Sample records for forecasting model developed

  1. Forecasting in foodservice: model development, testing, and evaluation.

    PubMed

    Miller, J L; Thompson, P A; Orabella, M M

    1991-05-01

    This study was designed to develop, test, and evaluate mathematical models appropriate for forecasting menu-item production demand in foodservice. Data were collected from residence and dining hall foodservices at Ohio State University. Objectives of the study were to collect, code, and analyze the data; develop and test models using actual operation data; and compare forecasting results with current methods in use. Customer count was forecast using deseasonalized simple exponential smoothing. Menu-item demand was forecast by multiplying the count forecast by a predicted preference statistic. Forecasting models were evaluated using mean squared error, mean absolute deviation, and mean absolute percentage error techniques. All models were more accurate than current methods. A broad spectrum of forecasting techniques could be used by foodservice managers with access to a personal computer and spread-sheet and database-management software. The findings indicate that mathematical forecasting techniques may be effective in foodservice operations to control costs, increase productivity, and maximize profits.

  2. A data-driven multi-model methodology with deep feature selection for short-term wind forecasting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Cong; Cui, Mingjian; Hodge, Bri-Mathias

    With the growing wind penetration into the power system worldwide, improving wind power forecasting accuracy is becoming increasingly important to ensure continued economic and reliable power system operations. In this paper, a data-driven multi-model wind forecasting methodology is developed with a two-layer ensemble machine learning technique. The first layer is composed of multiple machine learning models that generate individual forecasts. A deep feature selection framework is developed to determine the most suitable inputs to the first layer machine learning models. Then, a blending algorithm is applied in the second layer to create an ensemble of the forecasts produced by firstmore » layer models and generate both deterministic and probabilistic forecasts. This two-layer model seeks to utilize the statistically different characteristics of each machine learning algorithm. A number of machine learning algorithms are selected and compared in both layers. This developed multi-model wind forecasting methodology is compared to several benchmarks. The effectiveness of the proposed methodology is evaluated to provide 1-hour-ahead wind speed forecasting at seven locations of the Surface Radiation network. Numerical results show that comparing to the single-algorithm models, the developed multi-model framework with deep feature selection procedure has improved the forecasting accuracy by up to 30%.« less

  3. Forecasting daily emergency department visits using calendar variables and ambient temperature readings.

    PubMed

    Marcilio, Izabel; Hajat, Shakoor; Gouveia, Nelson

    2013-08-01

    This study aimed to develop different models to forecast the daily number of patients seeking emergency department (ED) care in a general hospital according to calendar variables and ambient temperature readings and to compare the models in terms of forecasting accuracy. The authors developed and tested six different models of ED patient visits using total daily counts of patient visits to an ED in Sao Paulo, Brazil, from January 1, 2008, to December 31, 2010. The first 33 months of the data set were used to develop the ED patient visits forecasting models (the training set), leaving the last 3 months to measure each model's forecasting accuracy by the mean absolute percentage error (MAPE). Forecasting models were developed using three different time-series analysis methods: generalized linear models (GLM), generalized estimating equations (GEE), and seasonal autoregressive integrated moving average (SARIMA). For each method, models were explored with and without the effect of mean daily temperature as a predictive variable. The daily mean number of ED visits was 389, ranging from 166 to 613. Data showed a weekly seasonal distribution, with highest patient volumes on Mondays and lowest patient volumes on weekends. There was little variation in daily visits by month. GLM and GEE models showed better forecasting accuracy than SARIMA models. For instance, the MAPEs from GLM models and GEE models at the first month of forecasting (October 2012) were 11.5 and 10.8% (models with and without control for the temperature effect, respectively), while the MAPEs from SARIMA models were 12.8 and 11.7%. For all models, controlling for the effect of temperature resulted in worse or similar forecasting ability than models with calendar variables alone, and forecasting accuracy was better for the short-term horizon (7 days in advance) than for the longer term (30 days in advance). This study indicates that time-series models can be developed to provide forecasts of daily ED patient visits, and forecasting ability was dependent on the type of model employed and the length of the time horizon being predicted. In this setting, GLM and GEE models showed better accuracy than SARIMA models. Including information about ambient temperature in the models did not improve forecasting accuracy. Forecasting models based on calendar variables alone did in general detect patterns of daily variability in ED volume and thus could be used for developing an automated system for better planning of personnel resources. © 2013 by the Society for Academic Emergency Medicine.

  4. Real-time Social Internet Data to Guide Forecasting Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Del Valle, Sara Y.

    Our goal is to improve decision support by monitoring and forecasting events using social media, mathematical models, and quantifying model uncertainty. Our approach is real-time, data-driven forecasts with quantified uncertainty: Not just for weather anymore. Information flow from human observations of events through an Internet system and classification algorithms is used to produce quantitatively uncertain forecast. In summary, we want to develop new tools to extract useful information from Internet data streams, develop new approaches to assimilate real-time information into predictive models, validate approaches by forecasting events, and our ultimate goal is to develop an event forecasting system using mathematicalmore » approaches and heterogeneous data streams.« less

  5. Development of a High Resolution Weather Forecast Model for Mesoamerica Using the NASA Ames Code I Private Cloud Computing Environment

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew; Case, Jonathan; Venner, Jason; Moreno-Madrinan, Max J.; Delgado, Francisco

    2012-01-01

    Two projects at NASA Marshall Space Flight Center have collaborated to develop a high resolution weather forecast model for Mesoamerica: The NASA Short-term Prediction Research and Transition (SPoRT) Center, which integrates unique NASA satellite and weather forecast modeling capabilities into the operational weather forecasting community. NASA's SERVIR Program, which integrates satellite observations, ground-based data, and forecast models to improve disaster response in Central America, the Caribbean, Africa, and the Himalayas.

  6. Short-Term Global Horizontal Irradiance Forecasting Based on Sky Imaging and Pattern Recognition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodge, Brian S; Feng, Cong; Cui, Mingjian

    Accurate short-term forecasting is crucial for solar integration in the power grid. In this paper, a classification forecasting framework based on pattern recognition is developed for 1-hour-ahead global horizontal irradiance (GHI) forecasting. Three sets of models in the forecasting framework are trained by the data partitioned from the preprocessing analysis. The first two sets of models forecast GHI for the first four daylight hours of each day. Then the GHI values in the remaining hours are forecasted by an optimal machine learning model determined based on a weather pattern classification model in the third model set. The weather pattern ismore » determined by a support vector machine (SVM) classifier. The developed framework is validated by the GHI and sky imaging data from the National Renewable Energy Laboratory (NREL). Results show that the developed short-term forecasting framework outperforms the persistence benchmark by 16% in terms of the normalized mean absolute error and 25% in terms of the normalized root mean square error.« less

  7. Counteracting structural errors in ensemble forecast of influenza outbreaks.

    PubMed

    Pei, Sen; Shaman, Jeffrey

    2017-10-13

    For influenza forecasts generated using dynamical models, forecast inaccuracy is partly attributable to the nonlinear growth of error. As a consequence, quantification of the nonlinear error structure in current forecast models is needed so that this growth can be corrected and forecast skill improved. Here, we inspect the error growth of a compartmental influenza model and find that a robust error structure arises naturally from the nonlinear model dynamics. By counteracting these structural errors, diagnosed using error breeding, we develop a new forecast approach that combines dynamical error correction and statistical filtering techniques. In retrospective forecasts of historical influenza outbreaks for 95 US cities from 2003 to 2014, overall forecast accuracy for outbreak peak timing, peak intensity and attack rate, are substantially improved for predicted lead times up to 10 weeks. This error growth correction method can be generalized to improve the forecast accuracy of other infectious disease dynamical models.Inaccuracy of influenza forecasts based on dynamical models is partly due to nonlinear error growth. Here the authors address the error structure of a compartmental influenza model, and develop a new improved forecast approach combining dynamical error correction and statistical filtering techniques.

  8. FHWA travel analysis framework : development of VMT forecasting models for use by the Federal Highway Administration

    DOT National Transportation Integrated Search

    2014-05-12

    This document details the process that the Volpe National Transportation Systems Center (Volpe) used to develop travel forecasting models for the Federal Highway Administration (FHWA). The purpose of these models is to allow FHWA to forecast future c...

  9. Development of a drought forecasting model for the Asia-Pacific region using remote sensing and climate data: Focusing on Indonesia

    NASA Astrophysics Data System (ADS)

    Rhee, Jinyoung; Kim, Gayoung; Im, Jungho

    2017-04-01

    Three regions of Indonesia with different rainfall characteristics were chosen to develop drought forecast models based on machine learning. The 6-month Standardized Precipitation Index (SPI6) was selected as the target variable. The models' forecast skill was compared to the skill of long-range climate forecast models in terms of drought accuracy and regression mean absolute error (MAE). Indonesian droughts are known to be related to El Nino Southern Oscillation (ENSO) variability despite of regional differences as well as monsoon, local sea surface temperature (SST), other large-scale atmosphere-ocean interactions such as Indian Ocean Dipole (IOD) and Southern Pacific Convergence Zone (SPCZ), and local factors including topography and elevation. Machine learning models are thus to enhance drought forecast skill by combining local and remote SST and remote sensing information reflecting initial drought conditions to the long-range climate forecast model results. A total of 126 machine learning models were developed for the three regions of West Java (JB), West Sumatra (SB), and Gorontalo (GO) and six long-range climate forecast models of MSC_CanCM3, MSC_CanCM4, NCEP, NASA, PNU, POAMA as well as one climatology model based on remote sensing precipitation data, and 1 to 6-month lead times. When compared the results between the machine learning models and the long-range climate forecast models, West Java and Gorontalo regions showed similar characteristics in terms of drought accuracy. Drought accuracy of the long-range climate forecast models were generally higher than the machine learning models with short lead times but the opposite appeared for longer lead times. For West Sumatra, however, the machine learning models and the long-range climate forecast models showed similar drought accuracy. The machine learning models showed smaller regression errors for all three regions especially with longer lead times. Among the three regions, the machine learning models developed for Gorontalo showed the highest drought accuracy and the lowest regression error. West Java showed higher drought accuracy compared to West Sumatra, while West Sumatra showed lower regression error compared to West Java. The lower error in West Sumatra may be because of the smaller sample size used for training and evaluation for the region. Regional differences of forecast skill are determined by the effect of ENSO and the following forecast skill of the long-range climate forecast models. While shown somewhat high in West Sumatra, relative importance of remote sensing variables was mostly low in most cases. High importance of the variables based on long-range climate forecast models indicates that the forecast skill of the machine learning models are mostly determined by the forecast skill of the climate models.

  10. Prospectively Evaluating the Collaboratory for the Study of Earthquake Predictability: An Evaluation of the UCERF2 and Updated Five-Year RELM Forecasts

    NASA Astrophysics Data System (ADS)

    Strader, Anne; Schneider, Max; Schorlemmer, Danijel; Liukis, Maria

    2016-04-01

    The Collaboratory for the Study of Earthquake Predictability (CSEP) was developed to rigorously test earthquake forecasts retrospectively and prospectively through reproducible, completely transparent experiments within a controlled environment (Zechar et al., 2010). During 2006-2011, thirteen five-year time-invariant prospective earthquake mainshock forecasts developed by the Regional Earthquake Likelihood Models (RELM) working group were evaluated through the CSEP testing center (Schorlemmer and Gerstenberger, 2007). The number, spatial, and magnitude components of the forecasts were compared to the respective observed seismicity components using a set of consistency tests (Schorlemmer et al., 2007, Zechar et al., 2010). In the initial experiment, all but three forecast models passed every test at the 95% significance level, with all forecasts displaying consistent log-likelihoods (L-test) and magnitude distributions (M-test) with the observed seismicity. In the ten-year RELM experiment update, we reevaluate these earthquake forecasts over an eight-year period from 2008-2016, to determine the consistency of previous likelihood testing results over longer time intervals. Additionally, we test the Uniform California Earthquake Rupture Forecast (UCERF2), developed by the U.S. Geological Survey (USGS), and the earthquake rate model developed by the California Geological Survey (CGS) and the USGS for the National Seismic Hazard Mapping Program (NSHMP) against the RELM forecasts. Both the UCERF2 and NSHMP forecasts pass all consistency tests, though the Helmstetter et al. (2007) and Shen et al. (2007) models exhibit greater information gain per earthquake according to the T- and W- tests (Rhoades et al., 2011). Though all but three RELM forecasts pass the spatial likelihood test (S-test), multiple forecasts fail the M-test due to overprediction of the number of earthquakes during the target period. Though there is no significant difference between the UCERF2 and NSHMP models, residual scores show that the NSHMP model is preferred in locations with earthquake occurrence, due to the lower seismicity rates forecasted by the UCERF2 model.

  11. Evaluation of the product ratio coherent model in forecasting mortality rates and life expectancy at births by States

    NASA Astrophysics Data System (ADS)

    Shair, Syazreen Niza; Yusof, Aida Yuzi; Asmuni, Nurin Haniah

    2017-05-01

    Coherent mortality forecasting models have recently received increasing attention particularly in their application to sub-populations. The advantage of coherent models over independent models is the ability to forecast a non-divergent mortality for two or more sub-populations. One of the coherent models was recently developed by [1] known as the product-ratio model. This model is an extension version of the functional independent model from [2]. The product-ratio model has been applied in a developed country, Australia [1] and has been extended in a developing nation, Malaysia [3]. While [3] accounted for coherency of mortality rates between gender and ethnic group, the coherency between states in Malaysia has never been explored. This paper will forecast the mortality rates of Malaysian sub-populations according to states using the product ratio coherent model and its independent version— the functional independent model. The forecast accuracies of two different models are evaluated using the out-of-sample error measurements— the mean absolute forecast error (MAFE) for age-specific death rates and the mean forecast error (MFE) for the life expectancy at birth. We employ Malaysian mortality time series data from 1991 to 2014, segregated by age, gender and states.

  12. Bayesian flood forecasting methods: A review

    NASA Astrophysics Data System (ADS)

    Han, Shasha; Coulibaly, Paulin

    2017-08-01

    Over the past few decades, floods have been seen as one of the most common and largely distributed natural disasters in the world. If floods could be accurately forecasted in advance, then their negative impacts could be greatly minimized. It is widely recognized that quantification and reduction of uncertainty associated with the hydrologic forecast is of great importance for flood estimation and rational decision making. Bayesian forecasting system (BFS) offers an ideal theoretic framework for uncertainty quantification that can be developed for probabilistic flood forecasting via any deterministic hydrologic model. It provides suitable theoretical structure, empirically validated models and reasonable analytic-numerical computation method, and can be developed into various Bayesian forecasting approaches. This paper presents a comprehensive review on Bayesian forecasting approaches applied in flood forecasting from 1999 till now. The review starts with an overview of fundamentals of BFS and recent advances in BFS, followed with BFS application in river stage forecasting and real-time flood forecasting, then move to a critical analysis by evaluating advantages and limitations of Bayesian forecasting methods and other predictive uncertainty assessment approaches in flood forecasting, and finally discusses the future research direction in Bayesian flood forecasting. Results show that the Bayesian flood forecasting approach is an effective and advanced way for flood estimation, it considers all sources of uncertainties and produces a predictive distribution of the river stage, river discharge or runoff, thus gives more accurate and reliable flood forecasts. Some emerging Bayesian forecasting methods (e.g. ensemble Bayesian forecasting system, Bayesian multi-model combination) were shown to overcome limitations of single model or fixed model weight and effectively reduce predictive uncertainty. In recent years, various Bayesian flood forecasting approaches have been developed and widely applied, but there is still room for improvements. Future research in the context of Bayesian flood forecasting should be on assimilation of various sources of newly available information and improvement of predictive performance assessment methods.

  13. An Integrated Enrollment Forecast Model. IR Applications, Volume 15, January 18, 2008

    ERIC Educational Resources Information Center

    Chen, Chau-Kuang

    2008-01-01

    Enrollment forecasting is the central component of effective budget and program planning. The integrated enrollment forecast model is developed to achieve a better understanding of the variables affecting student enrollment and, ultimately, to perform accurate forecasts. The transfer function model of the autoregressive integrated moving average…

  14. Time-Series Forecast Modeling on High-Bandwidth Network Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Wucherl; Sim, Alex

    With the increasing number of geographically distributed scientific collaborations and the growing sizes of scientific data, it has become challenging for users to achieve the best possible network performance on a shared network. In this paper, we have developed a model to forecast expected bandwidth utilization on high-bandwidth wide area networks. The forecast model can improve the efficiency of the resource utilization and scheduling of data movements on high-bandwidth networks to accommodate ever increasing data volume for large-scale scientific data applications. A univariate time-series forecast model is developed with the Seasonal decomposition of Time series by Loess (STL) and themore » AutoRegressive Integrated Moving Average (ARIMA) on Simple Network Management Protocol (SNMP) path utilization measurement data. Compared with the traditional approach such as Box-Jenkins methodology to train the ARIMA model, our forecast model reduces computation time up to 92.6 %. It also shows resilience against abrupt network usage changes. Finally, our forecast model conducts the large number of multi-step forecast, and the forecast errors are within the mean absolute deviation (MAD) of the monitored measurements.« less

  15. Time-Series Forecast Modeling on High-Bandwidth Network Measurements

    DOE PAGES

    Yoo, Wucherl; Sim, Alex

    2016-06-24

    With the increasing number of geographically distributed scientific collaborations and the growing sizes of scientific data, it has become challenging for users to achieve the best possible network performance on a shared network. In this paper, we have developed a model to forecast expected bandwidth utilization on high-bandwidth wide area networks. The forecast model can improve the efficiency of the resource utilization and scheduling of data movements on high-bandwidth networks to accommodate ever increasing data volume for large-scale scientific data applications. A univariate time-series forecast model is developed with the Seasonal decomposition of Time series by Loess (STL) and themore » AutoRegressive Integrated Moving Average (ARIMA) on Simple Network Management Protocol (SNMP) path utilization measurement data. Compared with the traditional approach such as Box-Jenkins methodology to train the ARIMA model, our forecast model reduces computation time up to 92.6 %. It also shows resilience against abrupt network usage changes. Finally, our forecast model conducts the large number of multi-step forecast, and the forecast errors are within the mean absolute deviation (MAD) of the monitored measurements.« less

  16. Development and validation of a regional coupled forecasting system for S2S forecasts

    NASA Astrophysics Data System (ADS)

    Sun, R.; Subramanian, A. C.; Hoteit, I.; Miller, A. J.; Ralph, M.; Cornuelle, B. D.

    2017-12-01

    Accurate and efficient forecasting of oceanic and atmospheric circulation is essential for a wide variety of high-impact societal needs, including: weather extremes; environmental protection and coastal management; management of fisheries, marine conservation; water resources; and renewable energy. Effective forecasting relies on high model fidelity and accurate initialization of the models with observed state of the ocean-atmosphere-land coupled system. A regional coupled ocean-atmosphere model with the Weather Research and Forecasting (WRF) model and the MITGCM ocean model coupled using the ESMF (Earth System Modeling Framework) coupling framework is developed to resolve mesoscale air-sea feedbacks. The regional coupled model allows oceanic mixed layer heat and momentum to interact with the atmospheric boundary layer dynamics at the mesoscale and submesoscale spatiotemporal regimes, thus leading to feedbacks which are otherwise not resolved in coarse resolution global coupled forecasting systems or regional uncoupled forecasting systems. The model is tested in two scenarios in the mesoscale eddy rich Red Sea and Western Indian Ocean region as well as mesoscale eddies and fronts of the California Current System. Recent studies show evidence for air-sea interactions involving the oceanic mesoscale in these two regions which can enhance predictability on sub seasonal timescale. We will present results from this newly developed regional coupled ocean-atmosphere model for forecasts over the Red Sea region as well as the California Current region. The forecasts will be validated against insitu observations in the region as well as reanalysis fields.

  17. Real-time flood forecasting by employing artificial neural network based model with zoning matching approach

    NASA Astrophysics Data System (ADS)

    Sulaiman, M.; El-Shafie, A.; Karim, O.; Basri, H.

    2011-10-01

    Flood forecasting models are a necessity, as they help in planning for flood events, and thus help prevent loss of lives and minimize damage. At present, artificial neural networks (ANN) have been successfully applied in river flow and water level forecasting studies. ANN requires historical data to develop a forecasting model. However, long-term historical water level data, such as hourly data, poses two crucial problems in data training. First is that the high volume of data slows the computation process. Second is that data training reaches its optimal performance within a few cycles of data training, due to there being a high volume of normal water level data in the data training, while the forecasting performance for high water level events is still poor. In this study, the zoning matching approach (ZMA) is used in ANN to accurately monitor flood events in real time by focusing the development of the forecasting model on high water level zones. ZMA is a trial and error approach, where several training datasets using high water level data are tested to find the best training dataset for forecasting high water level events. The advantage of ZMA is that relevant knowledge of water level patterns in historical records is used. Importantly, the forecasting model developed based on ZMA successfully achieves high accuracy forecasting results at 1 to 3 h ahead and satisfactory performance results at 6 h. Seven performance measures are adopted in this study to describe the accuracy and reliability of the forecasting model developed.

  18. Time-series-based hybrid mathematical modelling method adapted to forecast automotive and medical waste generation: Case study of Lithuania.

    PubMed

    Karpušenkaitė, Aistė; Ruzgas, Tomas; Denafas, Gintaras

    2018-05-01

    The aim of the study was to create a hybrid forecasting method that could produce higher accuracy forecasts than previously used 'pure' time series methods. Mentioned methods were already tested with total automotive waste, hazardous automotive waste, and total medical waste generation, but demonstrated at least a 6% error rate in different cases and efforts were made to decrease it even more. Newly developed hybrid models used a random start generation method to incorporate different time-series advantages and it helped to increase the accuracy of forecasts by 3%-4% in hazardous automotive waste and total medical waste generation cases; the new model did not increase the accuracy of total automotive waste generation forecasts. Developed models' abilities to forecast short- and mid-term forecasts were tested using prediction horizon.

  19. Development of predictive weather scenarios for early prediction of rice yield in South Korea

    NASA Astrophysics Data System (ADS)

    Shin, Y.; Cho, J.; Jung, I.

    2017-12-01

    International grain prices are becoming unstable due to frequent occurrence of abnormal weather phenomena caused by climate change. Early prediction of grain yield using weather forecast data is important for stabilization of international grain prices. The APEC Climate Center (APCC) is providing seasonal forecast data based on monthly climate prediction models for global seasonal forecasting services. The 3-month and 6-month seasonal forecast data using the multi-model ensemble (MME) technique are provided in their own website, ADSS (APCC Data Service System, http://adss.apcc21.org/). The spatial resolution of seasonal forecast data for each individual model is 2.5°×2.5°(about 250km) and the time scale is created as monthly. In this study, we developed customized weather forecast scenarios that are combined seasonal forecast data and observational data apply to early rice yield prediction model. Statistical downscale method was applied to produce meteorological input data of crop model because field scale crop model (ORYZA2000) requires daily weather data. In order to determine whether the forecasting data is suitable for the crop model, we produced spatio-temporal downscaled weather scenarios and evaluated the predictability by comparison with observed weather data at 57 ASOS stations in South Korea. The customized weather forecast scenarios can be applied to various application fields not only early rice yield prediction. Acknowledgement This work was carried out with the support of "Cooperative Research Program for Agriculture Science and Technology Development (Project No: PJ012855022017)" Rural Development Administration, Republic of Korea.

  20. An Econometric Model for Forecasting Income and Employment in Hawaii.

    ERIC Educational Resources Information Center

    Chau, Laurence C.

    This report presents the methodology for short-run forecasting of personal income and employment in Hawaii. The econometric model developed in the study is used to make actual forecasts through 1973 of income and employment, with major components forecasted separately. Several sets of forecasts are made, under different assumptions on external…

  1. Development and application of an atmospheric-hydrologic-hydraulic flood forecasting model driven by TIGGE ensemble forecasts

    NASA Astrophysics Data System (ADS)

    Bao, Hongjun; Zhao, Linna

    2012-02-01

    A coupled atmospheric-hydrologic-hydraulic ensemble flood forecasting model, driven by The Observing System Research and Predictability Experiment (THORPEX) Interactive Grand Global Ensemble (TIGGE) data, has been developed for flood forecasting over the Huaihe River. The incorporation of numerical weather prediction (NWP) information into flood forecasting systems may increase forecast lead time from a few hours to a few days. A single NWP model forecast from a single forecast center, however, is insufficient as it involves considerable non-predictable uncertainties and leads to a high number of false alarms. The availability of global ensemble NWP systems through TIGGE offers a new opportunity for flood forecast. The Xinanjiang model used for hydrological rainfall-runoff modeling and the one-dimensional unsteady flow model applied to channel flood routing are coupled with ensemble weather predictions based on the TIGGE data from the Canadian Meteorological Centre (CMC), the European Centre for Medium-Range Weather Forecasts (ECMWF), the UK Met Office (UKMO), and the US National Centers for Environmental Prediction (NCEP). The developed ensemble flood forecasting model is applied to flood forecasting of the 2007 flood season as a test case. The test case is chosen over the upper reaches of the Huaihe River above Lutaizi station with flood diversion and retarding areas. The input flood discharge hydrograph from the main channel to the flood diversion area is estimated with the fixed split ratio of the main channel discharge. The flood flow inside the flood retarding area is calculated as a reservoir with the water balance method. The Muskingum method is used for flood routing in the flood diversion area. A probabilistic discharge and flood inundation forecast is provided as the end product to study the potential benefits of using the TIGGE ensemble forecasts. The results demonstrate satisfactory flood forecasting with clear signals of probability of floods up to a few days in advance, and show that TIGGE ensemble forecast data are a promising tool for forecasting of flood inundation, comparable with that driven by raingauge observations.

  2. Robustness of disaggregate oil and gas discovery forecasting models

    USGS Publications Warehouse

    Attanasi, E.D.; Schuenemeyer, J.H.

    1989-01-01

    The trend in forecasting oil and gas discoveries has been to develop and use models that allow forecasts of the size distribution of future discoveries. From such forecasts, exploration and development costs can more readily be computed. Two classes of these forecasting models are the Arps-Roberts type models and the 'creaming method' models. This paper examines the robustness of the forecasts made by these models when the historical data on which the models are based have been subject to economic upheavals or when historical discovery data are aggregated from areas having widely differing economic structures. Model performance is examined in the context of forecasting discoveries for offshore Texas State and Federal areas. The analysis shows how the model forecasts are limited by information contained in the historical discovery data. Because the Arps-Roberts type models require more regularity in discovery sequence than the creaming models, prior information had to be introduced into the Arps-Roberts models to accommodate the influence of economic changes. The creaming methods captured the overall decline in discovery size but did not easily allow introduction of exogenous information to compensate for incomplete historical data. Moreover, the predictive log normal distribution associated with the creaming model methods appears to understate the importance of the potential contribution of small fields. ?? 1989.

  3. Evaluating the performance of infectious disease forecasts: A comparison of climate-driven and seasonal dengue forecasts for Mexico.

    PubMed

    Johansson, Michael A; Reich, Nicholas G; Hota, Aditi; Brownstein, John S; Santillana, Mauricio

    2016-09-26

    Dengue viruses, which infect millions of people per year worldwide, cause large epidemics that strain healthcare systems. Despite diverse efforts to develop forecasting tools including autoregressive time series, climate-driven statistical, and mechanistic biological models, little work has been done to understand the contribution of different components to improved prediction. We developed a framework to assess and compare dengue forecasts produced from different types of models and evaluated the performance of seasonal autoregressive models with and without climate variables for forecasting dengue incidence in Mexico. Climate data did not significantly improve the predictive power of seasonal autoregressive models. Short-term and seasonal autocorrelation were key to improving short-term and long-term forecasts, respectively. Seasonal autoregressive models captured a substantial amount of dengue variability, but better models are needed to improve dengue forecasting. This framework contributes to the sparse literature of infectious disease prediction model evaluation, using state-of-the-art validation techniques such as out-of-sample testing and comparison to an appropriate reference model.

  4. Evaluating the performance of infectious disease forecasts: A comparison of climate-driven and seasonal dengue forecasts for Mexico

    PubMed Central

    Johansson, Michael A.; Reich, Nicholas G.; Hota, Aditi; Brownstein, John S.; Santillana, Mauricio

    2016-01-01

    Dengue viruses, which infect millions of people per year worldwide, cause large epidemics that strain healthcare systems. Despite diverse efforts to develop forecasting tools including autoregressive time series, climate-driven statistical, and mechanistic biological models, little work has been done to understand the contribution of different components to improved prediction. We developed a framework to assess and compare dengue forecasts produced from different types of models and evaluated the performance of seasonal autoregressive models with and without climate variables for forecasting dengue incidence in Mexico. Climate data did not significantly improve the predictive power of seasonal autoregressive models. Short-term and seasonal autocorrelation were key to improving short-term and long-term forecasts, respectively. Seasonal autoregressive models captured a substantial amount of dengue variability, but better models are needed to improve dengue forecasting. This framework contributes to the sparse literature of infectious disease prediction model evaluation, using state-of-the-art validation techniques such as out-of-sample testing and comparison to an appropriate reference model. PMID:27665707

  5. A probabilistic drought forecasting framework: A combined dynamical and statistical approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Hongxiang; Moradkhani, Hamid; Zarekarizi, Mahkameh

    In order to improve drought forecasting skill, this study develops a probabilistic drought forecasting framework comprised of dynamical and statistical modeling components. The novelty of this study is to seek the use of data assimilation to quantify initial condition uncertainty with the Monte Carlo ensemble members, rather than relying entirely on the hydrologic model or land surface model to generate a single deterministic initial condition, as currently implemented in the operational drought forecasting systems. Next, the initial condition uncertainty is quantified through data assimilation and coupled with a newly developed probabilistic drought forecasting model using a copula function. The initialmore » condition at each forecast start date are sampled from the data assimilation ensembles for forecast initialization. Finally, seasonal drought forecasting products are generated with the updated initial conditions. This study introduces the theory behind the proposed drought forecasting system, with an application in Columbia River Basin, Pacific Northwest, United States. Results from both synthetic and real case studies suggest that the proposed drought forecasting system significantly improves the seasonal drought forecasting skills and can facilitate the state drought preparation and declaration, at least three months before the official state drought declaration.« less

  6. An enhanced PM 2.5 air quality forecast model based on nonlinear regression and back-trajectory concentrations

    NASA Astrophysics Data System (ADS)

    Cobourn, W. Geoffrey

    2010-08-01

    An enhanced PM 2.5 air quality forecast model based on nonlinear regression (NLR) and back-trajectory concentrations has been developed for use in the Louisville, Kentucky metropolitan area. The PM 2.5 air quality forecast model is designed for use in the warm season, from May through September, when PM 2.5 air quality is more likely to be critical for human health. The enhanced PM 2.5 model consists of a basic NLR model, developed for use with an automated air quality forecast system, and an additional parameter based on upwind PM 2.5 concentration, called PM24. The PM24 parameter is designed to be determined manually, by synthesizing backward air trajectory and regional air quality information to compute 24-h back-trajectory concentrations. The PM24 parameter may be used by air quality forecasters to adjust the forecast provided by the automated forecast system. In this study of the 2007 and 2008 forecast seasons, the enhanced model performed well using forecasted meteorological data and PM24 as input. The enhanced PM 2.5 model was compared with three alternative models, including the basic NLR model, the basic NLR model with a persistence parameter added, and the NLR model with persistence and PM24. The two models that included PM24 were of comparable accuracy. The two models incorporating back-trajectory concentrations had lower mean absolute errors and higher rates of detecting unhealthy PM2.5 concentrations compared to the other models.

  7. A Comparison Study of Return Ratio-Based Academic Enrollment Forecasting Models. Professional File. Article 129, Spring 2013

    ERIC Educational Resources Information Center

    Zan, Xinxing Anna; Yoon, Sang Won; Khasawneh, Mohammad; Srihari, Krishnaswami

    2013-01-01

    In an effort to develop a low-cost and user-friendly forecasting model to minimize forecasting error, we have applied average and exponentially weighted return ratios to project undergraduate student enrollment. We tested the proposed forecasting models with different sets of historical enrollment data, such as university-, school-, and…

  8. Forecast of dengue incidence using temperature and rainfall.

    PubMed

    Hii, Yien Ling; Zhu, Huaiping; Ng, Nawi; Ng, Lee Ching; Rocklöv, Joacim

    2012-01-01

    An accurate early warning system to predict impending epidemics enhances the effectiveness of preventive measures against dengue fever. The aim of this study was to develop and validate a forecasting model that could predict dengue cases and provide timely early warning in Singapore. We developed a time series Poisson multivariate regression model using weekly mean temperature and cumulative rainfall over the period 2000-2010. Weather data were modeled using piecewise linear spline functions. We analyzed various lag times between dengue and weather variables to identify the optimal dengue forecasting period. Autoregression, seasonality and trend were considered in the model. We validated the model by forecasting dengue cases for week 1 of 2011 up to week 16 of 2012 using weather data alone. Model selection and validation were based on Akaike's Information Criterion, standardized Root Mean Square Error, and residuals diagnoses. A Receiver Operating Characteristics curve was used to analyze the sensitivity of the forecast of epidemics. The optimal period for dengue forecast was 16 weeks. Our model forecasted correctly with errors of 0.3 and 0.32 of the standard deviation of reported cases during the model training and validation periods, respectively. It was sensitive enough to distinguish between outbreak and non-outbreak to a 96% (CI = 93-98%) in 2004-2010 and 98% (CI = 95%-100%) in 2011. The model predicted the outbreak in 2011 accurately with less than 3% possibility of false alarm. We have developed a weather-based dengue forecasting model that allows warning 16 weeks in advance of dengue epidemics with high sensitivity and specificity. We demonstrate that models using temperature and rainfall could be simple, precise, and low cost tools for dengue forecasting which could be used to enhance decision making on the timing, scale of vector control operations, and utilization of limited resources.

  9. New product forecasting with limited or no data

    NASA Astrophysics Data System (ADS)

    Ismai, Zuhaimy; Abu, Noratikah; Sufahani, Suliadi

    2016-10-01

    In the real world, forecasts would always be based on historical data with the assumption that the behaviour be the same for the future. But how do we forecast when there is no such data available? New product or new technologies normally has limited amount of data available. Knowing that forecasting is valuable for decision making, this paper presents forecasting of new product or new technologies using aggregate diffusion models and modified Bass Model. A newly launched Proton car and its penetration was chosen to demonstrate the possibility of forecasting sales demand where there is limited or no data available. The model was developed to forecast diffusion of new vehicle or an innovation in the Malaysian society. It is to represent the level of spread on the new vehicle among a given set of the society in terms of a simple mathematical function that elapsed since the introduction of the new product. This model will forecast the car sales volume. A procedure of the proposed diffusion model was designed and the parameters were estimated. Results obtained by applying the proposed diffusion model and numerical calculation shows that the model is robust and effective for forecasting demand of the new vehicle. The results reveal that newly developed modified Bass diffusion of demand function has significantly contributed for forecasting the diffusion of new Proton car or new product.

  10. Load Modeling and Forecasting | Grid Modernization | NREL

    Science.gov Websites

    Load Modeling and Forecasting Load Modeling and Forecasting NREL's work in load modeling is focused resources (such as rooftop photovoltaic systems) and changing customer energy use profiles, new load models distribution system. In addition, NREL researchers are developing load models for individual appliances and

  11. Use of the Box and Jenkins time series technique in traffic forecasting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nihan, N.L.; Holmesland, K.O.

    The use of recently developed time series techniques for short-term traffic volume forecasting is examined. A data set containing monthly volumes on a freeway segment for 1968-76 is used to fit a time series model. The resultant model is used to forecast volumes for 1977. The forecast volumes are then compared with actual volumes in 1977. Time series techniques can be used to develop highly accurate and inexpensive short-term forecasts. The feasibility of using these models to evaluate the effects of policy changes or other outside impacts is considered. (1 diagram, 1 map, 14 references,2 tables)

  12. A review and update of the Virginia Department of Transportation's cash flow forecasting model : interim report.

    DOT National Transportation Integrated Search

    1995-01-01

    The Virginia Department of Transportation uses a cash flow forecasting model to predict operations expenditures by month. Components of this general forecasting model estimate line items in the VDOT budget. The cash flow model was developed in the ea...

  13. A GLM Post-processor to Adjust Ensemble Forecast Traces

    NASA Astrophysics Data System (ADS)

    Thiemann, M.; Day, G. N.; Schaake, J. C.; Draijer, S.; Wang, L.

    2011-12-01

    The skill of hydrologic ensemble forecasts has improved in the last years through a better understanding of climate variability, better climate forecasts and new data assimilation techniques. Having been extensively utilized for probabilistic water supply forecasting, interest is developing to utilize these forecasts in operational decision making. Hydrologic ensemble forecast members typically have inherent biases in flow timing and volume caused by (1) structural errors in the models used, (2) systematic errors in the data used to calibrate those models, (3) uncertain initial hydrologic conditions, and (4) uncertainties in the forcing datasets. Furthermore, hydrologic models have often not been developed for operational decision points and ensemble forecasts are thus not always available where needed. A statistical post-processor can be used to address these issues. The post-processor should (1) correct for systematic biases in flow timing and volume, (2) preserve the skill of the available raw forecasts, (3) preserve spatial and temporal correlation as well as the uncertainty in the forecasted flow data, (4) produce adjusted forecast ensembles that represent the variability of the observed hydrograph to be predicted, and (5) preserve individual forecast traces as equally likely. The post-processor should also allow for the translation of available ensemble forecasts to hydrologically similar locations where forecasts are not available. This paper introduces an ensemble post-processor (EPP) developed in support of New York City water supply operations. The EPP employs a general linear model (GLM) to (1) adjust available ensemble forecast traces and (2) create new ensembles for (nearby) locations where only historic flow observations are available. The EPP is calibrated by developing daily and aggregated statistical relationships form historical flow observations and model simulations. These are then used in operation to obtain the conditional probability density function (PDF) of the observations to be predicted, thus jointly adjusting individual ensemble members. These steps are executed in a normalized transformed space ('z'-space) to account for the strong non-linearity in the flow observations involved. A data window centered on each calibration date is used to minimize impacts from sampling errors and data noise. Testing on datasets from California and New York suggests that the EPP can successfully minimize biases in ensemble forecasts, while preserving the raw forecast skill in a 'days to weeks' forecast horizon and reproducing the variability of climatology for 'weeks to years' forecast horizons.

  14. Influenza forecasting with Google Flu Trends.

    PubMed

    Dugas, Andrea Freyer; Jalalpour, Mehdi; Gel, Yulia; Levin, Scott; Torcaso, Fred; Igusa, Takeru; Rothman, Richard E

    2013-01-01

    We developed a practical influenza forecast model based on real-time, geographically focused, and easy to access data, designed to provide individual medical centers with advanced warning of the expected number of influenza cases, thus allowing for sufficient time to implement interventions. Secondly, we evaluated the effects of incorporating a real-time influenza surveillance system, Google Flu Trends, and meteorological and temporal information on forecast accuracy. Forecast models designed to predict one week in advance were developed from weekly counts of confirmed influenza cases over seven seasons (2004-2011) divided into seven training and out-of-sample verification sets. Forecasting procedures using classical Box-Jenkins, generalized linear models (GLM), and generalized linear autoregressive moving average (GARMA) methods were employed to develop the final model and assess the relative contribution of external variables such as, Google Flu Trends, meteorological data, and temporal information. A GARMA(3,0) forecast model with Negative Binomial distribution integrating Google Flu Trends information provided the most accurate influenza case predictions. The model, on the average, predicts weekly influenza cases during 7 out-of-sample outbreaks within 7 cases for 83% of estimates. Google Flu Trend data was the only source of external information to provide statistically significant forecast improvements over the base model in four of the seven out-of-sample verification sets. Overall, the p-value of adding this external information to the model is 0.0005. The other exogenous variables did not yield a statistically significant improvement in any of the verification sets. Integer-valued autoregression of influenza cases provides a strong base forecast model, which is enhanced by the addition of Google Flu Trends confirming the predictive capabilities of search query based syndromic surveillance. This accessible and flexible forecast model can be used by individual medical centers to provide advanced warning of future influenza cases.

  15. A short-term ensemble wind speed forecasting system for wind power applications

    NASA Astrophysics Data System (ADS)

    Baidya Roy, S.; Traiteur, J. J.; Callicutt, D.; Smith, M.

    2011-12-01

    This study develops an adaptive, blended forecasting system to provide accurate wind speed forecasts 1 hour ahead of time for wind power applications. The system consists of an ensemble of 21 forecasts with different configurations of the Weather Research and Forecasting Single Column Model (WRFSCM) and a persistence model. The ensemble is calibrated against observations for a 2 month period (June-July, 2008) at a potential wind farm site in Illinois using the Bayesian Model Averaging (BMA) technique. The forecasting system is evaluated against observations for August 2008 at the same site. The calibrated ensemble forecasts significantly outperform the forecasts from the uncalibrated ensemble while significantly reducing forecast uncertainty under all environmental stability conditions. The system also generates significantly better forecasts than persistence, autoregressive (AR) and autoregressive moving average (ARMA) models during the morning transition and the diurnal convective regimes. This forecasting system is computationally more efficient than traditional numerical weather prediction models and can generate a calibrated forecast, including model runs and calibration, in approximately 1 minute. Currently, hour-ahead wind speed forecasts are almost exclusively produced using statistical models. However, numerical models have several distinct advantages over statistical models including the potential to provide turbulence forecasts. Hence, there is an urgent need to explore the role of numerical models in short-term wind speed forecasting. This work is a step in that direction and is likely to trigger a debate within the wind speed forecasting community.

  16. Recent Achievements of the Collaboratory for the Study of Earthquake Predictability

    NASA Astrophysics Data System (ADS)

    Jordan, T. H.; Liukis, M.; Werner, M. J.; Schorlemmer, D.; Yu, J.; Maechling, P. J.; Jackson, D. D.; Rhoades, D. A.; Zechar, J. D.; Marzocchi, W.

    2016-12-01

    The Collaboratory for the Study of Earthquake Predictability (CSEP) supports a global program to conduct prospective earthquake forecasting experiments. CSEP testing centers are now operational in California, New Zealand, Japan, China, and Europe with 442 models under evaluation. The California testing center, started by SCEC, Sept 1, 2007, currently hosts 30-minute, 1-day, 3-month, 1-year and 5-year forecasts, both alarm-based and probabilistic, for California, the Western Pacific, and worldwide. Our tests are now based on the hypocentral locations and magnitudes of cataloged earthquakes, but we plan to test focal mechanisms, seismic hazard models, ground motion forecasts, and finite rupture forecasts as well. We have increased computational efficiency for high-resolution global experiments, such as the evaluation of the Global Earthquake Activity Rate (GEAR) model, introduced Bayesian ensemble models, and implemented support for non-Poissonian simulation-based forecasts models. We are currently developing formats and procedures to evaluate externally hosted forecasts and predictions. CSEP supports the USGS program in operational earthquake forecasting and a DHS project to register and test external forecast procedures from experts outside seismology. We found that earthquakes as small as magnitude 2.5 provide important information on subsequent earthquakes larger than magnitude 5. A retrospective experiment for the 2010-2012 Canterbury earthquake sequence showed that some physics-based and hybrid models outperform catalog-based (e.g., ETAS) models. This experiment also demonstrates the ability of the CSEP infrastructure to support retrospective forecast testing. Current CSEP development activities include adoption of the Comprehensive Earthquake Catalog (ComCat) as an authorized data source, retrospective testing of simulation-based forecasts, and support for additive ensemble methods. We describe the open-source CSEP software that is available to researchers as they develop their forecast models. We also discuss how CSEP procedures are being adapted to intensity and ground motion prediction experiments as well as hazard model testing.

  17. Utilizing Climate Forecasts for Improving Water and Power Systems Coordination

    NASA Astrophysics Data System (ADS)

    Arumugam, S.; Queiroz, A.; Patskoski, J.; Mahinthakumar, K.; DeCarolis, J.

    2016-12-01

    Climate forecasts, typically monthly-to-seasonal precipitation forecasts, are commonly used to develop streamflow forecasts for improving reservoir management. Irrespective of their high skill in forecasting, temperature forecasts in developing power demand forecasts are not often considered along with streamflow forecasts for improving water and power systems coordination. In this study, we consider a prototype system to analyze the utility of climate forecasts, both precipitation and temperature, for improving water and power systems coordination. The prototype system, a unit-commitment model that schedules power generation from various sources, is considered and its performance is compared with an energy system model having an equivalent reservoir representation. Different skill sets of streamflow forecasts and power demand forecasts are forced on both water and power systems representations for understanding the level of model complexity required for utilizing monthly-to-seasonal climate forecasts to improve coordination between these two systems. The analyses also identify various decision-making strategies - forward purchasing of fuel stocks, scheduled maintenance of various power systems and tradeoff on water appropriation between hydropower and other uses - in the context of various water and power systems configurations. Potential application of such analyses for integrating large power systems with multiple river basins is also discussed.

  18. Verification of Ensemble Forecasts for the New York City Operations Support Tool

    NASA Astrophysics Data System (ADS)

    Day, G.; Schaake, J. C.; Thiemann, M.; Draijer, S.; Wang, L.

    2012-12-01

    The New York City water supply system operated by the Department of Environmental Protection (DEP) serves nine million people. It covers 2,000 square miles of portions of the Catskill, Delaware, and Croton watersheds, and it includes nineteen reservoirs and three controlled lakes. DEP is developing an Operations Support Tool (OST) to support its water supply operations and planning activities. OST includes historical and real-time data, a model of the water supply system complete with operating rules, and lake water quality models developed to evaluate alternatives for managing turbidity in the New York City Catskill reservoirs. OST will enable DEP to manage turbidity in its unfiltered system while satisfying its primary objective of meeting the City's water supply needs, in addition to considering secondary objectives of maintaining ecological flows, supporting fishery and recreation releases, and mitigating downstream flood peaks. The current version of OST relies on statistical forecasts of flows in the system based on recent observed flows. To improve short-term decision making, plans are being made to transition to National Weather Service (NWS) ensemble forecasts based on hydrologic models that account for short-term weather forecast skill, longer-term climate information, as well as the hydrologic state of the watersheds and recent observed flows. To ensure that the ensemble forecasts are unbiased and that the ensemble spread reflects the actual uncertainty of the forecasts, a statistical model has been developed to post-process the NWS ensemble forecasts to account for hydrologic model error as well as any inherent bias and uncertainty in initial model states, meteorological data and forecasts. The post-processor is designed to produce adjusted ensemble forecasts that are consistent with the DEP historical flow sequences that were used to develop the system operating rules. A set of historical hindcasts that is representative of the real-time ensemble forecasts is needed to verify that the post-processed forecasts are unbiased, statistically reliable, and preserve the skill inherent in the "raw" NWS ensemble forecasts. A verification procedure and set of metrics will be presented that provide an objective assessment of ensemble forecasts. The procedure will be applied to both raw ensemble hindcasts and to post-processed ensemble hindcasts. The verification metrics will be used to validate proper functioning of the post-processor and to provide a benchmark for comparison of different types of forecasts. For example, current NWS ensemble forecasts are based on climatology, using each historical year to generate a forecast trace. The NWS Hydrologic Ensemble Forecast System (HEFS) under development will utilize output from both the National Oceanic Atmospheric Administration (NOAA) Global Ensemble Forecast System (GEFS) and the Climate Forecast System (CFS). Incorporating short-term meteorological forecasts and longer-term climate forecast information should provide sharper, more accurate forecasts. Hindcasts from HEFS will enable New York City to generate verification results to validate the new forecasts and further fine-tune system operating rules. Project verification results will be presented for different watersheds across a range of seasons, lead times, and flow levels to assess the quality of the current ensemble forecasts.

  19. Weighting of NMME temperature and precipitation forecasts across Europe

    NASA Astrophysics Data System (ADS)

    Slater, Louise J.; Villarini, Gabriele; Bradley, A. Allen

    2017-09-01

    Multi-model ensemble forecasts are obtained by weighting multiple General Circulation Model (GCM) outputs to heighten forecast skill and reduce uncertainties. The North American Multi-Model Ensemble (NMME) project facilitates the development of such multi-model forecasting schemes by providing publicly-available hindcasts and forecasts online. Here, temperature and precipitation forecasts are enhanced by leveraging the strengths of eight NMME GCMs (CCSM3, CCSM4, CanCM3, CanCM4, CFSv2, GEOS5, GFDL2.1, and FLORb01) across all forecast months and lead times, for four broad climatic European regions: Temperate, Mediterranean, Humid-Continental and Subarctic-Polar. We compare five different approaches to multi-model weighting based on the equally weighted eight single-model ensembles (EW-8), Bayesian updating (BU) of the eight single-model ensembles (BU-8), BU of the 94 model members (BU-94), BU of the principal components of the eight single-model ensembles (BU-PCA-8) and BU of the principal components of the 94 model members (BU-PCA-94). We assess the forecasting skill of these five multi-models and evaluate their ability to predict some of the costliest historical droughts and floods in recent decades. Results indicate that the simplest approach based on EW-8 preserves model skill, but has considerable biases. The BU and BU-PCA approaches reduce the unconditional biases and negative skill in the forecasts considerably, but they can also sometimes diminish the positive skill in the original forecasts. The BU-PCA models tend to produce lower conditional biases than the BU models and have more homogeneous skill than the other multi-models, but with some loss of skill. The use of 94 NMME model members does not present significant benefits over the use of the 8 single model ensembles. These findings may provide valuable insights for the development of skillful, operational multi-model forecasting systems.

  20. Improved ensemble-mean forecasting of ENSO events by a zero-mean stochastic error model of an intermediate coupled model

    NASA Astrophysics Data System (ADS)

    Zheng, Fei; Zhu, Jiang

    2017-04-01

    How to design a reliable ensemble prediction strategy with considering the major uncertainties of a forecasting system is a crucial issue for performing an ensemble forecast. In this study, a new stochastic perturbation technique is developed to improve the prediction skills of El Niño-Southern Oscillation (ENSO) through using an intermediate coupled model. We first estimate and analyze the model uncertainties from the ensemble Kalman filter analysis results through assimilating the observed sea surface temperatures. Then, based on the pre-analyzed properties of model errors, we develop a zero-mean stochastic model-error model to characterize the model uncertainties mainly induced by the missed physical processes of the original model (e.g., stochastic atmospheric forcing, extra-tropical effects, Indian Ocean Dipole). Finally, we perturb each member of an ensemble forecast at each step by the developed stochastic model-error model during the 12-month forecasting process, and add the zero-mean perturbations into the physical fields to mimic the presence of missing processes and high-frequency stochastic noises. The impacts of stochastic model-error perturbations on ENSO deterministic predictions are examined by performing two sets of 21-yr hindcast experiments, which are initialized from the same initial conditions and differentiated by whether they consider the stochastic perturbations. The comparison results show that the stochastic perturbations have a significant effect on improving the ensemble-mean prediction skills during the entire 12-month forecasting process. This improvement occurs mainly because the nonlinear terms in the model can form a positive ensemble-mean from a series of zero-mean perturbations, which reduces the forecasting biases and then corrects the forecast through this nonlinear heating mechanism.

  1. Dispersion Modeling Using Ensemble Forecasts Compared to ETEX Measurements.

    NASA Astrophysics Data System (ADS)

    Straume, Anne Grete; N'dri Koffi, Ernest; Nodop, Katrin

    1998-11-01

    Numerous numerical models are developed to predict long-range transport of hazardous air pollution in connection with accidental releases. When evaluating and improving such a model, it is important to detect uncertainties connected to the meteorological input data. A Lagrangian dispersion model, the Severe Nuclear Accident Program, is used here to investigate the effect of errors in the meteorological input data due to analysis error. An ensemble forecast, produced at the European Centre for Medium-Range Weather Forecasts, is then used as model input. The ensemble forecast members are generated by perturbing the initial meteorological fields of the weather forecast. The perturbations are calculated from singular vectors meant to represent possible forecast developments generated by instabilities in the atmospheric flow during the early part of the forecast. The instabilities are generated by errors in the analyzed fields. Puff predictions from the dispersion model, using ensemble forecast input, are compared, and a large spread in the predicted puff evolutions is found. This shows that the quality of the meteorological input data is important for the success of the dispersion model. In order to evaluate the dispersion model, the calculations are compared with measurements from the European Tracer Experiment. The model manages to predict the measured puff evolution concerning shape and time of arrival to a fairly high extent, up to 60 h after the start of the release. The modeled puff is still too narrow in the advection direction.

  2. Forecasting Dust Storms Using the CARMA-Dust Model and MM5 Weather Data

    NASA Astrophysics Data System (ADS)

    Barnum, B. H.; Winstead, N. S.; Wesely, J.; Hakola, A.; Colarco, P.; Toon, O. B.; Ginoux, P.; Brooks, G.; Hasselbarth, L. M.; Toth, B.; Sterner, R.

    2002-12-01

    An operational model for the forecast of dust storms in Northern Africa, the Middle East and Southwest Asia has been developed for the United States Air Force Weather Agency (AFWA). The dust forecast model uses the 5th generation Penn State Mesoscale Meteorology Model (MM5), and a modified version of the Colorado Aerosol and Radiation Model for Atmospheres (CARMA). AFWA conducted a 60 day evaluation of the dust model to look at the model's ability to forecast dust storms for short, medium and long range (72 hour) forecast periods. The study used satellite and ground observations of dust storms to verify the model's effectiveness. Each of the main mesoscale forecast theaters was broken down into smaller sub-regions for detailed analysis. The study found the forecast model was able to forecast dust storms in Saharan Africa and the Sahel region with an average Probability of Detection (POD)exceeding 68%, with a 16% False Alarm Rate (FAR). The Southwest Asian theater had average POD's of 61% with FAR's averaging 10%.

  3. Development, testing, and applications of site-specific tsunami inundation models for real-time forecasting

    NASA Astrophysics Data System (ADS)

    Tang, L.; Titov, V. V.; Chamberlin, C. D.

    2009-12-01

    The study describes the development, testing and applications of site-specific tsunami inundation models (forecast models) for use in NOAA's tsunami forecast and warning system. The model development process includes sensitivity studies of tsunami wave characteristics in the nearshore and inundation, for a range of model grid setups, resolutions and parameters. To demonstrate the process, four forecast models in Hawaii, at Hilo, Kahului, Honolulu, and Nawiliwili are described. The models were validated with fourteen historical tsunamis and compared with numerical results from reference inundation models of higher resolution. The accuracy of the modeled maximum wave height is greater than 80% when the observation is greater than 0.5 m; when the observation is below 0.5 m the error is less than 0.3 m. The error of the modeled arrival time of the first peak is within 3% of the travel time. The developed forecast models were further applied to hazard assessment from simulated magnitude 7.5, 8.2, 8.7 and 9.3 tsunamis based on subduction zone earthquakes in the Pacific. The tsunami hazard assessment study indicates that use of a seismic magnitude alone for a tsunami source assessment is inadequate to achieve such accuracy for tsunami amplitude forecasts. The forecast models apply local bathymetric and topographic information, and utilize dynamic boundary conditions from the tsunami source function database, to provide site- and event-specific coastal predictions. Only by combining a Deep-ocean Assessment and Reporting of Tsunami-constrained tsunami magnitude with site-specific high-resolution models can the forecasts completely cover the evolution of earthquake-generated tsunami waves: generation, deep ocean propagation, and coastal inundation. Wavelet analysis of the tsunami waves suggests the coastal tsunami frequency responses at different sites are dominated by the local bathymetry, yet they can be partially related to the locations of the tsunami sources. The study also demonstrates the nonlinearity between offshore and nearshore maximum wave amplitudes.

  4. Selection and Classification Using a Forecast Applicant Pool.

    ERIC Educational Resources Information Center

    Hendrix, William H.

    The document presents a forecast model of the future Air Force applicant pool. By forecasting applicants' quality (means and standard deviations of aptitude scores) and quantity (total number of applicants), a potential enlistee could be compared to the forecasted pool. The data used to develop the model consisted of means, standard deviation, and…

  5. Multilayer Stock Forecasting Model Using Fuzzy Time Series

    PubMed Central

    Javedani Sadaei, Hossein; Lee, Muhammad Hisyam

    2014-01-01

    After reviewing the vast body of literature on using FTS in stock market forecasting, certain deficiencies are distinguished in the hybridization of findings. In addition, the lack of constructive systematic framework, which can be helpful to indicate direction of growth in entire FTS forecasting systems, is outstanding. In this study, we propose a multilayer model for stock market forecasting including five logical significant layers. Every single layer has its detailed concern to assist forecast development by reconciling certain problems exclusively. To verify the model, a set of huge data containing Taiwan Stock Index (TAIEX), National Association of Securities Dealers Automated Quotations (NASDAQ), Dow Jones Industrial Average (DJI), and S&P 500 have been chosen as experimental datasets. The results indicate that the proposed methodology has the potential to be accepted as a framework for model development in stock market forecasts using FTS. PMID:24605058

  6. Ecological Forecasting of Vibrio sp. in U.S. Coastal Waters Using an Operational Platform, a Pilot Project of the NOAA Ecological Forecasting Roadmap. Development of Web based Tools and Forecasts to Help the Public Avoid Exposure to Vibrio vulnificus and Shell Fish Harvesters Avoid Dangerous Concentrations of Vibrio parahaemolyticus.

    NASA Astrophysics Data System (ADS)

    Daniels, R. M.; Jacobs, J. M.; Paranjpye, R.; Lanerolle, L. W.

    2016-02-01

    The Pathogens group of the NOAA Ecological Forecasting Roadmap has begun a range of efforts to monitor and predict potential pathogen occurrences in shellfish and in U.S. Coastal waters. NOAA/NCOSS along with NMFS/NWFSC have led the Pathogens group and the development of web based tools and forecasts for both Vibrio vulnificus and Vibrio parahaemolyticus. A strong relationship with FDA has allowed the team to develop forecasts that will serve U.S. shellfish harvesters and consumers. NOAA/NOS/CSDL has provided modeling expertise to help the group use the hydrodynamic models and their forecasts of physical variables that drive the ecological predictions. The NOAA/NWS/Ocean Prediction Center has enabled these ecological forecasting efforts by providing the infrastructure, computing knowledge and experience in an operational culture. Daily forecasts have been demonstrated and are available from the web for the Chesapeake Bay, Delaware Bay, Northern Gulf of Mexico, Tampa Bay, Puget Sound and Long Island Sound. The forecast systems run on a daily basis being fed by NOS model data from the NWS/NCEP super computers. New forecast tools including V. parahaemolyticus post harvest growth and doubling time in ambient air temperature will be described.

  7. Development of speed models for improving travel forecasting and highway performance evaluation : [technical summary].

    DOT National Transportation Integrated Search

    2013-12-01

    Travel forecasting models predict travel demand based on the present transportation system and its use. Transportation modelers must develop, validate, and calibrate models to ensure that predicted travel demand is as close to reality as possible. Mo...

  8. Oregon Washington Coastal Ocean Forecast System: Real-time Modeling and Data Assimilation

    NASA Astrophysics Data System (ADS)

    Erofeeva, S.; Kurapov, A. L.; Pasmans, I.

    2016-02-01

    Three-day forecasts of ocean currents, temperature and salinity along the Oregon and Washington coasts are produced daily by a numerical ROMS-based ocean circulation model. NAM is used to derive atmospheric forcing for the model. Fresh water discharge from Columbia River, Fraser River, and small rivers in Puget Sound are included. The forecast is constrained by open boundary conditions derived from the global Navy HYCOM model and once in 3 days assimilation of recent data, including HF radar surface currents, sea surface temperature from the GOES satellite, and SSH from several satellite altimetry missions. 4-dimensional variational data assimilation is implemented in 3-day time windows using the tangent linear and adjoint codes developed at OSU. The system is semi-autonomous - all the data, including NAM and HYCOM fields are automatically updated, and daily operational forecast is automatically initiated. The pre-assimilation data quality control and post-assimilation forecast quality control require the operator's involvement. The daily forecast and 60 days of hindcast fields are available for public on opendap. As part of the system model validation plots to various satellites and SEAGLIDER are also automatically updated and available on the web (http://ingria.coas.oregonstate.edu/rtdavow/). Lessons learned in this pilot real-time coastal ocean forecasting project help develop and test metrics for forecast skill assessment for the West Coast Operational Forecast System (WCOFS), currently at testing and development phase at the National Oceanic and Atmospheric Administration (NOAA).

  9. Development of visibility forecasting modeling framework for the Lower Fraser Valley of British Columbia using Canada's Regional Air Quality Deterministic Prediction System.

    PubMed

    So, Rita; Teakles, Andrew; Baik, Jonathan; Vingarzan, Roxanne; Jones, Keith

    2018-05-01

    Visibility degradation, one of the most noticeable indicators of poor air quality, can occur despite relatively low levels of particulate matter when the risk to human health is low. The availability of timely and reliable visibility forecasts can provide a more comprehensive understanding of the anticipated air quality conditions to better inform local jurisdictions and the public. This paper describes the development of a visibility forecasting modeling framework, which leverages the existing air quality and meteorological forecasts from Canada's operational Regional Air Quality Deterministic Prediction System (RAQDPS) for the Lower Fraser Valley of British Columbia. A baseline model (GM-IMPROVE) was constructed using the revised IMPROVE algorithm based on unprocessed forecasts from the RAQDPS. Three additional prototypes (UMOS-HYB, GM-MLR, GM-RF) were also developed and assessed for forecast performance of up to 48 hr lead time during various air quality and meteorological conditions. Forecast performance was assessed by examining their ability to provide both numerical and categorical forecasts in the form of 1-hr total extinction and Visual Air Quality Ratings (VAQR), respectively. While GM-IMPROVE generally overestimated extinction more than twofold, it had skill in forecasting the relative species contribution to visibility impairment, including ammonium sulfate and ammonium nitrate. Both statistical prototypes, GM-MLR and GM-RF, performed well in forecasting 1-hr extinction during daylight hours, with correlation coefficients (R) ranging from 0.59 to 0.77. UMOS-HYB, a prototype based on postprocessed air quality forecasts without additional statistical modeling, provided reasonable forecasts during most daylight hours. In terms of categorical forecasts, the best prototype was approximately 75 to 87% correct, when forecasting for a condensed three-category VAQR. A case study, focusing on a poor visual air quality yet low Air Quality Health Index episode, illustrated that the statistical prototypes were able to provide timely and skillful visibility forecasts with lead time up to 48 hr. This study describes the development of a visibility forecasting modeling framework, which leverages the existing air quality and meteorological forecasts from Canada's operational Regional Air Quality Deterministic Prediction System. The main applications include tourism and recreation planning, input into air quality management programs, and educational outreach. Visibility forecasts, when supplemented with the existing air quality and health based forecasts, can assist jurisdictions to anticipate the visual air quality impacts as perceived by the public, which can potentially assist in formulating the appropriate air quality bulletins and recommendations.

  10. THE EMERGENCE OF NUMERICAL AIR QUALITY FORECASTING MODELS AND THEIR APPLICATION

    EPA Science Inventory

    In recent years the U.S. and other nations have begun programs for short-term local through regional air quality forecasting based upon numerical three-dimensional air quality grid models. These numerical air quality forecast (NAQF) models and systems have been developed and test...

  11. Wildfire suppression cost forecasts from the US Forest Service

    Treesearch

    Karen L. Abt; Jeffrey P. Prestemon; Krista M. Gebert

    2009-01-01

    The US Forest Service and other land-management agencies seek better tools for nticipating future expenditures for wildfire suppression. We developed regression models for forecasting US Forest Service suppression spending at 1-, 2-, and 3-year lead times. We compared these models to another readily available forecast model, the 10-year moving average model,...

  12. A New Multivariate Approach in Generating Ensemble Meteorological Forcings for Hydrological Forecasting

    NASA Astrophysics Data System (ADS)

    Khajehei, Sepideh; Moradkhani, Hamid

    2015-04-01

    Producing reliable and accurate hydrologic ensemble forecasts are subject to various sources of uncertainty, including meteorological forcing, initial conditions, model structure, and model parameters. Producing reliable and skillful precipitation ensemble forecasts is one approach to reduce the total uncertainty in hydrological applications. Currently, National Weather Prediction (NWP) models are developing ensemble forecasts for various temporal ranges. It is proven that raw products from NWP models are biased in mean and spread. Given the above state, there is a need for methods that are able to generate reliable ensemble forecasts for hydrological applications. One of the common techniques is to apply statistical procedures in order to generate ensemble forecast from NWP-generated single-value forecasts. The procedure is based on the bivariate probability distribution between the observation and single-value precipitation forecast. However, one of the assumptions of the current method is fitting Gaussian distribution to the marginal distributions of observed and modeled climate variable. Here, we have described and evaluated a Bayesian approach based on Copula functions to develop an ensemble precipitation forecast from the conditional distribution of single-value precipitation forecasts. Copula functions are known as the multivariate joint distribution of univariate marginal distributions, which are presented as an alternative procedure in capturing the uncertainties related to meteorological forcing. Copulas are capable of modeling the joint distribution of two variables with any level of correlation and dependency. This study is conducted over a sub-basin in the Columbia River Basin in USA using the monthly precipitation forecasts from Climate Forecast System (CFS) with 0.5x0.5 Deg. spatial resolution to reproduce the observations. The verification is conducted on a different period and the superiority of the procedure is compared with Ensemble Pre-Processor approach currently used by National Weather Service River Forecast Centers in USA.

  13. Network bandwidth utilization forecast model on high bandwidth networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Wuchert; Sim, Alex

    With the increasing number of geographically distributed scientific collaborations and the scale of the data size growth, it has become more challenging for users to achieve the best possible network performance on a shared network. We have developed a forecast model to predict expected bandwidth utilization for high-bandwidth wide area network. The forecast model can improve the efficiency of resource utilization and scheduling data movements on high-bandwidth network to accommodate ever increasing data volume for large-scale scientific data applications. Univariate model is developed with STL and ARIMA on SNMP path utilization data. Compared with traditional approach such as Box-Jenkins methodology,more » our forecast model reduces computation time by 83.2%. It also shows resilience against abrupt network usage change. The accuracy of the forecast model is within the standard deviation of the monitored measurements.« less

  14. Network Bandwidth Utilization Forecast Model on High Bandwidth Network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Wucherl; Sim, Alex

    With the increasing number of geographically distributed scientific collaborations and the scale of the data size growth, it has become more challenging for users to achieve the best possible network performance on a shared network. We have developed a forecast model to predict expected bandwidth utilization for high-bandwidth wide area network. The forecast model can improve the efficiency of resource utilization and scheduling data movements on high-bandwidth network to accommodate ever increasing data volume for large-scale scientific data applications. Univariate model is developed with STL and ARIMA on SNMP path utilization data. Compared with traditional approach such as Box-Jenkins methodology,more » our forecast model reduces computation time by 83.2percent. It also shows resilience against abrupt network usage change. The accuracy of the forecast model is within the standard deviation of the monitored measurements.« less

  15. An assessment of a North American Multi-Model Ensemble (NMME) based global drought early warning forecast system

    NASA Astrophysics Data System (ADS)

    Wood, E. F.; Yuan, X.; Sheffield, J.; Pan, M.; Roundy, J.

    2013-12-01

    One of the key recommendations of the WCRP Global Drought Information System (GDIS) workshop is to develop an experimental real-time global monitoring and prediction system. While great advances has been made in global drought monitoring based on satellite observations and model reanalysis data, global drought forecasting has been stranded in part due to the limited skill both in climate forecast models and global hydrologic predictions. Having been working on drought monitoring and forecasting over USA for more than a decade, the Princeton land surface hydrology group is now developing an experimental global drought early warning system that is based on multiple climate forecast models and a calibrated global hydrologic model. In this presentation, we will test its capability in seasonal forecasting of meteorological, agricultural and hydrologic droughts over global major river basins, using precipitation, soil moisture and streamflow forecasts respectively. Based on the joint probability distribution between observations using Princeton's global drought monitoring system and model hindcasts and real-time forecasts from North American Multi-Model Ensemble (NMME) project, we (i) bias correct the monthly precipitation and temperature forecasts from multiple climate forecast models, (ii) downscale them to a daily time scale, and (iii) use them to drive the calibrated VIC model to produce global drought forecasts at a 1-degree resolution. A parallel run using the ESP forecast method, which is based on resampling historical forcings, is also carried out for comparison. Analysis is being conducted over global major river basins, with multiple drought indices that have different time scales and characteristics. The meteorological drought forecast does not have uncertainty from hydrologic models and can be validated directly against observations - making the validation an 'apples-to-apples' comparison. Preliminary results for the evaluation of meteorological drought onset hindcasts indicate that climate models increase drought detectability over ESP by 31%-81%. However, less than 30% of the global drought onsets can be detected by climate models. The missed drought events are associated with weak ENSO signals and lower potential predictability. Due to the high false alarms from climate models, the reliability is more important than sharpness for a skillful probabilistic drought onset forecast. Validations and skill assessments for agricultural and hydrologic drought forecasts are carried out using soil moisture and streamflow output from the VIC land surface model (LSM) forced by a global forcing data set. Given our previous drought forecasting experiences over USA and Africa, validating the hydrologic drought forecasting is a significant challenge for a global drought early warning system.

  16. A Multi-scale, Multi-Model, Machine-Learning Solar Forecasting Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamann, Hendrik F.

    The goal of the project was the development and demonstration of a significantly improved solar forecasting technology (short: Watt-sun), which leverages new big data processing technologies and machine-learnt blending between different models and forecast systems. The technology aimed demonstrating major advances in accuracy as measured by existing and new metrics which themselves were developed as part of this project. Finally, the team worked with Independent System Operators (ISOs) and utilities to integrate the forecasts into their operations.

  17. Atmospheric and oceanographic research review, 1978. [global weather, ocean/air interactions, and climate

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Research activities related to global weather, ocean/air interactions, and climate are reported. The global weather research is aimed at improving the assimilation of satellite-derived data in weather forecast models, developing analysis/forecast models that can more fully utilize satellite data, and developing new measures of forecast skill to properly assess the impact of satellite data on weather forecasting. The oceanographic research goal is to understand and model the processes that determine the general circulation of the oceans, focusing on those processes that affect sea surface temperature and oceanic heat storage, which are the oceanographic variables with the greatest influence on climate. The climate research objective is to support the development and effective utilization of space-acquired data systems in climate forecast models and to conduct sensitivity studies to determine the affect of lower boundary conditions on climate and predictability studies to determine which global climate features can be modeled either deterministically or statistically.

  18. Extended Range Prediction of Indian Summer Monsoon: Current status

    NASA Astrophysics Data System (ADS)

    Sahai, A. K.; Abhilash, S.; Borah, N.; Joseph, S.; Chattopadhyay, R.; S, S.; Rajeevan, M.; Mandal, R.; Dey, A.

    2014-12-01

    The main focus of this study is to develop forecast consensus in the extended range prediction (ERP) of monsoon Intraseasonal oscillations using a suit of different variants of Climate Forecast system (CFS) model. In this CFS based Grand MME prediction system (CGMME), the ensemble members are generated by perturbing the initial condition and using different configurations of CFSv2. This is to address the role of different physical mechanisms known to have control on the error growth in the ERP in the 15-20 day time scale. The final formulation of CGMME is based on 21 ensembles of the standalone Global Forecast System (GFS) forced with bias corrected forecasted SST from CFS, 11 low resolution CFST126 and 11 high resolution CFST382. Thus, we develop the multi-model consensus forecast for the ERP of Indian summer monsoon (ISM) using a suite of different variants of CFS model. This coordinated international effort lead towards the development of specific tailor made regional forecast products over Indian region. Skill of deterministic and probabilistic categorical rainfall forecast as well the verification of large-scale low frequency monsoon intraseasonal oscillations has been carried out using hindcast from 2001-2012 during the monsoon season in which all models are initialized at every five days starting from 16May to 28 September. The skill of deterministic forecast from CGMME is better than the best participating single model ensemble configuration (SME). The CGMME approach is believed to quantify the uncertainty in both initial conditions and model formulation. Main improvement is attained in probabilistic forecast which is because of an increase in the ensemble spread, thereby reducing the error due to over-confident ensembles in a single model configuration. For probabilistic forecast, three tercile ranges are determined by ranking method based on the percentage of ensemble members from all the participating models falls in those three categories. CGMME further added value to both deterministic and probability forecast compared to raw SME's and this better skill is probably flows from large spread and improved spread-error relationship. CGMME system is currently capable of generating ER prediction in real time and successfully delivering its experimental operational ER forecast of ISM for the last few years.

  19. Flood Forecasting in Wales: Challenges and Solutions

    NASA Astrophysics Data System (ADS)

    How, Andrew; Williams, Christopher

    2015-04-01

    With steep, fast-responding river catchments, exposed coastal reaches with large tidal ranges and large population densities in some of the most at-risk areas; flood forecasting in Wales presents many varied challenges. Utilising advances in computing power and learning from best practice within the United Kingdom and abroad have seen significant improvements in recent years - however, many challenges still remain. Developments in computing and increased processing power comes with a significant price tag; greater numbers of data sources and ensemble feeds brings a better understanding of uncertainty but the wealth of data needs careful management to ensure a clear message of risk is disseminated; new modelling techniques utilise better and faster computation, but lack the history of record and experience gained from the continued use of more established forecasting models. As a flood forecasting team we work to develop coastal and fluvial forecasting models, set them up for operational use and manage the duty role that runs the models in real time. An overview of our current operational flood forecasting system will be presented, along with a discussion on some of the solutions we have in place to address the challenges we face. These include: • real-time updating of fluvial models • rainfall forecasting verification • ensemble forecast data • longer range forecast data • contingency models • offshore to nearshore wave transformation • calculation of wave overtopping

  20. Model Error Estimation for the CPTEC Eta Model

    NASA Technical Reports Server (NTRS)

    Tippett, Michael K.; daSilva, Arlindo

    1999-01-01

    Statistical data assimilation systems require the specification of forecast and observation error statistics. Forecast error is due to model imperfections and differences between the initial condition and the actual state of the atmosphere. Practical four-dimensional variational (4D-Var) methods try to fit the forecast state to the observations and assume that the model error is negligible. Here with a number of simplifying assumption, a framework is developed for isolating the model error given the forecast error at two lead-times. Two definitions are proposed for the Talagrand ratio tau, the fraction of the forecast error due to model error rather than initial condition error. Data from the CPTEC Eta Model running operationally over South America are used to calculate forecast error statistics and lower bounds for tau.

  1. A forecasting model for dengue incidence in the District of Gampaha, Sri Lanka.

    PubMed

    Withanage, Gayan P; Viswakula, Sameera D; Nilmini Silva Gunawardena, Y I; Hapugoda, Menaka D

    2018-04-24

    Dengue is one of the major health problems in Sri Lanka causing an enormous social and economic burden to the country. An accurate early warning system can enhance the efficiency of preventive measures. The aim of the study was to develop and validate a simple accurate forecasting model for the District of Gampaha, Sri Lanka. Three time-series regression models were developed using monthly rainfall, rainy days, temperature, humidity, wind speed and retrospective dengue incidences over the period January 2012 to November 2015 for the District of Gampaha, Sri Lanka. Various lag times were analyzed to identify optimum forecasting periods including interactions of multiple lags. The models were validated using epidemiological data from December 2015 to November 2017. Prepared models were compared based on Akaike's information criterion, Bayesian information criterion and residual analysis. The selected model forecasted correctly with mean absolute errors of 0.07 and 0.22, and root mean squared errors of 0.09 and 0.28, for training and validation periods, respectively. There were no dengue epidemics observed in the district during the training period and nine outbreaks occurred during the forecasting period. The proposed model captured five outbreaks and correctly rejected 14 within the testing period of 24 months. The Pierce skill score of the model was 0.49, with a receiver operating characteristic of 86% and 92% sensitivity. The developed weather based forecasting model allows warnings of impending dengue outbreaks and epidemics in advance of one month with high accuracy. Depending upon climatic factors, the previous month's dengue cases had a significant effect on the dengue incidences of the current month. The simple, precise and understandable forecasting model developed could be used to manage limited public health resources effectively for patient management, vector surveillance and intervention programmes in the district.

  2. Developing a Markov Model for Forecasting End Strength of Selected Marine Corps Reserve (SMCR) Officers

    DTIC Science & Technology

    2013-03-01

    moving average ( ARIMA ) model because the data is not a times series. The best a manpower planner can do at this point is to make an educated assumption...MARKOV MODEL FOR FORECASTING END STRENGTH OF SELECTED MARINE CORPS RESERVE (SMCR) OFFICERS by Anthony D. Licari March 2013 Thesis Advisor...March 2013 3. REPORT TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE DEVELOPING A MARKOV MODEL FOR FORECASTING END STRENGTH OF

  3. Sub-seasonal-to-seasonal Reservoir Inflow Forecast using Bayesian Hierarchical Hidden Markov Model

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, S.; Arumugam, S.

    2017-12-01

    Sub-seasonal-to-seasonal (S2S) (15-90 days) streamflow forecasting is an emerging area of research that provides seamless information for reservoir operation from weather time scales to seasonal time scales. From an operational perspective, sub-seasonal inflow forecasts are highly valuable as these enable water managers to decide short-term releases (15-30 days), while holding water for seasonal needs (e.g., irrigation and municipal supply) and to meet end-of-the-season target storage at a desired level. We propose a Bayesian Hierarchical Hidden Markov Model (BHHMM) to develop S2S inflow forecasts for the Tennessee Valley Area (TVA) reservoir system. Here, the hidden states are predicted by relevant indices that influence the inflows at S2S time scale. The hidden Markov model also captures the both spatial and temporal hierarchy in predictors that operate at S2S time scale with model parameters being estimated as a posterior distribution using a Bayesian framework. We present our work in two steps, namely single site model and multi-site model. For proof of concept, we consider inflows to Douglas Dam, Tennessee, in the single site model. For multisite model we consider reservoirs in the upper Tennessee valley. Streamflow forecasts are issued and updated continuously every day at S2S time scale. We considered precipitation forecasts obtained from NOAA Climate Forecast System (CFSv2) GCM as predictors for developing S2S streamflow forecasts along with relevant indices for predicting hidden states. Spatial dependence of the inflow series of reservoirs are also preserved in the multi-site model. To circumvent the non-normality of the data, we consider the HMM in a Generalized Linear Model setting. Skill of the proposed approach is tested using split sample validation against a traditional multi-site canonical correlation model developed using the same set of predictors. From the posterior distribution of the inflow forecasts, we also highlight different system behavior under varied global and local scale climatic influences from the developed BHMM.

  4. The Ensemble Space Weather Modeling System (eSWMS): Status, Capabilities and Challenges

    NASA Astrophysics Data System (ADS)

    Fry, C. D.; Eccles, J. V.; Reich, J. P.

    2010-12-01

    Marking a milestone in space weather forecasting, the Space Weather Modeling System (SWMS) successfully completed validation testing in advance of operational testing at Air Force Weather Agency’s primary space weather production center. This is the first coupling of stand-alone, physics-based space weather models that are currently in operations at AFWA supporting the warfighter. Significant development effort went into ensuring the component models were portable and scalable while maintaining consistent results across diverse high performance computing platforms. Coupling was accomplished under the Earth System Modeling Framework (ESMF). The coupled space weather models are the Hakamada-Akasofu-Fry version 2 (HAFv2) solar wind model and GAIM1, the ionospheric forecast component of the Global Assimilation of Ionospheric Measurements (GAIM) model. The SWMS was developed by team members from AFWA, Explorations Physics International, Inc. (EXPI) and Space Environment Corporation (SEC). The successful development of the SWMS provides new capabilities beyond enabling extended lead-time, data-driven ionospheric forecasts. These include ingesting diverse data sets at higher resolution, incorporating denser computational grids at finer time steps, and performing probability-based ensemble forecasts. Work of the SWMS development team now focuses on implementing the ensemble-based probability forecast capability by feeding multiple scenarios of 5 days of solar wind forecasts to the GAIM1 model based on the variation of the input fields to the HAFv2 model. The ensemble SWMS (eSWMS) will provide the most-likely space weather scenario with uncertainty estimates for important forecast fields. The eSWMS will allow DoD mission planners to consider the effects of space weather on their systems with more advance warning than is currently possible. The payoff is enhanced, tailored support to the warfighter with improved capabilities, such as point-to-point HF propagation forecasts, single-frequency GPS error corrections, and high cadence, high-resolution Space Situational Awareness (SSA) products. We present the current status of eSWMS, its capabilities, limitations and path of transition to operational use.

  5. A Wind Forecasting System for Energy Application

    NASA Astrophysics Data System (ADS)

    Courtney, Jennifer; Lynch, Peter; Sweeney, Conor

    2010-05-01

    Accurate forecasting of available energy is crucial for the efficient management and use of wind power in the national power grid. With energy output critically dependent upon wind strength there is a need to reduce the errors associated wind forecasting. The objective of this research is to get the best possible wind forecasts for the wind energy industry. To achieve this goal, three methods are being applied. First, a mesoscale numerical weather prediction (NWP) model called WRF (Weather Research and Forecasting) is being used to predict wind values over Ireland. Currently, a gird resolution of 10km is used and higher model resolutions are being evaluated to establish whether they are economically viable given the forecast skill improvement they produce. Second, the WRF model is being used in conjunction with ECMWF (European Centre for Medium-Range Weather Forecasts) ensemble forecasts to produce a probabilistic weather forecasting product. Due to the chaotic nature of the atmosphere, a single, deterministic weather forecast can only have limited skill. The ECMWF ensemble methods produce an ensemble of 51 global forecasts, twice a day, by perturbing initial conditions of a 'control' forecast which is the best estimate of the initial state of the atmosphere. This method provides an indication of the reliability of the forecast and a quantitative basis for probabilistic forecasting. The limitation of ensemble forecasting lies in the fact that the perturbed model runs behave differently under different weather patterns and each model run is equally likely to be closest to the observed weather situation. Models have biases, and involve assumptions about physical processes and forcing factors such as underlying topography. Third, Bayesian Model Averaging (BMA) is being applied to the output from the ensemble forecasts in order to statistically post-process the results and achieve a better wind forecasting system. BMA is a promising technique that will offer calibrated probabilistic wind forecasts which will be invaluable in wind energy management. In brief, this method turns the ensemble forecasts into a calibrated predictive probability distribution. Each ensemble member is provided with a 'weight' determined by its relative predictive skill over a training period of around 30 days. Verification of data is carried out using observed wind data from operational wind farms. These are then compared to existing forecasts produced by ECMWF and Met Eireann in relation to skill scores. We are developing decision-making models to show the benefits achieved using the data produced by our wind energy forecasting system. An energy trading model will be developed, based on the rules currently used by the Single Electricity Market Operator for energy trading in Ireland. This trading model will illustrate the potential for financial savings by using the forecast data generated by this research.

  6. Demand forecast model based on CRM

    NASA Astrophysics Data System (ADS)

    Cai, Yuancui; Chen, Lichao

    2006-11-01

    With interiorizing day by day management thought that regarding customer as the centre, forecasting customer demand becomes more and more important. In the demand forecast of customer relationship management, the traditional forecast methods have very great limitation because much uncertainty of the demand, these all require new modeling to meet the demands of development. In this paper, the notion is that forecasting the demand according to characteristics of the potential customer, then modeling by it. The model first depicts customer adopting uniform multiple indexes. Secondly, the model acquires characteristic customers on the basis of data warehouse and the technology of data mining. The last, there get the most similar characteristic customer by their comparing and forecast the demands of new customer by the most similar characteristic customer.

  7. A national-scale seasonal hydrological forecast system: development and evaluation over Britain

    NASA Astrophysics Data System (ADS)

    Bell, Victoria A.; Davies, Helen N.; Kay, Alison L.; Brookshaw, Anca; Scaife, Adam A.

    2017-09-01

    Skilful winter seasonal predictions for the North Atlantic circulation and northern Europe have now been demonstrated and the potential for seasonal hydrological forecasting in the UK is now being explored. One of the techniques being used combines seasonal rainfall forecasts provided by operational weather forecast systems with hydrological modelling tools to provide estimates of seasonal mean river flows up to a few months ahead. The work presented here shows how spatial information contained in a distributed hydrological model typically requiring high-resolution (daily or better) rainfall data can be used to provide an initial condition for a much simpler forecast model tailored to use low-resolution monthly rainfall forecasts. Rainfall forecasts (hindcasts) from the GloSea5 model (1996 to 2009) are used to provide the first assessment of skill in these national-scale flow forecasts. The skill in the combined modelling system is assessed for different seasons and regions of Britain, and compared to what might be achieved using other approaches such as use of an ensemble of historical rainfall in a hydrological model, or a simple flow persistence forecast. The analysis indicates that only limited forecast skill is achievable for Spring and Summer seasonal hydrological forecasts; however, Autumn and Winter flows can be reasonably well forecast using (ensemble mean) rainfall forecasts based on either GloSea5 forecasts or historical rainfall (the preferred type of forecast depends on the region). Flow forecasts using ensemble mean GloSea5 rainfall perform most consistently well across Britain, and provide the most skilful forecasts overall at the 3-month lead time. Much of the skill (64 %) in the 1-month ahead seasonal flow forecasts can be attributed to the hydrological initial condition (particularly in regions with a significant groundwater contribution to flows), whereas for the 3-month ahead lead time, GloSea5 forecasts account for ˜ 70 % of the forecast skill (mostly in areas of high rainfall to the north and west) and only 30 % of the skill arises from hydrological memory (typically groundwater-dominated areas). Given the high spatial heterogeneity in typical patterns of UK rainfall and evaporation, future development of skilful spatially distributed seasonal forecasts could lead to substantial improvements in seasonal flow forecast capability, potentially benefitting practitioners interested in predicting hydrological extremes, not only in the UK but also across Europe.

  8. An interdisciplinary approach for earthquake modelling and forecasting

    NASA Astrophysics Data System (ADS)

    Han, P.; Zhuang, J.; Hattori, K.; Ogata, Y.

    2016-12-01

    Earthquake is one of the most serious disasters, which may cause heavy casualties and economic losses. Especially in the past two decades, huge/mega earthquakes have hit many countries. Effective earthquake forecasting (including time, location, and magnitude) becomes extremely important and urgent. To date, various heuristically derived algorithms have been developed for forecasting earthquakes. Generally, they can be classified into two types: catalog-based approaches and non-catalog-based approaches. Thanks to the rapid development of statistical seismology in the past 30 years, now we are able to evaluate the performances of these earthquake forecast approaches quantitatively. Although a certain amount of precursory information is available in both earthquake catalogs and non-catalog observations, the earthquake forecast is still far from satisfactory. In most case, the precursory phenomena were studied individually. An earthquake model that combines self-exciting and mutually exciting elements was developed by Ogata and Utsu from the Hawkes process. The core idea of this combined model is that the status of the event at present is controlled by the event itself (self-exciting) and all the external factors (mutually exciting) in the past. In essence, the conditional intensity function is a time-varying Poisson process with rate λ(t), which is composed of the background rate, the self-exciting term (the information from past seismic events), and the external excitation term (the information from past non-seismic observations). This model shows us a way to integrate the catalog-based forecast and non-catalog-based forecast. Against this background, we are trying to develop a new earthquake forecast model which combines catalog-based and non-catalog-based approaches.

