world, with epidemics peaking in the cold winter months. Considerable debate surrounds the relative role of epidemic dynamics, viral evolution, and climatic drivers in driving year-to-year variability of outbreaks. The ultimate test of understanding is prediction; however, existing influenza models rarely forecast beyond a single year at best. Here, we use a simple epidemiological model to reveal multiannual predictability based on high-quality influenza surveillance data for Israel; the model fit is corroborated by simple metapopulation comparisons within Israel. Successful forecasts are driven by temperature, humidity, antigenic drift, and immunity loss. Essentially, influenza dynamics are a balance between large perturbations following significant antigenic jumps, interspersed with nonlinear epidemic dynamics tuned by climatic forcing.
Personalized glucose forecasting for type 2 diabetes using data assimilation
Albers, David J.; Gluckman, Bruce; Ginsberg, Henry; Hripcsak, George; Mamykina, Lena
2017-01-01
Type 2 diabetes leads to premature death and reduced quality of life for 8% of Americans. Nutrition management is critical to maintaining glycemic control, yet it is difficult to achieve due to the high individual differences in glycemic response to nutrition. Anticipating glycemic impact of different meals can be challenging not only for individuals with diabetes, but also for expert diabetes educators. Personalized computational models that can accurately forecast an impact of a given meal on an individual’s blood glucose levels can serve as the engine for a new generation of decision support tools for individuals with diabetes. However, to be useful in practice, these computational engines need to generate accurate forecasts based on limited datasets consistent with typical self-monitoring practices of individuals with type 2 diabetes. This paper uses three forecasting machines: (i) data assimilation, a technique borrowed from atmospheric physics and engineering that uses Bayesian modeling to infuse data with human knowledge represented in a mechanistic model, to generate real-time, personalized, adaptable glucose forecasts; (ii) model averaging of data assimilation output; and (iii) dynamical Gaussian process model regression. The proposed data assimilation machine, the primary focus of the paper, uses a modified dual unscented Kalman filter to estimate states and parameters, personalizing the mechanistic models. Model selection is used to make a personalized model selection for the individual and their measurement characteristics. The data assimilation forecasts are empirically evaluated against actual postprandial glucose measurements captured by individuals with type 2 diabetes, and against predictions generated by experienced diabetes educators after reviewing a set of historical nutritional records and glucose measurements for the same individual. The evaluation suggests that the data assimilation forecasts compare well with specific glucose measurements and match or exceed in accuracy expert forecasts. We conclude by examining ways to present predictions as forecast-derived range quantities and evaluate the comparative advantages of these ranges. PMID:28448498
A research model--forecasting incident rates from optimized safety program intervention strategies.
Iyer, P S; Haight, J M; Del Castillo, E; Tink, B W; Hawkins, P W
2005-01-01
INTRODUCTION/PROBLEM: Property damage incidents, workplace injuries, and safety programs designed to prevent them, are expensive aspects of doing business in contemporary industry. The National Safety Council (2002) estimated that workplace injuries cost $146.6 billion per year. Because companies are resource limited, optimizing intervention strategies to decrease incidents with less costly programs can contribute to improved productivity. Systematic data collection methods were employed and the forecasting ability of a time-lag relationship between interventions and incident rates was studied using various statistical methods (an intervention is not expected to have an immediate nor infinitely lasting effect on the incident rate). As a follow up to the initial work, researchers developed two models designed to forecast incident rates. One is based on past incident rate performance and the other on the configuration and level of effort applied to the safety and health program. Researchers compared actual incident performance to the prediction capability of each model over 18 months in the forestry operations at an electricity distribution company and found the models to allow accurate prediction of incident rates. These models potentially have powerful implications as a business-planning tool for human resource allocation and for designing an optimized safety and health intervention program to minimize incidents. Depending on the mathematical relationship, one can determine what interventions, where and how much to apply them, and when to increase or reduce human resource input as determined by the forecasted performance.
Detection and forecasting of oyster norovirus outbreaks: recent advances and future perspectives.
Wang, Jiao; Deng, Zhiqiang
2012-09-01
Norovirus is a highly infectious pathogen that is commonly found in oysters growing in fecally contaminated waters. Norovirus outbreaks can cause the closure of oyster harvesting waters and acute gastroenteritis in humans associated with consumption of contaminated raw oysters. Extensive efforts and progresses have been made in detection and forecasting of oyster norovirus outbreaks over the past decades. The main objective of this paper is to provide a literature review of methods and techniques for detecting and forecasting oyster norovirus outbreaks and thereby to identify the future directions for improving the detection and forecasting of norovirus outbreaks. It is found that (1) norovirus outbreaks display strong seasonality with the outbreak peak occurring commonly in December-March in the U.S. and April-May in the Europe; (2) norovirus outbreaks are affected by multiple environmental factors, including but not limited to precipitation, temperature, solar radiation, wind, and salinity; (3) various modeling approaches may be employed to forecast norovirus outbreaks, including Bayesian models, regression models, Artificial Neural Networks, and process-based models; and (4) diverse techniques are available for near real-time detection of norovirus outbreaks, including multiplex PCR, seminested PCR, real-time PCR, quantitative PCR, and satellite remote sensing. The findings are important to the management of oyster growing waters and to future investigations into norovirus outbreaks. It is recommended that a combined approach of sensor-assisted real time monitoring and modeling-based forecasting should be utilized for an efficient and effective detection and forecasting of norovirus outbreaks caused by consumption of contaminated oysters. Copyright © 2012 Elsevier Ltd. All rights reserved.
Iterative ecological forecasting: Needs, opportunities, and challenges
Dietze, Michael C.; Fox, Andrew; Betancourt, Julio L.; Hooten, Mevin B.; Jarnevich, Catherine S.; Keitt, Tim H.; Kenney, Melissa; Laney, Christine; Larsen, Laurel; Loescher, Henry W.; Lunch, Claire; Pijanowski, Bryan; Randerson, James T.; Read, Emily; Tredennick, Andrew T.; Weathers, Kathleen; White, Ethan P.
2016-01-01
A fundamental environmental challenge facing humanity in the 21st century and beyond is predicting the impacts of global environmental change. This challenge is complicated by the fact that we live on a non-stationary, unreplicated planet that is rapidly moving outside the envelope of natural variability into an historical non-analog world. In other words, while the past helps inform us about how the world has worked, it may no longer be the relevant frame of reference for management, conservation, and sustainability. In this future world the two questions at the foundation of sustainability are “How are ecosystems and the services they provide going to change in the future?” and “How do human decisions affect this trajectory?” These are, at their heart, questions about ecological forecasting.
Developing Global Building Exposure for Disaster Forecasting, Mitigation, and Response
NASA Astrophysics Data System (ADS)
Huyck, C. K.
2016-12-01
Nongovernmental organizations and governments are recognizing the importance of insurance penetration in developing countries to mitigate the tremendous setbacks that follow natural disasters., but to effectively manage risk stakeholders must accurately quantify the built environment. Although there are countless datasets addressing elements of buildings, there are surprisingly few that are directly applicable to assessing vulnerability to natural disasters without skewing the spatial distribution of risk towards known assets. Working with NASA center partners Center for International Earth Science Information Network (CIESIN) at Columbia University in New York (http://www.ciesin.org), ImageCat have developed a novel method of developing Global Exposure Data (GED) from EO sources. The method has been applied to develop exposure datasets for GFDRR, CAT modelers, and aid in post-earthquake allocation of resources for UNICEF.
Webster, Peter J.; Jian, Jun
2011-01-01
The uncertainty associated with predicting extreme weather events has serious implications for the developing world, owing to the greater societal vulnerability to such events. Continual exposure to unanticipated extreme events is a contributing factor for the descent into perpetual and structural rural poverty. We provide two examples of how probabilistic environmental prediction of extreme weather events can support dynamic adaptation. In the current climate era, we describe how short-term flood forecasts have been developed and implemented in Bangladesh. Forecasts of impending floods with horizons of 10 days are used to change agricultural practices and planning, store food and household items and evacuate those in peril. For the first time in Bangladesh, floods were anticipated in 2007 and 2008, with broad actions taking place in advance of the floods, grossing agricultural and household savings measured in units of annual income. We argue that probabilistic environmental forecasts disseminated to an informed user community can reduce poverty caused by exposure to unanticipated extreme events. Second, it is also realized that not all decisions in the future can be made at the village level and that grand plans for water resource management require extensive planning and funding. Based on imperfect models and scenarios of economic and population growth, we further suggest that flood frequency and intensity will increase in the Ganges, Brahmaputra and Yangtze catchments as greenhouse-gas concentrations increase. However, irrespective of the climate-change scenario chosen, the availability of fresh water in the latter half of the twenty-first century seems to be dominated by population increases that far outweigh climate-change effects. Paradoxically, fresh water availability may become more critical if there is no climate change. PMID:22042897
Tozer, Mark G; Ooi, Mark K J
2014-09-01
Seed dormancy enhances fitness by preventing seeds from germinating when the probability of seedling survival and recruitment is low. The onset of physical dormancy is sensitive to humidity during ripening; however, the implications of this mechanism for seed bank dynamics have not been quantified. This study proposes a model that describes how humidity-regulated dormancy onset may control the accumulation of a dormant seed bank, and seed experiments are conducted to calibrate the model for an Australian Fabaceae, Acacia saligna. The model is used to investigate the impact of climate on seed dormancy and to forecast the ecological implications of human-induced climate change. The relationship between relative humidity and dormancy onset was quantified under laboratory conditions by exposing freshly matured non-dormant seeds to constant humidity levels for fixed durations. The model was field-calibrated by measuring the response of seeds exposed to naturally fluctuating humidity. The model was applied to 3-hourly records of humidity spanning the period 1972-2007 in order to estimate both temporal variability in dormancy and spatial variability attributable to climatic differences among populations. Climate change models were used to project future changes in dormancy onset. A sigmoidal relationship exists between dormancy and humidity under both laboratory and field conditions. Seeds ripened under field conditions became dormant following very short exposure to low humidity (<20 %). Prolonged exposure at higher humidity did not increase dormancy significantly. It is predicted that populations growing in a temperate climate produce 33-55 % fewer dormant seeds than those in a Mediterranean climate; however, dormancy in temperate populations is predicted to increase as a result of climate change. Humidity-regulated dormancy onset may explain observed variation in physical dormancy. The model offers a systematic approach to modelling this variation in population studies. Forecast changes in climate have the potential to alter the seed bank dynamics of species with physical dormancy regulated by this mechanism, with implications for their capacity to delay germination and exploit windows for recruitment. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Tozer, Mark G.; Ooi, Mark K. J.
2014-01-01
Background and aims Seed dormancy enhances fitness by preventing seeds from germinating when the probability of seedling survival and recruitment is low. The onset of physical dormancy is sensitive to humidity during ripening; however, the implications of this mechanism for seed bank dynamics have not been quantified. This study proposes a model that describes how humidity-regulated dormancy onset may control the accumulation of a dormant seed bank, and seed experiments are conducted to calibrate the model for an Australian Fabaceae, Acacia saligna. The model is used to investigate the impact of climate on seed dormancy and to forecast the ecological implications of human-induced climate change. Methods The relationship between relative humidity and dormancy onset was quantified under laboratory conditions by exposing freshly matured non-dormant seeds to constant humidity levels for fixed durations. The model was field-calibrated by measuring the response of seeds exposed to naturally fluctuating humidity. The model was applied to 3-hourly records of humidity spanning the period 1972–2007 in order to estimate both temporal variability in dormancy and spatial variability attributable to climatic differences among populations. Climate change models were used to project future changes in dormancy onset. Key Results A sigmoidal relationship exists between dormancy and humidity under both laboratory and field conditions. Seeds ripened under field conditions became dormant following very short exposure to low humidity (<20 %). Prolonged exposure at higher humidity did not increase dormancy significantly. It is predicted that populations growing in a temperate climate produce 33–55 % fewer dormant seeds than those in a Mediterranean climate; however, dormancy in temperate populations is predicted to increase as a result of climate change. Conclusions Humidity-regulated dormancy onset may explain observed variation in physical dormancy. The model offers a systematic approach to modelling this variation in population studies. Forecast changes in climate have the potential to alter the seed bank dynamics of species with physical dormancy regulated by this mechanism, with implications for their capacity to delay germination and exploit windows for recruitment. PMID:25015069
McHenry, John N; Vukovich, Jeffery M; Hsu, N Christina
2015-12-01
This two-part paper reports on the development, implementation, and improvement of a version of the Community Multi-Scale Air Quality (CMAQ) model that assimilates real-time remotely-sensed aerosol optical depth (AOD) information and ground-based PM2.5 monitor data in routine prognostic application. The model is being used by operational air quality forecasters to help guide their daily issuance of state or local-agency-based air quality alerts (e.g. action days, health advisories). Part 1 describes the development and testing of the initial assimilation capability, which was implemented offline in partnership with NASA and the Visibility Improvement State and Tribal Association of the Southeast (VISTAS) Regional Planning Organization (RPO). In the initial effort, MODIS-derived aerosol optical depth (AOD) data are input into a variational data-assimilation scheme using both the traditional Dark Target and relatively new "Deep Blue" retrieval methods. Evaluation of the developmental offline version, reported in Part 1 here, showed sufficient promise to implement the capability within the online, prognostic operational model described in Part 2. In Part 2, the addition of real-time surface PM2.5 monitoring data to improve the assimilation and an initial evaluation of the prognostic modeling system across the continental United States (CONUS) is presented. Air quality forecasts are now routinely used to understand when air pollution may reach unhealthy levels. For the first time, an operational air quality forecast model that includes the assimilation of remotely-sensed aerosol optical depth and ground based PM2.5 observations is being used. The assimilation enables quantifiable improvements in model forecast skill, which improves confidence in the accuracy of the officially-issued forecasts. This helps air quality stakeholders be more effective in taking mitigating actions (reducing power consumption, ride-sharing, etc.) and avoiding exposures that could otherwise result in more serious air quality episodes or more deleterious health effects.
Identifying needs for streamflow forecasting in the Incomati basin, Southern Africa
NASA Astrophysics Data System (ADS)
Sunday, Robert; Werner, Micha; Masih, Ilyas; van der Zaag, Pieter
2013-04-01
Despite being widely recognised as an efficient tool in the operational management of water resources, rainfall and streamflow forecasts are currently not utilised in water management practice in the Incomati Basin in Southern Africa. Although, there have been initiatives for forecasting streamflow in the Sabie and Crocodile sub-basins, the outputs of these have found little use because of scepticism on the accuracy and reliability of the information, or the relevance of the information provided to the needs of the water managers. The process of improving these forecasts is underway, but as yet the actual needs of the forecasts are unclear and scope of the ongoing initiatives remains very limited. In this study questionnaires and focused group interviews were used to establish the need, potential use, benefit and required accuracy of rainfall and streamflow forecasts in the Incomati Basin. Thirty five interviews were conducted with professionals engaged in water sector and detailed discussions were held with water institutions, including the Inkomati Catchment Management Agency (ICMA), Komati Basin Water Authority (KOBWA), South African Weather Service (SAWS), water managers, dam operators, water experts, farmers and other water users in the Basin. Survey results show that about 97% of the respondents receive weather forecasts. In contrast to expectations, only 5% have access to the streamflow forecast. In the weather forecast, the most important variables were considered to be rainfall and temperature at daily and weekly time scales. Moreover, forecasts of global climatic indices such as El Niño or La Niña were neither received nor demanded. There was limited demand and/or awareness of flood and drought forecasts including the information on their linkages with global climatic indices. While the majority of respondents indicate the need and indeed use the weather forecast, the provision, communication and interpretation were in general found to be with too little detail and clarity. In some cases this was attributed to the short time and space allotted in media such as television and newspapers respectively. Major uses of the weather forecast were made in personal planning i.e., travelling (29%) and dressing (23%). The usefulness in water sector was reported for water allocation (23%), farming (11%) and flood monitoring (9%), but was considered as a factor having minor influence on the actual decision making in operational water management mainly due to uncertainty of the weather forecast, difference in the time scale and institutional arrangements. In the incidences where streamflow forecasts were received (5% of the cases), its application in decision making was not carried out due to high uncertainty. Moreover, dam operators indicated weekly streamflow forecast as very important in releasing water for agriculture but this was not the format in which forecasts were available to them. Generally, users affirmed the accuracy and benefits of weather forecasts and had no major concerns on the impacts of wrong forecasts. However, respondents indicated the need to improve the accuracy and accessibility of the forecast. Likewise, water managers expressed the need for both rainfall and flow forecasts but indicated that they face hindrances due to financial and human resource constraints. This shows that there is a need to strengthen water related forecasts and the consequent uses in the basin. This can be done through collaboration among forecasting and water organisations such as the SAWS, Research Institutions and users like ICMA, KOBWA and farmers. Collaboration between the meteorology and water resources sectors is important to establish consistent forecast information. The forecasts themselves should be detailed and user specific to ensure these are indeed used and can answer to the needs of the users.
ERIC Educational Resources Information Center
Swanson, Richard A.
1998-01-01
A research review identified findings about the financial analysis method, forecasting of the financial benefits of human resource development (HRD), and recent financial analysis research: (1) HRD embedded in a performance improvement framework yielded high return on investment; and (2) HRD interventions focused on performance variables forecast…
Fuentes, M V; Sainz-Elipe, S; Nieto, P; Malone, J B; Mas-Coma, S
2005-03-01
The WHO recognises Fasciola hepatica to be an important human health problem. The Andean countries of Peru, Bolivia and Chile are those most severely affected by this distomatosis, though areas of Ecuador, Colombia and Venezuela are also affected. As part of a multidisciplinary project, we present results of use of a Geographical Information Systems (GIS) forecast model to conduct an epidemiological analysis of human and animal fasciolosis in the central part of the Andes mountains. The GIS approach enabled us to develop a spatial and temporal epidemiological model to map the disease in the areas studied and to classify transmission risk into low, moderate and high risk areas so that areas requiring the implementation of control activities can be identified. Current results are available on a local scale for: (1) the northern Bolivian Altiplano, (2) Puno in the Peruvian Altiplano, (3) the Cajamarca and Mantaro Peruvian valleys, and (4) the Ecuadorian provinces of Azuay, Cotopaxi and Imbabura. Analysis of results demonstrated the validity of a forecast model that combines use of climatic data to calculate of forecast indices with remote sensing data, through the classification of Normalized Difference Vegetation Index (NDVI) maps.
Eser, Alexander; Primas, Christian; Reinisch, Sieglinde; Vogelsang, Harald; Novacek, Gottfried; Mould, Diane R; Reinisch, Walter
2018-01-30
Despite a robust exposure-response relationship of infliximab in inflammatory bowel disease (IBD), attempts to adjust dosing to individually predicted serum concentrations of infliximab (SICs) are lacking. Compared with labor-intensive conventional software for pharmacokinetic (PK) modeling (eg, NONMEM) dashboards are easy-to-use programs incorporating complex Bayesian statistics to determine individual pharmacokinetics. We evaluated various infliximab detection assays and the number of samples needed to precisely forecast individual SICs using a Bayesian dashboard. We assessed long-term infliximab retention in patients being dosed concordantly versus discordantly with Bayesian dashboard recommendations. Three hundred eighty-two serum samples from 117 adult IBD patients on infliximab maintenance therapy were analyzed by 3 commercially available assays. Data from each assay was modeled using NONMEM and a Bayesian dashboard. PK parameter precision and residual variability were assessed. Forecast concentrations from both systems were compared with observed concentrations. Infliximab retention was assessed by prediction for dose intensification via Bayesian dashboard versus real-life practice. Forecast precision of SICs varied between detection assays. At least 3 SICs from a reliable assay are needed for an accurate forecast. The Bayesian dashboard performed similarly to NONMEM to predict SICs. Patients dosed concordantly with Bayesian dashboard recommendations had a significantly longer median drug survival than those dosed discordantly (51.5 versus 4.6 months, P < .0001). The Bayesian dashboard helps to assess the diagnostic performance of infliximab detection assays. Three, not single, SICs provide sufficient information for individualized dose adjustment when incorporated into the Bayesian dashboard. Treatment adjusted to forecasted SICs is associated with longer drug retention of infliximab. © 2018, The American College of Clinical Pharmacology.
Hysteresis in simulations of malaria transmission
NASA Astrophysics Data System (ADS)
Yamana, Teresa K.; Qiu, Xin; Eltahir, Elfatih A. B.
2017-10-01
Malaria transmission is a complex system and in many parts of the world is closely related to climate conditions. However, studies on environmental determinants of malaria generally consider only concurrent climate conditions and ignore the historical or initial conditions of the system. Here, we demonstrate the concept of hysteresis in malaria transmission, defined as non-uniqueness of the relationship between malaria prevalence and concurrent climate conditions. We show the dependence of simulated malaria transmission on initial prevalence and the initial level of human immunity in the population. Using realistic time series of environmental variables, we quantify the effect of hysteresis in a modeled population. In a set of numerical experiments using HYDREMATS, a field-tested mechanistic model of malaria transmission, the simulated maximum malaria prevalence depends on both the initial prevalence and the initial level of human immunity in the population. We found the effects of initial conditions to be of comparable magnitude to the effects of interannual variability in environmental conditions in determining malaria prevalence. The memory associated with this hysteresis effect is longer in high transmission settings than in low transmission settings. Our results show that efforts to simulate and forecast malaria transmission must consider the exposure history of a location as well as the concurrent environmental drivers.
HUMAN EXPOSURE ACTIVITY PATTERNS
Human activity/uptake rate data are necessary to estimate potential human exposure and intake dose to environmental pollutants and to refine human exposure models. Personal exposure monitoring studies have demonstrated the critical role that activities play in explaining and pre...
Sensitive Land Use Planning, Malinao, Albay, Philippines
NASA Astrophysics Data System (ADS)
Abante, A. M. R.; Abante, C. G. R.
2018-02-01
This paper reviews the hazard zone as defined in the zoning ordinance of the Local Government of Malinao. The zonification was completed in accordance with the approved Comprehensive Land Use Plan stipulating the allowed use and regulations of zones to control future land development. This paper brings together an examination of human exposure as well as spatial situations and conditions of their houses within the hazard zone playing with flood risks. The purposive selection sample households were based on characteristics of people residing within it, in which the site concurs with the flood forecasted frequent every 5, 25 and 100 years turned to be significant to better understanding ‘risks computing’ were variables retrieved from the intersecting spaces fused to get the complex interrelationship of the sets of flood hazard, vulnerability and exposure of inhabitants and their place of residence weighted against capability of individual family or household to withstand effects of flooding. The Risk Quotient Object and Field Bases Model were tested in specific location in Malinao. The sample households’ individual risk location quotient varies from high to a very high risk distributions ranging from 8 to 125 numerical values. As Malinao stays on to experience flood hazards, changing climate and other natural calamities, the need to understand the six elements of disaster risk computing at household level is becoming crucial in risk reduction meeting the targets and priorities for action as specified in the Sendai Framework.
“Summary of the Emission Inventories compiled for the ...
We present a summary of the emission inventories from the US, Canada, and Mexico developed for the second phase of the Air Quality Model Evaluation International Initiative (AQMEII). Activities in this second phase are focused on the application and evaluation of coupled meteorology-chemistry models over both North America and Europe using common emissions and boundary conditions for all modeling groups for the years of 2006 and 2010. We will compare the emission inventories developed for these two years focusing on the SO2 and NOx reductions over these years and compare with socio-economic data. In addition we will highlight the differences in the inventories for the US and Canada compared with the inventories used in the phase 1 of this project. The National Exposure Research Laboratory (NERL) Atmospheric Modeling and Analysis Division (AMAD) conducts research in support of EPA mission to protect human health and the environment. AMAD research program is engaged in developing and evaluating predictive atmospheric models on all spatial and temporal scales for forecasting the air quality and for assessing changes in air quality and air pollutant exposures, as affected by changes in ecosystem management and regulatory decisions. AMAD is responsible for providing a sound scientific and technical basis for regulatory policies based on air quality models to improve ambient air quality. The models developed by AMAD are being used by EPA, NOAA, and the air pollut
Spatio-Temporal Change Modeling of Lulc: a Semantic Kriging Approach
NASA Astrophysics Data System (ADS)
Bhattacharjee, S.; Ghosh, S. K.
2015-07-01
Spatio-temporal land-use/ land-cover (LULC) change modeling is important to forecast the future LULC distribution, which may facilitate natural resource management, urban planning, etc. The spatio-temporal change in LULC trend often exhibits non-linear behavior, due to various dynamic factors, such as, human intervention (e.g., urbanization), environmental factors, etc. Hence, proper forecasting of LULC distribution should involve the study and trend modeling of historical data. Existing literatures have reported that the meteorological attributes (e.g., NDVI, LST, MSI), are semantically related to the terrain. Being influenced by the terrestrial dynamics, the temporal changes of these attributes depend on the LULC properties. Hence, incorporating meteorological knowledge into the temporal prediction process may help in developing an accurate forecasting model. This work attempts to study the change in inter-annual LULC pattern and the distribution of different meteorological attributes of a region in Kolkata (a metropolitan city in India) during the years 2000-2010 and forecast the future spread of LULC using semantic kriging (SemK) approach. A new variant of time-series SemK is proposed, namely Rev-SemKts to capture the multivariate semantic associations between different attributes. From empirical analysis, it may be observed that the augmentation of semantic knowledge in spatio-temporal modeling of meteorological attributes facilitate more precise forecasting of LULC pattern.
NASA Astrophysics Data System (ADS)
Thompson, R. J.; Cole, D. G.; Wilkinson, P. J.; Shea, M. A.; Smart, D.
1990-11-01
Volume 1: The following subject areas are covered: the magnetosphere environment; forecasting magnetically quiet periods; radiation hazards to human in deep space (a summary with special reference to large solar particle events); solar proton events (review and status); problems of the physics of solar-terrestrial interactions; prediction of solar proton fluxes from x-ray signatures; rhythms in solar activity and the prediction of episodes of large flares; the role of persistence in the 24-hour flare forecast; on the relationship between the observed sunspot number and the number of solar flares; the latitudinal distribution of coronal holes and geomagnetic storms due to coronal holes; and the signatures of flares in the interplanetary medium at 1 AU. Volume 2: The following subject areas were covered: a probability forecast for geomagnetic activity; cost recovery in solar-terrestrial predictions; magnetospheric specification and forecasting models; a geomagnetic forecast and monitoring system for power system operation; some aspects of predicting magnetospheric storms; some similarities in ionospheric disturbance characteristics in equatorial, mid-latitude, and sub-auroral regions; ionospheric support for low-VHF radio transmission; a new approach to prediction of ionospheric storms; a comparison of the total electron content of the ionosphere around L=4 at low sunspot numbers with the IRI model; the French ionospheric radio propagation predictions; behavior of the F2 layer at mid-latitudes; and the design of modern ionosondes.
Towards seasonal Arctic shipping route predictions
NASA Astrophysics Data System (ADS)
Melia, N.; Haines, K.; Hawkins, E.; Day, J. J.
2017-08-01
The continuing decline in Arctic sea-ice will likely lead to increased human activity and opportunities for shipping in the region, suggesting that seasonal predictions of route openings will become ever more important. Here we present results from a set of ‘perfect model’ experiments to assess the predictability characteristics of the opening of Arctic sea routes. We find skilful predictions of the upcoming summer shipping season can be made from as early as January, although typically forecasts show lower skill before a May ‘predictability barrier’. We demonstrate that in forecasts started from January, predictions of route opening date are twice as uncertain as predicting the closing date and that the Arctic shipping season is becoming longer due to climate change, with later closing dates mostly responsible. We find that predictive skill is state dependent with predictions for high or low ice years exhibiting greater skill than medium ice years. Forecasting the fastest open water route through the Arctic is accurate to within 200 km when predicted from July, a six-fold increase in accuracy compared to forecasts initialised from the previous November, which are typically no better than climatology. Finally we find that initialisation of accurate summer sea-ice thickness information is crucial to obtain skilful forecasts, further motivating investment into sea-ice thickness observations, climate models, and assimilation systems.
NASA Astrophysics Data System (ADS)
Kneringer, Philipp; Dietz, Sebastian; Mayr, Georg J.; Zeileis, Achim
2017-04-01
Low-visibility conditions have a large impact on aviation safety and economic efficiency of airports and airlines. To support decision makers, we develop a statistical probabilistic nowcasting tool for the occurrence of capacity-reducing operations related to low visibility. The probabilities of four different low visibility classes are predicted with an ordered logistic regression model based on time series of meteorological point measurements. Potential predictor variables for the statistical models are visibility, humidity, temperature and wind measurements at several measurement sites. A stepwise variable selection method indicates that visibility and humidity measurements are the most important model inputs. The forecasts are tested with a 30 minute forecast interval up to two hours, which is a sufficient time span for tactical planning at Vienna Airport. The ordered logistic regression models outperform persistence and are competitive with human forecasters.
Evolution-informed forecasting of seasonal influenza A (H3N2)
Du, Xiangjun; King, Aaron A.; Woods, Robert J.; Pascual, Mercedes
2018-01-01
Inter-pandemic or seasonal influenza exacts an enormous annual burden both in terms of human health and economic impact. Incidence prediction ahead of season remains a challenge largely because of the virus’ antigenic evolution. We propose here a forecasting approach that incorporates evolutionary change into a mechanistic epidemiological model. The proposed models are simple enough that their parameters can be estimated from retrospective surveillance data. These models link amino-acid sequences of hemagglutinin epitopes with a transmission model for seasonal H3N2 influenza, also informed by H1N1 levels. With a monthly time series of H3N2 incidence in the United States over 10 years, we demonstrate the feasibility of prediction ahead of season and an accurate real-time forecast for the 2016/2017 influenza season. PMID:29070700
Nisbet, Elizabeth K; Zelenski, John M
2011-09-01
Modern lifestyles disconnect people from nature, and this may have adverse consequences for the well-being of both humans and the environment. In two experiments, we found that although outdoor walks in nearby nature made participants much happier than indoor walks did, participants made affective forecasting errors, such that they systematically underestimated nature's hedonic benefit. The pleasant moods experienced on outdoor nature walks facilitated a subjective sense of connection with nature, a construct strongly linked with concern for the environment and environmentally sustainable behavior. To the extent that affective forecasts determine choices, our findings suggest that people fail to maximize their time in nearby nature and thus miss opportunities to increase their happiness and relatedness to nature. Our findings suggest a happy path to sustainability, whereby contact with nature fosters individual happiness and environmentally responsible behavior.
NASA Astrophysics Data System (ADS)
Tadesse, T.; Zaitchik, B. F.; Habib, S.; Funk, C. C.; Senay, G. B.; Dinku, T.; Policelli, F. S.; Block, P.; Baigorria, G. A.; Beyene, S.; Wardlow, B.; Hayes, M. J.
2014-12-01
The development of effective strategies to adapt to changes in the character of droughts and floods in Africa will rely on improved seasonal prediction systems that are robust to an evolving climate baseline and can be integrated into disaster preparedness and response. Many efforts have been made to build models to improve seasonal forecasts in the Greater Horn of Africa region (GHA) using satellite and climate data, but these efforts and models must be improved and translated into future conditions under evolving climate conditions. This has considerable social significance, but is challenged by the nature of climate predictability and the adaptability of coupled natural and human systems facing exposure to climate extremes. To address these issues, work is in progress under a project funded by NASA. The objectives of the project include: 1) Characterize and explain large-scale drivers in the ocean-atmosphere-land system associated with years of extreme flood or drought in the GHA. 2) Evaluate the performance of state-of-the-art seasonal forecast methods for prediction of decision-relevant metrics of hydrologic extremes. 3) Apply seasonal forecast systems to prediction of socially relevant impacts on crops, flood risk, and economic outcomes, and assess the value of these predictions to decision makers. 4) Evaluate the robustness of seasonal prediction systems to evolving climate conditions. The National Drought Mitigation Center (University of Nebraska-Lincoln, USA) is leading this project in collaboration with the USGS, Johns Hopkins University, University of Wisconsin-Madison, the International Research Institute for Climate and Society, NASA, and GHA local experts. The project is also designed to have active engagement of end users in various sectors, university researchers, and extension agents in GHA through workshops and/or webinars. This project is expected improve and implement new and existing climate- and remote sensing-based agricultural, meteorological, and hydrologic drought and flood monitoring products (or indicators) that can enhance the preparedness for extreme climate events and climate change adaptation and mitigation strategies in the GHA. Even though this project is in its first year, the preliminary results and future plans to carry out the objectives will be presented.
