Sample records for forecasting system based

  1. The Wind Forecast Improvement Project (WFIP). A Public/Private Partnership for Improving Short Term Wind Energy Forecasts and Quantifying the Benefits of Utility Operations -- the Northern Study Area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finley, Cathy

    2014-04-30

    This report contains the results from research aimed at improving short-range (0-6 hour) hub-height wind forecasts in the NOAA weather forecast models through additional data assimilation and model physics improvements for use in wind energy forecasting. Additional meteorological observing platforms including wind profilers, sodars, and surface stations were deployed for this study by NOAA and DOE, and additional meteorological data at or near wind turbine hub height were provided by South Dakota State University and WindLogics/NextEra Energy Resources over a large geographical area in the U.S. Northern Plains for assimilation into NOAA research weather forecast models. The resulting improvements inmore » wind energy forecasts based on the research weather forecast models (with the additional data assimilation and model physics improvements) were examined in many different ways and compared with wind energy forecasts based on the current operational weather forecast models to quantify the forecast improvements important to power grid system operators and wind plant owners/operators participating in energy markets. Two operational weather forecast models (OP_RUC, OP_RAP) and two research weather forecast models (ESRL_RAP, HRRR) were used as the base wind forecasts for generating several different wind power forecasts for the NextEra Energy wind plants in the study area. Power forecasts were generated from the wind forecasts in a variety of ways, from very simple to quite sophisticated, as they might be used by a wide range of both general users and commercial wind energy forecast vendors. The error characteristics of each of these types of forecasts were examined and quantified using bulk error statistics for both the local wind plant and the system aggregate forecasts. The wind power forecast accuracy was also evaluated separately for high-impact wind energy ramp events. The overall bulk error statistics calculated over the first six hours of the forecasts at both the individual wind plant and at the system-wide aggregate level over the one year study period showed that the research weather model-based power forecasts (all types) had lower overall error rates than the current operational weather model-based power forecasts, both at the individual wind plant level and at the system aggregate level. The bulk error statistics of the various model-based power forecasts were also calculated by season and model runtime/forecast hour as power system operations are more sensitive to wind energy forecast errors during certain times of year and certain times of day. The results showed that there were significant differences in seasonal forecast errors between the various model-based power forecasts. The results from the analysis of the various wind power forecast errors by model runtime and forecast hour showed that the forecast errors were largest during the times of day that have increased significance to power system operators (the overnight hours and the morning/evening boundary layer transition periods), but the research weather model-based power forecasts showed improvement over the operational weather model-based power forecasts at these times.« less

  2. Short-Term Distribution System State Forecast Based on Optimal Synchrophasor Sensor Placement and Extreme Learning Machine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Huaiguang; Zhang, Yingchen

    This paper proposes an approach for distribution system state forecasting, which aims to provide an accurate and high speed state forecasting with an optimal synchrophasor sensor placement (OSSP) based state estimator and an extreme learning machine (ELM) based forecaster. Specifically, considering the sensor installation cost and measurement error, an OSSP algorithm is proposed to reduce the number of synchrophasor sensor and keep the whole distribution system numerically and topologically observable. Then, the weighted least square (WLS) based system state estimator is used to produce the training data for the proposed forecaster. Traditionally, the artificial neural network (ANN) and support vectormore » regression (SVR) are widely used in forecasting due to their nonlinear modeling capabilities. However, the ANN contains heavy computation load and the best parameters for SVR are difficult to obtain. In this paper, the ELM, which overcomes these drawbacks, is used to forecast the future system states with the historical system states. The proposed approach is effective and accurate based on the testing results.« less

  3. Value of long-term streamflow forecast to reservoir operations for water supply in snow-dominated catchments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anghileri, Daniela; Voisin, Nathalie; Castelletti, Andrea F.

    In this study, we develop a forecast-based adaptive control framework for Oroville reservoir, California, to assess the value of seasonal and inter-annual forecasts for reservoir operation.We use an Ensemble Streamflow Prediction (ESP) approach to generate retrospective, one-year-long streamflow forecasts based on the Variable Infiltration Capacity hydrology model. The optimal sequence of daily release decisions from the reservoir is then determined by Model Predictive Control, a flexible and adaptive optimization scheme.We assess the forecast value by comparing system performance based on the ESP forecasts with that based on climatology and a perfect forecast. In addition, we evaluate system performance based onmore » a synthetic forecast, which is designed to isolate the contribution of seasonal and inter-annual forecast skill to the overall value of the ESP forecasts.Using the same ESP forecasts, we generalize our results by evaluating forecast value as a function of forecast skill, reservoir features, and demand. Our results show that perfect forecasts are valuable when the water demand is high and the reservoir is sufficiently large to allow for annual carry-over. Conversely, ESP forecast value is highest when the reservoir can shift water on a seasonal basis.On average, for the system evaluated here, the overall ESP value is 35% less than the perfect forecast value. The inter-annual component of the ESP forecast contributes 20-60% of the total forecast value. Improvements in the seasonal component of the ESP forecast would increase the overall ESP forecast value between 15 and 20%.« less

  4. Self-Organizing Maps-based ocean currents forecasting system.

    PubMed

    Vilibić, Ivica; Šepić, Jadranka; Mihanović, Hrvoje; Kalinić, Hrvoje; Cosoli, Simone; Janeković, Ivica; Žagar, Nedjeljka; Jesenko, Blaž; Tudor, Martina; Dadić, Vlado; Ivanković, Damir

    2016-03-16

    An ocean surface currents forecasting system, based on a Self-Organizing Maps (SOM) neural network algorithm, high-frequency (HF) ocean radar measurements and numerical weather prediction (NWP) products, has been developed for a coastal area of the northern Adriatic and compared with operational ROMS-derived surface currents. The two systems differ significantly in architecture and algorithms, being based on either unsupervised learning techniques or ocean physics. To compare performance of the two methods, their forecasting skills were tested on independent datasets. The SOM-based forecasting system has a slightly better forecasting skill, especially during strong wind conditions, with potential for further improvement when data sets of higher quality and longer duration are used for training.