  9. Modeling and forecasting U.S. sex differentials in mortality.

    PubMed

    Carter, L R; Lee, R D

    1992-11-01

    "This paper examines differentials in observed and forecasted sex-specific life expectancies and longevity in the United States from 1900 to 2065. Mortality models are developed and used to generate long-run forecasts, with confidence intervals that extend recent work by Lee and Carter (1992). These results are compared for forecast accuracy with univariate naive forecasts of life expectancies and those prepared by the Actuary of the Social Security Administration." excerpt

  10. Improving groundwater predictions utilizing seasonal precipitation forecasts from general circulation models forced with sea surface temperature forecasts

    USGS Publications Warehouse

    Almanaseer, Naser; Sankarasubramanian, A.; Bales, Jerad

    2014-01-01

    Recent studies have found a significant association between climatic variability and basin hydroclimatology, particularly groundwater levels, over the southeast United States. The research reported in this paper evaluates the potential in developing 6-month-ahead groundwater-level forecasts based on the precipitation forecasts from ECHAM 4.5 General Circulation Model Forced with Sea Surface Temperature forecasts. Ten groundwater wells and nine streamgauges from the USGS Groundwater Climate Response Network and Hydro-Climatic Data Network were selected to represent groundwater and surface water flows, respectively, having minimal anthropogenic influences within the Flint River Basin in Georgia, United States. The writers employ two low-dimensional models [principle component regression (PCR) and canonical correlation analysis (CCA)] for predicting groundwater and streamflow at both seasonal and monthly timescales. Three modeling schemes are considered at the beginning of January to predict winter (January, February, and March) and spring (April, May, and June) streamflow and groundwater for the selected sites within the Flint River Basin. The first scheme (model 1) is a null model and is developed using PCR for every streamflow and groundwater site using previous 3-month observations (October, November, and December) available at that particular site as predictors. Modeling schemes 2 and 3 are developed using PCR and CCA, respectively, to evaluate the role of precipitation forecasts in improving monthly and seasonal groundwater predictions. Modeling scheme 3, which employs a CCA approach, is developed for each site by considering observed groundwater levels from nearby sites as predictands. The performance of these three schemes is evaluated using two metrics (correlation coefficient and relative RMS error) by developing groundwater-level forecasts based on leave-five-out cross-validation. Results from the research reported in this paper show that using precipitation forecasts in climate models improves the ability to predict the interannual variability of winter and spring streamflow and groundwater levels over the basin. However, significant conditional bias exists in all the three modeling schemes, which indicates the need to consider improved modeling schemes as well as the availability of longer time-series of observed hydroclimatic information over the basin.

  11. Travel demand forecasting models: a comparison of EMME/2 and QUR II using a real-world network.

    DOT National Transportation Integrated Search

    2000-10-01

    In order to automate the travel demand forecasting process in urban transportation planning, a number of : commercial computer based travel demand forecasting models have been developed, which have provided : transportation planners with powerful and...

  12. Real-time short-term forecast of water inflow into Bureyskaya reservoir

    NASA Astrophysics Data System (ADS)

    Motovilov, Yury

    2017-04-01

    During several recent years, a methodology for operational optimization in hydrosystems including forecasts of the hydrological situation has been developed on example of Burea reservoir. The forecasts accuracy improvement of the water inflow into the reservoir during planning of water and energy regime was one of the main goals for implemented research. Burea river is the second left largest Amur tributary after Zeya river with its 70.7 thousand square kilometers watershed and 723 km-long river course. A variety of natural conditions - from plains in the southern part to northern mountainous areas determine a significant spatio-temporal variability in runoff generation patterns and river regime. Bureyskaya hydropower plant (HPP) with watershed area 65.2 thousand square kilometers is a key station in the Russian Far Eastern energy system providing its reliable operation. With a spacious reservoir, Bureyskaya HPP makes a significant contribution to the protection of the Amur region from catastrophic floods. A physically-based distributed model of runoff generation based on the ECOMAG (ECOlogical Model for Applied Geophysics) hydrological modeling platform has been developed for the Burea River basin. The model describes processes of interception of rainfall/snowfall by the canopy, snow accumulation and melt, soil freezing and thawing, water infiltration into unfrozen and frozen soil, evapotranspiration, thermal and water regime of soil, overland, subsurface, ground and river flow. The governing model's equations are derived from integration of the basic hydro- and thermodynamics equations of water and heat vertical transfer in snowpack, frozen/unfrozen soil, horizontal water flow under and over catchment slopes, etc. The model setup for Bureya river basin included watershed and river network schematization with GIS module by DEM analysis, meteorological time-series preparation, model calibration and validation against historical observations. The results showed good model performance as compared to observed inflow data into the Bureya reservoir and high diagnostic potential of data-modeling system of the runoff formation. With the use of this system the following flowchart for short-range forecasting inflow into Bureyskoe reservoir and forecast correction technique using continuously updated hydrometeorological data has been developed: 1 - Daily renewal of weather observations and forecasts database via the Internet; 2 - Daily runoff calculation from the beginning of the current year to current date is conducted; 3 - Short-range (up to 7 days) forecast is generated based on weather forecast. The idea underlying the model assimilation of newly obtained hydro meteorological information to adjust short-range hydrological forecasts lies in the assumption of the forecast errors inertia. Then the difference between calculated and observed streamflow at the forecast release date is "scattered" with specific weights to calculated streamflow for the forecast lead time. During 2016 this forecasts method of the inflow into the Bureyskaya reservoir up to 7 days is tested in online mode. Satisfactory evaluated short-range inflow forecast success rate is obtained. Tests of developed method have shown strong sensitivity to the results of short-term precipitation forecasts.

  13. An empirical investigation on different methods of economic growth rate forecast and its behavior from fifteen countries across five continents

    NASA Astrophysics Data System (ADS)

    Yin, Yip Chee; Hock-Eam, Lim

    2012-09-01

    Our empirical results show that we can predict GDP growth rate more accurately in continent with fewer large economies, compared to smaller economies like Malaysia. This difficulty is very likely positively correlated with subsidy or social security policies. The stage of economic development and level of competiveness also appears to have interactive effects on this forecast stability. These results are generally independent of the forecasting procedures. Countries with high stability in their economic growth, forecasting by model selection is better than model averaging. Overall forecast weight averaging (FWA) is a better forecasting procedure in most countries. FWA also outperforms simple model averaging (SMA) and has the same forecasting ability as Bayesian model averaging (BMA) in almost all countries.

  14. Data Analysis, Modeling, and Ensemble Forecasting to Support NOWCAST and Forecast Activities at the Fallon Naval Station

    DTIC Science & Technology

    2010-09-30

    and climate forecasting and use of satellite data assimilation for model evaluation. He is a task leader on another NSF_EPSCoR project for the...1 DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. Data Analysis, Modeling, and Ensemble Forecasting to...observations including remotely sensed data . OBJECTIVES The main objectives of the study are: 1) to further develop, test, and continue twice daily

  15. Theoretical Models for Aircraft Availability: Classical Approach to Identification of Trends, Seasonality, and System Constraints in the Development of Realized Models

    DTIC Science & Technology

    2004-03-01

    predicting future events ( Heizer and Render , 1999). Forecasting techniques fall into two major categories, qualitative and quantitative methods...Globemaster III.” Excerpt from website. www.globalsecurity.org/military /systems/ aircraft/c-17-history.htm. 2003. Heizer , Jay, and Barry Render ...of the past data used to make the forecast ( Heizer , et. al., 1999). Explanatory forecasting models assume that the variable being forecasted

  16. Baseline and Target Values for PV Forecasts: Toward Improved Solar Power Forecasting: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jie; Hodge, Bri-Mathias; Lu, Siyuan

    2015-08-05

    Accurate solar power forecasting allows utilities to get the most out of the solar resources on their systems. To truly measure the improvements that any new solar forecasting methods can provide, it is important to first develop (or determine) baseline and target solar forecasting at different spatial and temporal scales. This paper aims to develop baseline and target values for solar forecasting metrics. These were informed by close collaboration with utility and independent system operator partners. The baseline values are established based on state-of-the-art numerical weather prediction models and persistence models. The target values are determined based on the reductionmore » in the amount of reserves that must be held to accommodate the uncertainty of solar power output. forecasting metrics. These were informed by close collaboration with utility and independent system operator partners. The baseline values are established based on state-of-the-art numerical weather prediction models and persistence models. The target values are determined based on the reduction in the amount of reserves that must be held to accommodate the uncertainty of solar power output.« less

  17. ENSURF: multi-model sea level forecast - implementation and validation results for the IBIROOS and Western Mediterranean regions

    NASA Astrophysics Data System (ADS)

    Pérez, B.; Brower, R.; Beckers, J.; Paradis, D.; Balseiro, C.; Lyons, K.; Cure, M.; Sotillo, M. G.; Hacket, B.; Verlaan, M.; Alvarez Fanjul, E.

    2011-04-01

    ENSURF (Ensemble SURge Forecast) is a multi-model application for sea level forecast that makes use of existing storm surge or circulation models today operational in Europe, as well as near-real time tide gauge data in the region, with the following main goals: - providing an easy access to existing forecasts, as well as to its performance and model validation, by means of an adequate visualization tool - generation of better forecasts of sea level, including confidence intervals, by means of the Bayesian Model Average Technique (BMA) The system was developed and implemented within ECOOP (C.No. 036355) European Project for the NOOS and the IBIROOS regions, based on MATROOS visualization tool developed by Deltares. Both systems are today operational at Deltares and Puertos del Estado respectively. The Bayesian Modelling Average technique generates an overall forecast probability density function (PDF) by making a weighted average of the individual forecasts PDF's; the weights represent the probability that a model will give the correct forecast PDF and are determined and updated operationally based on the performance of the models during a recent training period. This implies the technique needs the availability of sea level data from tide gauges in near-real time. Results of validation of the different models and BMA implementation for the main harbours will be presented for the IBIROOS and Western Mediterranean regions, where this kind of activity is performed for the first time. The work has proved to be useful to detect problems in some of the circulation models not previously well calibrated with sea level data, to identify the differences on baroclinic and barotropic models for sea level applications and to confirm the general improvement of the BMA forecasts.

  18. Evaluating probabilistic dengue risk forecasts from a prototype early warning system for Brazil.

    PubMed

    Lowe, Rachel; Coelho, Caio As; Barcellos, Christovam; Carvalho, Marilia Sá; Catão, Rafael De Castro; Coelho, Giovanini E; Ramalho, Walter Massa; Bailey, Trevor C; Stephenson, David B; Rodó, Xavier

    2016-02-24

    Recently, a prototype dengue early warning system was developed to produce probabilistic forecasts of dengue risk three months ahead of the 2014 World Cup in Brazil. Here, we evaluate the categorical dengue forecasts across all microregions in Brazil, using dengue cases reported in June 2014 to validate the model. We also compare the forecast model framework to a null model, based on seasonal averages of previously observed dengue incidence. When considering the ability of the two models to predict high dengue risk across Brazil, the forecast model produced more hits and fewer missed events than the null model, with a hit rate of 57% for the forecast model compared to 33% for the null model. This early warning model framework may be useful to public health services, not only ahead of mass gatherings, but also before the peak dengue season each year, to control potentially explosive dengue epidemics.

  19. Training the next generation of scientists in Weather Forecasting: new approaches with real models

    NASA Astrophysics Data System (ADS)

    Carver, Glenn; Váňa, Filip; Siemen, Stephan; Kertesz, Sandor; Keeley, Sarah

    2014-05-01

    The European Centre for Medium Range Weather Forecasts operationally produce medium range forecasts using what is internationally acknowledged as the world leading global weather forecast model. Future development of this scientifically advanced model relies on a continued availability of experts in the field of meteorological science and with high-level software skills. ECMWF therefore has a vested interest in young scientists and University graduates developing the necessary skills in numerical weather prediction including both scientific and technical aspects. The OpenIFS project at ECMWF maintains a portable version of the ECMWF forecast model (known as IFS) for use in education and research at Universities, National Meteorological Services and other research and education organisations. OpenIFS models can be run on desktop or high performance computers to produce weather forecasts in a similar way to the operational forecasts at ECMWF. ECMWF also provide the Metview desktop application, a modern, graphical, and easy to use tool for analysing and visualising forecasts that is routinely used by scientists and forecasters at ECMWF and other institutions. The combination of Metview with the OpenIFS models has the potential to deliver classroom-friendly tools allowing students to apply their theoretical knowledge to real-world examples using a world-leading weather forecasting model. In this paper we will describe how the OpenIFS model has been used for teaching. We describe the use of Linux based 'virtual machines' pre-packaged on USB sticks that support a technically easy and safe way of providing 'classroom-on-a-stick' learning environments for advanced training in numerical weather prediction. We welcome discussions with interested parties.

  20. Forecasting cyanobacteria dominance in Canadian temperate lakes.

    PubMed

    Persaud, Anurani D; Paterson, Andrew M; Dillon, Peter J; Winter, Jennifer G; Palmer, Michelle; Somers, Keith M

    2015-03-15

    Predictive models based on broad scale, spatial surveys typically identify nutrients and climate as the most important predictors of cyanobacteria abundance; however these models generally have low predictive power because at smaller geographic scales numerous other factors may be equally or more important. At the lake level, for example, the ability to forecast cyanobacteria dominance is of tremendous value to lake managers as they can use such models to communicate exposure risks associated with recreational and drinking water use, and possible exposure to algal toxins, in advance of bloom occurrence. We used detailed algal, limnological and meteorological data from two temperate lakes in south-central Ontario, Canada to determine the factors that are closely linked to cyanobacteria dominance, and to develop easy to use models to forecast cyanobacteria biovolume. For Brandy Lake (BL), the strongest and most parsimonious model for forecasting % cyanobacteria biovolume (% CB) included water column stability, hypolimnetic TP, and % cyanobacteria biovolume two weeks prior. For Three Mile Lake (TML), the best model for forecasting % CB included water column stability, hypolimnetic TP concentration, and 7-d mean wind speed. The models for forecasting % CB in BL and TML are fundamentally different in their lag periods (BL = lag 1 model and TML = lag 2 model) and in some predictor variables despite the close proximity of the study lakes. We speculate that three main factors (nutrient concentrations, water transparency and lake morphometry) may have contributed to differences in the models developed, and may account for variation observed in models derived from large spatial surveys. Our results illustrate that while forecast models can be developed to determine when cyanobacteria will dominate within two temperate lakes, the models require detailed, lake-specific calibration to be effective as risk-management tools. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Uncertainty quantification and reliability assessment in operational oil spill forecast modeling system.

    PubMed

    Hou, Xianlong; Hodges, Ben R; Feng, Dongyu; Liu, Qixiao

    2017-03-15

    As oil transport increasing in the Texas bays, greater risks of ship collisions will become a challenge, yielding oil spill accidents as a consequence. To minimize the ecological damage and optimize rapid response, emergency managers need to be informed with how fast and where oil will spread as soon as possible after a spill. The state-of-the-art operational oil spill forecast modeling system improves the oil spill response into a new stage. However uncertainty due to predicted data inputs often elicits compromise on the reliability of the forecast result, leading to misdirection in contingency planning. Thus understanding the forecast uncertainty and reliability become significant. In this paper, Monte Carlo simulation is implemented to provide parameters to generate forecast probability maps. The oil spill forecast uncertainty is thus quantified by comparing the forecast probability map and the associated hindcast simulation. A HyosPy-based simple statistic model is developed to assess the reliability of an oil spill forecast in term of belief degree. The technologies developed in this study create a prototype for uncertainty and reliability analysis in numerical oil spill forecast modeling system, providing emergency managers to improve the capability of real time operational oil spill response and impact assessment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Operational seasonal forecasting of crop performance.

    PubMed

    Stone, Roger C; Meinke, Holger

    2005-11-29

    Integrated, interdisciplinary crop performance forecasting systems, linked with appropriate decision and discussion support tools, could substantially improve operational decision making in agricultural management. Recent developments in connecting numerical weather prediction models and general circulation models with quantitative crop growth models offer the potential for development of integrated systems that incorporate components of long-term climate change. However, operational seasonal forecasting systems have little or no value unless they are able to change key management decisions. Changed decision making through incorporation of seasonal forecasting ultimately has to demonstrate improved long-term performance of the cropping enterprise. Simulation analyses conducted on specific production scenarios are especially useful in improving decisions, particularly if this is done in conjunction with development of decision-support systems and associated facilitated discussion groups. Improved management of the overall crop production system requires an interdisciplinary approach, where climate scientists, agricultural scientists and extension specialists are intimately linked with crop production managers in the development of targeted seasonal forecast systems. The same principle applies in developing improved operational management systems for commodity trading organizations, milling companies and agricultural marketing organizations. Application of seasonal forecast systems across the whole value chain in agricultural production offers considerable benefits in improving overall operational management of agricultural production.

  3. Operational seasonal forecasting of crop performance

    PubMed Central

    Stone, Roger C; Meinke, Holger

    2005-01-01

    Integrated, interdisciplinary crop performance forecasting systems, linked with appropriate decision and discussion support tools, could substantially improve operational decision making in agricultural management. Recent developments in connecting numerical weather prediction models and general circulation models with quantitative crop growth models offer the potential for development of integrated systems that incorporate components of long-term climate change. However, operational seasonal forecasting systems have little or no value unless they are able to change key management decisions. Changed decision making through incorporation of seasonal forecasting ultimately has to demonstrate improved long-term performance of the cropping enterprise. Simulation analyses conducted on specific production scenarios are especially useful in improving decisions, particularly if this is done in conjunction with development of decision-support systems and associated facilitated discussion groups. Improved management of the overall crop production system requires an interdisciplinary approach, where climate scientists, agricultural scientists and extension specialists are intimately linked with crop production managers in the development of targeted seasonal forecast systems. The same principle applies in developing improved operational management systems for commodity trading organizations, milling companies and agricultural marketing organizations. Application of seasonal forecast systems across the whole value chain in agricultural production offers considerable benefits in improving overall operational management of agricultural production. PMID:16433097

  4. Application and evaluation of forecasting methods for municipal solid waste generation in an Eastern-European city.

    PubMed

    Rimaityte, Ingrida; Ruzgas, Tomas; Denafas, Gintaras; Racys, Viktoras; Martuzevicius, Dainius

    2012-01-01

    Forecasting of generation of municipal solid waste (MSW) in developing countries is often a challenging task due to the lack of data and selection of suitable forecasting method. This article aimed to select and evaluate several methods for MSW forecasting in a medium-scaled Eastern European city (Kaunas, Lithuania) with rapidly developing economics, with respect to affluence-related and seasonal impacts. The MSW generation was forecast with respect to the economic activity of the city (regression modelling) and using time series analysis. The modelling based on social-economic indicators (regression implemented in LCA-IWM model) showed particular sensitivity (deviation from actual data in the range from 2.2 to 20.6%) to external factors, such as the synergetic effects of affluence parameters or changes in MSW collection system. For the time series analysis, the combination of autoregressive integrated moving average (ARIMA) and seasonal exponential smoothing (SES) techniques were found to be the most accurate (mean absolute percentage error equalled to 6.5). Time series analysis method was very valuable for forecasting the weekly variation of waste generation data (r (2) > 0.87), but the forecast yearly increase should be verified against the data obtained by regression modelling. The methods and findings of this study may assist the experts, decision-makers and scientists performing forecasts of MSW generation, especially in developing countries.

  5. A hybrid spatiotemporal drought forecasting model for operational use

    NASA Astrophysics Data System (ADS)

    Vasiliades, L.; Loukas, A.

    2010-09-01

    Drought forecasting plays an important role in the planning and management of natural resources and water resource systems in a river basin. Early and timelines forecasting of a drought event can help to take proactive measures and set out drought mitigation strategies to alleviate the impacts of drought. Spatiotemporal data mining is the extraction of unknown and implicit knowledge, structures, spatiotemporal relationships, or patterns not explicitly stored in spatiotemporal databases. As one of data mining techniques, forecasting is widely used to predict the unknown future based upon the patterns hidden in the current and past data. This study develops a hybrid spatiotemporal scheme for integrated spatial and temporal forecasting. Temporal forecasting is achieved using feed-forward neural networks and the temporal forecasts are extended to the spatial dimension using a spatial recurrent neural network model. The methodology is demonstrated for an operational meteorological drought index the Standardized Precipitation Index (SPI) calculated at multiple timescales. 48 precipitation stations and 18 independent precipitation stations, located at Pinios river basin in Thessaly region, Greece, were used for the development and spatiotemporal validation of the hybrid spatiotemporal scheme. Several quantitative temporal and spatial statistical indices were considered for the performance evaluation of the models. Furthermore, qualitative statistical criteria based on contingency tables between observed and forecasted drought episodes were calculated. The results show that the lead time of forecasting for operational use depends on the SPI timescale. The hybrid spatiotemporal drought forecasting model could be operationally used for forecasting up to three months ahead for SPI short timescales (e.g. 3-6 months) up to six months ahead for large SPI timescales (e.g. 24 months). The above findings could be useful in developing a drought preparedness plan in the region.

  6. Increased performance in the short-term water demand forecasting through the use of a parallel adaptive weighting strategy

    NASA Astrophysics Data System (ADS)

    Sardinha-Lourenço, A.; Andrade-Campos, A.; Antunes, A.; Oliveira, M. S.

    2018-03-01

    Recent research on water demand short-term forecasting has shown that models using univariate time series based on historical data are useful and can be combined with other prediction methods to reduce errors. The behavior of water demands in drinking water distribution networks focuses on their repetitive nature and, under meteorological conditions and similar consumers, allows the development of a heuristic forecast model that, in turn, combined with other autoregressive models, can provide reliable forecasts. In this study, a parallel adaptive weighting strategy of water consumption forecast for the next 24-48 h, using univariate time series of potable water consumption, is proposed. Two Portuguese potable water distribution networks are used as case studies where the only input data are the consumption of water and the national calendar. For the development of the strategy, the Autoregressive Integrated Moving Average (ARIMA) method and a short-term forecast heuristic algorithm are used. Simulations with the model showed that, when using a parallel adaptive weighting strategy, the prediction error can be reduced by 15.96% and the average error by 9.20%. This reduction is important in the control and management of water supply systems. The proposed methodology can be extended to other forecast methods, especially when it comes to the availability of multiple forecast models.

  7. The development and evaluation of a hydrological seasonal forecast system prototype for predicting spring flood volumes in Swedish rivers

    NASA Astrophysics Data System (ADS)

    Foster, Kean; Bertacchi Uvo, Cintia; Olsson, Jonas

    2018-05-01

    Hydropower makes up nearly half of Sweden's electrical energy production. However, the distribution of the water resources is not aligned with demand, as most of the inflows to the reservoirs occur during the spring flood period. This means that carefully planned reservoir management is required to help redistribute water resources to ensure optimal production and accurate forecasts of the spring flood volume (SFV) is essential for this. The current operational SFV forecasts use a historical ensemble approach where the HBV model is forced with historical observations of precipitation and temperature. In this work we develop and test a multi-model prototype, building on previous work, and evaluate its ability to forecast the SFV in 84 sub-basins in northern Sweden. The hypothesis explored in this work is that a multi-model seasonal forecast system incorporating different modelling approaches is generally more skilful at forecasting the SFV in snow dominated regions than a forecast system that utilises only one approach. The testing is done using cross-validated hindcasts for the period 1981-2015 and the results are evaluated against both climatology and the current system to determine skill. Both the multi-model methods considered showed skill over the reference forecasts. The version that combined the historical modelling chain, dynamical modelling chain, and statistical modelling chain performed better than the other and was chosen for the prototype. The prototype was able to outperform the current operational system 57 % of the time on average and reduce the error in the SFV by ˜ 6 % across all sub-basins and forecast dates.

  8. A novel grey-fuzzy-Markov and pattern recognition model for industrial accident forecasting

    NASA Astrophysics Data System (ADS)

    Edem, Inyeneobong Ekoi; Oke, Sunday Ayoola; Adebiyi, Kazeem Adekunle

    2017-10-01

    Industrial forecasting is a top-echelon research domain, which has over the past several years experienced highly provocative research discussions. The scope of this research domain continues to expand due to the continuous knowledge ignition motivated by scholars in the area. So, more intelligent and intellectual contributions on current research issues in the accident domain will potentially spark more lively academic, value-added discussions that will be of practical significance to members of the safety community. In this communication, a new grey-fuzzy-Markov time series model, developed from nondifferential grey interval analytical framework has been presented for the first time. This instrument forecasts future accident occurrences under time-invariance assumption. The actual contribution made in the article is to recognise accident occurrence patterns and decompose them into grey state principal pattern components. The architectural framework of the developed grey-fuzzy-Markov pattern recognition (GFMAPR) model has four stages: fuzzification, smoothening, defuzzification and whitenisation. The results of application of the developed novel model signify that forecasting could be effectively carried out under uncertain conditions and hence, positions the model as a distinctly superior tool for accident forecasting investigations. The novelty of the work lies in the capability of the model in making highly accurate predictions and forecasts based on the availability of small or incomplete accident data.

  9. Design and development of surface rainfall forecast products on GRAPES_MESO model

    NASA Astrophysics Data System (ADS)

    Zhili, Liu

    2016-04-01

    In this paper, we designed and developed the surface rainfall forecast products using medium scale GRAPES_MESO model precipitation forecast products. The horizontal resolution of GRAPES_MESO model is 10km*10km, the number of Grids points is 751*501, vertical levels is 26, the range is 70°E-145.15°E, 15°N-64.35 °N. We divided the basin into 7 major watersheds. Each watersheds was divided into a number of sub regions. There were 95 sub regions in all. Tyson polygon method is adopted in the calculation of surface rainfall. We used 24 hours forecast precipitation data of GRAPES_MESO model to calculate the surface rainfall. According to the site of information and boundary information of the 95 sub regions, the forecast surface rainfall of each sub regions was calculated. We can provide real-time surface rainfall forecast products every day. We used the method of fuzzy evaluation to carry out a preliminary test and verify about the surface rainfall forecast product. Results shows that the fuzzy score of heavy rain, rainstorm and downpour level forecast rainfall were higher, the fuzzy score of light rain level was lower. The forecast effect of heavy rain, rainstorm and downpour level surface rainfall were better. The rate of missing and empty forecast of light rainfall level surface rainfall were higher, so it's fuzzy score were lower.

  10. Application of satellite-based rainfall and medium range meteorological forecast in real-time flood forecasting in the Mahanadi River basin

    NASA Astrophysics Data System (ADS)

    Nanda, Trushnamayee; Beria, Harsh; Sahoo, Bhabagrahi; Chatterjee, Chandranath

    2016-04-01

    Increasing frequency of hydrologic extremes in a warming climate call for the development of reliable flood forecasting systems. The unavailability of meteorological parameters in real-time, especially in the developing parts of the world, makes it a challenging task to accurately predict flood, even at short lead times. The satellite-based Tropical Rainfall Measuring Mission (TRMM) provides an alternative to the real-time precipitation data scarcity. Moreover, rainfall forecasts by the numerical weather prediction models such as the medium term forecasts issued by the European Center for Medium range Weather Forecasts (ECMWF) are promising for multistep-ahead flow forecasts. We systematically evaluate these rainfall products over a large catchment in Eastern India (Mahanadi River basin). We found spatially coherent trends, with both the real-time TRMM rainfall and ECMWF rainfall forecast products overestimating low rainfall events and underestimating high rainfall events. However, no significant bias was found for the medium rainfall events. Another key finding was that these rainfall products captured the phase of the storms pretty well, but suffered from consistent under-prediction. The utility of the real-time TRMM and ECMWF forecast products are evaluated by rainfall-runoff modeling using different artificial neural network (ANN)-based models up to 3-days ahead. Keywords: TRMM; ECMWF; forecast; ANN; rainfall-runoff modeling

  11. Performance Comparison of the European Storm Surge Models and Chaotic Model in Forecasting Extreme Storm Surges

    NASA Astrophysics Data System (ADS)

    Siek, M. B.; Solomatine, D. P.

    2009-04-01

    Storm surge modeling has rapidly developed considerably over the past 30 years. A number of significant advances on operational storm surge models have been implemented and tested, consisting of: refining computational grids, calibrating the model, using a better numerical scheme (i.e. more realistic model physics for air-sea interaction), implementing data assimilation and ensemble model forecasts. This paper addresses the performance comparison between the existing European storm surge models and the recently developed methods of nonlinear dynamics and chaos theory in forecasting storm surge dynamics. The chaotic model is built using adaptive local models based on the dynamical neighbours in the reconstructed phase space of observed time series data. The comparison focused on the model accuracy in forecasting a recently extreme storm surge in the North Sea on November 9th, 2007 that hit the coastlines of several European countries. The combination of a high tide, north-westerly winds exceeding 50 mph and low pressure produced an exceptional storm tide. The tidal level was exceeded 3 meters above normal sea levels. Flood warnings were issued for the east coast of Britain and the entire Dutch coast. The Maeslant barrier's two arc-shaped steel doors in the Europe's biggest port of Rotterdam was closed for the first time since its construction in 1997 due to this storm surge. In comparison to the chaotic model performance, the forecast data from several European physically-based storm surge models were provided from: BSH Germany, DMI Denmark, DNMI Norway, KNMI Netherlands and MUMM Belgium. The performance comparison was made over testing datasets for two periods/conditions: non-stormy period (1-Sep-2007 till 14-Oct-2007) and stormy period (15-Oct-2007 till 20-Nov-2007). A scalar chaotic model with optimized parameters was developed by utilizing an hourly training dataset of observations (11-Sep-2005 till 31-Aug-2007). The comparison results indicated the chaotic model yields better forecasts than the existing European storm surge models. The best performance of European storm surge models for non-storm and storm conditions was achieved by KNMI (with Kalman filter data assimilation) and BSH with errors of 8.95cm and 10.92cm, respectively. Whereas the chaotic model can provide 6 and 48 hours forecasts with errors of 3.10cm and 8.55cm for non-storm condition and 5.04cm and 15.21cm for storm condition, respectively. The chaotic model can provide better forecasts primarily due to the fact that the chaotic model forecasting are estimated by local models which model and identify the similar development of storm surges in the past. In practice, the chaotic model can serve as a reliable and accurate model to support decision-makers in operational ship navigation and flood forecasting.

  12. Net-zero Building Cluster Simulations and On-line Energy Forecasting for Adaptive and Real-Time Control and Decisions

    NASA Astrophysics Data System (ADS)

    Li, Xiwang

    Buildings consume about 41.1% of primary energy and 74% of the electricity in the U.S. Moreover, it is estimated by the National Energy Technology Laboratory that more than 1/4 of the 713 GW of U.S. electricity demand in 2010 could be dispatchable if only buildings could respond to that dispatch through advanced building energy control and operation strategies and smart grid infrastructure. In this study, it is envisioned that neighboring buildings will have the tendency to form a cluster, an open cyber-physical system to exploit the economic opportunities provided by a smart grid, distributed power generation, and storage devices. Through optimized demand management, these building clusters will then reduce overall primary energy consumption and peak time electricity consumption, and be more resilient to power disruptions. Therefore, this project seeks to develop a Net-zero building cluster simulation testbed and high fidelity energy forecasting models for adaptive and real-time control and decision making strategy development that can be used in a Net-zero building cluster. The following research activities are summarized in this thesis: 1) Development of a building cluster emulator for building cluster control and operation strategy assessment. 2) Development of a novel building energy forecasting methodology using active system identification and data fusion techniques. In this methodology, a systematic approach for building energy system characteristic evaluation, system excitation and model adaptation is included. The developed methodology is compared with other literature-reported building energy forecasting methods; 3) Development of the high fidelity on-line building cluster energy forecasting models, which includes energy forecasting models for buildings, PV panels, batteries and ice tank thermal storage systems 4) Small scale real building validation study to verify the performance of the developed building energy forecasting methodology. The outcomes of this thesis can be used for building cluster energy forecasting model development and model based control and operation optimization. The thesis concludes with a summary of the key outcomes of this research, as well as a list of recommendations for future work.

  13. Integrating Wind Profiling Radars and Radiosonde Observations with Model Point Data to Develop a Decision Support Tool to Assess Upper-Level Winds for Space Launch

    NASA Technical Reports Server (NTRS)

    Bauman, William H., III; Flinn, Clay

    2013-01-01

    On the day-of-launch, the 45th Weather Squadron (45 WS) Launch Weather Officers (LWOs) monitor the upper-level winds for their launch customers to include NASA's Launch Services Program and NASA's Ground Systems Development and Operations Program. They currently do not have the capability to display and overlay profiles of upper-level observations and numerical weather prediction model forecasts. The LWOs requested the Applied Meteorology Unit (AMU) develop a tool in the form of a graphical user interface (GUI) that will allow them to plot upper-level wind speed and direction observations from the Kennedy Space Center (KSC) 50 MHz tropospheric wind profiling radar, KSC Shuttle Landing Facility 915 MHz boundary layer wind profiling radar and Cape Canaveral Air Force Station (CCAFS) Automated Meteorological Processing System (AMPS) radiosondes, and then overlay forecast wind profiles from the model point data including the North American Mesoscale (NAM) model, Rapid Refresh (RAP) model and Global Forecast System (GFS) model to assess the performance of these models. The AMU developed an Excel-based tool that provides an objective method for the LWOs to compare the model-forecast upper-level winds to the KSC wind profiling radars and CCAFS AMPS observations to assess the model potential to accurately forecast changes in the upperlevel profile through the launch count. The AMU wrote Excel Visual Basic for Applications (VBA) scripts to automatically retrieve model point data for CCAFS (XMR) from the Iowa State University Archive Data Server (http://mtarchive.qeol.iastate.edu) and the 50 MHz, 915 MHz and AMPS observations from the NASA/KSC Spaceport Weather Data Archive web site (http://trmm.ksc.nasa.gov). The AMU then developed code in Excel VBA to automatically ingest and format the observations and model point data in Excel to ready the data for generating Excel charts for the LWO's. The resulting charts allow the LWOs to independently initialize the three models 0-hour forecasts against the observations to determine which is the best performing model and then overlay the model forecasts on time-matched observations during the launch countdown to further assess the model performance and forecasts. This paper will demonstrate integration of observed and predicted atmospheric conditions into a decision support tool and demonstrate how the GUI is implemented in operations.

  14. Error models for official mortality forecasts.

    PubMed

    Alho, J M; Spencer, B D

    1990-09-01

    "The Office of the Actuary, U.S. Social Security Administration, produces alternative forecasts of mortality to reflect uncertainty about the future.... In this article we identify the components and assumptions of the official forecasts and approximate them by stochastic parametric models. We estimate parameters of the models from past data, derive statistical intervals for the forecasts, and compare them with the official high-low intervals. We use the models to evaluate the forecasts rather than to develop different predictions of the future. Analysis of data from 1972 to 1985 shows that the official intervals for mortality forecasts for males or females aged 45-70 have approximately a 95% chance of including the true mortality rate in any year. For other ages the chances are much less than 95%." excerpt

  15. Using Sensor Web Processes and Protocols to Assimilate Satellite Data into a Forecast Model

    NASA Technical Reports Server (NTRS)

    Goodman, H. Michael; Conover, Helen; Zavodsky, Bradley; Maskey, Manil; Jedlovec, Gary; Regner, Kathryn; Li, Xiang; Lu, Jessica; Botts, Mike; Berthiau, Gregoire

    2008-01-01

    The goal of the Sensor Management Applied Research Technologies (SMART) On-Demand Modeling project is to develop and demonstrate the readiness of the Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) capabilities to integrate both space-based Earth observations and forecast model output into new data acquisition and assimilation strategies. The project is developing sensor web-enabled processing plans to assimilate Atmospheric Infrared Sounding (AIRS) satellite temperature and moisture retrievals into a regional Weather Research and Forecast (WRF) model over the southeastern United States.

  16. Development of extended WRF variational data assimilation system (WRFDA) for WRF non-hydrostatic mesoscale model

    NASA Astrophysics Data System (ADS)

    Pattanayak, Sujata; Mohanty, U. C.

    2018-06-01

    The paper intends to present the development of the extended weather research forecasting data assimilation (WRFDA) system in the framework of the non-hydrostatic mesoscale model core of weather research forecasting system (WRF-NMM), as an imperative aspect of numerical modeling studies. Though originally the WRFDA provides improved initial conditions for advanced research WRF, we have successfully developed a unified WRFDA utility that can be used by the WRF-NMM core, as well. After critical evaluation, it has been strategized to develop a code to merge WRFDA framework and WRF-NMM output. In this paper, we have provided a few selected implementations and initial results through single observation test, and background error statistics like eigenvalues, eigenvector and length scale among others, which showcase the successful development of extended WRFDA code for WRF-NMM model. Furthermore, the extended WRFDA system is applied for the forecast of three severe cyclonic storms: Nargis (27 April-3 May 2008), Aila (23-26 May 2009) and Jal (4-8 November 2010) formed over the Bay of Bengal. Model results are compared and contrasted within the analysis fields and later on with high-resolution model forecasts. The mean initial position error is reduced by 33% with WRFDA as compared to GFS analysis. The vector displacement errors in track forecast are reduced by 33, 31, 30 and 20% to 24, 48, 72 and 96 hr forecasts respectively, in data assimilation experiments as compared to control run. The model diagnostics indicates successful implementation of WRFDA within the WRF-NMM system.

  17. Coastal and Riverine Flood Forecast Model powered by ADCIRC

    NASA Astrophysics Data System (ADS)

    Khalid, A.; Ferreira, C.

    2017-12-01

    Coastal flooding is becoming a major threat to increased population in the coastal areas. To protect coastal communities from tropical storms & hurricane damages, early warning systems are being developed. These systems have the capability of real time flood forecasting to identify hazardous coastal areas and aid coastal communities in rescue operations. State of the art hydrodynamic models forced by atmospheric forcing have given modelers the ability to forecast storm surge, water levels and currents. This helps to identify the areas threatened by intense storms. Study on Chesapeake Bay area has gained national importance because of its combined riverine and coastal phenomenon, which leads to greater uncertainty in flood predictions. This study presents an automated flood forecast system developed by following Advanced Circulation (ADCIRC) Surge Guidance System (ASGS) guidelines and tailored to take in riverine and coastal boundary forcing, thus includes all the hydrodynamic processes to forecast total water in the Potomac River. As studies on tidal and riverine flow interaction are very scarce in number, our forecast system would be a scientific tool to examine such area and fill the gaps with precise prediction for Potomac River. Real-time observations from National Oceanic and Atmospheric Administration (NOAA) and field measurements have been used as model boundary feeding. The model performance has been validated by using major historical riverine and coastal flooding events. Hydrodynamic model ADCIRC produced promising predictions for flood inundation areas. As better forecasts can be achieved by using coupled models, this system is developed to take boundary conditions from Global WaveWatchIII for the research purposes. Wave and swell propagation will be fed through Global WavewatchIII model to take into account the effects of swells and currents. This automated forecast system is currently undergoing rigorous testing to include any missing parameters which might provide better and more reliable forecast for the flood affected communities.

  18. A Novel Wind Speed Forecasting Model for Wind Farms of Northwest China

    NASA Astrophysics Data System (ADS)

    Wang, Jian-Zhou; Wang, Yun

    2017-01-01

    Wind resources are becoming increasingly significant due to their clean and renewable characteristics, and the integration of wind power into existing electricity systems is imminent. To maintain a stable power supply system that takes into account the stochastic nature of wind speed, accurate wind speed forecasting is pivotal. However, no single model can be applied to all cases. Recent studies show that wind speed forecasting errors are approximately 25% to 40% in Chinese wind farms. Presently, hybrid wind speed forecasting models are widely used and have been verified to perform better than conventional single forecasting models, not only in short-term wind speed forecasting but also in long-term forecasting. In this paper, a hybrid forecasting model is developed, the Similar Coefficient Sum (SCS) and Hermite Interpolation are exploited to process the original wind speed data, and the SVM model whose parameters are tuned by an artificial intelligence model is built to make forecast. The results of case studies show that the MAPE value of the hybrid model varies from 22.96% to 28.87 %, and the MAE value varies from 0.47 m/s to 1.30 m/s. Generally, Sign test, Wilcoxon's Signed-Rank test, and Morgan-Granger-Newbold test tell us that the proposed model is different from the compared models.

  19. Optimising seasonal streamflow forecast lead time for operational decision making in Australia

    NASA Astrophysics Data System (ADS)

    Schepen, Andrew; Zhao, Tongtiegang; Wang, Q. J.; Zhou, Senlin; Feikema, Paul

    2016-10-01

    Statistical seasonal forecasts of 3-month streamflow totals are released in Australia by the Bureau of Meteorology and updated on a monthly basis. The forecasts are often released in the second week of the forecast period, due to the onerous forecast production process. The current service relies on models built using data for complete calendar months, meaning the forecast production process cannot begin until the first day of the forecast period. Somehow, the bureau needs to transition to a service that provides forecasts before the beginning of the forecast period; timelier forecast release will become critical as sub-seasonal (monthly) forecasts are developed. Increasing the forecast lead time to one month ahead is not considered a viable option for Australian catchments that typically lack any predictability associated with snowmelt. The bureau's forecasts are built around Bayesian joint probability models that have antecedent streamflow, rainfall and climate indices as predictors. In this study, we adapt the modelling approach so that forecasts have any number of days of lead time. Daily streamflow and sea surface temperatures are used to develop predictors based on 28-day sliding windows. Forecasts are produced for 23 forecast locations with 0-14- and 21-day lead time. The forecasts are assessed in terms of continuous ranked probability score (CRPS) skill score and reliability metrics. CRPS skill scores, on average, reduce monotonically with increase in days of lead time, although both positive and negative differences are observed. Considering only skilful forecast locations, CRPS skill scores at 7-day lead time are reduced on average by 4 percentage points, with differences largely contained within +5 to -15 percentage points. A flexible forecasting system that allows for any number of days of lead time could benefit Australian seasonal streamflow forecast users by allowing more time for forecasts to be disseminated, comprehended and made use of prior to the commencement of a forecast season. The system would allow for forecasts to be updated if necessary.

  20. Stochastic Forcing for High-Resolution Regional and Global Ocean and Atmosphere-Ocean Coupled Ensemble Forecast System

    NASA Astrophysics Data System (ADS)

    Rowley, C. D.; Hogan, P. J.; Martin, P.; Thoppil, P.; Wei, M.

    2017-12-01

    An extended range ensemble forecast system is being developed in the US Navy Earth System Prediction Capability (ESPC), and a global ocean ensemble generation capability to represent uncertainty in the ocean initial conditions has been developed. At extended forecast times, the uncertainty due to the model error overtakes the initial condition as the primary source of forecast uncertainty. Recently, stochastic parameterization or stochastic forcing techniques have been applied to represent the model error in research and operational atmospheric, ocean, and coupled ensemble forecasts. A simple stochastic forcing technique has been developed for application to US Navy high resolution regional and global ocean models, for use in ocean-only and coupled atmosphere-ocean-ice-wave ensemble forecast systems. Perturbation forcing is added to the tendency equations for state variables, with the forcing defined by random 3- or 4-dimensional fields with horizontal, vertical, and temporal correlations specified to characterize different possible kinds of error. Here, we demonstrate the stochastic forcing in regional and global ensemble forecasts with varying perturbation amplitudes and length and time scales, and assess the change in ensemble skill measured by a range of deterministic and probabilistic metrics.

  1. Verification of Advances in a Coupled Snow-runoff Modeling Framework for Operational Streamflow Forecasts

    NASA Astrophysics Data System (ADS)

    Barik, M. G.; Hogue, T. S.; Franz, K. J.; He, M.

    2011-12-01

    The National Oceanic and Atmospheric Administration's (NOAA's) River Forecast Centers (RFCs) issue hydrologic forecasts related to flood events, reservoir operations for water supply, streamflow regulation, and recreation on the nation's streams and rivers. The RFCs use the National Weather Service River Forecast System (NWSRFS) for streamflow forecasting which relies on a coupled snow model (i.e. SNOW17) and rainfall-runoff model (i.e. SAC-SMA) in snow-dominated regions of the US. Errors arise in various steps of the forecasting system from input data, model structure, model parameters, and initial states. The goal of the current study is to undertake verification of potential improvements in the SNOW17-SAC-SMA modeling framework developed for operational streamflow forecasts. We undertake verification for a range of parameters sets (i.e. RFC, DREAM (Differential Evolution Adaptive Metropolis)) as well as a data assimilation (DA) framework developed for the coupled models. Verification is also undertaken for various initial conditions to observe the influence of variability in initial conditions on the forecast. The study basin is the North Fork America River Basin (NFARB) located on the western side of the Sierra Nevada Mountains in northern California. Hindcasts are verified using both deterministic (i.e. Nash Sutcliffe efficiency, root mean square error, and joint distribution) and probabilistic (i.e. reliability diagram, discrimination diagram, containing ratio, and Quantile plots) statistics. Our presentation includes comparison of the performance of different optimized parameters and the DA framework as well as assessment of the impact associated with the initial conditions used for streamflow forecasts for the NFARB.

  2. Development of a multi-ensemble Prediction Model for China

    NASA Astrophysics Data System (ADS)

    Brasseur, G. P.; Bouarar, I.; Petersen, A. K.

    2016-12-01

    As part of the EU-sponsored Panda and MarcoPolo Projects, a multi-model prediction system including 7 models has been developed. Most regional models use global air quality predictions provided by the Copernicus Atmospheric Monitoring Service and downscale the forecast at relatively high spatial resolution in eastern China. The paper will describe the forecast system and show examples of forecasts produced for several Chinese urban areas and displayed on a web site developed by the Dutch Meteorological service. A discussion on the accuracy of the predictions based on a detailed validation process using surface measurements from the Chinese monitoring network will be presented.

  3. Development and validation of a 5-day-ahead hay fever forecast for patients with grass-pollen-induced allergic rhinitis

    NASA Astrophysics Data System (ADS)

    de Weger, Letty A.; Beerthuizen, Thijs; Hiemstra, Pieter S.; Sont, Jacob K.

    2014-08-01

    One-third of the Dutch population suffers from allergic rhinitis, including hay fever. In this study, a 5-day-ahead hay fever forecast was developed and validated for grass pollen allergic patients in the Netherlands. Using multiple regression analysis, a two-step pollen and hay fever symptom prediction model was developed using actual and forecasted weather parameters, grass pollen data and patient symptom diaries. Therefore, 80 patients with a grass pollen allergy rated the severity of their hay fever symptoms during the grass pollen season in 2007 and 2008. First, a grass pollen forecast model was developed using the following predictors: (1) daily means of grass pollen counts of the previous 10 years; (2) grass pollen counts of the previous 2-week period of the current year; and (3) maximum, minimum and mean temperature ( R 2 = 0.76). The second modeling step concerned the forecasting of hay fever symptom severity and included the following predictors: (1) forecasted grass pollen counts; (2) day number of the year; (3) moving average of the grass pollen counts of the previous 2 week-periods; and (4) maximum and mean temperatures ( R 2 = 0.81). Since the daily hay fever forecast is reported in three categories (low-, medium- and high symptom risk), we assessed the agreement between the observed and the 1- to 5-day-ahead predicted risk categories by kappa, which ranged from 65 % to 77 %. These results indicate that a model based on forecasted temperature and grass pollen counts performs well in predicting symptoms of hay fever up to 5 days ahead.

  4. Development and validation of a 5-day-ahead hay fever forecast for patients with grass-pollen-induced allergic rhinitis.

    PubMed

    de Weger, Letty A; Beerthuizen, Thijs; Hiemstra, Pieter S; Sont, Jacob K

    2014-08-01

    One-third of the Dutch population suffers from allergic rhinitis, including hay fever. In this study, a 5-day-ahead hay fever forecast was developed and validated for grass pollen allergic patients in the Netherlands. Using multiple regression analysis, a two-step pollen and hay fever symptom prediction model was developed using actual and forecasted weather parameters, grass pollen data and patient symptom diaries. Therefore, 80 patients with a grass pollen allergy rated the severity of their hay fever symptoms during the grass pollen season in 2007 and 2008. First, a grass pollen forecast model was developed using the following predictors: (1) daily means of grass pollen counts of the previous 10 years; (2) grass pollen counts of the previous 2-week period of the current year; and (3) maximum, minimum and mean temperature (R (2)=0.76). The second modeling step concerned the forecasting of hay fever symptom severity and included the following predictors: (1) forecasted grass pollen counts; (2) day number of the year; (3) moving average of the grass pollen counts of the previous 2 week-periods; and (4) maximum and mean temperatures (R (2)=0.81). Since the daily hay fever forecast is reported in three categories (low-, medium- and high symptom risk), we assessed the agreement between the observed and the 1- to 5-day-ahead predicted risk categories by kappa, which ranged from 65 % to 77 %. These results indicate that a model based on forecasted temperature and grass pollen counts performs well in predicting symptoms of hay fever up to 5 days ahead.

  5. Baseline and Target Values for PV Forecasts: Toward Improved Solar Power Forecasting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jie; Hodge, Bri-Mathias; Lu, Siyuan

    2015-10-05

    Accurate solar power forecasting allows utilities to get the most out of the solar resources on their systems. To truly measure the improvements that any new solar forecasting methods can provide, it is important to first develop (or determine) baseline and target solar forecasting at different spatial and temporal scales. This paper aims to develop baseline and target values for solar forecasting metrics. These were informed by close collaboration with utility and independent system operator partners. The baseline values are established based on state-of-the-art numerical weather prediction models and persistence models. The target values are determined based on the reductionmore » in the amount of reserves that must be held to accommodate the uncertainty of solar power output.« less

  6. The development of a model and decision support system to use in forecasting truck freight flow in the continental United States

    DOT National Transportation Integrated Search

    2001-01-01

    This research develops a regression-based model for forecasting truck borne freight in the continental United States. This model is capable of predicting freight commodity flow information via trucks to assist transportation planners who wish to unde...

  7. Satellite provided customer premises services: A forecast of potential domestic demand through the year 2000. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Kratochvil, D.; Bowyer, J.; Bhushan, C.; Steinnagel, K.; Kaushal, D.; Al-Kinani, G.

    1983-01-01

    Development of a forecast of the total domestic telecommunications demand, identification of that portion of the telecommunications demand suitable for transmission by satellite systems, identification of that portion of the satellite market addressable by CPS systems, identification of that portion of the satellite market addressable by Ka-band CPS system, and postulation of a Ka-band CPS network on a nationwide and local level were achieved. The approach employed included the use of a variety of forecasting models, a parametric cost model, a market distribution model and a network optimization model. Forecasts were developed for: 1980, 1990, 2000; voice, data and video services; terrestrial and satellite delivery modes; and C, Ku and Ka-bands.

  8. Satellite provided customer premises services: A forecast of potential domestic demand through the year 2000. Volume: Executive summary

    NASA Astrophysics Data System (ADS)

    Kratochvil, D.; Bowyer, J.; Bhushan, C.; Steinnagel, K.; Kaushal, D.; Al-Kinani, G.

    1983-08-01

    Development of a forecast of the total domestic telecommunications demand, identification of that portion of the telecommunications demand suitable for transmission by satellite systems, identification of that portion of the satellite market addressable by CPS systems, identification of that portion of the satellite market addressable by Ka-band CPS system, and postulation of a Ka-band CPS network on a nationwide and local level were achieved. The approach employed included the use of a variety of forecasting models, a parametric cost model, a market distribution model and a network optimization model. Forecasts were developed for: 1980, 1990, 2000; voice, data and video services; terrestrial and satellite delivery modes; and C, Ku and Ka-bands.

  9. Operational forecasting of human-biometeorological conditions

    NASA Astrophysics Data System (ADS)

    Giannaros, T. M.; Lagouvardos, K.; Kotroni, V.; Matzarakis, A.

    2018-03-01

    This paper presents the development of an operational forecasting service focusing on human-biometeorological conditions. The service is based on the coupling of numerical weather prediction models with an advanced human-biometeorological model. Human thermal perception and stress forecasts are issued on a daily basis for Greece, in both point and gridded format. A user-friendly presentation approach is adopted for communicating the forecasts to the public via the worldwide web. The development of the presented service highlights the feasibility of replacing standard meteorological parameters and/or indices used in operational weather forecasting activities for assessing the thermal environment. This is of particular significance for providing effective, human-biometeorology-oriented, warnings for both heat waves and cold outbreaks.

  10. Application Study of Comprehensive Forecasting Model Based on Entropy Weighting Method on Trend of PM2.5 Concentration in Guangzhou, China

    PubMed Central

    Liu, Dong-jun; Li, Li

    2015-01-01

    For the issue of haze-fog, PM2.5 is the main influence factor of haze-fog pollution in China. The trend of PM2.5 concentration was analyzed from a qualitative point of view based on mathematical models and simulation in this study. The comprehensive forecasting model (CFM) was developed based on the combination forecasting ideas. Autoregressive Integrated Moving Average Model (ARIMA), Artificial Neural Networks (ANNs) model and Exponential Smoothing Method (ESM) were used to predict the time series data of PM2.5 concentration. The results of the comprehensive forecasting model were obtained by combining the results of three methods based on the weights from the Entropy Weighting Method. The trend of PM2.5 concentration in Guangzhou China was quantitatively forecasted based on the comprehensive forecasting model. The results were compared with those of three single models, and PM2.5 concentration values in the next ten days were predicted. The comprehensive forecasting model balanced the deviation of each single prediction method, and had better applicability. It broadens a new prediction method for the air quality forecasting field. PMID:26110332

  11. Application Study of Comprehensive Forecasting Model Based on Entropy Weighting Method on Trend of PM2.5 Concentration in Guangzhou, China.

    PubMed

    Liu, Dong-jun; Li, Li

    2015-06-23

    For the issue of haze-fog, PM2.5 is the main influence factor of haze-fog pollution in China. The trend of PM2.5 concentration was analyzed from a qualitative point of view based on mathematical models and simulation in this study. The comprehensive forecasting model (CFM) was developed based on the combination forecasting ideas. Autoregressive Integrated Moving Average Model (ARIMA), Artificial Neural Networks (ANNs) model and Exponential Smoothing Method (ESM) were used to predict the time series data of PM2.5 concentration. The results of the comprehensive forecasting model were obtained by combining the results of three methods based on the weights from the Entropy Weighting Method. The trend of PM2.5 concentration in Guangzhou China was quantitatively forecasted based on the comprehensive forecasting model. The results were compared with those of three single models, and PM2.5 concentration values in the next ten days were predicted. The comprehensive forecasting model balanced the deviation of each single prediction method, and had better applicability. It broadens a new prediction method for the air quality forecasting field.

  12. The Future Impact of Vietnam Era Veterans on Inpatient Acute Care and Mental Health Product Lines at a Veterans Affairs Medical Center

    DTIC Science & Technology

    2000-06-20

    smoothing and regression which includes curve fitting are two principle forecasting model types utilized in the vast majority of forecasting applications ... model were compared against the VA Office of Policy and Planning forecasting study commissioned with the actuarial firm of Milliman & Robertson (M & R... Application to the Veterans Healthcare System The development of a model to forecast future VEV needs, utilization, and cost of the Acute Care and

  13. Advancing Data Assimilation in Operational Hydrologic Forecasting: Progresses, Challenges, and Emerging Opportunities

    NASA Technical Reports Server (NTRS)

    Liu, Yuqiong; Weerts, A.; Clark, M.; Hendricks Franssen, H.-J; Kumar, S.; Moradkhani, H.; Seo, D.-J.; Schwanenberg, D.; Smith, P.; van Dijk, A. I. J. M.; hide

    2012-01-01

    Data assimilation (DA) holds considerable potential for improving hydrologic predictions as demonstrated in numerous research studies. However, advances in hydrologic DA research have not been adequately or timely implemented in operational forecast systems to improve the skill of forecasts for better informed real-world decision making. This is due in part to a lack of mechanisms to properly quantify the uncertainty in observations and forecast models in real-time forecasting situations and to conduct the merging of data and models in a way that is adequately efficient and transparent to operational forecasters. The need for effective DA of useful hydrologic data into the forecast process has become increasingly recognized in recent years. This motivated a hydrologic DA workshop in Delft, the Netherlands in November 2010, which focused on advancing DA in operational hydrologic forecasting and water resources management. As an outcome of the workshop, this paper reviews, in relevant detail, the current status of DA applications in both hydrologic research and operational practices, and discusses the existing or potential hurdles and challenges in transitioning hydrologic DA research into cost-effective operational forecasting tools, as well as the potential pathways and newly emerging opportunities for overcoming these challenges. Several related aspects are discussed, including (1) theoretical or mathematical aspects in DA algorithms, (2) the estimation of different types of uncertainty, (3) new observations and their objective use in hydrologic DA, (4) the use of DA for real-time control of water resources systems, and (5) the development of community-based, generic DA tools for hydrologic applications. It is recommended that cost-effective transition of hydrologic DA from research to operations should be helped by developing community-based, generic modeling and DA tools or frameworks, and through fostering collaborative efforts among hydrologic modellers, DA developers, and operational forecasters.

  14. Development of a model forecasting Dermanyssus gallinae's population dynamics for advancing Integrated Pest Management in laying hen facilities.

    PubMed

    Mul, Monique F; van Riel, Johan W; Roy, Lise; Zoons, Johan; André, Geert; George, David R; Meerburg, Bastiaan G; Dicke, Marcel; van Mourik, Simon; Groot Koerkamp, Peter W G

    2017-10-15

    The poultry red mite, Dermanyssus gallinae, is the most significant pest of egg laying hens in many parts of the world. Control of D. gallinae could be greatly improved with advanced Integrated Pest Management (IPM) for D. gallinae in laying hen facilities. The development of a model forecasting the pests' population dynamics in laying hen facilities without and post-treatment will contribute to this advanced IPM and could consequently improve implementation of IPM by farmers. The current work describes the development and demonstration of a model which can follow and forecast the population dynamics of D. gallinae in laying hen facilities given the variation of the population growth of D. gallinae within and between flocks. This high variation could partly be explained by house temperature, flock age, treatment, and hen house. The total population growth variation within and between flocks, however, was in part explained by temporal variation. For a substantial part this variation was unexplained. A dynamic adaptive model (DAP) was consequently developed, as models of this type are able to handle such temporal variations. The developed DAP model can forecast the population dynamics of D. gallinae, requiring only current flock population monitoring data, temperature data and information of the dates of any D. gallinae treatment. Importantly, the DAP model forecasted treatment effects, while compensating for location and time specific interactions, handling the variability of these parameters. The characteristics of this DAP model, and its compatibility with different mite monitoring methods, represent progression from existing approaches for forecasting D. gallinae that could contribute to advancing improved Integrated Pest Management (IPM) for D. gallinae in laying hen facilities. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Spatio-temporal pattern clustering for skill assessment of the Korea Operational Oceanographic System

    NASA Astrophysics Data System (ADS)

    Kim, J.; Park, K.

    2016-12-01

    In order to evaluate the performance of operational forecast models in the Korea operational oceanographic system (KOOS) which has been developed by Korea Institute of Ocean Science and Technology (KIOST), a skill assessment (SA) tool has developed and provided multiple skill metrics including not only correlation and error skills by comparing predictions and observation but also pattern clustering with numerical models, satellite, and observation. The KOOS has produced 72 hours forecast information on atmospheric and hydrodynamic forecast variables of wind, pressure, current, tide, wave, temperature, and salinity at every 12 hours per day produced by operating numerical models such as WRF, ROMS, MOM5, WW-III, and SWAN and the SA has conducted to evaluate the forecasts. We have been operationally operated several kinds of numerical models such as WRF, ROMS, MOM5, MOHID, WW-III. Quantitative assessment of operational ocean forecast model is very important to provide accurate ocean forecast information not only to general public but also to support ocean-related problems. In this work, we propose a method of pattern clustering using machine learning method and GIS-based spatial analytics to evaluate spatial distribution of numerical models and spatial observation data such as satellite and HF radar. For the clustering, we use 10 or 15 years-long reanalysis data which was computed by the KOOS, ECMWF, and HYCOM to make best matching clusters which are classified physical meaning with time variation and then we compare it with forecast data. Moreover, for evaluating current, we develop extraction method of dominant flow and apply it to hydrodynamic models and HF radar's sea surface current data. By applying pattern clustering method, it allows more accurate and effective assessment of ocean forecast models' performance by comparing not only specific observation positions which are determined by observation stations but also spatio-temporal distribution of whole model areas. We believe that our proposed method will be very useful to examine and evaluate large amount of numerical modeling data as well as satellite data.

  16. Development and Implementation of Dynamic Scripts to Support Local Model Verification at National Weather Service Weather Forecast Offices

    NASA Technical Reports Server (NTRS)

    Zavordsky, Bradley; Case, Jonathan L.; Gotway, John H.; White, Kristopher; Medlin, Jeffrey; Wood, Lance; Radell, Dave

    2014-01-01

    Local modeling with a customized configuration is conducted at National Weather Service (NWS) Weather Forecast Offices (WFOs) to produce high-resolution numerical forecasts that can better simulate local weather phenomena and complement larger scale global and regional models. The advent of the Environmental Modeling System (EMS), which provides a pre-compiled version of the Weather Research and Forecasting (WRF) model and wrapper Perl scripts, has enabled forecasters to easily configure and execute the WRF model on local workstations. NWS WFOs often use EMS output to help in forecasting highly localized, mesoscale features such as convective initiation, the timing and inland extent of lake effect snow bands, lake and sea breezes, and topographically-modified winds. However, quantitatively evaluating model performance to determine errors and biases still proves to be one of the challenges in running a local model. Developed at the National Center for Atmospheric Research (NCAR), the Model Evaluation Tools (MET) verification software makes performing these types of quantitative analyses easier, but operational forecasters do not generally have time to familiarize themselves with navigating the sometimes complex configurations associated with the MET tools. To assist forecasters in running a subset of MET programs and capabilities, the Short-term Prediction Research and Transition (SPoRT) Center has developed and transitioned a set of dynamic, easily configurable Perl scripts to collaborating NWS WFOs. The objective of these scripts is to provide SPoRT collaborating partners in the NWS with the ability to evaluate the skill of their local EMS model runs in near real time with little prior knowledge of the MET package. The ultimate goal is to make these verification scripts available to the broader NWS community in a future version of the EMS software. This paper provides an overview of the SPoRT MET scripts, instructions for how the scripts are run, and example use cases.

  17. Similarity-based multi-model ensemble approach for 1-15-day advance prediction of monsoon rainfall over India

    NASA Astrophysics Data System (ADS)

    Jaiswal, Neeru; Kishtawal, C. M.; Bhomia, Swati

    2018-04-01

    The southwest (SW) monsoon season (June, July, August and September) is the major period of rainfall over the Indian region. The present study focuses on the development of a new multi-model ensemble approach based on the similarity criterion (SMME) for the prediction of SW monsoon rainfall in the extended range. This approach is based on the assumption that training with the similar type of conditions may provide the better forecasts in spite of the sequential training which is being used in the conventional MME approaches. In this approach, the training dataset has been selected by matching the present day condition to the archived dataset and days with the most similar conditions were identified and used for training the model. The coefficients thus generated were used for the rainfall prediction. The precipitation forecasts from four general circulation models (GCMs), viz. European Centre for Medium-Range Weather Forecasts (ECMWF), United Kingdom Meteorological Office (UKMO), National Centre for Environment Prediction (NCEP) and China Meteorological Administration (CMA) have been used for developing the SMME forecasts. The forecasts of 1-5, 6-10 and 11-15 days were generated using the newly developed approach for each pentad of June-September during the years 2008-2013 and the skill of the model was analysed using verification scores, viz. equitable skill score (ETS), mean absolute error (MAE), Pearson's correlation coefficient and Nash-Sutcliffe model efficiency index. Statistical analysis of SMME forecasts shows superior forecast skill compared to the conventional MME and the individual models for all the pentads, viz. 1-5, 6-10 and 11-15 days.

  18. Modeled Forecasts of Dengue Fever in San Juan, Puerto Rico Using NASA Satellite Enhanced Weather Forecasts

    NASA Astrophysics Data System (ADS)

    Morin, C.; Quattrochi, D. A.; Zavodsky, B.; Case, J.

    2015-12-01

    Dengue fever (DF) is an important mosquito transmitted disease that is strongly influenced by meteorological and environmental conditions. Recent research has focused on forecasting DF case numbers based on meteorological data. However, these forecasting tools have generally relied on empirical models that require long DF time series to train. Additionally, their accuracy has been tested retrospectively, using past meteorological data. Consequently, the operational utility of the forecasts are still in question because the error associated with weather and climate forecasts are not reflected in the results. Using up-to-date weekly dengue case numbers for model parameterization and weather forecast data as meteorological input, we produced weekly forecasts of DF cases in San Juan, Puerto Rico. Each week, the past weeks' case counts were used to re-parameterize a process-based DF model driven with updated weather forecast data to generate forecasts of DF case numbers. Real-time weather forecast data was produced using the Weather Research and Forecasting (WRF) numerical weather prediction (NWP) system enhanced using additional high-resolution NASA satellite data. This methodology was conducted in a weekly iterative process with each DF forecast being evaluated using county-level DF cases reported by the Puerto Rico Department of Health. The one week DF forecasts were accurate especially considering the two sources of model error. First, weather forecasts were sometimes inaccurate and generally produced lower than observed temperatures. Second, the DF model was often overly influenced by the previous weeks DF case numbers, though this phenomenon could be lessened by increasing the number of simulations included in the forecast. Although these results are promising, we would like to develop a methodology to produce longer range forecasts so that public health workers can better prepare for dengue epidemics.

  19. Evaluation of Ensemble Water Supply and Demands Forecasts for Water Management in the Klamath River Basin

    NASA Astrophysics Data System (ADS)

    Broman, D.; Gangopadhyay, S.; McGuire, M.; Wood, A.; Leady, Z.; Tansey, M. K.; Nelson, K.; Dahm, K.

    2017-12-01

    The Upper Klamath River Basin in south central Oregon and north central California is home to the Klamath Irrigation Project, which is operated by the Bureau of Reclamation and provides water to around 200,000 acres of agricultural lands. The project is managed in consideration of not only water deliveries to irrigators, but also wildlife refuge water demands, biological opinion requirements for Endangered Species Act (ESA) listed fish, and Tribal Trust responsibilities. Climate change has the potential to impact water management in terms of volume and timing of water and the ability to meet multiple objectives. Current operations use a spreadsheet-based decision support tool, with water supply forecasts from the National Resources Conservation Service (NRCS) and California-Nevada River Forecast Center (CNRFC). This tool is currently limited in its ability to incorporate in ensemble forecasts, which offer the potential for improved operations by quantifying forecast uncertainty. To address these limitations, this study has worked to develop a RiverWare based water resource systems model, flexible enough to use across multiple decision time-scales, from short-term operations out to long-range planning. Systems model development has been accompanied by operational system development to handle data management and multiple modeling components. Using a set of ensemble hindcasts, this study seeks to answer several questions: A) Do a new set of ensemble streamflow forecasts have additional skill beyond what?, and allow for improved decision making under changing conditions? B) Do net irrigation water requirement forecasts developed in this project to quantify agricultural demands and reservoir evaporation forecasts provide additional benefits to decision making beyond water supply forecasts? C) What benefit do ensemble forecasts have in the context of water management decisions?

  20. The development rainfall forecasting using kalman filter

    NASA Astrophysics Data System (ADS)

    Zulfi, Mohammad; Hasan, Moh.; Dwidja Purnomo, Kosala

    2018-04-01

    Rainfall forecasting is very interesting for agricultural planing. Rainfall information is useful to make decisions about the plan planting certain commodities. In this studies, the rainfall forecasting by ARIMA and Kalman Filter method. Kalman Filter method is used to declare a time series model of which is shown in the form of linear state space to determine the future forecast. This method used a recursive solution to minimize error. The rainfall data in this research clustered by K-means clustering. Implementation of Kalman Filter method is for modelling and forecasting rainfall in each cluster. We used ARIMA (p,d,q) to construct a state space for KalmanFilter model. So, we have four group of the data and one model in each group. In conclusions, Kalman Filter method is better than ARIMA model for rainfall forecasting in each group. It can be showed from error of Kalman Filter method that smaller than error of ARIMA model.

  1. Between the Rock and a Hard Place: The CCMC as a Transit Station Between Modelers and Forecasters

    NASA Technical Reports Server (NTRS)

    Hesse, Michael

    2009-01-01

    The Community Coordinated Modeling Center (CCMC) is a US inter-agency activity aiming at research in support of the generation of advanced space weather models. As one of its main functions, the CCMC provides to researchers the use of space science models, even if they are not model owners themselves. The second CCMC activity is to support Space Weather forecasting at national Space Weather Forecasting Centers. This second activity involved model evaluations, model transitions to operations, and the development of draft Space Weather forecasting tools. This presentation will focus on the latter element. Specifically, we will discuss the process of transition research models, or information generated by research models, to Space Weather Forecasting organizations. We will analyze successes as well as obstacles to further progress, and we will suggest avenues for increased transitioning success.

  2. Small area population forecasting: some experience with British models.

    PubMed

    Openshaw, S; Van Der Knaap, G A

    1983-01-01

    This study is concerned with the evaluation of the various models including time-series forecasts, extrapolation, and projection procedures, that have been developed to prepare population forecasts for planning purposes. These models are evaluated using data for the Netherlands. "As part of a research project at the Erasmus University, space-time population data has been assembled in a geographically consistent way for the period 1950-1979. These population time series are of sufficient length for the first 20 years to be used to build models and then evaluate the performance of the model for the next 10 years. Some 154 different forecasting models for 832 municipalities have been evaluated. It would appear that the best forecasts are likely to be provided by either a Holt-Winters model, or a ratio-correction model, or a low order exponential-smoothing model." excerpt

  3. Real-time forecasting of an epidemic using a discrete time stochastic model: a case study of pandemic influenza (H1N1-2009).

    PubMed

    Nishiura, Hiroshi

    2011-02-16

    Real-time forecasting of epidemics, especially those based on a likelihood-based approach, is understudied. This study aimed to develop a simple method that can be used for the real-time epidemic forecasting. A discrete time stochastic model, accounting for demographic stochasticity and conditional measurement, was developed and applied as a case study to the weekly incidence of pandemic influenza (H1N1-2009) in Japan. By imposing a branching process approximation and by assuming the linear growth of cases within each reporting interval, the epidemic curve is predicted using only two parameters. The uncertainty bounds of the forecasts are computed using chains of conditional offspring distributions. The quality of the forecasts made before the epidemic peak appears largely to depend on obtaining valid parameter estimates. The forecasts of both weekly incidence and final epidemic size greatly improved at and after the epidemic peak with all the observed data points falling within the uncertainty bounds. Real-time forecasting using the discrete time stochastic model with its simple computation of the uncertainty bounds was successful. Because of the simplistic model structure, the proposed model has the potential to additionally account for various types of heterogeneity, time-dependent transmission dynamics and epidemiological details. The impact of such complexities on forecasting should be explored when the data become available as part of the disease surveillance.

  4. A Hybrid Neural Network Model for Sales Forecasting Based on ARIMA and Search Popularity of Article Titles.

    PubMed

    Omar, Hani; Hoang, Van Hai; Liu, Duen-Ren

    2016-01-01

    Enhancing sales and operations planning through forecasting analysis and business intelligence is demanded in many industries and enterprises. Publishing industries usually pick attractive titles and headlines for their stories to increase sales, since popular article titles and headlines can attract readers to buy magazines. In this paper, information retrieval techniques are adopted to extract words from article titles. The popularity measures of article titles are then analyzed by using the search indexes obtained from Google search engine. Backpropagation Neural Networks (BPNNs) have successfully been used to develop prediction models for sales forecasting. In this study, we propose a novel hybrid neural network model for sales forecasting based on the prediction result of time series forecasting and the popularity of article titles. The proposed model uses the historical sales data, popularity of article titles, and the prediction result of a time series, Autoregressive Integrated Moving Average (ARIMA) forecasting method to learn a BPNN-based forecasting model. Our proposed forecasting model is experimentally evaluated by comparing with conventional sales prediction techniques. The experimental result shows that our proposed forecasting method outperforms conventional techniques which do not consider the popularity of title words.

  5. A Hybrid Neural Network Model for Sales Forecasting Based on ARIMA and Search Popularity of Article Titles

    PubMed Central

    Omar, Hani; Hoang, Van Hai; Liu, Duen-Ren

    2016-01-01

    Enhancing sales and operations planning through forecasting analysis and business intelligence is demanded in many industries and enterprises. Publishing industries usually pick attractive titles and headlines for their stories to increase sales, since popular article titles and headlines can attract readers to buy magazines. In this paper, information retrieval techniques are adopted to extract words from article titles. The popularity measures of article titles are then analyzed by using the search indexes obtained from Google search engine. Backpropagation Neural Networks (BPNNs) have successfully been used to develop prediction models for sales forecasting. In this study, we propose a novel hybrid neural network model for sales forecasting based on the prediction result of time series forecasting and the popularity of article titles. The proposed model uses the historical sales data, popularity of article titles, and the prediction result of a time series, Autoregressive Integrated Moving Average (ARIMA) forecasting method to learn a BPNN-based forecasting model. Our proposed forecasting model is experimentally evaluated by comparing with conventional sales prediction techniques. The experimental result shows that our proposed forecasting method outperforms conventional techniques which do not consider the popularity of title words. PMID:27313605

  6. Second Generation Crop Yield Models Review

    NASA Technical Reports Server (NTRS)

    Hodges, T. (Principal Investigator)

    1982-01-01

    Second generation yield models, including crop growth simulation models and plant process models, may be suitable for large area crop yield forecasting in the yield model development project. Subjective and objective criteria for model selection are defined and models which might be selected are reviewed. Models may be selected to provide submodels as input to other models; for further development and testing; or for immediate testing as forecasting tools. A plant process model may range in complexity from several dozen submodels simulating (1) energy, carbohydrates, and minerals; (2) change in biomass of various organs; and (3) initiation and development of plant organs, to a few submodels simulating key physiological processes. The most complex models cannot be used directly in large area forecasting but may provide submodels which can be simplified for inclusion into simpler plant process models. Both published and unpublished models which may be used for development or testing are reviewed. Several other models, currently under development, may become available at a later date.

  7. An impact analysis of forecasting methods and forecasting parameters on bullwhip effect

    NASA Astrophysics Data System (ADS)

    Silitonga, R. Y. H.; Jelly, N.

    2018-04-01

    Bullwhip effect is an increase of variance of demand fluctuation from downstream to upstream of supply chain. Forecasting methods and forecasting parameters were recognized as some factors that affect bullwhip phenomena. To study these factors, we can develop simulations. There are several ways to simulate bullwhip effect in previous studies, such as mathematical equation modelling, information control modelling, computer program, and many more. In this study a spreadsheet program named Bullwhip Explorer was used to simulate bullwhip effect. Several scenarios were developed to show the change in bullwhip effect ratio because of the difference in forecasting methods and forecasting parameters. Forecasting methods used were mean demand, moving average, exponential smoothing, demand signalling, and minimum expected mean squared error. Forecasting parameters were moving average period, smoothing parameter, signalling factor, and safety stock factor. It showed that decreasing moving average period, increasing smoothing parameter, increasing signalling factor can create bigger bullwhip effect ratio. Meanwhile, safety stock factor had no impact to bullwhip effect.

  8. Research activities at the Australian Bureau of Meteorology for the regional ionospheric specification and forecasting

    NASA Astrophysics Data System (ADS)

    Bouya, Zahra; Terkildsen, Michael

    2016-07-01

    The Australian Space Forecast Centre (ASFC) provides space weather forecasts to a diverse group of customers. Space Weather Services (SWS) within the Australian Bureau of Meteorology is focussed both on developing tailored products and services for the key customer groups, and supporting ASFC operations. Research in SWS is largely centred on the development of data-driven models using a range of solar-terrestrial data. This paper will cover some data requirements , approaches and recent SWS activities for data driven modelling with a focus on the regional Ionospheric specification and forecasting.

  9. Forecast and virtual weather driven plant disease risk modeling system

    USDA-ARS?s Scientific Manuscript database

    We describe a system in use and development that leverages public weather station data, several spatialized weather forecast types, leaf wetness estimation, generic plant disease models, and online statistical evaluation. Convergent technological developments in all these areas allow, with funding f...

  10. Evaluating probabilistic dengue risk forecasts from a prototype early warning system for Brazil

    PubMed Central

    Lowe, Rachel; Coelho, Caio AS; Barcellos, Christovam; Carvalho, Marilia Sá; Catão, Rafael De Castro; Coelho, Giovanini E; Ramalho, Walter Massa; Bailey, Trevor C; Stephenson, David B; Rodó, Xavier

    2016-01-01

    Recently, a prototype dengue early warning system was developed to produce probabilistic forecasts of dengue risk three months ahead of the 2014 World Cup in Brazil. Here, we evaluate the categorical dengue forecasts across all microregions in Brazil, using dengue cases reported in June 2014 to validate the model. We also compare the forecast model framework to a null model, based on seasonal averages of previously observed dengue incidence. When considering the ability of the two models to predict high dengue risk across Brazil, the forecast model produced more hits and fewer missed events than the null model, with a hit rate of 57% for the forecast model compared to 33% for the null model. This early warning model framework may be useful to public health services, not only ahead of mass gatherings, but also before the peak dengue season each year, to control potentially explosive dengue epidemics. DOI: http://dx.doi.org/10.7554/eLife.11285.001 PMID:26910315

  11. Hybrid Forecasting of Daily River Discharges Considering Autoregressive Heteroscedasticity

    NASA Astrophysics Data System (ADS)

    Szolgayová, Elena Peksová; Danačová, Michaela; Komorniková, Magda; Szolgay, Ján

    2017-06-01

    It is widely acknowledged that in the hydrological and meteorological communities, there is a continuing need to improve the quality of quantitative rainfall and river flow forecasts. A hybrid (combined deterministic-stochastic) modelling approach is proposed here that combines the advantages offered by modelling the system dynamics with a deterministic model and a deterministic forecasting error series with a data-driven model in parallel. Since the processes to be modelled are generally nonlinear and the model error series may exhibit nonstationarity and heteroscedasticity, GARCH-type nonlinear time series models are considered here. The fitting, forecasting and simulation performance of such models have to be explored on a case-by-case basis. The goal of this paper is to test and develop an appropriate methodology for model fitting and forecasting applicable for daily river discharge forecast error data from the GARCH family of time series models. We concentrated on verifying whether the use of a GARCH-type model is suitable for modelling and forecasting a hydrological model error time series on the Hron and Morava Rivers in Slovakia. For this purpose we verified the presence of heteroscedasticity in the simulation error series of the KLN multilinear flow routing model; then we fitted the GARCH-type models to the data and compared their fit with that of an ARMA - type model. We produced one-stepahead forecasts from the fitted models and again provided comparisons of the model's performance.

  12. PERFORMANCE AND DIAGNOSTIC EVALUATION OF OZONE PREDICTIONS BY THE ETA-COMMUNITY MULTISCALE AIR QUALITY FORECAST SYSTEM DURING THE 2002 NEW ENGLAND AIR QUALITY STUDY

    EPA Science Inventory

    A real-time air quality forecasting system (Eta-CMAQ model suite) has been developed by linking the NCEP Eta model to the U.S. EPA CMAQ model. This work presents results from the application of the Eta-CMAQ modeling system for forecasting O3 over the northeastern U.S d...

  13. Can we use Earth Observations to improve monthly water level forecasts?

    NASA Astrophysics Data System (ADS)

    Slater, L. J.; Villarini, G.

    2017-12-01

    Dynamical-statistical hydrologic forecasting approaches benefit from different strengths in comparison with traditional hydrologic forecasting systems: they are computationally efficient, can integrate and `learn' from a broad selection of input data (e.g., General Circulation Model (GCM) forecasts, Earth Observation time series, teleconnection patterns), and can take advantage of recent progress in machine learning (e.g. multi-model blending, post-processing and ensembling techniques). Recent efforts to develop a dynamical-statistical ensemble approach for forecasting seasonal streamflow using both GCM forecasts and changing land cover have shown promising results over the U.S. Midwest. Here, we use climate forecasts from several GCMs of the North American Multi Model Ensemble (NMME) alongside 15-minute stage time series from the National River Flow Archive (NRFA) and land cover classes extracted from the European Space Agency's Climate Change Initiative 300 m annual Global Land Cover time series. With these data, we conduct systematic long-range probabilistic forecasting of monthly water levels in UK catchments over timescales ranging from one to twelve months ahead. We evaluate the improvement in model fit and model forecasting skill that comes from using land cover classes as predictors in the models. This work opens up new possibilities for combining Earth Observation time series with GCM forecasts to predict a variety of hazards from space using data science techniques.

  14. Distributed HUC-based modeling with SUMMA for ensemble streamflow forecasting over large regional domains.

    NASA Astrophysics Data System (ADS)

    Saharia, M.; Wood, A.; Clark, M. P.; Bennett, A.; Nijssen, B.; Clark, E.; Newman, A. J.

    2017-12-01

    Most operational streamflow forecasting systems rely on a forecaster-in-the-loop approach in which some parts of the forecast workflow require an experienced human forecaster. But this approach faces challenges surrounding process reproducibility, hindcasting capability, and extension to large domains. The operational hydrologic community is increasingly moving towards `over-the-loop' (completely automated) large-domain simulations yet recent developments indicate a widespread lack of community knowledge about the strengths and weaknesses of such systems for forecasting. A realistic representation of land surface hydrologic processes is a critical element for improving forecasts, but often comes at the substantial cost of forecast system agility and efficiency. While popular grid-based models support the distributed representation of land surface processes, intermediate-scale Hydrologic Unit Code (HUC)-based modeling could provide a more efficient and process-aligned spatial discretization, reducing the need for tradeoffs between model complexity and critical forecasting requirements such as ensemble methods and comprehensive model calibration. The National Center for Atmospheric Research is collaborating with the University of Washington, the Bureau of Reclamation and the USACE to implement, assess, and demonstrate real-time, over-the-loop distributed streamflow forecasting for several large western US river basins and regions. In this presentation, we present early results from short to medium range hydrologic and streamflow forecasts for the Pacific Northwest (PNW). We employ a real-time 1/16th degree daily ensemble model forcings as well as downscaled Global Ensemble Forecasting System (GEFS) meteorological forecasts. These datasets drive an intermediate-scale configuration of the Structure for Unifying Multiple Modeling Alternatives (SUMMA) model, which represents the PNW using over 11,700 HUCs. The system produces not only streamflow forecasts (using the MizuRoute channel routing tool) but also distributed model states such as soil moisture and snow water equivalent. We also describe challenges in distributed model-based forecasting, including the application and early results of real-time hydrologic data assimilation.

  15. Statistical forecast of seasonal discharge in Central Asia using observational records: development of a generic linear modelling tool for operational water resource management

    NASA Astrophysics Data System (ADS)

    Apel, Heiko; Abdykerimova, Zharkinay; Agalhanova, Marina; Baimaganbetov, Azamat; Gavrilenko, Nadejda; Gerlitz, Lars; Kalashnikova, Olga; Unger-Shayesteh, Katy; Vorogushyn, Sergiy; Gafurov, Abror

    2018-04-01

    The semi-arid regions of Central Asia crucially depend on the water resources supplied by the mountainous areas of the Tien Shan and Pamir and Altai mountains. During the summer months the snow-melt- and glacier-melt-dominated river discharge originating in the mountains provides the main water resource available for agricultural production, but also for storage in reservoirs for energy generation during the winter months. Thus a reliable seasonal forecast of the water resources is crucial for sustainable management and planning of water resources. In fact, seasonal forecasts are mandatory tasks of all national hydro-meteorological services in the region. In order to support the operational seasonal forecast procedures of hydro-meteorological services, this study aims to develop a generic tool for deriving statistical forecast models of seasonal river discharge based solely on observational records. The generic model structure is kept as simple as possible in order to be driven by meteorological and hydrological data readily available at the hydro-meteorological services, and to be applicable for all catchments in the region. As snow melt dominates summer runoff, the main meteorological predictors for the forecast models are monthly values of winter precipitation and temperature, satellite-based snow cover data, and antecedent discharge. This basic predictor set was further extended by multi-monthly means of the individual predictors, as well as composites of the predictors. Forecast models are derived based on these predictors as linear combinations of up to four predictors. A user-selectable number of the best models is extracted automatically by the developed model fitting algorithm, which includes a test for robustness by a leave-one-out cross-validation. Based on the cross-validation the predictive uncertainty was quantified for every prediction model. Forecasts of the mean seasonal discharge of the period April to September are derived every month from January until June. The application of the model for several catchments in Central Asia - ranging from small to the largest rivers (240 to 290 000 km2 catchment area) - for the period 2000-2015 provided skilful forecasts for most catchments already in January, with adjusted R2 values of the best model in the range of 0.6-0.8 for most of the catchments. The skill of the prediction increased every following month, i.e. with reduced lead time, with adjusted R2 values usually in the range 0.8-0.9 for the best and 0.7-0.8 on average for the set of models in April just before the prediction period. The later forecasts in May and June improve further due to the high predictive power of the discharge in the first 2 months of the snow melt period. The improved skill of the set of forecast models with decreasing lead time resulted in narrow predictive uncertainty bands at the beginning of the snow melt period. In summary, the proposed generic automatic forecast model development tool provides robust predictions for seasonal water availability in Central Asia, which will be tested against the official forecasts in the upcoming years, with the vision of operational implementation.

  16. Development of Ensemble Model Based Water Demand Forecasting Model

    NASA Astrophysics Data System (ADS)

    Kwon, Hyun-Han; So, Byung-Jin; Kim, Seong-Hyeon; Kim, Byung-Seop

    2014-05-01

    In recent years, Smart Water Grid (SWG) concept has globally emerged over the last decade and also gained significant recognition in South Korea. Especially, there has been growing interest in water demand forecast and optimal pump operation and this has led to various studies regarding energy saving and improvement of water supply reliability. Existing water demand forecasting models are categorized into two groups in view of modeling and predicting their behavior in time series. One is to consider embedded patterns such as seasonality, periodicity and trends, and the other one is an autoregressive model that is using short memory Markovian processes (Emmanuel et al., 2012). The main disadvantage of the abovementioned model is that there is a limit to predictability of water demands of about sub-daily scale because the system is nonlinear. In this regard, this study aims to develop a nonlinear ensemble model for hourly water demand forecasting which allow us to estimate uncertainties across different model classes. The proposed model is consist of two parts. One is a multi-model scheme that is based on combination of independent prediction model. The other one is a cross validation scheme named Bagging approach introduced by Brieman (1996) to derive weighting factors corresponding to individual models. Individual forecasting models that used in this study are linear regression analysis model, polynomial regression, multivariate adaptive regression splines(MARS), SVM(support vector machine). The concepts are demonstrated through application to observed from water plant at several locations in the South Korea. Keywords: water demand, non-linear model, the ensemble forecasting model, uncertainty. Acknowledgements This subject is supported by Korea Ministry of Environment as "Projects for Developing Eco-Innovation Technologies (GT-11-G-02-001-6)

  17. Decomposition of Sources of Errors in Seasonal Streamflow Forecasting over the U.S. Sunbelt

    NASA Technical Reports Server (NTRS)

    Mazrooei, Amirhossein; Sinah, Tusshar; Sankarasubramanian, A.; Kumar, Sujay V.; Peters-Lidard, Christa D.

    2015-01-01

    Seasonal streamflow forecasts, contingent on climate information, can be utilized to ensure water supply for multiple uses including municipal demands, hydroelectric power generation, and for planning agricultural operations. However, uncertainties in the streamflow forecasts pose significant challenges in their utilization in real-time operations. In this study, we systematically decompose various sources of errors in developing seasonal streamflow forecasts from two Land Surface Models (LSMs) (Noah3.2 and CLM2), which are forced with downscaled and disaggregated climate forecasts. In particular, the study quantifies the relative contributions of the sources of errors from LSMs, climate forecasts, and downscaling/disaggregation techniques in developing seasonal streamflow forecast. For this purpose, three month ahead seasonal precipitation forecasts from the ECHAM4.5 general circulation model (GCM) were statistically downscaled from 2.8deg to 1/8deg spatial resolution using principal component regression (PCR) and then temporally disaggregated from monthly to daily time step using kernel-nearest neighbor (K-NN) approach. For other climatic forcings, excluding precipitation, we considered the North American Land Data Assimilation System version 2 (NLDAS-2) hourly climatology over the years 1979 to 2010. Then the selected LSMs were forced with precipitation forecasts and NLDAS-2 hourly climatology to develop retrospective seasonal streamflow forecasts over a period of 20 years (1991-2010). Finally, the performance of LSMs in forecasting streamflow under different schemes was analyzed to quantify the relative contribution of various sources of errors in developing seasonal streamflow forecast. Our results indicate that the most dominant source of errors during winter and fall seasons is the errors due to ECHAM4.5 precipitation forecasts, while temporal disaggregation scheme contributes to maximum errors during summer season.