Teeguarden, Justin G; Hanson-Drury, Sesha
2013-12-01
Human exposure to the chemical Bisphenol A is almost ubiquitous in surveyed industrialized societies. Structural features similar to estrogen confer the ability of Bisphenol A (BPA) to bind estrogen receptors, giving BPA membership in the group of environmental pollutants called endocrine disruptors. References by scientists, the media, political entities, and non-governmental organizations to many toxicity studies as "low dose" has led to the belief that exposure levels in these studies are similar to humans, implying that BPA is toxic to humans at current exposures. Through systematic, objective comparison of our current, and a previous compilation of the "low-dose" literature to multiple estimates of human external and internal exposure levels, we found that the "low-dose" moniker describes exposures covering 8-12 orders of magnitude, the majority (91-99% of exposures) being greater than the upper bound of human exposure in the general infant, child and adult U.S. Population. "low dose" is therefore a descriptor without specific meaning regarding human exposure. Where human exposure data are available, for BPA and other environmental chemicals, reference to toxicity study exposures by direct comparison to human exposure would be more informative, more objective, and less susceptible to misunderstanding. Copyright © 2013 Elsevier Ltd. All rights reserved.
Toward Global Real Time Hydrologic Modeling - An "Open" View From the Trenches
NASA Astrophysics Data System (ADS)
Nelson, J.
2015-12-01
Big Data has become a popular term to describe the exponential growth of data and related cyber infrastructure to process it so that better analysis can be performed and lead to improved decision-making. How are we doing in the hydrologic sciences? As part of a significant collaborative effort that brought together scientists from public, private, and academic organizations a new transformative hydrologic forecasting modeling infrastructure has been developed. How was it possible to go from deterministic hydrologic forecasts largely driven through manual interactions at 3600 stations to automated 15-day ensemble forecasts at 2.67 million stations? Earth observations of precipitation, temperature, moisture, and other atmospheric and land surface conditions form the foundation of global hydrologic forecasts, but this project demonstrates a critical component to harness these resources can be summed up in one word: OPEN. Whether it is open data sources, open software solutions with open standards, or just being open to collaborations and building teams across institutions, disciplines, and international boundaries, time and time again through my involvement in the development of a high-resolution real time global hydrologic forecasting model I have discovered that in every aspect the sum has always been greater than the parts. While much has been accomplished, much more remains to be done, but the most important lesson learned has been to the degree that we can remain open and work together, the greater our ability will be to use big data hydrologic modeling resources to solve the world's most vexing water related challenges. This presentation will demonstrate a transformational global real time hydrologic forecasting application based on downscaled ECMWF ensemble forecasts, RAPID routing, and Tethys Platform for cloud computing and visualization with discussions of the human and cyber infrastructure connections that make it successful and needs moving forward.
USDA-ARS?s Scientific Manuscript database
This 9th Nestle Nutrition Symposium on “Nutrition and the Biology of Human Ageing” is presented at a time of unprecedented demographic change worldwide. The UN population division forecasts that the number of people living over age 65 will rise to almost 1 billion (12% percent of the world’s populat...
Fischer, Florian; Kraemer, Alexander
2016-02-05
Evidence of the adverse health effects attributable to second-hand smoke (SHS) exposure is available. This study aims to quantify the impact of SHS exposure on ischaemic heart diseases (IHD), chronic obstructive pulmonary diseases (COPD), and stroke in Germany. Therefore, this study estimated and forecasted the morbidity for the three outcomes in the German population. Furthermore, a health impact assessment was performed using DYNAMO-HIA, which is a generic software tool applying a Markov model. Overall 687,254 IHD cases, 231,973 COPD cases, and 288,015 stroke cases were estimated to be attributable to SHS exposure in Germany for 2014. Under the assumption that the population prevalence of these diseases and the prevalence of SHS exposure remain constant, the total number of cases will increase due to demographic aging. Assuming a total eradication of SHS exposure beginning in 2014 leads to an estimated reduction of 50% in cases, compared to the reference scenario in 2040 for all three diseases. The results highlight the relevance of SHS exposure because it affects several chronic disease conditions and has a major impact on the population's health. Therefore, public health campaigns to protect non-smokers are urgently needed.
a system approach to the long term forecasting of the climat data in baikal region
NASA Astrophysics Data System (ADS)
Abasov, N.; Berezhnykh, T.
2003-04-01
The Angara river running from Baikal with a cascade of hydropower plants built on it plays a peculiar role in economy of the region. With view of high variability of water inflow into the rivers and lakes (long-term low water periods and catastrophic floods) that is due to climatic peculiarities of the water resource formation, a long-term forecasting is developed and applied for risk decreasing at hydropower plants. Methodology and methods of long-term forecasting of natural-climatic processes employs some ideas of the research schools by Academician I.P.Druzhinin and Prof. A.P.Reznikhov and consists in detailed investigation of cause-effect relations, finding out physical analogs and their application to formalized methods of long-term forecasting. They are divided into qualitative (background method; method of analogs based on solar activity), probabilistic and approximative methods (analog-similarity relations; discrete-continuous model). These forecasting methods have been implemented in the form of analytical aids of the information-forecasting software "GIPSAR" that provides for some elements of artificial intelligence. Background forecasts of the runoff of the Ob, the Yenisei, the Angara Rivers in the south of Siberia are based on space-time regularities that were revealed on taking account of the phase shifts in occurrence of secular maxima and minima on integral-difference curves of many-year hydrological processes in objects compared. Solar activity plays an essential role in investigations of global variations of climatic processes. Its consideration in the method of superimposed epochs has allowed a conclusion to be made on the higher probability of the low-water period in the actual inflow to Lake Baikal that takes place on the increasing branch of solar activity of its 11-year cycle. The higher probability of a high-water period is observed on the decreasing branch of solar activity from the 2nd to the 5th year after its maximum. Probabilistic method of forecasting (with a year in advance) is based on the property of alternation of series of years with increase and decrease in the observed indicators (characteristic indices) of natural processes. Most of the series (98.4-99.6%) are represented by series of one to three years. The problem of forecasting is divided into two parts: 1) qualitative forecast of the probability that the started series will either continue or be replaced by a new series during the next year that is based on the frequency characteristics of series of years with increase or decrease of the forecasted sequence); 2) quantitative estimate of the forecasted value in the form of a curve of conditional frequencies is made on the base of intra-sequence interrelations among hydrometeorological elements by their differentiation with respect to series of years of increase or decrease, by construction of particular curves of conditional frequencies of the runoff for each expected variant of series development and by subsequent construction a generalized curve. Approximative learning methods form forecasted trajectories of the studied process indices for a long-term perspective. The method of analog-similarity relations is based on the fact that long periods of observations reveal some similarities in the character of variability of indices for some fragments of the sequence x (t) by definite criteria. The idea of the method is to estimate similarity of such fragments of the sequence that have been called the analogs. The method applies multistage optimization of both external parameters (e.g. the number of iterations of the sliding averaging needed to decompose the sequence into two components: the smoothed one with isolated periodic oscillations and the residual or random one). The method is applicable to current terms of forecasts and ending with the double solar cycle. Using a special procedure of integration, it separates terms with the best results for the given optimization subsample. Several optimal vectors of parameters obtained are tested on the examination (verifying) subsample. If the procedure is successful, the forecast is immediately made by integration of several best solutions. Peculiarities of forecasting extreme processes. Methods of long-term forecasting allow the sufficiently reliable forecasts to be made within the interval of xmin+Δ_1, xmax - Δ_2 (i.e. in the interval of medium values of indices). Meanwhile, in the intervals close to extreme ones, reliability of forecasts is substantially lower. While for medium values the statistics of the100-year sequence gives acceptable results owing to a sufficiently large number of revealed analogs that correspond to prognostic samples, for extreme values the situation is quite different, first of all by virtue of poverty of statistical data. Decreasing the values of Δ_1,Δ_2: Δ_1,Δ_2 rightarrow 0 (by including them into optimization parameters of the considered forecasting methods) could be one of the ways to improve reliability of forecasts. Partially, such an approach has been realized in the method of analog-similarity relations, giving the possibility to form a range of possible forecasted trajectories in two variants - from the minimum possible trajectory to the maximum possible one. Reliability of long-term forecasts. Both the methodology and the methods considered above have been realized as the information-forecasting system "GIPSAR". The system includes some tools implementing several methods of forecasting, analysis of initial and forecasted information, a developed database, a set of tools for verification of algorithms, additional information on the algorithms of statistical processing of sequences (sliding averaging, integral-difference curves, etc.), aids to organize input of initial information (in its various forms) as well as aids to draw up output prognostic documents. Risk management. The normal functioning of the Angara cascade is periodically interrupted by risks of two types that take place in the Baikal, the Bratsk and Ust-Ilimsk reservoirs: long low-water periods and sudden periods of extremely high water levels. For example, low-water periods, observed in the reservoirs of the Angara cascade can be classified under four risk categories : 1 - acceptable (negligible reduction of electric power generation by hydropower plants; certain difficulty in meeting environmental and navigation requirements); 2 - significant (substantial reduction of electric power generation by hydropower plants; certain restriction on water releases for navigation; violation of environmental requirements in some years); 3 - emergency (big losses in electric power generation; limited electricity supply to large consumers; significant restriction of water releases for navigation; threat of exposure of drinkable water intake works; violation of environmental requirements for a number of years); 4 - catastrophic (energy crisis; social crisis exposure of drinkable water intake works; termination of navigation; environmental catastrophe). Management of energy systems consists in operative, many-year regulation and perspective planning and has to take into account the analysis of operative data (water reserves in reservoirs), long-term statistics and relations among natural processes and also forecasts - short-term (for a day, week, decade), long-term and/or super-long-term (from a month to several decades). Such natural processes as water inflow to reservoirs, air temperatures during heating periods depend in turn on external factors: prevailing types of atmospheric circulation, intensity of the 11- and 22-year cycles of solar activity, volcanic activity, interaction between the ocean and atmosphere, etc. Until recently despite the formed scientific schools on long-term forecasting (I.P.Druzhinin, A.P.Reznikhov) the energy system management has been based on specially drawn dispatching schedules and long-term hydrometeorological forecasts only without attraction of perspective forecasted indices. Insertion of a parallel block of forecast (based on the analysis of data on natural processes and special methods of forecasting) into the scheme can largely smooth unfavorable consequences from the impact of natural processes on sustainable development of energy systems and especially on its safe operation. However, the requirements to reliability and accuracy of long-term forecasts significantly increase. The considered approach to long term forecasting can be used for prediction: mean winter and summer air temperatures, droughts and wood fires.
Baik, Inkyung
2018-06-01
There are few studies that forecast the future prevalence of obesity based on the predicted prevalence model including contributing factors. The present study aimed to identify factors associated with obesity and construct forecasting models including significant contributing factors to estimate the 2020 and 2030 prevalence of obesity and abdominal obesity. Panel data from the Korea National Health and Nutrition Examination Survey and national statistics from the Korean Statistical Information Service were used for the analysis. The study subjects were 17,685 male and 24,899 female adults aged 19 years or older. The outcome variables were the prevalence of obesity (body mass index ≥ 25 kg/m 2 ) and abdominal obesity (waist circumference ≥ 90 cm for men and ≥ 85 cm for women). Stepwise logistic regression analysis was used to select significant variables from potential exposures. The survey year, age, marital status, job status, income status, smoking, alcohol consumption, sleep duration, psychological factors, dietary intake, and fertility rate were found to contribute to the prevalence of obesity and abdominal obesity. Based on the forecasting models including these variables, the 2020 and 2030 estimates for obesity prevalence were 47% and 62% for men and 32% and 37% for women, respectively. The present study suggested an increased prevalence of obesity and abdominal obesity in 2020 and 2030. Lifestyle factors were found to be significantly associated with the increasing trend in obesity prevalence and, therefore, they may require modification to prevent the rising trend.
NASA Astrophysics Data System (ADS)
Franz, K. J.; Bowman, A. L.; Hogue, T. S.; Kim, J.; Spies, R.
2011-12-01
In the face of a changing climate, growing populations, and increased human habitation in hydrologically risky locations, both short- and long-range planners increasingly require robust and reliable streamflow forecast information. Current operational forecasting utilizes watershed-scale, conceptual models driven by ground-based (commonly point-scale) observations of precipitation and temperature and climatological potential evapotranspiration (PET) estimates. The PET values are derived from historic pan evaporation observations and remain static from year-to-year. The need for regional dynamic PET values is vital for improved operational forecasting. With the advent of satellite remote sensing and the adoption of a more flexible operational forecast system by the National Weather Service, incorporation of advanced data products is now more feasible than in years past. In this study, we will test a previously developed satellite-derived PET product (UCLA MODIS-PET) in the National Weather Service forecast models and compare the model results to current methods. The UCLA MODIS-PET method is based on the Priestley-Taylor formulation, is driven with MODIS satellite products, and produces a daily, 250m PET estimate. The focus area is eight headwater basins in the upper Midwest U.S. There is a need to develop improved forecasting methods for this region that are able to account for climatic and landscape changes more readily and effectively than current methods. This region is highly flood prone yet sensitive to prolonged dry periods in late summer and early fall, and is characterized by a highly managed landscape, which has drastically altered the natural hydrologic cycle. Our goal is to improve model simulations, and thereby, the initial conditions prior to the start of a forecast through the use of PET values that better reflect actual watershed conditions. The forecast models are being tested in both distributed and lumped mode.
The Norwegian forecasting and warning service for rainfall- and snowmelt-induced landslides
NASA Astrophysics Data System (ADS)
Krøgli, Ingeborg K.; Devoli, Graziella; Colleuille, Hervé; Boje, Søren; Sund, Monica; Engen, Inger Karin
2018-05-01
The Norwegian Water Resources and Energy Directorate (NVE) have run a national flood forecasting and warning service since 1989. In 2009, the directorate was given the responsibility of also initiating a national forecasting service for rainfall-induced landslides. Both services are part of a political effort to improve flood and landslide risk prevention. The Landslide Forecasting and Warning Service was officially launched in 2013 and is developed as a joint initiative across public agencies between NVE, the Norwegian Meteorological Institute (MET), the Norwegian Public Road Administration (NPRA) and the Norwegian Rail Administration (Bane NOR). The main goal of the service is to reduce economic and human losses caused by landslides. The service performs daily a national landslide hazard assessment describing the expected awareness level at a regional level (i.e. for a county and/or group of municipalities). The service is operative 7 days a week throughout the year. Assessments and updates are published at the warning portal http://www.varsom.no/ at least twice a day, for the three coming days. The service delivers continuous updates on the current situation and future development to national and regional stakeholders and to the general public. The service is run in close cooperation with the flood forecasting service. Both services are based on the five pillars: automatic hydrological and meteorological stations, landslide and flood historical database, hydro-meteorological forecasting models, thresholds or return periods, and a trained group of forecasters. The main components of the service are herein described. A recent evaluation, conducted on the 4 years of operation, shows a rate of over 95 % correct daily assessments. In addition positive feedbacks have been received from users through a questionnaire. The capability of the service to forecast landslides by following the hydro-meteorological conditions is illustrated by an example from autumn 2017. The case shows how the landslide service has developed into a well-functioning system providing useful information, effectively and on time.
Forecasting the prognosis of choroidal melanoma with an artificial neural network.
Kaiserman, Igor; Rosner, Mordechai; Pe'er, Jacob
2005-09-01
To develop an artificial neural network (ANN) that will forecast the 5-year mortality from choroidal melanoma. Retrospective, comparative, observational cohort study. One hundred fifty-three eyes of 153 consecutive patients with choroidal melanoma (age, 58.4+/-14.6 years) who were treated with ruthenium 106 brachytherapy between 1988 and 1998 at the Department of Ophthalmology, Hadassah University Hospital, Jerusalem, Israel. Patients were observed clinically and ultrasonographically (A- and B-mode standardized ultrasonography). Metastatic screening included liver function tests and liver imaging. Backpropagation ANNs composed of 3 or 4 layers of neurons with various types of transfer functions and training protocols were assessed for their ability to predict the 5-year mortality. The ANNs were trained on 77 randomly selected patients and tested on a different set of 76 patients. Artificial neural networks were compared based on their sensitivity, specificity, forecasting accuracy, area under the receiver operating curves, and likelihood ratios (LRs). The best ANN was compared with the results of logistic regression and the performance of an ocular oncologist. The ability of the ANNs to forecast the 5-year mortality from choroidal melanoma. Thirty-one patients died during the follow-up period of metastatic choroidal melanoma. The best ANN (one hidden layer of 16 neurons) had 84% forecasting accuracy and an LR of 31.5. The number of hidden neurons significantly influenced the ANNs' performance (P<0.001). The performance of the ANNs was not significantly influenced by the training protocol, the number of hidden layers, or the type of transfer function. In comparison, logistic regression reached 86% forecasting accuracy, with a very low LR (0.8), whereas the human expert forecasting ability was <70% (LR, 1.85). Artificial neural networks can be used for forecasting the prognosis of choroidal melanoma and may support decision-making in treating this malignancy.
Sea Ice Outlook for September 2015 June Report - NASA Global Modeling and Assimilation Office
NASA Technical Reports Server (NTRS)
Cullather, Richard I.; Keppenne, Christian L.; Marshak, Jelena; Pawson, Steven; Schubert, Siegfried D.; Suarez, Max J.; Vernieres, Guillaume; Zhao, Bin
2015-01-01
The recent decline in perennial sea ice cover in Arctic Ocean is a topic of enormous scientific interest and has relevance to a broad variety of scientific disciplines and human endeavors including biological and physical oceanography, atmospheric circulation, high latitude ecology, the sustainability of indigenous communities, commerce, and resource exploration. A credible seasonal prediction of sea ice extent would be of substantial use to many of the stakeholders in these fields and may also reveal details on the physical processes that result in the current trends in the ice cover. Forecasts are challenging due in part to limitations in the polar observing network, the large variability in the climate system, and an incomplete knowledge of the significant processes. Nevertheless it is a useful to understand the current capabilities of high latitude seasonal forecasting and identify areas where such forecasts may be improved. Since 2008 the Arctic Research Consortium of the United States (ARCUS) has conducted a seasonal forecasting contest in which the average Arctic sea ice extent for the month of September (the month of the annual extent minimum) is predicted from available forecasts in early June, July, and August. The competition is known as the Sea Ice Outlook (SIO) but recently came under the auspices of the Sea Ice Prediction Network (SIPN), and multi-agency funded project to evaluate the SIO. The forecasts are submitted based on modeling, statistical, and heuristic methods. Forecasts of Arctic sea ice extent from the GMAO are derived from seasonal prediction system of the NASA Goddard Earth Observing System model, version 5 (GEOS 5) coupled atmosphere and ocean general circulation model (AOGCM). The projections are made in order to understand the relative skill of the forecasting system and to determine the effects of future improvements to the system. This years prediction is for a September average Arctic ice extent of 5.030.41 million km2.
Forecasting skills of the ensemble hydro-meteorological system for the Po river floods
NASA Astrophysics Data System (ADS)
Ricciardi, Giuseppe; Montani, Andrea; Paccagnella, Tiziana; Pecora, Silvano; Tonelli, Fabrizio
2013-04-01
The Po basin is the largest and most economically important river-basin in Italy. Extreme hydrological events, including floods, flash floods and droughts, are expected to become more severe in the next future due to climate change, and related ground effects are linked both with environmental and social resilience. A Warning Operational Center (WOC) for hydrological event management was created in Emilia Romagna region. In the last years, the WOC faced challenges in legislation, organization, technology and economics, achieving improvements in forecasting skill and information dissemination. Since 2005, an operational forecasting and modelling system for flood modelling and forecasting has been implemented, aimed at supporting and coordinating flood control and emergency management on the whole Po basin. This system, referred to as FEWSPo, has also taken care of environmental aspects of flood forecast. The FEWSPo system has reached a very high level of complexity, due to the combination of three different hydrological-hydraulic chains (HEC-HMS/RAS - MIKE11 NAM/HD, Topkapi/Sobek), with several meteorological inputs (forecasted - COSMOI2, COSMOI7, COSMO-LEPS among others - and observed). In this hydrological and meteorological ensemble the management of the relative predictive uncertainties, which have to be established and communicated to decision makers, is a debated scientific and social challenge. Real time activities face professional, modelling and technological aspects but are also strongly interrelated with organization and human aspects. The authors will report a case study using the operational flood forecast hydro-meteorological ensemble, provided by the MIKE11 chain fed by COSMO_LEPS EQPF. The basic aim of the proposed approach is to analyse limits and opportunities of the long term forecast (with a lead time ranging from 3 to 5 days), for the implementation of low cost actions, also looking for a well informed decision making and the improvement of flood preparedness and crisis management for basins greater than 1.000 km2.
ANALYSIS OF HUMAN ACTIVITY DATA FOR USE IN MODELING ENVIRONMENTAL EXPOSURES
Human activity data are a critical part of exposure models being developed by the US EPA's National Exposure Research Laboratory (NERL). An analysis of human activity data within NERL's Consolidated Human Activity Database (CHAD) was performed in two areas relevant to exposure ...
Calder, Ryan S D; Schartup, Amina T; Li, Miling; Valberg, Amelia P; Balcom, Prentiss H; Sunderland, Elsie M
2016-12-06
Developing Canadian hydroelectric resources is a key component of North American plans for meeting future energy demands. Microbial production of the bioaccumulative neurotoxin methylmercury (MeHg) is stimulated in newly flooded soils by degradation of labile organic carbon and associated changes in geochemical conditions. We find all 22 Canadian hydroelectric facilities being considered for near-term development are located within 100 km of indigenous communities. For a facility in Labrador, Canada (Muskrat Falls) with planned completion in 2017, we probabilistically modeled peak MeHg enrichment relative to measured baseline conditions in the river to be impounded, downstream estuary, locally harvested fish, birds and seals, and three Inuit communities. Results show a projected 10-fold increase in riverine MeHg levels and a 2.6-fold increase in estuarine surface waters. MeHg concentrations in locally caught species increase 1.3 to 10-fold depending on time spent foraging in different environments. Mean Inuit MeHg exposure is forecasted to double following flooding and over half of the women of childbearing age and young children in the most northern community are projected to exceed the U.S. EPA's reference dose. Equal or greater aqueous MeHg concentrations relative to Muskrat Falls are forecasted for 11 sites across Canada, suggesting the need for mitigation measures prior to flooding.
NASA Astrophysics Data System (ADS)
Huang, K.
2017-12-01
Over the next decades, climate change is projected to increase the intensity and frequency of extreme heat events (EHEs). The severity and periodicity of these hazards are likely to be further compounded by stronger urban heat island (UHI) effects as the world continues to urbanize. However, there is little known about how greenhouse gases (GHG) induced changes in EHE will interact with UHI, and what this will mean for the exposure of urban populations to high temperature. This work aims to fill this knowledge gap by combining a mesoscale meteorological model (Weather Research Forecasting, WRF) with a global urban expansion forecast, to generate spatially explicit projections of compound urban temperature extremes through 2050. These global projections include all the urban areas in developing world. The respective contributions from GHG-induced climate change, the UHI effect, and their interaction vary across different types of urban areas. The resulting compound heat extremes will be more intense and frequent in emerging Asian and African mega urban regions, located in tropical/subtropical climates, due to their unprecedented sizes and the significantly reduced evaporation. Previous studies neglecting the interaction between global climate change and regional UHI effect have underestimated exposure to heat extremes in urban areas.
Developing an online tool for identifying at-risk populations to wildfire smoke hazards.
Vaidyanathan, Ambarish; Yip, Fuyuen; Garbe, Paul
2018-04-01
Wildfire episodes pose a significant public health threat in the United States. Adverse health impacts associated with wildfires occur near the burn area as well as in places far downwind due to wildfire smoke exposures. Health effects associated with exposure to particulate matter arising from wildfires can range from mild eye and respiratory tract irritation to more serious outcomes such as asthma exacerbation, bronchitis, and decreased lung function. Real-time operational forecasts of wildfire smoke concentrations are available but they are not readily integrated with information on vulnerable populations necessary to identify at-risk communities during wildfire smoke episodes. Efforts are currently underway at the Centers for Disease Control and Prevention (CDC) to develop an online tool that utilizes short-term predictions and forecasts of smoke concentrations and integrates them with measures of population-level vulnerability for identifying at-risk populations to wildfire smoke hazards. The tool will be operationalized on a national scale, seeking input and assistance from several academic, federal, state, local, Tribal, and Territorial partners. The final product will then be incorporated into CDC's National Environmental Public Health Tracking Network (http://ephtracking.cdc.gov), providing users with access to a suite of mapping and display functionalities. A real-time vulnerability assessment tool incorporating standardized health and exposure datasets, and prevention guidelines related to wildfire smoke hazards is currently unavailable for public health practitioners and emergency responders. This tool could strengthen existing situational awareness competencies, and expedite future response and recovery efforts during wildfire episodes. Published by Elsevier B.V.
Human health risk assessment related to contaminated land: state of the art.
Swartjes, F A
2015-08-01
Exposure of humans to contaminants from contaminated land may result in many types of health damage ranging from relatively innocent symptoms such as skin eruption or nausea, on up to cancer or even death. Human health protection is generally considered as a major protection target. State-of-the-art possibilities and limitations of human health risk assessment tools are described in this paper. Human health risk assessment includes two different activities, i.e. the exposure assessment and the hazard assessment. The combination of these is called the risk characterization, which results in an appraisal of the contaminated land. Exposure assessment covers a smart combination of calculations, using exposure models, and measurements in contact media and body liquids and tissue (biomonitoring). Regarding the time frame represented by exposure estimates, biomonitoring generally relates to exposure history, measurements in contact media to actual exposures, while exposure calculations enable a focus on exposure in future situations. The hazard assessment, which is different for contaminants with or without a threshold for effects, results in a critical exposure value. Good human health risk assessment practice accounts for tiered approaches and multiple lines of evidence. Specific attention is given here to phenomena such as the time factor in human health risk assessment, suitability for the local situation, background exposure, combined exposure and harmonization of human health risk assessment tools.
Hesterberg, T W; Hart, G A
1994-12-01
In a recent rat inhalation study, 2 years of exposure to high concentrations of fiberglass (FG) resulted in no treatment-related fibrosis or thoracic tumors. To determine the relevancy of this study for human risk assessment, it is important to compare the rat experimental exposure levels with those of humans. Data on human exposures were taken from several studies and included FG manufacturing, installation and removal, and ambient air. FG levels in the rat aerosol were 200,000-fold higher than indoor air, > 2000-fold higher than during FG insulation manufacturing, and > 1000-fold higher than FG batt installation. The rat aerosol was 30-fold more concentrated than the highest human exposure (blowing installation of unbound FG). Rat FG lung burden also vastly exceeded that of FG workers, which was not significantly elevated above nonworker levels. The amount of fibers/mg dry lung for the rat after lifetime exposure was > 4000-fold greater than for the FG worker, average exposure 11 years. Aerosol and lung fiber dimensions in the rat study were comparable to those of human exposures. From these comparisons, it can be concluded that the exposure level in the rat inhalation study was sufficiently, if not excessively, high in comparison to human exposures. Increasing the experimental exposure in the rat studies would not serve to mirror human environmental or occupational exposures.
NASA Astrophysics Data System (ADS)
Solomon, A.; Cox, C. J.; Hughes, M.; Intrieri, J. M.; Persson, O. P. G.
2015-12-01
The dramatic decrease of Arctic sea-ice has led to a new Arctic sea-ice paradigm and to increased commercial activity in the Arctic Ocean. NOAA's mission to provide accurate and timely sea-ice forecasts, as explicitly outlined in the National Ocean Policy and the U.S. National Strategy for the Arctic Region, needs significant improvement across a range of time scales to improve safety for human activity. Unfortunately, the sea-ice evolution in the new Arctic involves the interaction of numerous physical processes in the atmosphere, ice, and ocean, some of which are not yet understood. These include atmospheric forcing of sea-ice movement through stress and stress deformation; atmospheric forcing of sea-ice melt and formation through energy fluxes; and ocean forcing of the atmosphere through new regions of seasonal heat release. Many of these interactions involve emerging complex processes that first need to be understood and then incorporated into forecast models in order to realize the goal of useful sea-ice forecasting. The underlying hypothesis for this study is that errors in simulations of "fast" atmospheric processes significantly impact the forecast of seasonal sea-ice retreat in summer and its advance in autumn in the marginal ice zone (MIZ). We therefore focus on short-term (0-20 day) ice-floe movement, the freeze-up and melt-back processes in the MIZ, and the role of storms in modulating stress and heat fluxes. This study uses a coupled ocean-atmosphere-seaice forecast model as a testbed to investigate; whether ocean-sea ice-atmosphere coupling improves forecasts on subseasonal time scales, where systematic biases develop due to inadequate parameterizations (focusing on mixed-phase clouds and surface fluxes), how increased atmospheric resolution of synoptic features improves the forecasts, and how initialization of sea ice area and thickness and snow depth impacts the skill of the forecasts. Simulations are validated with measurements at pan-Arctic land sites, satellite data, and recent ocean field campaigns.
NASA Astrophysics Data System (ADS)
Panthi, J., Sr.
2014-12-01
Climate Change is becoming one of the major threats to the fragile Himalayan ecosystem. It is affecting all sectors mainly fresh water, agriculture, forest, biodiversity and species. The subsistence agriculture system of Nepal is mainly rain-fed; therefore, climate change and climate extremes do have direct impacts on it. Weather extremes like droughts, floods and landslides long-lasting fog, hot and cold waves are affecting the agriculture sectors of Nepal. As human-induced climate change has already showing its impacts and it is going to be there for a long time to come, it is paramount importance to move towards the adaptation. Early warning system is an effective way for reducing the impacts of disasters. Forecasting of weather parameters (temperature, precipitation, and wind) helps farmers for their preparedness activities. With consultation with farmers and other relevant institutions, a research project was carried out, for the first time in Nepal, to identify the forecast information need to farmers and their dissemination mechanism. Community consultation workshops, key informant survey, and field observations were the techniques used for this research. Two ecological locations: Bageshwori VDC in Banke (plain) and Dhaibung VDC in Rasuwa (mountain) were taken as the pilot sites for this assessment. People in both the districts are dependent highly on agriculture and the weather extremes like hailstone, untimely rainfall; droughts are affecting their agriculture practices. They do not have confidence in the weather forecast information disseminated by the government of Nepal currently being done because it is a general forecast not done for a smaller domain and the forecast is valid only for 24 hours. The weather forecast need to the farmers in both the sites are: rainfall (intensity, duration and time), drought, and hailstone but in Banke, people wished to have the information of heat and cold waves too as they are affecting their wheat and tomato crops respectively the most. The mechanism of dissemination of the forecast information has been identified and agreed as local radio/FM, mobile telephoning to community leader and displaying and daily updating the forecast information in community hoarding boards.
Accurately quantifying human exposures and doses of various populations to environmental pollutants is critical for the Agency to assess and manage human health risks. For example, the Food Quality Protection Act of 1996 (FQPA) requires EPA to consider aggregate human exposure ...