  5. Self-Organizing Maps-based ocean currents forecasting system

    PubMed Central

    Vilibić, Ivica; Šepić, Jadranka; Mihanović, Hrvoje; Kalinić, Hrvoje; Cosoli, Simone; Janeković, Ivica; Žagar, Nedjeljka; Jesenko, Blaž; Tudor, Martina; Dadić, Vlado; Ivanković, Damir

    2016-01-01

    An ocean surface currents forecasting system, based on a Self-Organizing Maps (SOM) neural network algorithm, high-frequency (HF) ocean radar measurements and numerical weather prediction (NWP) products, has been developed for a coastal area of the northern Adriatic and compared with operational ROMS-derived surface currents. The two systems differ significantly in architecture and algorithms, being based on either unsupervised learning techniques or ocean physics. To compare performance of the two methods, their forecasting skills were tested on independent datasets. The SOM-based forecasting system has a slightly better forecasting skill, especially during strong wind conditions, with potential for further improvement when data sets of higher quality and longer duration are used for training. PMID:26979129

  6. Action-based flood forecasting for triggering humanitarian action

    NASA Astrophysics Data System (ADS)

    Coughlan de Perez, Erin; van den Hurk, Bart; van Aalst, Maarten K.; Amuron, Irene; Bamanya, Deus; Hauser, Tristan; Jongma, Brenden; Lopez, Ana; Mason, Simon; Mendler de Suarez, Janot; Pappenberger, Florian; Rueth, Alexandra; Stephens, Elisabeth; Suarez, Pablo; Wagemaker, Jurjen; Zsoter, Ervin

    2016-09-01

    Too often, credible scientific early warning information of increased disaster risk does not result in humanitarian action. With financial resources tilted heavily towards response after a disaster, disaster managers have limited incentive and ability to process complex scientific data, including uncertainties. These incentives are beginning to change, with the advent of several new forecast-based financing systems that provide funding based on a forecast of an extreme event. Given the changing landscape, here we demonstrate a method to select and use appropriate forecasts for specific humanitarian disaster prevention actions, even in a data-scarce location. This action-based forecasting methodology takes into account the parameters of each action, such as action lifetime, when verifying a forecast. Forecasts are linked with action based on an understanding of (1) the magnitude of previous flooding events and (2) the willingness to act "in vain" for specific actions. This is applied in the context of the Uganda Red Cross Society forecast-based financing pilot project, with forecasts from the Global Flood Awareness System (GloFAS). Using this method, we define the "danger level" of flooding, and we select the probabilistic forecast triggers that are appropriate for specific actions. Results from this methodology can be applied globally across hazards and fed into a financing system that ensures that automatic, pre-funded early action will be triggered by forecasts.

  7. 3D cloud detection and tracking system for solar forecast using multiple sky imagers

    DOE PAGES

    Peng, Zhenzhou; Yu, Dantong; Huang, Dong; ...

    2015-06-23

    We propose a system for forecasting short-term solar irradiance based on multiple total sky imagers (TSIs). The system utilizes a novel method of identifying and tracking clouds in three-dimensional space and an innovative pipeline for forecasting surface solar irradiance based on the image features of clouds. First, we develop a supervised classifier to detect clouds at the pixel level and output cloud mask. In the next step, we design intelligent algorithms to estimate the block-wise base height and motion of each cloud layer based on images from multiple TSIs. Thus, this information is then applied to stitch images together intomore » larger views, which are then used for solar forecasting. We examine the system’s ability to track clouds under various cloud conditions and investigate different irradiance forecast models at various sites. We confirm that this system can 1) robustly detect clouds and track layers, and 2) extract the significant global and local features for obtaining stable irradiance forecasts with short forecast horizons from the obtained images. Finally, we vet our forecasting system at the 32-megawatt Long Island Solar Farm (LISF). Compared with the persistent model, our system achieves at least a 26% improvement for all irradiance forecasts between one and fifteen minutes.« less

  8. Winter wheat quality monitoring and forecasting system based on remote sensing and environmental factors

    NASA Astrophysics Data System (ADS)

    Haiyang, Yu; Yanmei, Liu; Guijun, Yang; Xiaodong, Yang; Dong, Ren; Chenwei, Nie

    2014-03-01

    To achieve dynamic winter wheat quality monitoring and forecasting in larger scale regions, the objective of this study was to design and develop a winter wheat quality monitoring and forecasting system by using a remote sensing index and environmental factors. The winter wheat quality trend was forecasted before the harvest and quality was monitored after the harvest, respectively. The traditional quality-vegetation index from remote sensing monitoring and forecasting models were improved. Combining with latitude information, the vegetation index was used to estimate agronomy parameters which were related with winter wheat quality in the early stages for forecasting the quality trend. A combination of rainfall in May, temperature in May, illumination at later May, the soil available nitrogen content and other environmental factors established the quality monitoring model. Compared with a simple quality-vegetation index, the remote sensing monitoring and forecasting model used in this system get greatly improved accuracy. Winter wheat quality was monitored and forecasted based on the above models, and this system was completed based on WebGIS technology. Finally, in 2010 the operation process of winter wheat quality monitoring system was presented in Beijing, the monitoring and forecasting results was outputted as thematic maps.

  9. The potential of radar-based ensemble forecasts for flash-flood early warning in the southern Swiss Alps

    NASA Astrophysics Data System (ADS)

    Liechti, K.; Panziera, L.; Germann, U.; Zappa, M.

    2013-10-01

    This study explores the limits of radar-based forecasting for hydrological runoff prediction. Two novel radar-based ensemble forecasting chains for flash-flood early warning are investigated in three catchments in the southern Swiss Alps and set in relation to deterministic discharge forecasts for the same catchments. The first radar-based ensemble forecasting chain is driven by NORA (Nowcasting of Orographic Rainfall by means of Analogues), an analogue-based heuristic nowcasting system to predict orographic rainfall for the following eight hours. The second ensemble forecasting system evaluated is REAL-C2, where the numerical weather prediction COSMO-2 is initialised with 25 different initial conditions derived from a four-day nowcast with the radar ensemble REAL. Additionally, three deterministic forecasting chains were analysed. The performance of these five flash-flood forecasting systems was analysed for 1389 h between June 2007 and December 2010 for which NORA forecasts were issued, due to the presence of orographic forcing. A clear preference was found for the ensemble approach. Discharge forecasts perform better when forced by NORA and REAL-C2 rather then by deterministic weather radar data. Moreover, it was observed that using an ensemble of initial conditions at the forecast initialisation, as in REAL-C2, significantly improved the forecast skill. These forecasts also perform better then forecasts forced by ensemble rainfall forecasts (NORA) initialised form a single initial condition of the hydrological model. Thus the best results were obtained with the REAL-C2 forecasting chain. However, for regions where REAL cannot be produced, NORA might be an option for forecasting events triggered by orographic precipitation.