  18. Comparison of Conventional and ANN Models for River Flow Forecasting

    NASA Astrophysics Data System (ADS)

    Jain, A.; Ganti, R.

    2011-12-01

    Hydrological models are useful in many water resources applications such as flood control, irrigation and drainage, hydro power generation, water supply, erosion and sediment control, etc. Estimates of runoff are needed in many water resources planning, design development, operation and maintenance activities. River flow is generally estimated using time series or rainfall-runoff models. Recently, soft artificial intelligence tools such as Artificial Neural Networks (ANNs) have become popular for research purposes but have not been extensively adopted in operational hydrological forecasts. There is a strong need to develop ANN models based on real catchment data and compare them with the conventional models. In this paper, a comparative study has been carried out for river flow forecasting using the conventional and ANN models. Among the conventional models, multiple linear, and non linear regression, and time series models of auto regressive (AR) type have been developed. Feed forward neural network model structure trained using the back propagation algorithm, a gradient search method, was adopted. The daily river flow data derived from Godavari Basin @ Polavaram, Andhra Pradesh, India have been employed to develop all the models included here. Two inputs, flows at two past time steps, (Q(t-1) and Q(t-2)) were selected using partial auto correlation analysis for forecasting flow at time t, Q(t). A wide range of error statistics have been used to evaluate the performance of all the models developed in this study. It has been found that the regression and AR models performed comparably, and the ANN model performed the best amongst all the models investigated in this study. It is concluded that ANN model should be adopted in real catchments for hydrological modeling and forecasting.

  19. Baseline and target values for regional and point PV power forecasts: Toward improved solar forecasting

    DOE PAGES

    Zhang, Jie; Hodge, Bri -Mathias; Lu, Siyuan; ...

    2015-11-10

    Accurate solar photovoltaic (PV) power forecasting allows utilities to reliably utilize solar resources on their systems. However, to truly measure the improvements that any new solar forecasting methods provide, it is important to develop a methodology for determining baseline and target values for the accuracy of solar forecasting at different spatial and temporal scales. This paper aims at developing a framework to derive baseline and target values for a suite of generally applicable, value-based, and custom-designed solar forecasting metrics. The work was informed by close collaboration with utility and independent system operator partners. The baseline values are established based onmore » state-of-the-art numerical weather prediction models and persistence models in combination with a radiative transfer model. The target values are determined based on the reduction in the amount of reserves that must be held to accommodate the uncertainty of PV power output. The proposed reserve-based methodology is a reasonable and practical approach that can be used to assess the economic benefits gained from improvements in accuracy of solar forecasting. Lastly, the financial baseline and targets can be translated back to forecasting accuracy metrics and requirements, which will guide research on solar forecasting improvements toward the areas that are most beneficial to power systems operations.« less

  20. Towards an Australian ensemble streamflow forecasting system for flood prediction and water management

    NASA Astrophysics Data System (ADS)

    Bennett, J.; David, R. E.; Wang, Q.; Li, M.; Shrestha, D. L.

    2016-12-01

    Flood forecasting in Australia has historically relied on deterministic forecasting models run only when floods are imminent, with considerable forecaster input and interpretation. These now co-existed with a continually available 7-day streamflow forecasting service (also deterministic) aimed at operational water management applications such as environmental flow releases. The 7-day service is not optimised for flood prediction. We describe progress on developing a system for ensemble streamflow forecasting that is suitable for both flood prediction and water management applications. Precipitation uncertainty is handled through post-processing of Numerical Weather Prediction (NWP) output with a Bayesian rainfall post-processor (RPP). The RPP corrects biases, downscales NWP output, and produces reliable ensemble spread. Ensemble precipitation forecasts are used to force a semi-distributed conceptual rainfall-runoff model. Uncertainty in precipitation forecasts is insufficient to reliably describe streamflow forecast uncertainty, particularly at shorter lead-times. We characterise hydrological prediction uncertainty separately with a 4-stage error model. The error model relies on data transformation to ensure residuals are homoscedastic and symmetrically distributed. To ensure streamflow forecasts are accurate and reliable, the residuals are modelled using a mixture-Gaussian distribution with distinct parameters for the rising and falling limbs of the forecast hydrograph. In a case study of the Murray River in south-eastern Australia, we show ensemble predictions of floods generally have lower errors than deterministic forecasting methods. We also discuss some of the challenges in operationalising short-term ensemble streamflow forecasts in Australia, including meeting the needs for accurate predictions across all flow ranges and comparing forecasts generated by event and continuous hydrological models.

  1. Improving wave forecasting by integrating ensemble modelling and machine learning

    NASA Astrophysics Data System (ADS)

    O'Donncha, F.; Zhang, Y.; James, S. C.

    2017-12-01

    Modern smart-grid networks use technologies to instantly relay information on supply and demand to support effective decision making. Integration of renewable-energy resources with these systems demands accurate forecasting of energy production (and demand) capacities. For wave-energy converters, this requires wave-condition forecasting to enable estimates of energy production. Current operational wave forecasting systems exhibit substantial errors with wave-height RMSEs of 40 to 60 cm being typical, which limits the reliability of energy-generation predictions thereby impeding integration with the distribution grid. In this study, we integrate physics-based models with statistical learning aggregation techniques that combine forecasts from multiple, independent models into a single "best-estimate" prediction of the true state. The Simulating Waves Nearshore physics-based model is used to compute wind- and currents-augmented waves in the Monterey Bay area. Ensembles are developed based on multiple simulations perturbing input data (wave characteristics supplied at the model boundaries and winds) to the model. A learning-aggregation technique uses past observations and past model forecasts to calculate a weight for each model. The aggregated forecasts are compared to observation data to quantify the performance of the model ensemble and aggregation techniques. The appropriately weighted ensemble model outperforms an individual ensemble member with regard to forecasting wave conditions.

  2. Forecasting Individual Headache Attacks Using Perceived Stress: Development of a Multivariable Prediction Model for Persons With Episodic Migraine.

    PubMed

    Houle, Timothy T; Turner, Dana P; Golding, Adrienne N; Porter, John A H; Martin, Vincent T; Penzien, Donald B; Tegeler, Charles H

    2017-07-01

    To develop and validate a prediction model that forecasts future migraine attacks for an individual headache sufferer. Many headache patients and physicians believe that precipitants of headache can be identified and avoided or managed to reduce the frequency of headache attacks. Of the numerous candidate triggers, perceived stress has received considerable attention for its association with the onset of headache in episodic and chronic headache sufferers. However, no evidence is available to support forecasting headache attacks within individuals using any of the candidate headache triggers. This longitudinal cohort with forecasting model development study enrolled 100 participants with episodic migraine with or without aura, and N = 95 contributed 4626 days of electronic diary data and were included in the analysis. Individual headache forecasts were derived from current headache state and current levels of stress using several aspects of the Daily Stress Inventory, a measure of daily hassles that is completed at the end of each day. The primary outcome measure was the presence/absence of any headache attack (head pain > 0 on a numerical rating scale of 0-10) over the next 24 h period. After removing missing data (n = 431 days), participants in the study experienced a headache attack on 1613/4195 (38.5%) days. A generalized linear mixed-effects forecast model using either the frequency of stressful events or the perceived intensity of these events fit the data well. This simple forecasting model possessed promising predictive utility with an AUC of 0.73 (95% CI 0.71-0.75) in the training sample and an AUC of 0.65 (95% CI 0.6-0.67) in a leave-one-out validation sample. This forecasting model had a Brier score of 0.202 and possessed good calibration between forecasted probabilities and observed frequencies but had only low levels of resolution (ie, sharpness). This study demonstrates that future headache attacks can be forecasted for a diverse group of individuals over time. Future work will enhance prediction through improvements in the assessment of stress as well as the development of other candidate domains to use in the models. © 2017 American Headache Society.

  3. Bayesian Population Forecasting: Extending the Lee-Carter Method.

    PubMed

    Wiśniowski, Arkadiusz; Smith, Peter W F; Bijak, Jakub; Raymer, James; Forster, Jonathan J

    2015-06-01

    In this article, we develop a fully integrated and dynamic Bayesian approach to forecast populations by age and sex. The approach embeds the Lee-Carter type models for forecasting the age patterns, with associated measures of uncertainty, of fertility, mortality, immigration, and emigration within a cohort projection model. The methodology may be adapted to handle different data types and sources of information. To illustrate, we analyze time series data for the United Kingdom and forecast the components of population change to the year 2024. We also compare the results obtained from different forecast models for age-specific fertility, mortality, and migration. In doing so, we demonstrate the flexibility and advantages of adopting the Bayesian approach for population forecasting and highlight areas where this work could be extended.

  4. Enviro-HIRLAM online integrated meteorology-chemistry modelling system: strategy, methodology, developments and applications (v7.2)

    NASA Astrophysics Data System (ADS)

    Baklanov, Alexander; Smith Korsholm, Ulrik; Nuterman, Roman; Mahura, Alexander; Pagh Nielsen, Kristian; Hansen Sass, Bent; Rasmussen, Alix; Zakey, Ashraf; Kaas, Eigil; Kurganskiy, Alexander; Sørensen, Brian; González-Aparicio, Iratxe

    2017-08-01

    The Environment - High Resolution Limited Area Model (Enviro-HIRLAM) is developed as a fully online integrated numerical weather prediction (NWP) and atmospheric chemical transport (ACT) model for research and forecasting of joint meteorological, chemical and biological weather. The integrated modelling system is developed by the Danish Meteorological Institute (DMI) in collaboration with several European universities. It is the baseline system in the HIRLAM Chemical Branch and used in several countries and different applications. The development was initiated at DMI more than 15 years ago. The model is based on the HIRLAM NWP model with online integrated pollutant transport and dispersion, chemistry, aerosol dynamics, deposition and atmospheric composition feedbacks. To make the model suitable for chemical weather forecasting in urban areas, the meteorological part was improved by implementation of urban parameterisations. The dynamical core was improved by implementing a locally mass-conserving semi-Lagrangian numerical advection scheme, which improves forecast accuracy and model performance. The current version (7.2), in comparison with previous versions, has a more advanced and cost-efficient chemistry, aerosol multi-compound approach, aerosol feedbacks (direct and semi-direct) on radiation and (first and second indirect effects) on cloud microphysics. Since 2004, the Enviro-HIRLAM has been used for different studies, including operational pollen forecasting for Denmark since 2009 and operational forecasting atmospheric composition with downscaling for China since 2017. Following the main research and development strategy, further model developments will be extended towards the new NWP platform - HARMONIE. Different aspects of online coupling methodology, research strategy and possible applications of the modelling system, and fit-for-purpose model configurations for the meteorological and air quality communities are discussed.

  5. A simulation model for forecasting downhill ski participation

    Treesearch

    Daniel J. Stynes; Daniel M. Spotts

    1980-01-01

    The purpose of this paper is to describe progress in the development of a general computer simulation model to forecast future levels of outdoor recreation participation. The model is applied and tested for downhill skiing in Michigan.

  6. Assessing the viability of `over-the-loop' real-time short-to-medium range ensemble streamflow forecasts

    NASA Astrophysics Data System (ADS)

    Wood, A. W.; Clark, E.; Mendoza, P. A.; Nijssen, B.; Newman, A. J.; Clark, M. P.; Arnold, J.; Nowak, K. C.

    2016-12-01

    Many if not most national operational short-to-medium range streamflow prediction systems rely on a forecaster-in-the-loop approach in which some parts of the forecast workflow are automated, but others require the hands-on-effort of an experienced human forecaster. This approach evolved out of the need to correct for deficiencies in the models and datasets that were available for forecasting, and often leads to skillful predictions despite the use of relatively simple, conceptual models. On the other hand, the process is not reproducible, which limits opportunities to assess and incorporate process variations, and the effort required to make forecasts in this way is an obstacle to expanding forecast services - e.g., though adding new forecast locations or more frequent forecast updates, running more complex models, or producing forecast ensembles and hindcasts that can support verification. In the last decade, the hydrologic forecasting community has begun to develop more centralized, `over-the-loop' systems. The quality of these new forecast products will depend on their ability to leverage research in areas including earth system modeling, parameter estimation, data assimilation, statistical post-processing, weather and climate prediction, verification, and uncertainty estimation through the use of ensembles. Currently, the operational streamflow forecasting and water management communities have little experience with the strengths and weaknesses of over-the-loop approaches, even as the systems are being rolled out in major operational forecasting centers. There is thus a need both to evaluate these forecasting advances and to demonstrate their potential in a public arena, raising awareness in forecast user communities and development programs alike. To address this need, the National Center for Atmospheric Research is collaborating with the University of Washington, the Bureau of Reclamation and the US Army Corps of Engineers, using the NCAR 'System for Hydromet Analysis, Research, and Prediction' (SHARP) to implement, assess and demonstrate real-time over-the-loop forecasts. We present early hindcast and verification results from SHARP for short to medium range streamflow forecasts in a number of US case study watersheds.

  7. Recent developments of DMI's operational system: Coupled Ecosystem-Circulation-and SPM model.

    NASA Astrophysics Data System (ADS)

    Murawski, Jens; Tian, Tian; Dobrynin, Mikhail

    2010-05-01

    ECOOP is a pan- European project with 72 partners from 29 countries around the Baltic Sea, the North Sea, the Iberia-Biscay-Ireland region, the Mediterranean Sea and the Black Sea. The project aims at the development and the integration of the different coastal and regional observation and forecasting systems. The Danish Meteorological Institute DMI coordinates the project and is responsible for the Baltic Sea regional forecasting System. Over the project period, the Baltic Sea system was developed from a purely hydro dynamical model (version V1), running operationally since summer 2009, to a coupled model platform (version V2), including model components for the simulation of suspended particles, data assimilation and ecosystem variables. The ECOOP V2 model is currently tested and validated, and will replace the V1 version soon. The coupled biogeochemical- and circulation model runs operationally since November 2009. The daily forecasts are presented at DMI's homepage http:/ocean.dmi.dk. The presentation includes a short description of the ECOOP forecasting system, discusses the model results and shows the outcome of the model validation.

  8. Skill of Ensemble Seasonal Probability Forecasts

    NASA Astrophysics Data System (ADS)

    Smith, Leonard A.; Binter, Roman; Du, Hailiang; Niehoerster, Falk

    2010-05-01

    In operational forecasting, the computational complexity of large simulation models is, ideally, justified by enhanced performance over simpler models. We will consider probability forecasts and contrast the skill of ENSEMBLES-based seasonal probability forecasts of interest to the finance sector (specifically temperature forecasts for Nino 3.4 and the Atlantic Main Development Region (MDR)). The ENSEMBLES model simulations will be contrasted against forecasts from statistical models based on the observations (climatological distributions) and empirical dynamics based on the observations but conditioned on the current state (dynamical climatology). For some start dates, individual ENSEMBLES models yield significant skill even at a lead-time of 14 months. The nature of this skill is discussed, and chances of application are noted. Questions surrounding the interpretation of probability forecasts based on these multi-model ensemble simulations are then considered; the distributions considered are formed by kernel dressing the ensemble and blending with the climatology. The sources of apparent (RMS) skill in distributions based on multi-model simulations is discussed, and it is demonstrated that the inclusion of "zero-skill" models in the long range can improve Root-Mean-Square-Error scores, casting some doubt on the common justification for the claim that all models should be included in forming an operational probability forecast. It is argued that the rational response varies with lead time.

  9. Palm oil price forecasting model: An autoregressive distributed lag (ARDL) approach

    NASA Astrophysics Data System (ADS)

    Hamid, Mohd Fahmi Abdul; Shabri, Ani

    2017-05-01

    Palm oil price fluctuated without any clear trend or cyclical pattern in the last few decades. The instability of food commodities price causes it to change rapidly over time. This paper attempts to develop Autoregressive Distributed Lag (ARDL) model in modeling and forecasting the price of palm oil. In order to use ARDL as a forecasting model, this paper modifies the data structure where we only consider lagged explanatory variables to explain the variation in palm oil price. We then compare the performance of this ARDL model with a benchmark model namely ARIMA in term of their comparative forecasting accuracy. This paper also utilize ARDL bound testing approach to co-integration in examining the short run and long run relationship between palm oil price and its determinant; production, stock, and price of soybean as the substitute of palm oil and price of crude oil. The comparative forecasting accuracy suggests that ARDL model has a better forecasting accuracy compared to ARIMA.

  10. A multivariate time series approach to modeling and forecasting demand in the emergency department.

    PubMed

    Jones, Spencer S; Evans, R Scott; Allen, Todd L; Thomas, Alun; Haug, Peter J; Welch, Shari J; Snow, Gregory L

    2009-02-01

    The goals of this investigation were to study the temporal relationships between the demands for key resources in the emergency department (ED) and the inpatient hospital, and to develop multivariate forecasting models. Hourly data were collected from three diverse hospitals for the year 2006. Descriptive analysis and model fitting were carried out using graphical and multivariate time series methods. Multivariate models were compared to a univariate benchmark model in terms of their ability to provide out-of-sample forecasts of ED census and the demands for diagnostic resources. Descriptive analyses revealed little temporal interaction between the demand for inpatient resources and the demand for ED resources at the facilities considered. Multivariate models provided more accurate forecasts of ED census and of the demands for diagnostic resources. Our results suggest that multivariate time series models can be used to reliably forecast ED patient census; however, forecasts of the demands for diagnostic resources were not sufficiently reliable to be useful in the clinical setting.

  11. Verifying Operational and Developmental Air Force Weather Cloud Analysis and Forecast Products Using Lidar Data from Department of Energy Atmospheric Radiation Measurement (ARM) Sites

    NASA Astrophysics Data System (ADS)

    Hildebrand, E. P.

    2017-12-01

    Air Force Weather has developed various cloud analysis and forecast products designed to support global Department of Defense (DoD) missions. A World-Wide Merged Cloud Analysis (WWMCA) and short term Advected Cloud (ADVCLD) forecast is generated hourly using data from 16 geostationary and polar-orbiting satellites. Additionally, WWMCA and Numerical Weather Prediction (NWP) data are used in a statistical long-term (out to five days) cloud forecast model known as the Diagnostic Cloud Forecast (DCF). The WWMCA and ADVCLD are generated on the same polar stereographic 24 km grid for each hemisphere, whereas the DCF is generated on the same grid as its parent NWP model. When verifying the cloud forecast models, the goal is to understand not only the ability to detect cloud, but also the ability to assign it to the correct vertical layer. ADVCLD and DCF forecasts traditionally have been verified using WWMCA data as truth, but this might over-inflate the performance of those models because WWMCA also is a primary input dataset for those models. Because of this, in recent years, a WWMCA Reanalysis product has been developed, but this too is not a fully independent dataset. This year, work has been done to incorporate data from external, independent sources to verify not only the cloud forecast products, but the WWMCA data itself. One such dataset that has been useful for examining the 3-D performance of the cloud analysis and forecast models is Atmospheric Radiation Measurement (ARM) data from various sites around the globe. This presentation will focus on the use of the Department of Energy (DoE) ARM data to verify Air Force Weather cloud analysis and forecast products. Results will be presented to show relative strengths and weaknesses of the analyses and forecasts.

  12. Probabilistic Forecasting of Surface Ozone with a Novel Statistical Approach

    NASA Technical Reports Server (NTRS)

    Balashov, Nikolay V.; Thompson, Anne M.; Young, George S.

    2017-01-01

    The recent change in the Environmental Protection Agency's surface ozone regulation, lowering the surface ozone daily maximum 8-h average (MDA8) exceedance threshold from 75 to 70 ppbv, poses significant challenges to U.S. air quality (AQ) forecasters responsible for ozone MDA8 forecasts. The forecasters, supplied by only a few AQ model products, end up relying heavily on self-developed tools. To help U.S. AQ forecasters, this study explores a surface ozone MDA8 forecasting tool that is based solely on statistical methods and standard meteorological variables from the numerical weather prediction (NWP) models. The model combines the self-organizing map (SOM), which is a clustering technique, with a step wise weighted quadratic regression using meteorological variables as predictors for ozone MDA8. The SOM method identifies different weather regimes, to distinguish between various modes of ozone variability, and groups them according to similarity. In this way, when a regression is developed for a specific regime, data from the other regimes are also used, with weights that are based on their similarity to this specific regime. This approach, regression in SOM (REGiS), yields a distinct model for each regime taking into account both the training cases for that regime and other similar training cases. To produce probabilistic MDA8 ozone forecasts, REGiS weighs and combines all of the developed regression models on the basis of the weather patterns predicted by an NWP model. REGiS is evaluated over the San Joaquin Valley in California and the northeastern plains of Colorado. The results suggest that the model performs best when trained and adjusted separately for an individual AQ station and its corresponding meteorological site.

  13. Using ensemble rainfall predictions in a countrywide flood forecasting model in Scotland

    NASA Astrophysics Data System (ADS)

    Cranston, M. D.; Maxey, R.; Tavendale, A. C. W.; Buchanan, P.

    2012-04-01

    Improving flood predictions for all sources of flooding is at the centre of flood risk management policy in Scotland. With the introduction of the Flood Risk Management (Scotland) Act providing a new statutory basis for SEPA's flood warning responsibilities, the pressures on delivering hydrological science developments in support of this legislation has increased. Specifically, flood forecasting capabilities need to develop in support of the need to reduce the impact of flooding through the provision of actively disseminated, reliable and timely flood warnings. Flood forecasting in Scotland has developed significantly in recent years (Cranston and Tavendale, 2012). The development of hydrological models to predict flooding at a catchment scale has relied upon the application of rainfall runoff models utilising raingauge, radar and quantitative precipitation forecasts in the short lead time (less than 6 hours). Single or deterministic forecasts based on highly uncertain rainfall predictions have led to the greatest operational difficulties when communicating flood risk with emergency responders, therefore the emergence of probability-based estimates offers the greatest opportunity for managing uncertain predictions. This paper presents operational application of a physical-conceptual distributed hydrological model on a countrywide basis across Scotland. Developed by CEH Wallingford for SEPA in 2011, Grid-to-Grid (G2G) principally runs in deterministic mode and employs radar and raingauge estimates of rainfall together with weather model predictions to produce forecast river flows, as gridded time-series at a resolution of 1km and for up to 5 days ahead (Cranston, et al., 2012). However the G2G model is now being run operationally using ensemble predictions of rainfall from the MOGREPS-R system to provide probabilistic flood forecasts. By presenting a range of flood predictions on a national scale through this approach, hydrologists are now able to consider an objective measure of the likelihood of flooding impacts to help with risk based emergency communication.

  14. Increased Accuracy in Statistical Seasonal Hurricane Forecasting

    NASA Astrophysics Data System (ADS)

    Nateghi, R.; Quiring, S. M.; Guikema, S. D.

    2012-12-01

    Hurricanes are among the costliest and most destructive natural hazards in the U.S. Accurate hurricane forecasts are crucial to optimal preparedness and mitigation decisions in the U.S. where 50 percent of the population lives within 50 miles of the coast. We developed a flexible statistical approach to forecast annual number of hurricanes in the Atlantic region during the hurricane season. Our model is based on the method of Random Forest and captures the complex relationship between hurricane activity and climatic conditions through careful variable selection, model testing and validation. We used the National Hurricane Center's Best Track hurricane data from 1949-2011 and sixty-one candidate climate descriptors to develop our model. The model includes information prior to the hurricane season, i.e., from the last three months of the previous year (Oct. through Dec.) and the first five months of the current year (January through May). Our forecast errors are substantially lower than other leading forecasts such as that of the National Oceanic and Atmospheric Administration (NOAA).

  15. Statistical model for forecasting monthly large wildfire events in western United States

    Treesearch

    Haiganoush K. Preisler; Anthony L. Westerling

    2006-01-01

    The ability to forecast the number and location of large wildfire events (with specified confidence bounds) is important to fire managers attempting to allocate and distribute suppression efforts during severe fire seasons. This paper describes the development of a statistical model for assessing the forecasting skills of fire-danger predictors and producing 1-month-...

  16. Validation of Model Forecasts of the Ambient Solar Wind

    NASA Technical Reports Server (NTRS)

    Macneice, P. J.; Hesse, M.; Kuznetsova, M. M.; Rastaetter, L.; Taktakishvili, A.

    2009-01-01

    Independent and automated validation is a vital step in the progression of models from the research community into operational forecasting use. In this paper we describe a program in development at the CCMC to provide just such a comprehensive validation for models of the ambient solar wind in the inner heliosphere. We have built upon previous efforts published in the community, sharpened their definitions, and completed a baseline study. We also provide first results from this program of the comparative performance of the MHD models available at the CCMC against that of the Wang-Sheeley-Arge (WSA) model. An important goal of this effort is to provide a consistent validation to all available models. Clearly exposing the relative strengths and weaknesses of the different models will enable forecasters to craft more reliable ensemble forecasting strategies. Models of the ambient solar wind are developing rapidly as a result of improvements in data supply, numerical techniques, and computing resources. It is anticipated that in the next five to ten years, the MHD based models will supplant semi-empirical potential based models such as the WSA model, as the best available forecast models. We anticipate that this validation effort will track this evolution and so assist policy makers in gauging the value of past and future investment in modeling support.

  17. Real-time forecasting of an epidemic using a discrete time stochastic model: a case study of pandemic influenza (H1N1-2009)

    PubMed Central

    2011-01-01

    Background Real-time forecasting of epidemics, especially those based on a likelihood-based approach, is understudied. This study aimed to develop a simple method that can be used for the real-time epidemic forecasting. Methods A discrete time stochastic model, accounting for demographic stochasticity and conditional measurement, was developed and applied as a case study to the weekly incidence of pandemic influenza (H1N1-2009) in Japan. By imposing a branching process approximation and by assuming the linear growth of cases within each reporting interval, the epidemic curve is predicted using only two parameters. The uncertainty bounds of the forecasts are computed using chains of conditional offspring distributions. Results The quality of the forecasts made before the epidemic peak appears largely to depend on obtaining valid parameter estimates. The forecasts of both weekly incidence and final epidemic size greatly improved at and after the epidemic peak with all the observed data points falling within the uncertainty bounds. Conclusions Real-time forecasting using the discrete time stochastic model with its simple computation of the uncertainty bounds was successful. Because of the simplistic model structure, the proposed model has the potential to additionally account for various types of heterogeneity, time-dependent transmission dynamics and epidemiological details. The impact of such complexities on forecasting should be explored when the data become available as part of the disease surveillance. PMID:21324153

  18. Advanced inflow forecasting for a hydropower plant in an Alpine hydropower regulated catchment - coupling of operational and hydrological forecasts

    NASA Astrophysics Data System (ADS)

    Tilg, Anna-Maria; Schöber, Johannes; Huttenlau, Matthias; Messner, Jakob; Achleitner, Stefan

    2017-04-01

    Hydropower is a renewable energy source which can help to stabilize fluctuations in the volatile energy market. Especially pumped-storage infrastructures in the European Alps play an important role within the European energy grid system. Today, the runoff of rivers in the Alps is often influenced by cascades of hydropower infrastructures where the operational procedures are triggered by energy market demands, water deliveries and flood control aspects rather than by hydro-meteorological variables. An example for such a highly hydropower regulated river is the catchment of the river Inn in the Eastern European Alps, originating in the Engadin (Switzerland). A new hydropower plant is going to be built as transboundary project at the boarder of Switzerland and Austria using the water of the Inn River. For the operation, a runoff forecast to the plant is required. The challenge in this case is that a high proportion of runoff is turbine water from an upstream situated hydropower cascade. The newly developed physically based hydrological forecasting system is mainly capable to cover natural hydrological runoff processes caused by storms and snow melt but can model only a small degree of human impact. These discontinuous parts of the runoff downstream of the pumped storage are described by means of an additional statistical model which has been developed. The main goal of the statistical model is to forecast the turbine water up to five days in advance. The lead time of the data driven model exceeds the lead time of the used energy production forecast. Additionally, the amount of turbine water is linked to the need of electricity production and the electricity price. It has been shown that especially the parameters day-ahead prognosis of the energy production and turbine inflow of the previous week are good predictors and are therefore used as input parameters for the model. As the data is restricted due to technical conditions, so-called Tobit models have been used to develop a linear regression for the runoff forecast. Although the day-ahead prognosis cannot always be kept, the regression model delivers, especially during office hours, very reasonable results. In the remaining hours the error between measurement and the forecast increases. Overall, the inflow forecast can be substantially improved by the implementation of the developed regression in the hydrological modelling system.

  19. Forecasting residential electricity demand in provincial China.

    PubMed

    Liao, Hua; Liu, Yanan; Gao, Yixuan; Hao, Yu; Ma, Xiao-Wei; Wang, Kan

    2017-03-01

    In China, more than 80% electricity comes from coal which dominates the CO2 emissions. Residential electricity demand forecasting plays a significant role in electricity infrastructure planning and energy policy designing, but it is challenging to make an accurate forecast for developing countries. This paper forecasts the provincial residential electricity consumption of China in the 13th Five-Year-Plan (2016-2020) period using panel data. To overcome the limitations of widely used predication models with unreliably prior knowledge on function forms, a robust piecewise linear model in reduced form is utilized to capture the non-deterministic relationship between income and residential electricity consumption. The forecast results suggest that the growth rates of developed provinces will slow down, while the less developed will be still in fast growing. The national residential electricity demand will increase at 6.6% annually during 2016-2020, and populous provinces such as Guangdong will be the main contributors to the increments.

  20. Forecasting Influenza Epidemics in Hong Kong.

    PubMed

    Yang, Wan; Cowling, Benjamin J; Lau, Eric H Y; Shaman, Jeffrey

    2015-07-01

    Recent advances in mathematical modeling and inference methodologies have enabled development of systems capable of forecasting seasonal influenza epidemics in temperate regions in real-time. However, in subtropical and tropical regions, influenza epidemics can occur throughout the year, making routine forecast of influenza more challenging. Here we develop and report forecast systems that are able to predict irregular non-seasonal influenza epidemics, using either the ensemble adjustment Kalman filter or a modified particle filter in conjunction with a susceptible-infected-recovered (SIR) model. We applied these model-filter systems to retrospectively forecast influenza epidemics in Hong Kong from January 1998 to December 2013, including the 2009 pandemic. The forecast systems were able to forecast both the peak timing and peak magnitude for 44 epidemics in 16 years caused by individual influenza strains (i.e., seasonal influenza A(H1N1), pandemic A(H1N1), A(H3N2), and B), as well as 19 aggregate epidemics caused by one or more of these influenza strains. Average forecast accuracies were 37% (for both peak timing and magnitude) at 1-3 week leads, and 51% (peak timing) and 50% (peak magnitude) at 0 lead. Forecast accuracy increased as the spread of a given forecast ensemble decreased; the forecast accuracy for peak timing (peak magnitude) increased up to 43% (45%) for H1N1, 93% (89%) for H3N2, and 53% (68%) for influenza B at 1-3 week leads. These findings suggest that accurate forecasts can be made at least 3 weeks in advance for subtropical and tropical regions.

  1. Forecasting Influenza Epidemics in Hong Kong

    PubMed Central

    Yang, Wan; Cowling, Benjamin J.; Lau, Eric H. Y.; Shaman, Jeffrey

    2015-01-01

    Recent advances in mathematical modeling and inference methodologies have enabled development of systems capable of forecasting seasonal influenza epidemics in temperate regions in real-time. However, in subtropical and tropical regions, influenza epidemics can occur throughout the year, making routine forecast of influenza more challenging. Here we develop and report forecast systems that are able to predict irregular non-seasonal influenza epidemics, using either the ensemble adjustment Kalman filter or a modified particle filter in conjunction with a susceptible-infected-recovered (SIR) model. We applied these model-filter systems to retrospectively forecast influenza epidemics in Hong Kong from January 1998 to December 2013, including the 2009 pandemic. The forecast systems were able to forecast both the peak timing and peak magnitude for 44 epidemics in 16 years caused by individual influenza strains (i.e., seasonal influenza A(H1N1), pandemic A(H1N1), A(H3N2), and B), as well as 19 aggregate epidemics caused by one or more of these influenza strains. Average forecast accuracies were 37% (for both peak timing and magnitude) at 1-3 week leads, and 51% (peak timing) and 50% (peak magnitude) at 0 lead. Forecast accuracy increased as the spread of a given forecast ensemble decreased; the forecast accuracy for peak timing (peak magnitude) increased up to 43% (45%) for H1N1, 93% (89%) for H3N2, and 53% (68%) for influenza B at 1-3 week leads. These findings suggest that accurate forecasts can be made at least 3 weeks in advance for subtropical and tropical regions. PMID:26226185

  2. Using Science Data and Models for Space Weather Forecasting - Challenges and Opportunities

    NASA Technical Reports Server (NTRS)

    Hesse, Michael; Pulkkinen, Antti; Zheng, Yihua; Maddox, Marlo; Berrios, David; Taktakishvili, Sandro; Kuznetsova, Masha; Chulaki, Anna; Lee, Hyesook; Mullinix, Rick; hide

    2012-01-01

    Space research, and, consequently, space weather forecasting are immature disciplines. Scientific knowledge is accumulated frequently, which changes our understanding or how solar eruptions occur, and of how they impact targets near or on the Earth, or targets throughout the heliosphere. Along with continuous progress in understanding, space research and forecasting models are advancing rapidly in capability, often providing substantially increases in space weather value over time scales of less than a year. Furthermore, the majority of space environment information available today is, particularly in the solar and heliospheric domains, derived from research missions. An optimal forecasting environment needs to be flexible enough to benefit from this rapid development, and flexible enough to adapt to evolving data sources, many of which may also stem from non-US entities. This presentation will analyze the experiences obtained by developing and operating both a forecasting service for NASA, and an experimental forecasting system for Geomagnetically Induced Currents.

  3. Forecasting malaria in a highly endemic country using environmental and clinical predictors.

    PubMed

    Zinszer, Kate; Kigozi, Ruth; Charland, Katia; Dorsey, Grant; Brewer, Timothy F; Brownstein, John S; Kamya, Moses R; Buckeridge, David L

    2015-06-18

    Malaria thrives in poor tropical and subtropical countries where local resources are limited. Accurate disease forecasts can provide public and clinical health services with the information needed to implement targeted approaches for malaria control that make effective use of limited resources. The objective of this study was to determine the relevance of environmental and clinical predictors of malaria across different settings in Uganda. Forecasting models were based on health facility data collected by the Uganda Malaria Surveillance Project and satellite-derived rainfall, temperature, and vegetation estimates from 2006 to 2013. Facility-specific forecasting models of confirmed malaria were developed using multivariate autoregressive integrated moving average models and produced weekly forecast horizons over a 52-week forecasting period. The model with the most accurate forecasts varied by site and by forecast horizon. Clinical predictors were retained in the models with the highest predictive power for all facility sites. The average error over the 52 forecasting horizons ranged from 26 to 128% whereas the cumulative burden forecast error ranged from 2 to 22%. Clinical data, such as drug treatment, could be used to improve the accuracy of malaria predictions in endemic settings when coupled with environmental predictors. Further exploration of malaria forecasting is necessary to improve its accuracy and value in practice, including examining other environmental and intervention predictors, including insecticide-treated nets.

  4. Spatiotemporal drought forecasting using nonlinear models

    NASA Astrophysics Data System (ADS)

    Vasiliades, Lampros; Loukas, Athanasios

    2010-05-01

    Spatiotemporal data mining is the extraction of unknown and implicit knowledge, structures, spatiotemporal relationships, or patterns not explicitly stored in spatiotemporal databases. As one of data mining techniques, forecasting is widely used to predict the unknown future based upon the patterns hidden in the current and past data. In order to achieve spatiotemporal forecasting, some mature analysis tools, e.g., time series and spatial statistics are extended to the spatial dimension and the temporal dimension, respectively. Drought forecasting plays an important role in the planning and management of natural resources and water resource systems in a river basin. Early and timelines forecasting of a drought event can help to take proactive measures and set out drought mitigation strategies to alleviate the impacts of drought. Despite the widespread application of nonlinear mathematical models, comparative studies on spatiotemporal drought forecasting using different models are still a huge task for modellers. This study uses a promising approach, the Gamma Test (GT), to select the input variables and the training data length, so that the trial and error workload could be greatly reduced. The GT enables to quickly evaluate and estimate the best mean squared error that can be achieved by a smooth model on any unseen data for a given selection of inputs, prior to model construction. The GT is applied to forecast droughts using monthly Standardized Precipitation Index (SPI) timeseries at multiple timescales in several precipitation stations at Pinios river basin in Thessaly region, Greece. Several nonlinear models have been developed efficiently, with the aid of the GT, for 1-month up to 12-month ahead forecasting. Several temporal and spatial statistical indices were considered for the performance evaluation of the models. The predicted results show reasonably good agreement with the actual data for short lead times, whereas the forecasting accuracy decreases with increase in lead time. Finally, the developed nonlinear models could be used in an early warning system for risk and decision analyses at the study area.

  5. A scoping review of malaria forecasting: past work and future directions

    PubMed Central

    Zinszer, Kate; Verma, Aman D; Charland, Katia; Brewer, Timothy F; Brownstein, John S; Sun, Zhuoyu; Buckeridge, David L

    2012-01-01

    Objectives There is a growing body of literature on malaria forecasting methods and the objective of our review is to identify and assess methods, including predictors, used to forecast malaria. Design Scoping review. Two independent reviewers searched information sources, assessed studies for inclusion and extracted data from each study. Information sources Search strategies were developed and the following databases were searched: CAB Abstracts, EMBASE, Global Health, MEDLINE, ProQuest Dissertations & Theses and Web of Science. Key journals and websites were also manually searched. Eligibility criteria for included studies We included studies that forecasted incidence, prevalence or epidemics of malaria over time. A description of the forecasting model and an assessment of the forecast accuracy of the model were requirements for inclusion. Studies were restricted to human populations and to autochthonous transmission settings. Results We identified 29 different studies that met our inclusion criteria for this review. The forecasting approaches included statistical modelling, mathematical modelling and machine learning methods. Climate-related predictors were used consistently in forecasting models, with the most common predictors being rainfall, relative humidity, temperature and the normalised difference vegetation index. Model evaluation was typically based on a reserved portion of data and accuracy was measured in a variety of ways including mean-squared error and correlation coefficients. We could not compare the forecast accuracy of models from the different studies as the evaluation measures differed across the studies. Conclusions Applying different forecasting methods to the same data, exploring the predictive ability of non-environmental variables, including transmission reducing interventions and using common forecast accuracy measures will allow malaria researchers to compare and improve models and methods, which should improve the quality of malaria forecasting. PMID:23180505

  6. Increasing vertical resolution in US models to improve track forecasts of Hurricane Joaquin with HWRF as an example

    PubMed Central

    Zhang, Banglin; Tallapragada, Vijay; Weng, Fuzhong; Liu, Qingfu; Sippel, Jason A.; Ma, Zaizhong; Bender, Morris A.

    2016-01-01

    The atmosphere−ocean coupled Hurricane Weather Research and Forecast model (HWRF) developed at the National Centers for Environmental Prediction (NCEP) is used as an example to illustrate the impact of model vertical resolution on track forecasts of tropical cyclones. A number of HWRF forecasting experiments were carried out at different vertical resolutions for Hurricane Joaquin, which occurred from September 27 to October 8, 2015, in the Atlantic Basin. The results show that the track prediction for Hurricane Joaquin is much more accurate with higher vertical resolution. The positive impacts of higher vertical resolution on hurricane track forecasts suggest that National Oceanic and Atmospheric Administration/NCEP should upgrade both HWRF and the Global Forecast System to have more vertical levels. PMID:27698121

  7. Forecasting European Droughts using the North American Multi-Model Ensemble (NMME)

    NASA Astrophysics Data System (ADS)

    Thober, Stephan; Kumar, Rohini; Samaniego, Luis; Sheffield, Justin; Schäfer, David; Mai, Juliane

    2015-04-01

    Soil moisture droughts have the potential to diminish crop yields causing economic damage or even threatening the livelihood of societies. State-of-the-art drought forecasting systems incorporate seasonal meteorological forecasts to estimate future drought conditions. Meteorological forecasting skill (in particular that of precipitation), however, is limited to a few weeks because of the chaotic behaviour of the atmosphere. One of the most important challenges in drought forecasting is to understand how the uncertainty in the atmospheric forcings (e.g., precipitation and temperature) is further propagated into hydrologic variables such as soil moisture. The North American Multi-Model Ensemble (NMME) provides the latest collection of a multi-institutional seasonal forecasting ensemble for precipitation and temperature. In this study, we analyse the skill of NMME forecasts for predicting European drought events. The monthly NMME forecasts are downscaled to daily values to force the mesoscale hydrological model (mHM). The mHM soil moisture forecasts obtained with the forcings of the dynamical models are then compared against those obtained with the Ensemble Streamflow Prediction (ESP) approach. ESP recombines historical meteorological forcings to create a new ensemble forecast. Both forecasts are compared against reference soil moisture conditions obtained using observation based meteorological forcings. The study is conducted for the period from 1982 to 2009 and covers a large part of the Pan-European domain (10°W to 40°E and 35°N to 55°N). Results indicate that NMME forecasts are better at predicting the reference soil moisture variability as compared to ESP. For example, NMME explains 50% of the variability in contrast to only 31% by ESP at a six-month lead time. The Equitable Threat Skill Score (ETS), which combines the hit and false alarm rates, is analysed for drought events using a 0.2 threshold of a soil moisture percentile index. On average, the NMME based ensemble forecasts have consistently higher skill than the ESP based ones (ETS of 13% as compared to 5% at a six-month lead time). Additionally, the ETS ensemble spread of NMME forecasts is considerably narrower than that of ESP; the lower boundary of the NMME ensemble spread coincides most of the time with the ensemble median of ESP. Among the NMME models, NCEP-CFSv2 outperforms the other models in terms of ETS most of the time. Removing the three worst performing models does not deteriorate the ensemble performance (neither in skill nor in spread), but would substantially reduce the computational resources required in an operational forecasting system. For major European drought events (e.g., 1990, 1992, 2003, and 2007), NMME forecasts tend to underestimate area under drought and drought magnitude during times of drought development. During drought recovery, this underestimation is weaker for area under drought or even reversed into an overestimation for drought magnitude. This indicates that the NMME models are too wet during drought development and too dry during drought recovery. In summary, soil moisture drought forecasts by NMME are more skillful than those of an ESP based approach. However, they still show systematic biases in reproducing the observed drought dynamics during drought development and recovery.

  8. Hybrid model for forecasting time series with trend, seasonal and salendar variation patterns

    NASA Astrophysics Data System (ADS)

    Suhartono; Rahayu, S. P.; Prastyo, D. D.; Wijayanti, D. G. P.; Juliyanto

    2017-09-01

    Most of the monthly time series data in economics and business in Indonesia and other Moslem countries not only contain trend and seasonal, but also affected by two types of calendar variation effects, i.e. the effect of the number of working days or trading and holiday effects. The purpose of this research is to develop a hybrid model or a combination of several forecasting models to predict time series that contain trend, seasonal and calendar variation patterns. This hybrid model is a combination of classical models (namely time series regression and ARIMA model) and/or modern methods (artificial intelligence method, i.e. Artificial Neural Networks). A simulation study was used to show that the proposed procedure for building the hybrid model could work well for forecasting time series with trend, seasonal and calendar variation patterns. Furthermore, the proposed hybrid model is applied for forecasting real data, i.e. monthly data about inflow and outflow of currency at Bank Indonesia. The results show that the hybrid model tend to provide more accurate forecasts than individual forecasting models. Moreover, this result is also in line with the third results of the M3 competition, i.e. the hybrid model on average provides a more accurate forecast than the individual model.

  9. Improving the effectiveness of real-time flood forecasting through Predictive Uncertainty estimation: the multi-temporal approach

    NASA Astrophysics Data System (ADS)

    Barbetta, Silvia; Coccia, Gabriele; Moramarco, Tommaso; Todini, Ezio

    2015-04-01

    The negative effects of severe flood events are usually contrasted through structural measures that, however, do not fully eliminate flood risk. Non-structural measures, such as real-time flood forecasting and warning, are also required. Accurate stage/discharge future predictions with appropriate forecast lead-time are sought by decision-makers for implementing strategies to mitigate the adverse effects of floods. Traditionally, flood forecasting has been approached by using rainfall-runoff and/or flood routing modelling. Indeed, both types of forecasts, cannot be considered perfectly representing future outcomes because of lacking of a complete knowledge of involved processes (Todini, 2004). Nonetheless, although aware that model forecasts are not perfectly representing future outcomes, decision makers are de facto implicitly assuming the forecast of water level/discharge/volume, etc. as "deterministic" and coinciding with what is going to occur. Recently the concept of Predictive Uncertainty (PU) was introduced in hydrology (Krzysztofowicz, 1999), and several uncertainty processors were developed (Todini, 2008). PU is defined as the probability of occurrence of the future realization of a predictand (water level/discharge/volume) conditional on: i) prior observations and knowledge, ii) the available information obtained on the future value, typically provided by one or more forecast models. Unfortunately, PU has been frequently interpreted as a measure of lack of accuracy rather than the appropriate tool allowing to take the most appropriate decisions, given a model or several models' forecasts. With the aim to shed light on the benefits for appropriately using PU, a multi-temporal approach based on the MCP approach (Todini, 2008; Coccia and Todini, 2011) is here applied to stage forecasts at sites along the Upper Tiber River. Specifically, the STAge Forecasting-Rating Curve Model Muskingum-based (STAFOM-RCM) (Barbetta et al., 2014) along with the Rating-Curve Model in Real Time (RCM-RT) (Barbetta and Moramarco, 2014) are used to this end. Both models without considering rainfall information explicitly considers, at each time of forecast, the estimate of lateral contribution along the river reach for which the stage forecast is performed at downstream end. The analysis is performed for several reaches using different lead times according to the channel length. Barbetta, S., Moramarco, T., Brocca, L., Franchini, M. and Melone, F. 2014. Confidence interval of real-time forecast stages provided by the STAFOM-RCM model: the case study of the Tiber River (Italy). Hydrological Processes, 28(3),729-743. Barbetta, S. and Moramarco, T. 2014. Real-time flood forecasting by relating local stage and remote discharge. Hydrological Sciences Journal, 59(9 ), 1656-1674. Coccia, G. and Todini, E. 2011. Recent developments in predictive uncertainty assessment based on the Model Conditional Processor approach. Hydrology and Earth System Sciences, 15, 3253-3274. doi:10.5194/hess-15-3253-2011. Krzysztofowicz, R. 1999. Bayesian theory of probabilistic forecasting via deterministic hydrologic model, Water Resour. Res., 35, 2739-2750. Todini, E. 2004. Role and treatment of uncertainty in real-time flood forecasting. Hydrological Processes 18(14), 2743_2746. Todini, E. 2008. A model conditional processor to assess predictive uncertainty in flood forecasting. Intl. J. River Basin Management, 6(2): 123-137.

  10. Forecasting for a Remote Island: A Class Exercise.

    NASA Astrophysics Data System (ADS)

    Riordan, Allen J.

    2003-06-01

    Students enrolled in a satellite meteorology course at North Carolina State University, Raleigh, recently had an unusual opportunity to apply their forecast skills to predict wind and weather conditions for a remote site in the Southern Hemisphere. For about 40 days starting in early February 2001, students used satellite and model guidance to develop forecasts to support a research team stationed on Bouvet Island (54°26S, 3°24E). Internet products together with current output from NCEP's Aviation (AVN) model supported the activity. Wind forecasts were of particular interest to the Bouvet team because violent winds often developed unexpectedly and posed a safety hazard.Results were encouraging in that 24-h wind speed forecasts showed reasonable reliability over a wide range of wind speeds. Forecasts for 48 h showed only marginal skill, however. Two critical events were well forecasted-the major February storm with wind speeds of over 120 kt and a brief calm period following several days of strong winds in early March. The latter forecast proved instrumental in recovering the research team.

  11. Short-Term Forecasting of Loads and Wind Power for Latvian Power System: Accuracy and Capacity of the Developed Tools

    NASA Astrophysics Data System (ADS)

    Radziukynas, V.; Klementavičius, A.

    2016-04-01

    The paper analyses the performance results of the recently developed short-term forecasting suit for the Latvian power system. The system load and wind power are forecasted using ANN and ARIMA models, respectively, and the forecasting accuracy is evaluated in terms of errors, mean absolute errors and mean absolute percentage errors. The investigation of influence of additional input variables on load forecasting errors is performed. The interplay of hourly loads and wind power forecasting errors is also evaluated for the Latvian power system with historical loads (the year 2011) and planned wind power capacities (the year 2023).

  12. Daily air quality index forecasting with hybrid models: A case in China.

    PubMed

    Zhu, Suling; Lian, Xiuyuan; Liu, Haixia; Hu, Jianming; Wang, Yuanyuan; Che, Jinxing

    2017-12-01

    Air quality is closely related to quality of life. Air pollution forecasting plays a vital role in air pollution warnings and controlling. However, it is difficult to attain accurate forecasts for air pollution indexes because the original data are non-stationary and chaotic. The existing forecasting methods, such as multiple linear models, autoregressive integrated moving average (ARIMA) and support vector regression (SVR), cannot fully capture the information from series of pollution indexes. Therefore, new effective techniques need to be proposed to forecast air pollution indexes. The main purpose of this research is to develop effective forecasting models for regional air quality indexes (AQI) to address the problems above and enhance forecasting accuracy. Therefore, two hybrid models (EMD-SVR-Hybrid and EMD-IMFs-Hybrid) are proposed to forecast AQI data. The main steps of the EMD-SVR-Hybrid model are as follows: the data preprocessing technique EMD (empirical mode decomposition) is utilized to sift the original AQI data to obtain one group of smoother IMFs (intrinsic mode functions) and a noise series, where the IMFs contain the important information (level, fluctuations and others) from the original AQI series. LS-SVR is applied to forecast the sum of the IMFs, and then, S-ARIMA (seasonal ARIMA) is employed to forecast the residual sequence of LS-SVR. In addition, EMD-IMFs-Hybrid first separately forecasts the IMFs via statistical models and sums the forecasting results of the IMFs as EMD-IMFs. Then, S-ARIMA is employed to forecast the residuals of EMD-IMFs. To certify the proposed hybrid model, AQI data from June 2014 to August 2015 collected from Xingtai in China are utilized as a test case to investigate the empirical research. In terms of some of the forecasting assessment measures, the AQI forecasting results of Xingtai show that the two proposed hybrid models are superior to ARIMA, SVR, GRNN, EMD-GRNN, Wavelet-GRNN and Wavelet-SVR. Therefore, the proposed hybrid models can be used as effective and simple tools for air pollution forecasting and warning as well as for management. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. The Art and Science of Long-Range Space Weather Forecasting

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.; Wilson, Robert M.

    2006-01-01

    Long-range space weather forecasts are akin to seasonal forecasts of terrestrial weather. We don t expect to forecast individual events but we do hope to forecast the underlying level of activity important for satellite operations and mission pl&g. Forecasting space weather conditions years or decades into the future has traditionally been based on empirical models of the solar cycle. Models for the shape of the cycle as a function of its amplitude become reliable once the amplitude is well determined - usually two to three years after minimum. Forecasting the amplitude of a cycle well before that time has been more of an art than a science - usually based on cycle statistics and trends. Recent developments in dynamo theory -the theory explaining the generation of the Sun s magnetic field and the solar activity cycle - have now produced models with predictive capabilities. Testing these models with historical sunspot cycle data indicates that these predictions may be highly reliable one, or even two, cycles into the future.

  14. Two-step forecast of geomagnetic storm using coronal mass ejection and solar wind condition

    PubMed Central

    Kim, R-S; Moon, Y-J; Gopalswamy, N; Park, Y-D; Kim, Y-H

    2014-01-01

    To forecast geomagnetic storms, we had examined initially observed parameters of coronal mass ejections (CMEs) and introduced an empirical storm forecast model in a previous study. Now we suggest a two-step forecast considering not only CME parameters observed in the solar vicinity but also solar wind conditions near Earth to improve the forecast capability. We consider the empirical solar wind criteria derived in this study (Bz ≤ −5 nT or Ey ≥ 3 mV/m for t≥ 2 h for moderate storms with minimum Dst less than −50 nT) and a Dst model developed by Temerin and Li (2002, 2006) (TL model). Using 55 CME-Dst pairs during 1997 to 2003, our solar wind criteria produce slightly better forecasts for 31 storm events (90%) than the forecasts based on the TL model (87%). However, the latter produces better forecasts for 24 nonstorm events (88%), while the former correctly forecasts only 71% of them. We then performed the two-step forecast. The results are as follows: (i) for 15 events that are incorrectly forecasted using CME parameters, 12 cases (80%) can be properly predicted based on solar wind conditions; (ii) if we forecast a storm when both CME and solar wind conditions are satisfied (∩), the critical success index becomes higher than that from the forecast using CME parameters alone, however, only 25 storm events (81%) are correctly forecasted; and (iii) if we forecast a storm when either set of these conditions is satisfied (∪), all geomagnetic storms are correctly forecasted. PMID:26213515

  15. Two-step forecast of geomagnetic storm using coronal mass ejection and solar wind condition.

    PubMed

    Kim, R-S; Moon, Y-J; Gopalswamy, N; Park, Y-D; Kim, Y-H

    2014-04-01

    To forecast geomagnetic storms, we had examined initially observed parameters of coronal mass ejections (CMEs) and introduced an empirical storm forecast model in a previous study. Now we suggest a two-step forecast considering not only CME parameters observed in the solar vicinity but also solar wind conditions near Earth to improve the forecast capability. We consider the empirical solar wind criteria derived in this study ( B z  ≤ -5 nT or E y  ≥ 3 mV/m for t ≥ 2 h for moderate storms with minimum Dst less than -50 nT) and a Dst model developed by Temerin and Li (2002, 2006) (TL model). Using 55 CME- Dst pairs during 1997 to 2003, our solar wind criteria produce slightly better forecasts for 31 storm events (90%) than the forecasts based on the TL model (87%). However, the latter produces better forecasts for 24 nonstorm events (88%), while the former correctly forecasts only 71% of them. We then performed the two-step forecast. The results are as follows: (i) for 15 events that are incorrectly forecasted using CME parameters, 12 cases (80%) can be properly predicted based on solar wind conditions; (ii) if we forecast a storm when both CME and solar wind conditions are satisfied (∩), the critical success index becomes higher than that from the forecast using CME parameters alone, however, only 25 storm events (81%) are correctly forecasted; and (iii) if we forecast a storm when either set of these conditions is satisfied (∪), all geomagnetic storms are correctly forecasted.

  16. OAST system technology planning

    NASA Technical Reports Server (NTRS)

    Sadin, S. R.

    1978-01-01

    The NASA Office of Aeronautics and Space Technology developed a planning model for space technology consisting of a space systems technology model, technology forecasts and technology surveys. The technology model describes candidate space missions through the year 2000 and identifies their technology requirements. The technology surveys and technology forecasts provide, respectively, data on the current status and estimates of the projected status of relevant technologies. These tools are used to further the understanding of the activities and resources required to ensure the timely development of technological capabilities. Technology forecasting in the areas of information systems, spacecraft systems, transportation systems, and power systems are discussed.

  17. Modeling, Simulation, and Forecasting of Subseasonal Variability

    NASA Technical Reports Server (NTRS)

    Waliser, Duane; Schubert, Siegfried; Kumar, Arun; Weickmann, Klaus; Dole, Randall

    2003-01-01

    A planning workshop on "Modeling, Simulation and Forecasting of Subseasonal Variability" was held in June 2003. This workshop was the first of a number of meetings planned to follow the NASA-sponsored workshop entitled "Prospects For Improved Forecasts Of Weather And Short-Term Climate Variability On Sub-Seasonal Time Scales" that was held April 2002. The 2002 workshop highlighted a number of key sources of unrealized predictability on subseasonal time scales including tropical heating, soil wetness, the Madden Julian Oscillation (MJO) [a.k.a Intraseasonal Oscillation (ISO)], the Arctic Oscillation (AO) and the Pacific/North American (PNA) pattern. The overarching objective of the 2003 follow-up workshop was to proceed with a number of recommendations made from the 2002 workshop, as well as to set an agenda and collate efforts in the areas of modeling, simulation and forecasting intraseasonal and short-term climate variability. More specifically, the aims of the 2003 workshop were to: 1) develop a baseline of the "state of the art" in subseasonal prediction capabilities, 2) implement a program to carry out experimental subseasonal forecasts, and 3) develop strategies for tapping the above sources of predictability by focusing research, model development, and the development/acquisition of new observations on the subseasonal problem. The workshop was held over two days and was attended by over 80 scientists, modelers, forecasters and agency personnel. The agenda of the workshop focused on issues related to the MJO and tropicalextratropical interactions as they relate to the subseasonal simulation and prediction problem. This included the development of plans for a coordinated set of GCM hindcast experiments to assess current model subseasonal prediction capabilities and shortcomings, an emphasis on developing a strategy to rectify shortcomings associated with tropical intraseasonal variability, namely diabatic processes, and continuing the implementation of an experimental forecast and model development program that focuses on one of the key sources of untapped predictability, namely the MJO. The tangible outcomes of the meeting included: 1) the development of a recommended framework for a set of multi-year ensembles of 45-day hindcasts to be carried out by a number of GCMs so that they can be analyzed in regards to their representations of subseasonal variability, predictability and forecast skill, 2) an assessment of the present status of GCM representations of the MJO and recommendations for future steps to take in order to remedy the remaining shortcomings in these representations, and 3) a final implementation plan for a multi-institute/multi-nation Experimental MJO Prediction Program.

  18. A novel hybrid model for air quality index forecasting based on two-phase decomposition technique and modified extreme learning machine.

    PubMed

    Wang, Deyun; Wei, Shuai; Luo, Hongyuan; Yue, Chenqiang; Grunder, Olivier

    2017-02-15

    The randomness, non-stationarity and irregularity of air quality index (AQI) series bring the difficulty of AQI forecasting. To enhance forecast accuracy, a novel hybrid forecasting model combining two-phase decomposition technique and extreme learning machine (ELM) optimized by differential evolution (DE) algorithm is developed for AQI forecasting in this paper. In phase I, the complementary ensemble empirical mode decomposition (CEEMD) is utilized to decompose the AQI series into a set of intrinsic mode functions (IMFs) with different frequencies; in phase II, in order to further handle the high frequency IMFs which will increase the forecast difficulty, variational mode decomposition (VMD) is employed to decompose the high frequency IMFs into a number of variational modes (VMs). Then, the ELM model optimized by DE algorithm is applied to forecast all the IMFs and VMs. Finally, the forecast value of each high frequency IMF is obtained through adding up the forecast results of all corresponding VMs, and the forecast series of AQI is obtained by aggregating the forecast results of all IMFs. To verify and validate the proposed model, two daily AQI series from July 1, 2014 to June 30, 2016 collected from Beijing and Shanghai located in China are taken as the test cases to conduct the empirical study. The experimental results show that the proposed hybrid model based on two-phase decomposition technique is remarkably superior to all other considered models for its higher forecast accuracy. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Ensemble Statistical Post-Processing of the National Air Quality Forecast Capability: Enhancing Ozone Forecasts in Baltimore, Maryland

    NASA Technical Reports Server (NTRS)

    Garner, Gregory G.; Thompson, Anne M.

    2013-01-01

    An ensemble statistical post-processor (ESP) is developed for the National Air Quality Forecast Capability (NAQFC) to address the unique challenges of forecasting surface ozone in Baltimore, MD. Air quality and meteorological data were collected from the eight monitors that constitute the Baltimore forecast region. These data were used to build the ESP using a moving-block bootstrap, regression tree models, and extreme-value theory. The ESP was evaluated using a 10-fold cross-validation to avoid evaluation with the same data used in the development process. Results indicate that the ESP is conditionally biased, likely due to slight overfitting while training the regression tree models. When viewed from the perspective of a decision-maker, the ESP provides a wealth of additional information previously not available through the NAQFC alone. The user is provided the freedom to tailor the forecast to the decision at hand by using decision-specific probability thresholds that define a forecast for an ozone exceedance. Taking advantage of the ESP, the user not only receives an increase in value over the NAQFC, but also receives value for An ensemble statistical post-processor (ESP) is developed for the National Air Quality Forecast Capability (NAQFC) to address the unique challenges of forecasting surface ozone in Baltimore, MD. Air quality and meteorological data were collected from the eight monitors that constitute the Baltimore forecast region. These data were used to build the ESP using a moving-block bootstrap, regression tree models, and extreme-value theory. The ESP was evaluated using a 10-fold cross-validation to avoid evaluation with the same data used in the development process. Results indicate that the ESP is conditionally biased, likely due to slight overfitting while training the regression tree models. When viewed from the perspective of a decision-maker, the ESP provides a wealth of additional information previously not available through the NAQFC alone. The user is provided the freedom to tailor the forecast to the decision at hand by using decision-specific probability thresholds that define a forecast for an ozone exceedance. Taking advantage of the ESP, the user not only receives an increase in value over the NAQFC, but also receives value for

  20. The Effect of Model Grid Resolution on the Distributed Hydrologic Simulations for Forecasting Stream Flows and Reservoir Storage

    NASA Astrophysics Data System (ADS)

    Turnbull, S. J.

    2017-12-01

    Within the US Army Corps of Engineers (USACE), reservoirs are typically operated according to a rule curve that specifies target water levels based on the time of year. The rule curve is intended to maximize flood protection by specifying releases of water before the dominant rainfall period for a region. While some operating allowances are permissible, generally the rule curve elevations must be maintained. While this operational approach provides for the required flood control purpose, it may not result in optimal reservoir operations for multi-use impoundments. In the Russian River Valley of California a multi-agency research effort called Forecast-Informed Reservoir Operations (FIRO) is assessing the application of forecast weather and streamflow predictions to potentially enhance the operation of reservoirs in the watershed. The focus of the study has been on Lake Mendocino, a USACE project important for flood control, water supply, power generation and ecological flows. As part of this effort the Engineer Research and Development Center is assessing the ability of utilizing the physics based, distributed watershed model Gridded Surface Subsurface Hydrologic Analysis (GSSHA) model to simulate stream flows, reservoir stages, and discharges while being driven by weather forecast products. A key question in this application is the effect of watershed model resolution on forecasted stream flows. To help resolve this question, GSSHA models of multiple grid resolutions, 30, 50, and 270m, were developed for the upper Russian River, which includes Lake Mendocino. The models were derived from common inputs: DEM, soils, land use, stream network, reservoir characteristics, and specified inflows and discharges. All the models were calibrated in both event and continuous simulation mode using measured precipitation gages and then driven with the West-WRF atmospheric model in prediction mode to assess the ability of the model to function in short term, less than one week, forecasting mode. In this presentation we will discuss the effect the grid resolution has model development, parameter assignment, streamflow prediction and forecasting capability utilizing the West-WRF forecast hydro-meteorology.

  1. Evaluating NMME Seasonal Forecast Skill for use in NASA SERVIR Hub Regions

    NASA Technical Reports Server (NTRS)

    Roberts, J. Brent; Roberts, Franklin R.

    2013-01-01

    The U.S. National Multi-Model Ensemble seasonal forecasting system is providing hindcast and real-time data streams to be used in assessing and improving seasonal predictive capacity. The coupled forecasts have numerous potential applications, both national and international in scope. The NASA / USAID SERVIR project, which leverages satellite and modeling-based resources for environmental decision making in developing nations, is focusing on the evaluation of NMME forecasts specifically for use in driving applications models in hub regions including East Africa, the Hindu Kush- Himalayan (HKH) region and Mesoamerica. A prerequisite for seasonal forecast use in application modeling (e.g. hydrology, agriculture) is bias correction and skill assessment. Efforts to address systematic biases and multi-model combination in support of NASA SERVIR impact modeling requirements will be highlighted. Specifically, quantilequantile mapping for bias correction has been implemented for all archived NMME hindcasts. Both deterministic and probabilistic skill estimates for raw, bias-corrected, and multi-model ensemble forecasts as a function of forecast lead will be presented for temperature and precipitation. Complementing this statistical assessment will be case studies of significant events, for example, the ability of the NMME forecasts suite to anticipate the 2010/2011 drought in the Horn of Africa and its relationship to evolving SST patterns.

  2. Transportation Sector Model of the National Energy Modeling System. Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-01-01

    This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Transportation Model (TRAN). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated by the model. The NEMS Transportation Model comprises a series of semi-independent models which address different aspects of the transportation sector. The primary purpose of this model is to provide mid-term forecasts of transportation energy demand by fuel type including, but not limited to, motor gasoline, distillate, jet fuel, and alternative fuels (such as CNG) not commonly associated with transportation. Themore » current NEMS forecast horizon extends to the year 2010 and uses 1990 as the base year. Forecasts are generated through the separate consideration of energy consumption within the various modes of transport, including: private and fleet light-duty vehicles; aircraft; marine, rail, and truck freight; and various modes with minor overall impacts, such as mass transit and recreational boating. This approach is useful in assessing the impacts of policy initiatives, legislative mandates which affect individual modes of travel, and technological developments. The model also provides forecasts of selected intermediate values which are generated in order to determine energy consumption. These elements include estimates of passenger travel demand by automobile, air, or mass transit; estimates of the efficiency with which that demand is met; projections of vehicle stocks and the penetration of new technologies; and estimates of the demand for freight transport which are linked to forecasts of industrial output. Following the estimation of energy demand, TRAN produces forecasts of vehicular emissions of the following pollutants by source: oxides of sulfur, oxides of nitrogen, total carbon, carbon dioxide, carbon monoxide, and volatile organic compounds.« less

  3. Time Series Analysis for Forecasting Hospital Census: Application to the Neonatal Intensive Care Unit

    PubMed Central

    Hoover, Stephen; Jackson, Eric V.; Paul, David; Locke, Robert

    2016-01-01

    Summary Background Accurate prediction of future patient census in hospital units is essential for patient safety, health outcomes, and resource planning. Forecasting census in the Neonatal Intensive Care Unit (NICU) is particularly challenging due to limited ability to control the census and clinical trajectories. The fixed average census approach, using average census from previous year, is a forecasting alternative used in clinical practice, but has limitations due to census variations. Objective Our objectives are to: (i) analyze the daily NICU census at a single health care facility and develop census forecasting models, (ii) explore models with and without patient data characteristics obtained at the time of admission, and (iii) evaluate accuracy of the models compared with the fixed average census approach. Methods We used five years of retrospective daily NICU census data for model development (January 2008 – December 2012, N=1827 observations) and one year of data for validation (January – December 2013, N=365 observations). Best-fitting models of ARIMA and linear regression were applied to various 7-day prediction periods and compared using error statistics. Results The census showed a slightly increasing linear trend. Best fitting models included a non-seasonal model, ARIMA(1,0,0), seasonal ARIMA models, ARIMA(1,0,0)x(1,1,2)7 and ARIMA(2,1,4)x(1,1,2)14, as well as a seasonal linear regression model. Proposed forecasting models resulted on average in 36.49% improvement in forecasting accuracy compared with the fixed average census approach. Conclusions Time series models provide higher prediction accuracy under different census conditions compared with the fixed average census approach. Presented methodology is easily applicable in clinical practice, can be generalized to other care settings, support short- and long-term census forecasting, and inform staff resource planning. PMID:27437040

  4. Time Series Analysis for Forecasting Hospital Census: Application to the Neonatal Intensive Care Unit.

    PubMed

    Capan, Muge; Hoover, Stephen; Jackson, Eric V; Paul, David; Locke, Robert

    2016-01-01

    Accurate prediction of future patient census in hospital units is essential for patient safety, health outcomes, and resource planning. Forecasting census in the Neonatal Intensive Care Unit (NICU) is particularly challenging due to limited ability to control the census and clinical trajectories. The fixed average census approach, using average census from previous year, is a forecasting alternative used in clinical practice, but has limitations due to census variations. Our objectives are to: (i) analyze the daily NICU census at a single health care facility and develop census forecasting models, (ii) explore models with and without patient data characteristics obtained at the time of admission, and (iii) evaluate accuracy of the models compared with the fixed average census approach. We used five years of retrospective daily NICU census data for model development (January 2008 - December 2012, N=1827 observations) and one year of data for validation (January - December 2013, N=365 observations). Best-fitting models of ARIMA and linear regression were applied to various 7-day prediction periods and compared using error statistics. The census showed a slightly increasing linear trend. Best fitting models included a non-seasonal model, ARIMA(1,0,0), seasonal ARIMA models, ARIMA(1,0,0)x(1,1,2)7 and ARIMA(2,1,4)x(1,1,2)14, as well as a seasonal linear regression model. Proposed forecasting models resulted on average in 36.49% improvement in forecasting accuracy compared with the fixed average census approach. Time series models provide higher prediction accuracy under different census conditions compared with the fixed average census approach. Presented methodology is easily applicable in clinical practice, can be generalized to other care settings, support short- and long-term census forecasting, and inform staff resource planning.

  5. Data Assimilation at FLUXNET to Improve Models towards Ecological Forecasting (Invited)

    NASA Astrophysics Data System (ADS)

    Luo, Y.

    2009-12-01

    Dramatically increased volumes of data from observational and experimental networks such as FLUXNET call for transformation of ecological research to increase its emphasis on quantitative forecasting. Ecological forecasting will also meet the societal need to develop better strategies for natural resource management in a world of ongoing global change. Traditionally, ecological forecasting has been based on process-based models, informed by data in largely ad hoc ways. Although most ecological models incorporate some representation of mechanistic processes, today’s ecological models are generally not adequate to quantify real-world dynamics and provide reliable forecasts with accompanying estimates of uncertainty. A key tool to improve ecological forecasting is data assimilation, which uses data to inform initial conditions and to help constrain a model during simulation to yield results that approximate reality as closely as possible. In an era with dramatically increased availability of data from observational and experimental networks, data assimilation is a key technique that helps convert the raw data into ecologically meaningful products so as to accelerate our understanding of ecological processes, test ecological theory, forecast changes in ecological services, and better serve the society. This talk will use examples to illustrate how data from FLUXNET have been assimilated with process-based models to improve estimates of model parameters and state variables; to quantify uncertainties in ecological forecasting arising from observations, models and their interactions; and to evaluate information contributions of data and model toward short- and long-term forecasting of ecosystem responses to global change.

  6. Science and Engineering of an Operational Tsunami Forecasting System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonzalez, Frank

    2009-04-06

    After a review of tsunami statistics and the destruction caused by tsunamis, a means of forecasting tsunamis is discussed as part of an overall program of reducing fatalities through hazard assessment, education, training, mitigation, and a tsunami warning system. The forecast is accomplished via a concept called Deep Ocean Assessment and Reporting of Tsunamis (DART). Small changes of pressure at the sea floor are measured and relayed to warning centers. Under development is an international modeling network to transfer, maintain, and improve tsunami forecast models.

  7. Science and Engineering of an Operational Tsunami Forecasting System

    ScienceCinema

    Gonzalez, Frank

    2017-12-09

    After a review of tsunami statistics and the destruction caused by tsunamis, a means of forecasting tsunamis is discussed as part of an overall program of reducing fatalities through hazard assessment, education, training, mitigation, and a tsunami warning system. The forecast is accomplished via a concept called Deep Ocean Assessment and Reporting of Tsunamis (DART). Small changes of pressure at the sea floor are measured and relayed to warning centers. Under development is an international modeling network to transfer, maintain, and improve tsunami forecast models.

  8. Trends in the predictive performance of raw ensemble weather forecasts

    NASA Astrophysics Data System (ADS)

    Hemri, Stephan; Scheuerer, Michael; Pappenberger, Florian; Bogner, Konrad; Haiden, Thomas

    2015-04-01

    Over the last two decades the paradigm in weather forecasting has shifted from being deterministic to probabilistic. Accordingly, numerical weather prediction (NWP) models have been run increasingly as ensemble forecasting systems. The goal of such ensemble forecasts is to approximate the forecast probability distribution by a finite sample of scenarios. Global ensemble forecast systems, like the European Centre for Medium-Range Weather Forecasts (ECMWF) ensemble, are prone to probabilistic biases, and are therefore not reliable. They particularly tend to be underdispersive for surface weather parameters. Hence, statistical post-processing is required in order to obtain reliable and sharp forecasts. In this study we apply statistical post-processing to ensemble forecasts of near-surface temperature, 24-hour precipitation totals, and near-surface wind speed from the global ECMWF model. Our main objective is to evaluate the evolution of the difference in skill between the raw ensemble and the post-processed forecasts. The ECMWF ensemble is under continuous development, and hence its forecast skill improves over time. Parts of these improvements may be due to a reduction of probabilistic bias. Thus, we first hypothesize that the gain by post-processing decreases over time. Based on ECMWF forecasts from January 2002 to March 2014 and corresponding observations from globally distributed stations we generate post-processed forecasts by ensemble model output statistics (EMOS) for each station and variable. Parameter estimates are obtained by minimizing the Continuous Ranked Probability Score (CRPS) over rolling training periods that consist of the n days preceding the initialization dates. Given the higher average skill in terms of CRPS of the post-processed forecasts for all three variables, we analyze the evolution of the difference in skill between raw ensemble and EMOS forecasts. The fact that the gap in skill remains almost constant over time, especially for near-surface wind speed, suggests that improvements to the atmospheric model have an effect quite different from what calibration by statistical post-processing is doing. That is, they are increasing potential skill. Thus this study indicates that (a) further model development is important even if one is just interested in point forecasts, and (b) statistical post-processing is important because it will keep adding skill in the foreseeable future.

  9. A real-time evaluation and demonstration of strategies for 'Over-The-Loop' ensemble streamflow forecasting in US watersheds

    NASA Astrophysics Data System (ADS)

    Wood, Andy; Clark, Elizabeth; Mendoza, Pablo; Nijssen, Bart; Newman, Andy; Clark, Martyn; Nowak, Kenneth; Arnold, Jeffrey

    2017-04-01

    Many if not most national operational streamflow prediction systems rely on a forecaster-in-the-loop approach that require the hands-on-effort of an experienced human forecaster. This approach evolved from the need to correct for long-standing deficiencies in the models and datasets used in forecasting, and the practice often leads to skillful flow predictions despite the use of relatively simple, conceptual models. Yet the 'in-the-loop' forecast process is not reproducible, which limits opportunities to assess and incorporate new techniques systematically, and the effort required to make forecasts in this way is an obstacle to expanding forecast services - e.g., though adding new forecast locations or more frequent forecast updates, running more complex models, or producing forecast and hindcasts that can support verification. In the last decade, the hydrologic forecasting community has begun develop more centralized, 'over-the-loop' systems. The quality of these new forecast products will depend on their ability to leverage research in areas including earth system modeling, parameter estimation, data assimilation, statistical post-processing, weather and climate prediction, verification, and uncertainty estimation through the use of ensembles. Currently, many national operational streamflow forecasting and water management communities have little experience with the strengths and weaknesses of over-the-loop approaches, even as such systems are beginning to be deployed operationally in centers such as ECMWF. There is thus a need both to evaluate these forecasting advances and to demonstrate their potential in a public arena, raising awareness in forecast user communities and development programs alike. To address this need, the US National Center for Atmospheric Research is collaborating with the University of Washington, the Bureau of Reclamation and the US Army Corps of Engineers, using the NCAR 'System for Hydromet Analysis Research and Prediction Applications' (SHARP) to implement, assess and demonstrate real-time over-the-loop ensemble flow forecasts in a range of US watersheds. The system relies on fully ensemble techniques, including: an 100-member ensemble of meteorological model forcings and an ensemble particle filter data assimilation for initializing watershed states; analog/regression-based downscaling of ensemble weather forecasts from GEFS; and statistical post-processing of ensemble forecast outputs, all of which run in real-time within a workflow managed by ECWMF's ecFlow libraries over large US regional domains. We describe SHARP and present early hindcast and verification results for short to seasonal range streamflow forecasts in a number of US case study watersheds.

  10. Evaluation and Applications of the Prediction of Intensity Model Error (PRIME) Model

    NASA Astrophysics Data System (ADS)

    Bhatia, K. T.; Nolan, D. S.; Demaria, M.; Schumacher, A.

    2015-12-01

    Forecasters and end users of tropical cyclone (TC) intensity forecasts would greatly benefit from a reliable expectation of model error to counteract the lack of consistency in TC intensity forecast performance. As a first step towards producing error predictions to accompany each TC intensity forecast, Bhatia and Nolan (2013) studied the relationship between synoptic parameters, TC attributes, and forecast errors. In this study, we build on previous results of Bhatia and Nolan (2013) by testing the ability of the Prediction of Intensity Model Error (PRIME) model to forecast the absolute error and bias of four leading intensity models available for guidance in the Atlantic basin. PRIME forecasts are independently evaluated at each 12-hour interval from 12 to 120 hours during the 2007-2014 Atlantic hurricane seasons. The absolute error and bias predictions of PRIME are compared to their respective climatologies to determine their skill. In addition to these results, we will present the performance of the operational version of PRIME run during the 2015 hurricane season. PRIME verification results show that it can reliably anticipate situations where particular models excel, and therefore could lead to a more informed protocol for hurricane evacuations and storm preparations. These positive conclusions suggest that PRIME forecasts also have the potential to lower the error in the original intensity forecasts of each model. As a result, two techniques are proposed to develop a post-processing procedure for a multimodel ensemble based on PRIME. The first approach is to inverse-weight models using PRIME absolute error predictions (higher predicted absolute error corresponds to lower weights). The second multimodel ensemble applies PRIME bias predictions to each model's intensity forecast and the mean of the corrected models is evaluated. The forecasts of both of these experimental ensembles are compared to those of the equal-weight ICON ensemble, which currently provides the most reliable forecasts in the Atlantic basin.

  11. Hydrologic Forecasting in the 21st Century: Challenges and Directions of Research

    NASA Astrophysics Data System (ADS)

    Restrepo, P.; Schaake, J.

    2009-04-01

    Traditionally, the role of the Hydrology program of the National Weather Service has been centered around forecasting floods, in order to minimize loss of lives and damage to property as a result of floods as well as water levels for navigable rivers, and water supply in some areas of the country. A number of factors, including shifting population patterns, widespread drought and concerns about climate change have made it imperative to widen the focus to cover forecasting flows ranging from drought to floods and anything in between. Because of these concerns, it is imperative to develop models that rely more on the physical characteristics of the watershed for parameterization and less on historical observations. Furthermore, it is also critical to consider explicitly the sources of uncertainty in the forecasting process, including parameter values, model structure, forcings (both observations and forecasts), initial conditions, and streamflow observations. A consequence of more widespread occurrence of low flows as a result either of the already evident earlier snowmelt in the Western United States, or of the predicted changes in precipitation patterns, is the issue of water quality: lower flows will have higher concentrations of certain pollutants. This paper describes the current projects and future directions of research for hydrologic forecasting in the United States. Ongoing projects on quantitative precipitation and temperature estimates and forecasts, uncertainty modeling by the use of ensembles, data assimilation, verification, distributed conceptual modeling will be reviewed. Broad goals of the research directions are: 1) reliable modeling of the different sources of uncertainty. 2) a more expeditious and cost-effective approach by reducing the effort required in model calibration; 3) improvements in forecast lead-time and accuracy; 4) an approach for rapid adjustment of model parameters to account for changes in the watershed, both rapid as the result from forest fires or levee breaches, and slow, as the result of watershed reforestation, reforestation or urban development; 5) an expanded suite of products, including soil moisture and temperature forecasts, and water quality constituents; and 6) a comprehensive verification system to assess the effectiveness of the other 5 goals. To this end, the research plan places an emphasis on research of models with parameters that can be derived from physical watershed characteristics. Purely physically based models may be unattainable or impractical, and, therefore, models resulting from a combination of physically and conceptually approached processes may be required With respect to the hydrometeorological forcings the research plan emphasizes the development of improved precipitation estimation techniques through the synthesis of radar, rain gauge, satellite, and numerical weather prediction model output, particularly in those areas where ground-based sensors are inadequate to detect spatial variability in precipitation. Better estimation and forecasting of precipitation are most likely to be achieved by statistical merging of remote-sensor observations and forecasts from high-resolution numerical prediction models. Enhancements to the satellite-based precipitation products will include use of TRMM precipitation data in preparation for information to be supplied by the Global Precipitation Mission satellites not yet deployed. Because of a growing need for services in water resources, including low-flow forecasts for water supply customers, we will be directing research into coupled surface-groundwater models that will eventually replace the groundwater component of the existing models, and will be part of the new generation of models. Finally, the research plan covers the directions of research for probabilistic forecasting using ensembles, data assimilation and the verification and validation of both deterministic and probabilistic forecasts.

  12. Graphic comparison of reserve-growth models for conventional oil and accumulation

    USGS Publications Warehouse

    Klett, T.R.

    2003-01-01

    The U.S. Geological Survey (USGS) periodically assesses crude oil, natural gas, and natural gas liquids resources of the world. The assessment procedure requires estimated recover-able oil and natural gas volumes (field size, cumulative production plus remaining reserves) in discovered fields. Because initial reserves are typically conservative, subsequent estimates increase through time as these fields are developed and produced. The USGS assessment of petroleum resources makes estimates, or forecasts, of the potential additions to reserves in discovered oil and gas fields resulting from field development, and it also estimates the potential fully developed sizes of undiscovered fields. The term ?reserve growth? refers to the commonly observed upward adjustment of reserve estimates. Because such additions are related to increases in the total size of a field, the USGS uses field sizes to model reserve growth. Future reserve growth in existing fields is a major component of remaining U.S. oil and natural gas resources and has therefore become a necessary element of U.S. petroleum resource assessments. Past and currently proposed reserve-growth models compared herein aid in the selection of a suitable set of forecast functions to provide an estimate of potential additions to reserves from reserve growth in the ongoing National Oil and Gas Assessment Project (NOGA). Reserve growth is modeled by construction of a curve that represents annual fractional changes of recoverable oil and natural gas volumes (for fields and reservoirs), which provides growth factors. Growth factors are used to calculate forecast functions, which are sets of field- or reservoir-size multipliers. Comparisons of forecast functions were made based on datasets used to construct the models, field type, modeling method, and length of forecast span. Comparisons were also made between forecast functions based on field-level and reservoir- level growth, and between forecast functions based on older and newer data. The reserve-growth model used in the 1995 USGS National Assessment and the model currently used in the NOGA project provide forecast functions that yield similar estimates of potential additions to reserves. Both models are based on the Oil and Gas Integrated Field File from the Energy Information Administration (EIA), but different vintages of data (from 1977 through 1991 and 1977 through 1996, respectively). The model based on newer data can be used in place of the previous model, providing similar estimates of potential additions to reserves. Fore-cast functions for oil fields vary little from those for gas fields in these models; therefore, a single function may be used for both oil and gas fields, like that used in the USGS World Petroleum Assessment 2000. Forecast functions based on the field-level reserve growth model derived from the NRG Associates databases (from 1982 through 1998) differ from those derived from EIA databases (from 1977 through 1996). However, the difference may not be enough to preclude the use of the forecast functions derived from NRG data in place of the forecast functions derived from EIA data. Should the model derived from NRG data be used, separate forecast functions for oil fields and gas fields must be employed. The forecast function for oil fields from the model derived from NRG data varies significantly from that for gas fields, and a single function for both oil and gas fields may not be appropriate.

  13. New Developments in Wildfire Pollution Forecasting at the Canadian Meteorological Centre

    NASA Astrophysics Data System (ADS)

    Pavlovic, Radenko; Chen, Jack; Munoz-Alpizar, Rodrigo; Davignon, Didier; Beaulieu, Paul-Andre; Landry, Hugo; Menard, Sylvain; Gravel, Sylvie; Moran, Michael

    2017-04-01

    Environment and Climate Change Canada's air quality forecast system with near-real-time wildfire emissions, named FireWork, was developed in 2012 and has been run by the Canadian Meteorological Centre Operations division (CMCO) since 2013. In June 2016 this system was upgraded to operational status and wildfire smoke forecasts for North America are now available to the general public. FireWork's ability to model the transport and diffusion of wildfire smoke plumes has proved to be valuable to regional air quality forecasters and emergency first responders. Some of the most challenging issues with wildfire pollution modelling concern the production of wildfire emission estimates and near-source dispersion within the air quality model. As a consequence, FireWork is undergoing constant development. During the massive Fort McMurray wildfire event in western Canada in May 2016, for example, different wildfire emissions processing approaches and wildfire emissions injection and dispersion schemes were tested within the air quality model. Work on various FireWork components will continue in order to deliver a new operational version of the forecasting system for the 2017 wildfire season. Some of the proposed improvements will be shown in this presentation along with current and planned FireWork post-processing products.

  14. Winter wheat quality monitoring and forecasting system based on remote sensing and environmental factors

    NASA Astrophysics Data System (ADS)

    Haiyang, Yu; Yanmei, Liu; Guijun, Yang; Xiaodong, Yang; Dong, Ren; Chenwei, Nie

    2014-03-01

    To achieve dynamic winter wheat quality monitoring and forecasting in larger scale regions, the objective of this study was to design and develop a winter wheat quality monitoring and forecasting system by using a remote sensing index and environmental factors. The winter wheat quality trend was forecasted before the harvest and quality was monitored after the harvest, respectively. The traditional quality-vegetation index from remote sensing monitoring and forecasting models were improved. Combining with latitude information, the vegetation index was used to estimate agronomy parameters which were related with winter wheat quality in the early stages for forecasting the quality trend. A combination of rainfall in May, temperature in May, illumination at later May, the soil available nitrogen content and other environmental factors established the quality monitoring model. Compared with a simple quality-vegetation index, the remote sensing monitoring and forecasting model used in this system get greatly improved accuracy. Winter wheat quality was monitored and forecasted based on the above models, and this system was completed based on WebGIS technology. Finally, in 2010 the operation process of winter wheat quality monitoring system was presented in Beijing, the monitoring and forecasting results was outputted as thematic maps.

  15. Weather Forecaster Understanding of Climate Models

    NASA Astrophysics Data System (ADS)

    Bol, A.; Kiehl, J. T.; Abshire, W. E.

    2013-12-01

    Weather forecasters, particularly those in broadcasting, are the primary conduit to the public for information on climate and climate change. However, many weather forecasters remain skeptical of model-based climate projections. To address this issue, The COMET Program developed an hour-long online lesson of how climate models work, targeting an audience of weather forecasters. The module draws on forecasters' pre-existing knowledge of weather, climate, and numerical weather prediction (NWP) models. In order to measure learning outcomes, quizzes were given before and after the lesson. Preliminary results show large learning gains. For all people that took both pre and post-tests (n=238), scores improved from 48% to 80%. Similar pre/post improvement occurred for National Weather Service employees (51% to 87%, n=22 ) and college faculty (50% to 90%, n=7). We believe these results indicate a fundamental misunderstanding among many weather forecasters of (1) the difference between weather and climate models, (2) how researchers use climate models, and (3) how they interpret model results. The quiz results indicate that efforts to educate the public about climate change need to include weather forecasters, a vital link between the research community and the general public.

  16. A seasonal hydrologic ensemble prediction system for water resource management

    NASA Astrophysics Data System (ADS)

    Luo, L.; Wood, E. F.

    2006-12-01

    A seasonal hydrologic ensemble prediction system, developed for the Ohio River basin, has been improved and expanded to several other regions including the Eastern U.S., Africa and East Asia. The prediction system adopts the traditional Extended Streamflow Prediction (ESP) approach, utilizing the VIC (Variable Infiltration Capacity) hydrological model as the central tool for producing ensemble prediction of soil moisture, snow and streamflow with lead times up to 6-month. VIC is forced by observed meteorology to estimate the hydrological initial condition prior to the forecast, but during the forecast period the atmospheric forcing comes from statistically downscaled, seasonal forecast from dynamic climate models. The seasonal hydrologic ensemble prediction system is currently producing realtime seasonal hydrologic forecast for these regions on a monthly basis. Using hindcasts from a 19-year period (1981-1999), during which seasonal hindcasts from NCEP Climate Forecast System (CFS) and European Union DEMETER project are available, we evaluate the performance of the forecast system over our forecast regions. The evaluation shows that the prediction system using the current forecast approach is able to produce reliable and accurate precipitation, soil moisture and streamflow predictions. The overall skill is much higher then the traditional ESP. In particular, forecasts based on multiple climate model forecast are more skillful than single model-based forecast. This emphasizes the significant need for producing seasonal climate forecast with multiple climate models for hydrologic applications. Forecast from this system is expected to provide very valuable information about future hydrologic states and associated risks for end users, including water resource management and financial sectors.