40 CFR 159.170 - Human epidemiological and exposure studies.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Human epidemiological and exposure... Information § 159.170 Human epidemiological and exposure studies. Information must be submitted which concerns... that a correlation may exist between exposure to a pesticide and observed adverse effects in humans...
40 CFR 159.170 - Human epidemiological and exposure studies.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Human epidemiological and exposure... Information § 159.170 Human epidemiological and exposure studies. Information must be submitted which concerns... that a correlation may exist between exposure to a pesticide and observed adverse effects in humans...
40 CFR 159.170 - Human epidemiological and exposure studies.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Human epidemiological and exposure... Information § 159.170 Human epidemiological and exposure studies. Information must be submitted which concerns... that a correlation may exist between exposure to a pesticide and observed adverse effects in humans...
40 CFR 159.170 - Human epidemiological and exposure studies.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Human epidemiological and exposure... Information § 159.170 Human epidemiological and exposure studies. Information must be submitted which concerns... that a correlation may exist between exposure to a pesticide and observed adverse effects in humans...
Challenges for operational forecasting and early warning of rainfall induced landslides
NASA Astrophysics Data System (ADS)
Guzzetti, Fausto
2017-04-01
In many areas of the world, landslides occur every year, claiming lives and producing severe economic and environmental damage. Many of the landslides with human or economic consequences are the result of intense or prolonged rainfall. For this reason, in many areas the timely forecast of rainfall-induced landslides is of both scientific interest and social relevance. In the recent years, there has been a mounting interest and an increasing demand for operational landslide forecasting, and for associated landslide early warning systems. Despite the relevance of the problem, and the increasing interest and demand, only a few systems have been designed, and are currently operated. Inspection of the - limited - literature on operational landslide forecasting, and on the associated early warning systems, reveals that common criteria and standards for the design, the implementation, the operation, and the evaluation of the performances of the systems, are lacking. This limits the possibility to compare and to evaluate the systems critically, to identify their inherent strengths and weaknesses, and to improve the performance of the systems. Lack of common criteria and of established standards can also limit the credibility of the systems, and consequently their usefulness and potential practical impact. Landslides are very diversified phenomena, and the information and the modelling tools used to attempt landslide forecasting vary largely, depending on the type and size of the landslides, the extent of the geographical area considered, the timeframe of the forecasts, and the scope of the predictions. Consequently, systems for landslide forecasting and early warning can be designed and implemented at several different geographical scales, from the local (site or slope specific) to the regional, or even national scale. The talk focuses on regional to national scale landslide forecasting systems, and specifically on operational systems based on empirical rainfall threshold models. Building on the experience gained in designing, implementing, and operating national and regional landslide forecasting systems in Italy, and on a preliminary review of the existing literature on regional landslide early warning systems, the talk discusses concepts, limitations and challenges inherent to the design of reliable forecasting and early warning systems for rainfall-triggered landslides, the evaluation of the performances of the systems, and on problems related to the use of the forecasts and the issuing of landslide warnings. Several of the typical elements of an operational landslide forecasting system are considered, including: (i) the rainfall and landslide information used to establish the threshold models, (ii) the methods and tools used to define the empirical rainfall thresholds, and their associated uncertainty, (iii) the quality (e.g., the temporal and spatial resolution) of the rainfall information used for operational forecasting, including rain gauge and radar measurements, satellite estimates, and quantitative weather forecasts, (iv) the ancillary information used to prepare the forecasts, including e.g., the terrain subdivisions and the landslide susceptibility zonations, (v) the criteria used to transform the forecasts into landslide warnings and the methods used to communicate the warnings, and (vi) the criteria and strategies adopted to evaluate the performances of the systems, and to define minimum or optimal performance levels.
2014-01-01
Background Disease risk maps are important tools that help ascertain the likelihood of exposure to specific infectious agents. Understanding how climate change may affect the suitability of habitats for ticks will improve the accuracy of risk maps of tick-borne pathogen transmission in humans and domestic animal populations. Lyme disease (LD) is the most prevalent arthropod borne disease in the US and Europe. The bacterium Borrelia burgdorferi causes LD and it is transmitted to humans and other mammalian hosts through the bite of infected Ixodes ticks. LD risk maps in the transboundary region between the U.S. and Mexico are lacking. Moreover, none of the published studies that evaluated the effect of climate change in the spatial and temporal distribution of I. scapularis have focused on this region. Methods The area of study included Texas and a portion of northeast Mexico. This area is referred herein as the Texas-Mexico transboundary region. Tick samples were obtained from various vertebrate hosts in the region under study. Ticks identified as I. scapularis were processed to obtain DNA and to determine if they were infected with B. burgdorferi using PCR. A maximum entropy approach (MAXENT) was used to forecast the present and future (2050) distribution of B. burgdorferi-infected I. scapularis in the Texas-Mexico transboundary region by correlating geographic data with climatic variables. Results Of the 1235 tick samples collected, 109 were identified as I. scapularis. Infection with B. burgdorferi was detected in 45% of the I. scapularis ticks collected. The model presented here indicates a wide distribution for I. scapularis, with higher probability of occurrence along the Gulf of Mexico coast. Results of the modeling approach applied predict that habitat suitable for the distribution of I. scapularis in the Texas-Mexico transboundary region will remain relatively stable until 2050. Conclusions The Texas-Mexico transboundary region appears to be part of a continuum in the pathogenic landscape of LD. Forecasting based on climate trends provides a tool to adapt strategies in the near future to mitigate the impact of LD related to its distribution and risk for transmission to human populations in the Mexico-US transboundary region. PMID:24766735
The computational modeling of human exposure to environmental pollutants is one of the primary activities of the US Environmental Protection Agency (USEPA)'s National Exposure Research Laboratory (NERL). Assessment of human exposures is a critical part of the overall risk assessm...
40 CFR 158.1060 - Post-application exposure-criteria for testing
Code of Federal Regulations, 2012 CFR
2012-07-01
...) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Human Exposure § 158.1060 Post-application exposure...) Occupational human post-application exposure to pesticide residues on plants or in soil could occur as the...) Residential human post-application exposure to pesticide residues on plants or in soil could occur. Such uses...
40 CFR 158.1060 - Post-application exposure-criteria for testing
Code of Federal Regulations, 2011 CFR
2011-07-01
...) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Human Exposure § 158.1060 Post-application exposure...) Occupational human post-application exposure to pesticide residues on plants or in soil could occur as the...) Residential human post-application exposure to pesticide residues on plants or in soil could occur. Such uses...
40 CFR 158.1060 - Post-application exposure-criteria for testing.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Human Exposure § 158.1060 Post-application exposure...) Occupational human post-application exposure to pesticide residues on plants or in soil could occur as the...) Residential human post-application exposure to pesticide residues on plants or in soil could occur. Such uses...
40 CFR 158.1060 - Post-application exposure-criteria for testing
Code of Federal Regulations, 2010 CFR
2010-07-01
...) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Human Exposure § 158.1060 Post-application exposure...) Occupational human post-application exposure to pesticide residues on plants or in soil could occur as the...) Residential human post-application exposure to pesticide residues on plants or in soil could occur. Such uses...
40 CFR 158.1060 - Post-application exposure-criteria for testing.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Human Exposure § 158.1060 Post-application exposure...) Occupational human post-application exposure to pesticide residues on plants or in soil could occur as the...) Residential human post-application exposure to pesticide residues on plants or in soil could occur. Such uses...
USGS: Science to understand and forecast change in coastal ecosystems
Myers, M.
2007-01-01
The multidisciplinary approach of the US Geological Survey (USGS), a principal science agency of the US Department of the Interior (DOI), to address the complex and cumulative impacts of human activities and natural events on the US coastal ecosystems has been considered remarkable for understanding and forecasting the changes. The USGS helps explain geologic, hydrologic, and biologic systems and their connectivity across landscapes and seascapes along the coastline. The USGS coastal science programs effectively address science and information to other scientists, managers, policy makers, and the public. The USGS provides scientific expertise, capabilities, and services to collaborative federal, regional, and state-led efforts, which are in line with the goals of Ocean Action Plan (OAP) and Ocean Research Priorities Plan (ORPP). The organization is a leader in understanding terrestrial and marine environmental hazards such as earthquakes, tsunamis, floods, and landslides and assessing and forecasting coastal impacts using various specialized visualization techniques.
Improved management of small pelagic fisheries through seasonal climate prediction.
Tommasi, Désirée; Stock, Charles A; Pegion, Kathleen; Vecchi, Gabriel A; Methot, Richard D; Alexander, Michael A; Checkley, David M
2017-03-01
Populations of small pelagic fish are strongly influenced by climate. The inability of managers to anticipate environment-driven fluctuations in stock productivity or distribution can lead to overfishing and stock collapses, inflexible management regulations inducing shifts in the functional response to human predators, lost opportunities to harvest populations, bankruptcies in the fishing industry, and loss of resilience in the human food supply. Recent advances in dynamical global climate prediction systems allow for sea surface temperature (SST) anomaly predictions at a seasonal scale over many shelf ecosystems. Here we assess the utility of SST predictions at this "fishery relevant" scale to inform management, using Pacific sardine as a case study. The value of SST anomaly predictions to management was quantified under four harvest guidelines (HGs) differing in their level of integration of SST data and predictions. The HG that incorporated stock biomass forecasts informed by skillful SST predictions led to increases in stock biomass and yield, and reductions in the probability of yield and biomass falling below socioeconomic or ecologically acceptable levels. However, to mitigate the risk of collapse in the event of an erroneous forecast, it was important to combine such forecast-informed harvest controls with additional harvest restrictions at low biomass. © 2016 by the Ecological Society of America.
Learning temporal rules to forecast instability in continuously monitored patients
Dubrawski, Artur; Wang, Donghan; Hravnak, Marilyn; Clermont, Gilles; Pinsky, Michael R
2017-01-01
Inductive machine learning, and in particular extraction of association rules from data, has been successfully used in multiple application domains, such as market basket analysis, disease prognosis, fraud detection, and protein sequencing. The appeal of rule extraction techniques stems from their ability to handle intricate problems yet produce models based on rules that can be comprehended by humans, and are therefore more transparent. Human comprehension is a factor that may improve adoption and use of data-driven decision support systems clinically via face validity. In this work, we explore whether we can reliably and informatively forecast cardiorespiratory instability (CRI) in step-down unit (SDU) patients utilizing data from continuous monitoring of physiologic vital sign (VS) measurements. We use a temporal association rule extraction technique in conjunction with a rule fusion protocol to learn how to forecast CRI in continuously monitored patients. We detail our approach and present and discuss encouraging empirical results obtained using continuous multivariate VS data from the bedside monitors of 297 SDU patients spanning 29 346 hours (3.35 patient-years) of observation. We present example rules that have been learned from data to illustrate potential benefits of comprehensibility of the extracted models, and we analyze the empirical utility of each VS as a potential leading indicator of an impending CRI event. PMID:27274020
ERIC Educational Resources Information Center
Potter, Norman R.; Dieterly, Duncan L.
The literature review was undertaken to establish the current status of the methodology for forecasting and assessing technology and for quantizing human resource parameters with respect to the impact of incoming technologies. The review of 140 selected documents applicable to the study was undertaken with emphasis on the identification of methods…
Experiences from coordinated national-level landslide and flood forecasting in Norway
NASA Astrophysics Data System (ADS)
Krøgli, Ingeborg; Fleig, Anne; Glad, Per; Dahl, Mads-Peter; Devoli, Graziella; Colleuille, Hervé
2015-04-01
While flood forecasting at national level is quite well established and operational in many countries worldwide, landslide forecasting at national level is still seldom. Examples of coordinated flood and landslide forecasting are even rarer. Most of the time flood and landslide forecasters work separately (investigating, defining thresholds, and developing models) and most of the time without communication with each other. One example of coordinated operational early warning systems (EWS) for flooding and shallow landslides is found at the Norwegian Water Resources and Energy Directorate (NVE) in Norway. In this presentation we give an introduction to the two separate but tightly collaborative EWSs and to the coordination of these. The two EWSs are being operated from the same office, every day using similar hydro-meteorological prognosis and hydrological models. Prognosis and model outputs on e.g. discharge, snow melt, soil water content and exceeded landslide thresholds are evaluated in a web based decision-making tool (xgeo.no). The experts performing forecasts are hydrologists, geologists and physical geographers. A similar warning scale, based on colors (green, yellow, orange and red) is used for both EWSs, however thresholds for flood and landslide warning levels are defined differently. Also warning areas may not necessary be the same for both hazards and depending on the specific meteorological event, duration of the warning periods can differ. We present how knowledge, models and tools, but also human and economic resources are being shared between the two EWSs. Moreover, we discuss challenges faced in the communication of warning messages using recent flood and landslide events as examples.
Predictability of the European heat and cold waves
NASA Astrophysics Data System (ADS)
Lavaysse, Christophe; Naumann, Gustavo; Alfieri, Lorenzo; Salamon, Peter; Vogt, Jürgen
2018-06-01
Heat and cold waves may have considerable human and economic impacts in Europe. Recent events, like the heat waves observed in France in 2003 and Russia in 2010, illustrated the major consequences to be expected. Reliable Early Warning Systems for extreme temperatures would, therefore, be of high value for decision makers. However, they require a clear definition and robust forecasts of these events. This study analyzes the predictability of heat and cold waves over Europe, defined as at least three consecutive days of {T}_{min} and {T}_{max} above the quantile Q90 (under Q10), using the extended ensemble system of ECMWF. The results show significant predictability for events within a 2-week lead time, but with a strong decrease of the predictability during the first week of forecasts (from 80 to 40% of observed events correctly forecasted). The scores show a higher predictive skill for the cold waves (in winter) than for the heat waves (in summer). The uncertainties and the sensitivities of the predictability are discussed on the basis of tests conducted with different spatial and temporal resolutions. Results demonstrate the negligible effect of the temporal resolution (very few errors due to bad timing of the forecasts), and a better predictability of large-scale events. The onset and the end of the waves are slightly less predictable with an average of about 35% (30%) of observed heat (cold) waves onsets or ends correctly forecasted with a 5-day lead time. Finally, the forecasted intensities show a correlation of about 0.65 with those observed, revealing the challenge to predict this important characteristic.
NASA Astrophysics Data System (ADS)
Park, Sumin; Im, Jungho; Park, Seonyeong
2016-04-01
A drought occurs when the condition of below-average precipitation in a region continues, resulting in prolonged water deficiency. A drought can last for weeks, months or even years, so can have a great influence on various ecosystems including human society. In order to effectively reduce agricultural and economic damage caused by droughts, drought monitoring and forecasts are crucial. Drought forecast research is typically conducted using in situ observations (or derived indices such as Standardized Precipitation Index (SPI)) and physical models. Recently, satellite remote sensing has been used for short term drought forecasts in combination with physical models. In this research, drought intensification was predicted using satellite-derived drought indices such as Normalized Difference Drought Index (NDDI), Normalized Multi-band Drought Index (NMDI), and Scaled Drought Condition Index (SDCI) generated from Moderate Resolution Imaging Spectroradiometer (MODIS) and Tropical Rainfall Measuring Mission (TRMM) products over the Korean Peninsula. Time series of each drought index at the 8 day interval was investigated to identify drought intensification patterns. Drought condition at the previous time step (i.e., 8 days before) and change in drought conditions between two previous time steps (e.g., between 16 days and 8 days before the time step to forecast) Results show that among three drought indices, SDCI provided the best performance to predict drought intensification compared to NDDI and NMDI through qualitative assessment. When quantitatively compared with SPI, SDCI showed a potential to be used for forecasting short term drought intensification. Finally this research provided a SDCI-based equation to predict short term drought intensification optimized over the Korean Peninsula.
An observational and modeling study of the August 2017 Florida climate extreme event.
NASA Astrophysics Data System (ADS)
Konduru, R.; Singh, V.; Routray, A.
2017-12-01
A special report on the climate extremes by the Intergovernmental Panel on Climate Change (IPCC) elucidates that the sole cause of disasters is due to the exposure and vulnerability of the human and natural system to the climate extremes. The cause of such a climate extreme could be anthropogenic or non-anthropogenic. Therefore, it is challenging to discern the critical factor of influence for a particular climate extreme. Such kind of perceptive study with reasonable confidence on climate extreme events is possible only if there exist any past case studies. A similar rarest climate extreme problem encountered in the case of Houston floods and extreme rainfall over Florida in August 2017. A continuum of hurricanes like Harvey and Irma targeted the Florida region and caused catastrophe. Due to the rarity of August 2017 Florida climate extreme event, it requires the in-depth study on this case. To understand the multi-faceted nature of the event, a study on the development of the Harvey hurricane and its progression and dynamics is significant. Current article focus on the observational and modeling study on the Harvey hurricane. A global model named as NCUM (The global UK Met office Unified Model (UM) operational at National Center for Medium Range Weather Forecasting, India, was utilized to simulate the Harvey hurricane. The simulated rainfall and wind fields were compared with the observational datasets like Tropical Rainfall Measuring Mission rainfall datasets and Era-Interim wind fields. The National Centre for Environmental Prediction (NCEP) automated tracking system was utilized to track the Harvey hurricane, and the tracks were analyzed statistically for different forecasts concerning the Harvey hurricane track of Joint Typhon Warning Centre. Further, the current study will be continued to investigate the atmospheric processes involved in the August 2017 Florida climate extreme event.
NASA Astrophysics Data System (ADS)
Perekhodtseva, E. V.
2009-09-01
Development of successful method of forecast of storm winds, including squalls and tornadoes and heavy rainfalls, that often result in human and material losses, could allow one to take proper measures against destruction of buildings and to protect people. Well-in-advance successful forecast (from 12 hours to 48 hour) makes possible to reduce the losses. Prediction of the phenomena involved is a very difficult problem for synoptic till recently. The existing graphic and calculation methods still depend on subjective decision of an operator. Nowadays in Russia there is no hydrodynamic model for forecast of the maximal precipitation and wind velocity V> 25m/c, hence the main tools of objective forecast are statistical methods using the dependence of the phenomena involved on a number of atmospheric parameters (predictors). Statistical decisive rule of the alternative and probability forecast of these events was obtained in accordance with the concept of "perfect prognosis" using the data of objective analysis. For this purpose the different teaching samples of present and absent of this storm wind and rainfalls were automatically arranged that include the values of forty physically substantiated potential predictors. Then the empirical statistical method was used that involved diagonalization of the mean correlation matrix R of the predictors and extraction of diagonal blocks of strongly correlated predictors. Thus for these phenomena the most informative predictors were selected without loosing information. The statistical decisive rules for diagnosis and prognosis of the phenomena involved U(X) were calculated for choosing informative vector-predictor. We used the criterion of distance of Mahalanobis and criterion of minimum of entropy by Vapnik-Chervonenkis for the selection predictors. Successful development of hydrodynamic models for short-term forecast and improvement of 36-48h forecasts of pressure, temperature and others parameters allowed us to use the prognostic fields of those models for calculations of the discriminant functions in the nodes of the grid 150x150km and the values of probabilities P of dangerous wind and thus to get fully automated forecasts. In order to change to the alternative forecast the author proposes the empirical threshold values specified for this phenomenon and advance period 36 hours. In the accordance to the Pirsey-Obukhov criterion (T), the success of these automated statistical methods of forecast of squalls and tornadoes to 36 -48 hours ahead and heavy rainfalls in the warm season for the territory of Italy, Spain and Balkan countries is T = 1-a-b=0,54: 0,78 after author experiments. A lot of examples of very successful forecasts of summer storm wind and heavy rainfalls over the Italy and Spain territory are submitted at this report. The same decisive rules were applied to the forecast of these phenomena during cold period in this year too. This winter heavy snowfalls in Spain and in Italy and storm wind at this territory were observed very often. And our forecasts are successful.
Wake Response to an Ocean-Feedback Mechanism: Madeira Island Case Study
NASA Astrophysics Data System (ADS)
Caldeira, Rui M. A.; Tomé, Ricardo
2013-08-01
We focus on an island wake episode that occurred in the Madeira Archipelago region of the north-east Atlantic at 32.5° N, 17° W. The Weather Research and Forecasting numerical model was used in a (one-way) downscaling mode, considering initial and boundary conditions from the European Centre for Medium-range Weather Forecasts system. The current literature emphasizes adiabatic effects on the dynamical aspects of atmospheric wakes. Changes in mountain height and consequently its relation to the atmospheric inversion layer should explain the shift in wake regimes, from a `strong-wake' to `weak-wake' scenario. Nevertheless, changes in sea-surface temperature variability in the lee of an island can induce similar regime shifts because of exposure to stronger solar radiation. Increase in evaporation contributes to the enhancement of convection and thus to the uplift of the stratified atmospheric layer above the critical height, with subsequent internal gravity wave activity.
New smoke predictions for Alaska in NOAA’s National Air Quality Forecast Capability
NASA Astrophysics Data System (ADS)
Davidson, P. M.; Ruminski, M.; Draxler, R.; Kondragunta, S.; Zeng, J.; Rolph, G.; Stajner, I.; Manikin, G.
2009-12-01
Smoke from wildfire is an important component of fine particle pollution, which is responsible for tens of thousands of premature deaths each year in the US. In Alaska, wildfire smoke is the leading cause of poor air quality in summer. Smoke forecast guidance helps air quality forecasters and the public take steps to limit exposure to airborne particulate matter. A new smoke forecast guidance tool, built by a cross-NOAA team, leverages efforts of NOAA’s partners at the USFS on wildfire emissions information, and with EPA, in coordinating with state/local air quality forecasters. Required operational deployment criteria, in categories of objective verification, subjective feedback, and production readiness, have been demonstrated in experimental testing during 2008-2009, for addition to the operational products in NOAA's National Air Quality Forecast Capability. The Alaska smoke forecast tool is an adaptation of NOAA’s smoke predictions implemented operationally for the lower 48 states (CONUS) in 2007. The tool integrates satellite information on location of wildfires with weather (North American mesoscale model) and smoke dispersion (HYSPLIT) models to produce daily predictions of smoke transport for Alaska, in binary and graphical formats. Hour-by hour predictions at 12km grid resolution of smoke at the surface and in the column are provided each day by 13 UTC, extending through midnight next day. Forecast accuracy and reliability are monitored against benchmark criteria for accuracy and reliability. While wildfire activity in the CONUS is year-round, the intense wildfire activity in AK is limited to the summer. Initial experimental testing during summer 2008 was hindered by unusually limited wildfire activity and very cloudy conditions. In contrast, heavier than average wildfire activity during summer 2009 provided a representative basis (more than 60 days of wildfire smoke) for demonstrating required prediction accuracy. A new satellite observation product was developed for routine near-real time verification of these predictions. The footprint of the predicted smoke from identified fires is verified with satellite observations of the spatial extent of smoke aerosols (5km resolution). Based on geostationary aerosol optical depth measurements that provide good time resolution of the horizontal spatial extent of the plumes, these observations do not yield quantitative concentrations of smoke particles at the surface. Predicted surface smoke concentrations are consistent with the limited number of in situ observations of total fine particle mass from all sources; however they are much higher than predicted for most CONUS fires. To assess uncertainty associated with fire emissions estimates, sensitivity analyses are in progress.
Asteroid Studies: A 35-Year Forecast
NASA Astrophysics Data System (ADS)
Rivkin, A. S.; Denevi, B. W.; Klima, R. L.; Ernst, C. M.; Chabot, N. L.; Barnouin, O. S.; Cohen, B. A.
2017-02-01
We are in an active time for asteroid studies, which fall at the intersection of science, planetary defense, human exploration, and in situ resource utilization. We look forward and extrapolate what the future may hold for asteroid science.
Linking Air Quality and Human Health Effects Models: An Application to the Los Angeles Air Basin
Stewart, Devoun R; Saunders, Emily; Perea, Roberto A; Fitzgerald, Rosa; Campbell, David E; Stockwell, William R
2017-01-01
Proposed emission control strategies for reducing ozone and particulate matter are evaluated better when air quality and health effects models are used together. The Community Multiscale Air Quality (CMAQ) model is the US Environmental Protection Agency’s model for determining public policy and forecasting air quality. CMAQ was used to forecast air quality changes due to several emission control strategies that could be implemented between 2008 and 2030 for the South Coast Air Basin that includes Los Angeles. The Environmental Benefits Mapping and Analysis Program—Community Edition (BenMAP-CE) was used to estimate health and economic impacts of the different emission control strategies based on CMAQ simulations. BenMAP-CE is a computer program based on epidemiologic studies that link human health and air quality. This modeling approach is better for determining optimum public policy than approaches that only examine concentration changes. PMID:29162976
The behaviour of PM10 and ozone in Malaysia through non-linear dynamical systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sapini, Muhamad Luqman; Rahim, Nurul Zahirah binti Abd; Noorani, Mohd Salmi Md.
Prediction of ozone (O3) and PM10 is very important as both these air pollutants affect human health, human activities and more. Short-term forecasting of air quality is needed as preventive measures and effective action can be taken. Therefore, if it is detected that the ozone data is of a chaotic dynamical systems, a model using the nonlinear dynamic from chaos theory data can be made and thus forecasts for the short term would be more accurate. This study uses two methods, namely the 0-1 Test and Lyapunov Exponent. In addition, the effect of noise reduction on the analysis of timemore » series data will be seen by using two smoothing methods: Rectangular methods and Triangle methods. At the end of the study, recommendations were made to get better results in the future.« less
Linking Air Quality and Human Health Effects Models: An Application to the Los Angeles Air Basin.
Stewart, Devoun R; Saunders, Emily; Perea, Roberto A; Fitzgerald, Rosa; Campbell, David E; Stockwell, William R
2017-01-01
Proposed emission control strategies for reducing ozone and particulate matter are evaluated better when air quality and health effects models are used together. The Community Multiscale Air Quality (CMAQ) model is the US Environmental Protection Agency's model for determining public policy and forecasting air quality. CMAQ was used to forecast air quality changes due to several emission control strategies that could be implemented between 2008 and 2030 for the South Coast Air Basin that includes Los Angeles. The Environmental Benefits Mapping and Analysis Program-Community Edition (BenMAP-CE) was used to estimate health and economic impacts of the different emission control strategies based on CMAQ simulations. BenMAP-CE is a computer program based on epidemiologic studies that link human health and air quality. This modeling approach is better for determining optimum public policy than approaches that only examine concentration changes.
The US EPA is developing an open and publically available software program called the Human Exposure Model (HEM) to provide near-field exposure information for Life Cycle Impact Assessments (LCIAs). Historically, LCIAs have often omitted impacts from near-field sources of exposur...
OVERVIEW OF THE U.S. EPA NERL'S HUMAN EXPOSURE MODELING
Computational modeling of human exposure to environmental pollutants is one of the primary activities of the US Environmental Protection Agency's National Exposure Research Laboratory (NERL). Assessment of human exposures is a critical part of the overall risk assessment para...
Heat wave over India during summer 2015: an assessment of real time extended range forecast
NASA Astrophysics Data System (ADS)
Pattanaik, D. R.; Mohapatra, M.; Srivastava, A. K.; Kumar, Arun
2017-08-01
Hot winds are the marked feature of summer season in India during late spring preceding the climatological onset of the monsoon season in June. Some years the conditions becomes very vulnerable with the maximum temperature ( T max) exceeding 45 °C for many days over parts of north-western, eastern coastal states of India and Indo-Gangetic plain. During summer of 2015 (late May to early June) eastern coastal states, central and northwestern parts of India experienced severe heat wave conditions leading to loss of thousands of human life in extreme high temperature conditions. It is not only the loss of human life but also the animals and birds were very vulnerable to this extreme heat wave conditions. In this study, an attempt is made to assess the performance of real time extended range forecast (forecast up to 3 weeks) of this scorching T max based on the NCEP's Climate Forecast System (CFS) latest version coupled model (CFSv2). The heat wave condition was very severe during the week from 22 to 28 May with subsequent week from 29 May to 4 June also witnessed high T max over many parts of central India including eastern coastal states of India. The 8 ensemble members of operational CFSv2 model are used once in a week to prepare the weekly bias corrected deterministic (ensemble mean) T max forecast for 3 weeks valid from Friday to Thursday coinciding with the heat wave periods of 2015. Using the 8 ensemble members separately and the CFSv2 corresponding hindcast climatology the probability of above and below normal T max is also prepared for the same 3 weeks. The real time deterministic and probabilistic forecasts did indicate impending heat wave over many parts of India during late May and early June of 2015 associated with strong northwesterly wind over main land mass of India, delaying the sea breeze, leading to heat waves over eastern coastal regions of India. Thus, the capability of coupled model in providing early warning of such killer heat wave can be very useful to the disaster managers to take appropriate actions to minimize the loss of life and property due to such high T max.
The Simulations of Wildland Fire Smoke PM25 in the NWS Air Quality Forecasting Systems
NASA Astrophysics Data System (ADS)
Huang, H. C.; Pan, L.; McQueen, J.; Lee, P.; ONeill, S. M.; Ruminski, M.; Shafran, P.; Huang, J.; Stajner, I.; Upadhayay, S.; Larkin, N. K.
2017-12-01
The increase of wildland fire intensity and frequency in the United States (U.S.) has led to property loss, human fatality, and poor air quality due to elevated particulate matters and surface ozone concentrations. The NOAA/National Weather Service (NWS) built the National Air Quality Forecast Capability (NAQFC) based on the U.S. Environmental Protection Agency (EPA) Community Multi-scale Air Quality (CMAQ) Modeling System driven by the NCEP North American Mesoscale Forecast System meteorology to provide ozone and fine particulate matter (PM2.5) forecast guidance publicly. State and local forecasters use the NWS air quality forecast guidance to issue air quality alerts in their area. The NAQFC PM2.5 predictions include emissions from anthropogenic and biogenic sources, as well as natural sources such as dust storms and wildland fires. The wildland fire emission inputs to the NAQFC is derived from the NOAA National Environmental Satellite, Data, and Information Service Hazard Mapping System fire and smoke detection product and the emission module of the U.S. Forest Service (USFS) BlueSky Smoke Modeling Framework. Wildland fires are unpredictable and can be ignited by natural causes such as lightning or be human-caused. It is extremely difficult to predict future occurrences and behavior of wildland fires, as is the available bio-fuel to be burned for real-time air quality predictions. Assumptions of future day's wildland fire behavior often have to be made from older observed wildland fire information. The comparisons between the NAQFC modeled PM2.5 and the EPA AirNow surface observation show that large errors in PM2.5 prediction can occur if fire smoke emissions are sometimes placed at the wrong location and/or time. A configuration of NAQFC CMAQ-system to re-run previous 24 hours, during which wildland fires were observed from satellites has been included recently. This study focuses on the effort performed to minimize the error in NAQFC PM2.5 predictions resulting from incorporating fire smoke emissions into the NAQFC from a recently updated newer version of USFS BlueSky system. This study will show how new approaches has improved the PM2.5 predictions at both nearby and downstream areas from fire sources. Furthermore, Environment and Climate Change Canada (ECCC) fire emissions data are being tested.
NASA Astrophysics Data System (ADS)
Gubernot, Diane M.; Anderson, G. Brooke; Hunting, Katherine L.
2014-10-01
In recent years, the United States has experienced record-breaking summer heat. Climate change models forecast increasing US temperatures and more frequent heat wave events in the coming years. Exposure to environmental heat is a significant, but overlooked, workplace hazard that has not been well-characterized or studied. The working population is diverse; job function, age, fitness level, and risk factors to heat-related illnesses vary. Yet few studies have examined or characterized the incidence of occupational heat-related morbidity and mortality. There are no federal regulatory standards to protect workers from environmental heat exposure. With climate change as a driver for adaptation and prevention of heat disorders, crafting policy to characterize and prevent occupational heat stress for both indoor and outdoor workers is increasingly sensible, practical, and imperative.