  10. Short-Term State Forecasting-Based Optimal Voltage Regulation in Distribution Systems: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Rui; Jiang, Huaiguang; Zhang, Yingchen

    2017-05-17

    A novel short-term state forecasting-based optimal power flow (OPF) approach for distribution system voltage regulation is proposed in this paper. An extreme learning machine (ELM) based state forecaster is developed to accurately predict system states (voltage magnitudes and angles) in the near future. Based on the forecast system states, a dynamically weighted three-phase AC OPF problem is formulated to minimize the voltage violations with higher penalization on buses which are forecast to have higher voltage violations in the near future. By solving the proposed OPF problem, the controllable resources in the system are optimally coordinated to alleviate the potential severemore » voltage violations and improve the overall voltage profile. The proposed approach has been tested in a 12-bus distribution system and simulation results are presented to demonstrate the performance of the proposed approach.« less

  11. Distributed HUC-based modeling with SUMMA for ensemble streamflow forecasting over large regional domains.

    NASA Astrophysics Data System (ADS)

    Saharia, M.; Wood, A.; Clark, M. P.; Bennett, A.; Nijssen, B.; Clark, E.; Newman, A. J.

    2017-12-01

    Most operational streamflow forecasting systems rely on a forecaster-in-the-loop approach in which some parts of the forecast workflow require an experienced human forecaster. But this approach faces challenges surrounding process reproducibility, hindcasting capability, and extension to large domains. The operational hydrologic community is increasingly moving towards `over-the-loop' (completely automated) large-domain simulations yet recent developments indicate a widespread lack of community knowledge about the strengths and weaknesses of such systems for forecasting. A realistic representation of land surface hydrologic processes is a critical element for improving forecasts, but often comes at the substantial cost of forecast system agility and efficiency. While popular grid-based models support the distributed representation of land surface processes, intermediate-scale Hydrologic Unit Code (HUC)-based modeling could provide a more efficient and process-aligned spatial discretization, reducing the need for tradeoffs between model complexity and critical forecasting requirements such as ensemble methods and comprehensive model calibration. The National Center for Atmospheric Research is collaborating with the University of Washington, the Bureau of Reclamation and the USACE to implement, assess, and demonstrate real-time, over-the-loop distributed streamflow forecasting for several large western US river basins and regions. In this presentation, we present early results from short to medium range hydrologic and streamflow forecasts for the Pacific Northwest (PNW). We employ a real-time 1/16th degree daily ensemble model forcings as well as downscaled Global Ensemble Forecasting System (GEFS) meteorological forecasts. These datasets drive an intermediate-scale configuration of the Structure for Unifying Multiple Modeling Alternatives (SUMMA) model, which represents the PNW using over 11,700 HUCs. The system produces not only streamflow forecasts (using the MizuRoute channel routing tool) but also distributed model states such as soil moisture and snow water equivalent. We also describe challenges in distributed model-based forecasting, including the application and early results of real-time hydrologic data assimilation.

  12. Short Term Load Forecasting with Fuzzy Logic Systems for power system planning and reliability-A Review

    NASA Astrophysics Data System (ADS)

    Holmukhe, R. M.; Dhumale, Mrs. Sunita; Chaudhari, Mr. P. S.; Kulkarni, Mr. P. P.

    2010-10-01

    Load forecasting is very essential to the operation of Electricity companies. It enhances the energy efficient and reliable operation of power system. Forecasting of load demand data forms an important component in planning generation schedules in a power system. The purpose of this paper is to identify issues and better method for load foecasting. In this paper we focus on fuzzy logic system based short term load forecasting. It serves as overview of the state of the art in the intelligent techniques employed for load forecasting in power system planning and reliability. Literature review has been conducted and fuzzy logic method has been summarized to highlight advantages and disadvantages of this technique. The proposed technique for implementing fuzzy logic based forecasting is by Identification of the specific day and by using maximum and minimum temperature for that day and finally listing the maximum temperature and peak load for that day. The results show that Load forecasting where there are considerable changes in temperature parameter is better dealt with Fuzzy Logic system method as compared to other short term forecasting techniques.

  13. Satellite based Ocean Forecasting, the SOFT project

    NASA Astrophysics Data System (ADS)

    Stemmann, L.; Tintoré, J.; Moneris, S.

    2003-04-01

    The knowledge of future oceanic conditions would have enormous impact on human marine related areas. For such reasons, a number of international efforts are being carried out to obtain reliable and manageable ocean forecasting systems. Among the possible techniques that can be used to estimate the near future states of the ocean, an ocean forecasting system based on satellite imagery is developped through the Satelitte based Ocean ForecasTing project (SOFT). SOFT, established by the European Commission, considers the development of a forecasting system of the ocean space-time variability based on satellite data by using Artificial Intelligence techniques. This system will be merged with numerical simulation approaches, via assimilation techniques, to get a hybrid SOFT-numerical forecasting system of improved performance. The results of the project will provide efficient forecasting of sea-surface temperature structures, currents, dynamic height, and biological activity associated to chlorophyll fields. All these quantities could give valuable information on the planning and management of human activities in marine environments such as navigation, fisheries, pollution control, or coastal management. A detailed identification of present or new needs and potential end-users concerned by such an operational tool is being performed. The project would study solutions adapted to these specific needs.

  14. A seasonal hydrologic ensemble prediction system for water resource management

    NASA Astrophysics Data System (ADS)

    Luo, L.; Wood, E. F.