  17. Predictive Skill of Meteorological Drought Based on Multi-Model Ensemble Forecasts: A Real-Time Assessment

    NASA Astrophysics Data System (ADS)

    Chen, L. C.; Mo, K. C.; Zhang, Q.; Huang, J.

    2014-12-01

    Drought prediction from monthly to seasonal time scales is of critical importance to disaster mitigation, agricultural planning, and multi-purpose reservoir management. Starting in December 2012, NOAA Climate Prediction Center (CPC) has been providing operational Standardized Precipitation Index (SPI) Outlooks using the North American Multi-Model Ensemble (NMME) forecasts, to support CPC's monthly drought outlooks and briefing activities. The current NMME system consists of six model forecasts from U.S. and Canada modeling centers, including the CFSv2, CM2.1, GEOS-5, CCSM3.0, CanCM3, and CanCM4 models. In this study, we conduct an assessment of the predictive skill of meteorological drought using real-time NMME forecasts for the period from May 2012 to May 2014. The ensemble SPI forecasts are the equally weighted mean of the six model forecasts. Two performance measures, the anomaly correlation coefficient and root-mean-square errors against the observations, are used to evaluate forecast skill.Similar to the assessment based on NMME retrospective forecasts, predictive skill of monthly-mean precipitation (P) forecasts is generally low after the second month and errors vary among models. Although P forecast skill is not large, SPI predictive skill is high and the differences among models are small. The skill mainly comes from the P observations appended to the model forecasts. This factor also contributes to the similarity of SPI prediction among the six models. Still, NMME SPI ensemble forecasts have higher skill than those based on individual models or persistence, and the 6-month SPI forecasts are skillful out to four months. The three major drought events occurred during the 2012-2014 period, the 2012 Central Great Plains drought, the 2013 Upper Midwest flash drought, and 2013-2014 California drought, are used as examples to illustrate the system's strength and limitations. For precipitation-driven drought events, such as the 2012 Central Great Plains drought, NMME SPI forecasts perform well in predicting drought severity and spatial patterns. For fast-developing drought events, such as the 2013 Upper Midwest flash drought, the system failed to capture the onset of the drought.

  18. ENSURF: multi-model sea level forecast - implementation and validation results for the IBIROOS and Western Mediterranean regions

    NASA Astrophysics Data System (ADS)

    Pérez, B.; Brouwer, R.; Beckers, J.; Paradis, D.; Balseiro, C.; Lyons, K.; Cure, M.; Sotillo, M. G.; Hackett, B.; Verlaan, M.; Fanjul, E. A.

    2012-03-01

    ENSURF (Ensemble SURge Forecast) is a multi-model application for sea level forecast that makes use of several storm surge or circulation models and near-real time tide gauge data in the region, with the following main goals: 1. providing easy access to existing forecasts, as well as to its performance and model validation, by means of an adequate visualization tool; 2. generation of better forecasts of sea level, including confidence intervals, by means of the Bayesian Model Average technique (BMA). The Bayesian Model Average technique generates an overall forecast probability density function (PDF) by making a weighted average of the individual forecasts PDF's; the weights represent the Bayesian likelihood that a model will give the correct forecast and are continuously updated based on the performance of the models during a recent training period. This implies the technique needs the availability of sea level data from tide gauges in near-real time. The system was implemented for the European Atlantic facade (IBIROOS region) and Western Mediterranean coast based on the MATROOS visualization tool developed by Deltares. Results of validation of the different models and BMA implementation for the main harbours are presented for these regions where this kind of activity is performed for the first time. The system is currently operational at Puertos del Estado and has proved to be useful in the detection of calibration problems in some of the circulation models, in the identification of the systematic differences between baroclinic and barotropic models for sea level forecasts and to demonstrate the feasibility of providing an overall probabilistic forecast, based on the BMA method.

  19. Temporal patterns and a disease forecasting model of dengue hemorrhagic fever in Jakarta based on 10 years of surveillance data.

    PubMed

    Sitepu, Monika S; Kaewkungwal, Jaranit; Luplerdlop, Nathanej; Soonthornworasiri, Ngamphol; Silawan, Tassanee; Poungsombat, Supawadee; Lawpoolsri, Saranath

    2013-03-01

    This study aimed to describe the temporal patterns of dengue transmission in Jakarta from 2001 to 2010, using data from the national surveillance system. The Box-Jenkins forecasting technique was used to develop a seasonal autoregressive integrated moving average (SARIMA) model for the study period and subsequently applied to forecast DHF incidence in 2011 in Jakarta Utara, Jakarta Pusat, Jakarta Barat, and the municipalities of Jakarta Province. Dengue incidence in 2011, based on the forecasting model was predicted to increase from the previous year.

  20. Forecasting wetting and drying of post-wildfire soils in response to precipitation: A time series optimization approach

    NASA Astrophysics Data System (ADS)

    Basak, A.; Kulkarni, C.; Schmidt, K. M.; Mengshoel, O. J.

    2015-12-01

    Volumetric water content (VWC) in soils is critical for forecasting thresholds for runoff-driven erosion caused by rainfall. Even though theoretical relations (e.g., Richards equation) have been developed to quantify VWC in unsaturated granular soils, site-specific field conditions and hysteresis of suction and VWC in soil preclude their direct use. Although attempts have previously been made to forecast VWC using various time-series models (e.g., autoregressive integrated moving average or ARIMA), these approaches lack hydrologic foundations and perform poorly when used to forecast VWC over time periods longer than 24 hours. In this work, we extend an existing Antecedent Water Index (AWI) based model to express VWC as a function of time and rainfall. AWI models typically overfit data and cannot be used for forecast VWC over long time periods. We developed a new model to overcome this limitation, which accumulates rainfall over a time window and fits a diverse range of wetting and drying curves. Hydraulic redistribution parameters in this model bear resemblance to hydrologic processes driven by gravity and suction. This model reasonably forecasts VWC using only initial VWC values and rainfall forecasts. Experimental VWC data were collected from steep gradient post-wildfire sites in southern California. Rapid landscape change was observed in response to small to moderate rain storms. We formulated a mean-squared error minimization problem over the model parameters and optimized using genetic algorithms. We found that our model fits VWC data for 3 distinct soil textures, each occurring at 3 different depths below the ground surface (5 cm, 15 cm, and 30 cm). Our model successfully forecasts VWC trends, such as drying and wetting rate. To a certain extent, our model achieves spatial and seasonal generalizability. Our accumulative rainfall model is also applicable to continuous predictions, where VWC values are repeatedly used to predict future ones within a 12-hr time frame.

  1. Using the Random Nearest Neighbor Data Mining Method to Extract Maximum Information Content from Weather Forecasts from Multiple Predictors of Weather and One Predictand (Low-Level Turbulence)

    DTIC Science & Technology

    2014-10-30

    Force Weather Agency (AFWA) WRF 15-km atmospheric model forecast data and low-level turbulence. Archives of historical model data forecast predictors...Relationships between WRF model predictors and PIREPS were developed using the new data mining methodology. The new methodology was inspired...convection. Predictors of turbulence were collected from the AFWA WRF 15km model, and corresponding PIREPS (the predictand) were collected between 2013

  2. AN OPERATIONAL EVALUATION OF THE ETA-CMAQ AIR QUALITY FORECAST MODEL

    EPA Science Inventory

    The National Oceanic and Atmospheric Administration (NOAA), in collaboration with the Environmental Protection Agency (EPA), are developing an Air Quality Forecasting Program that will eventually result in an operational Nationwide Air Quality Forecasting System. The initial pha...

  3. Development of a Statistical Model for Forecasting Episodes of Visibility Degradation in the Denver Metropolitan Area.

    NASA Astrophysics Data System (ADS)

    Reddy, P. J.; Barbarick, D. E.; Osterburg, R. D.

    1995-03-01

    In 1990, the State of Colorado implemented a visibility standard of 0.076 km1 of beta extinction for the Denver metropolitan area. Meteorologists with Colorado's Air Pollution Control Division forecast high pollution days associated with visibility impairment as well as those due to high levels of the federal criteria pollutants. Visibility forecasts are made from a few hours up to about 26 h in advance of the period of interest. Here we discuss the key microscale, mesoscale, and synoptic-scale features associated with episodes of visibility impairment. Data from special studies, case studies, and the 22 NOAA Program for Regional Observing and Forecasting Services mesonet sites have been invaluable in identifying patterns associated with extremes in visibility conditions. A preliminary statistical forecast model has been developed using variables that represent many of these patterns. Six variables were selected from an initial pool of 27 to be used in a model based on linear logistic regression. These six variables include forecast measures of snow cover, surface pressures and a surface pressure gradient in eastern Colorado, relative humidity, and 500-mb ridge position. The initial testing of the model has been encouraging. The model correctly predicted 76% of the good visibility days and 67% of the poor visibility days for a test set of 171 days.

  4. Seasonal drought ensemble predictions based on multiple climate models in the upper Han River Basin, China

    NASA Astrophysics Data System (ADS)

    Ma, Feng; Ye, Aizhong; Duan, Qingyun

    2017-03-01

    An experimental seasonal drought forecasting system is developed based on 29-year (1982-2010) seasonal meteorological hindcasts generated by the climate models from the North American Multi-Model Ensemble (NMME) project. This system made use of a bias correction and spatial downscaling method, and a distributed time-variant gain model (DTVGM) hydrologic model. DTVGM was calibrated using observed daily hydrological data and its streamflow simulations achieved Nash-Sutcliffe efficiency values of 0.727 and 0.724 during calibration (1978-1995) and validation (1996-2005) periods, respectively, at the Danjiangkou reservoir station. The experimental seasonal drought forecasting system (known as NMME-DTVGM) is used to generate seasonal drought forecasts. The forecasts were evaluated against the reference forecasts (i.e., persistence forecast and climatological forecast). The NMME-DTVGM drought forecasts have higher detectability and accuracy and lower false alarm rate than the reference forecasts at different lead times (from 1 to 4 months) during the cold-dry season. No apparent advantage is shown in drought predictions during spring and summer seasons because of a long memory of the initial conditions in spring and a lower predictive skill for precipitation in summer. Overall, the NMME-based seasonal drought forecasting system has meaningful skill in predicting drought several months in advance, which can provide critical information for drought preparedness and response planning as well as the sustainable practice of water resource conservation over the basin.

  5. Forecasting the Water Demand in Chongqing, China Using a Grey Prediction Model and Recommendations for the Sustainable Development of Urban Water Consumption.

    PubMed

    Wu, Hua'an; Zeng, Bo; Zhou, Meng

    2017-11-15

    High accuracy in water demand predictions is an important basis for the rational allocation of city water resources and forms the basis for sustainable urban development. The shortage of water resources in Chongqing, the youngest central municipality in Southwest China, has significantly increased with the population growth and rapid economic development. In this paper, a new grey water-forecasting model (GWFM) was built based on the data characteristics of water consumption. The parameter estimation and error checking methods of the GWFM model were investigated. Then, the GWFM model was employed to simulate the water demands of Chongqing from 2009 to 2015 and forecast it in 2016. The simulation and prediction errors of the GWFM model was checked, and the results show the GWFM model exhibits better simulation and prediction precisions than those of the classical Grey Model with one variable and single order equation GM(1,1) for short and the frequently-used Discrete Grey Model with one variable and single order equation, DGM(1,1) for short. Finally, the water demand in Chongqing from 2017 to 2022 was forecasted, and some corresponding control measures and recommendations were provided based on the prediction results to ensure a viable water supply and promote the sustainable development of the Chongqing economy.

  6. Space Weather Products at the Community Coordinated Modeling Center

    NASA Technical Reports Server (NTRS)

    Hesse, Michael; Kuznetsova, M.; Pulkkinen, A.; Maddox, M.; Rastaetter, L.; Berrios, D.; MacNeice, P.

    2010-01-01

    The Community Coordinated Modeling Center (CCMC) is a US inter-agency activity aiming at research in support of the generation of advanced space weather models. As one of its main functions, the CCMC provides to researchers the use of space science models, even if they are not model owners themselves. The second CCMC activity is to support Space Weather forecasting at national Space Weather Forecasting Centers. This second activity involves model evaluations, model transitions to operations, and the development of space weather forecasting tools. Owing to the pace of development in the science community, new model capabilities emerge frequently. Consequently, space weather products and tools involve not only increased validity, but often entirely new capabilities. This presentation will review the present state of space weather tools as well as point out emerging future capabilities.

  7. Improved Neural Networks with Random Weights for Short-Term Load Forecasting

    PubMed Central

    Lang, Kun; Zhang, Mingyuan; Yuan, Yongbo

    2015-01-01

    An effective forecasting model for short-term load plays a significant role in promoting the management efficiency of an electric power system. This paper proposes a new forecasting model based on the improved neural networks with random weights (INNRW). The key is to introduce a weighting technique to the inputs of the model and use a novel neural network to forecast the daily maximum load. Eight factors are selected as the inputs. A mutual information weighting algorithm is then used to allocate different weights to the inputs. The neural networks with random weights and kernels (KNNRW) is applied to approximate the nonlinear function between the selected inputs and the daily maximum load due to the fast learning speed and good generalization performance. In the application of the daily load in Dalian, the result of the proposed INNRW is compared with several previously developed forecasting models. The simulation experiment shows that the proposed model performs the best overall in short-term load forecasting. PMID:26629825

  8. Improved Neural Networks with Random Weights for Short-Term Load Forecasting.

    PubMed

    Lang, Kun; Zhang, Mingyuan; Yuan, Yongbo

    2015-01-01

    An effective forecasting model for short-term load plays a significant role in promoting the management efficiency of an electric power system. This paper proposes a new forecasting model based on the improved neural networks with random weights (INNRW). The key is to introduce a weighting technique to the inputs of the model and use a novel neural network to forecast the daily maximum load. Eight factors are selected as the inputs. A mutual information weighting algorithm is then used to allocate different weights to the inputs. The neural networks with random weights and kernels (KNNRW) is applied to approximate the nonlinear function between the selected inputs and the daily maximum load due to the fast learning speed and good generalization performance. In the application of the daily load in Dalian, the result of the proposed INNRW is compared with several previously developed forecasting models. The simulation experiment shows that the proposed model performs the best overall in short-term load forecasting.

  9. Development of Water Quality Forecasting Models Based on the SOM-ANN on TMDL Unit Watershed in Nakdong River

    NASA Astrophysics Data System (ADS)

    KIM, M.; Kim, J.; Baek, J.; Kim, C.; Shin, H.

    2013-12-01

    It has being happened as flush flood or red/green tide in various natural phenomena due to climate change and indiscreet development of river or land. Especially, water being very important to man should be protected and managed from water quality pollution, and in water resources management, real-time watershed monitoring system is being operated with the purpose of keeping watch and managing on rivers. It is especially important to monitor and forecast water quality in watershed. A study area selected Nak_K as one site among TMDL unit watershed in Nakdong River. This study is to develop a water quality forecasting model connected with making full use of observed data of 8 day interval from Nakdong River Environment Research Center. When forecasting models for each of the BOD, DO, COD, and chlorophyll-a are established considering correlation of various water quality factors, it is needed to select water quality factors showing highly considerable correlation with each water quality factor which is BOD, DO, COD, and chlorophyll-a. For analyzing the correlation of the factors (reservoir discharge, precipitation, air temperature, DO, BOD, COD, Tw, TN, TP, chlorophyll-a), in this study, self-organizing map was used and cross correlation analysis method was also used for comparing results drawn. Based on the results, each forecasting model for BOD, DO, COD, and chlorophyll-a was developed during the short period as 8, 16, 24, 32 days at 8 day interval. The each forecasting model is based on neural network with back propagation algorithm. That is, the study is connected with self-organizing map for analyzing correlation among various factors and neural network model for forecasting of water quality. It is considerably effective to manage the water quality in plenty of rivers, then, it specially is possible to monitor a variety of accidents in water quality. It will work well to protect water quality and to prevent destruction of the environment becoming more and more serious before occurring.

  10. Improvements in approaches to forecasting and evaluation techniques

    NASA Astrophysics Data System (ADS)

    Weatherhead, Elizabeth

    2014-05-01

    The US is embarking on an experiment to make significant and sustained improvements in weather forecasting. The effort stems from a series of community conversations that recognized the rapid advancements in observations, modeling and computing techniques in the academic, governmental and private sectors. The new directions and initial efforts will be summarized, including information on possibilities for international collaboration. Most new projects are scheduled to start in the last half of 2014. Several advancements include ensemble forecasting with global models, and new sharing of computing resources. Newly developed techniques for evaluating weather forecast models will be presented in detail. The approaches use statistical techniques that incorporate pair-wise comparisons of forecasts with observations and account for daily auto-correlation to assess appropriate uncertainty in forecast changes. Some of the new projects allow for international collaboration, particularly on the research components of the projects.

  11. Why preferring parametric forecasting to nonparametric methods?

    PubMed

    Jabot, Franck

    2015-05-07

    A recent series of papers by Charles T. Perretti and collaborators have shown that nonparametric forecasting methods can outperform parametric methods in noisy nonlinear systems. Such a situation can arise because of two main reasons: the instability of parametric inference procedures in chaotic systems which can lead to biased parameter estimates, and the discrepancy between the real system dynamics and the modeled one, a problem that Perretti and collaborators call "the true model myth". Should ecologists go on using the demanding parametric machinery when trying to forecast the dynamics of complex ecosystems? Or should they rely on the elegant nonparametric approach that appears so promising? It will be here argued that ecological forecasting based on parametric models presents two key comparative advantages over nonparametric approaches. First, the likelihood of parametric forecasting failure can be diagnosed thanks to simple Bayesian model checking procedures. Second, when parametric forecasting is diagnosed to be reliable, forecasting uncertainty can be estimated on virtual data generated with the fitted to data parametric model. In contrast, nonparametric techniques provide forecasts with unknown reliability. This argumentation is illustrated with the simple theta-logistic model that was previously used by Perretti and collaborators to make their point. It should convince ecologists to stick to standard parametric approaches, until methods have been developed to assess the reliability of nonparametric forecasting. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Multimodal Transportation Analysis Process (MTAP): A Travel Demand Forecasting Model

    DOT National Transportation Integrated Search

    1990-01-01

    In 1986, the North Central Texas Council of Governments (NCTCOG) undertook the revision of its travel demand forecasting model. The outcome was a model which was developed based on travel patterns in the Dallas-Forth Worth area and used jointly by th...

  13. Development of S-ARIMA Model for Forecasting Demand in a Beverage Supply Chain

    NASA Astrophysics Data System (ADS)

    Mircetic, Dejan; Nikolicic, Svetlana; Maslaric, Marinko; Ralevic, Nebojsa; Debelic, Borna

    2016-11-01

    Demand forecasting is one of the key activities in planning the freight flows in supply chains, and accordingly it is essential for planning and scheduling of logistic activities within observed supply chain. Accurate demand forecasting models directly influence the decrease of logistics costs, since they provide an assessment of customer demand. Customer demand is a key component for planning all logistic processes in supply chain, and therefore determining levels of customer demand is of great interest for supply chain managers. In this paper we deal with exactly this kind of problem, and we develop the seasonal Autoregressive IntegratedMoving Average (SARIMA) model for forecasting demand patterns of a major product of an observed beverage company. The model is easy to understand, flexible to use and appropriate for assisting the expert in decision making process about consumer demand in particular periods.

  14. Client-Friendly Forecasting: Seasonal Runoff Predictions Using Out-of-the-Box Indices

    NASA Astrophysics Data System (ADS)

    Weil, P.

    2013-12-01

    For more than a century, statistical relationships have been recognized between atmospheric conditions at locations separated by thousands of miles, referred to as teleconnections. Some of the recognized teleconnections provide useful information about expected hydrologic conditions, so certain records of atmospheric conditions are quantified and published as hydroclimate indices. Certain hydroclimate indices can serve as strong leading indicators of climate patterns over North America and can be used to make skillful forecasts of seasonal runoff. The methodology described here creates a simple-to-use model that utilizes easily accessed data to make forecasts of April through September runoff months before the runoff season begins. For this project, forecasting models were developed for two snowmelt-driven river systems in Colorado and Wyoming. In addition to the global hydroclimate indices, the methodology uses several local hydrologic variables including the previous year's drought severity, headwater snow water equivalent and the reservoir contents for the major reservoirs in each basin. To improve the skill of the forecasts, logistic regression is used to develop a model that provides the likelihood that a year will fall into the upper, middle or lower tercile of historical flows. Categorical forecasting has two major advantages over modeling of specific flow amounts: (1) with less prediction outcomes models tend to have better predictive skill and (2) categorical models are very useful to clients and agencies with specific flow thresholds that dictate major changes in water resources management. The resulting methodology and functional forecasting model product is highly portable, applicable to many major river systems and easily explained to a non-technical audience.

  15. Tsunami Forecast Progress Five Years After Indonesian Disaster

    NASA Astrophysics Data System (ADS)

    Titov, Vasily V.; Bernard, Eddie N.; Weinstein, Stuart A.; Kanoglu, Utku; Synolakis, Costas E.

    2010-05-01

    Almost five years after the 26 December 2004 Indian Ocean tragedy, tsunami warnings are finally benefiting from decades of research toward effective model-based forecasts. Since the 2004 tsunami, two seminal advances have been (i) deep-ocean tsunami measurements with tsunameters and (ii) their use in accurately forecasting tsunamis after the tsunami has been generated. Using direct measurements of deep-ocean tsunami heights, assimilated into numerical models for specific locations, greatly improves the real-time forecast accuracy over earthquake-derived magnitude estimates of tsunami impact. Since 2003, this method has been used to forecast tsunamis at specific harbors for different events in the Pacific and Indian Oceans. Recent tsunamis illustrated how this technology is being adopted in global tsunami warning operations. The U.S. forecasting system was used by both research and operations to evaluate the tsunami hazard. Tests demonstrated the effectiveness of operational tsunami forecasting using real-time deep-ocean data assimilated into forecast models. Several examples also showed potential of distributed forecast tools. With IOC and USAID funding, NOAA researchers at PMEL developed the Community Model Interface for Tsunami (ComMIT) tool and distributed it through extensive capacity-building sessions in the Indian Ocean. Over hundred scientists have been trained in tsunami inundation mapping, leading to the first generation of inundation models for many Indian Ocean shorelines. These same inundation models can also be used for real-time tsunami forecasts as was demonstrated during several events. Contact Information Vasily V. Titov, Seattle, Washington, USA, 98115

  16. iFLOOD: A Real Time Flood Forecast System for Total Water Modeling in the National Capital Region

    NASA Astrophysics Data System (ADS)

    Sumi, S. J.; Ferreira, C.

    2017-12-01

    Extreme flood events are the costliest natural hazards impacting the US and frequently cause extensive damages to infrastructure, disruption to economy and loss of lives. In 2016, Hurricane Matthew brought severe damage to South Carolina and demonstrated the importance of accurate flood hazard predictions that requires the integration of riverine and coastal model forecasts for total water prediction in coastal and tidal areas. The National Weather Service (NWS) and the National Ocean Service (NOS) provide flood forecasts for almost the entire US, still there are service-gap areas in tidal regions where no official flood forecast is available. The National capital region is vulnerable to multi-flood hazards including high flows from annual inland precipitation events and surge driven coastal inundation along the tidal Potomac River. Predicting flood levels on such tidal areas in river-estuarine zone is extremely challenging. The main objective of this study is to develop the next generation of flood forecast systems capable of providing accurate and timely information to support emergency management and response in areas impacted by multi-flood hazards. This forecast system is capable of simulating flood levels in the Potomac and Anacostia River incorporating the effects of riverine flooding from the upstream basins, urban storm water and tidal oscillations from the Chesapeake Bay. Flood forecast models developed so far have been using riverine data to simulate water levels for Potomac River. Therefore, the idea is to use forecasted storm surge data from a coastal model as boundary condition of this system. Final output of this validated model will capture the water behavior in river-estuary transition zone far better than the one with riverine data only. The challenge for this iFLOOD forecast system is to understand the complex dynamics of multi-flood hazards caused by storm surges, riverine flow, tidal oscillation and urban storm water. Automated system simulations will help to develop a seamless integration with the boundary systems in the service-gap area with new insights into our scientific understanding of such complex systems. A visualization system is being developed to allow stake holders and the community to have access to the flood forecasting for their region with sufficient lead time.

  17. The Past, Present and Future of the Meteorological Phenomena Identification Near the Ground (mPING) Project

    NASA Astrophysics Data System (ADS)

    Elmore, K. L.

    2016-12-01

    The Metorological Phenomemna Identification NeartheGround (mPING) project is an example of a crowd-sourced, citizen science effort to gather data of sufficeint quality and quantity needed by new post processing methods that use machine learning. Transportation and infrastructure are particularly sensitive to precipitation type in winter weather. We extract attributes from operational numerical forecast models and use them in a random forest to generate forecast winter precipitation types. We find that random forests applied to forecast soundings are effective at generating skillful forecasts of surface ptype with consideralbly more skill than the current algorithms, especuially for ice pellets and freezing rain. We also find that three very different forecast models yuield similar overall results, showing that random forests are able to extract essentially equivalent information from different forecast models. We also show that the random forest for each model, and each profile type is unique to the particular forecast model and that the random forests developed using a particular model suffer significant degradation when given attributes derived from a different model. This implies that no single algorithm can perform well across all forecast models. Clearly, random forests extract information unavailable to "physically based" methods because the physical information in the models does not appear as we expect. One intersting result is that results from the classic "warm nose" sounding profile are, by far, the most sensitive to the particular forecast model, but this profile is also the one for which random forests are most skillful. Finally, a method for calibrarting probabilties for each different ptype using multinomial logistic regression is shown.

  18. A 30-day-ahead forecast model for grass pollen in north London, United Kingdom.

    PubMed

    Smith, Matt; Emberlin, Jean

    2006-03-01

    A 30-day-ahead forecast method has been developed for grass pollen in north London. The total period of the grass pollen season is covered by eight multiple regression models, each covering a 10-day period running consecutively from 21 May to 8 August. This means that three models were used for each 30-day forecast. The forecast models were produced using grass pollen and environmental data from 1961 to 1999 and tested on data from 2000 and 2002. Model accuracy was judged in two ways: the number of times the forecast model was able to successfully predict the severity (relative to the 1961-1999 dataset as a whole) of grass pollen counts in each of the eight forecast periods on a scale of 1 to 4; the number of times the forecast model was able to predict whether grass pollen counts were higher or lower than the mean. The models achieved 62.5% accuracy in both assessment years when predicting the relative severity of grass pollen counts on a scale of 1 to 4, which equates to six of the eight 10-day periods being forecast correctly. The models attained 87.5% and 100% accuracy in 2000 and 2002, respectively, when predicting whether grass pollen counts would be higher or lower than the mean. Attempting to predict pollen counts during distinct 10-day periods throughout the grass pollen season is a novel approach. The models also employed original methodology in the use of winter averages of the North Atlantic Oscillation to forecast 10-day means of allergenic pollen counts.

  19. Reservoir inflow forecasting with a modified coactive neuro-fuzzy inference system: a case study for a semi-arid region

    NASA Astrophysics Data System (ADS)

    Allawi, Mohammed Falah; Jaafar, Othman; Mohamad Hamzah, Firdaus; Mohd, Nuruol Syuhadaa; Deo, Ravinesh C.; El-Shafie, Ahmed

    2017-10-01

    Existing forecast models applied for reservoir inflow forecasting encounter several drawbacks, due to the difficulty of the underlying mathematical procedures being to cope with and to mimic the naturalization and stochasticity of the inflow data patterns. In this study, appropriate adjustments to the conventional coactive neuro-fuzzy inference system (CANFIS) method are proposed to improve the mathematical procedure, thus enabling a better detection of the high nonlinearity patterns found in the reservoir inflow training data. This modification includes the updating of the back propagation algorithm, leading to a consequent update of the membership rules and the induction of the centre-weighted set rather than the global weighted set used in feature extraction. The modification also aids in constructing an integrated model that is able to not only detect the nonlinearity in the training data but also the wide range of features within the training data records used to simulate the forecasting model. To demonstrate the model's efficacy, the proposed CANFIS method has been applied to forecast monthly inflow data at Aswan High Dam (AHD), located in southern Egypt. Comparative analyses of the forecasting skill of the modified CANFIS and the conventional ANFIS model are carried out with statistical score indicators to assess the reliability of the developed method. The statistical metrics support the better performance of the developed CANFIS model, which significantly outperforms the ANFIS model to attain a low relative error value (23%), mean absolute error (1.4 BCM month-1), root mean square error (1.14 BCM month-1), and a relative large coefficient of determination (0.94). The present study ascertains the better utility of the modified CANFIS model in respect to the traditional ANFIS model applied in reservoir inflow forecasting for a semi-arid region.

  20. The time series approach to short term load forecasting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagan, M.T.; Behr, S.M.

    The application of time series analysis methods to load forecasting is reviewed. It is shown than Box and Jenkins time series models, in particular, are well suited to this application. The logical and organized procedures for model development using the autocorrelation function make these models particularly attractive. One of the drawbacks of these models is the inability to accurately represent the nonlinear relationship between load and temperature. A simple procedure for overcoming this difficulty is introduced, and several Box and Jenkins models are compared with a forecasting procedure currently used by a utility company.

  1. Components of a Model for Forecasting Future Status of Selected Social Indicators. Department of Education Project on Social Indicators. Technical Report No. 3.

    ERIC Educational Resources Information Center

    Collazo, Andres; And Others

    Since a great number of variables influence future educational outcomes, forecasting possible trends is a complex task. One such model, the cross-impact matrix, has been developed. The use of this matrix in forecasting future values of social indicators of educational outcomes is described. Variables associated with educational outcomes are used…

  2. Forecasting and Communicating Water-Related Disasters in Africa

    NASA Astrophysics Data System (ADS)

    Hong, Y.; Clark, R. A.; Mandl, D.; Gourley, J. J.; Flamig, Z.; Zhang, K.; Macharia, D.; Frye, S. W.; Cappelaere, P. G.; Handy, M.

    2016-12-01

    Accurate forecasting and communication of water and water-related hazards in developing regions could save untold lives and property. To this end, the CREST (Coupled Routing and Excess Storage) hydrologic model has been implemented over East Africa, and in dozens of other countries as a user-friendly, flexible, and highly extensible platform for monitoring water resources, floods, droughts, and landslides since 2009. We will present the updated CREST/EF5 hydrologic ensemble modeling framework with new model physics and better forecasts of streamflow, soil moisture, and other hydrologic states to RCMRD (the Regional Centre for Mapping of Resources for Development) and SERVIR global hub network. The central goal of this project is to develop an ensemble hydrologic prediction system, forced by weather and climate forecasts in a single continuum, to communicate forecasts on scales ranging from sub-daily to seasonal and in formats designed for better decision making about water and water-related disasters. The CREST/EF5 is a proven performer at getting researcher and officials in emerging regions excited about and confident in their ability to independently monitor, forecast, and understand water and water-related disasters, through a series of training workshops and capacity building activities in USA, Africa, Mesoamerica, and South Asia and is thus particularly well-suited for hydrologic capacity building in emerging countries.

  3. Satellite provided customer premise services: A forecast of potential domestic demand through the year 2000. Volume 2: Technical report

    NASA Technical Reports Server (NTRS)

    Kratochvil, D.; Bowyer, J.; Bhushan, C.; Steinnagel, K.; Al-Kinani, G.

    1983-01-01

    The potential United States domestic telecommunications demand for satellite provided customer premises voice, data and video services through the year 2000 were forecast, so that this information on service demand would be available to aid in NASA program planning. To accomplish this overall purpose the following objectives were achieved: development of a forecast of the total domestic telecommunications demand, identification of that portion of the telecommunications demand suitable for transmission by satellite systems, identification of that portion of the satellite market addressable by Computer premises services systems, identification of that portion of the satellite market addressabble by Ka-band CPS system, and postulation of a Ka-band CPS network on a nationwide and local level. The approach employed included the use of a variety of forecasting models, a market distribution model and a network optimization model. Forecasts were developed for; 1980, 1990, and 2000; voice, data and video services; terrestrial and satellite delivery modes; and C, Ku and Ka-bands.

  4. Satellite provided customer premise services: A forecast of potential domestic demand through the year 2000. Volume 2: Technical report

    NASA Astrophysics Data System (ADS)

    Kratochvil, D.; Bowyer, J.; Bhushan, C.; Steinnagel, K.; Al-Kinani, G.

    1983-08-01

    The potential United States domestic telecommunications demand for satellite provided customer premises voice, data and video services through the year 2000 were forecast, so that this information on service demand would be available to aid in NASA program planning. To accomplish this overall purpose the following objectives were achieved: development of a forecast of the total domestic telecommunications demand, identification of that portion of the telecommunications demand suitable for transmission by satellite systems, identification of that portion of the satellite market addressable by Computer premises services systems, identification of that portion of the satellite market addressabble by Ka-band CPS system, and postulation of a Ka-band CPS network on a nationwide and local level. The approach employed included the use of a variety of forecasting models, a market distribution model and a network optimization model. Forecasts were developed for; 1980, 1990, and 2000; voice, data and video services; terrestrial and satellite delivery modes; and C, Ku and Ka-bands.

  5. Improvement of PM concentration predictability using WRF-CMAQ-DLM coupled system and its applications

    NASA Astrophysics Data System (ADS)

    Lee, Soon Hwan; Kim, Ji Sun; Lee, Kang Yeol; Shon, Keon Tae

    2017-04-01

    Air quality due to increasing Particulate Matter(PM) in Korea in Asia is getting worse. At present, the PM forecast is announced based on the PM concentration predicted from the air quality prediction numerical model. However, forecast accuracy is not as high as expected due to various uncertainties for PM physical and chemical characteristics. The purpose of this study was to develop a numerical-statistically ensemble models to improve the accuracy of prediction of PM10 concentration. Numerical models used in this study are the three dimensional atmospheric model Weather Research and Forecasting(WRF) and the community multiscale air quality model (CMAQ). The target areas for the PM forecast are Seoul, Busan, Daegu, and Daejeon metropolitan areas in Korea. The data used in the model development are PM concentration and CMAQ predictions and the data period is 3 months (March 1 - May 31, 2014). The dynamic-statistical technics for reducing the systematic error of the CMAQ predictions was applied to the dynamic linear model(DLM) based on the Baysian Kalman filter technic. As a result of applying the metrics generated from the dynamic linear model to the forecasting of PM concentrations accuracy was improved. Especially, at the high PM concentration where the damage is relatively large, excellent improvement results are shown.

  6. Forecasting Responses of a Northern Peatland Carbon Cycle to Elevated CO2 and a Gradient of Experimental Warming

    NASA Astrophysics Data System (ADS)

    Jiang, Jiang; Huang, Yuanyuan; Ma, Shuang; Stacy, Mark; Shi, Zheng; Ricciuto, Daniel M.; Hanson, Paul J.; Luo, Yiqi

    2018-03-01

    The ability to forecast ecological carbon cycling is imperative to land management in a world where past carbon fluxes are no longer a clear guide in the Anthropocene. However, carbon-flux forecasting has not been practiced routinely like numerical weather prediction. This study explored (1) the relative contributions of model forcing data and parameters to uncertainty in forecasting flux- versus pool-based carbon cycle variables and (2) the time points when temperature and CO2 treatments may cause statistically detectable differences in those variables. We developed an online forecasting workflow (Ecological Platform for Assimilation of Data (EcoPAD)), which facilitates iterative data-model integration. EcoPAD automates data transfer from sensor networks, data assimilation, and ecological forecasting. We used the Spruce and Peatland Responses Under Changing Experiments data collected from 2011 to 2014 to constrain the parameters in the Terrestrial Ecosystem Model, forecast carbon cycle responses to elevated CO2 and a gradient of warming from 2015 to 2024, and specify uncertainties in the model output. Our results showed that data assimilation substantially reduces forecasting uncertainties. Interestingly, we found that the stochasticity of future external forcing contributed more to the uncertainty of forecasting future dynamics of C flux-related variables than model parameters. However, the parameter uncertainty primarily contributes to the uncertainty in forecasting C pool-related response variables. Given the uncertainties in forecasting carbon fluxes and pools, our analysis showed that statistically different responses of fast-turnover pools to various CO2 and warming treatments were observed sooner than slow-turnover pools. Our study has identified the sources of uncertainties in model prediction and thus leads to improve ecological carbon cycling forecasts in the future.

  7. The Rise of Complexity in Flood Forecasting: Opportunities, Challenges and Tradeoffs

    NASA Astrophysics Data System (ADS)

    Wood, A. W.; Clark, M. P.; Nijssen, B.

    2017-12-01

    Operational flood forecasting is currently undergoing a major transformation. Most national flood forecasting services have relied for decades on lumped, highly calibrated conceptual hydrological models running on local office computing resources, providing deterministic streamflow predictions at gauged river locations that are important to stakeholders and emergency managers. A variety of recent technological advances now make it possible to run complex, high-to-hyper-resolution models for operational hydrologic prediction over large domains, and the US National Weather Service is now attempting to use hyper-resolution models to create new forecast services and products. Yet other `increased-complexity' forecasting strategies also exist that pursue different tradeoffs between model complexity (i.e., spatial resolution, physics) and streamflow forecast system objectives. There is currently a pressing need for a greater understanding in the hydrology community of the opportunities, challenges and tradeoffs associated with these different forecasting approaches, and for a greater participation by the hydrology community in evaluating, guiding and implementing these approaches. Intermediate-resolution forecast systems, for instance, use distributed land surface model (LSM) physics but retain the agility to deploy ensemble methods (including hydrologic data assimilation and hindcast-based post-processing). Fully coupled numerical weather prediction (NWP) systems, another example, use still coarser LSMs to produce ensemble streamflow predictions either at the model scale or after sub-grid scale runoff routing. Based on the direct experience of the authors and colleagues in research and operational forecasting, this presentation describes examples of different streamflow forecast paradigms, from the traditional to the recent hyper-resolution, to illustrate the range of choices facing forecast system developers. We also discuss the degree to which the strengths and weaknesses of each strategy map onto the requirements for different types of forecasting services (e.g., flash flooding, river flooding, seasonal water supply prediction).

  8. Recent Achievements of the Collaboratory for the Study of Earthquake Predictability

    NASA Astrophysics Data System (ADS)

    Jackson, D. D.; Liukis, M.; Werner, M. J.; Schorlemmer, D.; Yu, J.; Maechling, P. J.; Zechar, J. D.; Jordan, T. H.

    2015-12-01

    Maria Liukis, SCEC, USC; Maximilian Werner, University of Bristol; Danijel Schorlemmer, GFZ Potsdam; John Yu, SCEC, USC; Philip Maechling, SCEC, USC; Jeremy Zechar, Swiss Seismological Service, ETH; Thomas H. Jordan, SCEC, USC, and the CSEP Working Group The Collaboratory for the Study of Earthquake Predictability (CSEP) supports a global program to conduct prospective earthquake forecasting experiments. CSEP testing centers are now operational in California, New Zealand, Japan, China, and Europe with 435 models under evaluation. The California testing center, operated by SCEC, has been operational since Sept 1, 2007, and currently hosts 30-minute, 1-day, 3-month, 1-year and 5-year forecasts, both alarm-based and probabilistic, for California, the Western Pacific, and worldwide. We have reduced testing latency, implemented prototype evaluation of M8 forecasts, and are currently developing formats and procedures to evaluate externally-hosted forecasts and predictions. These efforts are related to CSEP support of the USGS program in operational earthquake forecasting and a DHS project to register and test external forecast procedures from experts outside seismology. A retrospective experiment for the 2010-2012 Canterbury earthquake sequence has been completed, and the results indicate that some physics-based and hybrid models outperform purely statistical (e.g., ETAS) models. The experiment also demonstrates the power of the CSEP cyberinfrastructure for retrospective testing. Our current development includes evaluation strategies that increase computational efficiency for high-resolution global experiments, such as the evaluation of the Global Earthquake Activity Rate (GEAR) model. We describe the open-source CSEP software that is available to researchers as they develop their forecast models (http://northridge.usc.edu/trac/csep/wiki/MiniCSEP). We also discuss applications of CSEP infrastructure to geodetic transient detection and how CSEP procedures are being adapted to ground motion prediction experiments.

  9. Diagnostic Evaluation of Nmme Precipitation and Temperature Forecasts for the Continental United States

    NASA Astrophysics Data System (ADS)

    Karlovits, G. S.; Villarini, G.; Bradley, A.; Vecchi, G. A.

    2014-12-01

    Forecasts of seasonal precipitation and temperature can provide information in advance of potentially costly disruptions caused by flood and drought conditions. The consequences of these adverse hydrometeorological conditions may be mitigated through informed planning and response, given useful and skillful forecasts of these conditions. However, the potential value and applicability of these forecasts is unavoidably linked to their forecast quality. In this work we evaluate the skill of four global circulation models (GCMs) part of the North American Multi-Model Ensemble (NMME) project in forecasting seasonal precipitation and temperature over the continental United States. The GCMs we consider are the Geophysical Fluid Dynamics Laboratory (GFDL)-CM2.1, NASA Global Modeling and Assimilation Office (NASA-GMAO)-GEOS-5, The Center for Ocean-Land-Atmosphere Studies - Rosenstiel School of Marine & Atmospheric Science (COLA-RSMAS)-CCSM3, Canadian Centre for Climate Modeling and Analysis (CCCma) - CanCM4. These models are available at a resolution of 1-degree and monthly, with a minimum forecast lead time of nine months, up to one year. These model ensembles are compared against gridded monthly temperature and precipitation data created by the PRISM Climate Group, which represent the reference observation dataset in this work. Aspects of forecast quality are quantified using a diagnostic skill score decomposition that allows the evaluation of the potential skill and conditional and unconditional biases associated with these forecasts. The evaluation of the decomposed GCM forecast skill over the continental United States, by season and by lead time allows for a better understanding of the utility of these models for flood and drought predictions. Moreover, it also represents a diagnostic tool that could provide model developers feedback about strengths and weaknesses of their models.

  10. Satellite provided customer promises services, a forecast of potential domestic demand through the year 2000. Volume 4: Sensitivity analysis

    NASA Technical Reports Server (NTRS)

    Kratochvil, D.; Bowyer, J.; Bhushan, C.; Steinnagel, K.; Kaushal, D.; Al-Kinani, G.

    1984-01-01

    The overall purpose was to forecast the potential United States domestic telecommunications demand for satellite provided customer promises voice, data and video services through the year 2000, so that this information on service demand would be available to aid in NASA program planning. To accomplish this overall purpose the following objectives were achieved: (1) development of a forecast of the total domestic telecommunications demand; (2) identification of that portion of the telecommunications demand suitable for transmission by satellite systems; (3) identification of that portion of the satellite market addressable by consumer promises service (CPS) systems; (4) identification of that portion of the satellite market addressable by Ka-band CPS system; and (5) postulation of a Ka-band CPS network on a nationwide and local level. The approach employed included the use of a variety of forecasting models, a parametric cost model, a market distribution model and a network optimization model. Forecasts were developed for: 1980, 1990, and 2000; voice, data and video services; terrestrial and satellite delivery modes; and C, Ku and Ka-bands.

  11. Satellite provided customer promises services, a forecast of potential domestic demand through the year 2000. Volume 4: Sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Kratochvil, D.; Bowyer, J.; Bhushan, C.; Steinnagel, K.; Kaushal, D.; Al-Kinani, G.

    1984-03-01

    The overall purpose was to forecast the potential United States domestic telecommunications demand for satellite provided customer promises voice, data and video services through the year 2000, so that this information on service demand would be available to aid in NASA program planning. To accomplish this overall purpose the following objectives were achieved: (1) development of a forecast of the total domestic telecommunications demand; (2) identification of that portion of the telecommunications demand suitable for transmission by satellite systems; (3) identification of that portion of the satellite market addressable by consumer promises service (CPS) systems; (4) identification of that portion of the satellite market addressable by Ka-band CPS system; and (5) postulation of a Ka-band CPS network on a nationwide and local level. The approach employed included the use of a variety of forecasting models, a parametric cost model, a market distribution model and a network optimization model. Forecasts were developed for: 1980, 1990, and 2000; voice, data and video services; terrestrial and satellite delivery modes; and C, Ku and Ka-bands.

  12. Hourly runoff forecasting for flood risk management: Application of various computational intelligence models

    NASA Astrophysics Data System (ADS)

    Badrzadeh, Honey; Sarukkalige, Ranjan; Jayawardena, A. W.

    2015-10-01

    Reliable river flow forecasts play a key role in flood risk mitigation. Among different approaches of river flow forecasting, data driven approaches have become increasingly popular in recent years due to their minimum information requirements and ability to simulate nonlinear and non-stationary characteristics of hydrological processes. In this study, attempts are made to apply four different types of data driven approaches, namely traditional artificial neural networks (ANN), adaptive neuro-fuzzy inference systems (ANFIS), wavelet neural networks (WNN), and, hybrid ANFIS with multi resolution analysis using wavelets (WNF). Developed models applied for real time flood forecasting at Casino station on Richmond River, Australia which is highly prone to flooding. Hourly rainfall and runoff data were used to drive the models which have been used for forecasting with 1, 6, 12, 24, 36 and 48 h lead-time. The performance of models further improved by adding an upstream river flow data (Wiangaree station), as another effective input. All models perform satisfactorily up to 12 h lead-time. However, the hybrid wavelet-based models significantly outperforming the ANFIS and ANN models in the longer lead-time forecasting. The results confirm the robustness of the proposed structure of the hybrid models for real time runoff forecasting in the study area.

  13. Assessing a 3D smoothed seismicity model of induced earthquakes

    NASA Astrophysics Data System (ADS)

    Zechar, Jeremy; Király, Eszter; Gischig, Valentin; Wiemer, Stefan

    2016-04-01

    As more energy exploration and extraction efforts cause earthquakes, it becomes increasingly important to control induced seismicity. Risk management schemes must be improved and should ultimately be based on near-real-time forecasting systems. With this goal in mind, we propose a test bench to evaluate models of induced seismicity based on metrics developed by the CSEP community. To illustrate the test bench, we consider a model based on the so-called seismogenic index and a rate decay; to produce three-dimensional forecasts, we smooth past earthquakes in space and time. We explore four variants of this model using the Basel 2006 and Soultz-sous-Forêts 2004 datasets to make short-term forecasts, test their consistency, and rank the model variants. Our results suggest that such a smoothed seismicity model is useful for forecasting induced seismicity within three days, and giving more weight to recent events improves forecast performance. Moreover, the location of the largest induced earthquake is forecast well by this model. Despite the good spatial performance, the model does not estimate the seismicity rate well: it frequently overestimates during stimulation and during the early post-stimulation period, and it systematically underestimates around shut-in. In this presentation, we also describe a robust estimate of information gain, a modification that can also benefit forecast experiments involving tectonic earthquakes.

  14. Developing International Guidelines on Volcanic Hazard Assessments for Nuclear Facilities

    NASA Astrophysics Data System (ADS)

    Connor, Charles

    2014-05-01

    Worldwide, tremendous progress has been made in recent decades in forecasting volcanic events, such as episodes of volcanic unrest, eruptions, and the potential impacts of eruptions. Generally these forecasts are divided into two categories. Short-term forecasts are prepared in response to unrest at volcanoes, rely on geophysical monitoring and related observations, and have the goal of forecasting events on timescales of hours to weeks to provide time for evacuation of people, shutdown of facilities, and implementation of related safety measures. Long-term forecasts are prepared to better understand the potential impacts of volcanism in the future and to plan for potential volcanic activity. Long-term forecasts are particularly useful to better understand and communicate the potential consequences of volcanic events for populated areas around volcanoes and for siting critical infrastructure, such as nuclear facilities. Recent work by an international team, through the auspices of the International Atomic Energy Agency, has focused on developing guidelines for long-term volcanic hazard assessments. These guidelines have now been implemented for hazard assessment for nuclear facilities in nations including Indonesia, the Philippines, Armenia, Chile, and the United States. One any time scale, all volcanic hazard assessments rely on a geologically reasonable conceptual model of volcanism. Such conceptual models are usually built upon years or decades of geological studies of specific volcanic systems, analogous systems, and development of a process-level understanding of volcanic activity. Conceptual models are used to bound potential rates of volcanic activity, potential magnitudes of eruptions, and to understand temporal and spatial trends in volcanic activity. It is these conceptual models that provide essential justification for assumptions made in statistical model development and the application of numerical models to generate quantitative forecasts. It is a tremendous challenge in quantitative volcanic hazard assessments to encompass alternative conceptual models, and to create models that are robust to evolving understanding of specific volcanic systems by the scientific community. A central question in volcanic hazards forecasts is quantifying rates of volcanic activity. Especially for long-dormant volcanic systems, data from the geologic record may be sparse, individual events may be missing or unrecognized in the geologic record, patterns of activity may be episodic or otherwise nonstationary. This leads to uncertainty in forecasting long-term rates of activity. Hazard assessments strive to quantify such uncertainty, for example by comparing observed rates of activity with alternative parametric and nonparametric models. Numerical models are presented that characterize the spatial distribution of potential volcanic events. These spatial density models serve as the basis for application of numerical models of specific phenomena such as development of lava flow, tephra fallout, and a host of other volcanic phenomena. Monte Carlo techniques (random sampling, stratified sampling, importance sampling) are methods used to sample vent location and other key eruption parameters, such as eruption volume, magma rheology, and eruption column height for probabilistic models. The development of coupled scenarios (e.g., the probability of tephra accumulation on a slope resulting in subsequent debris flows) is also assessed through these methods, usually with the aid of event trees. The primary products of long-term forecasts are a statistical model of the conditional probability of the potential effects of volcanism, should an eruption occur, and the probability of such activity occurring. It is emphasized that hazard forecasting is an iterative process, and board consideration must be given to alternative conceptual models of volcanism, weighting of volcanological data in the analyses, and alternative statistical and numerical models. This structure is amenable to expert elicitation in order to weight alternative models and to explore alternative scenarios.

  15. Statistical and Hydrological evaluation of precipitation forecasts from IMD MME and ECMWF numerical weather forecasts for Indian River basins

    NASA Astrophysics Data System (ADS)

    Mohite, A. R.; Beria, H.; Behera, A. K.; Chatterjee, C.; Singh, R.

    2016-12-01

    Flood forecasting using hydrological models is an important and cost-effective non-structural flood management measure. For forecasting at short lead times, empirical models using real-time precipitation estimates have proven to be reliable. However, their skill depreciates with increasing lead time. Coupling a hydrologic model with real-time rainfall forecasts issued from numerical weather prediction (NWP) systems could increase the lead time substantially. In this study, we compared 1-5 days precipitation forecasts from India Meteorological Department (IMD) Multi-Model Ensemble (MME) with European Center for Medium Weather forecast (ECMWF) NWP forecasts for over 86 major river basins in India. We then evaluated the hydrologic utility of these forecasts over Basantpur catchment (approx. 59,000 km2) of the Mahanadi River basin. Coupled MIKE 11 RR (NAM) and MIKE 11 hydrodynamic (HD) models were used for the development of flood forecast system (FFS). RR model was calibrated using IMD station rainfall data. Cross-sections extracted from SRTM 30 were used as input to the MIKE 11 HD model. IMD started issuing operational MME forecasts from the year 2008, and hence, both the statistical and hydrologic evaluation were carried out from 2008-2014. The performance of FFS was evaluated using both the NWP datasets separately for the year 2011, which was a large flood year in Mahanadi River basin. We will present figures and metrics for statistical (threshold based statistics, skill in terms of correlation and bias) and hydrologic (Nash Sutcliffe efficiency, mean and peak error statistics) evaluation. The statistical evaluation will be at pan-India scale for all the major river basins and the hydrologic evaluation will be for the Basantpur catchment of the Mahanadi River basin.

  16. Use of observational and model-derived fields and regime model output statistics in mesoscale forecasting

    NASA Technical Reports Server (NTRS)

    Forbes, G. S.; Pielke, R. A.

    1985-01-01

    Various empirical and statistical weather-forecasting studies which utilize stratification by weather regime are described. Objective classification was used to determine weather regime in some studies. In other cases the weather pattern was determined on the basis of a parameter representing the physical and dynamical processes relevant to the anticipated mesoscale phenomena, such as low level moisture convergence and convective precipitation, or the Froude number and the occurrence of cold-air damming. For mesoscale phenomena already in existence, new forecasting techniques were developed. The use of cloud models in operational forecasting is discussed. Models to calculate the spatial scales of forcings and resultant response for mesoscale systems are presented. The use of these models to represent the climatologically most prevalent systems, and to perform case-by-case simulations is reviewed. Operational implementation of mesoscale data into weather forecasts, using both actual simulation output and method-output statistics is discussed.

  17. Research of Coal Resources Reserves Prediction Based on GM (1, 1) Model

    NASA Astrophysics Data System (ADS)

    Xiao, Jiancheng

    2018-01-01

    Based on the forecast of China’s coal reserves, this paper uses the GM (1, 1) gray forecasting theory to establish the gray forecasting model of China’s coal reserves based on the data of China’s coal reserves from 2002 to 2009, and obtained the trend of coal resources reserves with the current economic and social development situation, and the residual test model is established, so the prediction model is more accurate. The results show that China’s coal reserves can ensure the use of production at least 300 years of use. And the results are similar to the mainstream forecast results, and that are in line with objective reality.

  18. A forecasting model for power consumption of high energy-consuming industries based on system dynamics

    NASA Astrophysics Data System (ADS)

    Zhou, Zongchuan; Dang, Dongsheng; Qi, Caijuan; Tian, Hongliang

    2018-02-01

    It is of great significance to make accurate forecasting for the power consumption of high energy-consuming industries. A forecasting model for power consumption of high energy-consuming industries based on system dynamics is proposed in this paper. First, several factors that have influence on the development of high energy-consuming industries in recent years are carefully dissected. Next, by analysing the relationship between each factor and power consumption, the system dynamics flow diagram and equations are set up to reflect the relevant relationships among variables. In the end, the validity of the model is verified by forecasting the power consumption of electrolytic aluminium industry in Ningxia according to the proposed model.

  19. THE EMERGENCE OF NUMERICAL AIR QUALITY FORCASTING MODELS AND THEIR APPLICATIONS

    EPA Science Inventory

    In recent years the U.S. and other nations have begun programs for short-term local through regional air quality forecasting based upon numerical three-dimensional air quality grid models. These numerical air quality forecast (NAQF) models and systems have been developed and test...

  20. Bayesian Hierarchical Models to Augment the Mediterranean Forecast System

    DTIC Science & Technology

    2010-09-30

    In part 2 (Bonazzi et al., 2010), the impact of the ensemble forecast methodology based on MFS-Wind-BHM perturbations is documented. Forecast...absence of dt data stage inputs, the forecast impact of MFS-Error-BHM is neutral. Experiments are underway now to introduce dt back into the MFS-Error...BHM and quantify forecast impacts at MFS. MFS-SuperEnsemble-BHM We have assembled all needed datasets and completed algorithmic development

  1. The Texas Children's Hospital immunization forecaster: conceptualization to implementation.

    PubMed

    Cunningham, Rachel M; Sahni, Leila C; Kerr, G Brady; King, Laura L; Bunker, Nathan A; Boom, Julie A

    2014-12-01

    Immunization forecasting systems evaluate patient vaccination histories and recommend the dates and vaccines that should be administered. We described the conceptualization, development, implementation, and distribution of a novel immunization forecaster, the Texas Children's Hospital (TCH) Forecaster. In 2007, TCH convened an internal expert team that included a pediatrician, immunization nurse, software engineer, and immunization subject matter experts to develop the TCH Forecaster. Our team developed the design of the model, wrote the software, populated the Excel tables, integrated the software, and tested the Forecaster. We created a table of rules that contained each vaccine's recommendations, minimum ages and intervals, and contraindications, which served as the basis for the TCH Forecaster. We created 15 vaccine tables that incorporated 79 unique dose states and 84 vaccine types to operationalize the entire United States recommended immunization schedule. The TCH Forecaster was implemented throughout the TCH system, the Indian Health Service, and the Virginia Department of Health. The TCH Forecast Tester is currently being used nationally. Immunization forecasting systems might positively affect adherence to vaccine recommendations. Efforts to support health care provider utilization of immunization forecasting systems and to evaluate their impact on patient care are needed.

  2. Survey Design for a Statewide Multimodal Transportation Forecasting Model

    DOT National Transportation Integrated Search

    1992-02-01

    In 1990, the NMSHTD initiated an ambitious and long-term research project. The : project was to define the process for and undertake the development of a : statewide multimodal transportation forecasting model. The project commenced in : April, 1991....

  3. Forecasting experiments of a dynamical-statistical model of the sea surface temperature anomaly field based on the improved self-memorization principle

    NASA Astrophysics Data System (ADS)

    Hong, Mei; Chen, Xi; Zhang, Ren; Wang, Dong; Shen, Shuanghe; Singh, Vijay P.

    2018-04-01

    With the objective of tackling the problem of inaccurate long-term El Niño-Southern Oscillation (ENSO) forecasts, this paper develops a new dynamical-statistical forecast model of the sea surface temperature anomaly (SSTA) field. To avoid single initial prediction values, a self-memorization principle is introduced to improve the dynamical reconstruction model, thus making the model more appropriate for describing such chaotic systems as ENSO events. The improved dynamical-statistical model of the SSTA field is used to predict SSTA in the equatorial eastern Pacific and during El Niño and La Niña events. The long-term step-by-step forecast results and cross-validated retroactive hindcast results of time series T1 and T2 are found to be satisfactory, with a Pearson correlation coefficient of approximately 0.80 and a mean absolute percentage error (MAPE) of less than 15 %. The corresponding forecast SSTA field is accurate in that not only is the forecast shape similar to the actual field but also the contour lines are essentially the same. This model can also be used to forecast the ENSO index. The temporal correlation coefficient is 0.8062, and the MAPE value of 19.55 % is small. The difference between forecast results in spring and those in autumn is not high, indicating that the improved model can overcome the spring predictability barrier to some extent. Compared with six mature models published previously, the present model has an advantage in prediction precision and length, and is a novel exploration of the ENSO forecast method.

  4. On the effect of model parameters on forecast objects

    NASA Astrophysics Data System (ADS)

    Marzban, Caren; Jones, Corinne; Li, Ning; Sandgathe, Scott

    2018-04-01

    Many physics-based numerical models produce a gridded, spatial field of forecasts, e.g., a temperature map. The field for some quantities generally consists of spatially coherent and disconnected objects. Such objects arise in many problems, including precipitation forecasts in atmospheric models, eddy currents in ocean models, and models of forest fires. Certain features of these objects (e.g., location, size, intensity, and shape) are generally of interest. Here, a methodology is developed for assessing the impact of model parameters on the features of forecast objects. The main ingredients of the methodology include the use of (1) Latin hypercube sampling for varying the values of the model parameters, (2) statistical clustering algorithms for identifying objects, (3) multivariate multiple regression for assessing the impact of multiple model parameters on the distribution (across the forecast domain) of object features, and (4) methods for reducing the number of hypothesis tests and controlling the resulting errors. The final output of the methodology is a series of box plots and confidence intervals that visually display the sensitivities. The methodology is demonstrated on precipitation forecasts from a mesoscale numerical weather prediction model.

  5. Forecasting of wet snow avalanche activity: Proof of concept and operational implementation

    NASA Astrophysics Data System (ADS)

    Gobiet, Andreas; Jöbstl, Lisa; Rieder, Hannes; Bellaire, Sascha; Mitterer, Christoph

    2017-04-01

    State-of-the-art tools for the operational assessment of avalanche danger include field observations, recordings from automatic weather stations, meteorological analyses and forecasts, and recently also indices derived from snowpack models. In particular, an index for identifying the onset of wet-snow avalanche cycles (LWCindex), has been demonstrated to be useful. However, its value for operational avalanche forecasting is currently limited, since detailed, physically based snowpack models are usually driven by meteorological data from automatic weather stations only and have therefore no prognostic ability. Since avalanche risk management heavily relies on timely information and early warnings, many avalanche services in Europe nowadays start issuing forecasts for the following days, instead of the traditional assessment of the current avalanche danger. In this context, the prognostic operation of detailed snowpack models has recently been objective of extensive research. In this study a new, observationally constrained setup for forecasting the onset of wet-snow avalanche cycles with the detailed snow cover model SNOWPACK is presented and evaluated. Based on data from weather stations and different numerical weather prediction models, we demonstrate that forecasts of the LWCindex as indicator for wet-snow avalanche cycles can be useful for operational warning services, but is so far not reliable enough to be used as single warning tool without considering other factors. Therefore, further development currently focuses on the improvement of the forecasts by applying ensemble techniques and suitable post processing approaches to the output of numerical weather prediction models. In parallel, the prognostic meteo-snow model chain is operationally used by two regional avalanche warning services in Austria since winter 2016/2017 for the first time. Experiences from the first operational season and first results from current model developments will be reported.

  6. How accurate are the weather forecasts for Bierun (southern Poland)?

    NASA Astrophysics Data System (ADS)

    Gawor, J.

    2012-04-01

    Weather forecast accuracy has increased in recent times mainly thanks to significant development of numerical weather prediction models. Despite the improvements, the forecasts should be verified to control their quality. The evaluation of forecast accuracy can also be an interesting learning activity for students. It joins natural curiosity about everyday weather and scientific process skills: problem solving, database technologies, graph construction and graphical analysis. The examination of the weather forecasts has been taken by a group of 14-year-old students from Bierun (southern Poland). They participate in the GLOBE program to develop inquiry-based investigations of the local environment. For the atmospheric research the automatic weather station is used. The observed data were compared with corresponding forecasts produced by two numerical weather prediction models, i.e. COAMPS (Coupled Ocean/Atmosphere Mesoscale Prediction System) developed by Naval Research Laboratory Monterey, USA; it runs operationally at the Interdisciplinary Centre for Mathematical and Computational Modelling in Warsaw, Poland and COSMO (The Consortium for Small-scale Modelling) used by the Polish Institute of Meteorology and Water Management. The analysed data included air temperature, precipitation, wind speed, wind chill and sea level pressure. The prediction periods from 0 to 24 hours (Day 1) and from 24 to 48 hours (Day 2) were considered. The verification statistics that are commonly used in meteorology have been applied: mean error, also known as bias, for continuous data and a 2x2 contingency table to get the hit rate and false alarm ratio for a few precipitation thresholds. The results of the aforementioned activity became an interesting basis for discussion. The most important topics are: 1) to what extent can we rely on the weather forecasts? 2) How accurate are the forecasts for two considered time ranges? 3) Which precipitation threshold is the most predictable? 4) Why are some weather elements easier to verify than others? 5) What factors may contribute to the quality of the weather forecast?

  7. Seasonal forecasting for water resource management: the example of CNR Genissiat dam on the Rhone River in France

    NASA Astrophysics Data System (ADS)

    Dommanget, Etienne; Bellier, Joseph; Ben Daoud, Aurélien; Graff, Benjamin

    2014-05-01

    Compagnie Nationale du Rhône (CNR) has been granted the concession to operate the Rhone River from the Swiss border to the Mediterranean Sea since 1933 and carries out three interdependent missions: navigation, irrigation and hydropower production. Nowadays, CNR generates one quarter of France's hydropower electricity. The convergence of public and private interests around optimizing the management of water resources throughout the French Rhone valley led CNR to develop hydrological models dedicated to discharge seasonal forecasting. Indeed, seasonal forecasting is a major issue for CNR and water resource management, in order to optimize long-term investments of the produced electricity, plan dam maintenance operations and anticipate low water period. Seasonal forecasting models have been developed on the Genissiat dam. With an installed capacity of 420MW, Genissiat dam is the first of the 19 CNR's hydropower plants. Discharge forecasting at Genissiat dam is strategic since its inflows contributes to 20% of the total Rhone average discharge and consequently to 40% of the total Rhone hydropower production. Forecasts are based on hydrological statistical models. Discharge on the main Rhone River tributaries upstream Genissiat dam are forecasted from 1 to 6 months ahead thanks to multiple linear regressions. Inputs data of these regressions are identified depending on river hydrological regimes and periods of the year. For the melting season, from spring to summer, snow water equivalent (SWE) data are of major importance. SWE data are calculated from Crocus model (Météo France) and SLF's model (Switzerland). CNR hydro-meteorological forecasters assessed meteorological trends regarding precipitations for the next coming months. These trends are used to generate stochastically precipitation scenarios in order to complement regression data set. This probabilistic approach build a decision-making supports for CNR's water resource management team and provides them with seasonal forecasts and their confidence interval. After a presentation of CNR methodology, results for the years 2011 and 2013 will illustrate CNR's seasonal forecasting models ability. These years are of particular interest regarding water resource management seeing that they are, respectively, unusually dry and snowy. Model performances will be assessed in comparison with historical climatology thanks to CRPS skill score.

  8. Routine High-Resolution Forecasts/Analyses for the Pacific Disaster Center: User Manual

    NASA Technical Reports Server (NTRS)

    Roads, John; Han, J.; Chen, S.; Burgan, R.; Fujioka, F.; Stevens, D.; Funayama, D.; Chambers, C.; Bingaman, B.; McCord, C.; hide

    2001-01-01

    Enclosed herein is our HWCMO user manual. This manual constitutes the final report for our NASA/PDC grant, NASA NAG5-8730, "Routine High Resolution Forecasts/Analysis for the Pacific Disaster Center". Since the beginning of the grant, we have routinely provided experimental high resolution forecasts from the RSM/MSM for the Hawaii Islands, while working to upgrade the system to include: (1) a more robust input of NCEP analyses directly from NCEP; (2) higher vertical resolution, with increased forecast accuracy; (3) faster delivery of forecast products and extension of initial 1-day forecasts to 2 days; (4) augmentation of our basic meteorological and simplified fireweather forecasts to firedanger and drought forecasts; (5) additional meteorological forecasts with an alternate mesoscale model (MM5); and (6) the feasibility of using our modeling system to work in higher-resolution domains and other regions. In this user manual, we provide a general overview of the operational system and the mesoscale models as well as more detailed descriptions of the models. A detailed description of daily operations and a cost analysis is also provided. Evaluations of the models are included although it should be noted that model evaluation is a continuing process and as potential problems are identified, these can be used as the basis for making model improvements. Finally, we include our previously submitted answers to particular PDC questions (Appendix V). All of our initially proposed objectives have basically been met. In fact, a number of useful applications (VOG, air pollution transport) are already utilizing our experimental output and we believe there are a number of other applications that could make use of our routine forecast/analysis products. Still, work still remains to be done to further develop this experimental weather, climate, fire danger and drought prediction system. In short, we would like to be a part of a future PDC team, if at all possible, to further develop and apply the system for the Hawaiian and other Pacific Islands as well as the entire Pacific Basin.

  9. Developing a dengue forecast model using machine learning: A case study in China.

    PubMed

    Guo, Pi; Liu, Tao; Zhang, Qin; Wang, Li; Xiao, Jianpeng; Zhang, Qingying; Luo, Ganfeng; Li, Zhihao; He, Jianfeng; Zhang, Yonghui; Ma, Wenjun

    2017-10-01

    In China, dengue remains an important public health issue with expanded areas and increased incidence recently. Accurate and timely forecasts of dengue incidence in China are still lacking. We aimed to use the state-of-the-art machine learning algorithms to develop an accurate predictive model of dengue. Weekly dengue cases, Baidu search queries and climate factors (mean temperature, relative humidity and rainfall) during 2011-2014 in Guangdong were gathered. A dengue search index was constructed for developing the predictive models in combination with climate factors. The observed year and week were also included in the models to control for the long-term trend and seasonality. Several machine learning algorithms, including the support vector regression (SVR) algorithm, step-down linear regression model, gradient boosted regression tree algorithm (GBM), negative binomial regression model (NBM), least absolute shrinkage and selection operator (LASSO) linear regression model and generalized additive model (GAM), were used as candidate models to predict dengue incidence. Performance and goodness of fit of the models were assessed using the root-mean-square error (RMSE) and R-squared measures. The residuals of the models were examined using the autocorrelation and partial autocorrelation function analyses to check the validity of the models. The models were further validated using dengue surveillance data from five other provinces. The epidemics during the last 12 weeks and the peak of the 2014 large outbreak were accurately forecasted by the SVR model selected by a cross-validation technique. Moreover, the SVR model had the consistently smallest prediction error rates for tracking the dynamics of dengue and forecasting the outbreaks in other areas in China. The proposed SVR model achieved a superior performance in comparison with other forecasting techniques assessed in this study. The findings can help the government and community respond early to dengue epidemics.

  10. [Predicting Incidence of Hepatitis E in Chinausing Fuzzy Time Series Based on Fuzzy C-Means Clustering Analysis].

    PubMed

    Luo, Yi; Zhang, Tao; Li, Xiao-song

    2016-05-01

    To explore the application of fuzzy time series model based on fuzzy c-means clustering in forecasting monthly incidence of Hepatitis E in mainland China. Apredictive model (fuzzy time series method based on fuzzy c-means clustering) was developed using Hepatitis E incidence data in mainland China between January 2004 and July 2014. The incidence datafrom August 2014 to November 2014 were used to test the fitness of the predictive model. The forecasting results were compared with those resulted from traditional fuzzy time series models. The fuzzy time series model based on fuzzy c-means clustering had 0.001 1 mean squared error (MSE) of fitting and 6.977 5 x 10⁻⁴ MSE of forecasting, compared with 0.0017 and 0.0014 from the traditional forecasting model. The results indicate that the fuzzy time series model based on fuzzy c-means clustering has a better performance in forecasting incidence of Hepatitis E.

  11. Adjusting Wavelet-based Multiresolution Analysis Boundary Conditions for Robust Long-term Streamflow Forecasting Model

    NASA Astrophysics Data System (ADS)

    Maslova, I.; Ticlavilca, A. M.; McKee, M.

    2012-12-01

    There has been an increased interest in wavelet-based streamflow forecasting models in recent years. Often overlooked in this approach are the circularity assumptions of the wavelet transform. We propose a novel technique for minimizing the wavelet decomposition boundary condition effect to produce long-term, up to 12 months ahead, forecasts of streamflow. A simulation study is performed to evaluate the effects of different wavelet boundary rules using synthetic and real streamflow data. A hybrid wavelet-multivariate relevance vector machine model is developed for forecasting the streamflow in real-time for Yellowstone River, Uinta Basin, Utah, USA. The inputs of the model utilize only the past monthly streamflow records. They are decomposed into components formulated in terms of wavelet multiresolution analysis. It is shown that the model model accuracy can be increased by using the wavelet boundary rule introduced in this study. This long-term streamflow modeling and forecasting methodology would enable better decision-making and managing water availability risk.

  12. Verification of space weather forecasts at the UK Met Office

    NASA Astrophysics Data System (ADS)

    Bingham, S.; Sharpe, M.; Jackson, D.; Murray, S.

    2017-12-01

    The UK Met Office Space Weather Operations Centre (MOSWOC) has produced space weather guidance twice a day since its official opening in 2014. Guidance includes 4-day probabilistic forecasts of X-ray flares, geomagnetic storms, high-energy electron events and high-energy proton events. Evaluation of such forecasts is important to forecasters, stakeholders, model developers and users to understand the performance of these forecasts and also strengths and weaknesses to enable further development. Met Office terrestrial near real-time verification systems have been adapted to provide verification of X-ray flare and geomagnetic storm forecasts. Verification is updated daily to produce Relative Operating Characteristic (ROC) curves and Reliability diagrams, and rolling Ranked Probability Skill Scores (RPSSs) thus providing understanding of forecast performance and skill. Results suggest that the MOSWOC issued X-ray flare forecasts are usually not statistically significantly better than a benchmark climatological forecast (where the climatology is based on observations from the previous few months). By contrast, the issued geomagnetic storm activity forecast typically performs better against this climatological benchmark.

  13. Long-range forecast of all India summer monsoon rainfall using adaptive neuro-fuzzy inference system: skill comparison with CFSv2 model simulation and real-time forecast for the year 2015

    NASA Astrophysics Data System (ADS)

    Chaudhuri, S.; Das, D.; Goswami, S.; Das, S. K.

    2016-11-01

    All India summer monsoon rainfall (AISMR) characteristics play a vital role for the policy planning and national economy of the country. In view of the significant impact of monsoon system on regional as well as global climate systems, accurate prediction of summer monsoon rainfall has become a challenge. The objective of this study is to develop an adaptive neuro-fuzzy inference system (ANFIS) for long range forecast of AISMR. The NCEP/NCAR reanalysis data of temperature, zonal and meridional wind at different pressure levels have been taken to construct the input matrix of ANFIS. The membership of the input parameters for AISMR as high, medium or low is estimated with trapezoidal membership function. The fuzzified standardized input parameters and the de-fuzzified target output are trained with artificial neural network models. The forecast of AISMR with ANFIS is compared with non-hybrid multi-layer perceptron model (MLP), radial basis functions network (RBFN) and multiple linear regression (MLR) models. The forecast error analyses of the models reveal that ANFIS provides the best forecast of AISMR with minimum prediction error of 0.076, whereas the errors with MLP, RBFN and MLR models are 0.22, 0.18 and 0.73 respectively. During validation with observations, ANFIS shows its potency over the said comparative models. Performance of the ANFIS model is verified through different statistical skill scores, which also confirms the aptitude of ANFIS in forecasting AISMR. The forecast skill of ANFIS is also observed to be better than Climate Forecast System version 2. The real-time forecast with ANFIS shows possibility of deficit (65-75 cm) AISMR in the year 2015.

  14. Development of a model-based flood emergency management system in Yujiang River Basin, South China

    NASA Astrophysics Data System (ADS)

    Zeng, Yong; Cai, Yanpeng; Jia, Peng; Mao, Jiansu

    2014-06-01

    Flooding is the most frequent disaster in China. It affects people's lives and properties, causing considerable economic loss. Flood forecast and operation of reservoirs are important in flood emergency management. Although great progress has been achieved in flood forecast and reservoir operation through using computer, network technology, and geographic information system technology in China, the prediction accuracy of models are not satisfactory due to the unavailability of real-time monitoring data. Also, real-time flood control scenario analysis is not effective in many regions and can seldom provide online decision support function. In this research, a decision support system for real-time flood forecasting in Yujiang River Basin, South China (DSS-YRB) is introduced in this paper. This system is based on hydrological and hydraulic mathematical models. The conceptual framework and detailed components of the proposed DSS-YRB is illustrated, which employs real-time rainfall data conversion, model-driven hydrologic forecasting, model calibration, data assimilation methods, and reservoir operational scenario analysis. Multi-tiered architecture offers great flexibility, portability, reusability, and reliability. The applied case study results show the development and application of a decision support system for real-time flood forecasting and operation is beneficial for flood control.

  15. A simple Lagrangian forecast system with aviation forecast potential

    NASA Technical Reports Server (NTRS)

    Petersen, R. A.; Homan, J. H.

    1983-01-01

    A trajectory forecast procedure is developed which uses geopotential tendency fields obtained from a simple, multiple layer, potential vorticity conservative isentropic model. This model can objectively account for short-term advective changes in the mass field when combined with fine-scale initial analyses. This procedure for producing short-term, upper-tropospheric trajectory forecasts employs a combination of a detailed objective analysis technique, an efficient mass advection model, and a diagnostically proven trajectory algorithm, none of which require extensive computer resources. Results of initial tests are presented, which indicate an exceptionally good agreement for trajectory paths entering the jet stream and passing through an intensifying trough. It is concluded that this technique not only has potential for aiding in route determination, fuel use estimation, and clear air turbulence detection, but also provides an example of the types of short range forecasting procedures which can be applied at local forecast centers using simple algorithms and a minimum of computer resources.

  16. Gridded Calibration of Ensemble Wind Vector Forecasts Using Ensemble Model Output Statistics

    NASA Astrophysics Data System (ADS)

    Lazarus, S. M.; Holman, B. P.; Splitt, M. E.

    2017-12-01

    A computationally efficient method is developed that performs gridded post processing of ensemble wind vector forecasts. An expansive set of idealized WRF model simulations are generated to provide physically consistent high resolution winds over a coastal domain characterized by an intricate land / water mask. Ensemble model output statistics (EMOS) is used to calibrate the ensemble wind vector forecasts at observation locations. The local EMOS predictive parameters (mean and variance) are then spread throughout the grid utilizing flow-dependent statistical relationships extracted from the downscaled WRF winds. Using data withdrawal and 28 east central Florida stations, the method is applied to one year of 24 h wind forecasts from the Global Ensemble Forecast System (GEFS). Compared to the raw GEFS, the approach improves both the deterministic and probabilistic forecast skill. Analysis of multivariate rank histograms indicate the post processed forecasts are calibrated. Two downscaling case studies are presented, a quiescent easterly flow event and a frontal passage. Strengths and weaknesses of the approach are presented and discussed.

  17. Effects of temperature on flood forecasting: analysis of an operative case study in Alpine basins

    NASA Astrophysics Data System (ADS)

    Ceppi, A.; Ravazzani, G.; Salandin, A.; Rabuffetti, D.; Montani, A.; Borgonovo, E.; Mancini, M.

    2013-04-01

    In recent years the interest in the forecast and prevention of natural hazards related to hydro-meteorological events has increased the challenge for numerical weather modelling, in particular for limited area models, to improve the quantitative precipitation forecasts (QPF) for hydrological purposes. After the encouraging results obtained in the MAP D-PHASE Project, we decided to devote further analyses to show recent improvements in the operational use of hydro-meteorological chains, and above all to better investigate the key role played by temperature during snowy precipitation. In this study we present a reanalysis simulation of one meteorological event, which occurred in November 2008 in the Piedmont Region. The attention is focused on the key role of air temperature, which is a crucial feature in determining the partitioning of precipitation in solid and liquid phase, influencing the quantitative discharge forecast (QDF) into the Alpine region. This is linked to the basin ipsographic curve and therefore by the total contributing area related to the snow line of the event. In order to assess hydrological predictions affected by meteorological forcing, a sensitivity analysis of the model output was carried out to evaluate different simulation scenarios, considering the forecast effects which can radically modify the discharge forecast. Results show how in real-time systems hydrological forecasters have to consider also the temperature uncertainty in forecasts in order to better understand the snow dynamics and its effect on runoff during a meteorological warning with a crucial snow line over the basin. The hydrological ensemble forecasts are based on the 16 members of the meteorological ensemble system COSMO-LEPS (developed by ARPA-SIMC) based on the non-hydrostatic model COSMO, while the hydrological model used to generate the runoff simulations is the rainfall-runoff distributed FEST-WB model, developed at Politecnico di Milano.

  18. A Global Aerosol Model Forecast for the ACE-Asia Field Experiment

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Ginoux, Paul; Lucchesi, Robert; Huebert, Barry; Weber, Rodney; Anderson, Tad; Masonis, Sarah; Blomquist, Byron; Bandy, Alan; Thornton, Donald

    2003-01-01

    We present the results of aerosol forecast during the Aerosol Characterization Experiment (ACE-Asia) field experiment in spring 2001, using the Georgia Tech/Goddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model and the meteorological forecast fields from the Goddard Earth Observing System Data Assimilation System (GEOS DAS). The aerosol model forecast provides direct information on aerosol optical thickness and concentrations, enabling effective flight planning, while feedbacks from measurements constantly evaluate the model, making successful model improvements. We verify the model forecast skill by comparing model predicted total aerosol extinction, dust, sulfate, and SO2 concentrations with those quantities measured by the C-130 aircraft during the ACE-Asia intensive operation period. The GEOS DAS meteorological forecast system shows excellent skills in predicting winds, relative humidity, and temperature for the ACE-Asia experiment area as well as for each individual flight, with skill scores usually above 0.7. The model is also skillful in forecast of pollution aerosols, with most scores above 0.5. The model correctly predicted the dust outbreak events and their trans-Pacific transport, but it constantly missed the high dust concentrations observed in the boundary layer. We attribute this missing dust source to the desertification regions in the Inner Mongolia Province in China, which have developed in recent years but were not included in the model during forecasting. After incorporating the desertification sources, the model is able to reproduce the observed high dust concentrations at low altitudes over the Yellow Sea. Two key elements for a successful aerosol model forecast are correct source locations that determine where the emissions take place, and realistic forecast winds and convection that determine where the aerosols are transported. We demonstrate that our global model can not only account for the large-scale intercontinental transport, but also produce the small-scale spatial and temporal variations that are adequate for aircraft measurements planning.

  19. Short-term integrated forecasting system : 1993 model documentation report

    DOT National Transportation Integrated Search

    1993-12-01

    The purpose of this report is to define the Short-Term Integrated Forecasting System (STIFS) and describe its basic properties. The Energy Information Administration (EIA) of the U.S. Energy Department (DOE) developed the STIFS model to generate shor...

  20. Research Review, 1984

    NASA Technical Reports Server (NTRS)

    1986-01-01

    A variety of topics relevant to global modeling and simulation are presented. Areas of interest include: (1) analysis and forecast studies; (2) satellite observing systems; (3) analysis and forecast model development; (4) atmospheric dynamics and diagnostic studies; (5) climate/ocean-air interactions; and notes from lectures.

  1. Air Pollution Forecasts: An Overview

    PubMed Central

    Bai, Lu; Wang, Jianzhou; Lu, Haiyan

    2018-01-01

    Air pollution is defined as a phenomenon harmful to the ecological system and the normal conditions of human existence and development when some substances in the atmosphere exceed a certain concentration. In the face of increasingly serious environmental pollution problems, scholars have conducted a significant quantity of related research, and in those studies, the forecasting of air pollution has been of paramount importance. As a precaution, the air pollution forecast is the basis for taking effective pollution control measures, and accurate forecasting of air pollution has become an important task. Extensive research indicates that the methods of air pollution forecasting can be broadly divided into three classical categories: statistical forecasting methods, artificial intelligence methods, and numerical forecasting methods. More recently, some hybrid models have been proposed, which can improve the forecast accuracy. To provide a clear perspective on air pollution forecasting, this study reviews the theory and application of those forecasting models. In addition, based on a comparison of different forecasting methods, the advantages and disadvantages of some methods of forecasting are also provided. This study aims to provide an overview of air pollution forecasting methods for easy access and reference by researchers, which will be helpful in further studies. PMID:29673227

  2. Air Pollution Forecasts: An Overview.

    PubMed

    Bai, Lu; Wang, Jianzhou; Ma, Xuejiao; Lu, Haiyan

    2018-04-17

    Air pollution is defined as a phenomenon harmful to the ecological system and the normal conditions of human existence and development when some substances in the atmosphere exceed a certain concentration. In the face of increasingly serious environmental pollution problems, scholars have conducted a significant quantity of related research, and in those studies, the forecasting of air pollution has been of paramount importance. As a precaution, the air pollution forecast is the basis for taking effective pollution control measures, and accurate forecasting of air pollution has become an important task. Extensive research indicates that the methods of air pollution forecasting can be broadly divided into three classical categories: statistical forecasting methods, artificial intelligence methods, and numerical forecasting methods. More recently, some hybrid models have been proposed, which can improve the forecast accuracy. To provide a clear perspective on air pollution forecasting, this study reviews the theory and application of those forecasting models. In addition, based on a comparison of different forecasting methods, the advantages and disadvantages of some methods of forecasting are also provided. This study aims to provide an overview of air pollution forecasting methods for easy access and reference by researchers, which will be helpful in further studies.

  3. Improvements and Lingering Challenges with Modeling Low-Level Winds Over Complex Terrain during the Wind Forecast Improvement Project 2

    NASA Astrophysics Data System (ADS)

    Olson, J.; Kenyon, J.; Brown, J. M.; Angevine, W. M.; Marquis, M.; Pichugina, Y. L.; Choukulkar, A.; Bonin, T.; Banta, R. M.; Bianco, L.; Djalalova, I.; McCaffrey, K.; Wilczak, J. M.; Lantz, K. O.; Long, C. N.; Redfern, S.; McCaa, J. R.; Stoelinga, M.; Grimit, E.; Cline, J.; Shaw, W. J.; Lundquist, J. K.; Lundquist, K. A.; Kosovic, B.; Berg, L. K.; Kotamarthi, V. R.; Sharp, J.; Jiménez, P.

    2017-12-01

    The Rapid Refresh (RAP) and High-Resolution Rapid Refresh (HRRR) are NOAA real-time operational hourly updating forecast systems run at 13- and 3-km grid spacing, respectively. Both systems use the Advanced Research version of the Weather Research and Forecasting (WRF-ARW) as the model component of the forecast system. During the second installment of the Wind Forecast Improvement Project (WFIP 2), the RAP/HRRR have been targeted for the improvement of low-level wind forecasts in the complex terrain within the Columbia River Basin (CRB), which requires much finer grid spacing to resolve important terrain peaks in the Cascade Mountains as well as the Columbia River Gorge. Therefore, this project provides a unique opportunity to test and develop the RAP/HRRR physics suite within a very high-resolution nest (Δx = 750 m) over the northwestern US. Special effort is made to incorporate scale-aware aspects into the model physical parameterizations to improve RAP/HRRR wind forecasts for any application at any grid spacing. Many wind profiling and scanning instruments have been deployed in the CRB in support the WFIP 2 field project, which spanned 01 October 2015 to 31 March 2017. During the project, several forecast error modes were identified, such as: (1) too-shallow cold pools during the cool season, which can mix-out more frequently than observed and (2) the low wind speed bias in thermal trough-induced gap flows during the warm season. Development has been focused on the column-based turbulent mixing scheme to improve upon these biases, but investigating the effects of horizontal (and 3D) mixing has also helped improve some of the common forecast failure modes. This presentation will highlight the testing and development of various model components, showing the improvements over original versions for temperature and wind profiles. Examples of case studies and retrospective periods will be presented to illustrate the improvements. We will demonstrate that the improvements made in WFIP 2 will be extendable to other regions, complex or flat terrain. Ongoing and future challenges in RAP/HRRR physics development will be touched upon.

  4. PM2.5 forecasting using SVR with PSOGSA algorithm based on CEEMD, GRNN and GCA considering meteorological factors

    NASA Astrophysics Data System (ADS)

    Zhu, Suling; Lian, Xiuyuan; Wei, Lin; Che, Jinxing; Shen, Xiping; Yang, Ling; Qiu, Xuanlin; Liu, Xiaoning; Gao, Wenlong; Ren, Xiaowei; Li, Juansheng

    2018-06-01

    The PM2.5 is the culprit of air pollution, and it leads to respiratory system disease when the fine particles are inhaled. Therefore, it is increasingly significant to develop an effective model for PM2.5 forecasting and warnings that informs people to foresee the air quality. People can reduce outdoor activities and take preventive measures if they know the air quality is bad ahead of time. In addition, reliable forecasting results can remind the relevant departments to control and reduce pollutants discharge. According to our knowledge, the current hybrid forecasting techniques of PM2.5 do not take the meteorological factors into consideration. Actually, meteorological factors affect the concentrations of air pollution, but it is unclear whether meteorological factors are helpful for improving the PM2.5 forecasting results or not. This paper proposes a hybrid model called CEEMD-PSOGSA-SVR-GRNN, based on complementary ensemble empirical mode decomposition (CEEMD), particle swarm optimization and gravitational search algorithm (PSOGSA), support vector regression (SVR), generalized regression neural network (GRNN) and grey correlation analysis (GCA), for the daily PM2.5 concentrations forecasting. The main steps of proposed model are described as follows: the original PM2.5 data decomposition with CEEMD, optimal SVR selection with PSOGCA, meteorological factors selection with GCA, residual revision by GRNN and forecasting results analysis. Three cities (Chongqing, Harbin and Jinan) in China with different characteristics of climate, terrain and pollution sources are selected to verify the effectiveness of proposed model, and CEEMD-PSOGSA-SVR*, EEMD-PSOGSA-SVR, PSOGSA-SVR, CEEMD-PSO-SVR, CEEMD-GSA-SVR, CEEMD-GWO-SVR are considered to be compared models. The experimental results show that the hybrid CEEMD-PSOGSA-SVR-GRNN model outperforms other six compared models. Therefore, the proposed CEEMD-PSOGSA-SVR-GRNN model can be used to develop air quality forecasting and warnings.