NATIONAL HUMAN EXPOSURE ASSESSMENT SURVEY (NHEXAS): OPPORTUNITIES AND LESSONS LEARNED
The National Human Exposure Assessment Survey (NHEXAS) in its fullest sense is a conceptual design, which upon implementation, will have long-term implications to exposure research and assessment. The ultimate goal is to document national distribution of human exposure to pote...
AN APPROACH TO METHODS DEVELOPMENT FOR HUMAN EXPOSURE ASSESSMENT STUDIES
Human exposure assessment studies require methods that are rapid, cost-effective and have a high sample through-put. The development of analytical methods for exposure studies should be based on specific information for individual studies. Human exposure studies suggest that di...
Morabito, Marco; Crisci, Alfonso; Cecchi, Lorenzo; Modesti, Pietro Amedeo; Maracchi, Giampiero; Gensini, Gian Franco; Orlandini, Simone
2008-09-01
Clothing insulation represents an important parameter strongly dependent on climate/weather variability and directly involved in the assessment of the human energy balance. Few studies tried to explore the influence of climate changes on the optimal clothing insulation for outdoor spaces. For this reason, the aim of this work was to investigate mainly the optimal outdoor minimum clothing insulation value required to reach the thermal neutrality (min_clo) related to climate change on a seasonal basis. Subsequently, we developed an example of operational biometeorological procedure to provide 72-hour forecast maps concerning the min_clo. Hourly meteorological data were provided by three Italian weather stations located in Turin, Rome and Palermo, for the period 1951-1995. Environmental variables and subjective characteristics referred to an average adult young male at rest and at a very high metabolic rate were used as input variables to calculate the min_clo by using a thermal index based on the human energy balance. Trends of min_clo were assessed by a non-parametric statistical method. Results showed a lower magnitude of trends in a subject at a very high metabolic rate than at rest. Turin always showed a decrease of min_clo during the study period and prevalently negative trends were also observed in Palermo. On the other hand, an opposite situation was observed in Rome, especially during the morning in all seasons. The development of a daily operational procedure to forecast customized min_clo could provide useful information for the outdoor clothing fitting that might help to reduce the weather-related human health risk.
Gan, Ryan W.; Ford, Bonne; Lassman, William; Pfister, Gabriele; Vaidyanathan, Ambarish; Fischer, Emily; Volckens, John; Pierce, Jeffrey R.; Magzamen, Sheryl
2017-01-01
Climate forecasts predict an increase in frequency and intensity of wildfires. Associations between health outcomes and population exposure to smoke from Washington 2012 wildfires were compared using surface monitors, chemical-weather models, and a novel method blending three exposure information sources. The association between smoke particulate matter ≤2.5 μm in diameter (PM2.5) and cardiopulmonary hospital admissions occurring in Washington from 1 July to 31 October 2012 was evaluated using a time-stratified case-crossover design. Hospital admissions aggregated by ZIP code were linked with population-weighted daily average concentrations of smoke PM2.5 estimated using three distinct methods: a simulation with the Weather Research and Forecasting with Chemistry (WRF-Chem) model, a kriged interpolation of PM2.5 measurements from surface monitors, and a geographically weighted ridge regression (GWR) that blended inputs from WRF-Chem, satellite observations of aerosol optical depth, and kriged PM2.5. A 10 μg/m3 increase in GWR smoke PM2.5 was associated with an 8% increased risk in asthma-related hospital admissions (odds ratio (OR): 1.076, 95% confidence interval (CI): 1.019–1.136); other smoke estimation methods yielded similar results. However, point estimates for chronic obstructive pulmonary disease (COPD) differed by smoke PM2.5 exposure method: a 10 μg/m3 increase using GWR was significantly associated with increased risk of COPD (OR: 1.084, 95%CI: 1.026–1.145) and not significant using WRF-Chem (OR: 0.986, 95%CI: 0.931–1.045). The magnitude (OR) and uncertainty (95%CI) of associations between smoke PM2.5 and hospital admissions were dependent on estimation method used and outcome evaluated. Choice of smoke exposure estimation method used can impact the overall conclusion of the study. PMID:28868515
NASA Technical Reports Server (NTRS)
Barghouty, A. F.; Falconer, D. A.; Adams, J. H., Jr.
2010-01-01
This presentation describes a new forecasting tool developed for and is currently being tested by NASA s Space Radiation Analysis Group (SRAG) at JSC, which is responsible for the monitoring and forecasting of radiation exposure levels of astronauts. The new software tool is designed for the empirical forecasting of M and X-class flares, coronal mass ejections, as well as solar energetic particle events. Its algorithm is based on an empirical relationship between the various types of events rates and a proxy of the active region s free magnetic energy, determined from a data set of approx.40,000 active-region magnetograms from approx.1,300 active regions observed by SOHO/MDI that have known histories of flare, coronal mass ejection, and solar energetic particle event production. The new tool automatically extracts each strong-field magnetic areas from an MDI full-disk magnetogram, identifies each as an NOAA active region, and measures a proxy of the active region s free magnetic energy from the extracted magnetogram. For each active region, the empirical relationship is then used to convert the free magnetic energy proxy into an expected event rate. The expected event rate in turn can be readily converted into the probability that the active region will produce such an event in a given forward time window. Descriptions of the datasets, algorithm, and software in addition to sample applications and a validation test are presented. Further development and transition of the new tool in anticipation of SDO/HMI is briefly discussed.
AC field exposure study: human exposure to 60-Hz electric fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silva, J.M.
1985-04-01
The objective of this study was to develop a method of estimating human exposure to the 60 Hz electric fields created by transmission lines. The Activity Systems Model simulates human activities in a variety of situations where exposure to electric fields is possible. The model combines maps of electric fields, activity maps, and experimentally determined activity factors to provide histograms of time spent in electric fields of various strengths in the course of agricultural, recreational, and domestic activities. For corroboration, the study team measured actual human exposure at locations across the United States near transmission lines ranging in voltage frommore » 115 to 1200 kV. The data were collected with a specially designed vest that measures exposure. These data demonstrate the accuracy of the exposure model presented in this report and revealed that most exposure time is spent in fields of magnitudes similar to many household situations. The report provides annual exposure estimates for human activities near transmission lines and in the home and compares them with exposure data from typical laboratory animal experiments. For one exposure index, the cumulative product of time and electric field, exposure during some of the laboratory animal experiments is two to four orders of magnitude greater than cumulative exposure for a human during one year of outdoor work on a farm crossed by a transmission line.« less
Impact of Orientation on the Vitamin D Weighted Exposure of a Human in an Urban Environment.
Schrempf, Michael; Thuns, Nadine; Lange, Kezia; Seckmeyer, Gunther
2017-08-16
The vitamin D₃-weighted UV exposure of a human with vertical posture was calculated for urban locations to investigate the impact of orientation and obstructions on the exposure. Human exposure was calculated by using the 3D geometry of a human and integrating the radiance, i.e., the radiant energy from the direct solar beam and the diffuse sky radiation from different incident and azimuth angles. Obstructions of the sky are derived from hemispherical images, which are recorded by a digital camera with a fisheye lens. Due to the low reflectivity of most surfaces in the UV range, the radiance from obstructed sky regions was neglected. For spring equinox (21 March), the exposure of a human model with winter clothing in an environment where obstructions cover 40% of the sky varies by up to 25%, depending on the orientation of the human model to the sun. The calculation of the accumulated vitamin D₃-weighted exposure of a human with winter clothing walking during lunch break shows that human exposure is reduced by the obstruction of buildings and vegetation by 40%.
HEDS - EPA DATABASE SYSTEM FOR PUBLIC ACCESS TO HUMAN EXPOSURE DATA
Human Exposure Database System (HEDS) is an Internet-based system developed to provide public access to human-exposure-related data from studies conducted by EPA's National Exposure Research Laboratory (NERL). HEDS was designed to work with the EPA Office of Research and Devel...
THE HUMAN EXPOSURE DATABASE SYSTEM (HEDS)-PUTTING THE NHEXAS DATA ON-LINE
The EPA's National Exposure Research Laboratory (NERL) has developed an Internet accessible Human Exposure Database System (HEDS) to provide the results of NERL human exposure studies to both the EPA and the external scientific communities. The first data sets that will be ava...
A forecasting method to reduce estimation bias in self-reported cell phone data.
Redmayne, Mary; Smith, Euan; Abramson, Michael J
2013-01-01
There is ongoing concern that extended exposure to cell phone electromagnetic radiation could be related to an increased risk of negative health effects. Epidemiological studies seek to assess this risk, usually relying on participants' recalled use, but recall is notoriously poor. Our objectives were primarily to produce a forecast method, for use by such studies, to reduce estimation bias in the recalled extent of cell phone use. The method we developed, using Bayes' rule, is modelled with data we collected in a cross-sectional cluster survey exploring cell phone user-habits among New Zealand adolescents. Participants recalled their recent extent of SMS-texting and retrieved from their provider the current month's actual use-to-date. Actual use was taken as the gold standard in the analyses. Estimation bias arose from a large random error, as observed in all cell phone validation studies. We demonstrate that this seriously exaggerates upper-end forecasts of use when used in regression models. This means that calculations using a regression model will lead to underestimation of heavy-users' relative risk. Our Bayesian method substantially reduces estimation bias. In cases where other studies' data conforms to our method's requirements, application should reduce estimation bias, leading to a more accurate relative risk calculation for mid-to-heavy users.
Evaluation of Radiation Belt Space Weather Forecasts for Internal Charging Analyses
NASA Technical Reports Server (NTRS)
Minow, Joseph I.; Coffey, Victoria N.; Jun, Insoo; Garrett, Henry B.
2007-01-01
A variety of static electron radiation belt models, space weather prediction tools, and energetic electron datasets are used by spacecraft designers and operations support personnel as internal charging code inputs to evaluate electrostatic discharge risks in space systems due to exposure to relativistic electron environments. Evaluating the environment inputs is often accomplished by comparing whether the data set or forecast tool reliability predicts measured electron flux (or fluence over a given period) for some chosen period. While this technique is useful as a model metric, it does not provide the information necessary to evaluate whether short term deviances of the predicted flux is important in the charging evaluations. In this paper, we use a 1-D internal charging model to compute electric fields generated in insulating materials as a function of time when exposed to relativistic electrons in the Earth's magnetosphere. The resulting fields are assumed to represent the "true" electric fields and are compared with electric field values computed from relativistic electron environments derived from a variety of space environment and forecast tools. Deviances in predicted fields compared to the "true" fields which depend on insulator charging time constants will be evaluated as a potential metric for determining the importance of predicted and measured relativistic electron flux deviations over a range of time scales.
The Insertion of Human Factors Concerns into NextGen Programmatic Decisions
NASA Technical Reports Server (NTRS)
Beard, Bettina L.; Holbrook, Jon Brian; Seely, Rachel
2013-01-01
Since the costs of proposed improvements in air traffic management exceed available funding, FAA decision makers must select and prioritize what actually gets implemented. We discuss a set of methods to help forecast operational and human performance issues and benefits before new automation is introduced. This strategy could minimize the impact of politics, assist decision makers in selecting and prioritizing potential improvements, make the process more transparent and strengthen the link between the engineering and human factors domains.
Operational Aspects of Space Radiation Analysis
NASA Technical Reports Server (NTRS)
Weyland, M. D.; Johnson, A. S.; Semones, E. J.; Shelfer, T.; Dardano, C.; Lin, T.; Zapp, N. E.; Rutledge, R.; George, T.
2005-01-01
Minimizing astronaut's short and long-term medical risks arising from exposure to ionizing radiation during space missions is a major concern for NASA's manned spaceflight program, particularly exploration missions. For ethical and legal reasons, NASA follows the "as low as reasonably achievable" (ALARA) principal in managing astronaut's radiation exposures. One implementation of ALARA is the response to space weather events. Of particular concern are energetic solar particle events, and in low Earth orbit (LEO), electron belt enhancements. To properly respond to these events, NASA's Space Radiation Analysis Group (SRAG), in partnership with the NOAA Space Environment Center (SEC), provides continuous flight support during U.S. manned missions. In this partnership, SEC compiles space weather data from numerous ground and space based assets and makes it available in near real-time to SRAG (along with alerts and forecasts), who in turn uses these data as input to models to calculate estimates of the resulting exposure to astronauts. These calculations and vehicle instrument data form the basis for real-time recommendations to flight management. It is also important to implement ALARA during the design phase. In order to appropriately weigh the risks associated with various shielding and vehicle configuration concepts, the expected environment must be adequately characterized for nominal and worst case scenarios for that portion of the solar cycle and point in space. Even with the best shielding concepts and materials in place (unlikely), there will be numerous occasions where the crew is at greater risk due to being in a lower shielded environment (short term transit or lower shielded vehicles, EVAs), so that accurate space weather forecasts and nowcasts, of particles at the relevant energies, will be crucial to protecting crew health and safety.
NASA Astrophysics Data System (ADS)
Schultz, L. A.; Smith, M. R.; Fuell, K.; Stano, G. T.; LeRoy, A.; Berndt, E.
2015-12-01
Instruments aboard the Joint Polar Satellite System (JPSS) series of satellites will provide imagery and other data sets relevant to operational weather forecasts. To prepare current and future weather forecasters in application of these data sets, Proving Ground activities have been established that demonstrate future JPSS capabilities through use of similar sensors aboard NASA's Terra and Aqua satellites, and the S-NPP mission. As part of these efforts, NASA's Short-term Prediction Research and Transition (SPoRT) Center in Huntsville, Alabama partners with near real-time providers of S-NPP products (e.g., NASA, UW/CIMSS, UAF/GINA, etc.) to demonstrate future capabilities of JPSS. This includes training materials and product distribution of multi-spectral false color composites of the visible, near-infrared, and infrared bands of MODIS and VIIRS. These are designed to highlight phenomena of interest to help forecasters digest the multispectral data provided by the VIIRS sensor. In addition, forecasters have been trained on the use of the VIIRS day-night band, which provides imagery of moonlit clouds, surface, and lights emitted by human activities. Hyperspectral information from the S-NPP/CrIS instrument provides thermodynamic profiles that aid in the detection of extremely cold air aloft, helping to map specific aviation hazards at high latitudes. Hyperspectral data also support the estimation of ozone concentration, which can highlight the presence of much drier stratospheric air, and map its interaction with mid-latitude or tropical cyclones to improve predictions of their strengthening or decay. Proving Ground activities are reviewed, including training materials and methods that have been provided to forecasters, and forecaster feedback on these products that has been acquired through formal, detailed assessment of their applicability to a given forecast threat or task. Future opportunities for collaborations around the delivery of training are proposed, along with other applications of multispectral data and derived, more quantitative products.
40 CFR 158.250 - Experimental use permit data requirements for human exposure.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Experimental use permit data requirements for human exposure. 158.250 Section 158.250 Protection of Environment ENVIRONMENTAL PROTECTION... Experimental use permit data requirements for human exposure. No data for applicator exposure and post...
40 CFR 158.250 - Experimental use permit data requirements for human exposure.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Experimental use permit data requirements for human exposure. 158.250 Section 158.250 Protection of Environment ENVIRONMENTAL PROTECTION... Experimental use permit data requirements for human exposure. No data for applicator exposure and post...
40 CFR 158.250 - Experimental use permit data requirements for human exposure.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Experimental use permit data requirements for human exposure. 158.250 Section 158.250 Protection of Environment ENVIRONMENTAL PROTECTION... Experimental use permit data requirements for human exposure. No data for applicator exposure and post...
40 CFR 158.250 - Experimental use permit data requirements for human exposure.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Experimental use permit data requirements for human exposure. 158.250 Section 158.250 Protection of Environment ENVIRONMENTAL PROTECTION... Experimental use permit data requirements for human exposure. No data for applicator exposure and post...
Pelletier, Jon D.; Murray, A. Brad; Pierce, Jennifer L.; ...
2015-07-14
In the future, Earth will be warmer, precipitation events will be more extreme, global mean sea level will rise, and many arid and semiarid regions will be drier. Human modifications of landscapes will also occur at an accelerated rate as developed areas increase in size and population density. We now have gridded global forecasts, being continually improved, of the climatic and land use changes (C&LUC) that are likely to occur in the coming decades. However, besides a few exceptions, consensus forecasts do not exist for how these C&LUC will likely impact Earth-surface processes and hazards. In some cases, we havemore » the tools to forecast the geomorphic responses to likely future C&LUC. Fully exploiting these models and utilizing these tools will require close collaboration among Earth-surface scientists and Earth-system modelers. This paper assesses the state-of-the-art tools and data that are being used or could be used to forecast changes in the state of Earth's surface as a result of likely future C&LUC. We also propose strategies for filling key knowledge gaps, emphasizing where additional basic research and/or collaboration across disciplines are necessary. The main body of the paper addresses cross-cutting issues, including the importance of nonlinear/threshold-dominated interactions among topography, vegetation, and sediment transport, as well as the importance of alternate stable states and extreme, rare events for understanding and forecasting Earth-surface response to C&LUC. Five supplements delve into different scales or process zones (global-scale assessments and fluvial, aeolian, glacial/periglacial, and coastal process zones) in detail.« less
NASA Astrophysics Data System (ADS)
Huang, Y.; Jiang, J.; Stacy, M.; Ricciuto, D. M.; Hanson, P. J.; Sundi, N.; Luo, Y.
2016-12-01
Ecological forecasting is critical in various aspects of our coupled human-nature systems, such as disaster risk reduction, natural resource management and climate change mitigation. Novel advancements are in urgent need to deepen our understandings of ecosystem dynamics, boost the predictive capacity of ecology, and provide timely and effective information for decision-makers in a rapidly changing world. Our Ecological Platform for Assimilation of Data (EcoPAD) facilitates the integration of current best knowledge from models, manipulative experimentations, observations and other modern techniques and provides both near real-time and long-term forecasting of ecosystem dynamics. As a case study, the web-based EcoPAD platform synchronizes real- or near real-time field measurements from the Spruce and Peatland Responses Under Climatic and Environmental Change Experiment (SPRUCE), a whole ecosystem warming and CO2 enrichment treatment experiment, assimilates multiple data streams into process based models, enhances timely feedback between modelers and experimenters, and ultimately improves ecosystem forecasting and makes best utilization of current knowledge. In addition to enable users to (i) estimate model parameters or state variables, (ii) quantify uncertainty of estimated parameters and projected states of ecosystems, (iii) evaluate model structures, (iv) assess sampling strategies, and (v) conduct ecological forecasting, EcoPAD-SPRUCE automated the workflow from real-time data acquisition, model simulation to result visualization. EcoPAD-SPRUCE promotes seamless feedback between modelers and experimenters, hand in hand to make better forecasting of future changes. The framework of EcoPAD-SPRUCE (with flexible API, Application Programming Interface) is easily portable and will benefit scientific communities, policy makers as well as the general public.
Time-varying loss forecast for an earthquake scenario in Basel, Switzerland
NASA Astrophysics Data System (ADS)
Herrmann, Marcus; Zechar, Jeremy D.; Wiemer, Stefan
2014-05-01
When an unexpected earthquake occurs, people suddenly want advice on how to cope with the situation. The 2009 L'Aquila quake highlighted the significance of public communication and pushed the usage of scientific methods to drive alternative risk mitigation strategies. For instance, van Stiphout et al. (2010) suggested a new approach for objective evacuation decisions on short-term: probabilistic risk forecasting combined with cost-benefit analysis. In the present work, we apply this approach to an earthquake sequence that simulated a repeat of the 1356 Basel earthquake, one of the most damaging events in Central Europe. A recent development to benefit society in case of an earthquake are probabilistic forecasts of the aftershock occurrence. But seismic risk delivers a more direct expression of the socio-economic impact. To forecast the seismic risk on short-term, we translate aftershock probabilities to time-varying seismic hazard and combine this with time-invariant loss estimation. Compared with van Stiphout et al. (2010), we use an advanced aftershock forecasting model and detailed settlement data to allow us spatial forecasts and settlement-specific decision-making. We quantify the risk forecast probabilistically in terms of human loss. For instance one minute after the M6.6 mainshock, the probability for an individual to die within the next 24 hours is 41 000 times higher than the long-term average; but the absolute value remains at minor 0.04 %. The final cost-benefit analysis adds value beyond a pure statistical approach: it provides objective statements that may justify evacuations. To deliver supportive information in a simple form, we propose a warning approach in terms of alarm levels. Our results do not justify evacuations prior to the M6.6 mainshock, but in certain districts afterwards. The ability to forecast the short-term seismic risk at any time-and with sufficient data anywhere-is the first step of personal decision-making and raising risk awareness among the public. Reference Van Stiphout, T., S. Wiemer, and W. Marzocchi (2010). 'Are short-term evacuations warranted? Case of the 2009 L'Aquila earthquake'. In: Geophysical Research Letters 37.6, pp. 1-5. url: http://onlinelibrary.wiley.com/doi/10.1029/ 2009GL042352/abstract.
NASA Astrophysics Data System (ADS)
Messina, F.; Meselhe, E. A.; Buckman, L.; Twight, D.
2017-12-01
Louisiana coastal zone is one of the most productive and dynamic eco-geomorphic systems in the world. This unique natural environment has been alternated by human activities and natural processes such as sea level rise, subsidence, dredging of canals for oil and gas production, the Mississippi River levees which don't allow the natural river sediment. As a result of these alterations land loss, erosion and flood risk are becoming real issues for Louisiana. Costal authorities have been studying the benefits and effects of several restoration projects, e.g. freshwater and sediment diversions. The protection of communities, wildlife and of the unique environments is a high priority in this region. The Water Institute of the Gulf, together with Deltares, has developed a forecasting and information system for a pilot location in Coastal Louisiana, specifically for Barataria Bay and Breton Sound Basins in the Mississippi River Deltaic Plain. The system provides a 7-day forecast of water level, salinity, and temperature, under atmospheric and coastal forecasted conditions, such as freshwater riverine inflow, rainfall, evaporation, wind, and tide. The system also forecasts nutrient distribution (e.g., Chla and dissolved oxygen) and sediment transport. The Flood Early Warning System FEWS is used as a platform to import multivariate data from several sources, use them to monitor the pilot location and to provide boundary conditions to the model. A hindcast model is applied to compare the model results to the observed data, and to provide the initial condition to the forecast model. This system represents a unique tool which provides valuable information regarding the overall conditions of the basins. It offers the opportunity to adaptively manage existing and planned diversions to meet certain salinity and water level targets or thresholds while maximizing land-building goals. Moreover, water quality predictions provide valuable information on the current ecological conditions of the area. Real time observations and model predictions can be used as guidance to decision makers regarding the operation of control structures in response to forecasted weather or river flood events. Coastal communities can benefit from water level, salinity and water quality forecast to manage their activities.
NASA Astrophysics Data System (ADS)
Mayr, G. J.; Kneringer, P.; Dietz, S. J.; Zeileis, A.
2016-12-01
Low visibility or low cloud ceiling reduce the capacity of airports by requiring special low visibility procedures (LVP) for incoming/departing aircraft. Probabilistic forecasts when such procedures will become necessary help to mitigate delays and economic losses.We compare the performance of probabilistic nowcasts with two statistical methods: ordered logistic regression, and trees and random forests. These models harness historic and current meteorological measurements in the vicinity of the airport and LVP states, and incorporate diurnal and seasonal climatological information via generalized additive models (GAM). The methods are applied at Vienna International Airport (Austria). The performance is benchmarked against climatology, persistence and human forecasters.
Radiation safety aspects of commercial high-speed flight transportation
NASA Technical Reports Server (NTRS)
Wilson, John W.; Nealy, John E.; Cucinotta, Francis A.; Shinn, Judy L.; Hajnal, Ferenc; Reginatto, Marcel; Goldhagen, Paul
1995-01-01
High-speed commercial flight transportation is being studied for intercontinental operations in the 21st century, the projected operational characteristics for these aircraft are examined, the radiation environment as it is now known is presented, and the relevant health issues are discussed. Based on a critical examination of the data, a number of specific issues need to be addressed to ensure an adequate knowledge of the ionizing radiation health risks of these aircraft operations. Large uncertainties in our knowledge of the physical fields for high-energy neutrons and multiply-charged ion components need to be reduced. Improved methods for estimating risks in prenatal exposure need to be developed. A firm basis for solar flare monitoring and forecasting needs to be developed with means of exposure abatement.
NASA Astrophysics Data System (ADS)
Perekhodtseva, Elvira V.
2010-05-01
Development of successful method of forecast of storm winds, including squalls and tornadoes, that often result in human and material losses, could allow one to take proper measures against destruction of buildings and to protect people. Well-in-advance successful forecast (from 12 hours to 48 hour) makes possible to reduce the losses. Prediction of the phenomena involved is a very difficult problem for synoptic till recently. The existing graphic and calculation methods still depend on subjective decision of an operator. Nowadays in Russia there is no hydrodynamic model for forecast of the maximal wind velocity V> 25m/c, hence the main tools of objective forecast are statistical methods using the dependence of the phenomena involved on a number of atmospheric parameters (predictors). . Statistical decisive rule of the alternative and probability forecast of these events was obtained in accordance with the concept of "perfect prognosis" using the data of objective analysis. For this purpose the different teaching samples of present and absent of this storm wind and rainfalls were automatically arranged that include the values of forty physically substantiated potential predictors. Then the empirical statistical method was used that involved diagonalization of the mean correlation matrix R of the predictors and extraction of diagonal blocks of strongly correlated predictors. Thus for these phenomena the most informative predictors were selected without loosing information. The statistical decisive rules for diagnosis and prognosis of the phenomena involved U(X) were calculated for choosing informative vector-predictor. We used the criterion of distance of Mahalanobis and criterion of minimum of entropy by Vapnik-Chervonenkis for the selection predictors. Successful development of hydrodynamic models for short-term forecast and improvement of 36-48h forecasts of pressure, temperature and others parameters allowed us to use the prognostic fields of those models for calculations of the discriminant functions in the nodes of the grid 75x75km and the values of probabilities P of dangerous wind and thus to get fully automated forecasts. . In order to apply the alternative forecast to European part of Russia and Europe the author proposes the empirical threshold values specified for this phenomenon and advance period 36 hours. According to the Pirsey-Obukhov criterion (T), the success of this hydrometeorological-statistical method of forecast of storm wind and tornadoes to 36 -48 hours ahead in the warm season for the territory of Europe part of Russia and Siberia is T = 1-a-b=0,54-0,78 after independent and author experiments during the period 2004-2009 years. A lot of examples of very successful forecasts are submitted at this report for the territory of Europe and Russia. The same decisive rules were applied to the forecast of these phenomena during cold period in 2009-2010 years too. On the first month of 2010 a lot of cases of storm wind with heavy snowfall were observed and were forecasting over the territory of France, Italy and Germany.
NASA Astrophysics Data System (ADS)
Tilg, Anna-Maria; Schöber, Johannes; Huttenlau, Matthias; Messner, Jakob; Achleitner, Stefan
2017-04-01
Hydropower is a renewable energy source which can help to stabilize fluctuations in the volatile energy market. Especially pumped-storage infrastructures in the European Alps play an important role within the European energy grid system. Today, the runoff of rivers in the Alps is often influenced by cascades of hydropower infrastructures where the operational procedures are triggered by energy market demands, water deliveries and flood control aspects rather than by hydro-meteorological variables. An example for such a highly hydropower regulated river is the catchment of the river Inn in the Eastern European Alps, originating in the Engadin (Switzerland). A new hydropower plant is going to be built as transboundary project at the boarder of Switzerland and Austria using the water of the Inn River. For the operation, a runoff forecast to the plant is required. The challenge in this case is that a high proportion of runoff is turbine water from an upstream situated hydropower cascade. The newly developed physically based hydrological forecasting system is mainly capable to cover natural hydrological runoff processes caused by storms and snow melt but can model only a small degree of human impact. These discontinuous parts of the runoff downstream of the pumped storage are described by means of an additional statistical model which has been developed. The main goal of the statistical model is to forecast the turbine water up to five days in advance. The lead time of the data driven model exceeds the lead time of the used energy production forecast. Additionally, the amount of turbine water is linked to the need of electricity production and the electricity price. It has been shown that especially the parameters day-ahead prognosis of the energy production and turbine inflow of the previous week are good predictors and are therefore used as input parameters for the model. As the data is restricted due to technical conditions, so-called Tobit models have been used to develop a linear regression for the runoff forecast. Although the day-ahead prognosis cannot always be kept, the regression model delivers, especially during office hours, very reasonable results. In the remaining hours the error between measurement and the forecast increases. Overall, the inflow forecast can be substantially improved by the implementation of the developed regression in the hydrological modelling system.
NASA Astrophysics Data System (ADS)
Beguería, S.
2017-12-01
While large efforts are devoted to developing crop status monitoring and yield forecasting systems trough the use of Earth observation data (mostly remotely sensed satellite imagery) and observational and modeled weather data, here we focus on the information value of qualitative data on crop status from direct observations made by humans. This kind of data has a high value as it reflects the expert opinion of individuals directly involved in the development of the crop. However, they have issues that prevent their direct use in crop monitoring and yield forecasting systems, such as their non-spatially explicit nature, or most importantly their qualitative nature. Indeed, while the human brain is good at categorizing the status of physical systems in terms of qualitative scales (`very good', `good', `fair', etcetera), it has difficulties in quantifying it in physical units. This has prevented the incorporation of this kind of data into systems that make extensive use of numerical information. Here we show an example of using qualitative crop condition data to estimate yields of the most important crops in the US early in the season. We use USDA weekly crop condition reports, which are based on a sample of thousands of reporters including mostly farmers and people in direct contact with them. These reporters provide subjective evaluations of crop conditions, in a scale including five levels ranging from `very poor' to `excellent'. The USDA report indicates, for each state, the proportion of reporters fort each condition level. We show how is it possible to model the underlying non-observed quantitative variable that reflects the crop status on each state, and how this model is consistent across states and years. Furthermore, we show how this information can be used to monitor the status of the crops and to produce yield forecasts early in the season. Finally, we discuss approaches for blending this information source with other, more classical earth data sources such as remote sensing or weather data, in the context of hierarchical regression models.
Direct measurement of human exposure to environmental contaminants in real time (when the exposure is actually occurring) is rare and difficult to obtain. This frustrates both exposure assessments and investigations into the linkage between chemical exposure and human disease. ...
Human-machine analytics for closed-loop sense-making in time-dominant cyber defense problems
NASA Astrophysics Data System (ADS)
Henry, Matthew H.
2017-05-01
Many defense problems are time-dominant: attacks progress at speeds that outpace human-centric systems designed for monitoring and response. Despite this shortcoming, these well-honed and ostensibly reliable systems pervade most domains, including cyberspace. The argument that often prevails when considering the automation of defense is that while technological systems are suitable for simple, well-defined tasks, only humans possess sufficiently nuanced understanding of problems to act appropriately under complicated circumstances. While this perspective is founded in verifiable truths, it does not account for a middle ground in which human-managed technological capabilities extend well into the territory of complex reasoning, thereby automating more nuanced sense-making and dramatically increasing the speed at which it can be applied. Snort1 and platforms like it enable humans to build, refine, and deploy sense-making tools for network defense. Shortcomings of these platforms include a reliance on rule-based logic, which confounds analyst knowledge of how bad actors behave with the means by which bad behaviors can be detected, and a lack of feedback-informed automation of sensor deployment. We propose an approach in which human-specified computational models hypothesize bad behaviors independent of indicators and then allocate sensors to estimate and forecast the state of an intrusion. State estimates and forecasts inform the proactive deployment of additional sensors and detection logic, thereby closing the sense-making loop. All the while, humans are on the loop, rather than in it, permitting nuanced management of fast-acting automated measurement, detection, and inference engines. This paper motivates and conceptualizes analytics to facilitate this human-machine partnership.