    2006-12-01

    A seasonal hydrologic ensemble prediction system, developed for the Ohio River basin, has been improved and expanded to several other regions including the Eastern U.S., Africa and East Asia. The prediction system adopts the traditional Extended Streamflow Prediction (ESP) approach, utilizing the VIC (Variable Infiltration Capacity) hydrological model as the central tool for producing ensemble prediction of soil moisture, snow and streamflow with lead times up to 6-month. VIC is forced by observed meteorology to estimate the hydrological initial condition prior to the forecast, but during the forecast period the atmospheric forcing comes from statistically downscaled, seasonal forecast from dynamic climate models. The seasonal hydrologic ensemble prediction system is currently producing realtime seasonal hydrologic forecast for these regions on a monthly basis. Using hindcasts from a 19-year period (1981-1999), during which seasonal hindcasts from NCEP Climate Forecast System (CFS) and European Union DEMETER project are available, we evaluate the performance of the forecast system over our forecast regions. The evaluation shows that the prediction system using the current forecast approach is able to produce reliable and accurate precipitation, soil moisture and streamflow predictions. The overall skill is much higher then the traditional ESP. In particular, forecasts based on multiple climate model forecast are more skillful than single model-based forecast. This emphasizes the significant need for producing seasonal climate forecast with multiple climate models for hydrologic applications. Forecast from this system is expected to provide very valuable information about future hydrologic states and associated risks for end users, including water resource management and financial sectors.

  15. Probabilistic empirical prediction of seasonal climate: evaluation and potential applications

    NASA Astrophysics Data System (ADS)

    Dieppois, B.; Eden, J.; van Oldenborgh, G. J.

    2017-12-01

    Preparing for episodes with risks of anomalous weather a month to a year ahead is an important challenge for governments, non-governmental organisations, and private companies and is dependent on the availability of reliable forecasts. The majority of operational seasonal forecasts are made using process-based dynamical models, which are complex, computationally challenging and prone to biases. Empirical forecast approaches built on statistical models to represent physical processes offer an alternative to dynamical systems and can provide either a benchmark for comparison or independent supplementary forecasts. Here, we present a new evaluation of an established empirical system used to predict seasonal climate across the globe. Forecasts for surface air temperature, precipitation and sea level pressure are produced by the KNMI Probabilistic Empirical Prediction (K-PREP) system every month and disseminated via the KNMI Climate Explorer (climexp.knmi.nl). K-PREP is based on multiple linear regression and built on physical principles to the fullest extent with predictive information taken from the global CO2-equivalent concentration, large-scale modes of variability in the climate system and regional-scale information. K-PREP seasonal forecasts for the period 1981-2016 will be compared with corresponding dynamically generated forecasts produced by operational forecast systems. While there are many regions of the world where empirical forecast skill is extremely limited, several areas are identified where K-PREP offers comparable skill to dynamical systems. We discuss two key points in the future development and application of the K-PREP system: (a) the potential for K-PREP to provide a more useful basis for reference forecasts than those based on persistence or climatology, and (b) the added value of including K-PREP forecast information in multi-model forecast products, at least for known regions of good skill. We also discuss the potential development of stakeholder-driven applications of the K-PREP system, including empirical forecasts for circumboreal fire activity.

  16. Hybrid forecasting of chaotic processes: Using machine learning in conjunction with a knowledge-based model

    NASA Astrophysics Data System (ADS)

    Pathak, Jaideep; Wikner, Alexander; Fussell, Rebeckah; Chandra, Sarthak; Hunt, Brian R.; Girvan, Michelle; Ott, Edward

    2018-04-01

    A model-based approach to forecasting chaotic dynamical systems utilizes knowledge of the mechanistic processes governing the dynamics to build an approximate mathematical model of the system. In contrast, machine learning techniques have demonstrated promising results for forecasting chaotic systems purely from past time series measurements of system state variables (training data), without prior knowledge of the system dynamics. The motivation for this paper is the potential of machine learning for filling in the gaps in our underlying mechanistic knowledge that cause widely-used knowledge-based models to be inaccurate. Thus, we here propose a general method that leverages the advantages of these two approaches by combining a knowledge-based model and a machine learning technique to build a hybrid forecasting scheme. Potential applications for such an approach are numerous (e.g., improving weather forecasting). We demonstrate and test the utility of this approach using a particular illustrative version of a machine learning known as reservoir computing, and we apply the resulting hybrid forecaster to a low-dimensional chaotic system, as well as to a high-dimensional spatiotemporal chaotic system. These tests yield extremely promising results in that our hybrid technique is able to accurately predict for a much longer period of time than either its machine-learning component or its model-based component alone.

  17. Research on light rail electric load forecasting based on ARMA model

    NASA Astrophysics Data System (ADS)

    Huang, Yifan

    2018-04-01

    The article compares a variety of time series models and combines the characteristics of power load forecasting. Then, a light load forecasting model based on ARMA model is established. Based on this model, a light rail system is forecasted. The prediction results show that the accuracy of the model prediction is high.

  18. An assessment of a North American Multi-Model Ensemble (NMME) based global drought early warning forecast system

    NASA Astrophysics Data System (ADS)

    Wood, E. F.; Yuan, X.; Sheffield, J.; Pan, M.; Roundy, J.

    2013-12-01

    One of the key recommendations of the WCRP Global Drought Information System (GDIS) workshop is to develop an experimental real-time global monitoring and prediction system. While great advances has been made in global drought monitoring based on satellite observations and model reanalysis data, global drought forecasting has been stranded in part due to the limited skill both in climate forecast models and global hydrologic predictions. Having been working on drought monitoring and forecasting over USA for more than a decade, the Princeton land surface hydrology group is now developing an experimental global drought early warning system that is based on multiple climate forecast models and a calibrated global hydrologic model. In this presentation, we will test its capability in seasonal forecasting of meteorological, agricultural and hydrologic droughts over global major river basins, using precipitation, soil moisture and streamflow forecasts respectively. Based on the joint probability distribution between observations using Princeton's global drought monitoring system and model hindcasts and real-time forecasts from North American Multi-Model Ensemble (NMME) project, we (i) bias correct the monthly precipitation and temperature forecasts from multiple climate forecast models, (ii) downscale them to a daily time scale, and (iii) use them to drive the calibrated VIC model to produce global drought forecasts at a 1-degree resolution. A parallel run using the ESP forecast method, which is based on resampling historical forcings, is also carried out for comparison. Analysis is being conducted over global major river basins, with multiple drought indices that have different time scales and characteristics. The meteorological drought forecast does not have uncertainty from hydrologic models and can be validated directly against observations - making the validation an 'apples-to-apples' comparison. Preliminary results for the evaluation of meteorological drought onset hindcasts indicate that climate models increase drought detectability over ESP by 31%-81%. However, less than 30% of the global drought onsets can be detected by climate models. The missed drought events are associated with weak ENSO signals and lower potential predictability. Due to the high false alarms from climate models, the reliability is more important than sharpness for a skillful probabilistic drought onset forecast. Validations and skill assessments for agricultural and hydrologic drought forecasts are carried out using soil moisture and streamflow output from the VIC land surface model (LSM) forced by a global forcing data set. Given our previous drought forecasting experiences over USA and Africa, validating the hydrologic drought forecasting is a significant challenge for a global drought early warning system.