  5. Prediction of heavy rainfall over Chennai Metropolitan City, Tamil Nadu, India: Impact of microphysical parameterization schemes

    NASA Astrophysics Data System (ADS)

    Singh, K. S.; Bonthu, Subbareddy; Purvaja, R.; Robin, R. S.; Kannan, B. A. M.; Ramesh, R.

    2018-04-01

    This study attempts to investigate the real-time prediction of a heavy rainfall event over the Chennai Metropolitan City, Tamil Nadu, India that occurred on 01 December 2015 using Advanced Research Weather Research and Forecasting (WRF-ARW) model. The study evaluates the impact of six microphysical (Lin, WSM6, Goddard, Thompson, Morrison and WDM6) parameterization schemes of the model on prediction of heavy rainfall event. In addition, model sensitivity has also been evaluated with six Planetary Boundary Layer (PBL) and two Land Surface Model (LSM) schemes. Model forecast was carried out using nested domain and the impact of model horizontal grid resolutions were assessed at 9 km, 6 km and 3 km. Analysis of the synoptic features using National Center for Environmental Prediction Global Forecast System (NCEP-GFS) analysis data revealed strong upper-level divergence and high moisture content at lower level were favorable for the occurrence of heavy rainfall event over the northeast coast of Tamil Nadu. The study signified that forecasted rainfall was more sensitive to the microphysics and PBL schemes compared to the LSM schemes. The model provided better forecast of the heavy rainfall event using the logical combination of Goddard microphysics, YSU PBL and Noah LSM schemes, and it was mostly attributed to timely initiation and development of the convective system. The forecast with different horizontal resolutions using cumulus parameterization indicated that the rainfall prediction was not well represented at 9 km and 6 km. The forecast with 3 km horizontal resolution provided better prediction in terms of timely initiation and development of the event. The study highlights that forecast of heavy rainfall events using a high-resolution mesoscale model with suitable representations of physical parameterization schemes are useful for disaster management and planning to minimize the potential loss of life and property.

  6. Improving forecasting accuracy of medium and long-term runoff using artificial neural network based on EEMD decomposition.

    PubMed

    Wang, Wen-chuan; Chau, Kwok-wing; Qiu, Lin; Chen, Yang-bo

    2015-05-01

    Hydrological time series forecasting is one of the most important applications in modern hydrology, especially for the effective reservoir management. In this research, an artificial neural network (ANN) model coupled with the ensemble empirical mode decomposition (EEMD) is presented for forecasting medium and long-term runoff time series. First, the original runoff time series is decomposed into a finite and often small number of intrinsic mode functions (IMFs) and a residual series using EEMD technique for attaining deeper insight into the data characteristics. Then all IMF components and residue are predicted, respectively, through appropriate ANN models. Finally, the forecasted results of the modeled IMFs and residual series are summed to formulate an ensemble forecast for the original annual runoff series. Two annual reservoir runoff time series from Biuliuhe and Mopanshan in China, are investigated using the developed model based on four performance evaluation measures (RMSE, MAPE, R and NSEC). The results obtained in this work indicate that EEMD can effectively enhance forecasting accuracy and the proposed EEMD-ANN model can attain significant improvement over ANN approach in medium and long-term runoff time series forecasting. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Solar energy market penetration models - Science or number mysticism

    NASA Technical Reports Server (NTRS)

    Warren, E. H., Jr.

    1980-01-01

    The forecast market potential of a solar technology is an important factor determining its R&D funding. Since solar energy market penetration models are the method used to forecast market potential, they have a pivotal role in a solar technology's development. This paper critiques the applicability of the most common solar energy market penetration models. It is argued that the assumptions underlying the foundations of rigorously developed models, or the absence of a reasonable foundation for the remaining models, restrict their applicability.

  8. Condition of the upper atmosphere of the Earth at the final stage of flight manned orbital facility (MOF) "Mir". The modeling description

    NASA Astrophysics Data System (ADS)

    Boyarchuk, K. A.; Ivanov-Kholodny, G. S.; Kolomiitsev, O. P.; Surotkin, V. A.

    At flooding MOF ``Mir'' the information on forecasting a condition of the upper atmosphere was used. The forecast was carried out on the basis of numerical model of an atmosphere, which was developed in IZMIRAN. This model allows reproducing and predicting a situation in an Earth space, in an atmosphere and an ionosphere, along an orbit of flight of a space vehicle in the various periods of solar-geophysical conditions. Thus preliminary forecasting solar and geomagnetic activity was carried out on the basis of an individual technique. Before the beginning of operation on flooding MOF ``Mir'' it was found out, that solar activity began to accrue catastrophically. The account of the forecast of its development has forced to speed up the moment of flooding to avoid dangerous development of events. It has allowed minimizing a risk factor - ``Mir'' was flooded successful in the commanded area of Pacific Ocean.

  9. Initial assessment of a multi-model approach to spring flood forecasting in Sweden

    NASA Astrophysics Data System (ADS)

    Olsson, J.; Uvo, C. B.; Foster, K.; Yang, W.

    2015-06-01

    Hydropower is a major energy source in Sweden and proper reservoir management prior to the spring flood onset is crucial for optimal production. This requires useful forecasts of the accumulated discharge in the spring flood period (i.e. the spring-flood volume, SFV). Today's SFV forecasts are generated using a model-based climatological ensemble approach, where time series of precipitation and temperature from historical years are used to force a calibrated and initialised set-up of the HBV model. In this study, a number of new approaches to spring flood forecasting, that reflect the latest developments with respect to analysis and modelling on seasonal time scales, are presented and evaluated. Three main approaches, represented by specific methods, are evaluated in SFV hindcasts for three main Swedish rivers over a 10-year period with lead times between 0 and 4 months. In the first approach, historically analogue years with respect to the climate in the period preceding the spring flood are identified and used to compose a reduced ensemble. In the second, seasonal meteorological ensemble forecasts are used to drive the HBV model over the spring flood period. In the third approach, statistical relationships between SFV and the large-sale atmospheric circulation are used to build forecast models. None of the new approaches consistently outperform the climatological ensemble approach, but for specific locations and lead times improvements of 20-30 % are found. When combining all forecasts in a weighted multi-model approach, a mean improvement over all locations and lead times of nearly 10 % was indicated. This demonstrates the potential of the approach and further development and optimisation into an operational system is ongoing.

  10. Probabilistic empirical prediction of seasonal climate: evaluation and potential applications

    NASA Astrophysics Data System (ADS)

    Dieppois, B.; Eden, J.; van Oldenborgh, G. J.

    2017-12-01

    Preparing for episodes with risks of anomalous weather a month to a year ahead is an important challenge for governments, non-governmental organisations, and private companies and is dependent on the availability of reliable forecasts. The majority of operational seasonal forecasts are made using process-based dynamical models, which are complex, computationally challenging and prone to biases. Empirical forecast approaches built on statistical models to represent physical processes offer an alternative to dynamical systems and can provide either a benchmark for comparison or independent supplementary forecasts. Here, we present a new evaluation of an established empirical system used to predict seasonal climate across the globe. Forecasts for surface air temperature, precipitation and sea level pressure are produced by the KNMI Probabilistic Empirical Prediction (K-PREP) system every month and disseminated via the KNMI Climate Explorer (climexp.knmi.nl). K-PREP is based on multiple linear regression and built on physical principles to the fullest extent with predictive information taken from the global CO2-equivalent concentration, large-scale modes of variability in the climate system and regional-scale information. K-PREP seasonal forecasts for the period 1981-2016 will be compared with corresponding dynamically generated forecasts produced by operational forecast systems. While there are many regions of the world where empirical forecast skill is extremely limited, several areas are identified where K-PREP offers comparable skill to dynamical systems. We discuss two key points in the future development and application of the K-PREP system: (a) the potential for K-PREP to provide a more useful basis for reference forecasts than those based on persistence or climatology, and (b) the added value of including K-PREP forecast information in multi-model forecast products, at least for known regions of good skill. We also discuss the potential development of stakeholder-driven applications of the K-PREP system, including empirical forecasts for circumboreal fire activity.

  11. Predicatbility of windstorm Klaus; sensitivity to PV perturbations

    NASA Astrophysics Data System (ADS)

    Arbogast, P.; Maynard, K.

    2010-09-01

    It appears that some short-range weather forecast failures may be attributed to initial conditions errors. In some cases it is possible to anticipate the behavior of the model by comparison between observations and model analyses. In the case of extratropical cyclone development one may qualify the representation of the upper-level precursors described in terms of PV in the initial conditions by comparison with either satellite ozone or water-vapor. A step forward has been made in developing a tool based upon manual modifications of dynamical tropopause (i.e. height of 1.5 PV units) and PV inversion. After five years of experimentations it turns out that the forecasters eventually succeed in improving the forecast of some strong cyclone development. However the present approach is subjective per se. To measure the subjectivity of the procedure a set of 15 experiments has been performed provided by 7 different people (senior forecasters and scientists involved in dynamical meteorology) in order to improve an initial state of the global model ARPEGE leading to a poor forecast of the wind storm Klaus (24 January 2009). This experiment reveals that the manually defined corrections present common features but also a large spread.

  12. Forecasting the Water Demand in Chongqing, China Using a Grey Prediction Model and Recommendations for the Sustainable Development of Urban Water Consumption

    PubMed Central

    Wu, Hua’an; Zhou, Meng

    2017-01-01

    High accuracy in water demand predictions is an important basis for the rational allocation of city water resources and forms the basis for sustainable urban development. The shortage of water resources in Chongqing, the youngest central municipality in Southwest China, has significantly increased with the population growth and rapid economic development. In this paper, a new grey water-forecasting model (GWFM) was built based on the data characteristics of water consumption. The parameter estimation and error checking methods of the GWFM model were investigated. Then, the GWFM model was employed to simulate the water demands of Chongqing from 2009 to 2015 and forecast it in 2016. The simulation and prediction errors of the GWFM model was checked, and the results show the GWFM model exhibits better simulation and prediction precisions than those of the classical Grey Model with one variable and single order equation GM(1,1) for short and the frequently-used Discrete Grey Model with one variable and single order equation, DGM(1,1) for short. Finally, the water demand in Chongqing from 2017 to 2022 was forecasted, and some corresponding control measures and recommendations were provided based on the prediction results to ensure a viable water supply and promote the sustainable development of the Chongqing economy. PMID:29140266

  13. Physics-based Space Weather Forecasting in the Project for Solar-Terrestrial Environment Prediction (PSTEP) in Japan

    NASA Astrophysics Data System (ADS)

    Kusano, K.

    2016-12-01

    Project for Solar-Terrestrial Environment Prediction (PSTEP) is a Japanese nation-wide research collaboration, which was recently launched. PSTEP aims to develop a synergistic interaction between predictive and scientific studies of the solar-terrestrial environment and to establish the basis for next-generation space weather forecasting using the state-of-the-art observation systems and the physics-based models. For this project, we coordinate the four research groups, which develop (1) the integration of space weather forecast system, (2) the physics-based solar storm prediction, (3) the predictive models of magnetosphere and ionosphere dynamics, and (4) the model of solar cycle activity and its impact on climate, respectively. In this project, we will build the coordinated physics-based model to answer the fundamental questions concerning the onset of solar eruptions and the mechanism for radiation belt dynamics in the Earth's magnetosphere. In this paper, we will show the strategy of PSTEP, and discuss about the role and prospect of the physics-based space weather forecasting system being developed by PSTEP.

  14. Skill of a global seasonal ensemble streamflow forecasting system

    NASA Astrophysics Data System (ADS)

    Candogan Yossef, Naze; Winsemius, Hessel; Weerts, Albrecht; van Beek, Rens; Bierkens, Marc

    2013-04-01

    Forecasting of water availability and scarcity is a prerequisite for managing the risks and opportunities caused by the inter-annual variability of streamflow. Reliable seasonal streamflow forecasts are necessary to prepare for an appropriate response in disaster relief, management of hydropower reservoirs, water supply, agriculture and navigation. Seasonal hydrological forecasting on a global scale could be valuable especially for developing regions of the world, where effective hydrological forecasting systems are scarce. In this study, we investigate the forecasting skill of the global seasonal streamflow forecasting system FEWS-World, using the global hydrological model PCR-GLOBWB. FEWS-World has been setup within the European Commission 7th Framework Programme project Global Water Scarcity Information Service (GLOWASIS). Skill is assessed in historical simulation mode as well as retroactive forecasting mode. The assessment in historical simulation mode used a meteorological forcing based on observations from the Climate Research Unit of the University of East Anglia and the ERA-40 reanalysis of the European Center for Medium-Range Weather Forecasts (ECMWF). We assessed the skill of the global hydrological model PCR-GLOBWB in reproducing past discharge extremes in 20 large rivers of the world. This preliminary assessment concluded that the prospects for seasonal forecasting with PCR-GLOBWB or comparable models are positive. However this assessment did not include actual meteorological forecasts. Thus the meteorological forcing errors were not assessed. Yet, in a forecasting setup, the predictive skill of a hydrological forecasting system is affected by errors due to uncertainty from numerical weather prediction models. For the assessment in retroactive forecasting mode, the model is forced with actual ensemble forecasts from the seasonal forecast archives of ECMWF. Skill is assessed at 78 stations on large river basins across the globe, for all the months of the year and for lead times up to 6 months. The forecasted discharges are compared with observed monthly streamflow records using the ensemble verification measures Brier Skill Score (BSS) and Continuous Ranked Probability Score (CRPS). The eventual goal is to transfer FEWS-World to operational forecasting mode, where the system will use operational seasonal forecasts from ECMWF. The results will be disseminated on the internet, and hopefully provide information that is valuable for users in data and model-poor regions of the world.

  15. Statistical prediction of seasonal discharge in Central Asia for water resources management: development of a generic (pre-)operational modeling tool

    NASA Astrophysics Data System (ADS)

    Apel, Heiko; Baimaganbetov, Azamat; Kalashnikova, Olga; Gavrilenko, Nadejda; Abdykerimova, Zharkinay; Agalhanova, Marina; Gerlitz, Lars; Unger-Shayesteh, Katy; Vorogushyn, Sergiy; Gafurov, Abror

    2017-04-01

    The semi-arid regions of Central Asia crucially depend on the water resources supplied by the mountainous areas of the Tien-Shan and Pamirs. During the summer months the snow and glacier melt dominated river discharge originating in the mountains provides the main water resource available for agricultural production, but also for storage in reservoirs for energy generation during the winter months. Thus a reliable seasonal forecast of the water resources is crucial for a sustainable management and planning of water resources. In fact, seasonal forecasts are mandatory tasks of all national hydro-meteorological services in the region. In order to support the operational seasonal forecast procedures of hydromet services, this study aims at the development of a generic tool for deriving statistical forecast models of seasonal river discharge. The generic model is kept as simple as possible in order to be driven by available hydrological and meteorological data, and be applicable for all catchments with their often limited data availability in the region. As snowmelt dominates summer runoff, the main meteorological predictors for the forecast models are monthly values of winter precipitation and temperature as recorded by climatological stations in the catchments. These data sets are accompanied by snow cover predictors derived from the operational ModSnow tool, which provides cloud free snow cover data for the selected catchments based on MODIS satellite images. In addition to the meteorological data antecedent streamflow is used as a predictor variable. This basic predictor set was further extended by multi-monthly means of the individual predictors, as well as composites of the predictors. Forecast models are derived based on these predictors as linear combinations of up to 3 or 4 predictors. A user selectable number of best models according to pre-defined performance criteria is extracted automatically by the developed model fitting algorithm, which includes a test for robustness by a leave-one-out cross validation. Based on the cross validation the predictive uncertainty was quantified for every prediction model. According to the official procedures of the hydromet services forecasts of the mean seasonal discharge of the period April to September are derived every month starting from January until June. The application of the model for several catchments in Central Asia - ranging from small to the largest rivers - for the period 2000-2015 provided skillful forecasts for most catchments already in January. The skill of the prediction increased every month, with R2 values often in the range 0.8 - 0.9 in April just before the prediction period. The forecasts further improve in the following months, most likely due to the integration of spring precipitation, which is not included in the predictors before May, or spring discharge, which contains indicative information for the overall seasonal discharge. In summary, the proposed generic automatic forecast model development tool provides robust predictions for seasonal water availability in Central Asia, which will be tested against the official forecasts in the upcoming years, with the vision of eventual operational implementation.

  16. Assessment of an ensemble seasonal streamflow forecasting system for Australia

    NASA Astrophysics Data System (ADS)

    Bennett, James C.; Wang, Quan J.; Robertson, David E.; Schepen, Andrew; Li, Ming; Michael, Kelvin

    2017-11-01

    Despite an increasing availability of skilful long-range streamflow forecasts, many water agencies still rely on simple resampled historical inflow sequences (stochastic scenarios) to plan operations over the coming year. We assess a recently developed forecasting system called forecast guided stochastic scenarios (FoGSS) as a skilful alternative to standard stochastic scenarios for the Australian continent. FoGSS uses climate forecasts from a coupled ocean-land-atmosphere prediction system, post-processed with the method of calibration, bridging and merging. Ensemble rainfall forecasts force a monthly rainfall-runoff model, while a staged hydrological error model quantifies and propagates hydrological forecast uncertainty through forecast lead times. FoGSS is able to generate ensemble streamflow forecasts in the form of monthly time series to a 12-month forecast horizon. FoGSS is tested on 63 Australian catchments that cover a wide range of climates, including 21 ephemeral rivers. In all perennial and many ephemeral catchments, FoGSS provides an effective alternative to resampled historical inflow sequences. FoGSS generally produces skilful forecasts at shorter lead times ( < 4 months), and transits to climatology-like forecasts at longer lead times. Forecasts are generally reliable and unbiased. However, FoGSS does not perform well in very dry catchments (catchments that experience zero flows more than half the time in some months), sometimes producing strongly negative forecast skill and poor reliability. We attempt to improve forecasts through the use of (i) ESP rainfall forcings, (ii) different rainfall-runoff models, and (iii) a Bayesian prior to encourage the error model to return climatology forecasts in months when the rainfall-runoff model performs poorly. Of these, the use of the prior offers the clearest benefit in very dry catchments, where it moderates strongly negative forecast skill and reduces bias in some instances. However, the prior does not remedy poor reliability in very dry catchments. Overall, FoGSS is an attractive alternative to historical inflow sequences in all but the driest catchments. We discuss ways in which forecast reliability in very dry catchments could be improved in future work.

  17. A Public-Private-Acadmic Partnership to Advance Solar Power Forecasting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haupt, Sue Ellen

    The National Center for Atmospheric Research (NCAR) is pleased to have led a partnership to advance the state-of-the-science of solar power forecasting by designing, developing, building, deploying, testing, and assessing the SunCast™ Solar Power Forecasting System. The project has included cutting edge research, testing in several geographically- and climatologically-diverse high penetration solar utilities and Independent System Operators (ISOs), and wide dissemination of the research results to raise the bar on solar power forecasting technology. The partners include three other national laboratories, six universities, and industry partners. This public-private-academic team has worked in concert to perform use-inspired research to advance solarmore » power forecasting through cutting-edge research to advance both the necessary forecasting technologies and the metrics for evaluating them. The project has culminated in a year-long, full-scale demonstration of provide irradiance and power forecasts to utilities and ISOs to use in their operations. The project focused on providing elements of a value chain, beginning with the weather that causes a deviation from clear sky irradiance and progresses through monitoring and observations, modeling, forecasting, dissemination and communication of the forecasts, interpretation of the forecast, and through decision-making, which produces outcomes that have an economic value. The system has been evaluated using metrics developed specifically for this project, which has provided rich information on model and system performance. Research was accomplished on the very short range (0-6 hours) Nowcasting system as well as on the longer term (6-72 hour) forecasting system. The shortest range forecasts are based on observations in the field. The shortest range system, built by Brookhaven National Laboratory (BNL) and based on Total Sky Imagers (TSIs) is TSICast, which operates on the shortest time scale with a latency of only a few minutes and forecasts that currently go out to about 15 min. This project has facilitated research in improving the hardware and software so that the new high definition cameras deployed at multiple nearby locations allow discernment of the clouds at varying levels and advection according to the winds observed at those levels. Improvements over “smart persistence” are about 29% for even these very short forecasts. StatCast is based on pyranometer data measured at the site as well as concurrent meteorological observations and forecasts. StatCast is based on regime-dependent artificial intelligence forecasting techniques and has been shown to improve on “smart persistence” forecasts by 15-50%. A second category of short-range forecasting systems employ satellite imagery and use that information to discern clouds and their motion, allowing them to project the clouds, and the resulting blockage of irradiance, in time. CIRACast (the system produced by the Cooperative Institute for Atmospheric Research [CIRA] at Colorado State University) was already one of the more advanced cloud motion systems, which is the reason that team was brought to this project. During the project timeframe, the CIRA team was able to advance cloud shadowing, parallax removal, and implementation of better advecting winds at different altitudes. CIRACast shows generally a 25-40% improvement over Smart Persistence between sunrise and approximately 1600 UTC (Coordinated Universal Time) . A second satellite-based system, MADCast (Multi-sensor Advective Diffusive foreCast system), assimilates data from multiple satellite imagers and profilers to assimilate a fully three-dimensional picture of the cloud into the dynamic core of WRF. During 2015, MADCast (provided at least 70% improvement over Smart Persistence, with most of that skill being derived during partly cloudy conditions. That allows advection of the clouds via the Weather Research and Forecasting (WRF) model dynamics directly. After WRF-Solar™ showed initial success, it was also deployed in nowcasting mode with coarser runs out to 6 hours made hourly. It provided improvements on the order of 50-60% over Smart Persistence for forecasts up to 1600 UTC. The advantages of WRF-Solar-Nowcasting and MADCast were then blended to develop the new MAD-WRF model that incorporates the most important features of each of those models, both assimilating satellite cloud fields and using WRF-So far physics to develop and dissipate clouds. MAE improvements for MAD-WRF for forecasts from 3-6 hours are improved over WRF-Solar-Now by 20%. While all the Nowcasting system components by themselves provide improvement over Smart Persistence, the largest benefit is derived when they are smartly blended together by the Nowcasting Integrator to produce an integrated forecast. The development of WRF-Solar™ under this project has provided the first numerical weather prediction (NWP) model specifically designed to meet the needs of irradiance forecasting. The first augmentation improved the solar tracking algorithm to account for deviations associated with the eccentricity of the Earth’s orbit and the obliquity of the Earth. Second, WRF-Solar™ added the direct normal irradiance (DNI) and diffuse (DIF) components from the radiation parameterization to the model output. Third, efficient parameterizations were implemented to either interpolate the irradiance in between calls to the expensive radiative transfer parameterization, or to use a fast radiative transfer code that avoids computing three-dimensional heating rates but provides the surface irradiance. Fourth, a new parameterization was developed to improve the representation of absorption and scattering of radiation by aerosols (aerosol direct effect). A fifth advance is that the aerosols now interact with the cloud microphysics, altering the cloud evolution and radiative properties, an effect that has been traditionally only implemented in atmospheric computationally costly chemistry models. A sixth development accounts for the feedbacks that sub-grid scale clouds produce in shortwave irradiance as implemented in a shallow cumulus parameterization Finally, WRF-Solar™ also allows assimilation of infrared irradiances from satellites to determine the three dimensional cloud field, allowing for an improved initialization of the cloud field that increases the performance of short-range forecasts. We find that WRF-Solar™ can improve clear sky irradiance prediction by 15-80% over a standard version of WRF, depending on location and cloud conditions. In a formal comparison to the NAM baseline, WRF-Solar™ showed improvements in the Day-Ahead forecast of 22-42%. The SunCast™ system requires substantial software engineering to blend all of the new model components as well as existing publically available NWP model runs. To do this we use an expert system for the Nowcasting blender and the Dynamic Integrated foreCast (DICast®) system for the NWP models. These two systems are then blended, we use an empirical power conversion method to convert the irradiance predictions to power, then apply an analog ensemble (AnEn) approach to further tune the forecast as well as to estimate its uncertainty. The AnEn module decreased RMSE (root mean squared error) by 17% over the blended SunCast™ power forecasts and provided skill in the probabilistic forecast with a Brier Skill Score of 0.55. In addition, we have also developed a Gridded Atmospheric Forecast System (GRAFS) in parallel, leveraging cost share funds. An economic evaluation based on Production Cost Modeling in the Public Service Company of Colorado showed that the observed 50% improvement in forecast accuracy will save their customers $819,200 with the projected MW deployment for 2024. Using econometrics, NCAR has scaled this savings to a national level and shown that an annual expected savings for this 50% forecast error reduction ranges from $11M in 2015 to $43M expected in 2040 with increased solar deployment. This amounts to a $455M discounted savings over the 26 year period of analysis.« less

  18. Optimized Structure of the Traffic Flow Forecasting Model With a Deep Learning Approach.

    PubMed

    Yang, Hao-Fan; Dillon, Tharam S; Chen, Yi-Ping Phoebe

    2017-10-01

    Forecasting accuracy is an important issue for successful intelligent traffic management, especially in the domain of traffic efficiency and congestion reduction. The dawning of the big data era brings opportunities to greatly improve prediction accuracy. In this paper, we propose a novel model, stacked autoencoder Levenberg-Marquardt model, which is a type of deep architecture of neural network approach aiming to improve forecasting accuracy. The proposed model is designed using the Taguchi method to develop an optimized structure and to learn traffic flow features through layer-by-layer feature granulation with a greedy layerwise unsupervised learning algorithm. It is applied to real-world data collected from the M6 freeway in the U.K. and is compared with three existing traffic predictors. To the best of our knowledge, this is the first time that an optimized structure of the traffic flow forecasting model with a deep learning approach is presented. The evaluation results demonstrate that the proposed model with an optimized structure has superior performance in traffic flow forecasting.

  19. Integrating Fluvial and Oceanic Drivers in Operational Flooding Forecasts for San Francisco Bay

    NASA Astrophysics Data System (ADS)

    Herdman, Liv; Erikson, Li; Barnard, Patrick; Kim, Jungho; Cifelli, Rob; Johnson, Lynn

    2016-04-01

    The nine counties that make up the San Francisco Bay area are home to 7.5 million people and these communties are susceptible to flooding along the bay shoreline and inland creeks that drain to the bay. A forecast model that integrates fluvial and oceanic drivers is necessary for predicting flooding in this complex urban environment. The U.S. Geological Survey ( USGS) and National Weather Service (NWS) are developing a state-of-the-art flooding forecast model for the San Francisco Bay area that will predict watershed and ocean-based flooding up to 72 hours in advance of an approaching storm. The model framework for flood forecasts is based on the USGS-developed Coastal Storm Modeling System (CoSMoS) that was applied to San Francisco Bay under the Our Coast Our Future project. For this application, we utilize Delft3D-FM, a hydrodynamic model based on a flexible mesh grid, to calculate water levels that account for tidal forcing, seasonal water level anomalies, surge and in-Bay generated wind waves from the wind and pressure fields of a NWS forecast model, and tributary discharges from the Research Distributed Hydrologic Model (RDHM), developed by the NWS Office of Hydrologic Development. The flooding extent is determined by overlaying the resulting water levels onto a recently completed 2-m digital elevation model of the study area which best resolves the extensive levee and tidal marsh systems in the region. Here we present initial pilot results of hindcast winter storms in January 2010 and December 2012, where the flooding is driven by oceanic and fluvial factors respectively. We also demonstrate the feasibility of predicting flooding on an operational time scale that incorporates both atmospheric and hydrologic forcings.

  20. Purposes and methods of scoring earthquake forecasts

    NASA Astrophysics Data System (ADS)

    Zhuang, J.

    2010-12-01

    There are two kinds of purposes in the studies on earthquake prediction or forecasts: one is to give a systematic estimation of earthquake risks in some particular region and period in order to give advice to governments and enterprises for the use of reducing disasters, the other one is to search for reliable precursors that can be used to improve earthquake prediction or forecasts. For the first case, a complete score is necessary, while for the latter case, a partial score, which can be used to evaluate whether the forecasts or predictions have some advantages than a well know model, is necessary. This study reviews different scoring methods for evaluating the performance of earthquake prediction and forecasts. Especially, the gambling scoring method, which is developed recently, shows its capacity in finding good points in an earthquake prediction algorithm or model that are not in a reference model, even if its overall performance is no better than the reference model.

  1. A principal component regression model to forecast airborne concentration of Cupressaceae pollen in the city of Granada (SE Spain), during 1995-2006.

    PubMed

    Ocaña-Peinado, Francisco M; Valderrama, Mariano J; Bouzas, Paula R

    2013-05-01

    The problem of developing a 2-week-on ahead forecast of atmospheric cypress pollen levels is tackled in this paper by developing a principal component multiple regression model involving several climatic variables. The efficacy of the proposed model is validated by means of an application to real data of Cupressaceae pollen concentration in the city of Granada (southeast of Spain). The model was applied to data from 11 consecutive years (1995-2005), with 2006 being used to validate the forecasts. Based on the work of different authors, factors as temperature, humidity, hours of sun and wind speed were incorporated in the model. This methodology explains approximately 75-80% of the variability in the airborne Cupressaceae pollen concentration.

  2. Automated system for smoke dispersion prediction due to wild fires in Alaska

    NASA Astrophysics Data System (ADS)

    Kulchitsky, A.; Stuefer, M.; Higbie, L.; Newby, G.

    2007-12-01

    Community climate models have enabled development of specific environmental forecast systems. The University of Alaska (UAF) smoke group was created to adapt a smoke forecast system to the Alaska region. The US Forest Service (USFS) Missoula Fire Science Lab had developed a smoke forecast system based on the Weather Research and Forecasting (WRF) Model including chemistry (WRF/Chem). Following the successful experience of USFS, which runs their model operationally for the contiguous U.S., we develop a similar system for Alaska in collaboration with scientists from the USFS Missoula Fire Science Lab. Wildfires are a significant source of air pollution in Alaska because the climate and vegetation favor annual summer fires that burn huge areas. Extreme cases occurred in 2004, when an area larger than Maryland (more than 25000~km2) burned. Small smoke particles with a diameter less than 10~μm can penetrate deep into lungs causing health problems. Smoke also creates a severe restriction to air transport and has tremendous economical effect. The smoke dispersion and forecast system for Alaska was developed at the Geophysical Institute (GI) and the Arctic Region Supercomputing Center (ARSC), both at University of Alaska Fairbanks (UAF). They will help the public and plan activities a few days in advance to avoid dangerous smoke exposure. The availability of modern high performance supercomputers at ARSC allows us to create and run high-resolution, WRF-based smoke dispersion forecast for the entire State of Alaska. The core of the system is a Python program that manages the independent pieces. Our adapted Alaska system performs the following steps \\begin{itemize} Calculate the medium-resolution weather forecast using WRF/Met. Adapt the near real-time satellite-derived wildfire location and extent data that are received via direct broadcast from UAF's "Geographic Information Network of Alaska" (GINA) Calculate fuel moisture using WRF forecasts and National Fire Danger Rating System (NFDRS) fuel maps Calculate smoke emission components using a first order fire emission model Model the smoke plume rise yielding a vertically distribution that accounts for one-dimensional (vertical) concentrations of smoke constituents in the atmosphere above the fire Run WRF/Chem at high resolution for the forecast Use standard graphical tools to provide accessible smoke dispersion The system run twice each day at ARSC. The results will be freely available from a dedicated wildfire smoke web portal at ARSC.

  3. Forecasting the discomfort levels within the greater Athens area, Greece using artificial neural networks and multiple criteria analysis

    NASA Astrophysics Data System (ADS)

    Vouterakos, P. A.; Moustris, K. P.; Bartzokas, A.; Ziomas, I. C.; Nastos, P. T.; Paliatsos, A. G.

    2012-12-01

    In this work, artificial neural networks (ANNs) were developed and applied in order to forecast the discomfort levels due to the combination of high temperature and air humidity, during the hot season of the year, in eight different regions within the Greater Athens area (GAA), Greece. For the selection of the best type and architecture of ANNs-forecasting models, the multiple criteria analysis (MCA) technique was applied. Three different types of ANNs were developed and tested with the MCA method. Concretely, the multilayer perceptron, the generalized feed forward networks (GFFN), and the time-lag recurrent networks were developed and tested. Results showed that the best ANNs type performance was achieved by using the GFFN model for the prediction of discomfort levels due to high temperature and air humidity within GAA. For the evaluation of the constructed ANNs, appropriate statistical indices were used. The analysis proved that the forecasting ability of the developed ANNs models is very satisfactory at a significant statistical level of p < 0.01.

  4. [Application of wavelet neural networks model to forecast incidence of syphilis].

    PubMed

    Zhou, Xian-Feng; Feng, Zi-Jian; Yang, Wei-Zhong; Li, Xiao-Song

    2011-07-01

    To apply Wavelet Neural Networks (WNN) model to forecast incidence of Syphilis. Back Propagation Neural Network (BPNN) and WNN were developed based on the monthly incidence of Syphilis in Sichuan province from 2004 to 2008. The accuracy of forecast was compared between the two models. In the training approximation, the mean absolute error (MAE), rooted mean square error (RMSE) and mean absolute percentage error (MAPE) were 0.0719, 0.0862 and 11.52% respectively for WNN, and 0.0892, 0.1183 and 14.87% respectively for BPNN. The three indexes for generalization of models were 0.0497, 0.0513 and 4.60% for WNN, and 0.0816, 0.1119 and 7.25% for BPNN. WNN is a better model for short-term forecasting of Syphilis.

  5. Long-term ensemble forecast of snowmelt inflow into the Cheboksary Reservoir under two different weather scenarios

    NASA Astrophysics Data System (ADS)

    Gelfan, Alexander; Moreydo, Vsevolod; Motovilov, Yury; Solomatine, Dimitri P.

    2018-04-01

    A long-term forecasting ensemble methodology, applied to water inflows into the Cheboksary Reservoir (Russia), is presented. The methodology is based on a version of the semi-distributed hydrological model ECOMAG (ECOlogical Model for Applied Geophysics) that allows for the calculation of an ensemble of inflow hydrographs using two different sets of weather ensembles for the lead time period: observed weather data, constructed on the basis of the Ensemble Streamflow Prediction methodology (ESP-based forecast), and synthetic weather data, simulated by a multi-site weather generator (WG-based forecast). We have studied the following: (1) whether there is any advantage of the developed ensemble forecasts in comparison with the currently issued operational forecasts of water inflow into the Cheboksary Reservoir, and (2) whether there is any noticeable improvement in probabilistic forecasts when using the WG-simulated ensemble compared to the ESP-based ensemble. We have found that for a 35-year period beginning from the reservoir filling in 1982, both continuous and binary model-based ensemble forecasts (issued in the deterministic form) outperform the operational forecasts of the April-June inflow volume actually used and, additionally, provide acceptable forecasts of additional water regime characteristics besides the inflow volume. We have also demonstrated that the model performance measures (in the verification period) obtained from the WG-based probabilistic forecasts, which are based on a large number of possible weather scenarios, appeared to be more statistically reliable than the corresponding measures calculated from the ESP-based forecasts based on the observed weather scenarios.

  6. United States geological survey's reserve-growth models and their implementation

    USGS Publications Warehouse

    Klett, T.R.

    2005-01-01

    The USGS has developed several mathematical models to forecast reserve growth of fields both in the United States (U.S.) and the world. The models are based on historical reserve growth patterns of fields in the U.S. The patterns of past reserve growth are extrapolated to forecast future reserve growth. Changes of individual field sizes through time are extremely variable, therefore, the reserve growth models take on a statistical approach whereby volumetric changes for populations of fields are used in the models. Field age serves as a measure of the field-development effort that is applied to promote reserve growth. At the time of the USGS World Petroleum Assessment 2000, a reserve growth model for discovered fields of the world was not available. Reserve growth forecasts, therefore, were made based on a model of historical reserve growth of fields of the U.S. To test the feasibility of such an application, reserve growth forecasts were made of 186 giant oil fields of the world (excluding the U.S. and Canada). In addition, forecasts were made for these giant oil fields subdivided into those located in and outside of Organization of Petroleum Exporting Countries (OPEC). The model provided a reserve-growth forecast that closely matched the actual reserve growth that occurred from 1981 through 1996 for the 186 fields as a whole, as well as for both OPEC and non-OPEC subdivisions, despite the differences in reserves definition among the fields of the U.S. and the rest of the world. ?? 2005 International Association for Mathematical Geology.

  7. Flash flood forecasting using simplified hydrological models, radar rainfall forecasts and data assimilation

    NASA Astrophysics Data System (ADS)

    Smith, P. J.; Beven, K.; Panziera, L.

    2012-04-01

    The issuing of timely flood alerts may be dependant upon the ability to predict future values of water level or discharge at locations where observations are available. Catchments at risk of flash flooding often have a rapid natural response time, typically less then the forecast lead time desired for issuing alerts. This work focuses on the provision of short-range (up to 6 hours lead time) predictions of discharge in small catchments based on utilising radar forecasts to drive a hydrological model. An example analysis based upon the Verzasca catchment (Ticino, Switzerland) is presented. Parsimonious time series models with a mechanistic interpretation (so called Data-Based Mechanistic model) have been shown to provide reliable accurate forecasts in many hydrological situations. In this study such a model is developed to predict the discharge at an observed location from observed precipitation data. The model is shown to capture the snow melt response at this site. Observed discharge data is assimilated to improve the forecasts, of up to two hours lead time, that can be generated from observed precipitation. To generate forecasts with greater lead time ensemble precipitation forecasts are utilised. In this study the Nowcasting ORographic precipitation in the Alps (NORA) product outlined in more detail elsewhere (Panziera et al. Q. J. R. Meteorol. Soc. 2011; DOI:10.1002/qj.878) is utilised. NORA precipitation forecasts are derived from historical analogues based on the radar field and upper atmospheric conditions. As such, they avoid the need to explicitly model the evolution of the rainfall field through for example Lagrangian diffusion. The uncertainty in the forecasts is represented by characterisation of the joint distribution of the observed discharge, the discharge forecast using the (in operational conditions unknown) future observed precipitation and that forecast utilising the NORA ensembles. Constructing the joint distribution in this way allows the full historic record of data at the site to inform the predictive distribution. It is shown that, in part due to the limited availability of forecasts, the uncertainty in the relationship between the NORA based forecasts and other variates dominated the resulting predictive uncertainty.

  8. Evaluation of ensemble precipitation forecasts generated through post-processing in a Canadian catchment

    NASA Astrophysics Data System (ADS)

    Jha, Sanjeev K.; Shrestha, Durga L.; Stadnyk, Tricia A.; Coulibaly, Paulin

    2018-03-01

    Flooding in Canada is often caused by heavy rainfall during the snowmelt period. Hydrologic forecast centers rely on precipitation forecasts obtained from numerical weather prediction (NWP) models to enforce hydrological models for streamflow forecasting. The uncertainties in raw quantitative precipitation forecasts (QPFs) are enhanced by physiography and orography effects over a diverse landscape, particularly in the western catchments of Canada. A Bayesian post-processing approach called rainfall post-processing (RPP), developed in Australia (Robertson et al., 2013; Shrestha et al., 2015), has been applied to assess its forecast performance in a Canadian catchment. Raw QPFs obtained from two sources, Global Ensemble Forecasting System (GEFS) Reforecast 2 project, from the National Centers for Environmental Prediction, and Global Deterministic Forecast System (GDPS), from Environment and Climate Change Canada, are used in this study. The study period from January 2013 to December 2015 covered a major flood event in Calgary, Alberta, Canada. Post-processed results show that the RPP is able to remove the bias and reduce the errors of both GEFS and GDPS forecasts. Ensembles generated from the RPP reliably quantify the forecast uncertainty.

  9. Building Reliable Forecasts of Solar Activity

    NASA Technical Reports Server (NTRS)

    Kitiashvili, Irina; Wray, Alan; Mansour, Nagi

    2017-01-01

    Solar ionizing radiation critically depends on the level of the Sun’s magnetic activity. For robust physics-based forecasts, we employ the procedure of data assimilation, which combines theoretical modeling and observational data such that uncertainties in both the model and the observations are taken into account. Currently we are working in two major directions: 1) development of a new long-term forecast procedure on time-scales of the 11-year solar cycle, using a 2-dimensional mean-field dynamo model and synoptic magnetograms; 2) development of 3-dimensional radiative MHD (Magnetohydrodynamic) simulations to investigate the origin and precursors of local manifestations of magnetic activity, such as the formation of magnetic structures and eruptive dynamics.

  10. Demonstrating the Alaska Ocean Observing System in Prince William Sound

    NASA Astrophysics Data System (ADS)

    Schoch, G. Carl; McCammon, Molly

    2013-07-01

    The Alaska Ocean Observing System and the Oil Spill Recovery Institute developed a demonstration project over a 5 year period in Prince William Sound. The primary goal was to develop a quasi-operational system that delivers weather and ocean information in near real time to diverse user communities. This observing system now consists of atmospheric and oceanic sensors, and a new generation of computer models to numerically simulate and forecast weather, waves, and ocean circulation. A state of the art data management system provides access to these products from one internet portal at http://www.aoos.org. The project culminated in a 2009 field experiment that evaluated the observing system and performance of the model forecasts. Observations from terrestrial weather stations and weather buoys validated atmospheric circulation forecasts. Observations from wave gages on weather buoys validated forecasts of significant wave heights and periods. There was an emphasis on validation of surface currents forecasted by the ocean circulation model for oil spill response and search and rescue applications. During the 18 day field experiment a radar array mapped surface currents and drifting buoys were deployed. Hydrographic profiles at fixed stations, and by autonomous vehicles along transects, were made to acquire measurements through the water column. Terrestrial weather stations were the most reliable and least costly to operate, and in situ ocean sensors were more costly and considerably less reliable. The radar surface current mappers were the least reliable and most costly but provided the assimilation and validation data that most improved ocean circulation forecasts. We describe the setting of Prince William Sound and the various observational platforms and forecast models of the observing system, and discuss recommendations for future development.

  11. Multicomponent ensemble models to forecast induced seismicity

    NASA Astrophysics Data System (ADS)

    Király-Proag, E.; Gischig, V.; Zechar, J. D.; Wiemer, S.

    2018-01-01

    In recent years, human-induced seismicity has become a more and more relevant topic due to its economic and social implications. Several models and approaches have been developed to explain underlying physical processes or forecast induced seismicity. They range from simple statistical models to coupled numerical models incorporating complex physics. We advocate the need for forecast testing as currently the best method for ascertaining if models are capable to reasonably accounting for key physical governing processes—or not. Moreover, operational forecast models are of great interest to help on-site decision-making in projects entailing induced earthquakes. We previously introduced a standardized framework following the guidelines of the Collaboratory for the Study of Earthquake Predictability, the Induced Seismicity Test Bench, to test, validate, and rank induced seismicity models. In this study, we describe how to construct multicomponent ensemble models based on Bayesian weightings that deliver more accurate forecasts than individual models in the case of Basel 2006 and Soultz-sous-Forêts 2004 enhanced geothermal stimulation projects. For this, we examine five calibrated variants of two significantly different model groups: (1) Shapiro and Smoothed Seismicity based on the seismogenic index, simple modified Omori-law-type seismicity decay, and temporally weighted smoothed seismicity; (2) Hydraulics and Seismicity based on numerically modelled pore pressure evolution that triggers seismicity using the Mohr-Coulomb failure criterion. We also demonstrate how the individual and ensemble models would perform as part of an operational Adaptive Traffic Light System. Investigating seismicity forecasts based on a range of potential injection scenarios, we use forecast periods of different durations to compute the occurrence probabilities of seismic events M ≥ 3. We show that in the case of the Basel 2006 geothermal stimulation the models forecast hazardous levels of seismicity days before the occurrence of felt events.

  12. Research and Application of an Air Quality Early Warning System Based on a Modified Least Squares Support Vector Machine and a Cloud Model.

    PubMed

    Wang, Jianzhou; Niu, Tong; Wang, Rui

    2017-03-02

    The worsening atmospheric pollution increases the necessity of air quality early warning systems (EWSs). Despite the fact that a massive amount of investigation about EWS in theory and practicality has been conducted by numerous researchers, studies concerning the quantification of uncertain information and comprehensive evaluation are still lacking, which impedes further development in the area. In this paper, firstly a comprehensive warning system is proposed, which consists of two vital indispensable modules, namely effective forecasting and scientific evaluation, respectively. For the forecasting module, a novel hybrid model combining the theory of data preprocessing and numerical optimization is first developed to implement effective forecasting for air pollutant concentration. Especially, in order to further enhance the accuracy and robustness of the warning system, interval forecasting is implemented to quantify the uncertainties generated by forecasts, which can provide significant risk signals by using point forecasting for decision-makers. For the evaluation module, a cloud model, based on probability and fuzzy set theory, is developed to perform comprehensive evaluations of air quality, which can realize the transformation between qualitative concept and quantitative data. To verify the effectiveness and efficiency of the warning system, extensive simulations based on air pollutants data from Dalian in China were effectively implemented, which illustrate that the warning system is not only remarkably high-performance, but also widely applicable.

  13. Research and Application of an Air Quality Early Warning System Based on a Modified Least Squares Support Vector Machine and a Cloud Model

    PubMed Central

    Wang, Jianzhou; Niu, Tong; Wang, Rui

    2017-01-01

    The worsening atmospheric pollution increases the necessity of air quality early warning systems (EWSs). Despite the fact that a massive amount of investigation about EWS in theory and practicality has been conducted by numerous researchers, studies concerning the quantification of uncertain information and comprehensive evaluation are still lacking, which impedes further development in the area. In this paper, firstly a comprehensive warning system is proposed, which consists of two vital indispensable modules, namely effective forecasting and scientific evaluation, respectively. For the forecasting module, a novel hybrid model combining the theory of data preprocessing and numerical optimization is first developed to implement effective forecasting for air pollutant concentration. Especially, in order to further enhance the accuracy and robustness of the warning system, interval forecasting is implemented to quantify the uncertainties generated by forecasts, which can provide significant risk signals by using point forecasting for decision-makers. For the evaluation module, a cloud model, based on probability and fuzzy set theory, is developed to perform comprehensive evaluations of air quality, which can realize the transformation between qualitative concept and quantitative data. To verify the effectiveness and efficiency of the warning system, extensive simulations based on air pollutants data from Dalian in China were effectively implemented, which illustrate that the warning system is not only remarkably high-performance, but also widely applicable. PMID:28257122

  14. Operational coupled atmosphere - ocean - ice forecast system for the Gulf of St. Lawrence, Canada

    NASA Astrophysics Data System (ADS)

    Faucher, M.; Roy, F.; Desjardins, S.; Fogarty, C.; Pellerin, P.; Ritchie, H.; Denis, B.

    2009-09-01

    A fully interactive coupled atmosphere-ocean-ice forecasting system for the Gulf of St. Lawrence (GSL) has been running in experimental mode at the Canadian Meteorological Centre (CMC) for the last two winter seasons. The goal of this project is to provide more accurate weather and sea ice forecasts over the GSL and adjacent coastal areas by including atmosphere-oceanice interactions in the CMC operational forecast system using a formal coupling strategy between two independent modeling components. The atmospheric component is the Canadian operational GEM model (Côté et al. 1998) and the oceanic component is the ocean-ice model for the Gulf of St. Lawrence developed at the Maurice Lamontagne Institute (IML) (Saucier et al. 2003, 2004). The coupling between those two models is achieved by exchanging surface fluxes and variables through MPI communication. The re-gridding of the variables is done with a package developed at the Recherche en Prevision Numerique centre (RPN, Canada). Coupled atmosphere - ocean - ice forecasts are issued once a day based on 00GMT data. Results for the past two years have demonstrated that the coupled system produces improved forecasts in and around the GSL during all seasons, proving that atmosphere-ocean-ice interactions are indeed important even for short-term Canadian weather forecasts. This has important implications for other coupled modeling and data assimilation partnerships that are in progress involving EC, the Department of Fisheries and Oceans (DFO) and the National Defense (DND). Following this experimental phase, it is anticipated that this GSL system will be the first fully interactive coupled system to be implemented at CMC.

  15. Evaluation of the fast orthogonal search method for forecasting chloride levels in the Deltona groundwater supply (Florida, USA)

    NASA Astrophysics Data System (ADS)

    El-Jaat, Majda; Hulley, Michael; Tétreault, Michel

    2018-02-01

    Despite the broad impact and importance of saltwater intrusion in coastal aquifers, little research has been directed towards forecasting saltwater intrusion in areas where the source of saltwater is uncertain. Saline contamination in inland groundwater supplies is a concern for numerous communities in the southern US including the city of Deltona, Florida. Furthermore, conventional numerical tools for forecasting saltwater contamination are heavily dependent on reliable characterization of the physical characteristics of underlying aquifers, information that is often absent or challenging to obtain. To overcome these limitations, a reliable alternative data-driven model for forecasting salinity in a groundwater supply was developed for Deltona using the fast orthogonal search (FOS) method. FOS was applied on monthly water-demand data and corresponding chloride concentrations at water supply wells. Groundwater salinity measurements from Deltona water supply wells were applied to evaluate the forecasting capability and accuracy of the FOS model. Accurate and reliable groundwater salinity forecasting is necessary to support effective and sustainable coastal-water resource planning and management. The available (27) water supply wells for Deltona were randomly split into three test groups for the purposes of FOS model development and performance assessment. Based on four performance indices (RMSE, RSR, NSEC, and R), the FOS model proved to be a reliable and robust forecaster of groundwater salinity. FOS is relatively inexpensive to apply, is not based on rigorous physical characterization of the water supply aquifer, and yields reliable estimates of groundwater salinity in active water supply wells.

  16. Short-term Forecasting Tools for Agricultural Nutrient Management.

    PubMed

    Easton, Zachary M; Kleinman, Peter J A; Buda, Anthony R; Goering, Dustin; Emberston, Nichole; Reed, Seann; Drohan, Patrick J; Walter, M Todd; Guinan, Pat; Lory, John A; Sommerlot, Andrew R; Sharpley, Andrew

    2017-11-01

    The advent of real-time, short-term farm management tools is motivated by the need to protect water quality above and beyond the general guidance offered by existing nutrient management plans. Advances in high-performance computing and hydrologic or climate modeling have enabled rapid dissemination of real-time information that can assist landowners and conservation personnel with short-term management planning. This paper reviews short-term decision support tools for agriculture that are under various stages of development and implementation in the United States: (i) Wisconsin's Runoff Risk Advisory Forecast (RRAF) System, (ii) New York's Hydrologically Sensitive Area Prediction Tool, (iii) Virginia's Saturated Area Forecast Model, (iv) Pennsylvania's Fertilizer Forecaster, (v) Washington's Application Risk Management (ARM) System, and (vi) Missouri's Design Storm Notification System. Although these decision support tools differ in their underlying model structure, the resolution at which they are applied, and the hydroclimates to which they are relevant, all provide forecasts (range 24-120 h) of runoff risk or soil moisture saturation derived from National Weather Service Forecast models. Although this review highlights the need for further development of robust and well-supported short-term nutrient management tools, their potential for adoption and ultimate utility requires an understanding of the appropriate context of application, the strategic and operational needs of managers, access to weather forecasts, scales of application (e.g., regional vs. field level), data requirements, and outreach communication structure. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  17. Medium term municipal solid waste generation prediction by autoregressive integrated moving average

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Younes, Mohammad K.; Nopiah, Z. M.; Basri, Noor Ezlin A.

    2014-09-12

    Generally, solid waste handling and management are performed by municipality or local authority. In most of developing countries, local authorities suffer from serious solid waste management (SWM) problems and insufficient data and strategic planning. Thus it is important to develop robust solid waste generation forecasting model. It helps to proper manage the generated solid waste and to develop future plan based on relatively accurate figures. In Malaysia, solid waste generation rate increases rapidly due to the population growth and new consumption trends that characterize the modern life style. This paper aims to develop monthly solid waste forecasting model using Autoregressivemore » Integrated Moving Average (ARIMA), such model is applicable even though there is lack of data and will help the municipality properly establish the annual service plan. The results show that ARIMA (6,1,0) model predicts monthly municipal solid waste generation with root mean square error equals to 0.0952 and the model forecast residuals are within accepted 95% confident interval.« less

  18. Medium term municipal solid waste generation prediction by autoregressive integrated moving average

    NASA Astrophysics Data System (ADS)

    Younes, Mohammad K.; Nopiah, Z. M.; Basri, Noor Ezlin A.; Basri, Hassan

    2014-09-01

    Generally, solid waste handling and management are performed by municipality or local authority. In most of developing countries, local authorities suffer from serious solid waste management (SWM) problems and insufficient data and strategic planning. Thus it is important to develop robust solid waste generation forecasting model. It helps to proper manage the generated solid waste and to develop future plan based on relatively accurate figures. In Malaysia, solid waste generation rate increases rapidly due to the population growth and new consumption trends that characterize the modern life style. This paper aims to develop monthly solid waste forecasting model using Autoregressive Integrated Moving Average (ARIMA), such model is applicable even though there is lack of data and will help the municipality properly establish the annual service plan. The results show that ARIMA (6,1,0) model predicts monthly municipal solid waste generation with root mean square error equals to 0.0952 and the model forecast residuals are within accepted 95% confident interval.

  19. Forecasting the spatial and seasonal dynamic of Aedes albopictus oviposition activity in Albania and Balkan countries.

    PubMed

    Tisseuil, Clément; Velo, Enkelejda; Bino, Silvia; Kadriaj, Perparim; Mersini, Kujtim; Shukullari, Ada; Simaku, Artan; Rogozi, Elton; Caputo, Beniamino; Ducheyne, Els; Della Torre, Alessandra; Reiter, Paul; Gilbert, Marius

    2018-02-01

    The increasing spread of the Asian tiger mosquito, Aedes albopictus, in Europe and US raises public health concern due to the species competence to transmit several exotic human arboviruses, among which dengue, chikungunya and Zika, and urges the development of suitable modeling approach to forecast the spatial and temporal distribution of the mosquito. Here we developed a dynamical species distribution modeling approach forecasting Ae. albopictus eggs abundance at high spatial (0.01 degree WGS84) and temporal (weekly) resolution over 10 Balkan countries, using temperature times series of Modis data products and altitude as input predictors. The model was satisfactorily calibrated and validated over Albania based observed eggs abundance data weekly monitored during three years. For a given week of the year, eggs abundance was mainly predicted by the number of eggs and the mean temperature recorded in the preceding weeks. That is, results are in agreement with the biological cycle of the mosquito, reflecting the effect temperature on eggs spawning, maturation and hatching. The model, seeded by initial egg values derived from a second model, was then used to forecast the spatial and temporal distribution of eggs abundance over the selected Balkan countries, weekly in 2011, 2012 and 2013. The present study is a baseline to develop an easy-handling forecasting model able to provide information useful for promoting active surveillance and possibly prevention of Ae. albopictus colonization in presently non-infested areas in the Balkans as well as in other temperate regions.

  20. Challenges and potential solutions for European coastal ocean modelling

    NASA Astrophysics Data System (ADS)

    She, Jun; Stanev, Emil

    2017-04-01

    Coastal operational oceanography is a science and technological platform to integrate and transform the outcomes in marine monitoring, new knowledge generation and innovative technologies into operational information products and services in the coastal ocean. It has been identified as one of the four research priorities by EuroGOOS (She et al. 2016). Coastal modelling plays a central role in such an integration and transformation. A next generation coastal ocean forecasting system should have following features: i) being able to fully exploit benefits from future observations, ii) generate meaningful products in finer scales e.g., sub-mesoscale and in estuary-coast-sea continuum, iii) efficient parallel computing and model grid structure, iv) provide high quality forecasts as forcing to NWP and coastal climate models, v) resolving correctly inter-basin and inter-sub-basin water exchange, vi) resolving synoptic variability and predictability in marine ecosystems, e.g., for algae bloom, vi) being able to address critical and relevant issues in coastal applications, e.g., marine spatial planning, maritime safety, marine pollution protection, disaster prevention, offshore wind energy, climate change adaptation and mitigation, ICZM (integrated coastal zone management), the WFD (Water Framework Directive), and the MSFD (Marine Strategy Framework Directive), especially on habitat, eutrophication, and hydrographic condition descriptors. This presentation will address above challenges, identify limits of current models and propose correspondent research needed. The proposed roadmap will address an integrated monitoring-modelling approach and developing Unified European Coastal Ocean Models. In the coming years, a few new developments in European Sea observations can expected, e.g., more near real time delivering on profile observations made by research vessels, more shallow water Argo floats and bio-Argo floats deployed, much more high resolution sea level data from SWOT and on-going altimetry missions, contributing to resolving (sub-)mesoscale eddies, more currents measurements from ADCPs and HF radars, geostationary data for suspended sediment and diurnal observations from satellite SST products. These developments will make it possible to generate new knowledge and build up new capacities for modelling and forecasting systems, e.g., improved currents forecast, improved water skin temperature and surface winds forecast, improved modelling and forecast of (sub) mesoscale activities and drift forecast, new forecast capabilities on SPM (Suspended Particle Matter) and algae bloom. There will be much more in-situ and satellite data available for assimilation. The assimilation of sea level, chl-a, ferrybox and profile observations will greatly improves the ocean-ice-ecosystem forecast quality.

  1. A Structured and Unstructured grid Relocatable ocean platform for Forecasting (SURF)

    NASA Astrophysics Data System (ADS)

    Trotta, Francesco; Fenu, Elisa; Pinardi, Nadia; Bruciaferri, Diego; Giacomelli, Luca; Federico, Ivan; Coppini, Giovanni

    2016-11-01

    We present a numerical platform named Structured and Unstructured grid Relocatable ocean platform for Forecasting (SURF). The platform is developed for short-time forecasts and is designed to be embedded in any region of the large-scale Mediterranean Forecasting System (MFS) via downscaling. We employ CTD data collected during a campaign around the Elba island to calibrate and validate SURF. The model requires an initial spin up period of a few days in order to adapt the initial interpolated fields and the subsequent solutions to the higher-resolution nested grids adopted by SURF. Through a comparison with the CTD data, we quantify the improvement obtained by SURF model compared to the coarse-resolution MFS model.

  2. A cross impact methodology for the assessment of US telecommunications system with application to fiber optics development: Executive summary

    NASA Technical Reports Server (NTRS)

    Martino, J. P.; Lenz, R. C., Jr.; Chen, K. L.

    1979-01-01

    A cross impact model of the U.S. telecommunications system was developed. For this model, it was necessary to prepare forecasts of the major segments of the telecommunications system, such as satellites, telephone, TV, CATV, radio broadcasting, etc. In addition, forecasts were prepared of the traffic generated by a variety of new or expanded services, such as electronic check clearing and point of sale electronic funds transfer. Finally, the interactions among the forecasts were estimated (the cross impacts). Both the forecasts and the cross impacts were used as inputs to the cross impact model, which could then be used to stimulate the future growth of the entire U.S. telecommunications system. By varying the inputs, technology changes or policy decisions with regard to any segment of the system could be evaluated in the context of the remainder of the system. To illustrate the operation of the model, a specific study was made of the deployment of fiber optics, throughout the telecommunications system.

  3. Forecasting malaria incidence based on monthly case reports and environmental factors in Karuzi, Burundi, 1997–2003

    PubMed Central

    Gomez-Elipe, Alberto; Otero, Angel; van Herp, Michel; Aguirre-Jaime, Armando

    2007-01-01

    Background The objective of this work was to develop a model to predict malaria incidence in an area of unstable transmission by studying the association between environmental variables and disease dynamics. Methods The study was carried out in Karuzi, a province in the Burundi highlands, using time series of monthly notifications of malaria cases from local health facilities, data from rain and temperature records, and the normalized difference vegetation index (NDVI). Using autoregressive integrated moving average (ARIMA) methodology, a model showing the relation between monthly notifications of malaria cases and the environmental variables was developed. Results The best forecasting model (R2adj = 82%, p < 0.0001 and 93% forecasting accuracy in the range ± 4 cases per 100 inhabitants) included the NDVI, mean maximum temperature, rainfall and number of malaria cases in the preceding month. Conclusion This model is a simple and useful tool for producing reasonably reliable forecasts of the malaria incidence rate in the study area. PMID:17892540

  4. Regional Model Nesting Within GFS Daily Forecasts Over West Africa

    NASA Technical Reports Server (NTRS)

    Druyan, Leonard M.; Fulakeza, Matthew; Lonergan, Patrick; Worrell, Ruben

    2010-01-01

    The study uses the RM3, the regional climate model at the Center for Climate Systems Research of Columbia University and the NASA/Goddard Institute for Space Studies (CCSR/GISS). The paper evaluates 30 48-hour RM3 weather forecasts over West Africa during September 2006 made on a 0.5 grid nested within 1 Global Forecast System (GFS) global forecasts. September 2006 was the Special Observing Period #3 of the African Monsoon Multidisciplinary Analysis (AMMA). Archived GFS initial conditions and lateral boundary conditions for the simulations from the US National Weather Service, National Oceanographic and Atmospheric Administration were interpolated four times daily. Results for precipitation forecasts are validated against Tropical Rainfall Measurement Mission (TRMM) satellite estimates and data from the Famine Early Warning System (FEWS), which includes rain gauge measurements, and forecasts of circulation are compared to reanalysis 2. Performance statistics for the precipitation forecasts include bias, root-mean-square errors and spatial correlation coefficients. The nested regional model forecasts are compared to GFS forecasts to gauge whether nesting provides additional realistic information. They are also compared to RM3 simulations driven by reanalysis 2, representing high potential skill forecasts, to gauge the sensitivity of results to lateral boundary conditions. Nested RM3/GFS forecasts generate excessive moisture advection toward West Africa, which in turn causes prodigious amounts of model precipitation. This problem is corrected by empirical adjustments in the preparation of lateral boundary conditions and initial conditions. The resulting modified simulations improve on the GFS precipitation forecasts, achieving time-space correlations with TRMM of 0.77 on the first day and 0.63 on the second day. One realtime RM3/GFS precipitation forecast made at and posted by the African Centre of Meteorological Application for Development (ACMAD) in Niamey, Niger is shown.

  5. Forecasting volcanic unrest using seismicity: The good, the bad and the time consuming

    NASA Astrophysics Data System (ADS)

    Salvage, Rebecca; Neuberg, Jurgen W.

    2013-04-01

    Volcanic eruptions are inherently unpredictable in nature, with scientists struggling to forecast the type and timing of events, in particular in real time scenarios. Current understanding suggests that the use of statistical patterns within precursory datasets of seismicity prior to eruptive events could hold the potential to be used as real time forecasting tools. They allow us to determine times of clear deviation in data, which might be indicative of volcanic unrest. The identification of low frequency seismic swarms and the acceleration of this seismicity prior to observed volcanic unrest may be key in developing forecasting tools. The development of these real time forecasting models which can be implemented at volcano observatories is of particular importance since the identification of early warning signals allows danger to the proximal population to be minimized. We concentrate on understanding the significance and development of these seismic swarms as unrest develops at the volcano. In particular, analysis of accelerations in event rate, amplitude and energy rates released by seismicity prior to eruption suggests that these are important indicators of developing unrest. Real time analysis of these parameters simultaneously allows possible improvements to forecasting models. Although more time and computationally intense, cross correlation techniques applied to continuous seismicity prior to volcanic unrest scenarios allows all significant seismic events to be analysed, rather than only those which can be detected by an automated identification system. This may allow a more accurate forecast since all precursory seismicity can be taken into account. In addition, the classification of seismic events based on spectral characteristics may allow us to isolate individual types of signals which are responsible for certain types of unrest. In this way, we may be able to better forecast the type of eruption that may ensue, or at least some of its prevailing characteristics.

  6. Monthly monsoon rainfall forecasting using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Ganti, Ravikumar

    2014-10-01

    Indian agriculture sector heavily depends on monsoon rainfall for successful harvesting. In the past, prediction of rainfall was mainly performed using regression models, which provide reasonable accuracy in the modelling and forecasting of complex physical systems. Recently, Artificial Neural Networks (ANNs) have been proposed as efficient tools for modelling and forecasting. A feed-forward multi-layer perceptron type of ANN architecture trained using the popular back-propagation algorithm was employed in this study. Other techniques investigated for modeling monthly monsoon rainfall include linear and non-linear regression models for comparison purposes. The data employed in this study include monthly rainfall and monthly average of the daily maximum temperature in the North Central region in India. Specifically, four regression models and two ANN model's were developed. The performance of various models was evaluated using a wide variety of standard statistical parameters and scatter plots. The results obtained in this study for forecasting monsoon rainfalls using ANNs have been encouraging. India's economy and agricultural activities can be effectively managed with the help of the availability of the accurate monsoon rainfall forecasts.

  7. Evaluation of Mesoscale Model Phenomenological Verification Techniques

    NASA Technical Reports Server (NTRS)

    Lambert, Winifred

    2006-01-01

    Forecasters at the Spaceflight Meteorology Group, 45th Weather Squadron, and National Weather Service in Melbourne, FL use mesoscale numerical weather prediction model output in creating their operational forecasts. These models aid in forecasting weather phenomena that could compromise the safety of launch, landing, and daily ground operations and must produce reasonable weather forecasts in order for their output to be useful in operations. Considering the importance of model forecasts to operations, their accuracy in forecasting critical weather phenomena must be verified to determine their usefulness. The currently-used traditional verification techniques involve an objective point-by-point comparison of model output and observations valid at the same time and location. The resulting statistics can unfairly penalize high-resolution models that make realistic forecasts of a certain phenomena, but are offset from the observations in small time and/or space increments. Manual subjective verification can provide a more valid representation of model performance, but is time-consuming and prone to personal biases. An objective technique that verifies specific meteorological phenomena, much in the way a human would in a subjective evaluation, would likely produce a more realistic assessment of model performance. Such techniques are being developed in the research community. The Applied Meteorology Unit (AMU) was tasked to conduct a literature search to identify phenomenological verification techniques being developed, determine if any are ready to use operationally, and outline the steps needed to implement any operationally-ready techniques into the Advanced Weather Information Processing System (AWIPS). The AMU conducted a search of all literature on the topic of phenomenological-based mesoscale model verification techniques and found 10 different techniques in various stages of development. Six of the techniques were developed to verify precipitation forecasts, one to verify sea breeze forecasts, and three were capable of verifying several phenomena. The AMU also determined the feasibility of transitioning each technique into operations and rated the operational capability of each technique on a subjective 1-10 scale: (1) 1 indicates that the technique is only in the initial stages of development, (2) 2-5 indicates that the technique is still undergoing modifications and is not ready for operations, (3) 6-8 indicates a higher probability of integrating the technique into AWIPS with code modifications, and (4) 9-10 indicates that the technique was created for AWIPS and is ready for implementation. Eight of the techniques were assigned a rating of 5 or below. The other two received ratings of 6 and 7, and none of the techniques a rating of 9-10. At the current time, there are no phenomenological model verification techniques ready for operational use. However, several of the techniques described in this report may become viable techniques in the future and should be monitored for updates in the literature. The desire to use a phenomenological verification technique is widespread in the modeling community, and it is likely that other techniques besides those described herein are being developed, but the work has not yet been published. Therefore, the AMIU recommends that the literature continue to be monitored for updates to the techniques described in this report and for new techniques being developed whose results have not yet been published. 111

  8. The Role of Model and Initial Condition Error in Numerical Weather Forecasting Investigated with an Observing System Simulation Experiment

    NASA Technical Reports Server (NTRS)

    Prive, Nikki C.; Errico, Ronald M.

    2013-01-01

    A series of experiments that explore the roles of model and initial condition error in numerical weather prediction are performed using an observing system simulation experiment (OSSE) framework developed at the National Aeronautics and Space Administration Global Modeling and Assimilation Office (NASA/GMAO). The use of an OSSE allows the analysis and forecast errors to be explicitly calculated, and different hypothetical observing networks can be tested with ease. In these experiments, both a full global OSSE framework and an 'identical twin' OSSE setup are utilized to compare the behavior of the data assimilation system and evolution of forecast skill with and without model error. The initial condition error is manipulated by varying the distribution and quality of the observing network and the magnitude of observation errors. The results show that model error has a strong impact on both the quality of the analysis field and the evolution of forecast skill, including both systematic and unsystematic model error components. With a realistic observing network, the analysis state retains a significant quantity of error due to systematic model error. If errors of the analysis state are minimized, model error acts to rapidly degrade forecast skill during the first 24-48 hours of forward integration. In the presence of model error, the impact of observation errors on forecast skill is small, but in the absence of model error, observation errors cause a substantial degradation of the skill of medium range forecasts.

  9. Air Quality Forecasts Using the NASA GEOS Model

    NASA Technical Reports Server (NTRS)

    Keller, Christoph A.; Knowland, K. Emma; Nielsen, Jon E.; Orbe, Clara; Ott, Lesley; Pawson, Steven; Saunders, Emily; Duncan, Bryan; Follette-Cook, Melanie; Liu, Junhua; hide

    2018-01-01

    We provide an introduction to a new high-resolution (0.25 degree) global composition forecast produced by NASA's Global Modeling and Assimilation office. The NASA Goddard Earth Observing System version 5 (GEOS-5) model has been expanded to provide global near-real-time forecasts of atmospheric composition at a horizontal resolution of 0.25 degrees (25 km). Previously, this combination of detailed chemistry and resolution was only provided by regional models. This system combines the operational GEOS-5 weather forecasting model with the state-of-the-science GEOS-Chem chemistry module (version 11) to provide detailed chemical analysis of a wide range of air pollutants such as ozone, carbon monoxide, nitrogen oxides, and fine particulate matter (PM2.5). The resolution of the forecasts is the highest resolution compared to current, publically-available global composition forecasts. Evaluation and validation of modeled trace gases and aerosols compared to surface and satellite observations will be presented for constituents relative to health air quality standards. Comparisons of modeled trace gases and aerosols against satellite observations show that the model produces realistic concentrations of atmospheric constituents in the free troposphere. Model comparisons against surface observations highlight the model's capability to capture the diurnal variability of air pollutants under a variety of meteorological conditions. The GEOS-5 composition forecasting system offers a new tool for scientists and the public health community, and is being developed jointly with several government and non-profit partners. Potential applications include air quality warnings, flight campaign planning and exposure studies using the archived analysis fields.

  10. Satellite fixed communications service: A forecast of potential domestic demand through the year 2000. Volume 3: Appendices

    NASA Technical Reports Server (NTRS)

    Kratochvil, D.; Bowyer, J.; Bhushan, C.; Steinnagel, K.; Kaushal, D.; Al-Kinani, G.

    1983-01-01

    Voice applications, data applications, video applications, impacted baseline forecasts, market distribution model, net long haul forecasts, trunking earth station definition and costs, trunking space segment cost, trunking entrance/exit links, trunking network costs and crossover distances with terrestrial tariffs, net addressable forecasts, capacity requirements, improving spectrum utilization, satellite system market development, and the 30/20 net accessible market are considered.

  11. Satellite fixed communications service: A forecast of potential domestic demand through the year 2000. Volume 3: Appendices

    NASA Astrophysics Data System (ADS)

    Kratochvil, D.; Bowyer, J.; Bhushan, C.; Steinnagel, K.; Kaushal, D.; Al-Kinani, G.

    1983-09-01

    Voice applications, data applications, video applications, impacted baseline forecasts, market distribution model, net long haul forecasts, trunking earth station definition and costs, trunking space segment cost, trunking entrance/exit links, trunking network costs and crossover distances with terrestrial tariffs, net addressable forecasts, capacity requirements, improving spectrum utilization, satellite system market development, and the 30/20 net accessible market are considered.

  12. Evolving forecasting classifications and applications in health forecasting

    PubMed Central

    Soyiri, Ireneous N; Reidpath, Daniel D

    2012-01-01

    Health forecasting forewarns the health community about future health situations and disease episodes so that health systems can better allocate resources and manage demand. The tools used for developing and measuring the accuracy and validity of health forecasts commonly are not defined although they are usually adapted forms of statistical procedures. This review identifies previous typologies used in classifying the forecasting methods commonly used in forecasting health conditions or situations. It then discusses the strengths and weaknesses of these methods and presents the choices available for measuring the accuracy of health-forecasting models, including a note on the discrepancies in the modes of validation. PMID:22615533

  13. Ocean state and uncertainty forecasts using HYCOM with Local Ensemble Transfer Kalman Filter (LETKF)

    NASA Astrophysics Data System (ADS)

    Wei, Mozheng; Hogan, Pat; Rowley, Clark; Smedstad, Ole-Martin; Wallcraft, Alan; Penny, Steve

    2017-04-01

    An ensemble forecast system based on the US Navy's operational HYCOM using Local Ensemble Transfer Kalman Filter (LETKF) technology has been developed for ocean state and uncertainty forecasts. One of the advantages is that the best possible initial analysis states for the HYCOM forecasts are provided by the LETKF which assimilates the operational observations using ensemble method. The background covariance during this assimilation process is supplied with the ensemble, thus it avoids the difficulty of developing tangent linear and adjoint models for 4D-VAR from the complicated hybrid isopycnal vertical coordinate in HYCOM. Another advantage is that the ensemble system provides the valuable uncertainty estimate corresponding to every state forecast from HYCOM. Uncertainty forecasts have been proven to be critical for the downstream users and managers to make more scientifically sound decisions in numerical prediction community. In addition, ensemble mean is generally more accurate and skilful than the single traditional deterministic forecast with the same resolution. We will introduce the ensemble system design and setup, present some results from 30-member ensemble experiment, and discuss scientific, technical and computational issues and challenges, such as covariance localization, inflation, model related uncertainties and sensitivity to the ensemble size.

  14. Modelling and Forecasting of Rice Yield in support of Crop Insurance

    NASA Astrophysics Data System (ADS)

    Weerts, A.; van Verseveld, W.; Trambauer, P.; de Vries, S.; Conijn, S.; van Valkengoed, E.; Hoekman, D.; Hengsdijk, H.; Schrevel, A.

    2016-12-01

    The Government of Indonesia has embarked on a policy to bring crop insurance to all of Indonesia's farmers. To support the Indonesian government, the G4INDO project (www.g4indo.org) is developing/constructing an integrated platform for judging and handling insurance claims. The platform consists of bringing together remote sensed data (both visible and radar) and hydrologic and crop modelling and forecasting to improve predictions in one forecasting platform (i.e. Delft-FEWS, Werner et al., 2013). The hydrological model and crop model (LINTUL) are coupled on time stepping basis in the OpenStreams framework (see https://github.com/openstreams/wflow) and deployed in a Delft-FEWS forecasting platform to support seasonal forecasting of water availability and crop yield. First we will show the general idea about the project, the integrated platform (including Sentinel 1 & 2 data) followed by first (reforecast) results of the coupled models for predicting water availability and crop yield in the Brantas catchment in Java, Indonesia. Werner, M., Schellekens, J., Gijsbers, P., Van Dijk, M., Van den Akker, O. and Heynert K, 2013. The Delft-FEWS flow forecasting system, Environmental Modelling & Software; 40:65-77. DOI: 10.1016/j.envsoft.2012.07.010 .

  15. Forecasting Hourly Water Demands With Seasonal Autoregressive Models for Real-Time Application

    NASA Astrophysics Data System (ADS)

    Chen, Jinduan; Boccelli, Dominic L.

    2018-02-01

    Consumer water demands are not typically measured at temporal or spatial scales adequate to support real-time decision making, and recent approaches for estimating unobserved demands using observed hydraulic measurements are generally not capable of forecasting demands and uncertainty information. While time series modeling has shown promise for representing total system demands, these models have generally not been evaluated at spatial scales appropriate for representative real-time modeling. This study investigates the use of a double-seasonal time series model to capture daily and weekly autocorrelations to both total system demands and regional aggregated demands at a scale that would capture demand variability across a distribution system. Emphasis was placed on the ability to forecast demands and quantify uncertainties with results compared to traditional time series pattern-based demand models as well as nonseasonal and single-seasonal time series models. Additional research included the implementation of an adaptive-parameter estimation scheme to update the time series model when unobserved changes occurred in the system. For two case studies, results showed that (1) for the smaller-scale aggregated water demands, the log-transformed time series model resulted in improved forecasts, (2) the double-seasonal model outperformed other models in terms of forecasting errors, and (3) the adaptive adjustment of parameters during forecasting improved the accuracy of the generated prediction intervals. These results illustrate the capabilities of time series modeling to forecast both water demands and uncertainty estimates at spatial scales commensurate for real-time modeling applications and provide a foundation for developing a real-time integrated demand-hydraulic model.

  16. Hybrid Stochastic Forecasting Model for Management of Large Open Water Reservoir with Storage Function

    NASA Astrophysics Data System (ADS)

    Kozel, Tomas; Stary, Milos

    2017-12-01

    The main advantage of stochastic forecasting is fan of possible value whose deterministic method of forecasting could not give us. Future development of random process is described better by stochastic then deterministic forecasting. Discharge in measurement profile could be categorized as random process. Content of article is construction and application of forecasting model for managed large open water reservoir with supply function. Model is based on neural networks (NS) and zone models, which forecasting values of average monthly flow from inputs values of average monthly flow, learned neural network and random numbers. Part of data was sorted to one moving zone. The zone is created around last measurement average monthly flow. Matrix of correlation was assembled only from data belonging to zone. The model was compiled for forecast of 1 to 12 month with using backward month flows (NS inputs) from 2 to 11 months for model construction. Data was got ridded of asymmetry with help of Box-Cox rule (Box, Cox, 1964), value r was found by optimization. In next step were data transform to standard normal distribution. The data were with monthly step and forecast is not recurring. 90 years long real flow series was used for compile of the model. First 75 years were used for calibration of model (matrix input-output relationship), last 15 years were used only for validation. Outputs of model were compared with real flow series. For comparison between real flow series (100% successfully of forecast) and forecasts, was used application to management of artificially made reservoir. Course of water reservoir management using Genetic algorithm (GE) + real flow series was compared with Fuzzy model (Fuzzy) + forecast made by Moving zone model. During evaluation process was founding the best size of zone. Results show that the highest number of input did not give the best results and ideal size of zone is in interval from 25 to 35, when course of management was almost same for all numbers from interval. Resulted course of management was compared with course, which was obtained from using GE + real flow series. Comparing results showed that fuzzy model with forecasted values has been able to manage main malfunction and artificially disorders made by model were founded essential, after values of water volume during management were evaluated. Forecasting model in combination with fuzzy model provide very good results in management of water reservoir with storage function and can be recommended for this purpose.

  17. The GISS sounding temperature impact test

    NASA Technical Reports Server (NTRS)

    Halem, M.; Ghil, M.; Atlas, R.; Susskind, J.; Quirk, W. J.

    1978-01-01

    The impact of DST 5 and DST 6 satellite sounding data on mid-range forecasting was studied. The GISS temperature sounding technique, the GISS time-continuous four-dimensional assimilation procedure based on optimal statistical analysis, the GISS forecast model, and the verification techniques developed, including impact on local precipitation forecasts are described. It is found that the impact of sounding data was substantial and beneficial for the winter test period, Jan. 29 - Feb. 21. 1976. Forecasts started from initial state obtained with the aid of satellite data showed a mean improvement of about 4 points in the 48 and 772 hours Sub 1 scores as verified over North America and Europe. This corresponds to an 8 to 12 hour forecast improvement in the forecast range at 48 hours. An automated local precipitation forecast model applied to 128 cities in the United States showed on an average 15% improvement when satellite data was used for numerical forecasts. The improvement was 75% in the midwest.

  18. Box Office Forecasting considering Competitive Environment and Word-of-Mouth in Social Networks: A Case Study of Korean Film Market.

    PubMed

    Kim, Taegu; Hong, Jungsik; Kang, Pilsung

    2017-01-01

    Accurate box office forecasting models are developed by considering competition and word-of-mouth (WOM) effects in addition to screening-related information. Nationality, genre, ratings, and distributors of motion pictures running concurrently with the target motion picture are used to describe the competition, whereas the numbers of informative, positive, and negative mentions posted on social network services (SNS) are used to gauge the atmosphere spread by WOM. Among these candidate variables, only significant variables are selected by genetic algorithm (GA), based on which machine learning algorithms are trained to build forecasting models. The forecasts are combined to improve forecasting performance. Experimental results on the Korean film market show that the forecasting accuracy in early screening periods can be significantly improved by considering competition. In addition, WOM has a stronger influence on total box office forecasting. Considering both competition and WOM improves forecasting performance to a larger extent than when only one of them is considered.

  19. Box Office Forecasting considering Competitive Environment and Word-of-Mouth in Social Networks: A Case Study of Korean Film Market

    PubMed Central

    Kim, Taegu; Hong, Jungsik

    2017-01-01

    Accurate box office forecasting models are developed by considering competition and word-of-mouth (WOM) effects in addition to screening-related information. Nationality, genre, ratings, and distributors of motion pictures running concurrently with the target motion picture are used to describe the competition, whereas the numbers of informative, positive, and negative mentions posted on social network services (SNS) are used to gauge the atmosphere spread by WOM. Among these candidate variables, only significant variables are selected by genetic algorithm (GA), based on which machine learning algorithms are trained to build forecasting models. The forecasts are combined to improve forecasting performance. Experimental results on the Korean film market show that the forecasting accuracy in early screening periods can be significantly improved by considering competition. In addition, WOM has a stronger influence on total box office forecasting. Considering both competition and WOM improves forecasting performance to a larger extent than when only one of them is considered. PMID:28819355

  20. Forecast Modelling via Variations in Binary Image-Encoded Information Exploited by Deep Learning Neural Networks.

    PubMed

    Liu, Da; Xu, Ming; Niu, Dongxiao; Wang, Shoukai; Liang, Sai

    2016-01-01

    Traditional forecasting models fit a function approximation from dependent invariables to independent variables. However, they usually get into trouble when date are presented in various formats, such as text, voice and image. This study proposes a novel image-encoded forecasting method that input and output binary digital two-dimensional (2D) images are transformed from decimal data. Omitting any data analysis or cleansing steps for simplicity, all raw variables were selected and converted to binary digital images as the input of a deep learning model, convolutional neural network (CNN). Using shared weights, pooling and multiple-layer back-propagation techniques, the CNN was adopted to locate the nexus among variations in local binary digital images. Due to the computing capability that was originally developed for binary digital bitmap manipulation, this model has significant potential for forecasting with vast volume of data. The model was validated by a power loads predicting dataset from the Global Energy Forecasting Competition 2012.

  1. Artificial intelligence based models for stream-flow forecasting: 2000-2015

    NASA Astrophysics Data System (ADS)

    Yaseen, Zaher Mundher; El-shafie, Ahmed; Jaafar, Othman; Afan, Haitham Abdulmohsin; Sayl, Khamis Naba

    2015-11-01

    The use of Artificial Intelligence (AI) has increased since the middle of the 20th century as seen in its application in a wide range of engineering and science problems. The last two decades, for example, has seen a dramatic increase in the development and application of various types of AI approaches for stream-flow forecasting. Generally speaking, AI has exhibited significant progress in forecasting and modeling non-linear hydrological applications and in capturing the noise complexity in the dataset. This paper explores the state-of-the-art application of AI in stream-flow forecasting, focusing on defining the data-driven of AI, the advantages of complementary models, as well as the literature and their possible future application in modeling and forecasting stream-flow. The review also identifies the major challenges and opportunities for prospective research, including, a new scheme for modeling the inflow, a novel method for preprocessing time series frequency based on Fast Orthogonal Search (FOS) techniques, and Swarm Intelligence (SI) as an optimization approach.

  2. Forecast Modelling via Variations in Binary Image-Encoded Information Exploited by Deep Learning Neural Networks

    PubMed Central

    Xu, Ming; Niu, Dongxiao; Wang, Shoukai; Liang, Sai

    2016-01-01

    Traditional forecasting models fit a function approximation from dependent invariables to independent variables. However, they usually get into trouble when date are presented in various formats, such as text, voice and image. This study proposes a novel image-encoded forecasting method that input and output binary digital two-dimensional (2D) images are transformed from decimal data. Omitting any data analysis or cleansing steps for simplicity, all raw variables were selected and converted to binary digital images as the input of a deep learning model, convolutional neural network (CNN). Using shared weights, pooling and multiple-layer back-propagation techniques, the CNN was adopted to locate the nexus among variations in local binary digital images. Due to the computing capability that was originally developed for binary digital bitmap manipulation, this model has significant potential for forecasting with vast volume of data. The model was validated by a power loads predicting dataset from the Global Energy Forecasting Competition 2012. PMID:27281032

  3. Seasonal forecasting of dolphinfish distribution in eastern Australia to aid recreational fishers and managers

    NASA Astrophysics Data System (ADS)

    Brodie, Stephanie; Hobday, Alistair J.; Smith, James A.; Spillman, Claire M.; Hartog, Jason R.; Everett, Jason D.; Taylor, Matthew D.; Gray, Charles A.; Suthers, Iain M.

    2017-06-01

    Seasonal forecasting of environmental conditions and marine species distribution has been used as a decision support tool in commercial and aquaculture fisheries. These tools may also be applicable to species targeted by the recreational fisheries sector, a sector that is increasing its use of marine resources, and making important economic and social contributions to coastal communities around the world. Here, a seasonal forecast of the habitat and density of dolphinfish (Coryphaena hippurus), based on sea surface temperatures, was developed for the east coast of New South Wales (NSW), Australia. Two prototype forecast products were created; geographic spatial forecasts of dolphinfish habitat and a latitudinal summary identifying the location of fish density peaks. The less detailed latitudinal summary was created to limit the resolution of habitat information to prevent potential resource over-exploitation by fishers in the absence of total catch controls. The forecast dolphinfish habitat model was accurate at the start of the annual dolphinfish migration in NSW (December) but other months (January - May) showed poor performance due to spatial and temporal variability in the catch data used in model validation. Habitat forecasts for December were useful up to five months ahead, with performance decreasing as forecast were made further into the future. The continued development and sound application of seasonal forecasts will help fishery industries cope with future uncertainty and promote dynamic and sustainable marine resource management.

  4. Testing efficacy of monthly forecast application in agrometeorology: Winter wheat phenology dynamic

    NASA Astrophysics Data System (ADS)

    Lalic, B.; Jankovic, D.; Dekic, Lj; Eitzinger, J.; Firanj Sremac, A.

    2017-02-01

    Use of monthly weather forecast as input meteorological data for agrometeorological forecasting, crop modelling and plant protection can foster promising applications in agricultural production. Operational use of monthly or seasonal weather forecast can help farmers to optimize field operations (fertilizing, irrigation) and protection measures against plant diseases and pests by taking full advantage of monthly forecast information in predicting plant development, pest and disease risks and yield potentials few weeks in advance. It can help producers to obtain stable or higher yield with the same inputs and to minimise losses caused by weather. In Central and South-Eastern Europe ongoing climate change lead to shifts of crops phenology dynamics (i.e. in Serbia 4-8 weeks earlier in 2016 than in previous years) and brings this subject in the front of agronomy science and practice. Objective of this study is to test efficacy of monthly forecast in predicting phenology dynamics of different winter wheat varieties, using phenological model developed by Forecasting and Warning Service of Serbia in plant protection. For that purpose, historical monthly forecast for four months (March 1, 2005 - June 30, 2005) was assimilated from ECMWF MARS archive for 50 ensemble members and control run. Impact of different agroecological conditions is tested by using observed and forecasted data for two locations - Rimski Sancevi (Serbia) and Groß-Enzersdorf (Austria).