NASA Astrophysics Data System (ADS)
Prinn, R. G.
2013-12-01
The world is facing major challenges that create tensions between human development and environmental sustenance. In facing these challenges, computer models are invaluable tools for addressing the need for probabilistic approaches to forecasting. To illustrate this, I use the MIT Integrated Global System Model framework (IGSM; http://globalchange.mit.edu ). The IGSM consists of a set of coupled sub-models of global economic and technological development and resultant emissions, and physical, dynamical and chemical processes in the atmosphere, land, ocean and ecosystems (natural and managed). Some of the sub-models have both complex and simplified versions available, with the choice of which version to use being guided by the questions being addressed. Some sub-models (e.g.urban air pollution) are reduced forms of complex ones created by probabilistic collocation with polynomial chaos bases. Given the significant uncertainties in the model components, it is highly desirable that forecasts be probabilistic. We achieve this by running 400-member ensembles (Latin hypercube sampling) with different choices for key uncertain variables and processes within the human and natural system model components (pdfs of inputs estimated by model-observation comparisons, literature surveys, or expert elicitation). The IGSM has recently been used for probabilistic forecasts of climate, each using 400-member ensembles: one ensemble assumes no explicit climate mitigation policy and others assume increasingly stringent policies involving stabilization of greenhouse gases at various levels. These forecasts indicate clearly that the greatest effect of these policies is to lower the probability of extreme changes. The value of such probability analyses for policy decision-making lies in their ability to compare relative (not just absolute) risks of various policies, which are less affected by the earth system model uncertainties. Given the uncertainties in forecasts, it is also clear that we need to evaluate policies based on their ability to lower risk, and to re-evaluate decisions over time as new knowledge is gained. Reference: R. G. Prinn, Development and Application of Earth System Models, Proceedings, National Academy of Science, June 15, 2012, http://www.pnas.org/cgi/doi/10.1073/pnas.1107470109.
NASA Astrophysics Data System (ADS)
Luk, K. C.; Ball, J. E.; Sharma, A.
2000-01-01
Artificial neural networks (ANNs), which emulate the parallel distributed processing of the human nervous system, have proven to be very successful in dealing with complicated problems, such as function approximation and pattern recognition. Due to their powerful capability and functionality, ANNs provide an alternative approach for many engineering problems that are difficult to solve by conventional approaches. Rainfall forecasting has been a difficult subject in hydrology due to the complexity of the physical processes involved and the variability of rainfall in space and time. In this study, ANNs were adopted to forecast short-term rainfall for an urban catchment. The ANNs were trained to recognise historical rainfall patterns as recorded from a number of gauges in the study catchment for reproduction of relevant patterns for new rainstorm events. The primary objective of this paper is to investigate the effect of temporal and spatial information on short-term rainfall forecasting. To achieve this aim, a comparison test on the forecast accuracy was made among the ANNs configured with different orders of lag and different numbers of spatial inputs. In developing the ANNs with alternative configurations, the ANNs were trained to an optimal level to achieve good generalisation of data. It was found in this study that the ANNs provided the most accurate predictions when an optimum number of spatial inputs was included into the network, and that the network with lower lag consistently produced better performance.
Tisseuil, Clément; Velo, Enkelejda; Bino, Silvia; Kadriaj, Perparim; Mersini, Kujtim; Shukullari, Ada; Simaku, Artan; Rogozi, Elton; Caputo, Beniamino; Ducheyne, Els; Della Torre, Alessandra; Reiter, Paul; Gilbert, Marius
2018-02-01
The increasing spread of the Asian tiger mosquito, Aedes albopictus, in Europe and US raises public health concern due to the species competence to transmit several exotic human arboviruses, among which dengue, chikungunya and Zika, and urges the development of suitable modeling approach to forecast the spatial and temporal distribution of the mosquito. Here we developed a dynamical species distribution modeling approach forecasting Ae. albopictus eggs abundance at high spatial (0.01 degree WGS84) and temporal (weekly) resolution over 10 Balkan countries, using temperature times series of Modis data products and altitude as input predictors. The model was satisfactorily calibrated and validated over Albania based observed eggs abundance data weekly monitored during three years. For a given week of the year, eggs abundance was mainly predicted by the number of eggs and the mean temperature recorded in the preceding weeks. That is, results are in agreement with the biological cycle of the mosquito, reflecting the effect temperature on eggs spawning, maturation and hatching. The model, seeded by initial egg values derived from a second model, was then used to forecast the spatial and temporal distribution of eggs abundance over the selected Balkan countries, weekly in 2011, 2012 and 2013. The present study is a baseline to develop an easy-handling forecasting model able to provide information useful for promoting active surveillance and possibly prevention of Ae. albopictus colonization in presently non-infested areas in the Balkans as well as in other temperate regions.
Forecasting of hourly load by pattern recognition in a small area power system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dehdashti-Shahrokh, A.
1982-01-01
An intuitive, logical, simple and efficient method of forecasting hourly load in a small area power system is presented. A pattern recognition approach is used in developing the forecasting model. Pattern recognition techniques are powerful tools in the field of artificial intelligence (cybernetics) and simulate the way the human brain operates to make decisions. Pattern recognition is generally used in analysis of processes where the total physical nature behind the process variation is unkown but specific kinds of measurements explain their behavior. In this research basic multivariate analyses, in conjunction with pattern recognition techniques, are used to develop a linearmore » deterministic model to forecast hourly load. This method assumes that load patterns in the same geographical area are direct results of climatological changes (weather sensitive load), and have occurred in the past as a result of similar climatic conditions. The algorithm described in here searches for the best possible pattern from a seasonal library of load and weather data in forecasting hourly load. To accommodate the unpredictability of weather and the resulting load, the basic twenty-four load pattern was divided into eight three-hour intervals. This division was made to make the model adaptive to sudden climatic changes. The proposed method offers flexible lead times of one to twenty-four hours. The results of actual data testing had indicated that this proposed method is computationally efficient, highly adaptive, with acceptable data storage size and accuracy that is comparable to many other existing methods.« less
NASA Astrophysics Data System (ADS)
Fakhruddin, S. H. M.; Babel, Mukand S.; Kawasaki, Akiyuki
2014-05-01
Coastal inundations are an increasing threat to the lives and livelihoods of people living in low-lying, highly-populated coastal areas. According to a World Bank Report in 2005, at least 2.6 million people may have drowned due to coastal inundation, particularly caused by storm surges, over the last 200 years. Forecasting and prediction of natural events, such as tropical and extra-tropical cyclones, inland flooding, and severe winter weather, provide critical guidance to emergency managers and decision-makers from the local to the national level, with the goal of minimizing both human and economic losses. This guidance is used to facilitate evacuation route planning, post-disaster response and resource deployment, and critical infrastructure protection and securing, and it must be available within a time window in which decision makers can take appropriate action. Recognizing this extreme vulnerability of coastal areas to inundation/flooding, and with a view to improve safety-related services for the community, research should strongly enhance today's forecasting, prediction and early warning capabilities in order to improve the assessment of coastal vulnerability and risks and develop adequate prevention, mitigation and preparedness measures. This paper tries to develop an impact-oriented quantitative coastal inundation forecasting and early warning system with social and economic assessment to address the challenges faced by coastal communities to enhance their safety and to support sustainable development, through the improvement of coastal inundation forecasting and warning systems.
Human exposure models estimate population distributions of exposure to air pollutants by combining ambient (outdoor) concentration data with human activity patterns to account for the time people spend in different locations (e.g., outdoors, indoors, in vehicles) and the various ...
RATIONALE: Ozone (Os) isa ubiquitous air pollutant that has been shown to have a detrimental effect on human health. Controlled exposure studies in humans have demonstrated that acute exposure to 03 results in reversible reduction in lung function immediately post-exposure, incre...
Researchers in the National Exposure Research Laboratory (NERL) have performed a number of large human exposure measurement studies during the past decade. It is the goal of the NERL to make the data available to other researchers for analysis in order to further the scientific ...
Human exposure in low Earth orbit
NASA Technical Reports Server (NTRS)
Wilson, J. W.; Cucinotta, F.
1984-01-01
Human exposure to trapped electrons and protons in low Earth orbit (LEO) is evaluated on a basis of a simple approximation of the human geometry for spherical shell shields of varying thickness. A data base is presented that may be used to make preliminary assessment of the impact of radiation exposure constraints on human performance. Detailed shielding studies should be performed before final design considerations. A sample impact assessment is discussed on the basis of presently accepted allowable exposure limits. A brief discussion is given on the anticipated impact of an ongoing reassessment of allowable exposure limits.
Human Exposure Modeling - Databases to Support Exposure Modeling
Human exposure modeling relates pollutant concentrations in the larger environmental media to pollutant concentrations in the immediate exposure media. The models described here are available on other EPA websites.
Morey, Jeanine S; Burek Huntington, Kathy A; Campbell, Michelle; Clauss, Tonya M; Goertz, Caroline E; Hobbs, Roderick C; Lunardi, Denise; Moors, Amanda J; Neely, Marion G; Schwacke, Lori H; Van Dolah, Frances M
2017-10-01
Assessing the health of marine mammal sentinel species is crucial to understanding the impacts of environmental perturbations on marine ecosystems and human health. In Arctic regions, beluga whales, Delphinapterus leucas, are upper level predators that may serve as a sentinel species, potentially forecasting impacts on human health. While gene expression profiling from blood transcriptomes has widely been used to assess health status and environmental exposures in human and veterinary medicine, its use in wildlife has been limited due to the lack of available genomes and baseline data. To this end we constructed the first beluga whale blood transcriptome de novo from samples collected during annual health assessments of the healthy Bristol Bay, AK stock during 2012-2014 to establish baseline information on the content and variation of the beluga whale blood transcriptome. The Trinity transcriptome assembly from beluga was comprised of 91,325 transcripts that represented a wide array of cellular functions and processes and was extremely similar in content to the blood transcriptome of another cetacean, the bottlenose dolphin. Expression of hemoglobin transcripts was much lower in beluga (25.6% of TPM, transcripts per million) than has been observed in many other mammals. A T12A amino acid substitution in the HBB sequence of beluga whales, but not bottlenose dolphins, was identified and may play a role in low temperature adaptation. The beluga blood transcriptome was extremely stable between sex and year, with no apparent clustering of samples by principle components analysis and <4% of genes differentially expressed (EBseq, FDR<0.05). While the impacts of season, sexual maturity, disease, and geography on the beluga blood transcriptome must be established, the presence of transcripts involved in stress, detoxification, and immune functions indicate that blood gene expression analyses may provide information on health status and exposure. This study provides a wealth of transcriptomic data on beluga whales and provides a sizeable pool of preliminary data for comparison with other studies in beluga whale. Copyright © 2017 Elsevier B.V. All rights reserved.
Pike, David A
2013-10-01
Some species are adapting to changing environments by expanding their geographic ranges. Understanding whether range shifts will be accompanied by increased exposure to other threats is crucial to predicting when and where new populations could successfully establish. If species overlap to a greater extent with human development under climate change, this could form ecological traps which are attractive to dispersing individuals, but the use of which substantially reduces fitness. Until recently, the core nesting range for the Critically Endangered Kemp's ridley sea turtle (Lepidochelys kempii) was ca. 1000 km of sparsely populated coastline in Tamaulipas, Mexico. Over the past twenty-five years, this species has expanded its range into populated areas of coastal Florida (>1500 km outside the historical range), where nesting now occurs annually. Suitable Kemp's ridley nesting habitat has persisted for at least 140 000 years in the western Gulf of Mexico, and climate change models predict further nesting range expansion into the eastern Gulf of Mexico and northern Atlantic Ocean. Range expansion is 6-12% more likely to occur along uninhabited stretches of coastline than are current nesting beaches, suggesting that novel nesting areas will not be associated with high levels of anthropogenic disturbance. Although the high breeding-site fidelity of some migratory species could limit adaptation to climate change, rapid population recovery following effective conservation measures may enhance opportunities for range expansion. Anticipating the interactive effects of past or contemporary conservation measures, climate change, and future human activities will help focus long-term conservation strategies. © 2013 John Wiley & Sons Ltd.
Impact of Orientation on the Vitamin D Weighted Exposure of a Human in an Urban Environment
Schrempf, Michael; Thuns, Nadine; Lange, Kezia
2017-01-01
The vitamin D3-weighted UV exposure of a human with vertical posture was calculated for urban locations to investigate the impact of orientation and obstructions on the exposure. Human exposure was calculated by using the 3D geometry of a human and integrating the radiance, i.e., the radiant energy from the direct solar beam and the diffuse sky radiation from different incident and azimuth angles. Obstructions of the sky are derived from hemispherical images, which are recorded by a digital camera with a fisheye lens. Due to the low reflectivity of most surfaces in the UV range, the radiance from obstructed sky regions was neglected. For spring equinox (21 March), the exposure of a human model with winter clothing in an environment where obstructions cover 40% of the sky varies by up to 25%, depending on the orientation of the human model to the sun. The calculation of the accumulated vitamin D3-weighted exposure of a human with winter clothing walking during lunch break shows that human exposure is reduced by the obstruction of buildings and vegetation by 40%. PMID:28813022
Oakes, Jennifer; Seifert, Steven
2008-12-01
Tilmicosin is a veterinary antibiotic with significant human toxicity at doses commonly used in animals, but the parenteral dose-response relationship has not been well characterized. Human exposures to tilmicosin in the database of the American Association of Poison Control Centers (AAPCC) from 2001 to 2005 were analyzed for demographic associations, exposure dose, clinical effects and outcomes. Over the 5-year period, there were 1,291 single-substance human exposures to tilmicosin. The mean age was 39.1 years, and 80% were male. By route there were 768 (54%) parenteral exposures. Patients with parenteral exposures had a significantly increased likelihood of being seen at a healthcare facility, admission, and admission to an ICU. With nonparenteral exposure, most had no clinical effects or minor effects, and there were no major effects or deaths. With parenteral exposure, moderate effects occurred in 46 (6%), major effects in 2 (0.3%) and there were 4 (0.5%) deaths, two of which were suicides. A dose-response relationship could be demonstrated. Clinical effect durations of up to a week occurred at even the lowest dose range. Over 250 cases of human tilmicosin exposure are reported to poison centers per year and over 150 of those are parenteral. Most exposures produce no or minor effects, but fatalities have occurred with parenteral exposure. The case fatality rate in parenteral exposures is 10 times the case fatality rate for all human exposures in the AAPCC database. Significant adverse and prolonged effects are reported at parenteral doses > 0.5 mL, suggesting that all parenteral exposures should be referred for healthcare facility evaluation.
Operational flash flood forecasting platform based on grid technology
NASA Astrophysics Data System (ADS)
Thierion, V.; Ayral, P.-A.; Angelini, V.; Sauvagnargues-Lesage, S.; Nativi, S.; Payrastre, O.
2009-04-01
Flash flood events of south of France such as the 8th and 9th September 2002 in the Grand Delta territory caused important economic and human damages. Further to this catastrophic hydrological situation, a reform of flood warning services have been initiated (set in 2006). Thus, this political reform has transformed the 52 existing flood warning services (SAC) in 22 flood forecasting services (SPC), in assigning them territories more hydrological consistent and new effective hydrological forecasting mission. Furthermore, national central service (SCHAPI) has been created to ease this transformation and support local services in their new objectives. New functioning requirements have been identified: - SPC and SCHAPI carry the responsibility to clearly disseminate to public organisms, civil protection actors and population, crucial hydrologic information to better anticipate potential dramatic flood event, - a new effective hydrological forecasting mission to these flood forecasting services seems essential particularly for the flash floods phenomenon. Thus, models improvement and optimization was one of the most critical requirements. Initially dedicated to support forecaster in their monitoring mission, thanks to measuring stations and rainfall radar images analysis, hydrological models have to become more efficient in their capacity to anticipate hydrological situation. Understanding natural phenomenon occuring during flash floods mainly leads present hydrological research. Rather than trying to explain such complex processes, the presented research try to manage the well-known need of computational power and data storage capacities of these services. Since few years, Grid technology appears as a technological revolution in high performance computing (HPC) allowing large-scale resource sharing, computational power using and supporting collaboration across networks. Nowadays, EGEE (Enabling Grids for E-science in Europe) project represents the most important effort in term of grid technology development. This paper presents an operational flash flood forecasting platform which have been developed in the framework of CYCLOPS European project providing one of virtual organizations of EGEE project. This platform has been designed to enable multi-simulations processes to ease forecasting operations of several supervised watersheds on Grand Delta (SPC-GD) territory. Grid technology infrastructure, in providing multiple remote computing elements enables the processing of multiple rainfall scenarios, derived to the original meteorological forecasting transmitted by Meteo-France, and their respective hydrological simulations. First results show that from one forecasting scenario, this new presented approach can permit simulations of more than 200 different scenarios to support forecasters in their aforesaid mission and appears as an efficient hydrological decision-making tool. Although, this system seems operational, model validity has to be confirmed. So, further researches are necessary to improve models core to be more efficient in term of hydrological aspects. Finally, this platform could be an efficient tool for developing others modelling aspects as calibration or data assimilation in real time processing.
Human activity/uptake rate data are necessary to estimate potential human exposure and intake dose to environmental pollutants and to refine human exposure models. Personal exposure monitoring studies have demonstrated the critical role that activities play in explaining and pre...
Bessems, Jos G M; Paini, Alicia; Gajewska, Monika; Worth, Andrew
2017-12-01
Route-to-route extrapolation is a common part of human risk assessment. Data from oral animal toxicity studies are commonly used to assess the safety of various but specific human dermal exposure scenarios. Using theoretical examples of various user scenarios, it was concluded that delineation of a generally applicable human dermal limit value is not a practicable approach, due to the wide variety of possible human exposure scenarios, including its consequences for internal exposure. This paper uses physiologically based kinetic (PBK) modelling approaches to predict animal as well as human internal exposure dose metrics and for the first time, introduces the concept of Margin of Internal Exposure (MOIE) based on these internal dose metrics. Caffeine was chosen to illustrate this approach. It is a substance that is often found in cosmetics and for which oral repeated dose toxicity data were available. A rat PBK model was constructed in order to convert the oral NOAEL to rat internal exposure dose metrics, i.e. the area under the curve (AUC) and the maximum concentration (C max ), both in plasma. A human oral PBK model was constructed and calibrated using human volunteer data and adapted to accommodate dermal absorption following human dermal exposure. Use of the MOIE approach based on internal dose metrics predictions provides excellent opportunities to investigate the consequences of variations in human dermal exposure scenarios. It can accommodate within-day variation in plasma concentrations and is scientifically more robust than assuming just an exposure in mg/kg bw/day. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Teklu, Gebreyohans Gebru; Hailu, Teweldemedhn Gebretinsae; Eshetu, Gebremedhin Romha
2017-01-01
Background Rabies is a fatal zoonotic disease that has been known in Ethiopia for centuries in society as “Mad Dog Disease”. It is an important disease with veterinary and public health significance in the North western zone of Tigray where previous studies have not been conducted. Frequent occurrence of outbreaks in the area led the researchers to carry out a four year retrospective study to estimate the incidence of human rabies exposure in Northwestern Tigray, Ethiopia. Methodology A referent study was conducted on human rabies exposure cases recorded from 2012 to 2015 at Suhul hospital, Shire Endaselase, Northwestern Tigray, Ethiopia. Exposure cases included in this research constituted victims bitten by unprovoked dogs and who received post exposure prophylaxis (PEP) at the hospital. Two thousand one hundred eighty human rabies exposure cases retrieved from the rabies case database were included in this study. Principal findings The majority of the exposed cases were males (1363/2180, 63%). Age wise, the most exposed age group was ≥15 years in all the study years: 166 (58%), 335 (65%), 492 (66%) and 394 (63%) in 2012, 2013, 2014 and 2015, respectively. Similarly, exposure cases for human rabies increased with age in both males and females across the study years. The incidence of human rabies exposure cases calculated per 100,000 populations was 35.8, 63.0, 89.8 and 73.1 in 2012, 2013, 2014 and 2015, respectively. Binary logistic regression analysis revealed that being male was a risk for human rabies exposure in all the study years. Conclusion The study discovered the highest annual human rabies exposure incidence in Ethiopia. This suggests an urgent need for synergistic efforts of human and animal health sectors to implement prevention and control strategies in this area. PMID:28060935
Effective Presentation of Metabolic Rate Information for Lunar Extravehicular Activity (EVA)
NASA Technical Reports Server (NTRS)
Mackin, Michael A.; Gonia, Philip; Lombay-Gonzalez, Jose
2010-01-01
During human exploration of the lunar surface, a suited crewmember needs effective and accurate information about consumable levels remaining in their life support system. The information must be presented in a manner that supports real-time consumable monitoring and route planning. Since consumable usage is closely tied to metabolic rate, the lunar suit must estimate metabolic rate from life support sensors, such as oxygen tank pressures, carbon dioxide partial pressure, and cooling water inlet and outlet temperatures. To provide adequate warnings that account for traverse time for a crewmember to return to a safe haven, accurate forecasts of consumable depletion rates are required. The forecasts must be presented to the crewmember in a straightforward, effective manner. In order to evaluate methods for displaying consumable forecasts, a desktop-based simulation of a lunar Extravehicular Activity (EVA) has been developed for the Constellation lunar suite s life-support system. The program was used to compare the effectiveness of several different data presentation methods.
Grade Expectations: Rationality and Overconfidence
Magnus, Jan R.; Peresetsky, Anatoly A.
2018-01-01
Confidence and overconfidence are essential aspects of human nature, but measuring (over)confidence is not easy. Our approach is to consider students' forecasts of their exam grades. Part of a student's grade expectation is based on the student's previous academic achievements; what remains can be interpreted as (over)confidence. Our results are based on a sample of about 500 second-year undergraduate students enrolled in a statistics course in Moscow. The course contains three exams and each student produces a forecast for each of the three exams. Our models allow us to estimate overconfidence quantitatively. Using these models we find that students' expectations are not rational and that most students are overconfident, in agreement with the general literature. Less obvious is that overconfidence helps: given the same academic achievement students with larger confidence obtain higher exam grades. Female students are less overconfident than male students, their forecasts are more rational, and they are also faster learners in the sense that they adjust their expectations more rapidly. PMID:29375449
NASA Astrophysics Data System (ADS)
Garcin, Matthieu
2017-10-01
Hurst exponents depict the long memory of a time series. For human-dependent phenomena, as in finance, this feature may vary in the time. It justifies modelling dynamics by multifractional Brownian motions, which are consistent with time-dependent Hurst exponents. We improve the existing literature on estimating time-dependent Hurst exponents by proposing a smooth estimate obtained by variational calculus. This method is very general and not restricted to the sole Hurst framework. It is globally more accurate and easier than other existing non-parametric estimation techniques. Besides, in the field of Hurst exponents, it makes it possible to make forecasts based on the estimated multifractional Brownian motion. The application to high-frequency foreign exchange markets (GBP, CHF, SEK, USD, CAD, AUD, JPY, CNY and SGD, all against EUR) shows significantly good forecasts. When the Hurst exponent is higher than 0.5, what depicts a long-memory feature, the accuracy is higher.
NASA Astrophysics Data System (ADS)
Peterson, Brittany Ann
Winter storms can affect millions of people, with impacts such as disruptions to transportation, hazards to human health, reduction in retail sales, and structural damage. Blizzard forecasts for Alberta Clippers can be a particular challenge in the Northern Plains, as these systems typically depart from the Canadian Rockies, intensify, and impact the Northern Plains all within 24 hours. The purpose of this study is to determine whether probabilistic forecasts derived from a local physics-based ensemble can improve specific aspects of winter storm forecasts for three Alberta Clipper cases. Verification is performed on the ensemble members and ensemble mean with a focus on quantifying uncertainty in the storm track, two-meter winds, and precipitation using the MERRA and NOHRSC SNODAS datasets. This study finds that addition improvements are needed to proceed with operational use of the ensemble blizzard products, but the use of a proxy for blizzard conditions yields promising results.
Automatic load forecasting. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, D.J.; Vemuri, S.
A method which lends itself to on-line forecasting of hourly electric loads is presented and the results of its use are compared to models developed using the Box-Jenkins method. The method consists of processing the historical hourly loads with a sequential least-squares estimator to identify a finite order autoregressive model which in turn is used to obtain a parsimonious autoregressive-moving average model. A procedure is also defined for incorporating temperature as a variable to improve forecasts where loads are temperature dependent. The method presented has several advantages in comparison to the Box-Jenkins method including much less human intervention and improvedmore » model identification. The method has been tested using three-hourly data from the Lincoln Electric System, Lincoln, Nebraska. In the exhaustive analyses performed on this data base this method produced significantly better results than the Box-Jenkins method. The method also proved to be more robust in that greater confidence could be placed in the accuracy of models based upon the various measures available at the identification stage.« less
Fuentes, Màrius V
2006-11-01
Fasciolosis caused by Fasciola hepatica in various South American countries located on the slopes of the Andes has been recognized as an important public health problem. However, the importance of this zoonotic hepatic parasite was neglected until the last decade. Countries such as Peru and Bolivia are considered to be hyperendemic areas for human and animal fasciolosis, and other countries such as Chile, Ecuador, Colombia and Venezuela are also affected. At the beginning of the 1990s a multidisciplinary project was launched with the aim to shed light on the problems related to this parasitic disease in the Northern Bolivian Altiplano. A few years later, a geographic information system (GIS) was incorporated into this multidisciplinary project analysing the epidemiology of human and animal fasciolosis in this South American Andean region. Various GIS projects were developed in some Andean regions using climatic data, climatic forecast indices and remote sensing data. Step by step, all these GIS projects concerning the forecast of the fasciolosis transmission risk in the Andean mountain range were revised and in some cases updated taking into account new data. The first of these projects was developed on a regional scale for the central Chilean regions and the proposed model was validated on a local scale in the Northern Bolivian Altiplano. This validated mixed model, based on both fasciolosis climatic forecast indices and normalized difference vegetation index values from Advanced Very High Resolution Radiometer satellite sensor, was extrapolated to other human and/or animal endemic areas of Peru and Ecuador. The resulting fasciolosis risk maps make it possible to show the known human endemic areas of, mainly, the Peruvian Altiplano, Cajamarca and Mantaro Peruvian valleys, and some valleys of the Ecuadorian Cotopaxi province. Nevertheless, more climate and remote sensing data, as well as more accurate epidemiological reports, have to be incorporated into these GIS projects, which should be considered the key in understanding fasciolosis transmission in the Andes.
Prioritizing Chemicals and Data Requirements for Screening-Level Exposure and Risk Assessment
Brown, Trevor N.; Wania, Frank; Breivik, Knut; McLachlan, Michael S.
2012-01-01
Background: Scientists and regulatory agencies strive to identify chemicals that may cause harmful effects to humans and the environment; however, prioritization is challenging because of the large number of chemicals requiring evaluation and limited data and resources. Objectives: We aimed to prioritize chemicals for exposure and exposure potential and obtain a quantitative perspective on research needs to better address uncertainty in screening assessments. Methods: We used a multimedia mass balance model to prioritize > 12,000 organic chemicals using four far-field human exposure metrics. The propagation of variance (uncertainty) in key chemical information used as model input for calculating exposure metrics was quantified. Results: Modeled human concentrations and intake rates span approximately 17 and 15 orders of magnitude, respectively. Estimates of exposure potential using human concentrations and a unit emission rate span approximately 13 orders of magnitude, and intake fractions span 7 orders of magnitude. The actual chemical emission rate contributes the greatest variance (uncertainty) in exposure estimates. The human biotransformation half-life is the second greatest source of uncertainty in estimated concentrations. In general, biotransformation and biodegradation half-lives are greater sources of uncertainty in modeled exposure and exposure potential than chemical partition coefficients. Conclusions: Mechanistic exposure modeling is suitable for screening and prioritizing large numbers of chemicals. By including uncertainty analysis and uncertainty in chemical information in the exposure estimates, these methods can help identify and address the important sources of uncertainty in human exposure and risk assessment in a systematic manner. PMID:23008278
Human occupational and nonoccupational exposure to fibers.
Esmen, N A; Erdal, S
1990-01-01
Human exposure to fibers in occupational and nonoccupational environments has been a health concern for nearly a century. In this review, selected results from the literature are presented to highlight the availability, limitations, and interpretive difficulties associated with the past and current human fiber exposure data sets. In the traditionally defined asbestos fibers, large amounts of the data available suffer from the diversity of sample collection and analysis methods. Two simple generalizations suggest that occupational exposures are several orders of magnitude higher than that of environmental exposures; and currently extant data and the current routine measurement practices present significant difficulties in the consistent interpretation of the data with respect to health effects. The data on the human exposures to man-made vitreous fibers are much more complete than the data on asbestos exposure, while exposure data on other man-made fibrous materials are lacking. The human exposure data to many minerals which, at times, exist in fibrous habit, are very scanty, and in view of the biological activity of some of these fibers, this lack may be of significant concern. PMID:2272324
Stochastic Human Exposure and Dose Simulation Model for Pesticides
SHEDS-Pesticides (Stochastic Human Exposure and Dose Simulation Model for Pesticides) is a physically-based stochastic model developed to quantify exposure and dose of humans to multimedia, multipathway pollutants. Probabilistic inputs are combined in physical/mechanistic algorit...
Human exposure assessment resources on the World Wide Web.
Schwela, Dieter; Hakkinen, Pertti J
2004-05-20
Human exposure assessment is frequently noted as a weak link and bottleneck in the risk assessment process. Fortunately, the World Wide Web and Internet are providing access to numerous valuable sources of human exposure assessment-related information, along with opportunities for information exchange. Internet mailing lists are available as potential online help for exposure assessment questions, e.g. RISKANAL has several hundred members from numerous countries. Various Web sites provide opportunities for training, e.g. Web sites offering general human exposure assessment training include two from the US Environmental Protection Agency (EPA) and four from the US National Library of Medicine. Numerous other Web sites offer access to a wide range of exposure assessment information. For example, the (US) Alliance for Chemical Awareness Web site addresses direct and indirect human exposures, occupational exposures and ecological exposure assessments. The US EPA's Exposure Factors Program Web site provides a focal point for current information and data on exposure factors relevant to the United States. In addition, the International Society of Exposure Analysis Web site provides information about how this society seeks to foster and advance the science of exposure analysis. A major opportunity exists for risk assessors and others to broaden the level of exposure assessment information available via Web sites. Broadening the Web's exposure information could include human exposure factors-related information about country- or region-specific ranges in body weights, drinking water consumption, etc. along with residential factors-related information on air changeovers per hour in various types of residences. Further, country- or region-specific ranges on how various tasks are performed by various types of consumers could be collected and provided. Noteworthy are that efforts are underway in Europe to develop a multi-country collection of exposure factors and the European Commission is in the early stages of planning and developing a Web-accessible information system (EIS-ChemRisks) to serve as a single gateway to all major European initiatives on human exposure to chemicals contained and released from cleaning products, textiles, toys, etc.
Safety assessment for hair-spray resins: risk assessment based on rodent inhalation studies.
Carthew, Philip; Griffiths, Heather; Keech, Stephen; Hartop, Peter
2002-04-01
The methods involved in the safety assessment of resins used in hair-spray products have received little peer review, or debate in the published literature, despite their widespread use, in both hairdressing salons and the home. The safety assessment for these resins currently involves determining the type of lung pathology that can be caused in animal inhalation exposure studies, and establishing the no-observable-effect level (NOEL) for these pathologies. The likely human consumer exposure is determined by techniques that model the simulated exposure under "in use" conditions. From these values it is then possible to derive the likely safety factors for human exposure. An important part of this process would be to recognize the intrinsic differences between rodents and humans in terms of the respiratory doses that each species experiences during inhalation exposures, for the purpose of the safety assessment. Interspecies scaling factors become necessary when comparing the exposure doses experienced by rats, compared to humans, because of basic differences between species in lung clearance rates and the alveolar area in the lungs. The rodent inhalation data and modeled human exposure to Resin 6965, a resin polymer that is based on vinyl acetate, has been used to calculate the safety factor for human consumer exposure to this resin, under a range of "in use" exposure conditions. The use of this safety assessment process clearly demonstrates that Resin 6965 is acceptable for human consumer exposure under the conditions considered in this risk assessment.