  19. The value of information as applied to the Landsat Follow-on benefit-cost analysis

    NASA Technical Reports Server (NTRS)

    Wood, D. B.

    1978-01-01

    An econometric model was run to compare the current forecasting system with a hypothetical (Landsat Follow-on) space-based system. The baseline current system was a hybrid of USDA SRS domestic forecasts and the best known foreign data. The space-based system improved upon the present Landsat by the higher spatial resolution capability of the thematic mapper. This satellite system is a major improvement for foreign forecasts but no better than SRS for domestic forecasts. The benefit analysis was concentrated on the use of Landsat Follow-on to forecast world wheat production. Results showed that it was possible to quantify the value of satellite information and that there are significant benefits in more timely and accurate crop condition information.

  20. Flash-flood early warning using weather radar data: from nowcasting to forecasting

    NASA Astrophysics Data System (ADS)

    Liechti, Katharina; Panziera, Luca; Germann, Urs; Zappa, Massimiliano

    2013-04-01

    In our study we explore the limits of radar-based forecasting for hydrological runoff prediction. Two novel probabilistic radar-based forecasting chains for flash-flood early warning are investigated in three catchments in the Southern Swiss Alps and set in relation to deterministic discharge forecast for the same catchments. The first probabilistic radar-based forecasting chain is driven by NORA (Nowcasting of Orographic Rainfall by means of Analogues), an analogue-based heuristic nowcasting system to predict orographic rainfall for the following eight hours. The second probabilistic forecasting system evaluated is REAL-C2, where the numerical weather prediction COSMO-2 is initialized with 25 different initial conditions derived from a four-day nowcast with the radar ensemble REAL. Additionally, three deterministic forecasting chains were analysed. The performance of these five flash-flood forecasting systems was analysed for 1389 hours between June 2007 and December 2010 for which NORA forecasts were issued, due to the presence of orographic forcing. We found a clear preference for the probabilistic approach. Discharge forecasts perform better when forced by NORA rather than by a persistent radar QPE for lead times up to eight hours and for all discharge thresholds analysed. The best results were, however, obtained with the REAL-C2 forecasting chain, which was also remarkably skilful even with the highest thresholds. However, for regions where REAL cannot be produced, NORA might be an option for forecasting events triggered by orographic forcing.

  1. Flash-flood early warning using weather radar data: from nowcasting to forecasting

    NASA Astrophysics Data System (ADS)

    Liechti, K.; Panziera, L.; Germann, U.; Zappa, M.

    2013-01-01

    This study explores the limits of radar-based forecasting for hydrological runoff prediction. Two novel probabilistic radar-based forecasting chains for flash-flood early warning are investigated in three catchments in the Southern Swiss Alps and set in relation to deterministic discharge forecast for the same catchments. The first probabilistic radar-based forecasting chain is driven by NORA (Nowcasting of Orographic Rainfall by means of Analogues), an analogue-based heuristic nowcasting system to predict orographic rainfall for the following eight hours. The second probabilistic forecasting system evaluated is REAL-C2, where the numerical weather prediction COSMO-2 is initialized with 25 different initial conditions derived from a four-day nowcast with the radar ensemble REAL. Additionally, three deterministic forecasting chains were analysed. The performance of these five flash-flood forecasting systems was analysed for 1389 h between June 2007 and December 2010 for which NORA forecasts were issued, due to the presence of orographic forcing. We found a clear preference for the probabilistic approach. Discharge forecasts perform better when forced by NORA rather than by a persistent radar QPE for lead times up to eight hours and for all discharge thresholds analysed. The best results were, however, obtained with the REAL-C2 forecasting chain, which was also remarkably skilful even with the highest thresholds. However, for regions where REAL cannot be produced, NORA might be an option for forecasting events triggered by orographic precipitation.

  2. An experimental system for flood risk forecasting at global scale

    NASA Astrophysics Data System (ADS)

    Alfieri, L.; Dottori, F.; Kalas, M.; Lorini, V.; Bianchi, A.; Hirpa, F. A.; Feyen, L.; Salamon, P.

    2016-12-01

    Global flood forecasting and monitoring systems are nowadays a reality and are being applied by an increasing range of users and practitioners in disaster risk management. Furthermore, there is an increasing demand from users to integrate flood early warning systems with risk based forecasts, combining streamflow estimations with expected inundated areas and flood impacts. To this end, we have developed an experimental procedure for near-real time flood mapping and impact assessment based on the daily forecasts issued by the Global Flood Awareness System (GloFAS). The methodology translates GloFAS streamflow forecasts into event-based flood hazard maps based on the predicted flow magnitude and the forecast lead time and a database of flood hazard maps with global coverage. Flood hazard maps are then combined with exposure and vulnerability information to derive flood risk. Impacts of the forecasted flood events are evaluated in terms of flood prone areas, potential economic damage, and affected population, infrastructures and cities. To further increase the reliability of the proposed methodology we integrated model-based estimations with an innovative methodology for social media monitoring, which allows for real-time verification of impact forecasts. The preliminary tests provided good results and showed the potential of the developed real-time operational procedure in helping emergency response and management. In particular, the link with social media is crucial for improving the accuracy of impact predictions.