  5. Wavelet regression model in forecasting crude oil price

    NASA Astrophysics Data System (ADS)

    Hamid, Mohd Helmie; Shabri, Ani

    2017-05-01

    This study presents the performance of wavelet multiple linear regression (WMLR) technique in daily crude oil forecasting. WMLR model was developed by integrating the discrete wavelet transform (DWT) and multiple linear regression (MLR) model. The original time series was decomposed to sub-time series with different scales by wavelet theory. Correlation analysis was conducted to assist in the selection of optimal decomposed components as inputs for the WMLR model. The daily WTI crude oil price series has been used in this study to test the prediction capability of the proposed model. The forecasting performance of WMLR model were also compared with regular multiple linear regression (MLR), Autoregressive Moving Average (ARIMA) and Generalized Autoregressive Conditional Heteroscedasticity (GARCH) using root mean square errors (RMSE) and mean absolute errors (MAE). Based on the experimental results, it appears that the WMLR model performs better than the other forecasting technique tested in this study.

  6. Development of a High Resolution Weather Forecast Model for Mesoamerica Using the NASA Nebula Cloud Computing Environment

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew L.; Case, Jonathan L.; Venner, Jason; Moreno-Madrinan, Max. J.; Delgado, Francisco

    2012-01-01

    Over the past two years, scientists in the Earth Science Office at NASA fs Marshall Space Flight Center (MSFC) have explored opportunities to apply cloud computing concepts to support near real ]time weather forecast modeling via the Weather Research and Forecasting (WRF) model. Collaborators at NASA fs Short ]term Prediction Research and Transition (SPoRT) Center and the SERVIR project at Marshall Space Flight Center have established a framework that provides high resolution, daily weather forecasts over Mesoamerica through use of the NASA Nebula Cloud Computing Platform at Ames Research Center. Supported by experts at Ames, staff at SPoRT and SERVIR have established daily forecasts complete with web graphics and a user interface that allows SERVIR partners access to high resolution depictions of weather in the next 48 hours, useful for monitoring and mitigating meteorological hazards such as thunderstorms, heavy precipitation, and tropical weather that can lead to other disasters such as flooding and landslides. This presentation will describe the framework for establishing and providing WRF forecasts, example applications of output provided via the SERVIR web portal, and early results of forecast model verification against available surface ] and satellite ]based observations.

  7. Development of a High Resolution Weather Forecast Model for Mesoamerica Using the NASA Nebula Cloud Computing Environment

    NASA Astrophysics Data System (ADS)

    Molthan, A.; Case, J.; Venner, J.; Moreno-Madriñán, M. J.; Delgado, F.

    2012-12-01

    Over the past two years, scientists in the Earth Science Office at NASA's Marshall Space Flight Center (MSFC) have explored opportunities to apply cloud computing concepts to support near real-time weather forecast modeling via the Weather Research and Forecasting (WRF) model. Collaborators at NASA's Short-term Prediction Research and Transition (SPoRT) Center and the SERVIR project at Marshall Space Flight Center have established a framework that provides high resolution, daily weather forecasts over Mesoamerica through use of the NASA Nebula Cloud Computing Platform at Ames Research Center. Supported by experts at Ames, staff at SPoRT and SERVIR have established daily forecasts complete with web graphics and a user interface that allows SERVIR partners access to high resolution depictions of weather in the next 48 hours, useful for monitoring and mitigating meteorological hazards such as thunderstorms, heavy precipitation, and tropical weather that can lead to other disasters such as flooding and landslides. This presentation will describe the framework for establishing and providing WRF forecasts, example applications of output provided via the SERVIR web portal, and early results of forecast model verification against available surface- and satellite-based observations.

  8. Sufficient Forecasting Using Factor Models

    PubMed Central

    Fan, Jianqing; Xue, Lingzhou; Yao, Jiawei

    2017-01-01

    We consider forecasting a single time series when there is a large number of predictors and a possible nonlinear effect. The dimensionality was first reduced via a high-dimensional (approximate) factor model implemented by the principal component analysis. Using the extracted factors, we develop a novel forecasting method called the sufficient forecasting, which provides a set of sufficient predictive indices, inferred from high-dimensional predictors, to deliver additional predictive power. The projected principal component analysis will be employed to enhance the accuracy of inferred factors when a semi-parametric (approximate) factor model is assumed. Our method is also applicable to cross-sectional sufficient regression using extracted factors. The connection between the sufficient forecasting and the deep learning architecture is explicitly stated. The sufficient forecasting correctly estimates projection indices of the underlying factors even in the presence of a nonparametric forecasting function. The proposed method extends the sufficient dimension reduction to high-dimensional regimes by condensing the cross-sectional information through factor models. We derive asymptotic properties for the estimate of the central subspace spanned by these projection directions as well as the estimates of the sufficient predictive indices. We further show that the natural method of running multiple regression of target on estimated factors yields a linear estimate that actually falls into this central subspace. Our method and theory allow the number of predictors to be larger than the number of observations. We finally demonstrate that the sufficient forecasting improves upon the linear forecasting in both simulation studies and an empirical study of forecasting macroeconomic variables. PMID:29731537

  9. Assessment of reservoir system variable forecasts

    NASA Astrophysics Data System (ADS)

    Kistenmacher, Martin; Georgakakos, Aris P.

    2015-05-01

    Forecast ensembles are a convenient means to model water resources uncertainties and to inform planning and management processes. For multipurpose reservoir systems, forecast types include (i) forecasts of upcoming inflows and (ii) forecasts of system variables and outputs such as reservoir levels, releases, flood damage risks, hydropower production, water supply withdrawals, water quality conditions, navigation opportunities, and environmental flows, among others. Forecasts of system variables and outputs are conditional on forecasted inflows as well as on specific management policies and can provide useful information for decision-making processes. Unlike inflow forecasts (in ensemble or other forms), which have been the subject of many previous studies, reservoir system variable and output forecasts are not formally assessed in water resources management theory or practice. This article addresses this gap and develops methods to rectify potential reservoir system forecast inconsistencies and improve the quality of management-relevant information provided to stakeholders and managers. The overarching conclusion is that system variable and output forecast consistency is critical for robust reservoir management and needs to be routinely assessed for any management model used to inform planning and management processes. The above are demonstrated through an application from the Sacramento-American-San Joaquin reservoir system in northern California.

  10. Assessing Upper-Level Winds on Day-of-Launch

    NASA Technical Reports Server (NTRS)

    Bauman, William H., III; Wheeler, Mark M.

    2012-01-01

    On the day-or-launch. the 45th Weather Squadron Launch Weather Officers (LWOS) monitor the upper-level winds for their launch customers to include NASA's Launch Services Program (LSP). During launch operations, the payload launch team sometimes asks the LWO if they expect the upper level winds to change during the countdown but the LWOs did not have the capability to quickly retrieve or display the upper-level observations and compare them to the numerical weather prediction model point forecasts. The LWOs requested the Applied Meteorology Unit (AMU) develop a capability in the form of a graphical user interface (GUI) that would allow them to plot upper-level wind speed and direction observations from the Kennedy Space Center Doppler Radar Wind Profilers and Cape Canaveral Air Force Station rawinsondes and then overlay model point forecast profiles on the observation profiles to assess the performance of these models and graphically display them to the launch team. The AMU developed an Excel-based capability for the LWOs to assess the model forecast upper-level winds and compare them to observations. They did so by creating a GUI in Excel that allows the LWOs to first initialize the models by comparing the O-hour model forecasts to the observations and then to display model forecasts in 3-hour intervals from the current time through 12 hours.

  11. Interactive Forecasting with the National Weather Service River Forecast System

    NASA Technical Reports Server (NTRS)

    Smith, George F.; Page, Donna

    1993-01-01

    The National Weather Service River Forecast System (NWSRFS) consists of several major hydrometeorologic subcomponents to model the physics of the flow of water through the hydrologic cycle. The entire NWSRFS currently runs in both mainframe and minicomputer environments, using command oriented text input to control the system computations. As computationally powerful and graphically sophisticated scientific workstations became available, the National Weather Service (NWS) recognized that a graphically based, interactive environment would enhance the accuracy and timeliness of NWS river and flood forecasts. Consequently, the operational forecasting portion of the NWSRFS has been ported to run under a UNIX operating system, with X windows as the display environment on a system of networked scientific workstations. In addition, the NWSRFS Interactive Forecast Program was developed to provide a graphical user interface to allow the forecaster to control NWSRFS program flow and to make adjustments to forecasts as necessary. The potential market for water resources forecasting is immense and largely untapped. Any private company able to market the river forecasting technologies currently developed by the NWS Office of Hydrology could provide benefits to many information users and profit from providing these services.

  12. Assimilation of Wave Imaging Radar Observations for Real-time Wave-by-Wave Forecasting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, Alexandra; Haller, Merrick; Walker, David

    This project addressed Topic 3: “Wave Measurement Instrumentation for Feed Forward Controls” under the FOA number DE-FOA-0000971. The overall goal of the program was to develop a phase-resolving wave forecasting technique for application to the active control of Wave Energy Conversion (WEC) devices. We have developed an approach that couples a wave imaging marine radar with a phase-resolving linear wave model for real-time wave field reconstruction and forward propagation of the wave field in space and time. The scope of the project was to develop and assess the performance of this novel forecasting system. Specific project goals were as follows:more » Develop and verify a fast, GPU-based (Graphical Processing Unit) wave propagation model suitable for phase-resolved computation of nearshore wave transformation over variable bathymetry; Compare the accuracy and speed of performance of the wave model against a deep water model in their ability to predict wave field transformation in the intermediate water depths (50 to 70 m) typical of planned WEC sites; Develop and implement a variational assimilation algorithm that can ingest wave imaging radar observations and estimate the time-varying wave conditions offshore of the domain of interest such that the observed wave field is best reconstructed throughout the domain and then use this to produce model forecasts for a given WEC location; Collect wave-resolving marine radar data, along with relevant in situ wave data, at a suitable wave energy test site, apply the algorithm to the field data, assess performance, and identify any necessary improvements; and Develop a production cost estimate that addresses the affordability of the wave forecasting technology and include in the Final Report. The developed forecasting algorithm (“Wavecast”) was evaluated for both speed and accuracy against a substantial synthetic dataset. Early in the project, performance tests definitively demonstrated that the system was capable of forecasting in real-time, as the GPU-based wave model backbone was very computationally efficient. The data assimilation algorithm was developed on a polar grid domain in order to match the sampling characteristics of the observation system (wave imaging marine radar). For verification purposes, a substantial set of synthetic wave data (i.e. forward runs of the wave model) were generated to be used as ground truth for comparison to the reconstructions and forecasts produced by Wavecast. For these synthetic cases, Wavecast demonstrated very good accuracy, for example, typical forecast correlation coefficients were between 0.84-0.95 when compared to the input data. Dependencies on shadowing, observational noise, and forecast horizon were also identified. During the second year of the project, a short field deployment was conducted in order to assess forecast accuracy under field conditions. For this, a radar was installed on a fishing vessel and observations were collected at the South Energy Test Site (SETS) off the coast of Newport, OR. At the SETS site, simultaneous in situ wave observations were also available owing to an ongoing field project funded separately. Unfortunately, the position and heading information that was available for the fishing vessel were not of sufficient accuracy in order to validate the forecast in a phase-resolving sense. Instead, a spectral comparison was made between the Wavecast forecast and the data from the in situ wave buoy. Although the wave and wind conditions during the field test were complex, the comparison showed a promising reconstruction of the wave spectral shape, where both peaks in the bimodal spectrum were represented. However, the total reconstructed spectral energy (across all directions and frequencies) was limited to 44% of the observed spectrum. Overall, wave-by-wave forecasting using a data assimilation approach based on wave imaging radar observations and a physics-based wave model shows promise for short-term phase-resolved predictions. Two recommendations for future work are as follows: first, we would recommend additional focused field campaigns for algorithm validation. The field campaign should be long enough to capture a range of wave conditions relevant to the target application and WEC site. In addition, it will be crucial to make sure the vessel of choice has high accuracy position and heading instrumentation (this instrumentation is commercially available but not standard on commercial fishing vessels). The second recommendation is to expand the model physics in the wave model backbone to include some nonlinear effects. Specifically, the third-order correction to the wave speed due to amplitude dispersion would be the next step in order to more accurately represent the phase speeds of large amplitude waves.« less

  13. COMPUTATIONAL ASPECTS OF THE AIR QUALITY FORECASTING VERSION OF CMAQ (CMAQ-F)

    EPA Science Inventory

    The air quality forecast version of the Community Modeling Air Quality (CMAQ) model (CMAQ-F) was developed from the public release version of CMAQ (available from http://www.cmascenter.org), and is running operationally at the National Weather Service's National Centers for Envir...

  14. Ensemble sea ice forecast for predicting compressive situations in the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Lehtiranta, Jonni; Lensu, Mikko; Kokkonen, Iiro; Haapala, Jari

    2017-04-01

    Forecasting of sea ice hazards is important for winter shipping in the Baltic Sea. In current numerical models the ice thickness distribution and drift are captured well, but compressive situations are often missing from forecast products. Its inclusion is requested by the shipping community, as compression poses a threat to ship operations. As compressing ice is capable of stopping ships for days and even damaging them, its inclusion in ice forecasts is vital. However, we have found that compression can not be predicted well in a deterministic forecast, since it can be a local and a quickly changing phenomenon. It is also very sensitive to small changes in the wind speed and direction, the prevailing ice conditions, and the model parameters. Thus, a probabilistic ensemble simulation is needed to produce a meaningful compression forecast. An ensemble model setup was developed in the SafeWIN project for this purpose. It uses the HELMI multicategory ice model, which was amended for making simulations in parallel. The ensemble was built by perturbing the atmospheric forcing and the physical parameters of the ice pack. The model setup will provide probabilistic forecasts for the compression in the Baltic sea ice. Additionally the model setup provides insight into the uncertainties related to different model parameters and their impact on the model results. We have completed several hindcast simulations for the Baltic Sea for verification purposes. These results are shown to match compression reports gathered from ships. In addition, an ensemble forecast is in preoperational testing phase and its first evaluation will be presented in this work.

  15. Battery Energy Storage State-of-Charge Forecasting: Models, Optimization, and Accuracy

    DOE PAGES

    Rosewater, David; Ferreira, Summer; Schoenwald, David; ...

    2018-01-25

    Battery energy storage systems (BESS) are a critical technology for integrating high penetration renewable power on an intelligent electrical grid. As limited energy restricts the steady-state operational state-of-charge (SoC) of storage systems, SoC forecasting models are used to determine feasible charge and discharge schedules that supply grid services. Smart grid controllers use SoC forecasts to optimize BESS schedules to make grid operation more efficient and resilient. This study presents three advances in BESS state-of-charge forecasting. First, two forecasting models are reformulated to be conducive to parameter optimization. Second, a new method for selecting optimal parameter values based on operational datamore » is presented. Last, a new framework for quantifying model accuracy is developed that enables a comparison between models, systems, and parameter selection methods. The accuracies achieved by both models, on two example battery systems, with each method of parameter selection are then compared in detail. The results of this analysis suggest variation in the suitability of these models for different battery types and applications. Finally, the proposed model formulations, optimization methods, and accuracy assessment framework can be used to improve the accuracy of SoC forecasts enabling better control over BESS charge/discharge schedules.« less

  16. Supporting Crop Loss Insurance Policy of Indonesia through Rice Yield Modelling and Forecasting

    NASA Astrophysics Data System (ADS)

    van Verseveld, Willem; Weerts, Albrecht; Trambauer, Patricia; de Vries, Sander; Conijn, Sjaak; van Valkengoed, Eric; Hoekman, Dirk; Grondard, Nicolas; Hengsdijk, Huib; Schrevel, Aart; Vlasbloem, Pieter; Klauser, Dominik

    2017-04-01

    The Government of Indonesia has decided on a crop insurance policy to assist Indonesia's farmers and to boost food security. To support the Indonesian government, the G4INDO project (www.g4indo.org) is developing/constructing an integrated platform implemented in the Delft-FEWS forecasting system (Werner et al., 2013). The integrated platform brings together remote sensed data (both visible and radar) and hydrologic, crop and reservoir modelling and forecasting to improve the modelling and forecasting of rice yield. The hydrological model (wflow_sbm), crop model (wflow_lintul) and reservoir models (RTC-Tools) are coupled on time stepping basis in the OpenStreams framework (see https://github.com/openstreams/wflow) and deployed in the integrated platform to support seasonal forecasting of water availability and crop yield. First we will show the general idea about the G4INDO project, the integrated platform (including Sentinel 1 & 2 data) followed by first (reforecast) results of the coupled models for predicting water availability and crop yield in the Brantas catchment in Java, Indonesia. Werner, M., Schellekens, J., Gijsbers, P., Van Dijk, M., Van den Akker, O. and Heynert K, 2013. The Delft-FEWS flow forecasting system, Environmental Modelling & Software; 40:65-77. DOI: 10.1016/j.envsoft.2012.07.010.

  17. Error reduction and representation in stages (ERRIS) in hydrological modelling for ensemble streamflow forecasting

    NASA Astrophysics Data System (ADS)

    Li, Ming; Wang, Q. J.; Bennett, James C.; Robertson, David E.

    2016-09-01

    This study develops a new error modelling method for ensemble short-term and real-time streamflow forecasting, called error reduction and representation in stages (ERRIS). The novelty of ERRIS is that it does not rely on a single complex error model but runs a sequence of simple error models through four stages. At each stage, an error model attempts to incrementally improve over the previous stage. Stage 1 establishes parameters of a hydrological model and parameters of a transformation function for data normalization, Stage 2 applies a bias correction, Stage 3 applies autoregressive (AR) updating, and Stage 4 applies a Gaussian mixture distribution to represent model residuals. In a case study, we apply ERRIS for one-step-ahead forecasting at a range of catchments. The forecasts at the end of Stage 4 are shown to be much more accurate than at Stage 1 and to be highly reliable in representing forecast uncertainty. Specifically, the forecasts become more accurate by applying the AR updating at Stage 3, and more reliable in uncertainty spread by using a mixture of two Gaussian distributions to represent the residuals at Stage 4. ERRIS can be applied to any existing calibrated hydrological models, including those calibrated to deterministic (e.g. least-squares) objectives.

  18. Battery Energy Storage State-of-Charge Forecasting: Models, Optimization, and Accuracy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosewater, David; Ferreira, Summer; Schoenwald, David

    Battery energy storage systems (BESS) are a critical technology for integrating high penetration renewable power on an intelligent electrical grid. As limited energy restricts the steady-state operational state-of-charge (SoC) of storage systems, SoC forecasting models are used to determine feasible charge and discharge schedules that supply grid services. Smart grid controllers use SoC forecasts to optimize BESS schedules to make grid operation more efficient and resilient. This study presents three advances in BESS state-of-charge forecasting. First, two forecasting models are reformulated to be conducive to parameter optimization. Second, a new method for selecting optimal parameter values based on operational datamore » is presented. Last, a new framework for quantifying model accuracy is developed that enables a comparison between models, systems, and parameter selection methods. The accuracies achieved by both models, on two example battery systems, with each method of parameter selection are then compared in detail. The results of this analysis suggest variation in the suitability of these models for different battery types and applications. Finally, the proposed model formulations, optimization methods, and accuracy assessment framework can be used to improve the accuracy of SoC forecasts enabling better control over BESS charge/discharge schedules.« less

  19. DEFENDER: Detecting and Forecasting Epidemics Using Novel Data-Analytics for Enhanced Response.

    PubMed

    Thapen, Nicholas; Simmie, Donal; Hankin, Chris; Gillard, Joseph

    2016-01-01

    In recent years social and news media have increasingly been used to explain patterns in disease activity and progression. Social media data, principally from the Twitter network, has been shown to correlate well with official disease case counts. This fact has been exploited to provide advance warning of outbreak detection, forecasting of disease levels and the ability to predict the likelihood of individuals developing symptoms. In this paper we introduce DEFENDER, a software system that integrates data from social and news media and incorporates algorithms for outbreak detection, situational awareness and forecasting. As part of this system we have developed a technique for creating a location network for any country or region based purely on Twitter data. We also present a disease nowcasting (forecasting the current but still unknown level) approach which leverages counts from multiple symptoms, which was found to improve the nowcasting accuracy by 37 percent over a model that used only previous case data. Finally we attempt to forecast future levels of symptom activity based on observed user movement on Twitter, finding a moderate gain of 5 percent over a time series forecasting model.

  20. First Assessment of Itaipu Dam Ensemble Inflow Forecasting System

    NASA Astrophysics Data System (ADS)

    Mainardi Fan, Fernando; Machado Vieira Lisboa, Auder; Gomes Villa Trinidad, Giovanni; Rógenes Monteiro Pontes, Paulo; Collischonn, Walter; Tucci, Carlos; Costa Buarque, Diogo

    2017-04-01

    Inflow forecasting for Hydropower Plants (HPP) Dams is one of the prominent uses for hydrological forecasts. A very important HPP in terms of energy generation for South America is the Itaipu Dam, located in the Paraná River, between Brazil and Paraguay countries, with a drainage area of 820.000km2. In this work, we present the development of an ensemble forecasting system for Itaipu, operational since November 2015. The system is based in the MGB-IPH hydrological model, includes hydrodynamics simulations of the main river, and is run every day morning forced by seven different rainfall forecasts: (i) CPTEC-ETA 15km; (ii) CPTEC-BRAMS 5km; (iii) SIMEPAR WRF Ferrier; (iv) SIMEPAR WRF Lin; (v) SIMEPAR WRF Morrison; (vi) SIMEPAR WRF WDM6; (vii) SIMEPAR MEDIAN. The last one (vii) corresponds to the median value of SIMEPAR WRF model versions (iii to vi) rainfall forecasts. Besides the developed system, the "traditional" method for inflow forecasting generation for the Itaipu Dam is also run every day. This traditional method consists in the approximation of the future inflow based on the discharge tendency of upstream telemetric gauges. Nowadays, after all the forecasts are run, the hydrology team of Itaipu develop a consensus forecast, based on all obtained results, which is the one used for the Itaipu HPP Dam operation. After one year of operation a first evaluation of the Ensemble Forecasting System was conducted. Results show that the system performs satisfactory for rising flows up to five days lead time. However, some false alarms were also issued by most ensemble members in some cases. And not in all cases the system performed better than the traditional method, especially during hydrograph recessions. In terms of meteorological forecasts, some members usage are being discontinued. In terms of the hydrodynamics representation, it seems that a better information of rivers cross section could improve hydrographs recession curves forecasts. Those opportunities for improvements are currently being addressed in the system next update.

  1. Replacing climatological potential evapotranspiration estimates with dynamic satellite-based observations in operational hydrologic prediction models

    NASA Astrophysics Data System (ADS)

    Franz, K. J.; Bowman, A. L.; Hogue, T. S.; Kim, J.; Spies, R.

    2011-12-01

    In the face of a changing climate, growing populations, and increased human habitation in hydrologically risky locations, both short- and long-range planners increasingly require robust and reliable streamflow forecast information. Current operational forecasting utilizes watershed-scale, conceptual models driven by ground-based (commonly point-scale) observations of precipitation and temperature and climatological potential evapotranspiration (PET) estimates. The PET values are derived from historic pan evaporation observations and remain static from year-to-year. The need for regional dynamic PET values is vital for improved operational forecasting. With the advent of satellite remote sensing and the adoption of a more flexible operational forecast system by the National Weather Service, incorporation of advanced data products is now more feasible than in years past. In this study, we will test a previously developed satellite-derived PET product (UCLA MODIS-PET) in the National Weather Service forecast models and compare the model results to current methods. The UCLA MODIS-PET method is based on the Priestley-Taylor formulation, is driven with MODIS satellite products, and produces a daily, 250m PET estimate. The focus area is eight headwater basins in the upper Midwest U.S. There is a need to develop improved forecasting methods for this region that are able to account for climatic and landscape changes more readily and effectively than current methods. This region is highly flood prone yet sensitive to prolonged dry periods in late summer and early fall, and is characterized by a highly managed landscape, which has drastically altered the natural hydrologic cycle. Our goal is to improve model simulations, and thereby, the initial conditions prior to the start of a forecast through the use of PET values that better reflect actual watershed conditions. The forecast models are being tested in both distributed and lumped mode.

  2. Projected Applications of a ``Climate in a Box'' Computing System at the NASA Short-term Prediction Research and Transition (SPoRT) Center

    NASA Astrophysics Data System (ADS)

    Jedlovec, G.; Molthan, A.; Zavodsky, B.; Case, J.; Lafontaine, F.

    2010-12-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center focuses on the transition of unique observations and research capabilities to the operational weather community, with a goal of improving short-term forecasts on a regional scale. Advances in research computing have lead to “Climate in a Box” systems, with hardware configurations capable of producing high resolution, near real-time weather forecasts, but with footprints, power, and cooling requirements that are comparable to desktop systems. The SPoRT Center has developed several capabilities for incorporating unique NASA research capabilities and observations with real-time weather forecasts. Planned utilization includes the development of a fully-cycled data assimilation system used to drive 36-48 hour forecasts produced by the NASA Unified version of the Weather Research and Forecasting (WRF) model (NU-WRF). The horsepower provided by the “Climate in a Box” system is expected to facilitate the assimilation of vertical profiles of temperature and moisture provided by the Atmospheric Infrared Sounder (AIRS) aboard the NASA Aqua satellite. In addition, the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments aboard NASA’s Aqua and Terra satellites provide high-resolution sea surface temperatures and vegetation characteristics. The development of MODIS normalized difference vegetation index (NVDI) composites for use within the NASA Land Information System (LIS) will assist in the characterization of vegetation, and subsequently the surface albedo and processes related to soil moisture. Through application of satellite simulators, NASA satellite instruments can be used to examine forecast model errors in cloud cover and other characteristics. Through the aforementioned application of the “Climate in a Box” system and NU-WRF capabilities, an end goal is the establishment of a real-time forecast system that fully integrates modeling and analysis capabilities developed within the NASA SPoRT Center, with benefits provided to the operational forecasting community.

  3. Projected Applications of a "Climate in a Box" Computing System at the NASA Short-Term Prediction Research and Transition (SPoRT) Center

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary J.; Molthan, Andrew L.; Zavodsky, Bradley; Case, Jonathan L.; LaFontaine, Frank J.

    2010-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center focuses on the transition of unique observations and research capabilities to the operational weather community, with a goal of improving short-term forecasts on a regional scale. Advances in research computing have lead to "Climate in a Box" systems, with hardware configurations capable of producing high resolution, near real-time weather forecasts, but with footprints, power, and cooling requirements that are comparable to desktop systems. The SPoRT Center has developed several capabilities for incorporating unique NASA research capabilities and observations with real-time weather forecasts. Planned utilization includes the development of a fully-cycled data assimilation system used to drive 36-48 hour forecasts produced by the NASA Unified version of the Weather Research and Forecasting (WRF) model (NU-WRF). The horsepower provided by the "Climate in a Box" system is expected to facilitate the assimilation of vertical profiles of temperature and moisture provided by the Atmospheric Infrared Sounder (AIRS) aboard the NASA Aqua satellite. In addition, the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments aboard NASA s Aqua and Terra satellites provide high-resolution sea surface temperatures and vegetation characteristics. The development of MODIS normalized difference vegetation index (NVDI) composites for use within the NASA Land Information System (LIS) will assist in the characterization of vegetation, and subsequently the surface albedo and processes related to soil moisture. Through application of satellite simulators, NASA satellite instruments can be used to examine forecast model errors in cloud cover and other characteristics. Through the aforementioned application of the "Climate in a Box" system and NU-WRF capabilities, an end goal is the establishment of a real-time forecast system that fully integrates modeling and analysis capabilities developed within the NASA SPoRT Center, with benefits provided to the operational forecasting community.

  4. Forecasting carbon dioxide emissions based on a hybrid of mixed data sampling regression model and back propagation neural network in the USA.

    PubMed

    Zhao, Xin; Han, Meng; Ding, Lili; Calin, Adrian Cantemir

    2018-01-01

    The accurate forecast of carbon dioxide emissions is critical for policy makers to take proper measures to establish a low carbon society. This paper discusses a hybrid of the mixed data sampling (MIDAS) regression model and BP (back propagation) neural network (MIDAS-BP model) to forecast carbon dioxide emissions. Such analysis uses mixed frequency data to study the effects of quarterly economic growth on annual carbon dioxide emissions. The forecasting ability of MIDAS-BP is remarkably better than MIDAS, ordinary least square (OLS), polynomial distributed lags (PDL), autoregressive distributed lags (ADL), and auto-regressive moving average (ARMA) models. The MIDAS-BP model is suitable for forecasting carbon dioxide emissions for both the short and longer term. This research is expected to influence the methodology for forecasting carbon dioxide emissions by improving the forecast accuracy. Empirical results show that economic growth has both negative and positive effects on carbon dioxide emissions that last 15 quarters. Carbon dioxide emissions are also affected by their own change within 3 years. Therefore, there is a need for policy makers to explore an alternative way to develop the economy, especially applying new energy policies to establish a low carbon society.

  5. MERIT: A man/computer data management and enhancement system for upper air nowcasting/forecasting in the United States. [Minimum Energy Routes using Interactive Techniques (MERIT)

    NASA Technical Reports Server (NTRS)

    Steinberg, R.

    1984-01-01

    It is suggested that the very short range forecast problem for aviation is one of data management rather than model development and the possibility of improving the aviation forecast using current technology is underlined. The MERIT concept of modeling technology, and advanced man/computer interactive data management and enhancement techniques to provide a tailored, accurate and timely forecast for aviation is outlined. The MERIT includes utilization of the Langrangian approach, extensive use of the automated aircraft report to complement the present data base and provide the most current observations; and the concept that a 2 to 12 hour forecast provided every 3 hr can meet the domestic needs of aviation instead of the present 18 and 24 hr forecast provided every 12 hr.

  6. Wave ensemble forecast system for tropical cyclones in the Australian region

    NASA Astrophysics Data System (ADS)

    Zieger, Stefan; Greenslade, Diana; Kepert, Jeffrey D.

    2018-05-01

    Forecasting of waves under extreme conditions such as tropical cyclones is vitally important for many offshore industries, but there remain many challenges. For Northwest Western Australia (NW WA), wave forecasts issued by the Australian Bureau of Meteorology have previously been limited to products from deterministic operational wave models forced by deterministic atmospheric models. The wave models are run over global (resolution 1/4∘) and regional (resolution 1/10∘) domains with forecast ranges of + 7 and + 3 day respectively. Because of this relatively coarse resolution (both in the wave models and in the forcing fields), the accuracy of these products is limited under tropical cyclone conditions. Given this limited accuracy, a new ensemble-based wave forecasting system for the NW WA region has been developed. To achieve this, a new dedicated 8-km resolution grid was nested in the global wave model. Over this grid, the wave model is forced with winds from a bias-corrected European Centre for Medium Range Weather Forecast atmospheric ensemble that comprises 51 ensemble members to take into account the uncertainties in location, intensity and structure of a tropical cyclone system. A unique technique is used to select restart files for each wave ensemble member. The system is designed to operate in real time during the cyclone season providing + 10-day forecasts. This paper will describe the wave forecast components of this system and present the verification metrics and skill for specific events.

  7. A national framework for flood forecasting model assessment for use in operations and investment planning over England and Wales

    NASA Astrophysics Data System (ADS)

    Moore, Robert J.; Wells, Steven C.; Cole, Steven J.

    2016-04-01

    It has been common for flood forecasting systems to be commissioned at a catchment or regional level in response to local priorities and hydrological conditions, leading to variety in system design and model choice. As systems mature and efficiencies of national management are sought, there can be a drive towards system rationalisation, gaining an overview of model performance and consideration of simplification through model-type convergence. Flood forecasting model assessments, whilst overseen at a national level, may be commissioned and managed at a catchment and regional level, take a variety of forms and be large in number. This presents a challenge when an integrated national assessment is required to guide operational use of flood forecasts and plan future investment in flood forecasting models and supporting hydrometric monitoring. This contribution reports on how a nationally consistent framework for flood forecasting model performance has been developed to embrace many past, ongoing and future assessments for local river systems by engineering consultants across England & Wales. The outcome is a Performance Summary for every site model assessed which, on a single page, contains relevant catchment information for context, a selection of overlain forecast and observed hydrographs and a set of performance statistics with associated displays of novel condensed form. One display provides performance comparison with other models that may exist for the site. The performance statistics include skill scores for forecasting events (flow/level threshold crossings) of differing severity/rarity, indicating their probability and likely timing, which have real value in an operational setting. The local models assessed can be of any type and span rainfall-runoff (conceptual and transfer function) and flow routing (hydrological and hydrodynamic) forms. Also accommodated by the framework is the national G2G (Grid-to-Grid) distributed hydrological model, providing area-wide coverage across the fluvial rivers of England and Wales, which can be assessed at gauged sites. Thus the performance of the national G2G model forecasts can be directly compared with that from the local models. The Performance Summary for each site model is complemented by a national spatial analysis of model performance stratified by model-type, geographical region and forecast lead-time. The map displays provide an extensive evidence-base that can be interrogated, through a Flood Forecasting Model Performance web portal, to reveal fresh insights into comparative performance across locations, lead-times and models. This work was commissioned by the Environment Agency in partnership with Natural Resources Wales and the Flood Forecasting Centre for England and Wales.

  8. The POLIMI forecasting chain for real time flood and drought predictions

    NASA Astrophysics Data System (ADS)

    Ceppi, Alessandro; Ravazzani, Giovanni; Corbari, Chiara; Mancini, Marco

    2016-04-01

    Nowadays coupling meteorological and hydrological models is recognized by scientific community as a necessary way to forecast extreme hydrological phenomena, in order to activate useful mitigation measurements and alert systems in advance. The development and implementation of a real-time forecasting chain with a hydro-meteorological operational alert procedure for flood and drought events is presented in this study. Different weather models are used to build the POLIMI operative chain: the probabilistic COSMO-LEPS model with 16 ensembles developed by ARPA-Emilia Romagna, the deterministic Bolam and Moloch models, developed by the Italian ISAC-CNR, and nine further simulations obtained by different runs of the WRF-ARW (3), WRF-NMM (2), ETA2012 (1) and the GFS (3), provided by the private Epson Meteo Center and Terraria companies. All the meteorological runs are then implemented with the rainfall-runoff physically-based distributed FEST-WB model, developed at Politecnico di Milano to obtain a multi-model approach system with hydrological ensemble forecasts in different areas of study over the Italian country. As far as concerning drought predictions, three test-beds are monitored: two in maize fields, one in the Puglia region (South of Italy), and another in the Po Valley area, (northern Italy), and one in a golf course in Milan city. The hydrological model was here calibrated and validated against measurements of latent heat flux and soil moisture acquired by an eddy-covariance station, TDR probes and remote sensing images. Regarding flood forecasts, two test-sites are chosen: the first one is the urban area northern Milan where three catchments (the Seveso, Olona, and Lambro River basins) are used to show how early warning systems are an effective complement to structural measures for flood control in Milan city which flooded frequently in the last 25 years, while the second test-site is the Idro Lake, located between the Lombardy and Trentino region where the POLIMI hydro-meteorological chain is performed to forecast the hydrometric lake level for a better management of the upstream and downstream basin. The same hydrological model has been here calibrated and validated with observed data coming from local bodies: ARPA Lombardy, Meteonetwork and Meteo Trentino. Reliability of the forecasting system and its benefits are assessed with skill scores on some cases-study occurred in the recent years and through the real-time visualization of the implemented dashboards.

  9. Multivariate time series modeling of short-term system scale irrigation demand

    NASA Astrophysics Data System (ADS)

    Perera, Kushan C.; Western, Andrew W.; George, Biju; Nawarathna, Bandara

    2015-12-01

    Travel time limits the ability of irrigation system operators to react to short-term irrigation demand fluctuations that result from variations in weather, including very hot periods and rainfall events, as well as the various other pressures and opportunities that farmers face. Short-term system-wide irrigation demand forecasts can assist in system operation. Here we developed a multivariate time series (ARMAX) model to forecast irrigation demands with respect to aggregated service points flows (IDCGi, ASP) and off take regulator flows (IDCGi, OTR) based across 5 command areas, which included area covered under four irrigation channels and the study area. These command area specific ARMAX models forecast 1-5 days ahead daily IDCGi, ASP and IDCGi, OTR using the real time flow data recorded at the service points and the uppermost regulators and observed meteorological data collected from automatic weather stations. The model efficiency and the predictive performance were quantified using the root mean squared error (RMSE), Nash-Sutcliffe model efficiency coefficient (NSE), anomaly correlation coefficient (ACC) and mean square skill score (MSSS). During the evaluation period, NSE for IDCGi, ASP and IDCGi, OTR across 5 command areas were ranged 0.98-0.78. These models were capable of generating skillful forecasts (MSSS ⩾ 0.5 and ACC ⩾ 0.6) of IDCGi, ASP and IDCGi, OTR for all 5 lead days and IDCGi, ASP and IDCGi, OTR forecasts were better than using the long term monthly mean irrigation demand. Overall these predictive performance from the ARMAX time series models were higher than almost all the previous studies we are aware. Further, IDCGi, ASP and IDCGi, OTR forecasts have improved the operators' ability to react for near future irrigation demand fluctuations as the developed ARMAX time series models were self-adaptive to reflect the short-term changes in the irrigation demand with respect to various pressures and opportunities that farmers' face, such as changing water policy, continued development of water markets, drought and changing technology.

  10. Promoting inclusive water governance and forecasting the structure of water consumption based on compositional data: A case study of Beijing.

    PubMed

    Wei, Yigang; Wang, Zhichao; Wang, Huiwen; Yao, Tang; Li, Yan

    2018-09-01

    Water is centrally important for agricultural security, environment, people's livelihoods, and socio-economic development, particularly in the face of extreme climate changes. Due to water shortages in many cities, the conflicts between various stakeholders and sectors over water use and allocation are becoming more common and intense. Effective inclusive governance of water use is critical for relieving water use conflicts. In addition, reliable forecasting of the structure of water usage among different sectors is a basic need for effective water governance planning. Although a large number of studies have attempted to forecast water use, little is known about the forecasted structure and trends of water use in the future. This paper aims to develop a forecasting model for the structure of water usage based on compositional data. Compositional data analysis is an effective approach for investigating the internal structure of a system. A host of data transformation methods and forecasting models were adopted and compared in order to derive the best-performing model. According to mean absolute percent error for compositional data (CoMAPE), a hyperspherical-transformation-based vector autoregression model for compositional data (VAR-DRHT) is the best-performing model. The proportions of the agricultural, industrial, domestic and environmental water will be 6.11%, 5.01%, 37.48% and 51.4% by 2020. Several recommendations for water inclusive development are provided to give a better account for the optimization of the water use structure, alleviation of water shortages, and improving stake holders' wellbeing. Overall, although we focus on groundwater, this study presents a powerful framework broadly applicable to resource management. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Winter precipitation forecast in the European and Mediterranean regions using cluster analysis

    NASA Astrophysics Data System (ADS)

    Molnos, S.

    2017-12-01

    The European and Mediterranean climates are sensitive to large-scale circulation of the atmosphere andocean making it difficult to forecast precipitation or temperature on seasonal time-scales. In addition, theMediterranean region has been identified as a hotspot for climate change and already today a drying in theMediterranean region is observed.Thus, it is critically important to predict seasonal droughts as early as possible such that water managersand stakeholders can mitigate impacts.We developed a novel cluster-based forecast method to empirically predict winter's precipitationanomalies in European and Mediterranean regions using precursors in autumn. This approach does notonly utilizes the amplitude but also the pattern of the precursors in generating the forecast.Using a toy model we show that it achieves a better forecast skill than more traditional regression models. Furthermore, we compare our algorithm with dynamic forecast models demonstrating that our prediction method performs better in terms of time and pattern correlation in the Mediterranean and European regions.

  12. Forecasting Crude Oil Spot Price Using OECD Petroleum Inventory Levels

    EIA Publications

    2003-01-01

    This paper presents a short-term monthly forecasting model of West Texas Intermediate crude oil spot price using Organization for Economic Cooperation and Development (OECD) petroleum inventory levels.

  13. Daily Peak Load Forecasting of Next Day using Weather Distribution and Comparison Value of Each Nearby Date Data

    NASA Astrophysics Data System (ADS)

    Ito, Shigenobu; Yukita, Kazuto; Goto, Yasuyuki; Ichiyanagi, Katsuhiro; Nakano, Hiroyuki

    By the development of industry, in recent years; dependence to electric energy is growing year by year. Therefore, reliable electric power supply is in need. However, to stock a huge amount of electric energy is very difficult. Also, there is a necessity to keep balance between the demand and supply, which changes hour after hour. Consequently, to supply the high quality and highly dependable electric power supply, economically, and with high efficiency, there is a need to forecast the movement of the electric power demand carefully in advance. And using that forecast as the source, supply and demand management plan should be made. Thus load forecasting is said to be an important job among demand investment of electric power companies. So far, forecasting method using Fuzzy logic, Neural Net Work, Regression model has been suggested for the development of forecasting accuracy. Those forecasting accuracy is in a high level. But to invest electric power in higher accuracy more economically, a new forecasting method with higher accuracy is needed. In this paper, to develop the forecasting accuracy of the former methods, the daily peak load forecasting method using the weather distribution of highest and lowest temperatures, and comparison value of each nearby date data is suggested.

  14. Value of long-term streamflow forecast to reservoir operations for water supply in snow-dominated catchments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anghileri, Daniela; Voisin, Nathalie; Castelletti, Andrea F.

    In this study, we develop a forecast-based adaptive control framework for Oroville reservoir, California, to assess the value of seasonal and inter-annual forecasts for reservoir operation.We use an Ensemble Streamflow Prediction (ESP) approach to generate retrospective, one-year-long streamflow forecasts based on the Variable Infiltration Capacity hydrology model. The optimal sequence of daily release decisions from the reservoir is then determined by Model Predictive Control, a flexible and adaptive optimization scheme.We assess the forecast value by comparing system performance based on the ESP forecasts with that based on climatology and a perfect forecast. In addition, we evaluate system performance based onmore » a synthetic forecast, which is designed to isolate the contribution of seasonal and inter-annual forecast skill to the overall value of the ESP forecasts.Using the same ESP forecasts, we generalize our results by evaluating forecast value as a function of forecast skill, reservoir features, and demand. Our results show that perfect forecasts are valuable when the water demand is high and the reservoir is sufficiently large to allow for annual carry-over. Conversely, ESP forecast value is highest when the reservoir can shift water on a seasonal basis.On average, for the system evaluated here, the overall ESP value is 35% less than the perfect forecast value. The inter-annual component of the ESP forecast contributes 20-60% of the total forecast value. Improvements in the seasonal component of the ESP forecast would increase the overall ESP forecast value between 15 and 20%.« less

  15. Combination of synoptical-analogous and dynamical methods to increase skill score of monthly air temperature forecasts over Northern Eurasia

    NASA Astrophysics Data System (ADS)

    Khan, Valentina; Tscepelev, Valery; Vilfand, Roman; Kulikova, Irina; Kruglova, Ekaterina; Tischenko, Vladimir

    2016-04-01

    Long-range forecasts at monthly-seasonal time scale are in great demand of socio-economic sectors for exploiting climate-related risks and opportunities. At the same time, the quality of long-range forecasts is not fully responding to user application necessities. Different approaches, including combination of different prognostic models, are used in forecast centers to increase the prediction skill for specific regions and globally. In the present study, two forecasting methods are considered which are exploited in operational practice of Hydrometeorological Center of Russia. One of them is synoptical-analogous method of forecasting of surface air temperature at monthly scale. Another one is dynamical system based on the global semi-Lagrangian model SL-AV, developed in collaboration of Institute of Numerical Mathematics and Hydrometeorological Centre of Russia. The seasonal version of this model has been used to issue global and regional forecasts at monthly-seasonal time scales. This study presents results of the evaluation of surface air temperature forecasts generated with using above mentioned synoptical-statistical and dynamical models, and their combination to potentially increase skill score over Northern Eurasia. The test sample of operational forecasts is encompassing period from 2010 through 2015. The seasonal and interannual variability of skill scores of these methods has been discussed. It was noticed that the quality of all forecasts is highly dependent on the inertia of macro-circulation processes. The skill scores of forecasts are decreasing during significant alterations of synoptical fields for both dynamical and empirical schemes. Procedure of combination of forecasts from different methods, in some cases, has demonstrated its effectiveness. For this study the support has been provided by Grant of Russian Science Foundation (№14-37-00053).

  16. OpenDA-WFLOW framework for improving hydrologic predictions using distributed hydrologic models

    NASA Astrophysics Data System (ADS)

    Weerts, Albrecht; Schellekens, Jaap; Kockx, Arno; Hummel, Stef

    2017-04-01

    Data assimilation (DA) holds considerable potential for improving hydrologic predictions (Liu et al., 2012) and increase the potential for early warning and/or smart water management. However, advances in hydrologic DA research have not yet been adequately or timely implemented in operational forecast systems to improve the skill of forecasts for better informed real-world decision making. The objective of this work is to highlight the development of a generic linkage of the open source OpenDA package and the open source community hydrologic modeling framework Openstreams/WFLOW and its application in operational hydrological forecasting on various spatial scales. The coupling between OpenDA and Openstreams/wflow framework is based on the emerging standard Basic Model Interface (BMI) as advocated by CSDMS using cross-platform webservices (i.e. Apache Thrift) developed by Hut et al. (2016). The potential application of the OpenDA-WFLOW for operational hydrologic forecasting including its integration with Delft-FEWS (used by more than 40 operational forecast centers around the world (Werner et al., 2013)) is demonstrated by the presented case studies. We will also highlight the possibility to give real-time insight into the working of the DA methods applied for supporting the forecaster as mentioned as one of the burning issues by Liu et al., (2012).

  17. Improvement of forecast skill for severe weather by merging radar-based extrapolation and storm-scale NWP corrected forecast

    NASA Astrophysics Data System (ADS)

    Wang, Gaili; Wong, Wai-Kin; Hong, Yang; Liu, Liping; Dong, Jili; Xue, Ming

    2015-03-01

    The primary objective of this study is to improve the performance of deterministic high resolution rainfall forecasts caused by severe storms by merging an extrapolation radar-based scheme with a storm-scale Numerical Weather Prediction (NWP) model. Effectiveness of Multi-scale Tracking and Forecasting Radar Echoes (MTaRE) model was compared with that of a storm-scale NWP model named Advanced Regional Prediction System (ARPS) for forecasting a violent tornado event that developed over parts of western and much of central Oklahoma on May 24, 2011. Then the bias corrections were performed to improve the forecast accuracy of ARPS forecasts. Finally, the corrected ARPS forecast and radar-based extrapolation were optimally merged by using a hyperbolic tangent weight scheme. The comparison of forecast skill between MTaRE and ARPS in high spatial resolution of 0.01° × 0.01° and high temporal resolution of 5 min showed that MTaRE outperformed ARPS in terms of index of agreement and mean absolute error (MAE). MTaRE had a better Critical Success Index (CSI) for less than 20-min lead times and was comparable to ARPS for 20- to 50-min lead times, while ARPS had a better CSI for more than 50-min lead times. Bias correction significantly improved ARPS forecasts in terms of MAE and index of agreement, although the CSI of corrected ARPS forecasts was similar to that of the uncorrected ARPS forecasts. Moreover, optimally merging results using hyperbolic tangent weight scheme further improved the forecast accuracy and became more stable.

  18. Oceanic sources of predictability for MJO propagation across the Maritime Continent in a subset of S2S forecast models

    NASA Astrophysics Data System (ADS)

    DeMott, C. A.; Klingaman, N. P.

    2017-12-01

    Skillful prediction of the Madden-Julian oscillation (MJO) passage across the Maritime Continent (MC) has important implications for global forecasts of high-impact weather events, such as atmospheric rivers and heat waves. The North American teleconnection response to the MJO is strongest when MJO convection is located in the western Pacific Ocean, but many climate and forecast models are deficient in their simulation of MC-crossing MJO events. Compared to atmosphere-only general circulation models (AGCMs), MJO simulation skill generally improves with the addition of ocean feedbacks in coupled GCMs (CGCMs). Using observations, previous studies have noted that the degree of ocean coupling may vary considerably from one MJO event to the next. The coupling mechanisms may be linked to the presence of ocean Equatorial Rossby waves, the sign and amplitude of Equatorial surface currents, and the upper ocean temperature and salinity profiles. In this study, we assess the role of ocean feedbacks to MJO prediction skill using a subset of CGCMs participating in the Subseasonal-to-Seasonal (S2S) Project database. Oceanic observational and reanalysis datasets are used to characterize the upper ocean background state for observed MJO events that do and do not propagate beyond the MC. The ability of forecast models to capture the oceanic influence on the MJO is first assessed by quantifying SST forecast skill. Next, a set of previously developed air-sea interaction diagnostics is applied to model output to measure the role of SST perturbations on the forecast MJO. The "SST effect" in forecast MJO events is compared to that obtained from reanalysis data. Leveraging all ensemble members of a given forecast helps disentangle oceanic model biases from atmospheric model biases, both of which can influence the expression of ocean feedbacks in coupled forecast systems. Results of this study will help identify areas of needed model improvement for improved MJO forecasts.

  19. Fuzzy neural network technique for system state forecasting.

    PubMed

    Li, Dezhi; Wang, Wilson; Ismail, Fathy

    2013-10-01

    In many system state forecasting applications, the prediction is performed based on multiple datasets, each corresponding to a distinct system condition. The traditional methods dealing with multiple datasets (e.g., vector autoregressive moving average models and neural networks) have some shortcomings, such as limited modeling capability and opaque reasoning operations. To tackle these problems, a novel fuzzy neural network (FNN) is proposed in this paper to effectively extract information from multiple datasets, so as to improve forecasting accuracy. The proposed predictor consists of both autoregressive (AR) nodes modeling and nonlinear nodes modeling; AR models/nodes are used to capture the linear correlation of the datasets, and the nonlinear correlation of the datasets are modeled with nonlinear neuron nodes. A novel particle swarm technique [i.e., Laplace particle swarm (LPS) method] is proposed to facilitate parameters estimation of the predictor and improve modeling accuracy. The effectiveness of the developed FNN predictor and the associated LPS method is verified by a series of tests related to Mackey-Glass data forecast, exchange rate data prediction, and gear system prognosis. Test results show that the developed FNN predictor and the LPS method can capture the dynamics of multiple datasets effectively and track system characteristics accurately.

  20. Coordinated Parameterization Development and Large-Eddy Simulation for Marine and Arctic Cloud-Topped Boundary Layers

    NASA Technical Reports Server (NTRS)

    Bretherton, Christopher S.

    2002-01-01

    The goal of this project was to compare observations of marine and arctic boundary layers with: (1) parameterization systems used in climate and weather forecast models; and (2) two and three dimensional eddy resolving (LES) models for turbulent fluid flow. Based on this comparison, we hoped to better understand, predict, and parameterize the boundary layer structure and cloud amount, type, and thickness as functions of large scale conditions that are predicted by global climate models. The principal achievements of the project were as follows: (1) Development of a novel boundary layer parameterization for large-scale models that better represents the physical processes in marine boundary layer clouds; and (2) Comparison of column output from the ECMWF global forecast model with observations from the SHEBA experiment. Overall the forecast model did predict most of the major precipitation events and synoptic variability observed over the year of observation of the SHEBA ice camp.

  1. Weather and seasonal climate prediction for South America using a multi-model superensemble

    NASA Astrophysics Data System (ADS)

    Chaves, Rosane R.; Ross, Robert S.; Krishnamurti, T. N.

    2005-11-01

    This work examines the feasibility of weather and seasonal climate predictions for South America using the multi-model synthetic superensemble approach for climate, and the multi-model conventional superensemble approach for numerical weather prediction, both developed at Florida State University (FSU). The effect on seasonal climate forecasts of the number of models used in the synthetic superensemble is investigated. It is shown that the synthetic superensemble approach for climate and the conventional superensemble approach for numerical weather prediction can reduce the errors over South America in seasonal climate prediction and numerical weather prediction.For climate prediction, a suite of 13 models is used. The forecast lead-time is 1 month for the climate forecasts, which consist of precipitation and surface temperature forecasts. The multi-model ensemble is comprised of four versions of the FSU-Coupled Ocean-Atmosphere Model, seven models from the Development of a European Multi-model Ensemble System for Seasonal to Interannual Prediction (DEMETER), a version of the Community Climate Model (CCM3), and a version of the predictive Ocean Atmosphere Model for Australia (POAMA). The results show that conditions over South America are appropriately simulated by the Florida State University Synthetic Superensemble (FSUSSE) in comparison to observations and that the skill of this approach increases with the use of additional models in the ensemble. When compared to observations, the forecasts are generally better than those from both a single climate model and the multi-model ensemble mean, for the variables tested in this study.For numerical weather prediction, the conventional Florida State University Superensemble (FSUSE) is used to predict the mass and motion fields over South America. Predictions of mean sea level pressure, 500 hPa geopotential height, and 850 hPa wind are made with a multi-model superensemble comprised of six global models for the period January, February, and December of 2000. The six global models are from the following forecast centers: FSU, Bureau of Meteorology Research Center (BMRC), Japan Meteorological Agency (JMA), National Centers for Environmental Prediction (NCEP), Naval Research Laboratory (NRL), and Recherche en Prevision Numerique (RPN). Predictions of precipitation are made for the period January, February, and December of 2001 with a multi-analysis-multi-model superensemble where, in addition to the six forecast models just mentioned, five additional versions of the FSU model are used in the ensemble, each with a different initialization (analysis) based on different physical initialization procedures. On the basis of observations, the results show that the FSUSE provides the best forecasts of the mass and motion field variables to forecast day 5, when compared to both the models comprising the ensemble and the multi-model ensemble mean during the wet season of December-February over South America. Individual case studies show that the FSUSE provides excellent predictions of rainfall for particular synoptic events to forecast day 3. Copyright

  2. Forecasting paratransit services demand : review and recommendations.

    DOT National Transportation Integrated Search

    2013-06-01

    Travel demand forecasting tools for Floridas paratransit services are outdated, utilizing old national trip : generation rate generalities and simple linear regression models. In its guidance for the development of : mandated Transportation Disadv...

  3. A hybrid least squares support vector machines and GMDH approach for river flow forecasting

    NASA Astrophysics Data System (ADS)

    Samsudin, R.; Saad, P.; Shabri, A.

    2010-06-01

    This paper proposes a novel hybrid forecasting model, which combines the group method of data handling (GMDH) and the least squares support vector machine (LSSVM), known as GLSSVM. The GMDH is used to determine the useful input variables for LSSVM model and the LSSVM model which works as time series forecasting. In this study the application of GLSSVM for monthly river flow forecasting of Selangor and Bernam River are investigated. The results of the proposed GLSSVM approach are compared with the conventional artificial neural network (ANN) models, Autoregressive Integrated Moving Average (ARIMA) model, GMDH and LSSVM models using the long term observations of monthly river flow discharge. The standard statistical, the root mean square error (RMSE) and coefficient of correlation (R) are employed to evaluate the performance of various models developed. Experiment result indicates that the hybrid model was powerful tools to model discharge time series and can be applied successfully in complex hydrological modeling.

  4. Two levels ARIMAX and regression models for forecasting time series data with calendar variation effects

    NASA Astrophysics Data System (ADS)

    Suhartono, Lee, Muhammad Hisyam; Prastyo, Dedy Dwi

    2015-12-01

    The aim of this research is to develop a calendar variation model for forecasting retail sales data with the Eid ul-Fitr effect. The proposed model is based on two methods, namely two levels ARIMAX and regression methods. Two levels ARIMAX and regression models are built by using ARIMAX for the first level and regression for the second level. Monthly men's jeans and women's trousers sales in a retail company for the period January 2002 to September 2009 are used as case study. In general, two levels of calendar variation model yields two models, namely the first model to reconstruct the sales pattern that already occurred, and the second model to forecast the effect of increasing sales due to Eid ul-Fitr that affected sales at the same and the previous months. The results show that the proposed two level calendar variation model based on ARIMAX and regression methods yields better forecast compared to the seasonal ARIMA model and Neural Networks.

  5. Three models intercomparison for Quantitative Precipitation Forecast over Calabria

    NASA Astrophysics Data System (ADS)

    Federico, S.; Avolio, E.; Bellecci, C.; Colacino, M.; Lavagnini, A.; Accadia, C.; Mariani, S.; Casaioli, M.

    2004-11-01

    In the framework of the National Project “Sviluppo di distretti industriali per le Osservazioni della Terra” (Development of Industrial Districts for Earth Observations) funded by MIUR (Ministero dell'Università e della Ricerca Scientifica --Italian Ministry of the University and Scientific Research) two operational mesoscale models were set-up for Calabria, the southernmost tip of the Italian peninsula. Models are RAMS (Regional Atmospheric Modeling System) and MM5 (Mesoscale Modeling 5) that are run every day at Crati scrl to produce weather forecast over Calabria (http://www.crati.it). This paper reports model intercomparison for Quantitative Precipitation Forecast evaluated for a 20 month period from 1th October 2000 to 31th May 2002. In addition to RAMS and MM5 outputs, QBOLAM rainfall fields are available for the period selected and included in the comparison. This model runs operationally at “Agenzia per la Protezione dell'Ambiente e per i Servizi Tecnici”. Forecasts are verified comparing models outputs with raingauge data recorded by the regional meteorological network, which has 75 raingauges. Large-scale forcing is the same for all models considered and differences are due to physical/numerical parameterizations and horizontal resolutions. QPFs show differences between models. Largest differences are for BIA compared to the other considered scores. Performances decrease with increasing forecast time for RAMS and MM5, whilst QBOLAM scores better for second day forecast.

  6. Forecasting model for Pea seed-borne mosaic virus epidemics in field pea crops in a Mediterranean-type environment.

    PubMed

    Congdon, B S; Coutts, B A; Jones, R A C; Renton, M

    2017-09-15

    An empirical model was developed to forecast Pea seed-borne mosaic virus (PSbMV) incidence at a critical phase of the annual growing season to predict yield loss in field pea crops sown under Mediterranean-type conditions. The model uses pre-growing season rainfall to calculate an index of aphid abundance in early-August which, in combination with PSbMV infection level in seed sown, is used to forecast virus crop incidence. Using predicted PSbMV crop incidence in early-August and day of sowing, PSbMV transmission from harvested seed was also predicted, albeit less accurately. The model was developed so it provides forecasts before sowing to allow sufficient time to implement control recommendations, such as having representative seed samples tested for PSbMV transmission rate to seedlings, obtaining seed with minimal PSbMV infection or of a PSbMV-resistant cultivar, and implementation of cultural management strategies. The model provides a disease forecast risk indication, taking into account predicted percentage yield loss to PSbMV infection and economic factors involved in field pea production. This disease risk forecast delivers location-specific recommendations regarding PSbMV management to end-users. These recommendations will be delivered directly to end-users via SMS alerts with links to web support that provide information on PSbMV management options. This modelling and decision support system approach would likely be suitable for use in other world regions where field pea is grown in similar Mediterranean-type environments. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Spatial Pattern Classification for More Accurate Forecasting of Variable Energy Resources

    NASA Astrophysics Data System (ADS)

    Novakovskaia, E.; Hayes, C.; Collier, C.

    2014-12-01

    The accuracy of solar and wind forecasts is becoming increasingly essential as grid operators continue to integrate additional renewable generation onto the electric grid. Forecast errors affect rate payers, grid operators, wind and solar plant maintenance crews and energy traders through increases in prices, project down time or lost revenue. While extensive and beneficial efforts were undertaken in recent years to improve physical weather models for a broad spectrum of applications these improvements have generally not been sufficient to meet the accuracy demands of system planners. For renewables, these models are often used in conjunction with additional statistical models utilizing both meteorological observations and the power generation data. Forecast accuracy can be dependent on specific weather regimes for a given location. To account for these dependencies it is important that parameterizations used in statistical models change as the regime changes. An automated tool, based on an artificial neural network model, has been developed to identify different weather regimes as they impact power output forecast accuracy at wind or solar farms. In this study, improvements in forecast accuracy were analyzed for varying time horizons for wind farms and utility-scale PV plants located in different geographical regions.

  8. Development of seasonal flow outlook model for Ganges-Brahmaputra Basins in Bangladesh

    NASA Astrophysics Data System (ADS)

    Hossain, Sazzad; Haque Khan, Raihanul; Gautum, Dilip Kumar; Karmaker, Ripon; Hossain, Amirul

    2016-10-01

    Bangladesh is crisscrossed by the branches and tributaries of three main river systems, the Ganges, Bramaputra and Meghna (GBM). The temporal variation of water availability of those rivers has an impact on the different water usages such as irrigation, urban water supply, hydropower generation, navigation etc. Thus, seasonal flow outlook can play important role in various aspects of water management. The Flood Forecasting and Warning Center (FFWC) in Bangladesh provides short term and medium term flood forecast, and there is a wide demand from end-users about seasonal flow outlook for agricultural purposes. The objective of this study is to develop a seasonal flow outlook model in Bangladesh based on rainfall forecast. It uses European Centre for Medium-Range Weather Forecasts (ECMWF) seasonal precipitation, temperature forecast to simulate HYDROMAD hydrological model. Present study is limited for Ganges and Brahmaputra River Basins. ARIMA correction is applied to correct the model error. The performance of the model is evaluated using coefficient of determination (R2) and Nash-Sutcliffe Efficiency (NSE). The model result shows good performance with R2 value of 0.78 and NSE of 0.61 for the Brahmaputra River Basin, and R2 value of 0.72 and NSE of 0.59 for the Ganges River Basin for the period of May to July 2015. The result of the study indicates strong potential to make seasonal outlook to be operationalized.

  9. Environmental predictors of stunting among children under-five in Somalia: cross-sectional studies from 2007 to 2010.

    PubMed

    Kinyoki, Damaris K; Berkley, James A; Moloney, Grainne M; Odundo, Elijah O; Kandala, Ngianga-Bakwin; Noor, Abdisalan M

    2016-07-28

    Stunting among children under five years old is associated with long-term effects on cognitive development, school achievement, economic productivity in adulthood and maternal reproductive outcomes. Accurate estimation of stunting and tools to forecast risk are key to planning interventions. We estimated the prevalence and distribution of stunting among children under five years in Somalia from 2007 to 2010 and explored the role of environmental covariates in its forecasting. Data from household nutritional surveys in Somalia from 2007 to 2010 with a total of 1,066 clusters covering 73,778 children were included. We developed a Bayesian hierarchical space-time model to forecast stunting by using the relationship between observed stunting and environmental covariates in the preceding years. We then applied the model coefficients to environmental covariates in subsequent years. To determine the accuracy of the forecasting, we compared this model with a model that used data from all the years with the corresponding environmental covariates. Rainfall (OR = 0.994, 95 % Credible interval (CrI): 0.993, 0.995) and vegetation cover (OR = 0.719, 95 % CrI: 0.603, 0.858) were significant in forecasting stunting. The difference in estimates of stunting using the two approaches was less than 3 % in all the regions for all forecast years. Stunting in Somalia is spatially and temporally heterogeneous. Rainfall and vegetation are major drivers of these variations. The use of environmental covariates for forecasting of stunting is a potentially useful and affordable tool for planning interventions to reduce the high burden of malnutrition in Somalia.

  10. Forecasting Space Weather-Induced GPS Performance Degradation Using Random Forest

    NASA Astrophysics Data System (ADS)

    Filjar, R.; Filic, M.; Milinkovic, F.

    2017-12-01

    Space weather and ionospheric dynamics have a profound effect on positioning performance of the Global Satellite Navigation System (GNSS). However, the quantification of that effect is still the subject of scientific activities around the world. In the latest contribution to the understanding of the space weather and ionospheric effects on satellite-based positioning performance, we conducted a study of several candidates for forecasting method for space weather-induced GPS positioning performance deterioration. First, a 5-days set of experimentally collected data was established, encompassing the space weather and ionospheric activity indices (including: the readings of the Sudden Ionospheric Disturbance (SID) monitors, components of geomagnetic field strength, global Kp index, Dst index, GPS-derived Total Electron Content (TEC) samples, standard deviation of TEC samples, and sunspot number) and observations of GPS positioning error components (northing, easting, and height positioning error) derived from the Adriatic Sea IGS reference stations' RINEX raw pseudorange files in quiet space weather periods. This data set was split into the training and test sub-sets. Then, a selected set of supervised machine learning methods based on Random Forest was applied to the experimentally collected data set in order to establish the appropriate regional (the Adriatic Sea) forecasting models for space weather-induced GPS positioning performance deterioration. The forecasting models were developed in the R/rattle statistical programming environment. The forecasting quality of the regional forecasting models developed was assessed, and the conclusions drawn on the advantages and shortcomings of the regional forecasting models for space weather-caused GNSS positioning performance deterioration.

  11. Ecological Forecasting in the Applied Sciences Program and Input to the Decadal Survey

    NASA Technical Reports Server (NTRS)

    Skiles, Joseph

    2015-01-01

    Ecological forecasting uses knowledge of physics, ecology and physiology to predict how ecosystems will change in the future in response to environmental factors. Further, Ecological Forecasting employs observations and models to predict the effects of environmental change on ecosystems. In doing so, it applies information from the physical, biological, and social sciences and promotes a scientific synthesis across the domains of physics, geology, chemistry, biology, and psychology. The goal is reliable forecasts that allow decision makers access to science-based tools in order to project changes in living systems. The next decadal survey will direct the development Earth Observation sensors and satellites for the next ten years. It is important that these new sensors and satellites address the requirements for ecosystem models, imagery, and other data for resource management. This presentation will give examples of these model inputs and some resources needed for NASA to continue effective Ecological Forecasting.

  12. Machine Learning Based Multi-Physical-Model Blending for Enhancing Renewable Energy Forecast -- Improvement via Situation Dependent Error Correction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Siyuan; Hwang, Youngdeok; Khabibrakhmanov, Ildar

    With increasing penetration of solar and wind energy to the total energy supply mix, the pressing need for accurate energy forecasting has become well-recognized. Here we report the development of a machine-learning based model blending approach for statistically combining multiple meteorological models for improving the accuracy of solar/wind power forecast. Importantly, we demonstrate that in addition to parameters to be predicted (such as solar irradiance and power), including additional atmospheric state parameters which collectively define weather situations as machine learning input provides further enhanced accuracy for the blended result. Functional analysis of variance shows that the error of individual modelmore » has substantial dependence on the weather situation. The machine-learning approach effectively reduces such situation dependent error thus produces more accurate results compared to conventional multi-model ensemble approaches based on simplistic equally or unequally weighted model averaging. Validation over an extended period of time results show over 30% improvement in solar irradiance/power forecast accuracy compared to forecasts based on the best individual model.« less

  13. CALIPSO Satellite Lidar Identification Of Elevated Dust Over Australia Compared With Air Quality Model PM60 Forecasts

    NASA Technical Reports Server (NTRS)

    Young, Stuart A.; Vaughan, Mark; Omar, Ali; Liu, Zhaoyan; Lee, Sunhee; Hu, Youngxiang; Cope, Martin

    2008-01-01

    Global measurements of the vertical distribution of clouds and aerosols have been recorded by the lidar on board the CALIPSO (Cloud Aerosol Lidar Infrared Pathfinder Satellite Observations) satellite since June 2006. Such extensive, height-resolved measurements provide a rare and valuable opportunity for developing, testing and validating various atmospheric models, including global climate, numerical weather prediction, chemical transport and air quality models. Here we report on the initial results of an investigation into the performance of the Australian Air Quality Forecast System (AAQFS) model in forecasting the distribution of elevated dust over the Australian region. The model forecasts of PM60 dust distribution are compared with the CALIPSO lidar Vertical Feature Mask (VFM) data product. The VFM classifies contiguous atmospheric regions of enhanced backscatter as either cloud or aerosols. Aerosols are further classified into six subtypes. By comparing forecast PM60 concentration profiles to the spatial distribution of dust reported in the CALIPSO VFM, we can assess the model s ability to predict the occurrence and the vertical and horizontal extents of dust events within the study area.

  14. Global Positioning System (GPS) Precipitable Water in Forecasting Lightning at Spaceport Canaveral

    NASA Technical Reports Server (NTRS)

    Kehrer, Kristen C.; Graf, Brian; Roeder, William

    2006-01-01

    This paper evaluates the use of precipitable water (PW) from Global Positioning System (GPS) in lightning prediction. Additional independent verification of an earlier model is performed. This earlier model used binary logistic regression with the following four predictor variables optimally selected from a candidate list of 23 candidate predictors: the current precipitable water value for a given time of the day, the change in GPS-PW over the past 9 hours, the KIndex, and the electric field mill value. This earlier model was not optimized for any specific forecast interval, but showed promise for 6 hour and 1.5 hour forecasts. Two new models were developed and verified. These new models were optimized for two operationally significant forecast intervals. The first model was optimized for the 0.5 hour lightning advisories issued by the 45th Weather Squadron. An additional 1.5 hours was allowed for sensor dwell, communication, calculation, analysis, and advisory decision by the forecaster. Therefore the 0.5 hour advisory model became a 2 hour forecast model for lightning within the 45th Weather Squadron advisory areas. The second model was optimized for major ground processing operations supported by the 45th Weather Squadron, which can require lightning forecasts with a lead-time of up to 7.5 hours. Using the same 1.5 lag as in the other new model, this became a 9 hour forecast model for lightning within 37 km (20 NM)) of the 45th Weather Squadron advisory areas. The two new models were built using binary logistic regression from a list of 26 candidate predictor variables: the current GPS-PW value, the change of GPS-PW over 0.5 hour increments from 0.5 to 12 hours, and the K-index. The new 2 hour model found the following for predictors to be statistically significant, listed in decreasing order of contribution to the forecast: the 0.5 hour change in GPS-PW, the 7.5 hour change in GPS-PW, the current GPS-PW value, and the KIndex. The new 9 hour forecast model found the following five independent variables to be statistically significant, listed in decreasing order of contribution to the forecast: the current GPSPW value, the 8.5 hour change in GPS-PW, the 3.5 hour change in GPS-PW, the 12 hour change in GPS-PW, and the K-Index. In both models, the GPS-PW parameters had better correlation to the lightning forecast than the K-Index, a widely used thunderstorm index. Possible future improvements to this study are discussed.

  15. Freeway travel-time estimation and forecasting.

    DOT National Transportation Integrated Search

    2012-09-01

    This project presents a microsimulation-based framework for generating short-term forecasts of travel time on freeway corridors. The microsimulation model that is developed (GTsim), replicates freeway capacity drop and relaxation phenomena critical f...

  16. Very short-term reactive forecasting of the solar ultraviolet index using an extreme learning machine integrated with the solar zenith angle.

    PubMed

    Deo, Ravinesh C; Downs, Nathan; Parisi, Alfio V; Adamowski, Jan F; Quilty, John M

    2017-05-01

    Exposure to erythemally-effective solar ultraviolet radiation (UVR) that contributes to malignant keratinocyte cancers and associated health-risk is best mitigated through innovative decision-support systems, with global solar UV index (UVI) forecast necessary to inform real-time sun-protection behaviour recommendations. It follows that the UVI forecasting models are useful tools for such decision-making. In this study, a model for computationally-efficient data-driven forecasting of diffuse and global very short-term reactive (VSTR) (10-min lead-time) UVI, enhanced by drawing on the solar zenith angle (θ s ) data, was developed using an extreme learning machine (ELM) algorithm. An ELM algorithm typically serves to address complex and ill-defined forecasting problems. UV spectroradiometer situated in Toowoomba, Australia measured daily cycles (0500-1700h) of UVI over the austral summer period. After trialling activations functions based on sine, hard limit, logarithmic and tangent sigmoid and triangular and radial basis networks for best results, an optimal ELM architecture utilising logarithmic sigmoid equation in hidden layer, with lagged combinations of θ s as the predictor data was developed. ELM's performance was evaluated using statistical metrics: correlation coefficient (r), Willmott's Index (WI), Nash-Sutcliffe efficiency coefficient (E NS ), root mean square error (RMSE), and mean absolute error (MAE) between observed and forecasted UVI. Using these metrics, the ELM model's performance was compared to that of existing methods: multivariate adaptive regression spline (MARS), M5 Model Tree, and a semi-empirical (Pro6UV) clear sky model. Based on RMSE and MAE values, the ELM model (0.255, 0.346, respectively) outperformed the MARS (0.310, 0.438) and M5 Model Tree (0.346, 0.466) models. Concurring with these metrics, the Willmott's Index for the ELM, MARS and M5 Model Tree models were 0.966, 0.942 and 0.934, respectively. About 57% of the ELM model's absolute errors were small in magnitude (±0.25), whereas the MARS and M5 Model Tree models generated 53% and 48% of such errors, respectively, indicating the latter models' errors to be distributed in larger magnitude error range. In terms of peak global UVI forecasting, with half the level of error, the ELM model outperformed MARS and M5 Model Tree. A comparison of the magnitude of hourly-cumulated errors of 10-min lead time forecasts for diffuse and global UVI highlighted ELM model's greater accuracy compared to MARS, M5 Model Tree or Pro6UV models. This confirmed the versatility of an ELM model drawing on θ s data for VSTR forecasting of UVI at near real-time horizon. When applied to the goal of enhancing expert systems, ELM-based accurate forecasts capable of reacting quickly to measured conditions can enhance real-time exposure advice for the public, mitigating the potential for solar UV-exposure-related disease. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  17. Space Weather Forecasting and Supporting Research in the USA

    NASA Astrophysics Data System (ADS)

    Pevtsov, A. A.

    2017-12-01

    In the United State, scientific research in space weather is funded by several Government Agencies including the National Science Foundation (NSF) and the National Aeronautics and Space Agency (NASA). For civilian and commercial purposes, space weather forecast is done by the Space Weather Prediction Center (SWPC) of the National Oceanic and Atmospheric Administration (NOAA). Observational data for modeling come from the network of groundbased observatories funded via various sources, as well as from the instruments on spacecraft. Numerical models used in forecast are developed in framework of individual research projects. The article provides a brief review of current state of space weather-related research and forecasting in the USA.

  18. An ensemble-ANFIS based uncertainty assessment model for forecasting multi-scalar standardized precipitation index

    NASA Astrophysics Data System (ADS)

    Ali, Mumtaz; Deo, Ravinesh C.; Downs, Nathan J.; Maraseni, Tek

    2018-07-01

    Forecasting drought by means of the World Meteorological Organization-approved Standardized Precipitation Index (SPI) is considered to be a fundamental task to support socio-economic initiatives and effectively mitigating the climate-risk. This study aims to develop a robust drought modelling strategy to forecast multi-scalar SPI in drought-rich regions of Pakistan where statistically significant lagged combinations of antecedent SPI are used to forecast future SPI. With ensemble-Adaptive Neuro Fuzzy Inference System ('ensemble-ANFIS') executed via a 10-fold cross-validation procedure, a model is constructed by randomly partitioned input-target data. Resulting in 10-member ensemble-ANFIS outputs, judged by mean square error and correlation coefficient in the training period, the optimal forecasts are attained by the averaged simulations, and the model is benchmarked with M5 Model Tree and Minimax Probability Machine Regression (MPMR). The results show the proposed ensemble-ANFIS model's preciseness was notably better (in terms of the root mean square and mean absolute error including the Willmott's, Nash-Sutcliffe and Legates McCabe's index) for the 6- and 12- month compared to the 3-month forecasts as verified by the largest error proportions that registered in smallest error band. Applying 10-member simulations, ensemble-ANFIS model was validated for its ability to forecast severity (S), duration (D) and intensity (I) of drought (including the error bound). This enabled uncertainty between multi-models to be rationalized more efficiently, leading to a reduction in forecast error caused by stochasticity in drought behaviours. Through cross-validations at diverse sites, a geographic signature in modelled uncertainties was also calculated. Considering the superiority of ensemble-ANFIS approach and its ability to generate uncertainty-based information, the study advocates the versatility of a multi-model approach for drought-risk forecasting and its prime importance for estimating drought properties over confidence intervals to generate better information for strategic decision-making.

  19. Initial conditions and ENSO prediction using a coupled ocean-atmosphere model

    NASA Astrophysics Data System (ADS)

    Larow, T. E.; Krishnamurti, T. N.

    1998-01-01

    A coupled ocean-atmosphere initialization scheme using Newtonian relaxation has been developed for the Florida State University coupled ocean-atmosphere global general circulation model. The initialization scheme is used to initialize the coupled model for seasonal forecasting the boreal summers of 1987 and 1988. The atmosphere model is a modified version of the Florida State University global spectral model, resolution T-42. The ocean general circulation model consists of a slightly modified version of the Hamburg's climate group model described in Latif (1987) and Latif et al. (1993). The coupling is synchronous with information exchanged every two model hours. Using ECMWF atmospheric daily analysis and observed monthly mean SSTs, two, 1-year, time-dependent, Newtonian relaxation were performed using the coupled model prior to conducting the seasonal forecasts. The coupled initializations were conducted from 1 June 1986 to 1 June 1987 and from 1 June 1987 to 1 June 1988. Newtonian relaxation was applied to the prognostic atmospheric vorticity, divergence, temperature and dew point depression equations. In the ocean model the relaxation was applied to the surface temperature. Two, 10-member ensemble integrations were conducted to examine the impact of the coupled initialization on the seasonal forecasts. The initial conditions used for the ensembles are the ocean's final state after the initialization and the atmospheric initial conditions are ECMWF analysis. Examination of the SST root mean square error and anomaly correlations between observed and forecasted SSTs in the Niño-3 and Niño-4 regions for the 2 seasonal forecasts, show closer agreement between the initialized forecast than two, 10-member non-initialized ensemble forecasts. The main conclusion here is that a single forecast with the coupled initialization outperforms, in SST anomaly prediction, against each of the control forecasts (members of the ensemble) which do not include such an initialization, indicating possible importance for the inclusion of the atmosphere during the coupled initialization.

  20. Developing a dengue forecast model using machine learning: A case study in China

    PubMed Central

    Zhang, Qin; Wang, Li; Xiao, Jianpeng; Zhang, Qingying; Luo, Ganfeng; Li, Zhihao; He, Jianfeng; Zhang, Yonghui; Ma, Wenjun

    2017-01-01

    Background In China, dengue remains an important public health issue with expanded areas and increased incidence recently. Accurate and timely forecasts of dengue incidence in China are still lacking. We aimed to use the state-of-the-art machine learning algorithms to develop an accurate predictive model of dengue. Methodology/Principal findings Weekly dengue cases, Baidu search queries and climate factors (mean temperature, relative humidity and rainfall) during 2011–2014 in Guangdong were gathered. A dengue search index was constructed for developing the predictive models in combination with climate factors. The observed year and week were also included in the models to control for the long-term trend and seasonality. Several machine learning algorithms, including the support vector regression (SVR) algorithm, step-down linear regression model, gradient boosted regression tree algorithm (GBM), negative binomial regression model (NBM), least absolute shrinkage and selection operator (LASSO) linear regression model and generalized additive model (GAM), were used as candidate models to predict dengue incidence. Performance and goodness of fit of the models were assessed using the root-mean-square error (RMSE) and R-squared measures. The residuals of the models were examined using the autocorrelation and partial autocorrelation function analyses to check the validity of the models. The models were further validated using dengue surveillance data from five other provinces. The epidemics during the last 12 weeks and the peak of the 2014 large outbreak were accurately forecasted by the SVR model selected by a cross-validation technique. Moreover, the SVR model had the consistently smallest prediction error rates for tracking the dynamics of dengue and forecasting the outbreaks in other areas in China. Conclusion and significance The proposed SVR model achieved a superior performance in comparison with other forecasting techniques assessed in this study. The findings can help the government and community respond early to dengue epidemics. PMID:29036169

  1. NSF's Perspective on Space Weather Research for Building Forecasting Capabilities

    NASA Astrophysics Data System (ADS)

    Bisi, M. M.; Pulkkinen, A. A.; Bisi, M. M.; Pulkkinen, A. A.; Webb, D. F.; Oughton, E. J.; Azeem, S. I.

    2017-12-01

    Space weather research at the National Science Foundation (NSF) is focused on scientific discovery and on deepening knowledge of the Sun-Geospace system. The process of maturation of knowledge base is a requirement for the development of improved space weather forecast models and for the accurate assessment of potential mitigation strategies. Progress in space weather forecasting requires advancing in-depth understanding of the underlying physical processes, developing better instrumentation and measurement techniques, and capturing the advancements in understanding in large-scale physics based models that span the entire chain of events from the Sun to the Earth. This presentation will provide an overview of current and planned programs pertaining to space weather research at NSF and discuss the recommendations of the Geospace Section portfolio review panel within the context of space weather forecasting capabilities.

  2. Exploring the calibration of a wind forecast ensemble for energy applications

    NASA Astrophysics Data System (ADS)

    Heppelmann, Tobias; Ben Bouallegue, Zied; Theis, Susanne

    2015-04-01

    In the German research project EWeLiNE, Deutscher Wetterdienst (DWD) and Fraunhofer Institute for Wind Energy and Energy System Technology (IWES) are collaborating with three German Transmission System Operators (TSO) in order to provide the TSOs with improved probabilistic power forecasts. Probabilistic power forecasts are derived from probabilistic weather forecasts, themselves derived from ensemble prediction systems (EPS). Since the considered raw ensemble wind forecasts suffer from underdispersiveness and bias, calibration methods are developed for the correction of the model bias and the ensemble spread bias. The overall aim is to improve the ensemble forecasts such that the uncertainty of the possible weather deployment is depicted by the ensemble spread from the first forecast hours. Additionally, the ensemble members after calibration should remain physically consistent scenarios. We focus on probabilistic hourly wind forecasts with horizon of 21 h delivered by the convection permitting high-resolution ensemble system COSMO-DE-EPS which has become operational in 2012 at DWD. The ensemble consists of 20 ensemble members driven by four different global models. The model area includes whole Germany and parts of Central Europe with a horizontal resolution of 2.8 km and a vertical resolution of 50 model levels. For verification we use wind mast measurements around 100 m height that corresponds to the hub height of wind energy plants that belong to wind farms within the model area. Calibration of the ensemble forecasts can be performed by different statistical methods applied to the raw ensemble output. Here, we explore local bivariate Ensemble Model Output Statistics at individual sites and quantile regression with different predictors. Applying different methods, we already show an improvement of ensemble wind forecasts from COSMO-DE-EPS for energy applications. In addition, an ensemble copula coupling approach transfers the time-dependencies of the raw ensemble to the calibrated ensemble. The calibrated wind forecasts are evaluated first with univariate probabilistic scores and additionally with diagnostics of wind ramps in order to assess the time-consistency of the calibrated ensemble members.

  3. Cb-LIKE - Thunderstorm forecasts up to six hours with fuzzy logic

    NASA Astrophysics Data System (ADS)

    Köhler, Martin; Tafferner, Arnold

    2016-04-01

    Thunderstorms with their accompanying effects like heavy rain, hail, or downdrafts cause delays and flight cancellations and therefore high additional cost for airlines and airport operators. A reliable thunderstorm forecast up to several hours could provide more time for decision makers in air traffic for an appropriate reaction on possible storm cells and initiation of adequate counteractions. To provide the required forecasts Cb-LIKE (Cumulonimbus-LIKElihood) has been developed at the DLR (Deutsches Zentrum für Luft- und Raumfahrt) Institute of Atmospheric Physics. The new algorithm is an automated system which designates areas with possible thunderstorm development by using model data of the COSMO-DE weather model, which is driven by the German Meteorological Service (DWD). A newly developed "Best-Member- Selection" method allows the automatic selection of that particular model run of a time-lagged COSMO- DE model ensemble, which matches best the current thunderstorm situation. Thereby the application of the best available data basis for the calculation of the thunderstorm forecasts by Cb-LIKE is ensured. Altogether there are four different modes for the selection of the best member. Four atmospheric parameters (CAPE, vertical wind velocity, radar reflectivity and cloud top temperature) of the model output are used within the algorithm. A newly developed fuzzy logic system enables the subsequent combination of the model parameters and the calculation of a thunderstorm indicator within a value range of 12 up to 88 for each grid point of the model domain for the following six hours in one hour intervals. The higher the indicator value the more the model parameters imply the development of thunderstorms. The quality of the Cb-LIKE thunderstorm forecasts was evaluated by a substantial verification using a neighborhood verification approach and multi-event contingency tables. The verification was performed for the whole summer period of 2012. On the basis of a deterministic object comparison with heavy precipitation cells observed by the radar-based thunderstorm tracking algorithm Rad-TRAM, several verification scores like BIAS, POD, FAR and CSI were calculated to identify possible advantages of the new algorithm. The presentation illustrates in detail the concept of the Cb-LIKE algorithm with regard to the fuzzy logic system and the Best-Member-Selection. Additionally some case studies and the most important results of the verification will be shown. The implementation of the forecasts into the DLR WxFUSION system, an user oriented forecasting system for air traffic, will also be included.

  4. Accuracy of 24- and 48-Hour Forecasts of Haines' Index

    Treesearch

    Brian E. Potter; Jonathan E. Martin

    2001-01-01

    The University of Wisconsin-Madison produces Web-accessible, 24- and 48-hour forecasts of the Haines Index (a tool used to measure the atmospheric potential for large wildfire development) for most of North America using its nonhydrostatic modeling system. The authors examined the accuracy of these forecasts using data from 1999 and 2000. Measures used include root-...

  5. Incorporating probabilistic seasonal climate forecasts into river management using a risk-based framework

    USGS Publications Warehouse

    Sojda, Richard S.; Towler, Erin; Roberts, Mike; Rajagopalan, Balaji

    2013-01-01

    [1] Despite the influence of hydroclimate on river ecosystems, most efforts to date have focused on using climate information to predict streamflow for water supply. However, as water demands intensify and river systems are increasingly stressed, research is needed to explicitly integrate climate into streamflow forecasts that are relevant to river ecosystem management. To this end, we present a five step risk-based framework: (1) define risk tolerance, (2) develop a streamflow forecast model, (3) generate climate forecast ensembles, (4) estimate streamflow ensembles and associated risk, and (5) manage for climate risk. The framework is successfully demonstrated for an unregulated watershed in southwest Montana, where the combination of recent drought and water withdrawals has made it challenging to maintain flows needed for healthy fisheries. We put forth a generalized linear modeling (GLM) approach to develop a suite of tools that skillfully model decision-relevant low flow characteristics in terms of climate predictors. Probabilistic precipitation forecasts are used in conjunction with the GLMs, resulting in season-ahead prediction ensembles that provide the full risk profile. These tools are embedded in an end-to-end risk management framework that directly supports proactive fish conservation efforts. Results show that the use of forecasts can be beneficial to planning, especially in wet years, but historical precipitation forecasts are quite conservative (i.e., not very “sharp”). Synthetic forecasts show that a modest “sharpening” can strongly impact risk and improve skill. We emphasize that use in management depends on defining relevant environmental flows and risk tolerance, requiring local stakeholder involvement.

  6. Air Quality Forecasts Using the NASA GEOS Model: A Unified Tool from Local to Global Scales

    NASA Technical Reports Server (NTRS)

    Knowland, E. Emma; Keller, Christoph; Nielsen, J. Eric; Orbe, Clara; Ott, Lesley; Pawson, Steven; Saunders, Emily; Duncan, Bryan; Cook, Melanie; Liu, Junhua; hide

    2017-01-01

    We provide an introduction to a new high-resolution (0.25 degree) global composition forecast produced by NASA's Global Modeling and Assimilation office. The NASA Goddard Earth Observing System version 5 (GEOS-5) model has been expanded to provide global near-real-time forecasts of atmospheric composition at a horizontal resolution of 0.25 degrees (approximately 25 km). Previously, this combination of detailed chemistry and resolution was only provided by regional models. This system combines the operational GEOS-5 weather forecasting model with the state-of-the-science GEOS-Chem chemistry module (version 11) to provide detailed chemical analysis of a wide range of air pollutants such as ozone, carbon monoxide, nitrogen oxides, and fine particulate matter (PM2.5). The resolution of the forecasts is the highest resolution compared to current, publically-available global composition forecasts. Evaluation and validation of modeled trace gases and aerosols compared to surface and satellite observations will be presented for constituents relative to health air quality standards. Comparisons of modeled trace gases and aerosols against satellite observations show that the model produces realistic concentrations of atmospheric constituents in the free troposphere. Model comparisons against surface observations highlight the model's capability to capture the diurnal variability of air pollutants under a variety of meteorological conditions. The GEOS-5 composition forecasting system offers a new tool for scientists and the public health community, and is being developed jointly with several government and non-profit partners. Potential applications include air quality warnings, flight campaign planning and exposure studies using the archived analysis fields.