Systems exposure science has emerged from the traditional environmental exposure assessment framework and incorporates new concepts that link sources of human exposure to internal dose and metabolic processes. Because many human environmental studies are designed for retrospectiv...
Guide to the evaluation of human exposure to noise from large wind turbines
NASA Technical Reports Server (NTRS)
Stephens, D. G.; Shepherd, K. P.; Hubbard, H. H.; Grosveld, F.
1982-01-01
Guidance for evaluating human exposure to wind turbine noise is provided and includes consideration of the source characteristics, the propagation to the receiver location, and the exposure of the receiver to the noise. The criteria for evaluation of human exposure are based on comparisons of the noise at the receiver location with the human perception thresholds for wind turbine noise and noise-induced building vibrations in the presence of background noise.
Dionisio, Kathie L; Nolte, Christopher G; Spero, Tanya L; Graham, Stephen; Caraway, Nina; Foley, Kristen M; Isaacs, Kristin K
2017-05-01
The impact of climate change on human and environmental health is of critical concern. Population exposures to air pollutants both indoors and outdoors are influenced by a wide range of air quality, meteorological, behavioral, and housing-related factors, many of which are also impacted by climate change. An integrated methodology for modeling changes in human exposures to tropospheric ozone (O 3 ) owing to potential future changes in climate and demographics was implemented by linking existing modeling tools for climate, weather, air quality, population distribution, and human exposure. Human exposure results from the Air Pollutants Exposure Model (APEX) for 12 US cities show differences in daily maximum 8-h (DM8H) exposure patterns and levels by sex, age, and city for all scenarios. When climate is held constant and population demographics are varied, minimal difference in O 3 exposures is predicted even with the most extreme demographic change scenario. In contrast, when population is held constant, we see evidence of substantial changes in O 3 exposure for the most extreme change in climate. Similarly, we see increases in the percentage of the population in each city with at least one O 3 exposure exceedance above 60 p.p.b and 70 p.p.b thresholds for future changes in climate. For these climate and population scenarios, the impact of projected changes in climate and air quality on human exposure to O 3 are much larger than the impacts of changing demographics. These results indicate the potential for future changes in O 3 exposure as a result of changes in climate that could impact human health.
Assimilation of Real-Time Satellite And Human Sensor Networks for Modeling Natural Disasters
NASA Astrophysics Data System (ADS)
Aulov, O.; Halem, M.; Lary, D. J.
2011-12-01
We describe the development of underlying technologies needed to address the merging of a web of real time satellite sensor Web (SSW) and Human Sensor Web (HSW) needed to augment the US response to extreme events. As an initial prototyping step and use case scenario, we consider the development of two major system tools that can be transitioned from research to the responding operational agency for mitigating coastal oil spills. These tools consist of the capture of Situation Aware (SA) Social Media (SM) Data, and assimilation of the processed information into forecasting models to provide incident decision managers with interactive virtual spatial temporal animations superimposed with probabilistic data estimates. The system methodologies are equally applicable to the wider class of extreme events such as plume dispersions from volcanoes or massive fires, major floods, hurricane impacts, radioactive isotope dispersions from nuclear accidents, etc. A successful feasibility demonstration of this technology has been shown in the case of the Deepwater Horizon Oil Spill where Human Sensor Networks have been combined with a geophysical model to perform parameter assessments. Flickr images of beached oil were mined from the spill area, geolocated and timestamped and converted into geophysical data. This data was incorporated into General NOAA Operational Modeling Environment (GNOME), a Lagrangian forecast model that uses near real-time surface winds, ocean currents, and satellite shape profiles of oil to generate a forecast of plume movement. As a result, improved estimates of diffusive coefficients and rates of oil spill were determined. Current approaches for providing satellite derived oil distributions are collected from a satellite sensor web of operational and research sensors from many countries, and a manual analysis is performed by NESDIS. A real time SA HSW processing system based on geolocated SM data from sources such as Twitter, Flickr, YouTube etc., greatly supplements the current operational practice of sending out teams of humans to gather samples of tarballs reaching coastal locations. We show that ensemble Kalman filter assimilation of the combination of SM data with model forecast background data fields can minimize the false positive cases of satellite observations alone. Our future framework consists of two parts, a real time SA HSW processing system and an on-demand SSW processing system. HSW processing system uses a geolocated SM data to provide observations of coastal oil contact. SSW system is composed of selected instruments from NASA EOS, NPP and available Decadal Survey mission satellites along with other in situ data to form a real time regional oil spill observing system. We will automate the NESDIS manual process of providing oil spill maps by using Self Organizing Feature Map (SOFM) algorithm. We use the LETKF scheme for assimilating the satellite sensor web and HSW observations into the GNOME model to reduce the uncertainty of the observations. We intend to infuse these developments in an SOA implementation for execution of event driven model forecast assimilation cycles in a dedicated HPC cloud.
One-year simulation of ozone and particulate matter in China using WRF/CMAQ modeling system
NASA Astrophysics Data System (ADS)
Hu, Jianlin; Chen, Jianjun; Ying, Qi; Zhang, Hongliang
2016-08-01
China has been experiencing severe air pollution in recent decades. Although an ambient air quality monitoring network for criteria pollutants has been constructed in over 100 cities since 2013 in China, the temporal and spatial characteristics of some important pollutants, such as particulate matter (PM) components, remain unknown, limiting further studies investigating potential air pollution control strategies to improve air quality and associating human health outcomes with air pollution exposure. In this study, a yearlong (2013) air quality simulation using the Weather Research and Forecasting (WRF) model and the Community Multi-scale Air Quality (CMAQ) model was conducted to provide detailed temporal and spatial information of ozone (O3), total PM2.5, and chemical components. Multi-resolution Emission Inventory for China (MEIC) was used for anthropogenic emissions and observation data obtained from the national air quality monitoring network were collected to validate model performance. The model successfully reproduces the O3 and PM2.5 concentrations at most cities for most months, with model performance statistics meeting the performance criteria. However, overprediction of O3 generally occurs at low concentration range while underprediction of PM2.5 happens at low concentration range in summer. Spatially, the model has better performance in southern China than in northern China, central China, and Sichuan Basin. Strong seasonal variations of PM2.5 exist and wind speed and direction play important roles in high PM2.5 events. Secondary components have more boarder distribution than primary components. Sulfate (SO42-), nitrate (NO3-), ammonium (NH4+), and primary organic aerosol (POA) are the most important PM2.5 components. All components have the highest concentrations in winter except secondary organic aerosol (SOA). This study proves the ability of the CMAQ model to reproduce severe air pollution in China, identifies the directions where improvements are needed, and provides information for human exposure to multiple pollutants for assessing health effects.
Forecasting natural hazards, performance of scientists, ethics, and the need for transparency
Guzzetti, Fausto
2016-01-01
Landslides are one of several natural hazards. As other natural hazards, landslides are difficult to predict, and their forecasts are uncertain. The uncertainty depends on the poor understanding of the phenomena that control the slope failures, and on the inherent complexity and chaotic nature of the landslides. This is similar to other natural hazards, including hurricanes, earthquakes, volcanic eruptions, floods, and droughts. Due to the severe impact of landslides on the population, the environment, and the economy, forecasting landslides is of scientific interest and of societal relevance, and scientists attempting to forecast landslides face known and new problems intrinsic to the multifaceted interactions between science, decision-making, and the society. The problems include deciding on the authority and reliability of individual scientists and groups of scientists, and evaluating the performances of individual scientists, research teams, and their institutions. Related problems lay in the increasing subordination of research scientists to politics and decision-makers, and in the conceptual and operational models currently used to organize and pay for research, based on apparently objective criteria and metrics, considering science as any other human endeavor, and favoring science that produces results of direct and immediate application. The paper argues that the consequences of these problems have not been considered fully. PMID:27695154
Forecasting natural hazards, performance of scientists, ethics, and the need for transparency.
Guzzetti, Fausto
2016-10-20
Landslides are one of several natural hazards. As other natural hazards, landslides are difficult to predict, and their forecasts are uncertain. The uncertainty depends on the poor understanding of the phenomena that control the slope failures, and on the inherent complexity and chaotic nature of the landslides. This is similar to other natural hazards, including hurricanes, earthquakes, volcanic eruptions, floods, and droughts. Due to the severe impact of landslides on the population, the environment, and the economy, forecasting landslides is of scientific interest and of societal relevance, and scientists attempting to forecast landslides face known and new problems intrinsic to the multifaceted interactions between science, decision-making, and the society. The problems include deciding on the authority and reliability of individual scientists and groups of scientists, and evaluating the performances of individual scientists, research teams, and their institutions. Related problems lay in the increasing subordination of research scientists to politics and decision-makers, and in the conceptual and operational models currently used to organize and pay for research, based on apparently objective criteria and metrics, considering science as any other human endeavor, and favoring science that produces results of direct and immediate application. The paper argues that the consequences of these problems have not been considered fully.
NASA Astrophysics Data System (ADS)
Balavalikar, Supreetha; Nayak, Prabhakar; Shenoy, Narayan; Nayak, Krishnamurthy
2018-04-01
The decline in groundwater is a global problem due to increase in population, industries, and environmental aspects such as increase in temperature, decrease in overall rainfall, loss of forests etc. In Udupi district, India, the water source fully depends on the River Swarna for drinking and agriculture purposes. Since the water storage in Bajae dam is declining day-by-day and the people of Udupi district are under immense pressure due to scarcity of drinking water, alternatively depend on ground water. As the groundwater is being heavily used for drinking and agricultural purposes, there is a decline in its water table. Therefore, the groundwater resources must be identified and preserved for human survival. This research proposes a data driven approach for forecasting the groundwater level. The monthly variations in groundwater level and rainfall data in three observation wells located in Brahmavar, Kundapur and Hebri were investigated and the scenarios were examined for 2000-2013. The focus of this research work is to develop an ANN based groundwater level forecasting model and compare with hybrid ANN-PSO forecasting model. The model parameters are tested using different combinations of the data. The results reveal that PSO-ANN based hybrid model gives a better prediction accuracy, than ANN alone.
Liu, Bing-Chun; Binaykia, Arihant; Chang, Pei-Chann; Tiwari, Manoj Kumar; Tsao, Cheng-Chin
2017-01-01
Today, China is facing a very serious issue of Air Pollution due to its dreadful impact on the human health as well as the environment. The urban cities in China are the most affected due to their rapid industrial and economic growth. Therefore, it is of extreme importance to come up with new, better and more reliable forecasting models to accurately predict the air quality. This paper selected Beijing, Tianjin and Shijiazhuang as three cities from the Jingjinji Region for the study to come up with a new model of collaborative forecasting using Support Vector Regression (SVR) for Urban Air Quality Index (AQI) prediction in China. The present study is aimed to improve the forecasting results by minimizing the prediction error of present machine learning algorithms by taking into account multiple city multi-dimensional air quality information and weather conditions as input. The results show that there is a decrease in MAPE in case of multiple city multi-dimensional regression when there is a strong interaction and correlation of the air quality characteristic attributes with AQI. Also, the geographical location is found to play a significant role in Beijing, Tianjin and Shijiazhuang AQI prediction. PMID:28708836
Forecasting infectious disease emergence subject to seasonal forcing.
Miller, Paige B; O'Dea, Eamon B; Rohani, Pejman; Drake, John M
2017-09-06
Despite high vaccination coverage, many childhood infections pose a growing threat to human populations. Accurate disease forecasting would be of tremendous value to public health. Forecasting disease emergence using early warning signals (EWS) is possible in non-seasonal models of infectious diseases. Here, we assessed whether EWS also anticipate disease emergence in seasonal models. We simulated the dynamics of an immunizing infectious pathogen approaching the tipping point to disease endemicity. To explore the effect of seasonality on the reliability of early warning statistics, we varied the amplitude of fluctuations around the average transmission. We proposed and analyzed two new early warning signals based on the wavelet spectrum. We measured the reliability of the early warning signals depending on the strength of their trend preceding the tipping point and then calculated the Area Under the Curve (AUC) statistic. Early warning signals were reliable when disease transmission was subject to seasonal forcing. Wavelet-based early warning signals were as reliable as other conventional early warning signals. We found that removing seasonal trends, prior to analysis, did not improve early warning statistics uniformly. Early warning signals anticipate the onset of critical transitions for infectious diseases which are subject to seasonal forcing. Wavelet-based early warning statistics can also be used to forecast infectious disease.
NASA Astrophysics Data System (ADS)
Reckziegel, F.; Bustos, E.; Mingari, L.; Báez, W.; Villarosa, G.; Folch, A.; Collini, E.; Viramonte, J.; Romero, J.; Osores, S.
2016-07-01
Atmospheric dispersion of volcanic ash from explosive eruptions or from subsequent fallout deposit resuspension causes a range of impacts and disruptions on human activities and ecosystems. The April-May 2015 Calbuco eruption in Chile involved eruption and resuspension activities. We overview the chronology, effects, and products resulting from these events, in order to validate an operational forecast strategy for tephra dispersal. The modelling strategy builds on coupling the meteorological Weather Research and Forecasting (WRF/ARW) model with the FALL3D dispersal model for eruptive and resuspension processes. The eruption modelling considers two distinct particle granulometries, a preliminary first guess distribution used operationally when no field data was available yet, and a refined distribution based on field measurements. Volcanological inputs were inferred from eruption reports and results from an Argentina-Chilean ash sample data network, which performed in-situ sampling during the eruption. In order to validate the modelling strategy, results were compared with satellite retrievals and ground deposit measurements. Results indicate that the WRF-FALL3D modelling system can provide reasonable forecasts in both eruption and resuspension modes, particularly when the adjusted granulometry is considered. The study also highlights the importance of having dedicated datasets of active volcanoes furnishing first-guess model inputs during the early stages of an eruption.
40 CFR 158.2270 - Post-application exposure.
Code of Federal Regulations, 2013 CFR
2013-07-01
... and the human activities associated with the pesticide's use pattern can lead to potential adverse...) Occupational human post-application or bystander exposure to residues of antimicrobial pesticides could occur... human post-application or bystander exposure to residues of antimicrobial pesticides could occur...
40 CFR 158.2270 - Post-application exposure.
Code of Federal Regulations, 2014 CFR
2014-07-01
... and the human activities associated with the pesticide's use pattern can lead to potential adverse...) Occupational human post-application or bystander exposure to residues of antimicrobial pesticides could occur... human post-application or bystander exposure to residues of antimicrobial pesticides could occur...
IMMUNOASSAY HUMAN EXPOSURE STUDIES
The Human Exposure Research Branch has developed several enzyme-linked immunosorbent assay (ELISA) methods to support human exposure assessment studies. Immunoassays to detect low levels (<10 ng/mL) of chlorpyrifos in food, track-in dirt and house dust have been applied to sam...
Metropolitan Water Availability Forecasting Methods and Applications in South Florida
The availability of adequate fresh water is fundamental to the sustainable management of water infrastructures that support both urban needs and agricultural uses in human society. Recent drought events in the U.S. have threatened drinking water supplies for communities in Maryl...
Orbit selection and its impact on radiation warning architecture for a human mission to Mars.
Turner, R E; Levine, J M
1998-01-01
With the recent announcement of the discovery of the possibility of life on Mars, there is renewed interest in Mars missions, perhaps eventually in human missions. Astronauts on such missions are at risk to occasional periods of enhanced high energy particle flux from the sun known as Solar Particle Events. These events can pose a substantial risk to the health of the astronauts and to the on-board electronics. Effective forecast and warning of these events could provide time to take steps to minimize the risk (retreating to a safe haven, shutting down sensitive equipment, etc.) Providing that forecast capability, will require additional monitoring capability. The extent of this architecture is sensitive to the orbit selected for the transfer to and from Mars. This paper looks at the major classes of Mars missions (Conjunction and Opposition) and sub-categories of these classes and draws conclusions on the number of monitoring satellites needed for each, with a goal to reducing total system cost through optimum orbit selection.
NASA Astrophysics Data System (ADS)
Kim, Yongku; Seo, Young-Kyo; Baek, Sung-Ok
2013-12-01
Although large quantities of air pollutants are released into the atmosphere, they are partially monitored and routinely assessed for their health implications. This paper proposes a statistical model describing the temporal behavior of hazardous air pollutants (HAPs), which can have negative effects on human health. Benzo[a]pyrene (BaP) is selected for statistical modeling. The proposed model incorporates the linkage between BaP and meteorology and is specifically formulated to identify meteorological effects and allow for seasonal trends. The model is used to estimate and forecast temporal fields of BaP conditional on observed (or forecasted) meteorological conditions, including temperature, precipitation, wind speed, and air quality. The effects of BaP on human health are examined by characterizing health indicators, namely the cancer risk and the hazard quotient. The model provides useful information for the optimal monitoring period and projection of future BaP concentrations for both industrial and residential areas in Korea.
Are We Reaching the Limits of Homo sapiens?
Marck, Adrien; Antero, Juliana; Berthelot, Geoffroy; Saulière, Guillaume; Jancovici, Jean-Marc; Masson-Delmotte, Valérie; Boeuf, Gilles; Spedding, Michael; Le Bourg, Éric; Toussaint, Jean-François
2017-01-01
Echoing scientific and industrial progress, the Twentieth century was an unprecedented period of improvement for human capabilities and performances, with a significant increase in lifespan, adult height, and maximal physiological performance. Analyses of historical data show a major slow down occurring in the most recent years. This triggered large and passionate debates in the academic scene within multiple disciplines; as such an observation could be interpreted as our upper biological limits. Such a new phase of human history may be related to structural and functional limits determined by long term evolutionary constraints, and the interaction between complex systems and their environment. In this interdisciplinary approach, we call into question the validity of subsequent forecasts and projections through innovative and related biomarkers such as sport, lifespan, and height indicators. We set a theoretical framework based on biological and environmental relevance rather than using a typical single-variable forecasting approach. As demonstrated within the article, these new views will have major social, economical, and political implications. PMID:29123486
Are We Reaching the Limits of Homo sapiens?
Marck, Adrien; Antero, Juliana; Berthelot, Geoffroy; Saulière, Guillaume; Jancovici, Jean-Marc; Masson-Delmotte, Valérie; Boeuf, Gilles; Spedding, Michael; Le Bourg, Éric; Toussaint, Jean-François
2017-01-01
Echoing scientific and industrial progress, the Twentieth century was an unprecedented period of improvement for human capabilities and performances, with a significant increase in lifespan, adult height, and maximal physiological performance. Analyses of historical data show a major slow down occurring in the most recent years. This triggered large and passionate debates in the academic scene within multiple disciplines; as such an observation could be interpreted as our upper biological limits. Such a new phase of human history may be related to structural and functional limits determined by long term evolutionary constraints, and the interaction between complex systems and their environment. In this interdisciplinary approach, we call into question the validity of subsequent forecasts and projections through innovative and related biomarkers such as sport, lifespan, and height indicators. We set a theoretical framework based on biological and environmental relevance rather than using a typical single-variable forecasting approach. As demonstrated within the article, these new views will have major social, economical, and political implications.
POPULATION EXPOSURE AND DOSE MODEL FOR AIR TOXICS: A BENZENE CASE STUDY
The EPA's National Exposure Research Laboratory (NERL) is developing a human exposure and dose model called the Stochastic Human Exposure and Dose Simulation model for Air Toxics (SHEDS-AirToxics) to characterize population exposure to air toxics in support of the National Air ...
Personalized Exposure Assessment: Promising Approaches for Human Environmental Health Research
Weis, Brenda K.; Balshaw, David; Barr, John R.; Brown, David; Ellisman, Mark; Lioy, Paul; Omenn, Gilbert; Potter, John D.; Smith, Martyn T.; Sohn, Lydia; Suk, William A.; Sumner, Susan; Swenberg, James; Walt, David R.; Watkins, Simon; Thompson, Claudia; Wilson, Samuel H.
2005-01-01
New technologies and methods for assessing human exposure to chemicals, dietary and lifestyle factors, infectious agents, and other stressors provide an opportunity to extend the range of human health investigations and advance our understanding of the relationship between environmental exposure and disease. An ad hoc Committee on Environmental Exposure Technology Development was convened to identify new technologies and methods for deriving personalized exposure measurements for application to environmental health studies. The committee identified a “toolbox” of methods for measuring external (environmental) and internal (biologic) exposure and assessing human behaviors that influence the likelihood of exposure to environmental agents. The methods use environmental sensors, geographic information systems, biologic sensors, toxicogenomics, and body burden (biologic) measurements. We discuss each of the methods in relation to current use in human health research; specific gaps in the development, validation, and application of the methods are highlighted. We also present a conceptual framework for moving these technologies into use and acceptance by the scientific community. The framework focuses on understanding complex human diseases using an integrated approach to exposure assessment to define particular exposure–disease relationships and the interaction of genetic and environmental factors in disease occurrence. Improved methods for exposure assessment will result in better means of monitoring and targeting intervention and prevention programs. PMID:16002370
State-space based analysis and forecasting of macroscopic road safety trends in Greece.
Antoniou, Constantinos; Yannis, George
2013-11-01
In this paper, macroscopic road safety trends in Greece are analyzed using state-space models and data for 52 years (1960-2011). Seemingly unrelated time series equations (SUTSE) models are developed first, followed by richer latent risk time-series (LRT) models. As reliable estimates of vehicle-kilometers are not available for Greece, the number of vehicles in circulation is used as a proxy to the exposure. Alternative considered models are presented and discussed, including diagnostics for the assessment of their model quality and recommendations for further enrichment of this model. Important interventions were incorporated in the models developed (1986 financial crisis, 1991 old-car exchange scheme, 1996 new road fatality definition) and found statistically significant. Furthermore, the forecasting results using data up to 2008 were compared with final actual data (2009-2011) indicating that the models perform properly, even in unusual situations, like the current strong financial crisis in Greece. Forecasting results up to 2020 are also presented and compared with the forecasts of a model that explicitly considers the currently on-going recession. Modeling the recession, and assuming that it will end by 2013, results in more reasonable estimates of risk and vehicle-kilometers for the 2020 horizon. This research demonstrates the benefits of using advanced state-space modeling techniques for modeling macroscopic road safety trends, such as allowing the explicit modeling of interventions. The challenges associated with the application of such state-of-the-art models for macroscopic phenomena, such as traffic fatalities in a region or country, are also highlighted. Furthermore, it is demonstrated that it is possible to apply such complex models using the relatively short time-series that are available in macroscopic road safety analysis. Copyright © 2013 Elsevier Ltd. All rights reserved.
Time Prediction Models for Echinococcosis Based on Gray System Theory and Epidemic Dynamics.
Zhang, Liping; Wang, Li; Zheng, Yanling; Wang, Kai; Zhang, Xueliang; Zheng, Yujian
2017-03-04
Echinococcosis, which can seriously harm human health and animal husbandry production, has become an endemic in the Xinjiang Uygur Autonomous Region of China. In order to explore an effective human Echinococcosis forecasting model in Xinjiang, three grey models, namely, the traditional grey GM(1,1) model, the Grey-Periodic Extensional Combinatorial Model (PECGM(1,1)), and the Modified Grey Model using Fourier Series (FGM(1,1)), in addition to a multiplicative seasonal ARIMA(1,0,1)(1,1,0)₄ model, are applied in this study for short-term predictions. The accuracy of the different grey models is also investigated. The simulation results show that the FGM(1,1) model has a higher performance ability, not only for model fitting, but also for forecasting. Furthermore, considering the stability and the modeling precision in the long run, a dynamic epidemic prediction model based on the transmission mechanism of Echinococcosis is also established for long-term predictions. Results demonstrate that the dynamic epidemic prediction model is capable of identifying the future tendency. The number of human Echinococcosis cases will increase steadily over the next 25 years, reaching a peak of about 1250 cases, before eventually witnessing a slow decline, until it finally ends.
NASA Astrophysics Data System (ADS)
Liu, Jia-ming; Lin, Li-ping; Jiang, Shu-Lian; Cui, Ma Lin; Jiao, Li; Zhang, Xiao Yang; Zhang, Li-hong; Zheng, Zhi Yong; Lin, Xuan; Lin, Shao-qin
2013-11-01
Based on the reaction of the active -OH group in fullerol (F) with the dissociated -COOH group in fluorescein isothiocyanate (FITC) to form an F-FITC and the enhanced effect of N, N-dimethylaniline (DMA) on phosphorescence signal of F-FITC, a new phosphorescent labeling reagent (DMA-F-FITC) was developed. What's more, a phosphorescent sensor for the determination of alpha-fetoprotein variant (AFP-V) has been designed via the coupling technique of the high sensitivity for affinity adsorption-solid substrate-room temperature phosphorimetry (AA-SS-RTP) with the strong specificity reaction between DMA-F-FITC-Con A and AFP-V. The DMA-F-FITC increased the number of luminescent molecules in the biological target which improved the sensitivity of phosphorescent sensor. The proposed sensor was responsive, simple, selective and sensitive, and it has been applied to the determination of trace AFP-V in human serum and the forecast of human diseases using phosphorescence emission wavelength of F or FITC, with the results agreed well with those obtained by enzyme-linked immunoassay (ELISA). Meanwhile, the mechanisms for the labeling reaction and the sensing detection of AFP-V were discussed.
SOURCES OF HUMAN EXPOSURE TO AIRBORNE PAH
Personal exposures to airborne particulate polycyclic aromatic hydrocarbons (PAHs) were studied in several populations in the US, Japan, and Czech Republic. Personal exposure monitors, developed for human exposure biomonitoring studies were used to collect fine particles (<_ 1....
Characterizing climate change impacts on human exposures to air pollutants
Human exposures to air pollutants such as ozone (O3) have the potential to be altered by changes in climate through multiple factors that drive population exposures, including: ambient pollutant concentrations, human activity patterns, population sizes and distributions, and hous...
A NEW METHOD OF LONGITUDINAL DIARY ASSEMBLY FOR HUMAN EXPOSURE MODELING
Human exposure time-series modeling requires longitudinal time-activity diaries to evaluate the sequence of concentrations encountered, and hence, pollutant exposure for the simulated individuals. However, most of the available data on human activities are from cross-sectional su...
Human Factors In the Joint Typhoon Warning Center Watch Floor
2012-11-01
Report 3. DATES COVERED (From-To) 01-10-2010 – 30-03-2011 4. TITLE AND SUBTITLE Human Factors in the Joint Typhoon Warning Center Watch Floor...between users’ information requirements and interpretation process and the JTWC’s forecast fields. The language of TCCOR definitions provides one (of...direction error is less than 90°, predicting a position 10 nautical miles (nmi) too close to the current position produces a lower FTE than
Gross, John E.; Tercek, Michael; Guay, Kevin; Chang, Tony; Talbert, Marian; Rodman, Ann; Thoma, David; Jantz, Patrick; Morisette, Jeffrey T.
2016-01-01
Most of the western United States is experiencing the effects of rapid and directional climate change (Garfin et al. 2013). These effects, along with forecasts of profound changes in the future, provide strong motivation for resource managers to learn about and prepare for future changes. Climate adaptation plans are based on an understanding of historic climate variation and their effects on ecosystems and on forecasts of future climate trends. Frameworks for climate adaptation thus universally identify the importance of a summary of historical, current, and projected climates (Glick, Stein, and Edelson 2011; Cross et al. 2013; Stein et al. 2014). Trends in physical climate variables are usually the basis for evaluating the exposure component in vulnerability assessments. Thus, this chapter focuses on step 2 of the Climate-Smart Conservation framework (chap. 2): vulnerability assessment. We present analyses of historical and current observations of temperature, precipitation, and other key climate measurements to provide context and a baseline for interpreting the ecological impacts of projected climate changes.
Sustainability, synthetic chemicals, and human exposure.
Podein, Rian J; Hernke, Michael T; Fortney, Luke W; Rakel, David P
2010-01-01
Public concerns regarding exposures to synthetic chemicals are increasing. Globally, there are increasing concentrations of many synthetic chemicals within the environment. The ubiquitous extent of some chemicals makes human exposure unavoidable. Biomonitoring has emerged as the optimal method for assessing exposures. The extent of human exposure and contamination occurs throughout the life cycle and is widespread. Although there is limited information on health risks for the majority of chemicals within our environment, and those identified with biomonitoring, many are known or suspected to cause human harm. Continued global and national unsustainable development regarding synthetic chemicals will increase the extent of environmental and human contamination unless precautionary action is implemented. Precautionary legislation may protect ecological and public health until societal sustainability is achieved.
EPA'S HUMAN EXPOSURE MEASUREMENT PROGRAM
The goal of NERL's Exposure Research Program is to improve the scientific basis for conducting human exposure assessments that are part of the EPA's risk assessment, risk management and compliance process. Overall, we aim to address aggregate and cumulative exposures that pose...
HUMAN EXPOSURE ASSESSMENT USING IMMUNOASSAY
The National Exposure Research Laboratory-Las Vegas is developing analytical methods for human exposure assessment studies. Critical exposure studies generate a large number of samples which must be analyzed in a reliable, cost-effective and timely manner. TCP (3,5,6-trichlor...
Kirkpatrick, Barbara; Currier, Robert; Nierenberg, Kate; Reich, Andrew; Backer, Lorraine C.; Stumpf, Richard; Fleming, Lora; Kirkpatrick, Gary
2008-01-01
With over 50% of the US population living in coastal counties, the ocean and coastal environments have substantial impacts on coastal communities. While may of the impacts are positive, such as tourism and recreation opportunities, there are also negative impacts, such as exposure to harmful algal blooms (HABs) and water borne pathogens. Recent advances in environmental monitoring and weather prediction may allow us to forecast these potential adverse effects and thus mitigate the negative impact from coastal environmental threats. One example of the need to mitigate adverse environmental impacts occurs on Florida’s west coast, which experiences annual blooms, or periods of exuberant growth, of the toxic dinoflagellate, Karenia brevis. K. brevis produces a suite of potent neurotoxins called brevetoxins. Wind and wave action can break up the cells, releasing toxin that can then become part of the marine aerosol or sea spray. Brevetoxins in the aerosol cause respiratory irritation in people who inhale it. In addition, asthmatics who inhale the toxins report increase upper and lower airway lower symptoms and experience measurable changes in pulmonary function. Real-time reporting of the presence or absence of these toxic aerosols will allow asthmatics and local coastal residents to make informed decisions about their personal exposures, thus adding to their quality of life. A system to protect public health that combines information collected by an Integrated Ocean Observing System (IOOS) has been designed and implemented in Sarasota and Manatee Counties, Florida. This system is based on real-time reports from lifeguards at the eight public beaches. The lifeguards provide periodic subjective reports of the amount of dead fish on the beach, apparent level of respiratory irritation among beach-goers, water color, wind direction, surf condition, and the beach warning flag they are flying. A key component in the design of the observing system was an easy reporting pathway for the lifeguards to minimize the amount of time away from their primary duties. Specifically, we provided a Personal Digital Assistant for each of the eight beaches. The portable unit allows the lifeguards to report from their guard tower. The data are transferred via wireless Internet to a website hosted on the Mote Marine Laboratory Sarasota Operations of the Coastal Ocean Observation Laboratories (SO COOL) server. The system has proven to be robust and well received by the public. The system has reported variability from beach to beach and has provided vital information to users to minimize their exposure to toxic marine aerosols. PMID:18501955
Ravel, André; Hurst, Matt; Petrica, Nicoleta; David, Julie; Mutschall, Steven K; Pintar, Katarina; Taboada, Eduardo N; Pollari, Frank
2017-01-01
Human campylobacteriosis is a common zoonosis with a significant burden in many countries. Its prevention is difficult because humans can be exposed to Campylobacter through various exposures: foodborne, waterborne or by contact with animals. This study aimed at attributing campylobacteriosis to sources at the point of exposure. It combined comparative exposure assessment and microbial subtype comparison with subtypes defined by comparative genomic fingerprinting (CGF). It used isolates from clinical cases and from eight potential exposure sources (chicken, cattle and pig manure, retail chicken, beef, pork and turkey meat, and surface water) collected within a single sentinel site of an integrated surveillance system for enteric pathogens in Canada. Overall, 1518 non-human isolates and 250 isolates from domestically-acquired human cases were subtyped and their subtype profiles analyzed for source attribution using two attribution models modified to include exposure. Exposure values were obtained from a concurrent comparative exposure assessment study undertaken in the same area. Based on CGF profiles, attribution was possible for 198 (79%) human cases. Both models provide comparable figures: chicken meat was the most important source (65-69% of attributable cases) whereas exposure to cattle (manure) ranked second (14-19% of attributable cases), the other sources being minor (including beef meat). In comparison with other attributions conducted at the point of production, the study highlights the fact that Campylobacter transmission from cattle to humans is rarely meat borne, calling for a closer look at local transmission from cattle to prevent campylobacteriosis, in addition to increasing safety along the chicken supply chain.