  3. First Assessment of Itaipu Dam Ensemble Inflow Forecasting System

    NASA Astrophysics Data System (ADS)

    Mainardi Fan, Fernando; Machado Vieira Lisboa, Auder; Gomes Villa Trinidad, Giovanni; Rógenes Monteiro Pontes, Paulo; Collischonn, Walter; Tucci, Carlos; Costa Buarque, Diogo

    2017-04-01

    Inflow forecasting for Hydropower Plants (HPP) Dams is one of the prominent uses for hydrological forecasts. A very important HPP in terms of energy generation for South America is the Itaipu Dam, located in the Paraná River, between Brazil and Paraguay countries, with a drainage area of 820.000km2. In this work, we present the development of an ensemble forecasting system for Itaipu, operational since November 2015. The system is based in the MGB-IPH hydrological model, includes hydrodynamics simulations of the main river, and is run every day morning forced by seven different rainfall forecasts: (i) CPTEC-ETA 15km; (ii) CPTEC-BRAMS 5km; (iii) SIMEPAR WRF Ferrier; (iv) SIMEPAR WRF Lin; (v) SIMEPAR WRF Morrison; (vi) SIMEPAR WRF WDM6; (vii) SIMEPAR MEDIAN. The last one (vii) corresponds to the median value of SIMEPAR WRF model versions (iii to vi) rainfall forecasts. Besides the developed system, the "traditional" method for inflow forecasting generation for the Itaipu Dam is also run every day. This traditional method consists in the approximation of the future inflow based on the discharge tendency of upstream telemetric gauges. Nowadays, after all the forecasts are run, the hydrology team of Itaipu develop a consensus forecast, based on all obtained results, which is the one used for the Itaipu HPP Dam operation. After one year of operation a first evaluation of the Ensemble Forecasting System was conducted. Results show that the system performs satisfactory for rising flows up to five days lead time. However, some false alarms were also issued by most ensemble members in some cases. And not in all cases the system performed better than the traditional method, especially during hydrograph recessions. In terms of meteorological forecasts, some members usage are being discontinued. In terms of the hydrodynamics representation, it seems that a better information of rivers cross section could improve hydrographs recession curves forecasts. Those opportunities for improvements are currently being addressed in the system next update.

  4. Baseline and target values for regional and point PV power forecasts: Toward improved solar forecasting

    DOE PAGES

    Zhang, Jie; Hodge, Bri -Mathias; Lu, Siyuan; ...

    2015-11-10

    Accurate solar photovoltaic (PV) power forecasting allows utilities to reliably utilize solar resources on their systems. However, to truly measure the improvements that any new solar forecasting methods provide, it is important to develop a methodology for determining baseline and target values for the accuracy of solar forecasting at different spatial and temporal scales. This paper aims at developing a framework to derive baseline and target values for a suite of generally applicable, value-based, and custom-designed solar forecasting metrics. The work was informed by close collaboration with utility and independent system operator partners. The baseline values are established based onmore » state-of-the-art numerical weather prediction models and persistence models in combination with a radiative transfer model. The target values are determined based on the reduction in the amount of reserves that must be held to accommodate the uncertainty of PV power output. The proposed reserve-based methodology is a reasonable and practical approach that can be used to assess the economic benefits gained from improvements in accuracy of solar forecasting. Lastly, the financial baseline and targets can be translated back to forecasting accuracy metrics and requirements, which will guide research on solar forecasting improvements toward the areas that are most beneficial to power systems operations.« less

  5. An expert system-based approach to prediction of year-to-year climatic variations in the North Atlantic region

    NASA Astrophysics Data System (ADS)

    Rodionov, S. N.; Martin, J. H.

    1999-07-01

    A novel approach to climate forecasting on an interannual time scale is described. The approach is based on concepts and techniques from artificial intelligence and expert systems. The suitability of this approach to climate diagnostics and forecasting problems and its advantages compared with conventional forecasting techniques are discussed. The article highlights some practical aspects of the development of climatic expert systems (CESs) and describes an implementation of such a system for the North Atlantic (CESNA). Particular attention is paid to the content of CESNA's knowledge base and those conditions that make climatic forecasts one to several years in advance possible. A detailed evaluation of the quality of the experimental real-time forecasts made by CESNA for the winters of 1995-1996, 1996-1997 and 1997-1998 are presented.

  6. Baseline and Target Values for PV Forecasts: Toward Improved Solar Power Forecasting: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jie; Hodge, Bri-Mathias; Lu, Siyuan

    2015-08-05

    Accurate solar power forecasting allows utilities to get the most out of the solar resources on their systems. To truly measure the improvements that any new solar forecasting methods can provide, it is important to first develop (or determine) baseline and target solar forecasting at different spatial and temporal scales. This paper aims to develop baseline and target values for solar forecasting metrics. These were informed by close collaboration with utility and independent system operator partners. The baseline values are established based on state-of-the-art numerical weather prediction models and persistence models. The target values are determined based on the reductionmore » in the amount of reserves that must be held to accommodate the uncertainty of solar power output. forecasting metrics. These were informed by close collaboration with utility and independent system operator partners. The baseline values are established based on state-of-the-art numerical weather prediction models and persistence models. The target values are determined based on the reduction in the amount of reserves that must be held to accommodate the uncertainty of solar power output.« less

  7. A framework for improving a seasonal hydrological forecasting system using sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Arnal, Louise; Pappenberger, Florian; Smith, Paul; Cloke, Hannah

    2017-04-01

    Seasonal streamflow forecasts are of great value for the socio-economic sector, for applications such as navigation, flood and drought mitigation and reservoir management for hydropower generation and water allocation to agriculture and drinking water. However, as we speak, the performance of dynamical seasonal hydrological forecasting systems (systems based on running seasonal meteorological forecasts through a hydrological model to produce seasonal hydrological forecasts) is still limited in space and time. In this context, the ESP (Ensemble Streamflow Prediction) remains an attractive forecasting method for seasonal streamflow forecasting as it relies on forcing a hydrological model (starting from the latest observed or simulated initial hydrological conditions) with historical meteorological observations. This makes it cheaper to run than a standard dynamical seasonal hydrological forecasting system, for which the seasonal meteorological forecasts will first have to be produced, while still producing skilful forecasts. There is thus the need to focus resources and time towards improvements in dynamical seasonal hydrological forecasting systems which will eventually lead to significant improvements in the skill of the streamflow forecasts generated. Sensitivity analyses are a powerful tool that can be used to disentangle the relative contributions of the two main sources of errors in seasonal streamflow forecasts, namely the initial hydrological conditions (IHC; e.g., soil moisture, snow cover, initial streamflow, among others) and the meteorological forcing (MF; i.e., seasonal meteorological forecasts of precipitation and temperature, input to the hydrological model). Sensitivity analyses are however most useful if they inform and change current operational practices. To this end, we propose a method to improve the design of a seasonal hydrological forecasting system. This method is based on sensitivity analyses, informing the forecasters as to which element of the forecasting chain (i.e., IHC or MF) could potentially lead to the highest increase in seasonal hydrological forecasting performance, after each forecast update.