  7. Advanced solar irradiances applied to satellite and ionospheric operational systems

    NASA Astrophysics Data System (ADS)

    Tobiska, W. Kent; Schunk, Robert; Eccles, Vince; Bouwer, Dave

    Satellite and ionospheric operational systems require solar irradiances in a variety of time scales and spectral formats. We describe the development of a system using operational grade solar irradiances that are applied to empirical thermospheric density models and physics-based ionospheric models used by operational systems that require a space weather characterization. The SOLAR2000 (S2K) and SOLARFLARE (SFLR) models developed by Space Environment Technologies (SET) provide solar irradiances from the soft X-rays (XUV) through the Far Ultraviolet (FUV) spectrum. The irradiances are provided as integrated indices for the JB2006 empirical atmosphere density models and as line/band spectral irradiances for the physics-based Ionosphere Forecast Model (IFM) developed by the Space Environment Corporation (SEC). We describe the integration of these irradiances in historical, current epoch, and forecast modes through the Communication Alert and Prediction System (CAPS). CAPS provides real-time and forecast HF radio availability for global and regional users and global total electron content (TEC) conditions.

  8. Steam-load-forecasting technique for central-heating plants. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, M.C.; Carnahan, J.V.

    Because boilers generally are most efficient at full loads, the Army could achieve significant savings by running fewer boilers at high loads rather than more boilers at low loads. A reliable load prediction technique could help ensure that only those boilers required to meet demand are on line. This report presents the results of an investigation into the feasibility of forecasting heat plant steam loads from historical patterns and weather information. Using steam flow data collected at Fort Benjamin Harrison, IN, a Box-Jenkins transfer function model with an acceptably small prediction error was initially identified. Initial investigation of forecast modelmore » development appeared successful. Dynamic regression methods using actual ambient temperatures yielded the best results. Box-Jenkins univariate models' results appeared slightly less accurate. Since temperature information was not needed for model building and forecasting, however, it is recommended that Box-Jenkins models be considered prime candidates for load forecasting due to their simpler mathematics.« less

  9. Using Analog Ensemble to generate spatially downscaled probabilistic wind power forecasts

    NASA Astrophysics Data System (ADS)

    Delle Monache, L.; Shahriari, M.; Cervone, G.

    2017-12-01

    We use the Analog Ensemble (AnEn) method to generate probabilistic 80-m wind power forecasts. We use data from the NCEP GFS ( 28 km resolution) and NCEP NAM (12 km resolution). We use forecasts data from NAM and GFS, and analysis data from NAM which enables us to: 1) use a lower-resolution model to create higher-resolution forecasts, and 2) use a higher-resolution model to create higher-resolution forecasts. The former essentially increases computing speed and the latter increases forecast accuracy. An aggregated model of the former can be compared against the latter to measure the accuracy of the AnEn spatial downscaling. The AnEn works by taking a deterministic future forecast and comparing it with past forecasts. The model searches for the best matching estimates within the past forecasts and selects the predictand value corresponding to these past forecasts as the ensemble prediction for the future forecast. Our study is based on predicting wind speed and air density at more than 13,000 grid points in the continental US. We run the AnEn model twice: 1) estimating 80-m wind speed by using predictor variables such as temperature, pressure, geopotential height, U-component and V-component of wind, 2) estimating air density by using predictors such as temperature, pressure, and relative humidity. We use the air density values to correct the standard wind power curves for different values of air density. The standard deviation of the ensemble members (i.e. ensemble spread) will be used as the degree of difficulty to predict wind power at different locations. The value of the correlation coefficient between the ensemble spread and the forecast error determines the appropriateness of this measure. This measure is prominent for wind farm developers as building wind farms in regions with higher predictability will reduce the real-time risks of operating in the electricity markets.

  10. DEVELOPMENT OF NEAR-SHORE HYDRODYNAMIC MODELS FOR BEACH CLOSURE FORECASTING IN THE GREAT LAKES

    EPA Science Inventory

    Water quality managers and other planning and decision entities are increasingly calling for up-to-the-minute data on present water quality conditions or forecasts of these data that can be used to adjust or respond to quickly developing activities with environmental implications...

  11. Data Driven Ionospheric Modeling in Relation to Space Weather: Percent Cloud Coverage

    NASA Astrophysics Data System (ADS)

    Tulunay, Y.; Senalp, E. T.; Tulunay, E.

    2009-04-01

    Since 1990, a small group at METU has been developing data driven models in order to forecast some critical system parameters related with the near-Earth space processes. The background on the subject supports new achievements, which contributed the COST 724 activities, which will contribute to the new ES0803 activities. This work mentions one of the outstanding contributions, namely forecasting of meteorological parameters by considering the probable influence of cosmic rays (CR) and sunspot numbers (SSN). The data-driven method is generic and applicable to many Near-Earth Space processes including ionospheric/plasmaspheric interactions. It is believed that the EURIPOS initiative would be useful in supplying wide range reliable data to the models developed. Quantification of physical mechanisms, which causally link Space Weather to the Earth's Weather, has been a challenging task. In this basis, the percent cloud coverage (%CC) and cloud top temperatures (CTT) were forecast one month ahead of time between geographic coordinates of (22.5˚N; 57.5˚N); and (7.5˚W; 47.5˚E) at 96 grid locations and covering the years of 1983 to 2000 using the Middle East Technical University Fuzzy Neural Network Model (METU-FNN-M) [Tulunay, 2008]. The Near Earth Space variability at several different time scales arises from a number of separate factors and the physics of the variations cannot be modeled due to the lack of current information about the parameters of several natural processes. CR are shielded by the magnetosphere to a certain extent, but they can modulate the low level cloud cover. METU-FNN-M was developed, trained and applied for forecasting the %CC and CTT, by considering the history of those meteorological variables; Cloud Optical Depth (COD); the Ionization (I) value that is formulized and computed by using CR data and CTT; SSN; temporal variables; and defuzified cloudiness. The temporal and spatial variables and the cut off rigidity are used to compute the defuzified cloudiness. The forecast %CC and CTT values at uniformly spaced grids over the region of interest are used for mapping by Bezier surfaces. The major advantage of the fuzzy model is that it uses its inputs and the expert knowledge in coordination. Long-term cloud analysis was performed on a region having differences in terms of atmospheric activity, in order to show the generalization capability. Global and local parameters of the process were considered. Both CR Flux and SSN reflect the influence of Space Weather on general planetary situation; but other parameters in the inputs of the model reflect local situation. Error and correlation analysis on the forecast and observed parameters were performed. The correlations between the forecast and observed parameters are very promising. The model contributes to the dependence of the cloud formation process on CR Fluxes. The one-month in advance forecast values of the model can also be used as inputs to other models, which forecast some other local or global parameters in order to further test the hypothesis on possible link(s) between Space Weather and the Earth's Weather. The model based, theoretical and numerical works mentioned are promising and have potential for future research and developments. References Tulunay Y., E.T. Şenalp, Ş. Öz, L.I. Dorman, E. Tulunay, S.S. Menteş and M.E. Akcan (2008), A Fuzzy Neural Network Model to Forecast the Percent Cloud Coverage and Cloud Top Temperature Maps, Ann. Geophys., 26(12), 3945-3954, 2008.

  12. Ensemble Bayesian forecasting system Part I: Theory and algorithms

    NASA Astrophysics Data System (ADS)

    Herr, Henry D.; Krzysztofowicz, Roman

    2015-05-01

    The ensemble Bayesian forecasting system (EBFS), whose theory was published in 2001, is developed for the purpose of quantifying the total uncertainty about a discrete-time, continuous-state, non-stationary stochastic process such as a time series of stages, discharges, or volumes at a river gauge. The EBFS is built of three components: an input ensemble forecaster (IEF), which simulates the uncertainty associated with random inputs; a deterministic hydrologic model (of any complexity), which simulates physical processes within a river basin; and a hydrologic uncertainty processor (HUP), which simulates the hydrologic uncertainty (an aggregate of all uncertainties except input). It works as a Monte Carlo simulator: an ensemble of time series of inputs (e.g., precipitation amounts) generated by the IEF is transformed deterministically through a hydrologic model into an ensemble of time series of outputs, which is next transformed stochastically by the HUP into an ensemble of time series of predictands (e.g., river stages). Previous research indicated that in order to attain an acceptable sampling error, the ensemble size must be on the order of hundreds (for probabilistic river stage forecasts and probabilistic flood forecasts) or even thousands (for probabilistic stage transition forecasts). The computing time needed to run the hydrologic model this many times renders the straightforward simulations operationally infeasible. This motivates the development of the ensemble Bayesian forecasting system with randomization (EBFSR), which takes full advantage of the analytic meta-Gaussian HUP and generates multiple ensemble members after each run of the hydrologic model; this auxiliary randomization reduces the required size of the meteorological input ensemble and makes it operationally feasible to generate a Bayesian ensemble forecast of large size. Such a forecast quantifies the total uncertainty, is well calibrated against the prior (climatic) distribution of predictand, possesses a Bayesian coherence property, constitutes a random sample of the predictand, and has an acceptable sampling error-which makes it suitable for rational decision making under uncertainty.

  13. Convective Weather Forecast Accuracy Analysis at Center and Sector Levels

    NASA Technical Reports Server (NTRS)

    Wang, Yao; Sridhar, Banavar

    2010-01-01

    This paper presents a detailed convective forecast accuracy analysis at center and sector levels. The study is aimed to provide more meaningful forecast verification measures to aviation community, as well as to obtain useful information leading to the improvements in the weather translation capacity models. In general, the vast majority of forecast verification efforts over past decades have been on the calculation of traditional standard verification measure scores over forecast and observation data analyses onto grids. These verification measures based on the binary classification have been applied in quality assurance of weather forecast products at the national level for many years. Our research focuses on the forecast at the center and sector levels. We calculate the standard forecast verification measure scores for en-route air traffic centers and sectors first, followed by conducting the forecast validation analysis and related verification measures for weather intensities and locations at centers and sectors levels. An approach to improve the prediction of sector weather coverage by multiple sector forecasts is then developed. The weather severe intensity assessment was carried out by using the correlations between forecast and actual weather observation airspace coverage. The weather forecast accuracy on horizontal location was assessed by examining the forecast errors. The improvement in prediction of weather coverage was determined by the correlation between actual sector weather coverage and prediction. observed and forecasted Convective Weather Avoidance Model (CWAM) data collected from June to September in 2007. CWAM zero-minute forecast data with aircraft avoidance probability of 60% and 80% are used as the actual weather observation. All forecast measurements are based on 30-minute, 60- minute, 90-minute, and 120-minute forecasts with the same avoidance probabilities. The forecast accuracy analysis for times under one-hour showed that the errors in intensity and location for center forecast are relatively low. For example, 1-hour forecast intensity and horizontal location errors for ZDC center were about 0.12 and 0.13. However, the correlation between sector 1-hour forecast and actual weather coverage was weak, for sector ZDC32, about 32% of the total variation of observation weather intensity was unexplained by forecast; the sector horizontal location error was about 0.10. The paper also introduces an approach to estimate the sector three-dimensional actual weather coverage by using multiple sector forecasts, which turned out to produce better predictions. Using Multiple Linear Regression (MLR) model for this approach, the correlations between actual observation and the multiple sector forecast model prediction improved by several percents at 95% confidence level in comparison with single sector forecast.

  14. Improving flood forecasting capability of physically based distributed hydrological model by parameter optimization

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Li, J.; Xu, H.

    2015-10-01

    Physically based distributed hydrological models discrete the terrain of the whole catchment into a number of grid cells at fine resolution, and assimilate different terrain data and precipitation to different cells, and are regarded to have the potential to improve the catchment hydrological processes simulation and prediction capability. In the early stage, physically based distributed hydrological models are assumed to derive model parameters from the terrain properties directly, so there is no need to calibrate model parameters, but unfortunately, the uncertanties associated with this model parameter deriving is very high, which impacted their application in flood forecasting, so parameter optimization may also be necessary. There are two main purposes for this study, the first is to propose a parameter optimization method for physically based distributed hydrological models in catchment flood forecasting by using PSO algorithm and to test its competence and to improve its performances, the second is to explore the possibility of improving physically based distributed hydrological models capability in cathcment flood forecasting by parameter optimization. In this paper, based on the scalar concept, a general framework for parameter optimization of the PBDHMs for catchment flood forecasting is first proposed that could be used for all PBDHMs. Then, with Liuxihe model as the study model, which is a physically based distributed hydrological model proposed for catchment flood forecasting, the improverd Particle Swarm Optimization (PSO) algorithm is developed for the parameter optimization of Liuxihe model in catchment flood forecasting, the improvements include to adopt the linear decreasing inertia weight strategy to change the inertia weight, and the arccosine function strategy to adjust the acceleration coefficients. This method has been tested in two catchments in southern China with different sizes, and the results show that the improved PSO algorithm could be used for Liuxihe model parameter optimization effectively, and could improve the model capability largely in catchment flood forecasting, thus proven that parameter optimization is necessary to improve the flood forecasting capability of physically based distributed hydrological model. It also has been found that the appropriate particle number and the maximum evolution number of PSO algorithm used for Liuxihe model catchment flood forcasting is 20 and 30, respectively.

  15. Ensemble Flow Forecasts for Risk Based Reservoir Operations of Lake Mendocino in Mendocino County, California: A Framework for Objectively Leveraging Weather and Climate Forecasts in a Decision Support Environment

    NASA Astrophysics Data System (ADS)

    Delaney, C.; Hartman, R. K.; Mendoza, J.; Whitin, B.

    2017-12-01

    Forecast informed reservoir operations (FIRO) is a methodology that incorporates short to mid-range precipitation and flow forecasts to inform the flood operations of reservoirs. The Ensemble Forecast Operations (EFO) alternative is a probabilistic approach of FIRO that incorporates ensemble streamflow predictions (ESPs) made by NOAA's California-Nevada River Forecast Center (CNRFC). With the EFO approach, release decisions are made to manage forecasted risk of reaching critical operational thresholds. A water management model was developed for Lake Mendocino, a 111,000 acre-foot reservoir located near Ukiah, California, to evaluate the viability of the EFO alternative to improve water supply reliability but not increase downstream flood risk. Lake Mendocino is a dual use reservoir, which is owned and operated for flood control by the United States Army Corps of Engineers and is operated for water supply by the Sonoma County Water Agency. Due to recent changes in the operations of an upstream hydroelectric facility, this reservoir has suffered from water supply reliability issues since 2007. The EFO alternative was simulated using a 26-year (1985-2010) ESP hindcast generated by the CNRFC. The ESP hindcast was developed using Global Ensemble Forecast System version 10 precipitation reforecasts processed with the Hydrologic Ensemble Forecast System to generate daily reforecasts of 61 flow ensemble members for a 15-day forecast horizon. Model simulation results demonstrate that the EFO alternative may improve water supply reliability for Lake Mendocino yet not increase flood risk for downstream areas. The developed operations framework can directly leverage improved skill in the second week of the forecast and is extendable into the S2S time domain given the demonstration of improved skill through a reliable reforecast of adequate historical duration and consistent with operationally available numerical weather predictions.

  16. Public Higher Education Enrollment Forecasting in the State of Ohio.

    ERIC Educational Resources Information Center

    Render, Barry

    With the growing concern for the development of good mathematical education planning models, few states have developed the type of enrollment projection systems that they would consider to be ideal. The primary objectives of this research project were to develop, construct, and document an enrollment forecasting system for use by the Ohio Board of…

  17. Using ensembles in water management: forecasting dry and wet episodes

    NASA Astrophysics Data System (ADS)

    van het Schip-Haverkamp, Tessa; van den Berg, Wim; van de Beek, Remco

    2015-04-01

    Extreme weather situations as droughts and extensive precipitation are becoming more frequent, which makes it more important to obtain accurate weather forecasts for the short and long term. Ensembles can provide a solution in terms of scenario forecasts. MeteoGroup uses ensembles in a new forecasting technique which presents a number of weather scenarios for a dynamical water management project, called Water-Rijk, in which water storage and water retention plays a large role. The Water-Rijk is part of Park Lingezegen, which is located between Arnhem and Nijmegen in the Netherlands. In collaboration with the University of Wageningen, Alterra and Eijkelkamp a forecasting system is developed for this area which can provide water boards with a number of weather and hydrology scenarios in order to assist in the decision whether or not water retention or water storage is necessary in the near future. In order to make a forecast for drought and extensive precipitation, the difference 'precipitation- evaporation' is used as a measurement of drought in the weather forecasts. In case of an upcoming drought this difference will take larger negative values. In case of a wet episode, this difference will be positive. The Makkink potential evaporation is used which gives the most accurate potential evaporation values during the summer, when evaporation plays an important role in the availability of surface water. Scenarios are determined by reducing the large number of forecasts in the ensemble to a number of averaged members with each its own likelihood of occurrence. For the Water-Rijk project 5 scenario forecasts are calculated: extreme dry, dry, normal, wet and extreme wet. These scenarios are constructed for two forecasting periods, each using its own ensemble technique: up to 48 hours ahead and up to 15 days ahead. The 48-hour forecast uses an ensemble constructed from forecasts of multiple high-resolution regional models: UKMO's Euro4 model,the ECMWF model, WRF and Hirlam. Using multiple model runs and additional post processing, an ensemble can be created from non-ensemble models. The 15-day forecast uses the ECMWF Ensemble Prediction System forecast from which scenarios can be deduced directly. A combination of the ensembles from the two forecasting periods is used in order to have the highest possible resolution of the forecast for the first 48 hours followed by the lower resolution long term forecast.

  18. Adaptation of Mesoscale Weather Models to Local Forecasting

    NASA Technical Reports Server (NTRS)

    Manobianco, John T.; Taylor, Gregory E.; Case, Jonathan L.; Dianic, Allan V.; Wheeler, Mark W.; Zack, John W.; Nutter, Paul A.

    2003-01-01

    Methodologies have been developed for (1) configuring mesoscale numerical weather-prediction models for execution on high-performance computer workstations to make short-range weather forecasts for the vicinity of the Kennedy Space Center (KSC) and the Cape Canaveral Air Force Station (CCAFS) and (2) evaluating the performances of the models as configured. These methodologies have been implemented as part of a continuing effort to improve weather forecasting in support of operations of the U.S. space program. The models, methodologies, and results of the evaluations also have potential value for commercial users who could benefit from tailoring their operations and/or marketing strategies based on accurate predictions of local weather. More specifically, the purpose of developing the methodologies for configuring the models to run on computers at KSC and CCAFS is to provide accurate forecasts of winds, temperature, and such specific thunderstorm-related phenomena as lightning and precipitation. The purpose of developing the evaluation methodologies is to maximize the utility of the models by providing users with assessments of the capabilities and limitations of the models. The models used in this effort thus far include the Mesoscale Atmospheric Simulation System (MASS), the Regional Atmospheric Modeling System (RAMS), and the National Centers for Environmental Prediction Eta Model ( Eta for short). The configuration of the MASS and RAMS is designed to run the models at very high spatial resolution and incorporate local data to resolve fine-scale weather features. Model preprocessors were modified to incorporate surface, ship, buoy, and rawinsonde data as well as data from local wind towers, wind profilers, and conventional or Doppler radars. The overall evaluation of the MASS, Eta, and RAMS was designed to assess the utility of these mesoscale models for satisfying the weather-forecasting needs of the U.S. space program. The evaluation methodology includes objective and subjective verification methodologies. Objective (e.g., statistical) verification of point forecasts is a stringent measure of model performance, but when used alone, it is not usually sufficient for quantifying the value of the overall contribution of the model to the weather-forecasting process. This is especially true for mesoscale models with enhanced spatial and temporal resolution that may be capable of predicting meteorologically consistent, though not necessarily accurate, fine-scale weather phenomena. Therefore, subjective (phenomenological) evaluation, focusing on selected case studies and specific weather features, such as sea breezes and precipitation, has been performed to help quantify the added value that cannot be inferred solely from objective evaluation.

  19. Modelling eWork in Europe: Estimates, Models and Forecasts from the EMERGENCE Project. IES Report.

    ERIC Educational Resources Information Center

    Bates, P.; Huws, U.

    A study combined results of a survey of employers in 18 European countries to establish the extent to which they are currently using eWork with European official statistics to develop models, estimates, and forecasts of the numbers of eWorkers in Europe. These four types of "individual" eWork were identified: telehomeworking;…

  20. Forecasting asthma-related hospital admissions in London using negative binomial models.

    PubMed

    Soyiri, Ireneous N; Reidpath, Daniel D; Sarran, Christophe

    2013-05-01

    Health forecasting can improve health service provision and individual patient outcomes. Environmental factors are known to impact chronic respiratory conditions such as asthma, but little is known about the extent to which these factors can be used for forecasting. Using weather, air quality and hospital asthma admissions, in London (2005-2006), two related negative binomial models were developed and compared with a naive seasonal model. In the first approach, predictive forecasting models were fitted with 7-day averages of each potential predictor, and then a subsequent multivariable model is constructed. In the second strategy, an exhaustive search of the best fitting models between possible combinations of lags (0-14 days) of all the environmental effects on asthma admission was conducted. Three models were considered: a base model (seasonal effects), contrasted with a 7-day average model and a selected lags model (weather and air quality effects). Season is the best predictor of asthma admissions. The 7-day average and seasonal models were trivial to implement. The selected lags model was computationally intensive, but of no real value over much more easily implemented models. Seasonal factors can predict daily hospital asthma admissions in London, and there is a little evidence that additional weather and air quality information would add to forecast accuracy.

  1. Forecasting the Emergency Department Patients Flow.

    PubMed

    Afilal, Mohamed; Yalaoui, Farouk; Dugardin, Frédéric; Amodeo, Lionel; Laplanche, David; Blua, Philippe

    2016-07-01

    Emergency department (ED) have become the patient's main point of entrance in modern hospitals causing it frequent overcrowding, thus hospital managers are increasingly paying attention to the ED in order to provide better quality service for patients. One of the key elements for a good management strategy is demand forecasting. In this case, forecasting patients flow, which will help decision makers to optimize human (doctors, nurses…) and material(beds, boxs…) resources allocation. The main interest of this research is forecasting daily attendance at an emergency department. The study was conducted on the Emergency Department of Troyes city hospital center, France, in which we propose a new practical ED patients classification that consolidate the CCMU and GEMSA categories into one category and innovative time-series based models to forecast long and short term daily attendance. The models we developed for this case study shows very good performances (up to 91,24 % for the annual Total flow forecast) and robustness to epidemic periods.

  2. The effect of physical parameterizations and initial data on the numerical prediction of the President's Day cyclone

    NASA Technical Reports Server (NTRS)

    Atlas, R.

    1984-01-01

    Results are presented from a series of forecast experiments which were conducted to assess the importance of large-scale dynamical processes, diabatic heating, and initial data to the prediction of the President's Day cyclone. The synoptic situation and NMC model forecasts for this case are summarized, and the analysis/forecast system and experiments are described. The GLAS Model forecast from the GLAS analysis at 0000 GMT 18 February is found to have correctly predicted intense coastal cyclogenesis and heavy precipitation. A forecast with surface heat and moisture fluxes eliminated failed to predict any cyclogenesis while a similar forecast with only the surface moisture flux excluded showed weak development. Diabatic heating resulting from oceanic fluxes significantly contributed to the generation of low-level cyclonic vorticity and the intensification and slow rate of movement of an upper level ridge over the western Atlantic.

  3. Forecasting electricity usage using univariate time series models

    NASA Astrophysics Data System (ADS)

    Hock-Eam, Lim; Chee-Yin, Yip

    2014-12-01

    Electricity is one of the important energy sources. A sufficient supply of electricity is vital to support a country's development and growth. Due to the changing of socio-economic characteristics, increasing competition and deregulation of electricity supply industry, the electricity demand forecasting is even more important than before. It is imperative to evaluate and compare the predictive performance of various forecasting methods. This will provide further insights on the weakness and strengths of each method. In literature, there are mixed evidences on the best forecasting methods of electricity demand. This paper aims to compare the predictive performance of univariate time series models for forecasting the electricity demand using a monthly data of maximum electricity load in Malaysia from January 2003 to December 2013. Results reveal that the Box-Jenkins method produces the best out-of-sample predictive performance. On the other hand, Holt-Winters exponential smoothing method is a good forecasting method for in-sample predictive performance.

  4. Perspectives on model forecasts of the 2014-2015 Ebola epidemic in West Africa: lessons and the way forward.

    PubMed

    Chowell, Gerardo; Viboud, Cécile; Simonsen, Lone; Merler, Stefano; Vespignani, Alessandro

    2017-03-01

    The unprecedented impact and modeling efforts associated with the 2014-2015 Ebola epidemic in West Africa provides a unique opportunity to document the performances and caveats of forecasting approaches used in near-real time for generating evidence and to guide policy. A number of international academic groups have developed and parameterized mathematical models of disease spread to forecast the trajectory of the outbreak. These modeling efforts often relied on limited epidemiological data to derive key transmission and severity parameters, which are needed to calibrate mechanistic models. Here, we provide a perspective on some of the challenges and lessons drawn from these efforts, focusing on (1) data availability and accuracy of early forecasts; (2) the ability of different models to capture the profile of early growth dynamics in local outbreaks and the importance of reactive behavior changes and case clustering; (3) challenges in forecasting the long-term epidemic impact very early in the outbreak; and (4) ways to move forward. We conclude that rapid availability of aggregated population-level data and detailed information on a subset of transmission chains is crucial to characterize transmission patterns, while ensemble-forecasting approaches could limit the uncertainty of any individual model. We believe that coordinated forecasting efforts, combined with rapid dissemination of disease predictions and underlying epidemiological data in shared online platforms, will be critical in optimizing the response to current and future infectious disease emergencies.

  5. Chemical weather forecasting for the Yangtze River Delta

    NASA Astrophysics Data System (ADS)

    Xie, Y.; Xu, J.; Zhou, G.; Chang, L.; Chen, B.

    2016-12-01

    Shanghai is one of the largest megacities in the world. With rapid economic growth of the city and its surrounding areas in recent years, air pollution has posed adverse effects on public health and ecosystem. In winter heavy pollution episodes are often associated with PM exceedances under stagnant conditions or transport events, whereas in summer the region frequently experiences elevated O3 levels. Chemical weather prediction systems with the WRF-Chem and CMAQ models are being developed to support air quality and haze forecasting for Shanghai and the Yangtze River Delta region. We will present main components of the modeling system, forecasting products, as well as evaluation results. Evaluation of the WRF-Chem forecasts show the model has generally good ability to capture the temporal variations of O3 and PM2.5. Substantial regional differences exist, with the best performance in Shanghai. Meanwhile, the forecasts tend to degrade during highly polluted episodes and transitional time periods, which highlights the need to improve model representation of key process (e.g. meteorological fields and formation of secondary pollutants). Recent work includes using the ECMWF global model forecasts as chemical boundary conditions for our regional model. We investigate the impact of chemical downscaling, and also compare the results from different models participated in the PANDA (PArtnership with chiNa on space Data) project. Results from ongoing efforts (e.g. chemical weather forecasting driven by SMS regional high resolution NWP) will also be presented.

  6. Development of Parallel Code for the Alaska Tsunami Forecast Model

    NASA Astrophysics Data System (ADS)

    Bahng, B.; Knight, W. R.; Whitmore, P.

    2014-12-01

    The Alaska Tsunami Forecast Model (ATFM) is a numerical model used to forecast propagation and inundation of tsunamis generated by earthquakes and other means in both the Pacific and Atlantic Oceans. At the U.S. National Tsunami Warning Center (NTWC), the model is mainly used in a pre-computed fashion. That is, results for hundreds of hypothetical events are computed before alerts, and are accessed and calibrated with observations during tsunamis to immediately produce forecasts. ATFM uses the non-linear, depth-averaged, shallow-water equations of motion with multiply nested grids in two-way communications between domains of each parent-child pair as waves get closer to coastal waters. Even with the pre-computation the task becomes non-trivial as sub-grid resolution gets finer. Currently, the finest resolution Digital Elevation Models (DEM) used by ATFM are 1/3 arc-seconds. With a serial code, large or multiple areas of very high resolution can produce run-times that are unrealistic even in a pre-computed approach. One way to increase the model performance is code parallelization used in conjunction with a multi-processor computing environment. NTWC developers have undertaken an ATFM code-parallelization effort to streamline the creation of the pre-computed database of results with the long term aim of tsunami forecasts from source to high resolution shoreline grids in real time. Parallelization will also permit timely regeneration of the forecast model database with new DEMs; and, will make possible future inclusion of new physics such as the non-hydrostatic treatment of tsunami propagation. The purpose of our presentation is to elaborate on the parallelization approach and to show the compute speed increase on various multi-processor systems.

  7. A novel single-parameter approach for forecasting algal blooms.

    PubMed

    Xiao, Xi; He, Junyu; Huang, Haomin; Miller, Todd R; Christakos, George; Reichwaldt, Elke S; Ghadouani, Anas; Lin, Shengpan; Xu, Xinhua; Shi, Jiyan

    2017-01-01

    Harmful algal blooms frequently occur globally, and forecasting could constitute an essential proactive strategy for bloom control. To decrease the cost of aquatic environmental monitoring and increase the accuracy of bloom forecasting, a novel single-parameter approach combining wavelet analysis with artificial neural networks (WNN) was developed and verified based on daily online monitoring datasets of algal density in the Siling Reservoir, China and Lake Winnebago, U.S.A. Firstly, a detailed modeling process was illustrated using the forecasting of cyanobacterial cell density in the Chinese reservoir as an example. Three WNN models occupying various prediction time intervals were optimized through model training using an early stopped training approach. All models performed well in fitting historical data and predicting the dynamics of cyanobacterial cell density, with the best model predicting cyanobacteria density one-day ahead (r = 0.986 and mean absolute error = 0.103 × 10 4  cells mL -1 ). Secondly, the potential of this novel approach was further confirmed by the precise predictions of algal biomass dynamics measured as chl a in both study sites, demonstrating its high performance in forecasting algal blooms, including cyanobacteria as well as other blooming species. Thirdly, the WNN model was compared to current algal forecasting methods (i.e. artificial neural networks, autoregressive integrated moving average model), and was found to be more accurate. In addition, the application of this novel single-parameter approach is cost effective as it requires only a buoy-mounted fluorescent probe, which is merely a fraction (∼15%) of the cost of a typical auto-monitoring system. As such, the newly developed approach presents a promising and cost-effective tool for the future prediction and management of harmful algal blooms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Toward Sub-seasonal to Seasonal Arctic Sea Ice Forecasting Using the Regional Arctic System Model (RASM)

    NASA Astrophysics Data System (ADS)

    Kamal, S.; Maslowski, W.; Roberts, A.; Osinski, R.; Cassano, J. J.; Seefeldt, M. W.

    2017-12-01

    The Regional Arctic system model has been developed and used to advance the current state of Arctic modeling and increase the skill of sea ice forecast. RASM is a fully coupled, limited-area model that includes the atmosphere, ocean, sea ice, land hydrology and runoff routing components and the flux coupler to exchange information among them. Boundary conditions are derived from NCEP Climate Forecasting System Reanalyses (CFSR) or Era Iterim (ERA-I) for hindcast simulations or from NCEP Coupled Forecast System Model version 2 (CFSv2) for seasonal forecasts. We have used RASM to produce sea ice forecasts for September 2016 and 2017, in contribution to the Sea Ice Outlook (SIO) of the Sea Ice Prediction Network (SIPN). Each year, we produced three SIOs for the September minimum, initialized on June 1, July 1 and August 1. In 2016, predictions used a simple linear regression model to correct for systematic biases and included the mean September sea ice extent, the daily minimum and the week of the minimum. In 2017, we produced a 12-member ensemble on June 1 and July 1, and 28-member ensemble August 1. The predictions of September 2017 included the pan-Arctic and regional Alaskan sea ice extent, daily and monthly mean pan-Arctic maps of sea ice probability, concentration and thickness. No bias correction was applied to the 2017 forecasts. Finally, we will also discuss future plans for RASM forecasts, which include increased resolution for model components, ecosystem predictions with marine biogeochemistry extensions (mBGC) to the ocean and sea ice components, and feasibility of optional boundary conditions using the Navy Global Environmental Model (NAVGEM).

  9. A new short-term forecasting model for the total electron content storm time disturbances

    NASA Astrophysics Data System (ADS)

    Tsagouri, Ioanna; Koutroumbas, Konstantinos; Elias, Panagiotis

    2018-06-01

    This paper aims to introduce a new model for the short-term forecast of the vertical Total Electron Content (vTEC). The basic idea of the proposed model lies on the concept of the Solar Wind driven autoregressive model for Ionospheric short-term Forecast (SWIF). In its original version, the model is operationally implemented in the DIAS system (http://dias.space.noa.gr) and provides alerts and warnings for upcoming ionospheric disturbances, as well as single site and regional forecasts of the foF2 critical frequency over Europe up to 24 h in advance. The forecasts are driven by the real time assessment of the solar wind conditions at ACE location. The comparative analysis of the variations in foF2 and vTEC during eleven geomagnetic storm events that occurred in the present solar cycle 24 reveals similarities but also differences in the storm-time response of the two characteristics with respect to the local time and the latitude of the observation point. Since the aforementioned dependences drive the storm-time forecasts of the SWIF model, the results obtained here support the upgrade of the SWIF's modeling technique in forecasting the storm-time vTEC variation from its onset to full development and recovery. According to the proposed approach, the vTEC storm-time response can be forecasted from 1 to 12-13 h before its onset, depending on the local time of the observation point at storm onset at L1. Preliminary results on the assessment of the performance of the proposed model and further considerations on its potential implementation in operational mode are also discussed.

  10. NMME Monthly / Seasonal Forecasts for NASA SERVIR Applications Science

    NASA Astrophysics Data System (ADS)

    Robertson, F. R.; Roberts, J. B.

    2014-12-01

    This work details use of the North American Multi-Model Ensemble (NMME) experimental forecasts as drivers for Decision Support Systems (DSSs) in the NASA / USAID initiative, SERVIR (a Spanish acronym meaning "to serve"). SERVIR integrates satellite observations, ground-based data and forecast models to monitor and forecast environmental changes and to improve response to natural disasters. Through the use of DSSs whose "front ends" are physically based models, the SERVIR activity provides a natural testbed to determine the extent to which NMME monthly to seasonal projections enable scientists, educators, project managers and policy implementers in developing countries to better use probabilistic outlooks of seasonal hydrologic anomalies in assessing agricultural / food security impacts, water availability, and risk to societal infrastructure. The multi-model NMME framework provides a "best practices" approach to probabilistic forecasting. The NMME forecasts are generated at resolution more coarse than that required to support DSS models; downscaling in both space and time is necessary. The methodology adopted here applied model output statistics where we use NMME ensemble monthly projections of sea-surface temperature (SST) and precipitation from 30 years of hindcasts with observations of precipitation and temperature for target regions. Since raw model forecasts are well-known to have structural biases, a cross-validated multivariate regression methodology (CCA) is used to link the model projected states as predictors to the predictands of the target region. The target regions include a number of basins in East and South Africa as well as the Ganges / Baramaputra / Meghna basin complex. The MOS approach used address spatial downscaling. Temporal disaggregation of monthly seasonal forecasts is achieved through use of a tercile bootstrapping approach. We interpret the results of these studies, the levels of skill by several metrics, and key uncertainties.

  11. NMME Monthly / Seasonal Forecasts for NASA SERVIR Applications Science

    NASA Technical Reports Server (NTRS)

    Robertson, Franklin R.; Roberts, Jason B.

    2014-01-01

    This work details use of the North American Multi-Model Ensemble (NMME) experimental forecasts as drivers for Decision Support Systems (DSSs) in the NASA / USAID initiative, SERVIR (a Spanish acronym meaning "to serve"). SERVIR integrates satellite observations, ground-based data and forecast models to monitor and forecast environmental changes and to improve response to natural disasters. Through the use of DSSs whose "front ends" are physically based models, the SERVIR activity provides a natural testbed to determine the extent to which NMME monthly to seasonal projections enable scientists, educators, project managers and policy implementers in developing countries to better use probabilistic outlooks of seasonal hydrologic anomalies in assessing agricultural / food security impacts, water availability, and risk to societal infrastructure. The multi-model NMME framework provides a "best practices" approach to probabilistic forecasting. The NMME forecasts are generated at resolution more coarse than that required to support DSS models; downscaling in both space and time is necessary. The methodology adopted here applied model output statistics where we use NMME ensemble monthly projections of sea-surface temperature (SST) and precipitation from 30 years of hindcasts with observations of precipitation and temperature for target regions. Since raw model forecasts are well-known to have structural biases, a cross-validated multivariate regression methodology (CCA) is used to link the model projected states as predictors to the predictands of the target region. The target regions include a number of basins in East and South Africa as well as the Ganges / Baramaputra / Meghna basin complex. The MOS approach used address spatial downscaling. Temporal disaggregation of monthly seasonal forecasts is achieved through use of a tercile bootstrapping approach. We interpret the results of these studies, the levels of skill by several metrics, and key uncertainties.

  12. Forecasting consequences of changing sea ice availability for Pacific walruses

    USGS Publications Warehouse

    Udevitz, Mark S.; Jay, Chadwick V.; Taylor, Rebecca; Fischbach, Anthony S.; Beatty, William S.; Noren, Shawn R.

    2017-01-01

    The accelerating rate of anthropogenic alteration and disturbance of environments has increased the need for forecasting effects of environmental change on fish and wildlife populations. Models linking projections of environmental change with behavioral responses and bioenergetic effects can provide a basis for these forecasts. There is particular interest in forecasting effects of projected reductions in sea ice availability on Pacific walruses (Odobenus rosmarus divergens). Declining extent of summer sea ice in the Chukchi Sea has caused Pacific walruses to increase use of coastal haulouts and decrease use of more productive offshore feeding areas. Such climate-induced changes in distribution and behavior could ultimately affect the status of the population. We developed behavioral models to relate changes in sea ice availability to adult female walrus movements and activity levels, and adapted previously developed bioenergetics models to relate those activity levels to energy requirements and the ability to meet those requirements. We then linked these models to general circulation model projections of future ice availability to forecast autumn body condition for female walruses during mid- and late-century time periods. Our results suggest that as sea ice becomes less available in the Chukchi Sea, female walruses will spend more time in the southwestern region of that sea, less time resting, and less time foraging. Median forecasted autumn body masses were 7–12% lower in future scenarios than during recent times, but posterior distributions broadly overlapped and median forecasted seasonal mass losses (15–34%) were comparable to seasonal mass losses routinely experienced by other pinnipeds. These seasonal reductions in body condition would be unlikely to result in demographic effects, but if walruses were unable to rebuild endogenous reserves while wintering in the Bering Sea, cumulative effects could have implications for reproduction and survival, ultimately affecting the status of the Pacific walrus population. Our approach provides a general framework for forecasting consequences of the broad range of environmental changes and anthropogenic disturbances that may affect bioenergetics through behavioral responses or changes in prey availability.

  13. The use of a high resolution model in a private environment.

    NASA Astrophysics Data System (ADS)

    van Dijke, D.; Malda, D.

    2009-09-01

    The commercial organisation MeteoGroup uses high resolution modelling for multiple purposes. MeteoGroup uses the Weather Research and Forecasting Model (WRF®1). WRF is used in the operational environment of several MeteoGroup companies across Europe. It is also used in hindcast studies, for example hurricane tracking, wind climate computation and deriving boundary conditions for air quality models. A special operational service was set up for our tornado chasing team that uses high resolution flexible WRF data to chase for super cells and tornados in the USA during spring. Much effort is put into the development and improvement of the pre- and post-processing of the model. At MeteoGroup the static land-use data has been extended and adjusted to improve temperature and wind forecasts. The system has been modified such that sigma level input data from the global ECMWF model can be used for initialisation. By default only pressure level data could be used. During the spin-up of the model synoptical observations are nudged. A program to adjust possible initialisation errors of several surface parameters in coastal areas has been implemented. We developed an algorithm that computes cloud fractions using multiple direct model output variables. Forecasters prefer to use weather codes for their daily forecasts to detect severe weather. For this usage we developed model weather codes using a variety of direct model output and our own derived variables. 1 WRF® is a registered trademark of the University Corporation for Atmospheric Research (UCAR)

  14. Likelihood testing of seismicity-based rate forecasts of induced earthquakes in Oklahoma and Kansas

    USGS Publications Warehouse

    Moschetti, Morgan P.; Hoover, Susan M.; Mueller, Charles

    2016-01-01

    Likelihood testing of induced earthquakes in Oklahoma and Kansas has identified the parameters that optimize the forecasting ability of smoothed seismicity models and quantified the recent temporal stability of the spatial seismicity patterns. Use of the most recent 1-year period of earthquake data and use of 10–20-km smoothing distances produced the greatest likelihood. The likelihood that the locations of January–June 2015 earthquakes were consistent with optimized forecasts decayed with increasing elapsed time between the catalogs used for model development and testing. Likelihood tests with two additional sets of earthquakes from 2014 exhibit a strong sensitivity of the rate of decay to the smoothing distance. Marked reductions in likelihood are caused by the nonstationarity of the induced earthquake locations. Our results indicate a multiple-fold benefit from smoothed seismicity models in developing short-term earthquake rate forecasts for induced earthquakes in Oklahoma and Kansas, relative to the use of seismic source zones.

  15. A cross impact methodology for the assessment of US telecommunications system with application to fiber optics development, volume 1

    NASA Technical Reports Server (NTRS)

    Martino, J. P.; Lenz, R. C., Jr.; Chen, K. L.; Kahut, P.; Sekely, R.; Weiler, J.

    1979-01-01

    A cross impact model of the U.S. telecommunications system was developed. It was necessary to prepare forecasts of the major segments of the telecommunications system, such as satellites, telephone, TV, CATV, radio broadcasting, etc. In addition, forecasts were prepared of the traffic generated by a variety of new or expanded services, such as electronic check clearing and point of sale electronic funds transfer. Finally, the interactions among the forecasts were estimated (the cross impact). Both the forecasts and the cross impacts were used as inputs to the cross impact model, which could then be used to stimulate the future growth of the entire U.S. telecommunications system. By varying the inputs, technology changes or policy decisions with regard to any segment of the system could be evaluated in the context of the remainder of the system. To illustrate the operation of the model, a specific study was made of the deployment of fiber optics throughout the telecommunications system.

  16. The Betting Odds Rating System: Using soccer forecasts to forecast soccer.

    PubMed

    Wunderlich, Fabian; Memmert, Daniel

    2018-01-01

    Betting odds are frequently found to outperform mathematical models in sports related forecasting tasks, however the factors contributing to betting odds are not fully traceable and in contrast to rating-based forecasts no straightforward measure of team-specific quality is deducible from the betting odds. The present study investigates the approach of combining the methods of mathematical models and the information included in betting odds. A soccer forecasting model based on the well-known ELO rating system and taking advantage of betting odds as a source of information is presented. Data from almost 15.000 soccer matches (seasons 2007/2008 until 2016/2017) are used, including both domestic matches (English Premier League, German Bundesliga, Spanish Primera Division and Italian Serie A) and international matches (UEFA Champions League, UEFA Europe League). The novel betting odds based ELO model is shown to outperform classic ELO models, thus demonstrating that betting odds prior to a match contain more relevant information than the result of the match itself. It is shown how the novel model can help to gain valuable insights into the quality of soccer teams and its development over time, thus having a practical benefit in performance analysis. Moreover, it is argued that network based approaches might help in further improving rating and forecasting methods.

  17. Evaluating Downscaling Methods for Seasonal Climate Forecasts over East Africa

    NASA Technical Reports Server (NTRS)

    Roberts, J. Brent; Robertson, Franklin R.; Bosilovich, Michael; Lyon, Bradfield; Funk, Chris

    2013-01-01

    The U.S. National Multi-Model Ensemble seasonal forecasting system is providing hindcast and real-time data streams to be used in assessing and improving seasonal predictive capacity. The NASA / USAID SERVIR project, which leverages satellite and modeling-based resources for environmental decision making in developing nations, is focusing on the evaluation of NMME forecasts specifically for use in impact modeling within hub regions including East Africa, the Hindu Kush-Himalayan (HKH) region and Mesoamerica. One of the participating models in NMME is the NASA Goddard Earth Observing System (GEOS5). This work will present an intercomparison of downscaling methods using the GEOS5 seasonal forecasts of temperature and precipitation over East Africa. The current seasonal forecasting system provides monthly averaged forecast anomalies. These anomalies must be spatially downscaled and temporally disaggregated for use in application modeling (e.g. hydrology, agriculture). There are several available downscaling methodologies that can be implemented to accomplish this goal. Selected methods include both a non-homogenous hidden Markov model and an analogue based approach. A particular emphasis will be placed on quantifying the ability of different methods to capture the intermittency of precipitation within both the short and long rain seasons. Further, the ability to capture spatial covariances will be assessed. Both probabilistic and deterministic skill measures will be evaluated over the hindcast period

  18. Forecasting of Radiation Belts: Results From the PROGRESS Project.

    NASA Astrophysics Data System (ADS)

    Balikhin, M. A.; Arber, T. D.; Ganushkina, N. Y.; Walker, S. N.

    2017-12-01

    Forecasting of Radiation Belts: Results from the PROGRESS Project. The overall goal of the PROGRESS project, funded in frame of EU Horizon2020 programme, is to combine first principles based models with the systems science methodologies to achieve reliable forecasts of the geo-space particle radiation environment.The PROGRESS incorporates three themes : The propagation of the solar wind to L1, Forecast of geomagnetic indices, and forecast of fluxes of energetic electrons within the magnetosphere. One of the important aspects of the PROGRESS project is the development of statistical wave models for magnetospheric waves that affect the dynamics of energetic electrons such as lower band chorus, hiss and equatorial noise. The error reduction ratio (ERR) concept has been used to optimise the set of solar wind and geomagnetic parameters for organisation of statistical wave models for these emissions. The resulting sets of parameters and statistical wave models will be presented and discussed. However the ERR analysis also indicates that the combination of solar wind and geomagnetic parameters accounts for only part of the variance of the emissions under investigation (lower band chorus, hiss and equatorial noise). In addition, advances in the forecast of fluxes of energetic electrons, exploiting empirical models and the first principles IMPTAM model achieved by the PROGRESS project is presented.

  19. Evaluating Downscaling Methods for Seasonal Climate Forecasts over East Africa

    NASA Technical Reports Server (NTRS)

    Robertson, Franklin R.; Roberts, J. Brent; Bosilovich, Michael; Lyon, Bradfield

    2013-01-01

    The U.S. National Multi-Model Ensemble seasonal forecasting system is providing hindcast and real-time data streams to be used in assessing and improving seasonal predictive capacity. The NASA / USAID SERVIR project, which leverages satellite and modeling-based resources for environmental decision making in developing nations, is focusing on the evaluation of NMME forecasts specifically for use in impact modeling within hub regions including East Africa, the Hindu Kush-Himalayan (HKH) region and Mesoamerica. One of the participating models in NMME is the NASA Goddard Earth Observing System (GEOS5). This work will present an intercomparison of downscaling methods using the GEOS5 seasonal forecasts of temperature and precipitation over East Africa. The current seasonal forecasting system provides monthly averaged forecast anomalies. These anomalies must be spatially downscaled and temporally disaggregated for use in application modeling (e.g. hydrology, agriculture). There are several available downscaling methodologies that can be implemented to accomplish this goal. Selected methods include both a non-homogenous hidden Markov model and an analogue based approach. A particular emphasis will be placed on quantifying the ability of different methods to capture the intermittency of precipitation within both the short and long rain seasons. Further, the ability to capture spatial covariances will be assessed. Both probabilistic and deterministic skill measures will be evaluated over the hindcast period.

  20. The Betting Odds Rating System: Using soccer forecasts to forecast soccer

    PubMed Central

    Memmert, Daniel

    2018-01-01

    Betting odds are frequently found to outperform mathematical models in sports related forecasting tasks, however the factors contributing to betting odds are not fully traceable and in contrast to rating-based forecasts no straightforward measure of team-specific quality is deducible from the betting odds. The present study investigates the approach of combining the methods of mathematical models and the information included in betting odds. A soccer forecasting model based on the well-known ELO rating system and taking advantage of betting odds as a source of information is presented. Data from almost 15.000 soccer matches (seasons 2007/2008 until 2016/2017) are used, including both domestic matches (English Premier League, German Bundesliga, Spanish Primera Division and Italian Serie A) and international matches (UEFA Champions League, UEFA Europe League). The novel betting odds based ELO model is shown to outperform classic ELO models, thus demonstrating that betting odds prior to a match contain more relevant information than the result of the match itself. It is shown how the novel model can help to gain valuable insights into the quality of soccer teams and its development over time, thus having a practical benefit in performance analysis. Moreover, it is argued that network based approaches might help in further improving rating and forecasting methods. PMID:29870554

  1. Development of Regional Power Sector Coal Fuel Costs (Prices) for the Short-Term Energy Outlook (STEO) Model

    EIA Publications

    2017-01-01

    The U.S. Energy Information Administration's Short-Term Energy Outlook (STEO) produces monthly projections of energy supply, demand, trade, and prices over a 13-24 month period. Every January, the forecast horizon is extended through December of the following year. The STEO model is an integrated system of econometric regression equations and identities that link data on the various components of the U.S. energy industry together in order to develop consistent forecasts. The regression equations are estimated and the STEO model is solved using the EViews 9.5 econometric software package from IHS Global Inc. The model consists of various modules specific to each energy resource. All modules provide projections for the United States, and some modules provide more detailed forecasts for different regions of the country.

  2. Extended Kalman Filter framework for forecasting shoreline evolution

    USGS Publications Warehouse

    Long, Joseph; Plant, Nathaniel G.

    2012-01-01

    A shoreline change model incorporating both long- and short-term evolution is integrated into a data assimilation framework that uses sparse observations to generate an updated forecast of shoreline position and to estimate unobserved geophysical variables and model parameters. Application of the assimilation algorithm provides quantitative statistical estimates of combined model-data forecast uncertainty which is crucial for developing hazard vulnerability assessments, evaluation of prediction skill, and identifying future data collection needs. Significant attention is given to the estimation of four non-observable parameter values and separating two scales of shoreline evolution using only one observable morphological quantity (i.e. shoreline position).

  3. Performance and robustness of probabilistic river forecasts computed with quantile regression based on multiple independent variables in the North Central USA

    NASA Astrophysics Data System (ADS)

    Hoss, F.; Fischbeck, P. S.

    2014-10-01

    This study further develops the method of quantile regression (QR) to predict exceedance probabilities of flood stages by post-processing forecasts. Using data from the 82 river gages, for which the National Weather Service's North Central River Forecast Center issues forecasts daily, this is the first QR application to US American river gages. Archived forecasts for lead times up to six days from 2001-2013 were analyzed. Earlier implementations of QR used the forecast itself as the only independent variable (Weerts et al., 2011; López López et al., 2014). This study adds the rise rate of the river stage in the last 24 and 48 h and the forecast error 24 and 48 h ago to the QR model. Including those four variables significantly improved the forecasts, as measured by the Brier Skill Score (BSS). Mainly, the resolution increases, as the original QR implementation already delivered high reliability. Combining the forecast with the other four variables results in much less favorable BSSs. Lastly, the forecast performance does not depend on the size of the training dataset, but on the year, the river gage, lead time and event threshold that are being forecast. We find that each event threshold requires a separate model configuration or at least calibration.

  4. Multi-platform operational validation of the Western Mediterranean SOCIB forecasting system

    NASA Astrophysics Data System (ADS)

    Juza, Mélanie; Mourre, Baptiste; Renault, Lionel; Tintoré, Joaquin

    2014-05-01

    The development of science-based ocean forecasting systems at global, regional, and local scales can support a better management of the marine environment (maritime security, environmental and resources protection, maritime and commercial operations, tourism, ...). In this context, SOCIB (the Balearic Islands Coastal Observing and Forecasting System, www.socib.es) has developed an operational ocean forecasting system in the Western Mediterranean Sea (WMOP). WMOP uses a regional configuration of the Regional Ocean Modelling System (ROMS, Shchepetkin and McWilliams, 2005) nested in the larger scale Mediterranean Forecasting System (MFS) with a spatial resolution of 1.5-2km. WMOP aims at reproducing both the basin-scale ocean circulation and the mesoscale variability which is known to play a crucial role due to its strong interaction with the large scale circulation in this region. An operational validation system has been developed to systematically assess the model outputs at daily, monthly and seasonal time scales. Multi-platform observations are used for this validation, including satellite products (Sea Surface Temperature, Sea Level Anomaly), in situ measurements (from gliders, Argo floats, drifters and fixed moorings) and High-Frequency radar data. The validation procedures allow to monitor and certify the general realism of the daily production of the ocean forecasting system before its distribution to users. Additionally, different indicators (Sea Surface Temperature and Salinity, Eddy Kinetic Energy, Mixed Layer Depth, Heat Content, transports in key sections) are computed every day both at the basin-scale and in several sub-regions (Alboran Sea, Balearic Sea, Gulf of Lion). The daily forecasts, validation diagnostics and indicators from the operational model over the last months are available at www.socib.es.

  5. Monthly forecasting of agricultural pests in Switzerland

    NASA Astrophysics Data System (ADS)

    Hirschi, M.; Dubrovsky, M.; Spirig, C.; Samietz, J.; Calanca, P.; Weigel, A. P.; Fischer, A. M.; Rotach, M. W.

    2012-04-01

    Given the repercussions of pests and diseases on agricultural production, detailed forecasting tools have been developed to simulate the degree of infestation depending on actual weather conditions. The life cycle of pests is most successfully predicted if the micro-climate of the immediate environment (habitat) of the causative organisms can be simulated. Sub-seasonal pest forecasts therefore require weather information for the relevant habitats and the appropriate time scale. The pest forecasting system SOPRA (www.sopra.info) currently in operation in Switzerland relies on such detailed weather information, using hourly weather observations up to the day the forecast is issued, but only a climatology for the forecasting period. Here, we aim at improving the skill of SOPRA forecasts by transforming the weekly information provided by ECMWF monthly forecasts (MOFCs) into hourly weather series as required for the prediction of upcoming life phases of the codling moth, the major insect pest in apple orchards worldwide. Due to the probabilistic nature of operational monthly forecasts and the limited spatial and temporal resolution, their information needs to be post-processed for use in a pest model. In this study, we developed a statistical downscaling approach for MOFCs that includes the following steps: (i) application of a stochastic weather generator to generate a large pool of daily weather series consistent with the climate at a specific location, (ii) a subsequent re-sampling of weather series from this pool to optimally represent the evolution of the weekly MOFC anomalies, and (iii) a final extension to hourly weather series suitable for the pest forecasting model. Results show a clear improvement in the forecast skill of occurrences of upcoming codling moth life phases when incorporating MOFCs as compared to the operational pest forecasting system. This is true both in terms of root mean squared errors and of the continuous rank probability scores of the probabilistic forecasts vs. the mean absolute errors of the deterministic system. Also, the application of the climate conserving recalibration (CCR, Weigel et al. 2009) technique allows for successful correction of the under-confidence in the forecasted occurrences of codling moth life phases. Reference: Weigel, A. P.; Liniger, M. A. & Appenzeller, C. (2009). Seasonal Ensemble Forecasts: Are Recalibrated Single Models Better than Multimodels? Mon. Wea. Rev., 137, 1460-1479.

  6. Improving socioeconomic land use forecasting for medium-sized metropolitan organizations in Virginia.

    DOT National Transportation Integrated Search

    2008-01-01

    Socioeconomic forecasts are the foundation for long range travel demand modeling, projecting variables such as population, households, employment, and vehicle ownership. In Virginia, metropolitan planning organizations (MPOs) develop socioeconomic fo...

  7. Improving flood forecasting capability of physically based distributed hydrological models by parameter optimization

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Li, J.; Xu, H.

    2016-01-01

    Physically based distributed hydrological models (hereafter referred to as PBDHMs) divide the terrain of the whole catchment into a number of grid cells at fine resolution and assimilate different terrain data and precipitation to different cells. They are regarded to have the potential to improve the catchment hydrological process simulation and prediction capability. In the early stage, physically based distributed hydrological models are assumed to derive model parameters from the terrain properties directly, so there is no need to calibrate model parameters. However, unfortunately the uncertainties associated with this model derivation are very high, which impacted their application in flood forecasting, so parameter optimization may also be necessary. There are two main purposes for this study: the first is to propose a parameter optimization method for physically based distributed hydrological models in catchment flood forecasting by using particle swarm optimization (PSO) algorithm and to test its competence and to improve its performances; the second is to explore the possibility of improving physically based distributed hydrological model capability in catchment flood forecasting by parameter optimization. In this paper, based on the scalar concept, a general framework for parameter optimization of the PBDHMs for catchment flood forecasting is first proposed that could be used for all PBDHMs. Then, with the Liuxihe model as the study model, which is a physically based distributed hydrological model proposed for catchment flood forecasting, the improved PSO algorithm is developed for the parameter optimization of the Liuxihe model in catchment flood forecasting. The improvements include adoption of the linearly decreasing inertia weight strategy to change the inertia weight and the arccosine function strategy to adjust the acceleration coefficients. This method has been tested in two catchments in southern China with different sizes, and the results show that the improved PSO algorithm could be used for the Liuxihe model parameter optimization effectively and could improve the model capability largely in catchment flood forecasting, thus proving that parameter optimization is necessary to improve the flood forecasting capability of physically based distributed hydrological models. It also has been found that the appropriate particle number and the maximum evolution number of PSO algorithm used for the Liuxihe model catchment flood forecasting are 20 and 30 respectively.

  8. Modeling spot markets for electricity and pricing electricity derivatives

    NASA Astrophysics Data System (ADS)

    Ning, Yumei

    Spot prices for electricity have been very volatile with dramatic price spikes occurring in restructured market. The task of forecasting electricity prices and managing price risk presents a new challenge for market players. The objectives of this dissertation are: (1) to develop a stochastic model of price behavior and predict price spikes; (2) to examine the effect of weather forecasts on forecasted prices; (3) to price electricity options and value generation capacity. The volatile behavior of prices can be represented by a stochastic regime-switching model. In the model, the means of the high-price and low-price regimes and the probabilities of switching from one regime to the other are specified as functions of daily peak load. The probability of switching to the high-price regime is positively related to load, but is still not high enough at the highest loads to predict price spikes accurately. An application of this model shows how the structure of the Pennsylvania-New Jersey-Maryland market changed when market-based offers were allowed, resulting in higher price spikes. An ARIMA model including temperature, seasonal, and weekly effects is estimated to forecast daily peak load. Forecasts of load under different assumptions about weather patterns are used to predict changes of price behavior given the regime-switching model of prices. Results show that the range of temperature forecasts from a normal summer to an extremely warm summer cause relatively small increases in temperature (+1.5%) and load (+3.0%). In contrast, the increases in prices are large (+20%). The conclusion is that the seasonal outlook forecasts provided by NOAA are potentially valuable for predicting prices in electricity markets. The traditional option models, based on Geometric Brownian Motion are not appropriate for electricity prices. An option model using the regime-switching framework is developed to value a European call option. The model includes volatility risk and allows changes in prices and volatility to be correlated. The results show that the value of a power plant is much higher using the financial option model than using traditional discounted cash flow.

  9. SST-Forced Seasonal Simulation and Prediction Skill for Versions of the NCEP/MRF Model.

    NASA Astrophysics Data System (ADS)

    Livezey, Robert E.; Masutani, Michiko; Jil, Ming

    1996-03-01

    The feasibility of using a two-tier approach to provide guidance to operational long-lead seasonal prediction is explored. The approach includes first a forecast of global sea surface temperatures (SSTs) using a coupled general circulation model, followed by an atmospheric forecast using an atmospheric general circulation model (AGCM). For this exploration, ensembles of decade-long integrations of the AGCM driven by observed SSTs and ensembles of integrations of select cases driven by forecast SSTs have been conducted. The ability of the model in these sets of runs to reproduce observed atmospheric conditions has been evaluated with a multiparameter performance analysis.Results have identified performance and skill levels in the specified SST runs, for winters and springs over the Pacific/North America region, that are sufficient to impact operational seasonal predictions in years with major El Niño-Southern Oscillation (ENSO) episodes. Further, these levels were substantially reproduced in the forecast SST runs for 1-month leads and in many instances for up to one-season leads. In fact, overall the 0- and 1-month-lead forecasts of seasonal temperature over the United States for three falls and winters with major ENSO episodes were substantially better than corresponding official forecasts. Thus, there is considerable reason to develop a dynamical component for the official seasonal forecast process.

  10. Integrating Wind Profiling Radars and Radiosonde Observations with Model Point Data to Develop a Decision Support Tool to Assess Upper-Level Winds for Space Launch

    NASA Technical Reports Server (NTRS)

    Bauman, William H., III; Flinn, Clay

    2013-01-01

    On the day of launch, the 45th Weather Squadron (45 WS) Launch Weather Officers (LWOs) monitor the upper-level winds for their launch customers. During launch operations, the payload/launch team sometimes asks the LWOs if they expect the upper-level winds to change during the countdown. The LWOs used numerical weather prediction model point forecasts to provide the information, but did not have the capability to quickly retrieve or adequately display the upper-level observations and compare them directly in the same display to the model point forecasts to help them determine which model performed the best. The LWOs requested the Applied Meteorology Unit (AMU) develop a graphical user interface (GUI) that will plot upper-level wind speed and direction observations from the Cape Canaveral Air Force Station (CCAFS) Automated Meteorological Profiling System (AMPS) rawinsondes with point forecast wind profiles from the National Centers for Environmental Prediction (NCEP) North American Mesoscale (NAM), Rapid Refresh (RAP) and Global Forecast System (GFS) models to assess the performance of these models. The AMU suggested adding observations from the NASA 50 MHz wind profiler and one of the US Air Force 915 MHz wind profilers, both located near the Kennedy Space Center (KSC) Shuttle Landing Facility, to supplement the AMPS observations with more frequent upper-level profiles. Figure 1 shows a map of KSC/CCAFS with the locations of the observation sites and the model point forecasts.

  11. Forecasting Air Force Logistics Command Second Destination Transportation: An Application of Multiple Regression Analysis and Neural Networks

    DTIC Science & Technology

    1990-09-01

    without the help from the DSXR staff. William Lyons, Charles Ramsey , and Martin Meeks went above and beyond to help complete this research. Special...develop a valid forecasting model that is significantly more accurate than the one presently used by DSXR and suggested the development and testing of a...method, Strom tested DSXR’s iterative linear regression forecasting technique by examining P1 in the simple regression equation to determine whether

  12. Stochastic Simulations of Long-Range Forecasting Models for Less Developed Regions

    DTIC Science & Technology

    1975-06-01

    descriptors—nation national alignment, internal insl; less developed regions of Africa, report describes (1) the regions’ (2) the strategic importance of...imr.T.ARSTFTi?n SPI unty ( I,is*iif it at i 3200.0 (Att ] to End l) Mar 7, 66 *. ( * y. o 1 < n i Forecasting for Planning Strategic Importance...the long range. The forecasts that have been produced so far have been direct inputs into the Joint Long-Range Strategic Study (JLRSS), prepared by

  13. Minimum Energy Routing through Interactive Techniques (MERIT) modeling

    NASA Technical Reports Server (NTRS)

    Wylie, Donald P.

    1988-01-01

    The MERIT program is designed to demonstrate the feasibility of fuel savings by airlines through improved route selection using wind observations from their own fleet. After a discussion of weather and aircraft data, manually correcting wind fields, automatic corrections to wind fields, and short-range prediction models, it is concluded that improvements in wind information are possible if a system is developed for analyzing wind observations and correcting the forecasts made by the major models. One data handling system, McIDAS, can easily collect and display wind observations and model forecasts. Changing the wind forecasts beyond the time of the most recent observations is more difficult; an Australian Mesoscale Model was tested with promising but not definitive results.

  14. Probabilistic Wind Power Ramp Forecasting Based on a Scenario Generation Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Qin; Florita, Anthony R; Krishnan, Venkat K

    Wind power ramps (WPRs) are particularly important in the management and dispatch of wind power and currently drawing the attention of balancing authorities. With the aim to reduce the impact of WPRs for power system operations, this paper develops a probabilistic ramp forecasting method based on a large number of simulated scenarios. An ensemble machine learning technique is first adopted to forecast the basic wind power forecasting scenario and calculate the historical forecasting errors. A continuous Gaussian mixture model (GMM) is used to fit the probability distribution function (PDF) of forecasting errors. The cumulative distribution function (CDF) is analytically deduced.more » The inverse transform method based on Monte Carlo sampling and the CDF is used to generate a massive number of forecasting error scenarios. An optimized swinging door algorithm is adopted to extract all the WPRs from the complete set of wind power forecasting scenarios. The probabilistic forecasting results of ramp duration and start-time are generated based on all scenarios. Numerical simulations on publicly available wind power data show that within a predefined tolerance level, the developed probabilistic wind power ramp forecasting method is able to predict WPRs with a high level of sharpness and accuracy.« less

  15. Evaluation and economic value of winter weather forecasts

    NASA Astrophysics Data System (ADS)

    Snyder, Derrick W.

    State and local highway agencies spend millions of dollars each year to deploy winter operation teams to plow snow and de-ice roadways. Accurate and timely weather forecast information is critical for effective decision making. Students from Purdue University partnered with the Indiana Department of Transportation to create an experimental winter weather forecast service for the 2012-2013 winter season in Indiana to assist in achieving these goals. One forecast product, an hourly timeline of winter weather hazards produced daily, was evaluated for quality and economic value. Verification of the forecasts was performed with data from the Rapid Refresh numerical weather model. Two objective verification criteria were developed to evaluate the performance of the timeline forecasts. Using both criteria, the timeline forecasts had issues with reliability and discrimination, systematically over-forecasting the amount of winter weather that was observed while also missing significant winter weather events. Despite these quality issues, the forecasts still showed significant, but varied, economic value compared to climatology. Economic value of the forecasts was estimated to be 29.5 million or 4.1 million, depending on the verification criteria used. Limitations of this valuation system are discussed and a framework is developed for more thorough studies in the future.

  16. Probabilistic Wind Power Ramp Forecasting Based on a Scenario Generation Method: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Qin; Florita, Anthony R; Krishnan, Venkat K

    2017-08-31

    Wind power ramps (WPRs) are particularly important in the management and dispatch of wind power, and they are currently drawing the attention of balancing authorities. With the aim to reduce the impact of WPRs for power system operations, this paper develops a probabilistic ramp forecasting method based on a large number of simulated scenarios. An ensemble machine learning technique is first adopted to forecast the basic wind power forecasting scenario and calculate the historical forecasting errors. A continuous Gaussian mixture model (GMM) is used to fit the probability distribution function (PDF) of forecasting errors. The cumulative distribution function (CDF) ismore » analytically deduced. The inverse transform method based on Monte Carlo sampling and the CDF is used to generate a massive number of forecasting error scenarios. An optimized swinging door algorithm is adopted to extract all the WPRs from the complete set of wind power forecasting scenarios. The probabilistic forecasting results of ramp duration and start time are generated based on all scenarios. Numerical simulations on publicly available wind power data show that within a predefined tolerance level, the developed probabilistic wind power ramp forecasting method is able to predict WPRs with a high level of sharpness and accuracy.« less

  17. Air Quality Modeling and Forecasting over the United States Using WRF-Chem

    NASA Astrophysics Data System (ADS)

    Boxe, C.; Hafsa, U.; Blue, S.; Emmanuel, S.; Griffith, E.; Moore, J.; Tam, J.; Khan, I.; Cai, Z.; Bocolod, B.; Zhao, J.; Ahsan, S.; Gurung, D.; Tang, N.; Bartholomew, J.; Rafi, R.; Caltenco, K.; Rivas, M.; Ditta, H.; Alawlaqi, H.; Rowley, N.; Khatim, F.; Ketema, N.; Strothers, J.; Diallo, I.; Owens, C.; Radosavljevic, J.; Austin, S. A.; Johnson, L. P.; Zavala-Gutierrez, R.; Breary, N.; Saint-Hilaire, D.; Skeete, D.; Stock, J.; Salako, O.

    2016-12-01

    WRF-Chem is the Weather Research and Forecasting (WRF) model coupled with Chemistry. The model simulates the emission, transport, mixing, and chemical transformation of trace gases and aerosols simultaneously with the meteorology. The model is used for investigation of regional-scale air quality, field program analysis, and cloud-scale interactions between clouds and chemistry. The development of WRF-Chem is a collaborative effort among the community led by NOAA/ESRL scientists. The Official WRF-Chem web page is located at the NOAA web site. Our model development is closely linked with both NOAA/ESRL and DOE/PNNL efforts. Description of PNNL WRF-Chem model development is located at the PNNL web site as well as the PNNL Aerosol Modeling Testbed. High school and undergraduate students, representative of academic institutions throughout USA's Tri-State Area (New York, New Jersey, Connecticut), set up WRF-Chem on CUNY CSI's High Performance Computing Center. Students learned the back-end coding that governs WRF-Chems structure and the front-end coding that displays visually specified weather simulations and forecasts. Students also investigated the impact, to select baseline simulations/forecasts, due to the reaction, NO2 + OH + M → HOONO + M (k = 9.2 × 10-12 cm3 molecule-1 s-1, Mollner et al. 2010). The reaction of OH and NO2 to form gaseous nitric acid (HONO2) is among the most influential and in atmospheric chemistry. Till a few years prior, its rate coefficient remained poorly determined under tropospheric conditions because of difficulties in making laboratory measurements at 760 torr. These activities fosters student coding competencies and deep insights into weather forecast and air quality.

  18. Two-Step Forecast of Geomagnetic Storm Using Coronal Mass Ejection and Solar Wind Condition

    NASA Technical Reports Server (NTRS)

    Kim, R.-S.; Moon, Y.-J.; Gopalswamy, N.; Park, Y.-D.; Kim, Y.-H.

    2014-01-01

    To forecast geomagnetic storms, we had examined initially observed parameters of coronal mass ejections (CMEs) and introduced an empirical storm forecast model in a previous study. Now we suggest a two-step forecast considering not only CME parameters observed in the solar vicinity but also solar wind conditions near Earth to improve the forecast capability. We consider the empirical solar wind criteria derived in this study (Bz = -5 nT or Ey = 3 mV/m for t = 2 h for moderate storms with minimum Dst less than -50 nT) (i.e. Magnetic Field Magnitude, B (sub z) less than or equal to -5 nanoTeslas or duskward Electrical Field, E (sub y) greater than or equal to 3 millivolts per meter for time greater than or equal to 2 hours for moderate storms with Minimum Disturbance Storm Time, Dst less than -50 nanoTeslas) and a Dst model developed by Temerin and Li (2002, 2006) (TL [i.e. Temerin Li] model). Using 55 CME-Dst pairs during 1997 to 2003, our solar wind criteria produce slightly better forecasts for 31 storm events (90 percent) than the forecasts based on the TL model (87 percent). However, the latter produces better forecasts for 24 nonstorm events (88 percent), while the former correctly forecasts only 71 percent of them. We then performed the two-step forecast. The results are as follows: (i) for 15 events that are incorrectly forecasted using CME parameters, 12 cases (80 percent) can be properly predicted based on solar wind conditions; (ii) if we forecast a storm when both CME and solar wind conditions are satisfied (n, i.e. cap operator - the intersection set that is comprised of all the elements that are common to both), the critical success index becomes higher than that from the forecast using CME parameters alone, however, only 25 storm events (81 percent) are correctly forecasted; and (iii) if we forecast a storm when either set of these conditions is satisfied (?, i.e. cup operator - the union set that is comprised of all the elements of either or both), all geomagnetic storms are correctly forecasted.

  19. An Experimental Real-Time Ocean Nowcast/Forecast System for Intra America Seas

    NASA Astrophysics Data System (ADS)

    Ko, D. S.; Preller, R. H.; Martin, P. J.

    2003-04-01

    An experimental real-time Ocean Nowcast/Forecast System has been developed for the Intra America Seas (IASNFS). The area of coverage includes the Caribbean Sea, the Gulf of Mexico and the Straits of Florida. The system produces nowcast and up to 72 hours forecast the sea level variation, 3D ocean current, temperature and salinity fields. IASNFS consists an 1/24 degree (~5 km), 41-level sigma-z data-assimilating ocean model based on NCOM. For daily nowcast/forecast the model is restarted from previous nowcast. Once model is restarted it continuously assimilates the synthetic temperature/salinity profiles generated by a data analysis model called MODAS to produce nowcast. Real-time data come from satellite altimeter (GFO, TOPEX/Poseidon, ERS-2) sea surface height anomaly and AVHRR sea surface temperature. Three hourly surface heat fluxes, including solar radiation, wind stresses and sea level air pressure from NOGAPS/FNMOC are applied for surface forcing. Forecasts are produced with available NOGAPS forecasts. Once the nowcast/forecast are produced they are distributed through the Internet via the updated web pages. The open boundary conditions including sea surface elevation, transport, temperature, salinity and currents are provided by the NRL 1/8 degree Global NCOM which is operated daily. An one way coupling scheme is used to ingest those boundary conditions into the IAS model. There are 41 rivers with monthly discharges included in the IASNFS.

  20. Improving a stage forecasting Muskingum model by relating local stage and remote discharge

    NASA Astrophysics Data System (ADS)

    Barbetta, S.; Moramarco, T.; Melone, F.; Brocca, L.

    2009-04-01

    Following the parsimonious concept of parameters, simplified models for flood forecasting based only on flood routing have been developed for flood-prone sites located downstream of a gauged station and at a distance allowing an appropriate forecasting lead-time. In this context, the Muskingum model can be a useful tool. However, critical points in hydrological routing are the representation of lateral inflows contribution and the knowledge of stage-discharge relationships. As regards the former, O'Donnell (O'Donnell, T., 1985. A direct three-parameter Muskingum procedure incorporating lateral inflow, Hydrol. Sci. J., 30[4/12], 479-496) proposed a three-parameter Muskingum procedure assuming the lateral inflows proportional to the contribution entering upstream. Using this approach, Franchini and Lamberti (Franchini, M. & Lamberti, P., 1994. A flood routing Muskingum type simulation and forecasting model based on level data alone, Water Resour. Res., 30[7], 2183-2196) presented a simple model Muskingum type to provide forecast water levels at the downstream end by selecting a routing time interval and, hence, a forecasting lead-time allowing to express the forecast stage as a function of only observed quantities. Moramarco et al. (Moramarco, T., Barbetta, S., Melone, F. & Singh, V.P., 2006. A real-time stage Muskingum forecasting model for a site without rating curve, Hydrol. Sci. J., 51[1], 66-82) enhanced the modeling scheme incorporating a procedure for adapting the parameter linked to lateral inflows. This last model, called STAFOM (STAge FOrecasting Model), was also extended to a two connected river branches schematization in order to improve significantly the forecasting lead-time. The STAFOM model provided satisfactory results for most of the analysed flood events observed in different river reaches in the Upper-Middle Tiber River basin in Central Italy. However, the analysis highlighted that the stage forecast should be enhanced when sudden modifications occur in the upstream and downstream hydrographs recorded in real-time. Moramarco et al. (Moramarco, T., Barbetta, S., F. Melone, F. & Singh, V.P., 2005. Relating local stage and remote discharge with significant lateral inflow, J. Hydrol. Engng ASCE, 10[1], 58-69) showed that for any flood condition at ends of a river reach, a direct proportionality between the upstream and downstream mean velocity can be found. This insight was the basis for developing the Rating Curve Model (RCM) that allows to also accommodate significant lateral inflow contributions, permitting, without using a flood routing procedure and without the need of a rating curve at a local site, to relate the local hydraulic conditions with those at a remote gauged section. Therefore, to improve the STAFOM performance mainly for highly varying flood conditions, the model has been here modified by coupling it with a procedure based on the RCM approach. Several flood events occurred along different equipped river reaches of the Upper Tiber River basin have been used as case study. Results showed that the new model, named STAFOM-RCM, apart from to improve the stage forecast accuracy in terms of error on peak stage, Nash-Sutcliffe efficiency coefficient and the coefficient of persistence, allowed to use a larger lead time thus avoiding the two-river branches cascade schematization where fluctuations in stage forecasting occur more frequently.

  1. EU pharmaceutical expenditure forecast.

    PubMed

    Urbinati, Duccio; Rémuzat, Cécile; Kornfeld, Åsa; Vataire, Anne-Lise; Cetinsoy, Laurent; Aballéa, Samuel; Mzoughi, Olfa; Toumi, Mondher

    2014-01-01

    With constant incentives for healthcare payers to contain their pharmaceutical budgets, forecasting has become critically important. Some countries have, for instance, developed pharmaceutical horizon scanning units. The objective of this project was to build a model to assess the net effect of the entrance of new patented medicinal products versus medicinal products going off-patent, with a defined forecast horizon, on selected European Union (EU) Member States' pharmaceutical budgets. This model took into account population ageing, as well as current and future country-specific pricing, reimbursement, and market access policies (the project was performed for the European Commission; see http://ec.europa.eu/health/healthcare/key_documents/index_en.htm). In order to have a representative heterogeneity of EU Member States, the following countries were selected for the analysis: France, Germany, Greece, Hungary, Poland, Portugal, and the United Kingdom. A forecasting period of 5 years (2012-2016) was chosen to assess the net pharmaceutical budget impact. A model for generics and biosimilars was developed for each country. The model estimated a separate and combined effect of the direct and indirect impacts of the patent cliff. A second model, estimating the sales development and the risk of development failure, was developed for new drugs. New drugs were reviewed individually to assess their clinical potential and translate it into commercial potential. The forecast was carried out according to three perspectives (healthcare public payer, society, and manufacturer), and several types of distribution chains (retail, hospital, and combined retail and hospital). Probabilistic and deterministic sensitivity analyses were carried out. According to the model, all countries experienced drug budget reductions except Poland (+€41 million). Savings were expected to be the highest in the United Kingdom (-€9,367 million), France (-€5,589 million), and, far behind them, Germany (-€831 million), Greece (-€808 million), Portugal (-€243 million), and Hungary (-€84 million). The main source of savings came from the cardiovascular, central nervous system, and respiratory areas and from biosimilar entries. Oncology, immunology, and inflammation, in contrast, lead to additional expenditure. The model was particularly sensitive to the time to market of branded products, generic prices, generic penetration, and the distribution of biosimilars. The results of this forecast suggested a decrease in pharmaceutical expenditure in the studied period. The model was sensitive to pharmaceutical policy decisions.

  2. EU pharmaceutical expenditure forecast

    PubMed Central

    Urbinati, Duccio; Rémuzat, Cécile; Kornfeld, Åsa; Vataire, Anne-Lise; Cetinsoy, Laurent; Aballéa, Samuel; Mzoughi, Olfa; Toumi, Mondher

    2014-01-01

    Background and Objectives With constant incentives for healthcare payers to contain their pharmaceutical budgets, forecasting has become critically important. Some countries have, for instance, developed pharmaceutical horizon scanning units. The objective of this project was to build a model to assess the net effect of the entrance of new patented medicinal products versus medicinal products going off-patent, with a defined forecast horizon, on selected European Union (EU) Member States’ pharmaceutical budgets. This model took into account population ageing, as well as current and future country-specific pricing, reimbursement, and market access policies (the project was performed for the European Commission; see http://ec.europa.eu/health/healthcare/key_documents/index_en.htm). Method In order to have a representative heterogeneity of EU Member States, the following countries were selected for the analysis: France, Germany, Greece, Hungary, Poland, Portugal, and the United Kingdom. A forecasting period of 5 years (2012–2016) was chosen to assess the net pharmaceutical budget impact. A model for generics and biosimilars was developed for each country. The model estimated a separate and combined effect of the direct and indirect impacts of the patent cliff. A second model, estimating the sales development and the risk of development failure, was developed for new drugs. New drugs were reviewed individually to assess their clinical potential and translate it into commercial potential. The forecast was carried out according to three perspectives (healthcare public payer, society, and manufacturer), and several types of distribution chains (retail, hospital, and combined retail and hospital). Probabilistic and deterministic sensitivity analyses were carried out. Results According to the model, all countries experienced drug budget reductions except Poland (+€41 million). Savings were expected to be the highest in the United Kingdom (−€9,367 million), France (−€5,589 million), and, far behind them, Germany (−€831 million), Greece (−€808 million), Portugal (−€243 million), and Hungary (−€84 million). The main source of savings came from the cardiovascular, central nervous system, and respiratory areas and from biosimilar entries. Oncology, immunology, and inflammation, in contrast, lead to additional expenditure. The model was particularly sensitive to the time to market of branded products, generic prices, generic penetration, and the distribution of biosimilars. Conclusions The results of this forecast suggested a decrease in pharmaceutical expenditure in the studied period. The model was sensitive to pharmaceutical policy decisions. PMID:27226837

  3. Development of the GEM-MACH-FireWork System: An Air Quality Model with On-line Wildfire Emissions within the Canadian Operational Air Quality Forecast System

    NASA Astrophysics Data System (ADS)

    Pavlovic, Radenko; Chen, Jack; Beaulieu, Paul-Andre; Anselmp, David; Gravel, Sylvie; Moran, Mike; Menard, Sylvain; Davignon, Didier

    2014-05-01

    A wildfire emissions processing system has been developed to incorporate near-real-time emissions from wildfires and large prescribed burns into Environment Canada's real-time GEM-MACH air quality (AQ) forecast system. Since the GEM-MACH forecast domain covers Canada and most of the U.S.A., including Alaska, fire location information is needed for both of these large countries. During AQ model runs, emissions from individual fire sources are injected into elevated model layers based on plume-rise calculations and then transport and chemistry calculations are performed. This "on the fly" approach to the insertion of the fire emissions provides flexibility and efficiency since on-line meteorology is used and computational overhead in emissions pre-processing is reduced. GEM-MACH-FireWork, an experimental wildfire version of GEM-MACH, was run in real-time mode for the summers of 2012 and 2013 in parallel with the normal operational version. 48-hour forecasts were generated every 12 hours (at 00 and 12 UTC). Noticeable improvements in the AQ forecasts for PM2.5 were seen in numerous regions where fire activity was high. Case studies evaluating model performance for specific regions and computed objective scores will be included in this presentation. Using the lessons learned from the last two summers, Environment Canada will continue to work towards the goal of incorporating near-real-time intermittent wildfire emissions into the operational air quality forecast system.

  4. Total probabilities of ensemble runoff forecasts

    NASA Astrophysics Data System (ADS)

    Olav Skøien, Jon; Bogner, Konrad; Salamon, Peter; Smith, Paul; Pappenberger, Florian

    2017-04-01

    Ensemble forecasting has a long history from meteorological modelling, as an indication of the uncertainty of the forecasts. However, it is necessary to calibrate and post-process the ensembles as the they often exhibit both bias and dispersion errors. Two of the most common methods for this are Bayesian Model Averaging (Raftery et al., 2005) and Ensemble Model Output Statistics (EMOS) (Gneiting et al., 2005). There are also methods for regionalizing these methods (Berrocal et al., 2007) and for incorporating the correlation between lead times (Hemri et al., 2013). Engeland and Steinsland Engeland and Steinsland (2014) developed a framework which can estimate post-processing parameters varying in space and time, while giving a spatially and temporally consistent output. However, their method is computationally complex for our larger number of stations, which makes it unsuitable for our purpose. Our post-processing method of the ensembles is developed in the framework of the European Flood Awareness System (EFAS - http://www.efas.eu), where we are making forecasts for whole Europe, and based on observations from around 700 catchments. As the target is flood forecasting, we are also more interested in improving the forecast skill for high-flows rather than in a good prediction of the entire flow regime. EFAS uses a combination of ensemble forecasts and deterministic forecasts from different meteorological forecasters to force a distributed hydrologic model and to compute runoff ensembles for each river pixel within the model domain. Instead of showing the mean and the variability of each forecast ensemble individually, we will now post-process all model outputs to estimate the total probability, the post-processed mean and uncertainty of all ensembles. The post-processing parameters are first calibrated for each calibration location, but we are adding a spatial penalty in the calibration process to force a spatial correlation of the parameters. The penalty takes distance, stream-connectivity and size of the catchment areas into account. This can in some cases have a slight negative impact on the calibration error, but avoids large differences between parameters of nearby locations, whether stream connected or not. The spatial calibration also makes it easier to interpolate the post-processing parameters to uncalibrated locations. We also look into different methods for handling the non-normal distributions of runoff data and the effect of different data transformations on forecasts skills in general and for floods in particular. Berrocal, V. J., Raftery, A. E. and Gneiting, T.: Combining Spatial Statistical and Ensemble Information in Probabilistic Weather Forecasts, Mon. Weather Rev., 135(4), 1386-1402, doi:10.1175/MWR3341.1, 2007. Engeland, K. and Steinsland, I.: Probabilistic postprocessing models for flow forecasts for a system of catchments and several lead times, Water Resour. Res., 50(1), 182-197, doi:10.1002/2012WR012757, 2014. Gneiting, T., Raftery, A. E., Westveld, A. H. and Goldman, T.: Calibrated Probabilistic Forecasting Using Ensemble Model Output Statistics and Minimum CRPS Estimation, Mon. Weather Rev., 133(5), 1098-1118, doi:10.1175/MWR2904.1, 2005. Hemri, S., Fundel, F. and Zappa, M.: Simultaneous calibration of ensemble river flow predictions over an entire range of lead times, Water Resour. Res., 49(10), 6744-6755, doi:10.1002/wrcr.20542, 2013. Raftery, A. E., Gneiting, T., Balabdaoui, F. and Polakowski, M.: Using Bayesian Model Averaging to Calibrate Forecast Ensembles, Mon. Weather Rev., 133(5), 1155-1174, doi:10.1175/MWR2906.1, 2005.

  5. Developing a Universal Navy Uniform Adoption Model for Use in Forecasting

    DTIC Science & Technology

    2015-12-01

    manpower , and allowance data in order to build the model. Once chosen, the best candidate model will be validated against alternate sales data from a...inventory shortage or excess inventory holding costs caused by overestimation. 14. SUBJECT TERMS demand management, demand forecasting, Defense...software will be used to identify relationships between uniform sales, time, manpower , and allowance data in order to build the model. Once chosen, the

  6. Statistical models for fever forecasting based on advanced body temperature monitoring.

    PubMed

    Jordan, Jorge; Miro-Martinez, Pau; Vargas, Borja; Varela-Entrecanales, Manuel; Cuesta-Frau, David

    2017-02-01

    Body temperature monitoring provides health carers with key clinical information about the physiological status of patients. Temperature readings are taken periodically to detect febrile episodes and consequently implement the appropriate medical countermeasures. However, fever is often difficult to assess at early stages, or remains undetected until the next reading, probably a few hours later. The objective of this article is to develop a statistical model to forecast fever before a temperature threshold is exceeded to improve the therapeutic approach to the subjects involved. To this end, temperature series of 9 patients admitted to a general internal medicine ward were obtained with a continuous monitoring Holter device, collecting measurements of peripheral and core temperature once per minute. These series were used to develop different statistical models that could quantify the probability of having a fever spike in the following 60 minutes. A validation series was collected to assess the accuracy of the models. Finally, the results were compared with the analysis of some series by experienced clinicians. Two different models were developed: a logistic regression model and a linear discrimination analysis model. Both of them exhibited a fever peak forecasting accuracy greater than 84%. When compared with experts' assessment, both models identified 35 (97.2%) of 36 fever spikes. The models proposed are highly accurate in forecasting the appearance of fever spikes within a short period in patients with suspected or confirmed febrile-related illnesses. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. A Diagnostics Tool to detect ensemble forecast system anomaly and guide operational decisions

    NASA Astrophysics Data System (ADS)

    Park, G. H.; Srivastava, A.; Shrestha, E.; Thiemann, M.; Day, G. N.; Draijer, S.