A systematic review of the human body burden of e-waste exposure in China.
Song, Qingbin; Li, Jinhui
2014-07-01
As China is one of the countries facing the most serious pollution and human exposure effects of e-waste in the world, much of the population there is exposed to potentially hazardous substances due to informal e-waste recycling processes. This report reviews recent studies on human exposure to e-waste in China, with particular focus on exposure routes (e.g. dietary intake, inhalation, and soil/dust ingestion) and human body burden markers (e.g. placenta, umbilical cord blood, breast milk, blood, hair, and urine) and assesses the evidence for the association between such e-waste exposure and the human body burden in China. The results suggest that residents in the e-waste exposure areas, located mainly in the three traditional e-waste recycling sites (Taizhou, Guiyu, and Qingyuan), are faced with a potential higher daily intake of these pollutants than residents in the control areas, especially via food ingestion. Moreover, pollutants (PBBs, PBDEs, PCBs, PCDD/Fs, and heavy metals) from the e-waste recycling processes were all detectable in the tissue samples at high levels, showing that they had entered residents' bodies through the environment and dietary exposure. Children and neonates are the groups most sensitive to the human body effects of e-waste exposure. We also recorded plausible outcomes associated with exposure to e-waste, including 7 types of human body burden. Although the data suggest that exposure to e-waste is harmful to health, better designed epidemiological investigations in vulnerable populations, especially neonates and children, are needed to confirm these associations. Copyright © 2014 Elsevier Ltd. All rights reserved.
MODELING HUMAN EXPOSURES AND DOSE USING A 2-DIMENSIONAL MONTE-CARLO MODEL (SHEDS)
Since 1998, US EPA's National Exposure Research Laboratory (NERL) has been developing the Stochastic Human Exposure and Dose Simulation (SHEDS) model for various classes of pollutants. SHEDS is a physically-based probabilistic model intended for improving estimates of human ex...
AN OVERVIEW OF THE NATIONAL HUMAN EXPOSURE ASSESSMENT SURVEY (NHEXAS) PHASE I STUDIES
The National Human Exposure Assessment Survey (NHEXAS) Phase I studies were sponsored by EPA's Office of Research and Development (ORD) to address critical information needs for assessing human exposures to multiple chemicals from multiple pathways and media. These studies were...
Teixeira, Clarissa; Gomes, Regis; Collin, Nicolas; Reynoso, David; Jochim, Ryan; Oliveira, Fabiano; Seitz, Amy; Elnaiem, Dia-Eldin; Caldas, Arlene; de Souza, Ana Paula; Brodskyn, Cláudia I; de Oliveira, Camila Indiani; Mendonca, Ivete; Costa, Carlos H N; Volf, Petr; Barral, Aldina; Kamhawi, Shaden; Valenzuela, Jesus G
2010-03-23
Sand flies deliver Leishmania parasites to a host alongside salivary molecules that affect infection outcomes. Though some proteins are immunogenic and have potential as markers of vector exposure, their identity and vector specificity remain elusive. We screened human, dog, and fox sera from endemic areas of visceral leishmaniasis to identify potential markers of specific exposure to saliva of Lutzomyia longipalpis. Human and dog sera were further tested against additional sand fly species. Recombinant proteins of nine transcripts encoding secreted salivary molecules of Lu. longipalpis were produced, purified, and tested for antigenicity and specificity. Use of recombinant proteins corresponding to immunogenic molecules in Lu. longipalpis saliva identified LJM17 and LJM11 as potential markers of exposure. LJM17 was recognized by human, dog, and fox sera; LJM11 by humans and dogs. Notably, LJM17 and LJM11 were specifically recognized by humans exposed to Lu. longipalpis but not by individuals exposed to Lu. intermedia. Salivary recombinant proteins are of value as markers of vector exposure. In humans, LJM17 and LJM11 emerged as potential markers of specific exposure to Lu. longipalpis, the vector of Leishmania infantum chagasi in Latin America. In dogs, LJM17, LJM11, LJL13, LJL23, and LJL143 emerged as potential markers of sand fly exposure. Testing these recombinant proteins in large scale studies will validate their usefulness as specific markers of Lu. longipalpis exposure in humans and of sand fly exposure in dogs.
Probabilistic Predictions of PM2.5 Using a Novel Ensemble Design for the NAQFC
NASA Astrophysics Data System (ADS)
Kumar, R.; Lee, J. A.; Delle Monache, L.; Alessandrini, S.; Lee, P.
2017-12-01
Poor air quality (AQ) in the U.S. is estimated to cause about 60,000 premature deaths with costs of 100B-150B annually. To reduce such losses, the National AQ Forecasting Capability (NAQFC) at the National Oceanic and Atmospheric Administration (NOAA) produces forecasts of ozone, particulate matter less than 2.5 mm in diameter (PM2.5), and other pollutants so that advance notice and warning can be issued to help individuals and communities limit the exposure and reduce air pollution-caused health problems. The current NAQFC, based on the U.S. Environmental Protection Agency Community Multi-scale AQ (CMAQ) modeling system, provides only deterministic AQ forecasts and does not quantify the uncertainty associated with the predictions, which could be large due to the chaotic nature of atmosphere and nonlinearity in atmospheric chemistry. This project aims to take NAQFC a step further in the direction of probabilistic AQ prediction by exploring and quantifying the potential value of ensemble predictions of PM2.5, and perturbing three key aspects of PM2.5 modeling: the meteorology, emissions, and CMAQ secondary organic aerosol formulation. This presentation focuses on the impact of meteorological variability, which is represented by three members of NOAA's Short-Range Ensemble Forecast (SREF) system that were down-selected by hierarchical cluster analysis. These three SREF members provide the physics configurations and initial/boundary conditions for the Weather Research and Forecasting (WRF) model runs that generate required output variables for driving CMAQ that are missing in operational SREF output. We conducted WRF runs for Jan, Apr, Jul, and Oct 2016 to capture seasonal changes in meteorology. Estimated emissions of trace gases and aerosols via the Sparse Matrix Operator Kernel (SMOKE) system were developed using the WRF output. WRF and SMOKE output drive a 3-member CMAQ mini-ensemble of once-daily, 48-h PM2.5 forecasts for the same four months. The CMAQ mini-ensemble is evaluated against both observations and the current operational deterministic NAQFC products, and analyzed to assess the impact of meteorological biases on PM2.5 variability. Quantification of the PM2.5 prediction uncertainty will prove a key factor to support cost-effective decision-making while protecting public health.
Environmental exposures and health impacts of PFAS ...
Environmental exposures and health impacts of PFAS The National Exposure Research Laboratory (NERL) Human Exposure and Atmospheric Sciences Division (HEASD) conducts research in support of EPA mission to protect human health and the environment. HEASD research program supports Goal 1 (Clean Air) and Goal 4 (Healthy People) of EPA strategic plan. More specifically, our division conducts research to characterize the movement of pollutants from the source to contact with humans. Our multidisciplinary research program produces Methods, Measurements, and Models to identify relationships between and characterize processes that link source emissions, environmental concentrations, human exposures, and target-tissue dose. The impact of these tools is improved regulatory programs and policies for EPA.
Forecasting Propagation and Evolution of CMEs in an Operational Setting: What Has Been Learned
NASA Technical Reports Server (NTRS)
Zheng, Yihua; Macneice, Peter; Odstrcil, Dusan; Mays, M. L.; Rastaetter, Lutz; Pulkkinen, Antti; Taktakishvili, Aleksandre; Hesse, Michael; Kuznetsova, M. Masha; Lee, Hyesook;
2013-01-01
One of the major types of solar eruption, coronal mass ejections (CMEs) not only impact space weather, but also can have significant societal consequences. CMEs cause intense geomagnetic storms and drive fast mode shocks that accelerate charged particles, potentially resulting in enhanced radiation levels both in ions and electrons. Human and technological assets in space can be endangered as a result. CMEs are also the major contributor to generating large amplitude Geomagnetically Induced Currents (GICs), which are a source of concern for power grid safety. Due to their space weather significance, forecasting the evolution and impacts of CMEs has become a much desired capability for space weather operations worldwide. Based on our operational experience at Space Weather Research Center at NASA Goddard Space Flight Center (http://swrc.gsfc.nasa.gov), we present here some of the insights gained about accurately predicting CME impacts, particularly in relation to space weather operations. These include: 1. The need to maximize information to get an accurate handle of three-dimensional (3-D) CME kinetic parameters and therefore improve CME forecast; 2. The potential use of CME simulation results for qualitative prediction of regions of space where solar energetic particles (SEPs) may be found; 3. The need to include all CMEs occurring within a 24 h period for a better representation of the CME interactions; 4. Various other important parameters in forecasting CME evolution in interplanetary space, with special emphasis on the CME propagation direction. It is noted that a future direction for our CME forecasting is to employ the ensemble modeling approach.
Real-time projections of cholera outbreaks through data assimilation and rainfall forecasting
NASA Astrophysics Data System (ADS)
Pasetto, Damiano; Finger, Flavio; Rinaldo, Andrea; Bertuzzo, Enrico
2017-10-01
Although treatment for cholera is well-known and cheap, outbreaks in epidemic regions still exact high death tolls mostly due to the unpreparedness of health care infrastructures to face unforeseen emergencies. In this context, mathematical models for the prediction of the evolution of an ongoing outbreak are of paramount importance. Here, we test a real-time forecasting framework that readily integrates new information as soon as available and periodically issues an updated forecast. The spread of cholera is modeled by a spatially-explicit scheme that accounts for the dynamics of susceptible, infected and recovered individuals hosted in different local communities connected through hydrologic and human mobility networks. The framework presents two major innovations for cholera modeling: the use of a data assimilation technique, specifically an ensemble Kalman filter, to update both state variables and parameters based on the observations, and the use of rainfall forecasts to force the model. The exercise of simulating the state of the system and the predictive capabilities of the novel tools, set at the initial phase of the 2010 Haitian cholera outbreak using only information that was available at that time, serves as a benchmark. Our results suggest that the assimilation procedure with the sequential update of the parameters outperforms calibration schemes based on Markov chain Monte Carlo. Moreover, in a forecasting mode the model usefully predicts the spatial incidence of cholera at least one month ahead. The performance decreases for longer time horizons yet allowing sufficient time to plan for deployment of medical supplies and staff, and to evaluate alternative strategies of emergency management.
Forecasting propagation and evolution of CMEs in an operational setting: What has been learned
NASA Astrophysics Data System (ADS)
Zheng, Yihua; Macneice, Peter; Odstrcil, Dusan; Mays, M. L.; Rastaetter, Lutz; Pulkkinen, Antti; Taktakishvili, Aleksandre; Hesse, Michael; Masha Kuznetsova, M.; Lee, Hyesook; Chulaki, Anna
2013-10-01
of the major types of solar eruption, coronal mass ejections (CMEs) not only impact space weather, but also can have significant societal consequences. CMEs cause intense geomagnetic storms and drive fast mode shocks that accelerate charged particles, potentially resulting in enhanced radiation levels both in ions and electrons. Human and technological assets in space can be endangered as a result. CMEs are also the major contributor to generating large amplitude Geomagnetically Induced Currents (GICs), which are a source of concern for power grid safety. Due to their space weather significance, forecasting the evolution and impacts of CMEs has become a much desired capability for space weather operations worldwide. Based on our operational experience at Space Weather Research Center at NASA Goddard Space Flight Center (http://swrc.gsfc.nasa.gov), we present here some of the insights gained about accurately predicting CME impacts, particularly in relation to space weather operations. These include: 1. The need to maximize information to get an accurate handle of three-dimensional (3-D) CME kinetic parameters and therefore improve CME forecast; 2. The potential use of CME simulation results for qualitative prediction of regions of space where solar energetic particles (SEPs) may be found; 3. The need to include all CMEs occurring within a 24 h period for a better representation of the CME interactions; 4. Various other important parameters in forecasting CME evolution in interplanetary space, with special emphasis on the CME propagation direction. It is noted that a future direction for our CME forecasting is to employ the ensemble modeling approach.
Hughes, Barry B; Peterson, Cecilia M; Rothman, Dale S; Solórzano, José R; Mathers, Colin D; Dickson, Janet R
2011-01-01
Abstract Objective To develop an integrated health forecasting model as part of the International Futures (IFs) modelling system. Methods The IFs model begins with the historical relationships between economic and social development and cause-specific mortality used by the Global Burden of Disease project but builds forecasts from endogenous projections of these drivers by incorporating forward linkages from health outcomes back to inputs like population and economic growth. The hybrid IFs system adds alternative structural formulations for causes not well served by regression models and accounts for changes in proximate health risk factors. Forecasts are made to 2100 but findings are reported to 2060. Findings The base model projects that deaths from communicable diseases (CDs) will decline by 50%, whereas deaths from both non-communicable diseases (NCDs) and injuries will more than double. Considerable cross-national convergence in life expectancy will occur. Climate-induced fluctuations in agricultural yield will cause little excess childhood mortality from CDs, although other climate−health pathways were not explored. An optimistic scenario will produce 39 million fewer deaths in 2060 than a pessimistic one. Our forward linkage model suggests that an optimistic scenario would result in a 20% per cent increase in gross domestic product (GDP) per capita, despite one billion additional people. Southern Asia would experience the greatest relative mortality reduction and the largest resulting benefit in per capita GDP. Conclusion Long-term, integrated health forecasting helps us understand the links between health and other markers of human progress and offers powerful insight into key points of leverage for future improvements. PMID:21734761
Hughes, Barry B; Kuhn, Randall; Peterson, Cecilia M; Rothman, Dale S; Solórzano, José R; Mathers, Colin D; Dickson, Janet R
2011-07-01
To develop an integrated health forecasting model as part of the International Futures (IFs) modelling system. The IFs model begins with the historical relationships between economic and social development and cause-specific mortality used by the Global Burden of Disease project but builds forecasts from endogenous projections of these drivers by incorporating forward linkages from health outcomes back to inputs like population and economic growth. The hybrid IFs system adds alternative structural formulations for causes not well served by regression models and accounts for changes in proximate health risk factors. Forecasts are made to 2100 but findings are reported to 2060. The base model projects that deaths from communicable diseases (CDs) will decline by 50%, whereas deaths from both non-communicable diseases (NCDs) and injuries will more than double. Considerable cross-national convergence in life expectancy will occur. Climate-induced fluctuations in agricultural yield will cause little excess childhood mortality from CDs, although other climate-health pathways were not explored. An optimistic scenario will produce 39 million fewer deaths in 2060 than a pessimistic one. Our forward linkage model suggests that an optimistic scenario would result in a 20% per cent increase in gross domestic product (GDP) per capita, despite one billion additional people. Southern Asia would experience the greatest relative mortality reduction and the largest resulting benefit in per capita GDP. Long-term, integrated health forecasting helps us understand the links between health and other markers of human progress and offers powerful insight into key points of leverage for future improvements.
NASA Astrophysics Data System (ADS)
MA, S.; Huang, Y.; Stacy, M.; Jiang, J.; Sundi, N.; Ricciuto, D. M.; Hanson, P. J.; Luo, Y.; Saruta, V.
2017-12-01
Ecological forecasting is critical in various aspects of our coupled human-nature systems, such as disaster risk reduction, natural resource management and climate change mitigation. Novel advancements are in urgent need to deepen our understandings of ecosystem dynamics, boost the predictive capacity of ecology, and provide timely and effective information for decision-makers in a rapidly changing world. Our study presents a smart system - Ecological Platform for Assimilation of Data (EcoPAD) - which streamlines web request-response, data management, model execution, result storage and visualization. EcoPAD allows users to (i) estimate model parameters or state variables, (ii) quantify uncertainty of estimated parameters and projected states of ecosystems, (iii) evaluate model structures, (iv) assess sampling strategies, (v) conduct ecological forecasting, and (vi) detect ecosystem acclimation to climate change. One of the key innovations of the web-based EcoPAD is the automated near- or real-time forecasting of ecosystem dynamics with uncertainty fully quantified. The user friendly webpage enables non-modelers to explore their data for simulation and data assimilation. As a case study, we applied EcoPAD to the Spruce and Peatland Responses Under Climatic and Environmental Change Experiment (SPRUCE), a whole ecosystem warming and CO2 enrichment treatment project in the northern peatland, assimilated multiple data streams into a process based ecosystem model, enhanced timely feedback between modelers and experimenters, ultimately improved ecosystem forecasting and made better use of current knowledge. Built in a framework with flexible API, EcoPAD is easily portable and will benefit scientific communities, policy makers as well as the general public.
A National System to Map and Quantify Terrestrial Vertebrate Biodiversity
Biodiversity is crucial for the functioning of ecosystems and the products and services from which we transform natural assets of the Earth for human survival, security, and well-being. The ability to assess, report, map, and forecast the life support functions of ecosystems is a...
A National Approach to Map and Quantify Terrestrial Vertebrate Biodiversity
Biodiversity is crucial for the functioning of ecosystems and the products and services from which we transform natural assets of the Earth for human survival, security, and well-being. The ability to assess, report, map, and forecast the life support functions of ecosystems is a...
Road safety forecasts in five European countries using structural time series models.
Antoniou, Constantinos; Papadimitriou, Eleonora; Yannis, George
2014-01-01
Modeling road safety development is a complex task and needs to consider both the quantifiable impact of specific parameters as well as the underlying trends that cannot always be measured or observed. The objective of this research is to apply structural time series models for obtaining reliable medium- to long-term forecasts of road traffic fatality risk using data from 5 countries with different characteristics from all over Europe (Cyprus, Greece, Hungary, Norway, and Switzerland). Two structural time series models are considered: (1) the local linear trend model and the (2) latent risk time series model. Furthermore, a structured decision tree for the selection of the applicable model for each situation (developed within the Road Safety Data, Collection, Transfer and Analysis [DaCoTA] research project, cofunded by the European Commission) is outlined. First, the fatality and exposure data that are used for the development of the models are presented and explored. Then, the modeling process is presented, including the model selection process, introduction of intervention variables, and development of mobility scenarios. The forecasts using the developed models appear to be realistic and within acceptable confidence intervals. The proposed methodology is proved to be very efficient for handling different cases of data availability and quality, providing an appropriate alternative from the family of structural time series models in each country. A concluding section providing perspectives and directions for future research is presented.
OUTDOOR VS. HUMAN EXPOSURE: NERL PM EXPOSURE PANEL STUDIES
An association has been demonstrated between ambient particulate matter (PM 2.5 and PM 10) concentrations and human morbidity/mortality. However, little is known regarding the most important sources of PM exposure, interpersonal and intrapersonal variability in exposure, and the...
The objective of the National Human Exposure Assessment Survey (NHEXAS) in Arizona is to determine the multimedia distribution of total human exposure to environmental pollutants in the classes of metals, pesticides, and volatile organic compounds (VOCs) for the population of Ari...
Biomarkers of benzene exposure and their interpretation for human health risk assessment
Human biomarkers of exposure such as parent or metabolite concentrations in blood or urine are often reported without any context to the sources of exposure or the implications for human risk. The Biomonitoring Technical Committee of the International Life Sciences Institute/Huma...
OVERVIEW OF EPA HUMAN EXPOSURE MEASUREMENTS PROJECTS AS APPLIED TO JP-8 JET FUEL
One of the many responsibilities of the National Exposure Research Laboratory (NERL) of the U.S. Environmental Protection Agency (EPA) is the development and demonstration of methodology for assessing human exposure to environmental pollutants. As such, personnel from the Human E...
Pascuzzi, Simone; Santoro, Francesco
2015-01-01
The electromagnetic field (EMF) levels generated by mobile telephone radio base stations (RBS) situated on rural-agricultural lands were assessed in order to evaluate the exposure of farm workers in the surrounding area. The expected EMF at various distances from a mobile telephone RBS was calculated using an ad hoc numerical forecast model. Subsequently, the electric fields around some RBS on agricultural lands were measured, in order to obtain a good approximation of the effective conditions at the investigated sites. The viability of this study was tested according to the Italian Regulations concerning general and occupational public exposure to time-varying EMFs. The calculated E-field values were obtained with the RBS working constantly at full power, but during the in situ measurements the actual power emitted by RBS antennas was lower than the maximum level, and the E-field values actually registered were much lower than the calculated values.
Sato, T; Kataoka, R; Yasuda, H; Yashiro, S; Kuwabara, T; Shiota, D; Kubo, Y
2014-10-01
WASAVIES, a warning system for aviation exposure to solar energetic particles (SEPs), is under development by collaboration between several institutes in Japan and the USA. It is designed to deterministically forecast the SEP fluxes incident on the atmosphere within 6 h after flare onset using the latest space weather research. To immediately estimate the aircrew doses from the obtained SEP fluxes, the response functions of the particle fluxes generated by the incidence of monoenergetic protons into the atmosphere were developed by performing air shower simulations using the Particle and Heavy Ion Transport code system. The accuracy of the simulation was well verified by calculating the increase count rates of a neutron monitor during a ground-level enhancement, combining the response function with the SEP fluxes measured by the PAMELA spectrometer. The response function will be implemented in WASAVIES and used to protect aircrews from additional SEP exposure. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
The National Human Exposure Assessment Survey in Maryland (NHEXAS-MD) was a longitudinal study of multimedia exposure to metals, pesticides, and polycyclic aromatic compounds (PAHs). Measurements were made and questionnaires were concurrently administered to identify sources o...
NASA Technical Reports Server (NTRS)
Jedlovec, Gary J.
2005-01-01
Over the last three years, NASA/MSFC scientists have embarked on an effort to transition unique NASA EOS data/products and research technology to selected NWSEOs in the southeast U.S. This activity, called the Short-term Prediction and - Research Transition (SPoRT) program, supports the NASA Science Mission Directorate and its Earth-Sun System Mission to develop a scientific understanding of the Earth System and its response to natural or human-induced changes that will enable improved prediction capability for climate, weather, and natural hazards. The overarching question related to weather prediction is "How well can weather forecasting duration and reliability be improved by new space-based observations, data assimilation, and modeling?" The transition activity has included the real-time delivery of MODIS data and products to several NWS Forecast Offices. Local NWS FOs have used the MODIS data to complement the coarse resolution GOES data for a number of applications. Specialized products have also been developed and made available to local and remote offices for their weather applications. Data from &e Lightning Mapping Array (LMA) network has been used in severe storm forecasts at several offices in the region. At the regional scale and forecast horizons from 0-1 day, the next generation of high-resolution mesoscale forecast and data assimilation models have been used to provide local offices with unique weather forecasts not otherwise available. The continued use of near red-time infusion of NASA science products into high-resolution mesoscale forecast and decision-making models can be expected to improve the model initialization as well as short-term forecasts. A current focus of SPoRT is to expand collaborations to include contributions from the assimilation of AMSR-E data in the ADASIARPS forecast system (OU), inclusion of MODIS SSTs and AIRS thermodynamic profiles in the WRF, and to extend the distribution of real-time MODIS and AMSR-E data and products to the Florida coastal WFOs. A SPoRT Test bed, together with input from other interagency and university partners, will provide a means and a process to effectively transition ESE observations and technology to NWS operations and decision makers at both the globdnational and regional scales. The transition of emerging experimental products into operations through the SPoRT infrastructure will allow NASA to foster and accelerate the progress of this Science Mission Directorate research strategy over the coming years.
NASA Astrophysics Data System (ADS)
Huang, H. C.; Pan, L.; McQueen, J.; Lee, P.; ONeill, S. M.; Ruminski, M.; Shafran, P.; DiMego, G.; Huang, J.; Stajner, I.; Upadhayay, S.; Larkin, N. K.
2016-12-01
Wildfires contribute to air quality problems not only towards primary emissions of particular matters (PM) but also emitted ozone precursor gases that can lead to elevated ozone concentration. Wildfires are unpredictable and can be ignited by natural causes such as lightning or accidently by human negligent behavior such as live cigarette. Although wildfire impacts on the air quality can be studied by collecting fire information after events, it is extremely difficult to predict future occurrence and behavior of wildfires for real-time air quality forecasts. Because of the time constraints of operational air quality forecasting, assumption of future day's fire behavior often have to be made based on observed fire information in the past. The United States (U.S.) NOAA/NWS built the National Air Quality Forecast Capability (NAQFC) based on the U.S. EPA CMAQ to provide air quality forecast guidance (prediction) publicly. State and local forecasters use the forecast guidance to issue air quality alerts in their area. The NAQFC fine particulates (PM2.5) prediction includes emissions from anthropogenic and biogenic sources, as well as natural sources such as dust storms and fires. The fire emission input to the NAQFC is derived from the NOAA NESDIS HMS fire and smoke detection product and the emission module of the US Forest Service BlueSky Smoke Modeling Framework. This study focuses on the error estimation of NAQFC PM2.5 predictions resulting from fire emissions. The comparisons between the NAQFC modeled PM2.5 and the EPA AirNow surface observation show that present operational NAQFC fire emissions assumption can lead to a huge error in PM2.5 prediction as fire emissions are sometimes placed at wrong location and time. This PM2.5 prediction error can be propagated from the fire source in the Northwest U.S. to downstream areas as far as the Southeast U.S. From this study, a new procedure has been identified to minimize the aforementioned error. An additional 24 hours reanalysis-run of NAQFC using same-day observed fire emission are being tested. Preliminary results have shown that this procedure greatly improves the PM2.5 predictions at both nearby and downstream areas from fire sources. The 24 hours reanalysis-run is critical and necessary especially during extreme fire events to provide better PM2.5 predictions.
NASA Astrophysics Data System (ADS)
Masato, Giacomo; Cavany, Sean; Charlton-Perez, Andrew; Dacre, Helen; Bone, Angie; Carmicheal, Katie; Murray, Virginia; Danker, Rutger; Neal, Rob; Sarran, Christophe
2015-04-01
The health forecasting alert system for cold weather and heatwaves currently in use in the Cold Weather and Heatwave plans for England is based on 5 alert levels, with levels 2 and 3 dependent on a forecast or actual single temperature action trigger. Epidemiological evidence indicates that for both heat and cold, the impact on human health is gradual, with worsening impact for more extreme temperatures. The 60% risk of heat and cold forecasts used by the alerts is a rather crude probabilistic measure, which could be substantially improved thanks to the state-of-the-art forecast techniques. In this study a prototype of a new health forecasting alert system is developed, which is aligned to the approach used in the Met Office's (MO) National Severe Weather Warning Service (NSWWS). This is in order to improve information available to responders in the health and social care system by linking temperatures more directly to risks of mortality, and developing a system more coherent with other weather alerts. The prototype is compared to the current system in the Cold Weather and Heatwave plans via a case-study approach to verify its potential advantages and shortcomings. The prototype health forecasting alert system introduces an "impact vs likelihood matrix" for the health impacts of hot and cold temperatures which is similar to those used operationally for other weather hazards as part of the NSWWS. The impact axis of this matrix is based on existing epidemiological evidence, which shows an increasing relative risk of death at extremes of outdoor temperature beyond a threshold which can be identified epidemiologically. The likelihood axis is based on a probability measure associated with the temperature forecast. The new method is tested for two case studies (one during summer 2013, one during winter 2013), and compared to the performance of the current alert system. The prototype shows some clear improvements over the current alert system. It allows for a much greater degree of flexibility, provides more detailed regional information about the health risks associated with periods of extreme temperatures, and is more coherent with other weather alerts which may make it easier for front line responders to use. It will require validation and engagement with stakeholders before it can be considered for use.
NASA Astrophysics Data System (ADS)
Fazzini, Massimiliano; Vaccaro, Carmela
2014-05-01
The Italian territory is one of the most fragile hydraulic and hydro geologic of the world, due to its complexity physiographic, lithological and above meteo-climatic too. Moreover, In recent years, the unhappy urbanization, the abandonment of mountain areas and countryside have fostered hydro geological instability, ever more devastating, in relation to the extremes of meteorological events. After the dramatic floods and landscapes of the last 24 months - in which more than 50 people died - it is actually open a public debate on the issues related to prevention, forecasting and management of hydro-meteorological risk. Aim of the correct weather forecasting at different spatial and temporal scales is to avoid or minimize the potential occurrence of damage or human losses resulting from the increasingly of frequent extreme weather events. In Italy, there are two major complex problems that do not allow for effective dissemination of the correct weather forecasting. First, the absence of a national meteorological service - which can ensure the quality of information. In this regard, it is at an advanced stage the establishment of a unified national weather service - formed by technicians to national and regional civil protection and the Meteorological Service of the Air Force, which will ensure the quality of the prediction, especially through exclusive processing of national and local weather forecasting and hydro geological weather alert. At present, however, this lack favors the increasing diffusion of meteorological sites more or less professional - often totally not "ethical" - which, at different spatial scales, tend to amplify the signals from the weather prediction models, describing them the users of the web such as exceptional or rare phenomena and often causing unjustified alarmism. This behavior is almost always aimed at the desire of give a forecast before other sites and therefore looking for new commercial sponsors, with easy profits. On the other hand, however, the almost complete absence of education to environmental risks - also from as primary school - does not allow the users to know to select the information ethically and technically correct, increasingly favoring the proliferation of most of the "weather-commercial" or private weather websites. It would seem therefore essential to implement the activities of specific information by the universities and public institutions responsible for forecasting and prevention-hydrological forecast.