  8. Seasonal drought ensemble predictions based on multiple climate models in the upper Han River Basin, China

    NASA Astrophysics Data System (ADS)

    Ma, Feng; Ye, Aizhong; Duan, Qingyun

    2017-03-01

    An experimental seasonal drought forecasting system is developed based on 29-year (1982-2010) seasonal meteorological hindcasts generated by the climate models from the North American Multi-Model Ensemble (NMME) project. This system made use of a bias correction and spatial downscaling method, and a distributed time-variant gain model (DTVGM) hydrologic model. DTVGM was calibrated using observed daily hydrological data and its streamflow simulations achieved Nash-Sutcliffe efficiency values of 0.727 and 0.724 during calibration (1978-1995) and validation (1996-2005) periods, respectively, at the Danjiangkou reservoir station. The experimental seasonal drought forecasting system (known as NMME-DTVGM) is used to generate seasonal drought forecasts. The forecasts were evaluated against the reference forecasts (i.e., persistence forecast and climatological forecast). The NMME-DTVGM drought forecasts have higher detectability and accuracy and lower false alarm rate than the reference forecasts at different lead times (from 1 to 4 months) during the cold-dry season. No apparent advantage is shown in drought predictions during spring and summer seasons because of a long memory of the initial conditions in spring and a lower predictive skill for precipitation in summer. Overall, the NMME-based seasonal drought forecasting system has meaningful skill in predicting drought several months in advance, which can provide critical information for drought preparedness and response planning as well as the sustainable practice of water resource conservation over the basin.

  9. Weather forecasting expert system study

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Weather forecasting is critical to both the Space Transportation System (STS) ground operations and the launch/landing activities at NASA Kennedy Space Center (KSC). The current launch frequency places significant demands on the USAF weather forecasters at the Cape Canaveral Forecasting Facility (CCFF), who currently provide the weather forecasting for all STS operations. As launch frequency increases, KSC's weather forecasting problems will be great magnified. The single most important problem is the shortage of highly skilled forecasting personnel. The development of forecasting expertise is difficult and requires several years of experience. Frequent personnel changes within the forecasting staff jeopardize the accumulation and retention of experience-based weather forecasting expertise. The primary purpose of this project was to assess the feasibility of using Artificial Intelligence (AI) techniques to ameliorate this shortage of experts by capturing aria incorporating the forecasting knowledge of current expert forecasters into a Weather Forecasting Expert System (WFES) which would then be made available to less experienced duty forecasters.

  10. Improving medium-range and seasonal hydroclimate forecasts in the southeast USA

    NASA Astrophysics Data System (ADS)

    Tian, Di

    Accurate hydro-climate forecasts are important for decision making by water managers, agricultural producers, and other stake holders. Numerical weather prediction models and general circulation models may have potential for improving hydro-climate forecasts at different scales. In this study, forecast analogs of the Global Forecast System (GFS) and Global Ensemble Forecast System (GEFS) based on different approaches were evaluated for medium-range reference evapotranspiration (ETo), irrigation scheduling, and urban water demand forecasts in the southeast United States; the Climate Forecast System version 2 (CFSv2) and the North American national multi-model ensemble (NMME) were statistically downscaled for seasonal forecasts of ETo, precipitation (P) and 2-m temperature (T2M) at the regional level. The GFS mean temperature (Tmean), relative humidity, and wind speed (Wind) reforecasts combined with the climatology of Reanalysis 2 solar radiation (Rs) produced higher skill than using the direct GFS output only. Constructed analogs showed slightly higher skill than natural analogs for deterministic forecasts. Both irrigation scheduling driven by the GEFS-based ETo forecasts and GEFS-based ETo forecast skill were generally positive up to one week throughout the year. The GEFS improved ETo forecast skill compared to the GFS. The GEFS-based analog forecasts for the input variables of an operational urban water demand model were skillful when applied in the Tampa Bay area. The modified operational models driven by GEFS analog forecasts showed higher forecast skill than the operational model based on persistence. The results for CFSv2 seasonal forecasts showed maximum temperature (Tmax) and Rs had the greatest influence on ETo. The downscaled Tmax showed the highest predictability, followed by Tmean, Tmin, Rs, and Wind. The CFSv2 model could better predict ETo in cold seasons during El Nino Southern Oscillation (ENSO) events only when the forecast initial condition was in ENSO. Downscaled P and T2M forecasts were produced by directly downscaling the NMME P and T2M output or indirectly using the NMME forecasts of Nino3.4 sea surface temperatures to predict local-scale P and T2M. The indirect method generally showed the highest forecast skill which occurs in cold seasons. The bias-corrected NMME ensemble forecast skill did not outperform the best single model.

  11. Wind Power Forecasting Error Distributions: An International Comparison; Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodge, B. M.; Lew, D.; Milligan, M.

    2012-09-01

    Wind power forecasting is expected to be an important enabler for greater penetration of wind power into electricity systems. Because no wind forecasting system is perfect, a thorough understanding of the errors that do occur can be critical to system operation functions, such as the setting of operating reserve levels. This paper provides an international comparison of the distribution of wind power forecasting errors from operational systems, based on real forecast data. The paper concludes with an assessment of similarities and differences between the errors observed in different locations.

  12. An experimental system for flood risk forecasting and monitoring at global scale

    NASA Astrophysics Data System (ADS)

    Dottori, Francesco; Alfieri, Lorenzo; Kalas, Milan; Lorini, Valerio; Salamon, Peter

    2017-04-01

    Global flood forecasting and monitoring systems are nowadays a reality and are being applied by a wide range of users and practitioners in disaster risk management. Furthermore, there is an increasing demand from users to integrate flood early warning systems with risk based forecasting, combining streamflow estimations with expected inundated areas and flood impacts. Finally, emerging technologies such as crowdsourcing and social media monitoring can play a crucial role in flood disaster management and preparedness. Here, we present some recent advances of an experimental procedure for near-real time flood mapping and impact assessment. The procedure translates in near real-time the daily streamflow forecasts issued by the Global Flood Awareness System (GloFAS) into event-based flood hazard maps, which are then combined with exposure and vulnerability information at global scale to derive risk forecast. Impacts of the forecasted flood events are evaluated in terms of flood prone areas, potential economic damage, and affected population, infrastructures and cities. To increase the reliability of our forecasts we propose the integration of model-based estimations with an innovative methodology for social media monitoring, which allows for real-time verification and correction of impact forecasts. Finally, we present the results of preliminary tests which show the potential of the proposed procedure in supporting emergency response and management.