    2017-12-01

    The hydrologic community is moving toward using ensemble forecasts to take uncertainty into account during the decision-making process. The New York City Department of Environmental Protection (DEP) implements several types of ensemble forecasts in their decision-making process: ensemble products for a statistical model (Hirsch and enhanced Hirsch); the National Weather Service (NWS) Advanced Hydrologic Prediction Service (AHPS) forecasts based on the classical Ensemble Streamflow Prediction (ESP) technique; and the new NWS Hydrologic Ensemble Forecasting Service (HEFS) forecasts. To remove structural error and apply the forecasts to additional forecast points, the DEP post processes both the AHPS and the HEFS forecasts. These ensemble forecasts provide mass quantities of complex data, and drawing conclusions from these forecasts is time-consuming and difficult. The complexity of these forecasts also makes it difficult to identify system failures resulting from poor data, missing forecasts, and server breakdowns. To address these issues, we developed a diagnostic tool that summarizes ensemble forecasts and provides additional information such as historical forecast statistics, forecast skill, and model forcing statistics. This additional information highlights the key information that enables operators to evaluate the forecast in real-time, dynamically interact with the data, and review additional statistics, if needed, to make better decisions. We used Bokeh, a Python interactive visualization library, and a multi-database management system to create this interactive tool. This tool compiles and stores data into HTML pages that allows operators to readily analyze the data with built-in user interaction features. This paper will present a brief description of the ensemble forecasts, forecast verification results, and the intended applications for the diagnostic tool.

  8. Chesapeake Bay Forecast System: Oxygen Prediction for the Sustainable Ecosystem Management

    NASA Astrophysics Data System (ADS)

    Mathukumalli, B.; Long, W.; Zhang, X.; Wood, R.; Murtugudde, R. G.

    2010-12-01

    The Chesapeake Bay Forecast System (CBFS) is a flexible, end-to-end expert prediction tool for decision makers that will provide customizable, user-specified predictions and projections of the region’s climate, air and water quality, local chemistry, and ecosystems at days to decades. As a part of CBFS, the long-term water quality data were collected and assembled to develop ecological models for the sustainable management of the Chesapeake Bay. Cultural eutrophication depletes oxygen levels in this ecosystem particularly in summer which has several negative implications on the structure and function of ecosystem. In order to understand dynamics and prediction of spatially-explicit oxygen levels in the Bay, an empirical process based ecological model is developed with long-term control variables (water temperature, salinity, nitrogen and phosphorus). Statistical validation methods were employed to demonstrate usability of predictions for management purposes and the predicted oxygen levels are quite faithful to observations. The predicted oxygen values and other physical outputs from downscaling of regional weather and climate predictions, or forecasts from hydrodynamic models can be used to forecast various ecological components. Such forecasts would be useful for both recreational and commercial users of the bay (for example, bass fishing). Furthermore, this work can also be used to predict extent of hypoxia/anoxia not only from anthropogenic nutrient pollution, but also from global warming. Some hindcasts and forecasts are discussed along with the ongoing efforts at a mechanistic ecosystem model to provide prognostic oxygen predictions and projections and upper trophic modeling using an energetics approach.

  9. Application of global weather and climate model output to the design and operation of wind-energy systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curry, Judith

    This project addressed the challenge of providing weather and climate information to support the operation, management and planning for wind-energy systems. The need for forecast information is extending to longer projection windows with increasing penetration of wind power into the grid and also with diminishing reserve margins to meet peak loads during significant weather events. Maintenance planning and natural gas trading is being influenced increasingly by anticipation of wind generation on timescales of weeks to months. Future scenarios on decadal time scales are needed to support assessment of wind farm siting, government planning, long-term wind purchase agreements and the regulatorymore » environment. The challenge of making wind forecasts on these longer time scales is associated with a wide range of uncertainties in general circulation and regional climate models that make them unsuitable for direct use in the design and planning of wind-energy systems. To address this challenge, CFAN has developed a hybrid statistical/dynamical forecasting scheme for delivering probabilistic forecasts on time scales from one day to seven months using what is arguably the best forecasting system in the world (European Centre for Medium Range Weather Forecasting, ECMWF). The project also provided a framework to assess future wind power through developing scenarios of interannual to decadal climate variability and change. The Phase II research has successfully developed an operational wind power forecasting system for the U.S., which is being extended to Europe and possibly Asia.« less

  10. A Case Study of the Impact of AIRS Temperature Retrievals on Numerical Weather Prediction

    NASA Technical Reports Server (NTRS)

    Reale, O.; Atlas, R.; Jusem, J. C.

    2004-01-01

    Large errors in numerical weather prediction are often associated with explosive cyclogenesis. Most studes focus on the under-forecasting error, i.e. cases of rapidly developing cyclones which are poorly predicted in numerical models. However, the over-forecasting error (i.e., to predict an explosively developing cyclone which does not occur in reality) is a very common error that severely impacts the forecasting skill of all models and may also present economic costs if associated with operational forecasting. Unnecessary precautions taken by marine activities can result in severe economic loss. Moreover, frequent occurrence of over-forecasting can undermine the reliance on operational weather forecasting. Therefore, it is important to understand and reduce the prdctions of extreme weather associated with explosive cyclones which do not actually develop. In this study we choose a very prominent case of over-forecasting error in the northwestern Pacific. A 960 hPa cyclone develops in less than 24 hour in the 5-day forecast, with a deepening rate of about 30 hPa in one day. The cyclone is not versed in the analyses and is thus a case of severe over-forecasting. By assimilating AIRS data, the error is largely eliminated. By following the propagation of the anomaly that generates the spurious cyclone, it is found that a small mid-tropospheric geopotential height negative anomaly over the northern part of the Indian subcontinent in the initial conditions, propagates westward, is amplified by orography, and generates a very intense jet streak in the subtropical jet stream, with consequent explosive cyclogenesis over the Pacific. The AIRS assimilation eliminates this anomaly that may have been caused by erroneous upper-air data, and represents the jet stream more correctly. The energy associated with the jet is distributed over a much broader area and as a consequence a multiple, but much more moderate cyclogenesis is observed.

  11. Forecasting Influenza Outbreaks in Boroughs and Neighborhoods of New York City.

    PubMed

    Yang, Wan; Olson, Donald R; Shaman, Jeffrey

    2016-11-01

    The ideal spatial scale, or granularity, at which infectious disease incidence should be monitored and forecast has been little explored. By identifying the optimal granularity for a given disease and host population, and matching surveillance and prediction efforts to this scale, response to emergent and recurrent outbreaks can be improved. Here we explore how granularity and representation of spatial structure affect influenza forecast accuracy within New York City. We develop network models at the borough and neighborhood levels, and use them in conjunction with surveillance data and a data assimilation method to forecast influenza activity. These forecasts are compared to an alternate system that predicts influenza for each borough or neighborhood in isolation. At the borough scale, influenza epidemics are highly synchronous despite substantial differences in intensity, and inclusion of network connectivity among boroughs generally improves forecast accuracy. At the neighborhood scale, we observe much greater spatial heterogeneity among influenza outbreaks including substantial differences in local outbreak timing and structure; however, inclusion of the network model structure generally degrades forecast accuracy. One notable exception is that local outbreak onset, particularly when signal is modest, is better predicted with the network model. These findings suggest that observation and forecast at sub-municipal scales within New York City provides richer, more discriminant information on influenza incidence, particularly at the neighborhood scale where greater heterogeneity exists, and that the spatial spread of influenza among localities can be forecast.

  12. Spectral Analysis of Forecast Error Investigated with an Observing System Simulation Experiment

    NASA Technical Reports Server (NTRS)

    Prive, N. C.; Errico, Ronald M.

    2015-01-01

    The spectra of analysis and forecast error are examined using the observing system simulation experiment (OSSE) framework developed at the National Aeronautics and Space Administration Global Modeling and Assimilation Office (NASAGMAO). A global numerical weather prediction model, the Global Earth Observing System version 5 (GEOS-5) with Gridpoint Statistical Interpolation (GSI) data assimilation, is cycled for two months with once-daily forecasts to 336 hours to generate a control case. Verification of forecast errors using the Nature Run as truth is compared with verification of forecast errors using self-analysis; significant underestimation of forecast errors is seen using self-analysis verification for up to 48 hours. Likewise, self analysis verification significantly overestimates the error growth rates of the early forecast, as well as mischaracterizing the spatial scales at which the strongest growth occurs. The Nature Run-verified error variances exhibit a complicated progression of growth, particularly for low wave number errors. In a second experiment, cycling of the model and data assimilation over the same period is repeated, but using synthetic observations with different explicitly added observation errors having the same error variances as the control experiment, thus creating a different realization of the control. The forecast errors of the two experiments become more correlated during the early forecast period, with correlations increasing for up to 72 hours before beginning to decrease.

  13. Seasonal forecasting of discharge for the Raccoon River, Iowa

    NASA Astrophysics Data System (ADS)

    Slater, Louise; Villarini, Gabriele; Bradley, Allen; Vecchi, Gabriel

    2016-04-01

    The state of Iowa (central United States) is regularly afflicted by severe natural hazards such as the 2008/2013 floods and the 2012 drought. To improve preparedness for these catastrophic events and allow Iowans to make more informed decisions about the most suitable water management strategies, we have developed a framework for medium to long range probabilistic seasonal streamflow forecasting for the Raccoon River at Van Meter, a 8900-km2 catchment located in central-western Iowa. Our flow forecasts use statistical models to predict seasonal discharge for low to high flows, with lead forecasting times ranging from one to ten months. Historical measurements of daily discharge are obtained from the U.S. Geological Survey (USGS) at the Van Meter stream gage, and used to compute quantile time series from minimum to maximum seasonal flow. The model is forced with basin-averaged total seasonal precipitation records from the PRISM Climate Group and annual row crop production acreage from the U.S. Department of Agriculture's National Agricultural Statistics Services database. For the forecasts, we use corn and soybean production from the previous year (persistence forecast) as a proxy for the impacts of agricultural practices on streamflow. The monthly precipitation forecasts are provided by eight Global Climate Models (GCMs) from the North American Multi-Model Ensemble (NMME), with lead times ranging from 0.5 to 11.5 months, and a resolution of 1 decimal degree. Additionally, precipitation from the month preceding each season is used to characterize antecedent soil moisture conditions. The accuracy of our modelled (1927-2015) and forecasted (2001-2015) discharge values is assessed by comparison with the observed USGS data. We explore the sensitivity of forecast skill over the full range of lead times, flow quantiles, forecast seasons, and with each GCM. Forecast skill is also examined using different formulations of the statistical models, as well as NMME forecast weighting procedures based on the computed potential skill (historical forecast accuracy) of the different GCMs. We find that the models describe the year-to-year variability in streamflow accurately, as well as the overall tendency towards increasing (and more variable) discharge over time. Surprisingly, forecast skill does not decrease markedly with lead time, and high flows tend to be well predicted, suggesting that these forecasts may have considerable practical applications. Further, the seasonal flow forecast accuracy is substantially improved by weighting the contribution of individual GCMs to the forecasts, and also by the inclusion of antecedent precipitation. Our results can provide critical information for adaptation strategies aiming to mitigate the costs and disruptions arising from flood and drought conditions, and allow us to determine how far in advance skillful forecasts can be issued. The availability of these discharge forecasts would have major societal and economic benefits for hydrology and water resources management, agriculture, disaster forecasts and prevention, energy, finance and insurance, food security, policy-making and public authorities, and transportation.

  14. Climate, weather, space weather: model development in an operational context

    NASA Astrophysics Data System (ADS)

    Folini, Doris

    2018-05-01

    Aspects of operational modeling for climate, weather, and space weather forecasts are contrasted, with a particular focus on the somewhat conflicting demands of "operational stability" versus "dynamic development" of the involved models. Some common key elements are identified, indicating potential for fruitful exchange across communities. Operational model development is compelling, driven by factors that broadly fall into four categories: model skill, basic physics, advances in computer architecture, and new aspects to be covered, from costumer needs over physics to observational data. Evaluation of model skill as part of the operational chain goes beyond an automated skill score. Permanent interaction between "pure research" and "operational forecast" people is beneficial to both sides. This includes joint model development projects, although ultimate responsibility for the operational code remains with the forecast provider. The pace of model development reflects operational lead times. The points are illustrated with selected examples, many of which reflect the author's background and personal contacts, notably with the Swiss Weather Service and the Max Planck Institute for Meteorology, Hamburg, Germany. In view of current and future challenges, large collaborations covering a range of expertise are a must - within and across climate, weather, and space weather. To profit from and cope with the rapid progress of computer architectures, supercompute centers must form part of the team.

  15. Development and implementation of a remote-sensing and in situ data-assimilating version of CMAQ for operational PM2.5 forecasting. Part 1: MODIS aerosol optical depth (AOD) data-assimilation design and testing.

    PubMed

    McHenry, John N; Vukovich, Jeffery M; Hsu, N Christina

    2015-12-01

    This two-part paper reports on the development, implementation, and improvement of a version of the Community Multi-Scale Air Quality (CMAQ) model that assimilates real-time remotely-sensed aerosol optical depth (AOD) information and ground-based PM2.5 monitor data in routine prognostic application. The model is being used by operational air quality forecasters to help guide their daily issuance of state or local-agency-based air quality alerts (e.g. action days, health advisories). Part 1 describes the development and testing of the initial assimilation capability, which was implemented offline in partnership with NASA and the Visibility Improvement State and Tribal Association of the Southeast (VISTAS) Regional Planning Organization (RPO). In the initial effort, MODIS-derived aerosol optical depth (AOD) data are input into a variational data-assimilation scheme using both the traditional Dark Target and relatively new "Deep Blue" retrieval methods. Evaluation of the developmental offline version, reported in Part 1 here, showed sufficient promise to implement the capability within the online, prognostic operational model described in Part 2. In Part 2, the addition of real-time surface PM2.5 monitoring data to improve the assimilation and an initial evaluation of the prognostic modeling system across the continental United States (CONUS) is presented. Air quality forecasts are now routinely used to understand when air pollution may reach unhealthy levels. For the first time, an operational air quality forecast model that includes the assimilation of remotely-sensed aerosol optical depth and ground based PM2.5 observations is being used. The assimilation enables quantifiable improvements in model forecast skill, which improves confidence in the accuracy of the officially-issued forecasts. This helps air quality stakeholders be more effective in taking mitigating actions (reducing power consumption, ride-sharing, etc.) and avoiding exposures that could otherwise result in more serious air quality episodes or more deleterious health effects.

  16. DEFENDER: Detecting and Forecasting Epidemics Using Novel Data-Analytics for Enhanced Response

    PubMed Central

    Simmie, Donal; Hankin, Chris; Gillard, Joseph

    2016-01-01

    In recent years social and news media have increasingly been used to explain patterns in disease activity and progression. Social media data, principally from the Twitter network, has been shown to correlate well with official disease case counts. This fact has been exploited to provide advance warning of outbreak detection, forecasting of disease levels and the ability to predict the likelihood of individuals developing symptoms. In this paper we introduce DEFENDER, a software system that integrates data from social and news media and incorporates algorithms for outbreak detection, situational awareness and forecasting. As part of this system we have developed a technique for creating a location network for any country or region based purely on Twitter data. We also present a disease nowcasting (forecasting the current but still unknown level) approach which leverages counts from multiple symptoms, which was found to improve the nowcasting accuracy by 37 percent over a model that used only previous case data. Finally we attempt to forecast future levels of symptom activity based on observed user movement on Twitter, finding a moderate gain of 5 percent over a time series forecasting model. PMID:27192059

  17. Development of a Clinical Forecasting Model to Predict Comorbid Depression Among Diabetes Patients and an Application in Depression Screening Policy Making.

    PubMed

    Jin, Haomiao; Wu, Shinyi; Di Capua, Paul

    2015-09-03

    Depression is a common but often undiagnosed comorbid condition of people with diabetes. Mass screening can detect undiagnosed depression but may require significant resources and time. The objectives of this study were 1) to develop a clinical forecasting model that predicts comorbid depression among patients with diabetes and 2) to evaluate a model-based screening policy that saves resources and time by screening only patients considered as depressed by the clinical forecasting model. We trained and validated 4 machine learning models by using data from 2 safety-net clinical trials; we chose the one with the best overall predictive ability as the ultimate model. We compared model-based policy with alternative policies, including mass screening and partial screening, on the basis of depression history or diabetes severity. Logistic regression had the best overall predictive ability of the 4 models evaluated and was chosen as the ultimate forecasting model. Compared with mass screening, the model-based policy can save approximately 50% to 60% of provider resources and time but will miss identifying about 30% of patients with depression. Partial-screening policy based on depression history alone found only a low rate of depression. Two other heuristic-based partial screening policies identified depression at rates similar to those of the model-based policy but cost more in resources and time. The depression prediction model developed in this study has compelling predictive ability. By adopting the model-based depression screening policy, health care providers can use their resources and time better and increase their efficiency in managing their patients with depression.

  18. Drought forecasting in Luanhe River basin involving climatic indices

    NASA Astrophysics Data System (ADS)

    Ren, Weinan; Wang, Yixuan; Li, Jianzhu; Feng, Ping; Smith, Ronald J.

    2017-11-01

    Drought is regarded as one of the most severe natural disasters globally. This is especially the case in Tianjin City, Northern China, where drought can affect economic development and people's livelihoods. Drought forecasting, the basis of drought management, is an important mitigation strategy. In this paper, we evolve a probabilistic forecasting model, which forecasts transition probabilities from a current Standardized Precipitation Index (SPI) value to a future SPI class, based on conditional distribution of multivariate normal distribution to involve two large-scale climatic indices at the same time, and apply the forecasting model to 26 rain gauges in the Luanhe River basin in North China. The establishment of the model and the derivation of the SPI are based on the hypothesis of aggregated monthly precipitation that is normally distributed. Pearson correlation and Shapiro-Wilk normality tests are used to select appropriate SPI time scale and large-scale climatic indices. Findings indicated that longer-term aggregated monthly precipitation, in general, was more likely to be considered normally distributed and forecasting models should be applied to each gauge, respectively, rather than to the whole basin. Taking Liying Gauge as an example, we illustrate the impact of the SPI time scale and lead time on transition probabilities. Then, the controlled climatic indices of every gauge are selected by Pearson correlation test and the multivariate normality of SPI, corresponding climatic indices for current month and SPI 1, 2, and 3 months later are demonstrated using Shapiro-Wilk normality test. Subsequently, we illustrate the impact of large-scale oceanic-atmospheric circulation patterns on transition probabilities. Finally, we use a score method to evaluate and compare the performance of the three forecasting models and compare them with two traditional models which forecast transition probabilities from a current to a future SPI class. The results show that the three proposed models outperform the two traditional models and involving large-scale climatic indices can improve the forecasting accuracy.

  19. Cardiac catheterization laboratory inpatient forecast tool: a prospective evaluation

    PubMed Central

    Flanagan, Eleni; Siddiqui, Sauleh; Appelbaum, Jeff; Kasper, Edward K; Levin, Scott

    2016-01-01

    Objective To develop and prospectively evaluate a web-based tool that forecasts the daily bed need for admissions from the cardiac catheterization laboratory using routinely available clinical data within electronic medical records (EMRs). Methods The forecast model was derived using a 13-month retrospective cohort of 6384 catheterization patients. Predictor variables such as demographics, scheduled procedures, and clinical indicators mined from free-text notes were input to a multivariable logistic regression model that predicted the probability of inpatient admission. The model was embedded into a web-based application connected to the local EMR system and used to support bed management decisions. After implementation, the tool was prospectively evaluated for accuracy on a 13-month test cohort of 7029 catheterization patients. Results The forecast model predicted admission with an area under the receiver operating characteristic curve of 0.722. Daily aggregate forecasts were accurate to within one bed for 70.3% of days and within three beds for 97.5% of days during the prospective evaluation period. The web-based application housing the forecast model was used by cardiology providers in practice to estimate daily admissions from the catheterization laboratory. Discussion The forecast model identified older age, male gender, invasive procedures, coronary artery bypass grafts, and a history of congestive heart failure as qualities indicating a patient was at increased risk for admission. Diagnostic procedures and less acute clinical indicators decreased patients’ risk of admission. Despite the site-specific limitations of the model, these findings were supported by the literature. Conclusion Data-driven predictive analytics may be used to accurately forecast daily demand for inpatient beds for cardiac catheterization patients. Connecting these analytics to EMR data sources has the potential to provide advanced operational decision support. PMID:26342217

  20. Quantifying Uncertainty in Flood Inundation Mapping Using Streamflow Ensembles and Multiple Hydraulic Modeling Techniques

    NASA Astrophysics Data System (ADS)

    Hosseiny, S. M. H.; Zarzar, C.; Gomez, M.; Siddique, R.; Smith, V.; Mejia, A.; Demir, I.

    2016-12-01

    The National Water Model (NWM) provides a platform for operationalize nationwide flood inundation forecasting and mapping. The ability to model flood inundation on a national scale will provide invaluable information to decision makers and local emergency officials. Often, forecast products use deterministic model output to provide a visual representation of a single inundation scenario, which is subject to uncertainty from various sources. While this provides a straightforward representation of the potential inundation, the inherent uncertainty associated with the model output should be considered to optimize this tool for decision making support. The goal of this study is to produce ensembles of future flood inundation conditions (i.e. extent, depth, and velocity) to spatially quantify and visually assess uncertainties associated with the predicted flood inundation maps. The setting for this study is located in a highly urbanized watershed along the Darby Creek in Pennsylvania. A forecasting framework coupling the NWM with multiple hydraulic models was developed to produce a suite ensembles of future flood inundation predictions. Time lagged ensembles from the NWM short range forecasts were used to account for uncertainty associated with the hydrologic forecasts. The forecasts from the NWM were input to iRIC and HEC-RAS two-dimensional software packages, from which water extent, depth, and flow velocity were output. Quantifying the agreement between output ensembles for each forecast grid provided the uncertainty metrics for predicted flood water inundation extent, depth, and flow velocity. For visualization, a series of flood maps that display flood extent, water depth, and flow velocity along with the underlying uncertainty associated with each of the forecasted variables were produced. The results from this study demonstrate the potential to incorporate and visualize model uncertainties in flood inundation maps in order to identify the high flood risk zones.

  1. Towards the intrahour forecasting of direct normal irradiance using sky-imaging data.

    PubMed

    Nou, Julien; Chauvin, Rémi; Eynard, Julien; Thil, Stéphane; Grieu, Stéphane

    2018-04-01

    Increasing power plant efficiency through improved operation is key in the development of Concentrating Solar Power (CSP) technologies. To this end, one of the most challenging topics remains accurately forecasting the solar resource at a short-term horizon. Indeed, in CSP plants, production is directly impacted by both the availability and variability of the solar resource and, more specifically, by Direct Normal Irradiance (DNI). The present paper deals with a new approach to the intrahour forecasting (the forecast horizon [Formula: see text] is up to [Formula: see text] ahead) of DNI, taking advantage of the fact that this quantity can be split into two terms, i.e. clear-sky DNI and the clear sky index. Clear-sky DNI is forecasted from DNI measurements, using an empirical model (Ineichen and Perez, 2002) combined with a persistence of atmospheric turbidity. Moreover, in the framework of the CSPIMP (Concentrating Solar Power plant efficiency IMProvement) research project, PROMES-CNRS has developed a sky imager able to provide High Dynamic Range (HDR) images. So, regarding the clear-sky index, it is forecasted from sky-imaging data, using an Adaptive Network-based Fuzzy Inference System (ANFIS). A hybrid algorithm that takes inspiration from the classification algorithm proposed by Ghonima et al. (2012) when clear-sky anisotropy is known and from the hybrid thresholding algorithm proposed by Li et al. (2011) in the opposite case has been developed to the detection of clouds. Performance is evaluated via a comparative study in which persistence models - either a persistence of DNI or a persistence of the clear-sky index - are included. Preliminary results highlight that the proposed approach has the potential to outperform these models (both persistence models achieve similar performance) in terms of forecasting accuracy: over the test data used, RMSE (the Root Mean Square Error) is reduced of about [Formula: see text], with [Formula: see text], and [Formula: see text], with [Formula: see text].

  2. Optimization modeling of U.S. renewable electricity deployment using local input variables

    NASA Astrophysics Data System (ADS)

    Bernstein, Adam

    For the past five years, state Renewable Portfolio Standard (RPS) laws have been a primary driver of renewable electricity (RE) deployments in the United States. However, four key trends currently developing: (i) lower natural gas prices, (ii) slower growth in electricity demand, (iii) challenges of system balancing intermittent RE within the U.S. transmission regions, and (iv) fewer economical sites for RE development, may limit the efficacy of RPS laws over the remainder of the current RPS statutes' lifetime. An outsized proportion of U.S. RE build occurs in a small number of favorable locations, increasing the effects of these variables on marginal RE capacity additions. A state-by-state analysis is necessary to study the U.S. electric sector and to generate technology specific generation forecasts. We used LP optimization modeling similar to the National Renewable Energy Laboratory (NREL) Renewable Energy Development System (ReEDS) to forecast RE deployment across the 8 U.S. states with the largest electricity load, and found state-level RE projections to Year 2031 significantly lower than thoseimplied in the Energy Information Administration (EIA) 2013 Annual Energy Outlook forecast. Additionally, the majority of states do not achieve their RPS targets in our forecast. Combined with the tendency of prior research and RE forecasts to focus on larger national and global scale models, we posit that further bottom-up state and local analysis is needed for more accurate policy assessment, forecasting, and ongoing revision of variables as parameter values evolve through time. Current optimization software eliminates much of the need for algorithm coding and programming, allowing for rapid model construction and updating across many customized state and local RE parameters. Further, our results can be tested against the empirical outcomes that will be observed over the coming years, and the forecast deviation from the actuals can be attributed to discrete parameter variances.

  3. Ensemble Streamflow Forecast Improvements in NYC's Operations Support Tool

    NASA Astrophysics Data System (ADS)

    Wang, L.; Weiss, W. J.; Porter, J.; Schaake, J. C.; Day, G. N.; Sheer, D. P.

    2013-12-01

    Like most other water supply utilities, New York City's Department of Environmental Protection (DEP) has operational challenges associated with drought and wet weather events. During drought conditions, DEP must maintain water supply reliability to 9 million customers as well as meet environmental release requirements downstream of its reservoirs. During and after wet weather events, DEP must maintain turbidity compliance in its unfiltered Catskill and Delaware reservoir systems and minimize spills to mitigate downstream flooding. Proactive reservoir management - such as release restrictions to prepare for a drought or preventative drawdown in advance of a large storm - can alleviate negative impacts associated with extreme events. It is important for water managers to understand the risks associated with proactive operations so unintended consequences such as endangering water supply reliability with excessive drawdown prior to a storm event are minimized. Probabilistic hydrologic forecasts are a critical tool in quantifying these risks and allow water managers to make more informed operational decisions. DEP has recently completed development of an Operations Support Tool (OST) that integrates ensemble streamflow forecasts, real-time observations, and a reservoir system operations model into a user-friendly graphical interface that allows its water managers to take robust and defensible proactive measures in the face of challenging system conditions. Since initial development of OST was first presented at the 2011 AGU Fall Meeting, significant improvements have been made to the forecast system. First, the monthly AR1 forecasts ('Hirsch method') were upgraded with a generalized linear model (GLM) utilizing historical daily correlations ('Extended Hirsch method' or 'eHirsch'). The development of eHirsch forecasts improved predictive skill over the Hirsch method in the first week to a month from the forecast date and produced more realistic hydrographs on the tail end of high flow periods. These improvements allowed DEP to more effectively manage water quality control and spill mitigation operations immediately after storm events. Later on, post-processed hydrologic forecasts from the National Weather Service (NWS) including the Advanced Hydrologic Prediction Service (AHPS) and the Hydrologic Ensemble Forecast Service (HEFS) were implemented into OST. These forecasts further increased the predictive skill over the initial statistical models as current basin conditions (e.g. soil moisture, snowpack) and meteorological forecasts (with HEFS) are now explicitly represented. With the post-processed HEFS forecasts, DEP may now truly quantify impacts associated with wet weather events on the horizon, rather than relying on statistical representations of current hydrologic trends. This presentation will highlight the benefits of the improved forecasts using examples from actual system operations.

  4. Establishing NWP capabilities in African Small Island States (SIDs)

    NASA Astrophysics Data System (ADS)

    Rögnvaldsson, Ólafur

    2017-04-01

    Íslenskar orkurannsóknir (ÍSOR), in collaboration with Belgingur Ltd. and the United Nations Economic Commission for Africa (UNECA) signed a Letter of Agreement in 2015 regarding collaboration in the "Establishing Operational Capacity for Building, Deploying and Using Numerical Weather and Seasonal Prediction Systems in Small Island States in Africa (SIDs)" project. The specific objectives of the collaboration were the following: - Build capacity of National Meteorological and Hydrology Services (NMHS) staff on the use of the WRF atmospheric model for weather and seasonal forecasting, interpretation of model results, and the use of observations to verify and improve model simulations. - Establish a platform for integrating short to medium range weather forecasts, as well as seasonal forecasts, into already existing infrastructure at NMHS and Regional Climate Centres. - Improve understanding of existing model results and forecast verification, for improving decision-making on the time scale of days to weeks. To meet these challenges the operational Weather On Demand (WOD) forecasting system, developed by Belgingur, is being installed in a number of SIDs countries (Cabo Verde, Guinea-Bissau, and Seychelles), as well as being deployed for the Pan-Africa region, with forecasts being disseminated to collaborating NMHSs.

  5. Comparison of ensemble post-processing approaches, based on empirical and dynamical error modelisation of rainfall-runoff model forecasts

    NASA Astrophysics Data System (ADS)

    Chardon, J.; Mathevet, T.; Le Lay, M.; Gailhard, J.

    2012-04-01

    In the context of a national energy company (EDF : Electricité de France), hydro-meteorological forecasts are necessary to ensure safety and security of installations, meet environmental standards and improve water ressources management and decision making. Hydrological ensemble forecasts allow a better representation of meteorological and hydrological forecasts uncertainties and improve human expertise of hydrological forecasts, which is essential to synthesize available informations, coming from different meteorological and hydrological models and human experience. An operational hydrological ensemble forecasting chain has been developed at EDF since 2008 and is being used since 2010 on more than 30 watersheds in France. This ensemble forecasting chain is characterized ensemble pre-processing (rainfall and temperature) and post-processing (streamflow), where a large human expertise is solicited. The aim of this paper is to compare 2 hydrological ensemble post-processing methods developed at EDF in order improve ensemble forecasts reliability (similar to Monatanari &Brath, 2004; Schaefli et al., 2007). The aim of the post-processing methods is to dress hydrological ensemble forecasts with hydrological model uncertainties, based on perfect forecasts. The first method (called empirical approach) is based on a statistical modelisation of empirical error of perfect forecasts, by streamflow sub-samples of quantile class and lead-time. The second method (called dynamical approach) is based on streamflow sub-samples of quantile class and streamflow variation, and lead-time. On a set of 20 watersheds used for operational forecasts, results show that both approaches are necessary to ensure a good post-processing of hydrological ensemble, allowing a good improvement of reliability, skill and sharpness of ensemble forecasts. The comparison of the empirical and dynamical approaches shows the limits of the empirical approach which is not able to take into account hydrological dynamic and processes, i. e. sample heterogeneity. For a same streamflow range corresponds different processes such as rising limbs or recession, where uncertainties are different. The dynamical approach improves reliability, skills and sharpness of forecasts and globally reduces confidence intervals width. When compared in details, the dynamical approach allows a noticeable reduction of confidence intervals during recessions where uncertainty is relatively lower and a slight increase of confidence intervals during rising limbs or snowmelt where uncertainty is greater. The dynamic approach, validated by forecaster's experience that considered the empirical approach not discriminative enough, improved forecaster's confidence and communication of uncertainties. Montanari, A. and Brath, A., (2004). A stochastic approach for assessing the uncertainty of rainfall-runoff simulations. Water Resources Research, 40, W01106, doi:10.1029/2003WR002540. Schaefli, B., Balin Talamba, D. and Musy, A., (2007). Quantifying hydrological modeling errors through a mixture of normal distributions. Journal of Hydrology, 332, 303-315.

  6. Characterizing Time Series Data Diversity for Wind Forecasting: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodge, Brian S; Chartan, Erol Kevin; Feng, Cong

    Wind forecasting plays an important role in integrating variable and uncertain wind power into the power grid. Various forecasting models have been developed to improve the forecasting accuracy. However, it is challenging to accurately compare the true forecasting performances from different methods and forecasters due to the lack of diversity in forecasting test datasets. This paper proposes a time series characteristic analysis approach to visualize and quantify wind time series diversity. The developed method first calculates six time series characteristic indices from various perspectives. Then the principal component analysis is performed to reduce the data dimension while preserving the importantmore » information. The diversity of the time series dataset is visualized by the geometric distribution of the newly constructed principal component space. The volume of the 3-dimensional (3D) convex polytope (or the length of 1D number axis, or the area of the 2D convex polygon) is used to quantify the time series data diversity. The method is tested with five datasets with various degrees of diversity.« less

  7. Road safety forecasts in five European countries using structural time series models.

    PubMed

    Antoniou, Constantinos; Papadimitriou, Eleonora; Yannis, George

    2014-01-01

    Modeling road safety development is a complex task and needs to consider both the quantifiable impact of specific parameters as well as the underlying trends that cannot always be measured or observed. The objective of this research is to apply structural time series models for obtaining reliable medium- to long-term forecasts of road traffic fatality risk using data from 5 countries with different characteristics from all over Europe (Cyprus, Greece, Hungary, Norway, and Switzerland). Two structural time series models are considered: (1) the local linear trend model and the (2) latent risk time series model. Furthermore, a structured decision tree for the selection of the applicable model for each situation (developed within the Road Safety Data, Collection, Transfer and Analysis [DaCoTA] research project, cofunded by the European Commission) is outlined. First, the fatality and exposure data that are used for the development of the models are presented and explored. Then, the modeling process is presented, including the model selection process, introduction of intervention variables, and development of mobility scenarios. The forecasts using the developed models appear to be realistic and within acceptable confidence intervals. The proposed methodology is proved to be very efficient for handling different cases of data availability and quality, providing an appropriate alternative from the family of structural time series models in each country. A concluding section providing perspectives and directions for future research is presented.

  8. Validating induced seismicity forecast models—Induced Seismicity Test Bench

    NASA Astrophysics Data System (ADS)

    Király-Proag, Eszter; Zechar, J. Douglas; Gischig, Valentin; Wiemer, Stefan; Karvounis, Dimitrios; Doetsch, Joseph

    2016-08-01

    Induced earthquakes often accompany fluid injection, and the seismic hazard they pose threatens various underground engineering projects. Models to monitor and control induced seismic hazard with traffic light systems should be probabilistic, forward-looking, and updated as new data arrive. In this study, we propose an Induced Seismicity Test Bench to test and rank such models; this test bench can be used for model development, model selection, and ensemble model building. We apply the test bench to data from the Basel 2006 and Soultz-sous-Forêts 2004 geothermal stimulation projects, and we assess forecasts from two models: Shapiro and Smoothed Seismicity (SaSS) and Hydraulics and Seismics (HySei). These models incorporate a different mix of physics-based elements and stochastic representation of the induced sequences. Our results show that neither model is fully superior to the other. Generally, HySei forecasts the seismicity rate better after shut-in but is only mediocre at forecasting the spatial distribution. On the other hand, SaSS forecasts the spatial distribution better and gives better seismicity rate estimates before shut-in. The shut-in phase is a difficult moment for both models in both reservoirs: the models tend to underpredict the seismicity rate around, and shortly after, shut-in.

  9. Probabilistic forecasting of extreme weather events based on extreme value theory

    NASA Astrophysics Data System (ADS)

    Van De Vyver, Hans; Van Schaeybroeck, Bert

    2016-04-01

    Extreme events in weather and climate such as high wind gusts, heavy precipitation or extreme temperatures are commonly associated with high impacts on both environment and society. Forecasting extreme weather events is difficult, and very high-resolution models are needed to describe explicitly extreme weather phenomena. A prediction system for such events should therefore preferably be probabilistic in nature. Probabilistic forecasts and state estimations are nowadays common in the numerical weather prediction community. In this work, we develop a new probabilistic framework based on extreme value theory that aims to provide early warnings up to several days in advance. We consider the combined events when an observation variable Y (for instance wind speed) exceeds a high threshold y and its corresponding deterministic forecasts X also exceeds a high forecast threshold y. More specifically two problems are addressed:} We consider pairs (X,Y) of extreme events where X represents a deterministic forecast, and Y the observation variable (for instance wind speed). More specifically two problems are addressed: Given a high forecast X=x_0, what is the probability that Y>y? In other words: provide inference on the conditional probability: [ Pr{Y>y|X=x_0}. ] Given a probabilistic model for Problem 1, what is the impact on the verification analysis of extreme events. These problems can be solved with bivariate extremes (Coles, 2001), and the verification analysis in (Ferro, 2007). We apply the Ramos and Ledford (2009) parametric model for bivariate tail estimation of the pair (X,Y). The model accommodates different types of extremal dependence and asymmetry within a parsimonious representation. Results are presented using the ensemble reforecast system of the European Centre of Weather Forecasts (Hagedorn, 2008). Coles, S. (2001) An Introduction to Statistical modelling of Extreme Values. Springer-Verlag.Ferro, C.A.T. (2007) A probability model for verifying deterministic forecasts of extreme events. Wea. Forecasting {22}, 1089-1100.Hagedorn, R. (2008) Using the ECMWF reforecast dataset to calibrate EPS forecasts. ECMWF Newsletter, {117}, 8-13.Ramos, A., Ledford, A. (2009) A new class of models for bivariate joint tails. J.R. Statist. Soc. B {71}, 219-241.

  10. A multi-source data assimilation framework for flood forecasting: Accounting for runoff routing lags

    NASA Astrophysics Data System (ADS)

    Meng, S.; Xie, X.

    2015-12-01

    In the flood forecasting practice, model performance is usually degraded due to various sources of uncertainties, including the uncertainties from input data, model parameters, model structures and output observations. Data assimilation is a useful methodology to reduce uncertainties in flood forecasting. For the short-term flood forecasting, an accurate estimation of initial soil moisture condition will improve the forecasting performance. Considering the time delay of runoff routing is another important effect for the forecasting performance. Moreover, the observation data of hydrological variables (including ground observations and satellite observations) are becoming easily available. The reliability of the short-term flood forecasting could be improved by assimilating multi-source data. The objective of this study is to develop a multi-source data assimilation framework for real-time flood forecasting. In this data assimilation framework, the first step is assimilating the up-layer soil moisture observations to update model state and generated runoff based on the ensemble Kalman filter (EnKF) method, and the second step is assimilating discharge observations to update model state and runoff within a fixed time window based on the ensemble Kalman smoother (EnKS) method. This smoothing technique is adopted to account for the runoff routing lag. Using such assimilation framework of the soil moisture and discharge observations is expected to improve the flood forecasting. In order to distinguish the effectiveness of this dual-step assimilation framework, we designed a dual-EnKF algorithm in which the observed soil moisture and discharge are assimilated separately without accounting for the runoff routing lag. The results show that the multi-source data assimilation framework can effectively improve flood forecasting, especially when the runoff routing has a distinct time lag. Thus, this new data assimilation framework holds a great potential in operational flood forecasting by merging observations from ground measurement and remote sensing retrivals.

  11. Developing Multi-model Ensemble for Precipitation and Temperature Seasonal Forecasts: Implications for Karkheh River Basin in Iran

    NASA Astrophysics Data System (ADS)

    Najafi, Husain; Massah Bavani, Ali Reza; Wanders, Niko; Wood, Eric; Irannejad, Parviz; Robertson, Andrew

    2017-04-01

    Water resource managers can utilize reliable seasonal forecasts for allocating water between different users within a water year. In the west of Iran where a decline of renewable water resources has been observed, basin-wide water management has been the subject of many inter-provincial conflicts in recent years. The problem is exacerbated when the environmental water requirements is not provided leaving the Hoor-al-Azim marshland in the downstream dry. It has been argued that information on total seasonal rainfall can support the Iranian Ministry of Energy within the water year. This study explores the skill of the North America Multi Model Ensemble for Karkheh River Basin in the of west Iran. NMME seasonal precipitation and temperature forecasts from eight models are evaluated against PERSIANN-CDR and Climate Research Unit (CRU) datasets. Analysis suggests that anomaly correlation for both precipitation and temperature is greater than 0.4 for all individual models. Lead time-dependent seasonal forecasts are improved when a multi-model ensemble is developed for the river basin using stepwise linear regression model. MME R-squared exceeds 0.6 for temperature for almost all initializations suggesting high skill of NMME in Karkheh river basin. The skill of MME for rainfall forecasts is high for 1-month lead time for October, February, March and October initializations. However, for months when the amount of rainfall accounts for a significant proportion of total annual rainfall, the skill of NMME is limited a month in advance. It is proposed that operational regional water companies incorporate NMME seasonal forecasts into water resource planning and management, especially during growing seasons that are essential for agricultural risk management.

  12. ETA-CMAQ MODELING SYSTEM'S CAPABILITY TO PROVIDE PM 2.5 AND AEROSOL OPTICAL THICKNESS FORECAST

    EPA Science Inventory

    In 2003, NOAA and the U.S. EPA signed a Memorandum of Agreement to work together to develop a National Air Quality Forecasting (AQF) capability. To meet this goal, NOAA's National Weather Service (NWS), the Office of Atmospheric Research (OAR) and the U.S. EPA developed and eval...

  13. Three-Month Real-Time Dengue Forecast Models: An Early Warning System for Outbreak Alerts and Policy Decision Support in Singapore.

    PubMed

    Shi, Yuan; Liu, Xu; Kok, Suet-Yheng; Rajarethinam, Jayanthi; Liang, Shaohong; Yap, Grace; Chong, Chee-Seng; Lee, Kim-Sung; Tan, Sharon S Y; Chin, Christopher Kuan Yew; Lo, Andrew; Kong, Waiming; Ng, Lee Ching; Cook, Alex R

    2016-09-01

    With its tropical rainforest climate, rapid urbanization, and changing demography and ecology, Singapore experiences endemic dengue; the last large outbreak in 2013 culminated in 22,170 cases. In the absence of a vaccine on the market, vector control is the key approach for prevention. We sought to forecast the evolution of dengue epidemics in Singapore to provide early warning of outbreaks and to facilitate the public health response to moderate an impending outbreak. We developed a set of statistical models using least absolute shrinkage and selection operator (LASSO) methods to forecast the weekly incidence of dengue notifications over a 3-month time horizon. This forecasting tool used a variety of data streams and was updated weekly, including recent case data, meteorological data, vector surveillance data, and population-based national statistics. The forecasting methodology was compared with alternative approaches that have been proposed to model dengue case data (seasonal autoregressive integrated moving average and step-down linear regression) by fielding them on the 2013 dengue epidemic, the largest on record in Singapore. Operationally useful forecasts were obtained at a 3-month lag using the LASSO-derived models. Based on the mean average percentage error, the LASSO approach provided more accurate forecasts than the other methods we assessed. We demonstrate its utility in Singapore's dengue control program by providing a forecast of the 2013 outbreak for advance preparation of outbreak response. Statistical models built using machine learning methods such as LASSO have the potential to markedly improve forecasting techniques for recurrent infectious disease outbreaks such as dengue. Shi Y, Liu X, Kok SY, Rajarethinam J, Liang S, Yap G, Chong CS, Lee KS, Tan SS, Chin CK, Lo A, Kong W, Ng LC, Cook AR. 2016. Three-month real-time dengue forecast models: an early warning system for outbreak alerts and policy decision support in Singapore. Environ Health Perspect 124:1369-1375; http://dx.doi.org/10.1289/ehp.1509981.

  14. Development of an Adaptable Display and Diagnostic System for the Evaluation of Tropical Cyclone Forecasts

    NASA Astrophysics Data System (ADS)

    Kucera, P. A.; Burek, T.; Halley-Gotway, J.

    2015-12-01

    NCAR's Joint Numerical Testbed Program (JNTP) focuses on the evaluation of experimental forecasts of tropical cyclones (TCs) with the goal of developing new research tools and diagnostic evaluation methods that can be transitioned to operations. Recent activities include the development of new TC forecast verification methods and the development of an adaptable TC display and diagnostic system. The next generation display and diagnostic system is being developed to support evaluation needs of the U.S. National Hurricane Center (NHC) and broader TC research community. The new hurricane display and diagnostic capabilities allow forecasters and research scientists to more deeply examine the performance of operational and experimental models. The system is built upon modern and flexible technology that includes OpenLayers Mapping tools that are platform independent. The forecast track and intensity along with associated observed track information are stored in an efficient MySQL database. The system provides easy-to-use interactive display system, and provides diagnostic tools to examine forecast track stratified by intensity. Consensus forecasts can be computed and displayed interactively. The system is designed to display information for both real-time and for historical TC cyclones. The display configurations are easily adaptable to meet the needs of the end-user preferences. Ongoing enhancements include improving capabilities for stratification and evaluation of historical best tracks, development and implementation of additional methods to stratify and compute consensus hurricane track and intensity forecasts, and improved graphical display tools. The display is also being enhanced to incorporate gridded forecast, satellite, and sea surface temperature fields. The presentation will provide an overview of the display and diagnostic system development and demonstration of the current capabilities.

  15. Operational flash flood forecasting platform based on grid technology

    NASA Astrophysics Data System (ADS)

    Thierion, V.; Ayral, P.-A.; Angelini, V.; Sauvagnargues-Lesage, S.; Nativi, S.; Payrastre, O.

    2009-04-01

    Flash flood events of south of France such as the 8th and 9th September 2002 in the Grand Delta territory caused important economic and human damages. Further to this catastrophic hydrological situation, a reform of flood warning services have been initiated (set in 2006). Thus, this political reform has transformed the 52 existing flood warning services (SAC) in 22 flood forecasting services (SPC), in assigning them territories more hydrological consistent and new effective hydrological forecasting mission. Furthermore, national central service (SCHAPI) has been created to ease this transformation and support local services in their new objectives. New functioning requirements have been identified: - SPC and SCHAPI carry the responsibility to clearly disseminate to public organisms, civil protection actors and population, crucial hydrologic information to better anticipate potential dramatic flood event, - a new effective hydrological forecasting mission to these flood forecasting services seems essential particularly for the flash floods phenomenon. Thus, models improvement and optimization was one of the most critical requirements. Initially dedicated to support forecaster in their monitoring mission, thanks to measuring stations and rainfall radar images analysis, hydrological models have to become more efficient in their capacity to anticipate hydrological situation. Understanding natural phenomenon occuring during flash floods mainly leads present hydrological research. Rather than trying to explain such complex processes, the presented research try to manage the well-known need of computational power and data storage capacities of these services. Since few years, Grid technology appears as a technological revolution in high performance computing (HPC) allowing large-scale resource sharing, computational power using and supporting collaboration across networks. Nowadays, EGEE (Enabling Grids for E-science in Europe) project represents the most important effort in term of grid technology development. This paper presents an operational flash flood forecasting platform which have been developed in the framework of CYCLOPS European project providing one of virtual organizations of EGEE project. This platform has been designed to enable multi-simulations processes to ease forecasting operations of several supervised watersheds on Grand Delta (SPC-GD) territory. Grid technology infrastructure, in providing multiple remote computing elements enables the processing of multiple rainfall scenarios, derived to the original meteorological forecasting transmitted by Meteo-France, and their respective hydrological simulations. First results show that from one forecasting scenario, this new presented approach can permit simulations of more than 200 different scenarios to support forecasters in their aforesaid mission and appears as an efficient hydrological decision-making tool. Although, this system seems operational, model validity has to be confirmed. So, further researches are necessary to improve models core to be more efficient in term of hydrological aspects. Finally, this platform could be an efficient tool for developing others modelling aspects as calibration or data assimilation in real time processing.

  16. Development and Use of the Hydrologic Ensemble Forecast System by the National Weather Service to Support the New York City Water Supply

    NASA Astrophysics Data System (ADS)

    Shedd, R.; Reed, S. M.; Porter, J. H.

    2015-12-01

    The National Weather Service (NWS) has been working for several years on the development of the Hydrologic Ensemble Forecast System (HEFS). The objective of HEFS is to provide ensemble river forecasts incorporating the best precipitation and temperature forcings at any specific time horizon. For the current implementation, this includes the Global Ensemble Forecast System (GEFS) and the Climate Forecast System (CFSv2). One of the core partners that has been working with the NWS since the beginning of the development phase of HEFS is the New York City Department of Environmental Protection (NYCDEP) which is responsible for the complex water supply system for New York City. The water supply system involves a network of reservoirs in both the Delaware and Hudson River basins. At the same time that the NWS was developing HEFS, NYCDEP was working on enhancing the operations of their water supply reservoirs through the development of a new Operations Support Tool (OST). OST is designed to guide reservoir system operations to ensure an adequate supply of high-quality drinking water for the city, as well as to meet secondary objectives for reaches downstream of the reservoirs assuming the primary water supply goals can be met. These secondary objectives include fisheries and ecosystem support, enhanced peak flow attenuation beyond that provided natively by the reservoirs, salt front management, and water supply for other cities. Since January 2014, the NWS Northeast and Middle Atlantic River Forecast Centers have provided daily one year forecasts from HEFS to NYCDEP. OST ingests these forecasts, couples them with near-real-time environmental and reservoir system data, and drives models of the water supply system. The input of ensemble forecasts results in an ensemble of model output, from which information on the range and likelihood of possible future system states can be extracted. This type of probabilistic information provides system managers with additional information not available from deterministic forecasts and allows managers to better assess risk, and provides greater context for decision-making than has been available in the past. HEFS has allowed NYCDEP water supply managers to make better decisions on reservoir operations than they likely would have in the past, using only deterministic forecasts.

  17. A Method for Forecasting the Commercial Air Traffic Schedule in the Future

    NASA Technical Reports Server (NTRS)

    Long, Dou; Lee, David; Gaier, Eric; Johnson, Jesse; Kostiuk, Peter

    1999-01-01

    This report presents an integrated set of models that forecasts air carriers' future operations when delays due to limited terminal-area capacity are considered. This report models the industry as a whole, avoiding unnecessary details of competition among the carriers. To develop the schedule outputs, we first present a model to forecast the unconstrained flight schedules in the future, based on the assumption of rational behavior of the carriers. Then we develop a method to modify the unconstrained schedules, accounting for effects of congestion due to limited NAS capacities. Our underlying assumption is that carriers will modify their operations to keep mean delays within certain limits. We estimate values for those limits from changes in planned block times reflected in the OAG. Our method for modifying schedules takes many means of reducing the delays into considerations, albeit some of them indirectly. The direct actions include depeaking, operating in off-hours, and reducing hub airports'operations. Indirect actions include using secondary airports, using larger aircraft, and selecting new hub airports, which, we assume, have already been modeled in the FAA's TAF. Users of our suite of models can substitute an alternative forecast for the TAF.

  18. Toward Global Real Time Hydrologic Modeling - An "Open" View From the Trenches

    NASA Astrophysics Data System (ADS)

    Nelson, J.

    2015-12-01

    Big Data has become a popular term to describe the exponential growth of data and related cyber infrastructure to process it so that better analysis can be performed and lead to improved decision-making. How are we doing in the hydrologic sciences? As part of a significant collaborative effort that brought together scientists from public, private, and academic organizations a new transformative hydrologic forecasting modeling infrastructure has been developed. How was it possible to go from deterministic hydrologic forecasts largely driven through manual interactions at 3600 stations to automated 15-day ensemble forecasts at 2.67 million stations? Earth observations of precipitation, temperature, moisture, and other atmospheric and land surface conditions form the foundation of global hydrologic forecasts, but this project demonstrates a critical component to harness these resources can be summed up in one word: OPEN. Whether it is open data sources, open software solutions with open standards, or just being open to collaborations and building teams across institutions, disciplines, and international boundaries, time and time again through my involvement in the development of a high-resolution real time global hydrologic forecasting model I have discovered that in every aspect the sum has always been greater than the parts. While much has been accomplished, much more remains to be done, but the most important lesson learned has been to the degree that we can remain open and work together, the greater our ability will be to use big data hydrologic modeling resources to solve the world's most vexing water related challenges. This presentation will demonstrate a transformational global real time hydrologic forecasting application based on downscaled ECMWF ensemble forecasts, RAPID routing, and Tethys Platform for cloud computing and visualization with discussions of the human and cyber infrastructure connections that make it successful and needs moving forward.

  19. Monitoring and Modeling: The Future of Volcanic Eruption Forecasting

    NASA Astrophysics Data System (ADS)

    Poland, M. P.; Pritchard, M. E.; Anderson, K. R.; Furtney, M.; Carn, S. A.

    2016-12-01

    Eruption forecasting typically uses monitoring data from geology, gas geochemistry, geodesy, and seismology, to assess the likelihood of future eruptive activity. Occasionally, months to years of warning are possible from specific indicators (e.g., deep LP earthquakes, elevated CO2 emissions, and aseismic deformation) or a buildup in one or more monitoring parameters. More often, observable changes in unrest occur immediately before eruption, as magma is rising toward the surface. In some cases, little or no detectable unrest precedes eruptive activity. Eruption forecasts are usually based on the experience of volcanologists studying the activity, but two developing fields offer a potential leap beyond this practice. First, remote sensing data, which can track thermal, gas, and ash emissions, as well as surface deformation, are increasingly available, allowing statistically significant research into the characteristics of unrest. For example, analysis of hundreds of volcanoes indicates that deformation is a more common pre-eruptive phenomenon than thermal anomalies, and that most episodes of satellite-detected unrest are not immediately followed by eruption. Such robust datasets inform the second development—probabilistic models of eruption potential, especially those that are based on physical-chemical models of the dynamics of magma accumulation and ascent. Both developments are essential for refining forecasts and reducing false positives. For example, many caldera systems have not erupted but are characterized by unrest that, in another context, would elicit strong concern from volcanologists. More observations of this behavior and better understanding of the underlying physics of unrest will improve forecasts of such activity. While still many years from implementation as a forecasting tool, probabilistic physio-chemical models incorporating satellite data offer a complement to expert assessments that, together, can form a powerful forecasting approach.

  20. Forecasting monthly inflow discharge of the Iffezheim reservoir using data-driven models

    NASA Astrophysics Data System (ADS)

    Zhang, Qing; Aljoumani, Basem; Hillebrand, Gudrun; Hoffmann, Thomas; Hinkelmann, Reinhard

    2017-04-01

    River stream flow is an essential element in hydrology study fields, especially for reservoir management, since it defines input into reservoirs. Forecasting this stream flow plays an important role in short or long-term planning and management in the reservoir, e.g. optimized reservoir and hydroelectric operation or agricultural irrigation. Highly accurate flow forecasting can significantly reduce economic losses and is always pursued by reservoir operators. Therefore, hydrologic time series forecasting has received tremendous attention of researchers. Many models have been proposed to improve the hydrological forecasting. Due to the fact that most natural phenomena occurring in environmental systems appear to behave in random or probabilistic ways, different cases may need a different methods to forecast the inflow and even a unique treatment to improve the forecast accuracy. The purpose of this study is to determine an appropriate model for forecasting monthly inflow to the Iffezheim reservoir in Germany, which is the last of the barrages in the Upper Rhine. Monthly time series of discharges, measured from 1946 to 2001 at the Plittersdorf station, which is located 6 km downstream of the Iffezheim reservoir, were applied. The accuracies of the used stochastic models - Fiering model and Auto-Regressive Integrated Moving Average models (ARIMA) are compared with Artificial Intelligence (AI) models - single Artificial Neural Network (ANN) and Wavelet ANN models (WANN). The Fiering model is a linear stochastic model and used for generating synthetic monthly data. The basic idea in modeling time series using ARIMA is to identify a simple model with as few model parameters as possible in order to provide a good statistical fit to the data. To identify and fit the ARIMA models, four phase approaches were used: identification, parameter estimation, diagnostic checking, and forecasting. An automatic selection criterion, such as the Akaike information criterion, is utilized to enhance this flexible approach to set up the model. As distinct from both stochastic models, the ANN and its related conjunction methods Wavelet-ANN (WANN) models are effective to handle non-linear systems and have been developed with antecedent flows as inputs to forecast up to 12-months lead-time for the Iffezheim reservoir. In the ANN and WANN models, the Feed Forward Back Propagation method (FFBP) is applied. The sigmoid activity and linear functions were used with several different neurons for the hidden layers and for the output layer, respectively. To compare the accuracy of the different models and identify the most suitable model for reliable forecasting, four quantitative standard statistical performance evaluation measures, the root mean square error (RMSE), the mean bias error (MAE) and the determination correlation coefficient (DC), are employed. The results reveal that the ARIMA (2, 1, 2) performs better than Fiering, ANN and WANN models. Further, the WANN model is found to be slightly better than the ANN model for forecasting monthly inflow of the Iffezheim reservoir. As a result, by using the ARIMA model, the predicted and observed values agree reasonably well.

  1. The Wind Forecast Improvement Project (WFIP). A Public/Private Partnership for Improving Short Term Wind Energy Forecasts and Quantifying the Benefits of Utility Operations -- the Northern Study Area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finley, Cathy

    2014-04-30

    This report contains the results from research aimed at improving short-range (0-6 hour) hub-height wind forecasts in the NOAA weather forecast models through additional data assimilation and model physics improvements for use in wind energy forecasting. Additional meteorological observing platforms including wind profilers, sodars, and surface stations were deployed for this study by NOAA and DOE, and additional meteorological data at or near wind turbine hub height were provided by South Dakota State University and WindLogics/NextEra Energy Resources over a large geographical area in the U.S. Northern Plains for assimilation into NOAA research weather forecast models. The resulting improvements inmore » wind energy forecasts based on the research weather forecast models (with the additional data assimilation and model physics improvements) were examined in many different ways and compared with wind energy forecasts based on the current operational weather forecast models to quantify the forecast improvements important to power grid system operators and wind plant owners/operators participating in energy markets. Two operational weather forecast models (OP_RUC, OP_RAP) and two research weather forecast models (ESRL_RAP, HRRR) were used as the base wind forecasts for generating several different wind power forecasts for the NextEra Energy wind plants in the study area. Power forecasts were generated from the wind forecasts in a variety of ways, from very simple to quite sophisticated, as they might be used by a wide range of both general users and commercial wind energy forecast vendors. The error characteristics of each of these types of forecasts were examined and quantified using bulk error statistics for both the local wind plant and the system aggregate forecasts. The wind power forecast accuracy was also evaluated separately for high-impact wind energy ramp events. The overall bulk error statistics calculated over the first six hours of the forecasts at both the individual wind plant and at the system-wide aggregate level over the one year study period showed that the research weather model-based power forecasts (all types) had lower overall error rates than the current operational weather model-based power forecasts, both at the individual wind plant level and at the system aggregate level. The bulk error statistics of the various model-based power forecasts were also calculated by season and model runtime/forecast hour as power system operations are more sensitive to wind energy forecast errors during certain times of year and certain times of day. The results showed that there were significant differences in seasonal forecast errors between the various model-based power forecasts. The results from the analysis of the various wind power forecast errors by model runtime and forecast hour showed that the forecast errors were largest during the times of day that have increased significance to power system operators (the overnight hours and the morning/evening boundary layer transition periods), but the research weather model-based power forecasts showed improvement over the operational weather model-based power forecasts at these times.« less

  2. Evaluation of statistical models for forecast errors from the HBV model

    NASA Astrophysics Data System (ADS)

    Engeland, Kolbjørn; Renard, Benjamin; Steinsland, Ingelin; Kolberg, Sjur

    2010-04-01

    SummaryThree statistical models for the forecast errors for inflow into the Langvatn reservoir in Northern Norway have been constructed and tested according to the agreement between (i) the forecast distribution and the observations and (ii) median values of the forecast distribution and the observations. For the first model observed and forecasted inflows were transformed by the Box-Cox transformation before a first order auto-regressive model was constructed for the forecast errors. The parameters were conditioned on weather classes. In the second model the Normal Quantile Transformation (NQT) was applied on observed and forecasted inflows before a similar first order auto-regressive model was constructed for the forecast errors. For the third model positive and negative errors were modeled separately. The errors were first NQT-transformed before conditioning the mean error values on climate, forecasted inflow and yesterday's error. To test the three models we applied three criterions: we wanted (a) the forecast distribution to be reliable; (b) the forecast intervals to be narrow; (c) the median values of the forecast distribution to be close to the observed values. Models 1 and 2 gave almost identical results. The median values improved the forecast with Nash-Sutcliffe R eff increasing from 0.77 for the original forecast to 0.87 for the corrected forecasts. Models 1 and 2 over-estimated the forecast intervals but gave the narrowest intervals. Their main drawback was that the distributions are less reliable than Model 3. For Model 3 the median values did not fit well since the auto-correlation was not accounted for. Since Model 3 did not benefit from the potential variance reduction that lies in bias estimation and removal it gave on average wider forecasts intervals than the two other models. At the same time Model 3 on average slightly under-estimated the forecast intervals, probably explained by the use of average measures to evaluate the fit.

  3. The Navy's First Seasonal Ice Forecasts using the Navy's Arctic Cap Nowcast/Forecast System

    NASA Astrophysics Data System (ADS)

    Preller, Ruth

    2013-04-01

    As conditions in the Arctic continue to change, the Naval Research Laboratory (NRL) has developed an interest in longer-term seasonal ice extent forecasts. The Arctic Cap Nowcast/Forecast System (ACNFS), developed by the Oceanography Division of NRL, was run in forward model mode, without assimilation, to estimate the minimum sea ice extent for September 2012. The model was initialized with varying assimilative ACNFS analysis fields (June 1, July 1, August 1 and September 1, 2012) and run forward for nine simulations using the archived Navy Operational Global Atmospheric Prediction System (NOGAPS) atmospheric forcing fields from 2003-2011. The mean ice extent in September, averaged across all ensemble members was the projected summer ice extent. These results were submitted to the Study of Environmental Arctic Change (SEARCH) Sea Ice Outlook project (http://www.arcus.org/search/seaiceoutlook). The ACNFS is a ~3.5 km coupled ice-ocean model that produces 5 day forecasts of the Arctic sea ice state in all ice covered areas in the northern hemisphere (poleward of 40° N). The ocean component is the HYbrid Coordinate Ocean Model (HYCOM) and is coupled to the Los Alamos National Laboratory Community Ice CodE (CICE) via the Earth System Modeling Framework (ESMF). The ocean and ice models are run in an assimilative cycle with the Navy's Coupled Ocean Data Assimilation (NCODA) system. Currently the ACNFS is being transitioned to operations at the Naval Oceanographic Office.

  4. Earthquake Forecasting System in Italy

    NASA Astrophysics Data System (ADS)

    Falcone, G.; Marzocchi, W.; Murru, M.; Taroni, M.; Faenza, L.

    2017-12-01

    In Italy, after the 2009 L'Aquila earthquake, a procedure was developed for gathering and disseminating authoritative information about the time dependence of seismic hazard to help communities prepare for a potentially destructive earthquake. The most striking time dependency of the earthquake occurrence process is the time clustering, which is particularly pronounced in time windows of days and weeks. The Operational Earthquake Forecasting (OEF) system that is developed at the Seismic Hazard Center (Centro di Pericolosità Sismica, CPS) of the Istituto Nazionale di Geofisica e Vulcanologia (INGV) is the authoritative source of seismic hazard information for Italian Civil Protection. The philosophy of the system rests on a few basic concepts: transparency, reproducibility, and testability. In particular, the transparent, reproducible, and testable earthquake forecasting system developed at CPS is based on ensemble modeling and on a rigorous testing phase. Such phase is carried out according to the guidance proposed by the Collaboratory for the Study of Earthquake Predictability (CSEP, international infrastructure aimed at evaluating quantitatively earthquake prediction and forecast models through purely prospective and reproducible experiments). In the OEF system, the two most popular short-term models were used: the Epidemic-Type Aftershock Sequences (ETAS) and the Short-Term Earthquake Probabilities (STEP). Here, we report the results from OEF's 24hour earthquake forecasting during the main phases of the 2016-2017 sequence occurred in Central Apennines (Italy).

  5. Near real time wind energy forecasting incorporating wind tunnel modeling

    NASA Astrophysics Data System (ADS)

    Lubitz, William David

    A series of experiments and investigations were carried out to inform the development of a day-ahead wind power forecasting system. An experimental near-real time wind power forecasting system was designed and constructed that operates on a desktop PC and forecasts 12--48 hours in advance. The system uses model output of the Eta regional scale forecast (RSF) to forecast the power production of a wind farm in the Altamont Pass, California, USA from 12 to 48 hours in advance. It is of modular construction and designed to also allow diagnostic forecasting using archived RSF data, thereby allowing different methods of completing each forecasting step to be tested and compared using the same input data. Wind-tunnel investigations of the effect of wind direction and hill geometry on wind speed-up above a hill were conducted. Field data from an Altamont Pass, California site was used to evaluate several speed-up prediction algorithms, both with and without wind direction adjustment. These algorithms were found to be of limited usefulness for the complex terrain case evaluated. Wind-tunnel and numerical simulation-based methods were developed for determining a wind farm power curve (the relation between meteorological conditions at a point in the wind farm and the power production of the wind farm). Both methods, as well as two methods based on fits to historical data, ultimately showed similar levels of accuracy: mean absolute errors predicting power production of 5 to 7 percent of the wind farm power capacity. The downscaling of RSF forecast data to the wind farm was found to be complicated by the presence of complex terrain. Poor results using the geostrophic drag law and regression methods motivated the development of a database search method that is capable of forecasting not only wind speeds but also power production with accuracy better than persistence.

  6. Forecasting Zakat collection using artificial neural network

    NASA Astrophysics Data System (ADS)

    Sy Ahmad Ubaidillah, Sh. Hafizah; Sallehuddin, Roselina

    2013-04-01

    'Zakat', "that which purifies" or "alms", is the giving of a fixed portion of one's wealth to charity, generally to the poor and needy. It is one of the five pillars of Islam, and must be paid by all practicing Muslims who have the financial means (nisab). 'Nisab' is the minimum level to determine whether there is a 'zakat' to be paid on the assets. Today, in most Muslim countries, 'zakat' is collected through a decentralized and voluntary system. Under this voluntary system, 'zakat' committees are established, which are tasked with the collection and distribution of 'zakat' funds. 'Zakat' promotes a more equitable redistribution of wealth, and fosters a sense of solidarity amongst members of the 'Ummah'. The Malaysian government has established a 'zakat' center at every state to facilitate the management of 'zakat'. The center has to have a good 'zakat' management system to effectively execute its functions especially in the collection and distribution of 'zakat'. Therefore, a good forecasting model is needed. The purpose of this study is to develop a forecasting model for Pusat Zakat Pahang (PZP) to predict the total amount of collection from 'zakat' of assets more precisely. In this study, two different Artificial Neural Network (ANN) models using two different learning algorithms are developed; Back Propagation (BP) and Levenberg-Marquardt (LM). Both models are developed and compared in terms of their accuracy performance. The best model is determined based on the lowest mean square error and the highest correlations values. Based on the results obtained from the study, BP neural network is recommended as the forecasting model to forecast the collection from 'zakat' of assets for PZP.

  7. An Overview of LANL's New Hurricane Lightning Project (Invited)

    NASA Astrophysics Data System (ADS)

    Jeffery, C. A.; Shao, X.; Reisner, J.; Kao, C. J.; Brockwell, M.; Chylek, P.; Fierro, A.; Galassi, M.; Godinez, H. C.; Guimond, S.; Hamlin, T.; Henderson, B. G.; Ho, C.; Holden, D.; Light, T. E.; O'Connor, N.; Suszcynsky, D. M.

    2009-12-01

    For the last two years, Los Alamos National Laboratory has sponsored an internal hurricane lightning project with four main goals: (1) To develop and deploy a new dual VLF/VHF lightning mapping array in the Mississippi River Delta south of New Orleans. (2) To develop a new hurricane forecast capability with fully prognostic cloud electrification and lightning discharge physics, based on a model framework developed at Oklahoma University. (3) To develop a new data assimilation approach for ingesting LANL lightning data into our forecast model that exploits the phenomenological relationship between lightning occurrence and intense convection. (4) To demonstrate that the assimilation of lightning data from the new LANL Gulf array into the hurricane forecast model improves the prediction of rapid intensification (RI), when RI is driven by eyewall adjustment (axisymmetrization) triggered by intense convective events (hot towers). In this talk, I present an overview of LANL's new hurricane lighting project, and the progress we have made to-date in achieving the project's four main goals.

  8. Portals for Real-Time Earthquake Data and Forecasting: Challenge and Promise (Invited)

    NASA Astrophysics Data System (ADS)

    Rundle, J. B.; Holliday, J. R.; Graves, W. R.; Feltstykket, R.; Donnellan, A.; Glasscoe, M. T.

    2013-12-01

    Earthquake forecasts have been computed by a variety of countries world-wide for over two decades. For the most part, forecasts have been computed for insurance, reinsurance and underwriters of catastrophe bonds. However, recent events clearly demonstrate that mitigating personal risk is becoming the responsibility of individual members of the public. Open access to a variety of web-based forecasts, tools, utilities and information is therefore required. Portals for data and forecasts present particular challenges, and require the development of both apps and the client/server architecture to deliver the basic information in real time. The basic forecast model we consider is the Natural Time Weibull (NTW) method (JBR et al., Phys. Rev. E, 86, 021106, 2012). This model uses small earthquakes (';seismicity-based models') to forecast the occurrence of large earthquakes, via data-mining algorithms combined with the ANSS earthquake catalog. This method computes large earthquake probabilities using the number of small earthquakes that have occurred in a region since the last large earthquake. Localizing these forecasts in space so that global forecasts can be computed in real time presents special algorithmic challenges, which we describe in this talk. Using 25 years of data from the ANSS California-Nevada catalog of earthquakes, we compute real-time global forecasts at a grid scale of 0.1o. We analyze and monitor the performance of these models using the standard tests, which include the Reliability/Attributes and Receiver Operating Characteristic (ROC) tests. It is clear from much of the analysis that data quality is a major limitation on the accurate computation of earthquake probabilities. We discuss the challenges of serving up these datasets over the web on web-based platforms such as those at www.quakesim.org , www.e-decider.org , and www.openhazards.com.

  9. Multi-model seasonal forecast of Arctic sea-ice: forecast uncertainty at pan-Arctic and regional scales

    NASA Astrophysics Data System (ADS)

    Blanchard-Wrigglesworth, E.; Barthélemy, A.; Chevallier, M.; Cullather, R.; Fučkar, N.; Massonnet, F.; Posey, P.; Wang, W.; Zhang, J.; Ardilouze, C.; Bitz, C. M.; Vernieres, G.; Wallcraft, A.; Wang, M.

    2017-08-01

    Dynamical model forecasts in the Sea Ice Outlook (SIO) of September Arctic sea-ice extent over the last decade have shown lower skill than that found in both idealized model experiments and hindcasts of previous decades. Additionally, it is unclear how different model physics, initial conditions or forecast post-processing (bias correction) techniques contribute to SIO forecast uncertainty. In this work, we have produced a seasonal forecast of 2015 Arctic summer sea ice using SIO dynamical models initialized with identical sea-ice thickness in the central Arctic. Our goals are to calculate the relative contribution of model uncertainty and irreducible error growth to forecast uncertainty and assess the importance of post-processing, and to contrast pan-Arctic forecast uncertainty with regional forecast uncertainty. We find that prior to forecast post-processing, model uncertainty is the main contributor to forecast uncertainty, whereas after forecast post-processing forecast uncertainty is reduced overall, model uncertainty is reduced by an order of magnitude, and irreducible error growth becomes the main contributor to forecast uncertainty. While all models generally agree in their post-processed forecasts of September sea-ice volume and extent, this is not the case for sea-ice concentration. Additionally, forecast uncertainty of sea-ice thickness grows at a much higher rate along Arctic coastlines relative to the central Arctic ocean. Potential ways of offering spatial forecast information based on the timescale over which the forecast signal beats the noise are also explored.

  10. Visibility Modeling and Forecasting for Abu Dhabi using Time Series Analysis Method

    NASA Astrophysics Data System (ADS)

    Eibedingil, I. G.; Abula, B.; Afshari, A.; Temimi, M.

    2015-12-01

    Land-Atmosphere interactions-their strength, directionality and evolution-are one of the main sources of uncertainty in contemporary climate modeling. A particularly crucial role in sustaining and modulating land-atmosphere interaction is the one of aerosols and dusts. Aerosols are tiny particles suspended in the air ranging from a few nanometers to a few hundred micrometers in diameter. Furthermore, the amount of dust and fog in the atmosphere is an important measure of visibility, which is another dimension of land-atmosphere interactions. Visibility affects all form of traffic, aviation, land and sailing. Being able to predict the change of visibility in the air in advance enables relevant authorities to take necessary actions before the disaster falls. Time Series Analysis (TAS) method is an emerging technique for modeling and forecasting the behavior of land-atmosphere interactions, including visibility. This research assess the dynamics and evolution of visibility around Abu Dhabi International Airport (+24.4320 latitude, +54.6510 longitude, and 27m elevation) using mean daily visibility and mean daily wind speed. TAS has been first used to model and forecast the visibility, and then the Transfer Function Model has been applied, considering the wind speed as an exogenous variable. By considering the Akaike Information Criterion (AIC) and Mean Absolute Percentage Error (MAPE) as a statistical criteria, two forecasting models namely univarite time series model and transfer function model, were developed to forecast the visibility around Abu Dhabi International Airport for three weeks. Transfer function model improved the MAPE of the forecast significantly.

  11. Time series analysis of malaria in Afghanistan: using ARIMA models to predict future trends in incidence.

    PubMed

    Anwar, Mohammad Y; Lewnard, Joseph A; Parikh, Sunil; Pitzer, Virginia E

    2016-11-22

    Malaria remains endemic in Afghanistan. National control and prevention strategies would be greatly enhanced through a better ability to forecast future trends in disease incidence. It is, therefore, of interest to develop a predictive tool for malaria patterns based on the current passive and affordable surveillance system in this resource-limited region. This study employs data from Ministry of Public Health monthly reports from January 2005 to September 2015. Malaria incidence in Afghanistan was forecasted using autoregressive integrated moving average (ARIMA) models in order to build a predictive tool for malaria surveillance. Environmental and climate data were incorporated to assess whether they improve predictive power of models. Two models were identified, each appropriate for different time horizons. For near-term forecasts, malaria incidence can be predicted based on the number of cases in the four previous months and 12 months prior (Model 1); for longer-term prediction, malaria incidence can be predicted using the rates 1 and 12 months prior (Model 2). Next, climate and environmental variables were incorporated to assess whether the predictive power of proposed models could be improved. Enhanced vegetation index was found to have increased the predictive accuracy of longer-term forecasts. Results indicate ARIMA models can be applied to forecast malaria patterns in Afghanistan, complementing current surveillance systems. The models provide a means to better understand malaria dynamics in a resource-limited context with minimal data input, yielding forecasts that can be used for public health planning at the national level.

  12. The North American Multi-Model Ensemble (NMME): Phase-1 Seasonal to Interannual Prediction, Phase-2 Toward Developing Intra-Seasonal Prediction

    NASA Technical Reports Server (NTRS)

    Kirtman, Ben P.; Min, Dughong; Infanti, Johnna M.; Kinter, James L., III; Paolino, Daniel A.; Zhang, Qin; vandenDool, Huug; Saha, Suranjana; Mendez, Malaquias Pena; Becker, Emily; hide

    2013-01-01

    The recent US National Academies report "Assessment of Intraseasonal to Interannual Climate Prediction and Predictability" was unequivocal in recommending the need for the development of a North American Multi-Model Ensemble (NMME) operational predictive capability. Indeed, this effort is required to meet the specific tailored regional prediction and decision support needs of a large community of climate information users. The multi-model ensemble approach has proven extremely effective at quantifying prediction uncertainty due to uncertainty in model formulation, and has proven to produce better prediction quality (on average) then any single model ensemble. This multi-model approach is the basis for several international collaborative prediction research efforts, an operational European system and there are numerous examples of how this multi-model ensemble approach yields superior forecasts compared to any single model. Based on two NOAA Climate Test Bed (CTB) NMME workshops (February 18, and April 8, 2011) a collaborative and coordinated implementation strategy for a NMME prediction system has been developed and is currently delivering real-time seasonal-to-interannual predictions on the NOAA Climate Prediction Center (CPC) operational schedule. The hindcast and real-time prediction data is readily available (e.g., http://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/) and in graphical format from CPC (http://origin.cpc.ncep.noaa.gov/products/people/wd51yf/NMME/index.html). Moreover, the NMME forecast are already currently being used as guidance for operational forecasters. This paper describes the new NMME effort, presents an overview of the multi-model forecast quality, and the complementary skill associated with individual models.

  13. Incorporating Yearly Derived Winter Wheat Maps Into Winter Wheat Yield Forecasting Model

    NASA Technical Reports Server (NTRS)

    Skakun, S.; Franch, B.; Roger, J.-C.; Vermote, E.; Becker-Reshef, I.; Justice, C.; Santamaría-Artigas, A.

    2016-01-01

    Wheat is one of the most important cereal crops in the world. Timely and accurate forecast of wheat yield and production at global scale is vital in implementing food security policy. Becker-Reshef et al. (2010) developed a generalized empirical model for forecasting winter wheat production using remote sensing data and official statistics. This model was implemented using static wheat maps. In this paper, we analyze the impact of incorporating yearly wheat masks into the forecasting model. We propose a new approach of producing in season winter wheat maps exploiting satellite data and official statistics on crop area only. Validation on independent data showed that the proposed approach reached 6% to 23% of omission error and 10% to 16% of commission error when mapping winter wheat 2-3 months before harvest. In general, we found a limited impact of using yearly winter wheat masks over a static mask for the study regions.

  14. Short Term Weather Forecasting and Long Term Climate Predictions in Mesoamerica

    NASA Astrophysics Data System (ADS)

    Hardin, D. M.; Daniel, I.; Mecikalski, J.; Graves, S.

    2008-05-01

    The SERVIR project utilizes several predictive models to support regional monitoring and decision support in Mesoamerica. Short term forecasts ranging from a few hours to several days produce more than 30 data products that are used daily by decision makers, as well as news organizations in the region. The forecast products can be visualized in both two and three dimensional viewers such as Google Maps and Google Earth. Other viewers developed specifically for the Mesoamerican region by the University of Alabama in Huntsville and the Institute for the Application of Geospatial Technologies in Auburn New York can also be employed. In collaboration with the NASA Short Term Prediction Research and Transition (SpoRT) Center SERVIR utilizes the Weather Research and Forecast (WRF) model to produce short-term (24 hr) regional weather forecasts twice a day. Temperature, precipitation, wind, and other variables are forecast in 10km and 30km grids over the Mesoamerica region. Using the PSU/NCAR Mesoscale Model, known as MM5, SERVIR produces 48 hour- forecasts of soil temperature, two meter surface temperature, three hour accumulated precipitation, winds at different heights, and other variables. These are forecast hourly in 9km grids. Working in collaboration with the Atmospheric Science Department of the University of Alabama in Huntsville produces a suite of short-term (0-6 hour) weather prediction products are generated. These "convective initiation" products predict the onset of thunderstorm rainfall and lightning within a 1-hour timeframe. Models are also employed for long term predictions. The SERVIR project, under USAID funding, has developed comprehensive regional climate change scenarios of Mesoamerica for future years: 2010, 2015, 2025, 2050, and 2099. These scenarios were created using the Pennsylvania State University/National Center for Atmospheric Research (MM5) model and processed on the Oak Ridge National Laboratory Cheetah supercomputer. The goal of these Mesoamerican climate change scenarios is to better understand the regional climate, the major controls, and how it might be expected to change in the future. This presentation will present a summary of the model results and show the application of these data in preparation for and response to recent tropical storms.

  15. SWIFT2: Software for continuous ensemble short-term streamflow forecasting for use in research and operations

    NASA Astrophysics Data System (ADS)

    Perraud, Jean-Michel; Bennett, James C.; Bridgart, Robert; Robertson, David E.

    2016-04-01

    Research undertaken through the Water Information Research and Development Alliance (WIRADA) has laid the foundations for continuous deterministic and ensemble short-term forecasting services. One output of this research is the software Short-term Water Information Forecasting Tools version 2 (SWIFT2). SWIFT2 is developed for use in research on short term streamflow forecasting techniques as well as operational forecasting services at the Australian Bureau of Meteorology. The variety of uses in research and operations requires a modular software system whose components can be arranged in applications that are fit for each particular purpose, without unnecessary software duplication. SWIFT2 modelling structures consist of sub-areas of hydrologic models, nodes and links with in-stream routing and reservoirs. While this modelling structure is customary, SWIFT2 is built from the ground up for computational and data intensive applications such as ensemble forecasts necessary for the estimation of the uncertainty in forecasts. Support for parallel computation on multiple processors or on a compute cluster is a primary use case. A convention is defined to store large multi-dimensional forecasting data and its metadata using the netCDF library. SWIFT2 is written in modern C++ with state of the art software engineering techniques and practices. A salient technical feature is a well-defined application programming interface (API) to facilitate access from different applications and technologies. SWIFT2 is already seamlessly accessible on Windows and Linux via packages in R, Python, Matlab and .NET languages such as C# and F#. Command line or graphical front-end applications are also feasible. This poster gives an overview of the technology stack, and illustrates the resulting features of SWIFT2 for users. Research and operational uses share the same common core C++ modelling shell for consistency, but augmented by different software modules suitable for each context. The accessibility via interactive modelling languages is particularly amenable to using SWIFT2 in exploratory research, with a dynamic and versatile experimental modelling workflow. This does not come at the expense of the stability and reliability required for use in operations, where only mature and stable components are used.

  16. Hurricane Intensity Forecasts with a Global Mesoscale Model on the NASA Columbia Supercomputer

    NASA Technical Reports Server (NTRS)

    Shen, Bo-Wen; Tao, Wei-Kuo; Atlas, Robert

    2006-01-01

    It is known that General Circulation Models (GCMs) have insufficient resolution to accurately simulate hurricane near-eye structure and intensity. The increasing capabilities of high-end computers (e.g., the NASA Columbia Supercomputer) have changed this. In 2004, the finite-volume General Circulation Model at a 1/4 degree resolution, doubling the resolution used by most of operational NWP center at that time, was implemented and run to obtain promising landfall predictions for major hurricanes (e.g., Charley, Frances, Ivan, and Jeanne). In 2005, we have successfully implemented the 1/8 degree version, and demonstrated its performance on intensity forecasts with hurricane Katrina (2005). It is found that the 1/8 degree model is capable of simulating the radius of maximum wind and near-eye wind structure, and thereby promising intensity forecasts. In this study, we will further evaluate the model s performance on intensity forecasts of hurricanes Ivan, Jeanne, Karl in 2004. Suggestions for further model development will be made in the end.

  17. A clustering-based fuzzy wavelet neural network model for short-term load forecasting.

    PubMed

    Kodogiannis, Vassilis S; Amina, Mahdi; Petrounias, Ilias

    2013-10-01

    Load forecasting is a critical element of power system operation, involving prediction of the future level of demand to serve as the basis for supply and demand planning. This paper presents the development of a novel clustering-based fuzzy wavelet neural network (CB-FWNN) model and validates its prediction on the short-term electric load forecasting of the Power System of the Greek Island of Crete. The proposed model is obtained from the traditional Takagi-Sugeno-Kang fuzzy system by replacing the THEN part of fuzzy rules with a "multiplication" wavelet neural network (MWNN). Multidimensional Gaussian type of activation functions have been used in the IF part of the fuzzyrules. A Fuzzy Subtractive Clustering scheme is employed as a pre-processing technique to find out the initial set and adequate number of clusters and ultimately the number of multiplication nodes in MWNN, while Gaussian Mixture Models with the Expectation Maximization algorithm are utilized for the definition of the multidimensional Gaussians. The results corresponding to the minimum and maximum power load indicate that the proposed load forecasting model provides significantly accurate forecasts, compared to conventional neural networks models.

  18. Predictability of short-range forecasting: a multimodel approach

    NASA Astrophysics Data System (ADS)

    García-Moya, Jose-Antonio; Callado, Alfons; Escribà, Pau; Santos, Carlos; Santos-Muñoz, Daniel; Simarro, Juan

    2011-05-01

    Numerical weather prediction (NWP) models (including mesoscale) have limitations when it comes to dealing with severe weather events because extreme weather is highly unpredictable, even in the short range. A probabilistic forecast based on an ensemble of slightly different model runs may help to address this issue. Among other ensemble techniques, Multimodel ensemble prediction systems (EPSs) are proving to be useful for adding probabilistic value to mesoscale deterministic models. A Multimodel Short Range Ensemble Prediction System (SREPS) focused on forecasting the weather up to 72 h has been developed at the Spanish Meteorological Service (AEMET). The system uses five different limited area models (LAMs), namely HIRLAM (HIRLAM Consortium), HRM (DWD), the UM (UKMO), MM5 (PSU/NCAR) and COSMO (COSMO Consortium). These models run with initial and boundary conditions provided by five different global deterministic models, namely IFS (ECMWF), UM (UKMO), GME (DWD), GFS (NCEP) and CMC (MSC). AEMET-SREPS (AE) validation on the large-scale flow, using ECMWF analysis, shows a consistent and slightly underdispersive system. For surface parameters, the system shows high skill forecasting binary events. 24-h precipitation probabilistic forecasts are verified using an up-scaling grid of observations from European high-resolution precipitation networks, and compared with ECMWF-EPS (EC).

  19. Ensemble forecast of human West Nile virus cases and mosquito infection rates

    NASA Astrophysics Data System (ADS)

    Defelice, Nicholas B.; Little, Eliza; Campbell, Scott R.; Shaman, Jeffrey

    2017-02-01

    West Nile virus (WNV) is now endemic in the continental United States; however, our ability to predict spillover transmission risk and human WNV cases remains limited. Here we develop a model depicting WNV transmission dynamics, which we optimize using a data assimilation method and two observed data streams, mosquito infection rates and reported human WNV cases. The coupled model-inference framework is then used to generate retrospective ensemble forecasts of historical WNV outbreaks in Long Island, New York for 2001-2014. Accurate forecasts of mosquito infection rates are generated before peak infection, and >65% of forecasts accurately predict seasonal total human WNV cases up to 9 weeks before the past reported case. This work provides the foundation for implementation of a statistically rigorous system for real-time forecast of seasonal outbreaks of WNV.

  20. Ensemble forecast of human West Nile virus cases and mosquito infection rates.

    PubMed

    DeFelice, Nicholas B; Little, Eliza; Campbell, Scott R; Shaman, Jeffrey

    2017-02-24

    West Nile virus (WNV) is now endemic in the continental United States; however, our ability to predict spillover transmission risk and human WNV cases remains limited. Here we develop a model depicting WNV transmission dynamics, which we optimize using a data assimilation method and two observed data streams, mosquito infection rates and reported human WNV cases. The coupled model-inference framework is then used to generate retrospective ensemble forecasts of historical WNV outbreaks in Long Island, New York for 2001-2014. Accurate forecasts of mosquito infection rates are generated before peak infection, and >65% of forecasts accurately predict seasonal total human WNV cases up to 9 weeks before the past reported case. This work provides the foundation for implementation of a statistically rigorous system for real-time forecast of seasonal outbreaks of WNV.

Top