Transitioning a Chesapeake Bay Ecological Prediction System to Operations
NASA Astrophysics Data System (ADS)
Brown, C.; Green, D. S.; Eco Forecasters
2011-12-01
Ecological prediction of the impacts of physical, chemical, biological, and human-induced change on ecosystems and their components, encompass a wide range of space and time scales, and subject matter. They vary from predicting the occurrence and/or transport of certain species, such harmful algal blooms, or biogeochemical constituents, such as dissolved oxygen concentrations, to large-scale ecosystem responses and higher trophic levels. The timescales of ecological prediction, including guidance and forecasts, range from nowcasts and short-term forecasts (days), to intraseasonal and interannual outlooks (weeks to months), to decadal and century projections in climate change scenarios. The spatial scales range from small coastal inlets to basin and global scale biogeochemical and ecological forecasts. The types of models that have been used include conceptual, empirical, mechanistic, and hybrid approaches. This presentation will identify the challenges and progress toward transitioning experimental model-based ecological prediction into operational guidance and forecasting. Recent efforts are targeting integration of regional ocean, hydrodynamic and hydrological models and leveraging weather and water service infrastructure to enable the prototyping of an operational ecological forecast capability for the Chesapeake Bay and its tidal tributaries. A path finder demonstration predicts the probability of encountering sea nettles (Chrysaora quinquecirrha), a stinging jellyfish. These jellyfish can negatively impact safety and economic activities in the bay and an impact-based forecast that predicts where and when this biotic nuisance occurs may help management effects. The issuance of bay-wide nowcasts and three-day forecasts of sea nettle probability are generated daily by forcing an empirical habitat model (that predicts the probability of sea nettles) with real-time and 3-day forecasts of sea-surface temperature (SST) and salinity (SSS). In the first demonstration phase, the sea surface temperature (SST) and sea surface salinity (SSS) fields are generated by the Chesapeake Bay Operational Forecast System (CBOFS2), a 3-dimensional hydrodynamic model developed and operated by NOAA's National Ocean Service and run operationally at the National Weather Service National Centers for Environmental Prediction (NCEP). Importantly, this system is readily modified to predict the probability of other important target organisms, such as harmful algal blooms, biogeochemical constituents, such as dissolved oxygen concentration, and water-borne pathogens. Extending this initial effort includes advancement of a regional coastal ocean modeling testbed and proving ground. Such formal collaboration is intended to accelerate transition to operations and increase confidence and use of forecast guidance. The outcome will be improved decision making by emergency and resource managers, scientific researchers and the general public. The presentation will describe partnership plans for this testbed as well as the potential implications for the services and research community.
NASA Astrophysics Data System (ADS)
Drohan, Patrick; Buda, Anthony; Kleinman, Peter; Miller, Douglas; Lin, Henry; Beegle, Douglas; Knight, Paul
2017-04-01
USA and state nutrient management planning offers strategic guidance that strives to educate farmers and those involved in nutrient management to make wise management decisions. A goal of such programs is to manage hotspots of water quality degradation that threaten human and ecosystem health, water and food security. The guidance provided by nutrient management plans does not provide the day-to-day support necessary to make operational decisions, particularly when and where to apply nutrients over the short term. These short-term decisions on when and where to apply nutrients often make the difference between whether the nutrients impact water quality or are efficiently utilized by crops. Infiltrating rainfall events occurring shortly after broadcast nutrient applications are beneficial, given they will wash soluble nutrients into the soil where they are used by crops. Rainfall events that generate runoff shortly after nutrients are broadcast may wash off applied nutrients, and produce substantial nutrient losses from that site. We are developing a model and data based support tool for nutrient management, the Fertilizer Forecaster, which identifies the relative probability of runoff or infiltrating events in Pennsylvania (PA) landscapes in order to improve water quality. This tool will support field specific decisions by farmers and land managers on when and where to apply fertilizers and manures over 24, 48 and 72 hour periods. Our objectives are to: (1) monitor agricultural hillslopes in watersheds representing four of the five Physiographic Provinces of the Chesapeake Bay basin; (2) validate a high resolution mapping model that identifies soils prone to runoff; (3) develop an empirically based approach to relate state-of-the-art weather forecast variables to site-specific rainfall infiltration or runoff occurrence; (4) test the empirical forecasting model against alternative approaches to forecasting runoff occurrence; and (5) recruit farmers from the four watersheds to use web-based forecast maps in daily manure and fertilizer application decisions. Data from on-farm trials is being used to assess farmer fertilizer, manure, and tillage management decisions before and after use of the Fertilizer Forecaster. This data will help us understand not only the effectiveness of the tool, but also characteristics of farmers with the greatest potential to benefit from such a tool. Feedback from on-farm trials will be used to refine a final tool for field deployment. We hope that the Fertilizer Forecaster will serve as the basis for state (USA-PA), regional (Chesapeake Bay), and national changes in nutrient management planning. This Fertilizer Forecaster is an innovative management practice that is designed to enhance the services of aquatic ecosystems by improving water quality and enhance the services of terrestrial ecosystems by increasing the efficiency of nutrient use by targeted crops.
Implementation of the integrated approach in different types of exposure scenarios.
Copplestone, D; Hirth, G; Johansen, M; Lazo, E; Takala, J; Sakai, K; Yankovich, T
2018-01-01
The International Commission on Radiological Protection (ICRP) recognises three types of exposure situations: planned, existing, and emergency. In all three situations, the release of radionuclides into the natural environment leads to exposures of non-human biota, as well as the potential for exposures of the public. This paper describes how the key principles of the ICRP system of radiological protection apply to non-human biota and members of the public in each of these exposure situations. Current work in this area within ICRP Task Group 105 is highlighted. For example, how simplified numeric criteria may be used in planned exposure situations that are protective of both the public and non-human biota. In emergency exposure situations, the initial response will always be focused on human protection; however, understanding the potential impacts of radionuclide releases on non-human biota will likely become important in terms of communication as governments and the public seek to understand the exposures that are occurring. For existing exposure situations, there is a need to better understand the potential impacts of radionuclides on animals and plants, especially when deciding on protective actions. Understanding the comparative impacts from radiological, non-radiological, and physical aspects is often important in managing the remediation of legacy sites. Task Group 105 is making use of case studies of how exposure situations have been managed in the past to provide additional guidance and advice for the protection of non-human biota.
NASA Astrophysics Data System (ADS)
Funk, Daniel
2015-04-01
Climate variability poses major challenges for decision-makers in climate-sensitive sectors. Seasonal to decadal (S2D) forecasts provide potential value for management decisions especially in the context of climate change where information from present or past climatology loses significance. However, usable and decision-relevant tailored climate forecasts are still sparse for Europe and successful examples of application require elaborate and individual producer-user interaction. The assessment of sector-specific vulnerabilities to critical climate conditions at specific temporal scale will be a great step forward to increase the usability and efficiency of climate forecasts. A concept for a sector-specific vulnerability assessment (VA) to climate variability is presented. The focus of this VA is on the provision of usable vulnerability information which can be directly incorporated in decision-making processes. This is done by developing sector-specific climate-impact-decision-pathways and the identification of their specific time frames using data from both bottom-up and top-down approaches. The structure of common VA's for climate change related issues is adopted which envisages the determination of exposure, sensitivity and coping capacity. However, the application of the common vulnerability components within the context of climate service application poses some fundamental considerations: Exposure - the effect of climate events on the system of concern may be modified and delayed due to interconnected systems (e.g. catchment). The critical time-frame of a climate event or event sequence is dependent on system-internal thresholds and initial conditions. But also on decision-making processes which require specific lead times of climate information to initiate respective coping measures. Sensitivity - in organizational systems climate may pose only one of many factors relevant for decision making. The scope of "sensitivity" in this concept comprises both the potential physical response of the system of concern as well as the criticality of climate-related decision-making processes. Coping capacity - in an operational context coping capacity can only reduce vulnerability if it can be applied purposeful. With respect to climate vulnerabilities this refers to the availability of suitable, usable and skillful climate information. The focus for this concept is on existing S2D climate service products and their match with user needs. The outputs of the VA are climate-impact-decision-pathways which characterize critical climate conditions, estimate the role of climate in decision-making processes and evaluate the availability and potential usability of S2D climate forecast products. A classification scheme is developed for each component of the impact-pathway to assess its specific significance. The systemic character of these schemes enables a broad application of this VA across sectors where quantitative data is limited. This concept is developed and will be tested within the context of the EU-FP7 project "European Provision Of Regional Impacts Assessments on Seasonal and Decadal Timescales" EUPORIAS.
Update to the U.S. EPA's Guidelines for Human Exposure Assessment.
The mission of the U.S. EPA is to protect human health and the environment by understanding, characterizing, and reducing risks associated with exposure to environmental contaminants. Exposure science characterizes, estimates, and predicts exposures and provides information for d...
Ecosystem Services and Climate Change Considerations for ...
Freshwater habitats provide fishable, swimmable and drinkable resources and are a nexus of geophysical and biological processes. These processes in turn influence the persistence and sustainability of populations, communities and ecosystems. Climate change and landuse change encompass numerous stressors of potential exposure, including the introduction of toxic contaminants, invasive species, and disease in addition to physical drivers such as temperature and hydrologic regime. A systems approach that includes the scientific and technologic basis of assessing the health of ecosystems is needed to effectively protect human health and the environment. The Integrated Environmental Modeling Framework “iemWatersheds” has been developed as a consistent and coherent means of forecasting the cumulative impact of co-occurring stressors. The Framework consists of three facilitating technologies: Data for Environmental Modeling (D4EM) that automates the collection and standardization of input data; the Framework for Risk Assessment of Multimedia Environmental Systems (FRAMES) that manages the flow of information between linked models; and the Supercomputer for Model Uncertainty and Sensitivity Evaluation (SuperMUSE) that provides post-processing and analysis of model outputs, including uncertainty and sensitivity analysis. Five models are linked within the Framework to provide multimedia simulation capabilities for hydrology and water quality processes: the Soil Water
NASA Astrophysics Data System (ADS)
Katiyar, N.; Hossain, F.
2006-05-01
Floods have always been disastrous for human life. It accounts for about 15 % of the total death related to natural disasters. There are around 263 transboundary river basins listed by UNESCO, wherein at least 30 countries have more than 95% of their territory locked in one or more such transboundary basins. For flood forecasting in the lower riparian nations of these International River Basins (IRBs), real-time rainfall data from upstream nations is naturally the most critical factor governing the forecasting effectiveness. However, many upstream nations fail to provide data to the lower riparian nations due to a lack of in-situ rainfall measurement infrastructure or a lack of a treaty for real-time sharing of rainfall data. A potential solution is therefore to use satellites that inherently measure rainfall across political boundaries. NASA's proposed Global Precipitation Measurement (GPM) mission appears very promising in providing this vital rainfall information under the data- limited scenario that will continue to prevail in most IRBs. However, satellite rainfall is associated with uncertainty and hence, proper characterization of the satellite rainfall error propagation in hydrologic models for flood forecasting is a critical priority that should be resolved in the coming years in anticipation of GPM. In this study, we assess an open book modular watershed modeling approach for estimating the expected error in flood forecasting related to GPM rainfall data. Our motivation stems from the critical challenge in identifying the specific IRBs that would benefit from a pre-programmed satellite-based forecasting system in anticipation of GPM. As the number of flood-prone IRBs is large, conventional data-intensive implementation of existing physically-based distributed hydrologic models on case-by-case IRBs is considered time-consuming for completing such a global assessment. A more parsimonious approach is justified at the expense of a tolerable loss of detail and accuracy. Through assessment of our proposed modular modeling framework, we present our initial understanding in resolving the fundamental question - Can a parsimonious open-book watershed modeling framework be a physically consistent proxy for rapid and global identification of IRBs in greater need of a GPM-based flood forecasting system?
New Approach To Hour-By-Hour Weather Forecast
NASA Astrophysics Data System (ADS)
Liao, Q. Q.; Wang, B.
2017-12-01
Fine hourly forecast in single station weather forecast is required in many human production and life application situations. Most previous MOS (Model Output Statistics) which used a linear regression model are hard to solve nonlinear natures of the weather prediction and forecast accuracy has not been sufficient at high temporal resolution. This study is to predict the future meteorological elements including temperature, precipitation, relative humidity and wind speed in a local region over a relatively short period of time at hourly level. By means of hour-to-hour NWP (Numeral Weather Prediction)meteorological field from Forcastio (https://darksky.net/dev/docs/forecast) and real-time instrumental observation including 29 stations in Yunnan and 3 stations in Tianjin of China from June to October 2016, predictions are made of the 24-hour hour-by-hour ahead. This study presents an ensemble approach to combine the information of instrumental observation itself and NWP. Use autoregressive-moving-average (ARMA) model to predict future values of the observation time series. Put newest NWP products into the equations derived from the multiple linear regression MOS technique. Handle residual series of MOS outputs with autoregressive (AR) model for the linear property presented in time series. Due to the complexity of non-linear property of atmospheric flow, support vector machine (SVM) is also introduced . Therefore basic data quality control and cross validation makes it able to optimize the model function parameters , and do 24 hours ahead residual reduction with AR/SVM model. Results show that AR model technique is better than corresponding multi-variant MOS regression method especially at the early 4 hours when the predictor is temperature. MOS-AR combined model which is comparable to MOS-SVM model outperform than MOS. Both of their root mean square error and correlation coefficients for 2 m temperature are reduced to 1.6 degree Celsius and 0.91 respectively. The forecast accuracy of 24- hour forecast deviation no more than 2 degree Celsius is 78.75 % for MOS-AR model and 81.23 % for AR model.
Product Use Scheduler: A Scheduling Module used in EPA’s Human Exposure Model
The scheduling model (SM) was developed for scheduling the use of consumer products in the U.S. EPA’s Human Exposure Model (HEM), an integrated modeling system to estimate human exposure to chemicals in household consumer products. The SM begins with year-long daily activit...
Learning temporal rules to forecast instability in continuously monitored patients.
Guillame-Bert, Mathieu; Dubrawski, Artur; Wang, Donghan; Hravnak, Marilyn; Clermont, Gilles; Pinsky, Michael R
2017-01-01
Inductive machine learning, and in particular extraction of association rules from data, has been successfully used in multiple application domains, such as market basket analysis, disease prognosis, fraud detection, and protein sequencing. The appeal of rule extraction techniques stems from their ability to handle intricate problems yet produce models based on rules that can be comprehended by humans, and are therefore more transparent. Human comprehension is a factor that may improve adoption and use of data-driven decision support systems clinically via face validity. In this work, we explore whether we can reliably and informatively forecast cardiorespiratory instability (CRI) in step-down unit (SDU) patients utilizing data from continuous monitoring of physiologic vital sign (VS) measurements. We use a temporal association rule extraction technique in conjunction with a rule fusion protocol to learn how to forecast CRI in continuously monitored patients. We detail our approach and present and discuss encouraging empirical results obtained using continuous multivariate VS data from the bedside monitors of 297 SDU patients spanning 29 346 hours (3.35 patient-years) of observation. We present example rules that have been learned from data to illustrate potential benefits of comprehensibility of the extracted models, and we analyze the empirical utility of each VS as a potential leading indicator of an impending CRI event. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
LaDeau, Shannon L; Glass, Gregory E; Hobbs, N Thompson; Latimer, Andrew; Ostfeld, Richard S
2011-07-01
Ecologists worldwide are challenged to contribute solutions to urgent and pressing environmental problems by forecasting how populations, communities, and ecosystems will respond to global change. Rising to this challenge requires organizing ecological information derived from diverse sources and formally assimilating data with models of ecological processes. The study of infectious disease has depended on strategies for integrating patterns of observed disease incidence with mechanistic process models since John Snow first mapped cholera cases around a London water pump in 1854. Still, zoonotic and vector-borne diseases increasingly affect human populations, and methods used to successfully characterize directly transmitted diseases are often insufficient. We use four case studies to demonstrate that advances in disease forecasting require better understanding of zoonotic host and vector populations, as well of the dynamics that facilitate pathogen amplification and disease spillover into humans. In each case study, this goal is complicated by limited data, spatiotemporal variability in pathogen transmission and impact, and often, insufficient biological understanding. We present a conceptual framework for data-model fusion in infectious disease research that addresses these fundamental challenges using a hierarchical state-space structure to (1) integrate multiple data sources and spatial scales to inform latent parameters, (2) partition uncertainty in process and observation models, and (3) explicitly build upon existing ecological and epidemiological understanding. Given the constraints inherent in the study of infectious disease and the urgent need for progress, fusion of data and expertise via this type of conceptual framework should prove an indispensable tool.
Reductions in global biodiversity loss predicted from conservation spending.
Waldron, Anthony; Miller, Daniel C; Redding, Dave; Mooers, Arne; Kuhn, Tyler S; Nibbelink, Nate; Roberts, J Timmons; Tobias, Joseph A; Gittleman, John L
2017-11-16
Halting global biodiversity loss is central to the Convention on Biological Diversity and United Nations Sustainable Development Goals, but success to date has been very limited. A critical determinant of success in achieving these goals is the financing that is committed to maintaining biodiversity; however, financing decisions are hindered by considerable uncertainty over the likely impact of any conservation investment. For greater effectiveness, we need an evidence-based model that shows how conservation spending quantitatively reduces the rate of biodiversity loss. Here we demonstrate such a model, and empirically quantify how conservation investment reduced biodiversity loss in 109 countries (signatories to the Convention on Biological Diversity and Sustainable Development Goals), by a median average of 29% per country between 1996 and 2008. We also show that biodiversity changes in signatory countries can be predicted with high accuracy, using a dual model that balances the effects of conservation investment against those of economic, agricultural and population growth (human development pressures). Decision-makers can use this model to forecast the improvement that any proposed biodiversity budget would achieve under various scenarios of human development pressure, and then compare these forecasts to any chosen policy target. We find that the impact of spending decreases as human development pressures grow, which implies that funding may need to increase over time. The model offers a flexible tool for balancing the Sustainable Development Goals of human development and maintaining biodiversity, by predicting the dynamic changes in conservation finance that will be needed as human development proceeds.
Elanga Ndille, Emmanuel; Doucoure, Souleymane; Damien, Georgia; Mouchet, François; Drame, Papa Makhtar; Cornelie, Sylvie; Noukpo, Herbert; Yamadjako, Sandra; Djenontin, Armel; Moiroux, Nicolas; Misse, Dorothee; Akogbeto, Martin; Corbel, Vincent; Henry, Marie-Claire; Chandre, Fabrice; Baldet, Thierry; Remoue, Franck
2012-01-01
Background Much effort is being devoted for developing new indicators to evaluate the human exposure to Aedes mosquito bites and the risk of arbovirus transmission. Human antibody (Ab) responses to mosquito salivary components could represent a promising tool for evaluating the human-vector contact. Methodology/Principal findings To develop a specific biomarker of human exposure to Aedes aegypti bites, we measured IgG Ab response to Ae. aegypti Nterm-34 kDa salivary peptide in exposed children in 7 villages of Southern Benin (West Africa). Results showed that specific IgG response presented high inter-individual heterogeneity between villages. IgG response was associated with rainfall and IgG level increased from dry (low exposure) to rainy (high exposure) seasons. These findings indicate that IgG Ab to Nterm-34 kDa salivary peptide may represent a reliable biomarker to detect variation in human exposure to Ae. aegypti bites. Conclusion/Significance This preliminary study highlights the potential use of Ab response to this salivary peptide for evaluating human exposure to Ae. aegypti. This biomarker could represent a new promising tool for assessing the risk of arbovirus transmission and for evaluating the efficacy of vector control interventions. PMID:23166852
Reductions in global biodiversity loss predicted from conservation spending
NASA Astrophysics Data System (ADS)
Waldron, Anthony; Miller, Daniel C.; Redding, Dave; Mooers, Arne; Kuhn, Tyler S.; Nibbelink, Nate; Roberts, J. Timmons; Tobias, Joseph A.; Gittleman, John L.
2017-11-01
Halting global biodiversity loss is central to the Convention on Biological Diversity and United Nations Sustainable Development Goals, but success to date has been very limited. A critical determinant of success in achieving these goals is the financing that is committed to maintaining biodiversity; however, financing decisions are hindered by considerable uncertainty over the likely impact of any conservation investment. For greater effectiveness, we need an evidence-based model that shows how conservation spending quantitatively reduces the rate of biodiversity loss. Here we demonstrate such a model, and empirically quantify how conservation investment between 1996 and 2008 reduced biodiversity loss in 109 countries (signatories to the Convention on Biological Diversity and Sustainable Development Goals), by a median average of 29% per country. We also show that biodiversity changes in signatory countries can be predicted with high accuracy, using a dual model that balances the effects of conservation investment against those of economic, agricultural and population growth (human development pressures). Decision-makers can use this model to forecast the improvement that any proposed biodiversity budget would achieve under various scenarios of human development pressure, and then compare these forecasts to any chosen policy target. We find that the impact of spending decreases as human development pressures grow, which implies that funding may need to increase over time. The model offers a flexible tool for balancing the Sustainable Development Goals of human development and maintaining biodiversity, by predicting the dynamic changes in conservation finance that will be needed as human development proceeds.
Yu, Rosie Z; Grundy, John S; Henry, Scott P; Kim, Tae-Won; Norris, Daniel A; Burkey, Jennifer; Wang, Yanfeng; Vick, Andrew; Geary, Richard S
2015-01-20
Evaluation of species differences and systemic exposure multiples (or ratios) in toxicological animal species versus human is an ongoing exercise during the course of drug development. The systemic exposure ratios are best estimated by directly comparing area under the plasma concentration-time curves (AUCs), and sometimes by comparing the dose administered, with the dose being adjusted either by body surface area (BSA) or body weight (BW). In this study, the association between AUC ratio and the administered dose ratio from animals to human were studied using a retrospective data-driven approach. The dataset included nine antisense oligonucleotides (ASOs) with 2'-O-(2-methoxyethyl) modifications, evaluated in two animal species (mouse and monkey) following single and repeated parenteral administrations. We found that plasma AUCs were similar between ASOs within the same species, and are predictable to human exposure using a single animal species, either mouse or monkey. Between monkey and human, the plasma exposure ratio can be predicted directly based on BW-adjusted dose ratios, whereas between mouse and human, the exposure ratio would be nearly fivefold lower in mouse compared to human based on BW-adjusted dose values. Thus, multiplying a factor of 5 for the mouse BW-adjusted dose would likely provide a reasonable AUC exposure estimate in human at steady-state.
NASA Astrophysics Data System (ADS)
Wimberly, M. C.; Merkord, C. L.; Davis, J. K.; Liu, Y.; Henebry, G. M.; Hildreth, M. B.
2016-12-01
Climatic variations have a multitude of effects on human health, ranging from the direct impacts of extreme heat events to indirect effects on the vectors and hosts that transmit infectious diseases. Disease surveillance has traditionally focused on monitoring human cases, and in some instances tracking populations sizes and infection rates of arthropod vectors and zoonotic hosts. For climate-sensitive diseases, there is a potential to strengthen surveillance and obtain early indicators of future outbreaks by monitoring environmental risk factors using broad-scale sensor networks that include earth-observing satellites as well as ground stations. We highlight the opportunities and challenges of this integration by presenting modeling results and discussing lessons learned from two projects focused on surveillance and forecasting of mosquito-borne diseases. The Epidemic Prognosis Incorporating Disease and Environmental Monitoring for Integrated Assessement (EPIDEMIA) project integrates malaria case surveillance with remotely-sensed environmental data for early detection of malaria epidemics in the Amhara region of Ethiopia and has been producing weekly forecast reports since 2015. The South Dakota Mosquito Information System (SDMIS) project similarly combines entomological surveillance with environmental monitoring to generate weekly maps for West Nile virus (WNV) in the north-central United States. We are currently implementing a new disease forecasting and risk reporting framework for the state of South Dakota during the 2016 WNV transmission season. Despite important differences in disease ecology and geographic setting, our experiences with these projects highlight several important lessons learned that can inform future efforts at disease early warning based on climatic predictors. These include the need to engage end users in system design from the outset, the critical role of automated workflows to facilitate the timely integration of multiple data streams, the importance of focused visualizations that synthesize modeling results, and the challenge of linking risk indicators and forecasts to specific public health responses.
Beyond adaptive-critic creative learning for intelligent mobile robots
NASA Astrophysics Data System (ADS)
Liao, Xiaoqun; Cao, Ming; Hall, Ernest L.
2001-10-01
Intelligent industrial and mobile robots may be considered proven technology in structured environments. Teach programming and supervised learning methods permit solutions to a variety of applications. However, we believe that to extend the operation of these machines to more unstructured environments requires a new learning method. Both unsupervised learning and reinforcement learning are potential candidates for these new tasks. The adaptive critic method has been shown to provide useful approximations or even optimal control policies to non-linear systems. The purpose of this paper is to explore the use of new learning methods that goes beyond the adaptive critic method for unstructured environments. The adaptive critic is a form of reinforcement learning. A critic element provides only high level grading corrections to a cognition module that controls the action module. In the proposed system the critic's grades are modeled and forecasted, so that an anticipated set of sub-grades are available to the cognition model. The forecasting grades are interpolated and are available on the time scale needed by the action model. The success of the system is highly dependent on the accuracy of the forecasted grades and adaptability of the action module. Examples from the guidance of a mobile robot are provided to illustrate the method for simple line following and for the more complex navigation and control in an unstructured environment. The theory presented that is beyond the adaptive critic may be called creative theory. Creative theory is a form of learning that models the highest level of human learning - imagination. The application of the creative theory appears to not only be to mobile robots but also to many other forms of human endeavor such as educational learning and business forecasting. Reinforcement learning such as the adaptive critic may be applied to known problems to aid in the discovery of their solutions. The significance of creative theory is that it permits the discovery of the unknown problems, ones that are not yet recognized but may be critical to survival or success.
UV-B-Induced Erythema in Human Skin: The Circadian Clock Is Ticking.
Sarkar, Soumyadeep; Gaddameedhi, Shobhan
2018-02-01
Acute exposure of skin to UV-B causes DNA damage and sunburn erythema in both mice and humans. Previous studies documented time-of-day-related differences in sunburn responses after UV-B exposure in mice. Because humans are diurnal and mice are nocturnal, the circadian rhythm in human skin was hypothesized to be in opposite phase to the rhythm in mice. A study by Nikkola et al. demonstrates that humans are more prone to sunburn erythema after evening exposure to solar UV-B radiation as compared with morning exposure. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Geraets, Liesbeth; Zeilmaker, Marco J; Bos, Peter M J
2018-01-05
Human health risk assessment of inhalation exposures generally includes a high-to-low concentration extrapolation. Although this is a common step in human risk assessment, it introduces various uncertainties. One of these uncertainties is related to the toxicokinetics. Many kinetic processes such as absorption, metabolism or excretion can be subject to saturation at high concentration levels. In the presence of saturable kinetic processes of the parent compound or metabolites, disproportionate increases in internal blood or tissue concentration relative to the external concentration administered may occur resulting in nonlinear kinetics. The present paper critically reviews human health risk assessment of inhalation exposure. More specific, it emphasizes the importance of kinetic information for the determination of a safe exposure in human risk assessment of inhalation exposures assessed by conversion from a high animal exposure to a low exposure in humans. For two selected chemicals, i.e. methyl tert-butyl ether and 1,2-dichloroethane, PBTK-modelling was used, for illustrative purposes, to follow the extrapolation and conversion steps as performed in existing risk assessments for these chemicals. Human health-based limit values based on an external dose metric without sufficient knowledge on kinetics might be too high to be sufficiently protective. Insight in the actual internal exposure, the toxic agent, the appropriate dose metric, and whether an effect is related to internal concentration or dose is important. Without this, application of assessment factors on an external dose metric and the conversion to continuous exposure results in an uncertain human health risk assessment of inhalation exposures. Copyright © 2017 Elsevier B.V. All rights reserved.
dos Santos-Araujo, Sabrina Novaes; Alleoni, Luís Reynaldo Ferracciú
2016-02-01
The occurrence and accumulation of heavy metals or so-called potentially toxic elements (PTEs) in soils and plants have driven long-standing concerns about the adverse effects such metals have on the environment and human health. Furthermore, contaminated food products are known to be a leading source of exposure to heavy metals for the general population. It is crucial to accurately assess the concentrations of metals in crops and the bioavailable contents of these elements in the soil. The state of São Paulo is the largest consumer market of horticultural products in Brazil with production focused essentially on urban and industrial areas, which greatly increases the degree of exposure to contaminants. The objective of the authors in this study was to evaluate the soil-plant relationships between concentrations of Cd, Cu, Ni, Pb and Zn in vegetable and garden soils in the state of São Paulo, Brazil. To accomplish this, 200 soil (0-20 cm) and plant samples were collected from 25 species in the production areas. With the exception of Cd, there was positive correlation between pseudototals (USEPA 3051a) and bioavailable contents (extracted with DTPA) of heavy metals. However, the Cd and Pb contents in plants were not significantly correlated with any of the variables studied. All random forest and tree models proved to be good predictors of results generated from a regression model and provided useful information including covariates that were important for specifically forecasting Zn concentration in plants.
Our work will yield an increased general understanding of interactions among the alteration of coastal ecosystem, species invasions, climate change, and human risk in coastal environments. In addition, we will conduct a quantitative vulnerability assessment of a specific coast...
Predicting and Supplying Human Resource Requirements for the Future.
ERIC Educational Resources Information Center
Blake, Larry J.
After asserting that public institutions should not provide training for nonexistent jobs, this paper reviews problems associated with the accurate prediction of future manpower needs. The paper reviews the processes currently used to project labor force needs and notes the difficulty of accurately forecasting labor market "surprises,"…
Biodiversity is crucial for the functioning of ecosystems and the products and services from which we transform natural assets of the Earth for human survival, security, and well-being. The ability to assess, report, map, and forecast the life support functions of ecosystems is a...
Global Warming: Understanding and Teaching the Forecast.
ERIC Educational Resources Information Center
Andrews, Bill
1994-01-01
A resource for the teaching of the history and causes of climate change. Discusses evidence of climate change from the Viking era, early ice ages, the most recent ice age, natural causes of climate change, human-made causes of climate change, projections of global warming, and unequal warming. (LZ)
VCCA Journal: Journal of the Virginia Community Colleges Association, 1990.
ERIC Educational Resources Information Center
Hurst, Darrell, Ed.; Jobin, Robert, Ed.
1990-01-01
Volume 5 of the "VCCA Journal" contains the following articles: (1) "Outcomes Assessment Weather Forecast: A Cold Wind Blowing from the North," by David C. Hanson; (2) "The National Endowment for the Humanities Grant at Piedmont Virginia Community College," by Evelyn Edson, Jane Kingston, William Owen, and Samuel…
The Ecological Research Program (ERP) of the EPA Office of Research and Development has the vision of a comprehensive theory and practice for characterizing, quantifying, and valuing ecosystem services and their relationship to human well-being for environmental decision making. ...
Habitat suitability models are useful to forecast how environmental change may affect the abundance or distribution of species of concern. In the case of harvested bivalves, those models may be used to estimate the vulnerability of this valued ecosystem good to natural or human-...
Contaminated sediments are pervasive within the waters of the nation. A number of contaminants are bioaccumulative and are an unacceptable risk to the ecosystem, including humans. Many sites having contaminated sediments are contained within state 305(b) and 303(d) listings and w...
USDA-ARS?s Scientific Manuscript database
Population growth, frontier agricultural expansion, and urbanization transform the landscape and the surrounding ecosystem, affecting climate and interactions between animals and humans, and significantly influencing the transmission dynamics and geographic distribution of malaria, dengue and other ...
Human Resource Implications of Robotics.
ERIC Educational Resources Information Center
Hunt, H. Allan; Hunt, Timothy L.
A study examined the job creation and job displacement potential of industrial robots in the United States and specifically, in Michigan, by 1990. To complete an analysis of the impact of robotics on the American labor force, researchers combined data from previous forecasts of future unit and dollar sales projections and from interviews with…
APPROACHES TO ECOSYSTEM AND HUMAN EXPOSURE TO MERCURY FOR SENSITIVE POPULATIONS
Both human and ecosystem exposure studies evaluate exposure of sensitive and vulnerable populations. We will discuss how ecosystem exposure modeling studies completed for input into the US Clean Air Mercury Rule (CAMR) to evaluate the response of aquatic ecosystems to changes in ...
Stochastic Human Exposure and Dose Simulation for Air Toxics
The Stochastic Human Exposure and Dose Simulation model for Air Toxics (SHEDS-AirToxics) is a multimedia, multipathway population-based exposure and dose model for air toxics developed by the US EPA's National Exposure Research Laboratory (NERL). SHEDS-AirToxics uses a probabili...