  13. Short-Term Load Forecasting Based Automatic Distribution Network Reconfiguration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Huaiguang; Ding, Fei; Zhang, Yingchen

    In a traditional dynamic network reconfiguration study, the optimal topology is determined at every scheduled time point by using the real load data measured at that time. The development of the load forecasting technique can provide an accurate prediction of the load power that will happen in a future time and provide more information about load changes. With the inclusion of load forecasting, the optimal topology can be determined based on the predicted load conditions during a longer time period instead of using a snapshot of the load at the time when the reconfiguration happens; thus, the distribution system operatormore » can use this information to better operate the system reconfiguration and achieve optimal solutions. This paper proposes a short-term load forecasting approach to automatically reconfigure distribution systems in a dynamic and pre-event manner. Specifically, a short-term and high-resolution distribution system load forecasting approach is proposed with a forecaster based on support vector regression and parallel parameters optimization. The network reconfiguration problem is solved by using the forecasted load continuously to determine the optimal network topology with the minimum amount of loss at the future time. The simulation results validate and evaluate the proposed approach.« less

  14. Short-Term Load Forecasting-Based Automatic Distribution Network Reconfiguration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Huaiguang; Ding, Fei; Zhang, Yingchen

    In a traditional dynamic network reconfiguration study, the optimal topology is determined at every scheduled time point by using the real load data measured at that time. The development of the load forecasting technique can provide an accurate prediction of the load power that will happen in a future time and provide more information about load changes. With the inclusion of load forecasting, the optimal topology can be determined based on the predicted load conditions during a longer time period instead of using a snapshot of the load at the time when the reconfiguration happens; thus, the distribution system operatormore » can use this information to better operate the system reconfiguration and achieve optimal solutions. This paper proposes a short-term load forecasting approach to automatically reconfigure distribution systems in a dynamic and pre-event manner. Specifically, a short-term and high-resolution distribution system load forecasting approach is proposed with a forecaster based on support vector regression and parallel parameters optimization. The network reconfiguration problem is solved by using the forecasted load continuously to determine the optimal network topology with the minimum amount of loss at the future time. The simulation results validate and evaluate the proposed approach.« less

  15. Short-Term Load Forecasting Based Automatic Distribution Network Reconfiguration: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Huaiguang; Ding, Fei; Zhang, Yingchen

    In the traditional dynamic network reconfiguration study, the optimal topology is determined at every scheduled time point by using the real load data measured at that time. The development of load forecasting technique can provide accurate prediction of load power that will happen in future time and provide more information about load changes. With the inclusion of load forecasting, the optimal topology can be determined based on the predicted load conditions during the longer time period instead of using the snapshot of load at the time when the reconfiguration happens, and thus it can provide information to the distribution systemmore » operator (DSO) to better operate the system reconfiguration to achieve optimal solutions. Thus, this paper proposes a short-term load forecasting based approach for automatically reconfiguring distribution systems in a dynamic and pre-event manner. Specifically, a short-term and high-resolution distribution system load forecasting approach is proposed with support vector regression (SVR) based forecaster and parallel parameters optimization. And the network reconfiguration problem is solved by using the forecasted load continuously to determine the optimal network topology with the minimum loss at the future time. The simulation results validate and evaluate the proposed approach.« less

  16. Verification of Ensemble Forecasts for the New York City Operations Support Tool

    NASA Astrophysics Data System (ADS)

    Day, G.; Schaake, J. C.; Thiemann, M.; Draijer, S.; Wang, L.

    2012-12-01

    The New York City water supply system operated by the Department of Environmental Protection (DEP) serves nine million people. It covers 2,000 square miles of portions of the Catskill, Delaware, and Croton watersheds, and it includes nineteen reservoirs and three controlled lakes. DEP is developing an Operations Support Tool (OST) to support its water supply operations and planning activities. OST includes historical and real-time data, a model of the water supply system complete with operating rules, and lake water quality models developed to evaluate alternatives for managing turbidity in the New York City Catskill reservoirs. OST will enable DEP to manage turbidity in its unfiltered system while satisfying its primary objective of meeting the City's water supply needs, in addition to considering secondary objectives of maintaining ecological flows, supporting fishery and recreation releases, and mitigating downstream flood peaks. The current version of OST relies on statistical forecasts of flows in the system based on recent observed flows. To improve short-term decision making, plans are being made to transition to National Weather Service (NWS) ensemble forecasts based on hydrologic models that account for short-term weather forecast skill, longer-term climate information, as well as the hydrologic state of the watersheds and recent observed flows. To ensure that the ensemble forecasts are unbiased and that the ensemble spread reflects the actual uncertainty of the forecasts, a statistical model has been developed to post-process the NWS ensemble forecasts to account for hydrologic model error as well as any inherent bias and uncertainty in initial model states, meteorological data and forecasts. The post-processor is designed to produce adjusted ensemble forecasts that are consistent with the DEP historical flow sequences that were used to develop the system operating rules. A set of historical hindcasts that is representative of the real-time ensemble forecasts is needed to verify that the post-processed forecasts are unbiased, statistically reliable, and preserve the skill inherent in the "raw" NWS ensemble forecasts. A verification procedure and set of metrics will be presented that provide an objective assessment of ensemble forecasts. The procedure will be applied to both raw ensemble hindcasts and to post-processed ensemble hindcasts. The verification metrics will be used to validate proper functioning of the post-processor and to provide a benchmark for comparison of different types of forecasts. For example, current NWS ensemble forecasts are based on climatology, using each historical year to generate a forecast trace. The NWS Hydrologic Ensemble Forecast System (HEFS) under development will utilize output from both the National Oceanic Atmospheric Administration (NOAA) Global Ensemble Forecast System (GEFS) and the Climate Forecast System (CFS). Incorporating short-term meteorological forecasts and longer-term climate forecast information should provide sharper, more accurate forecasts. Hindcasts from HEFS will enable New York City to generate verification results to validate the new forecasts and further fine-tune system operating rules. Project verification results will be presented for different watersheds across a range of seasons, lead times, and flow levels to assess the quality of the current ensemble forecasts.

  17. Environmental noise forecasting based on support vector machine

    NASA Astrophysics Data System (ADS)

    Fu, Yumei; Zan, Xinwu; Chen, Tianyi; Xiang, Shihan

    2018-01-01

    As an important pollution source, the noise pollution is always the researcher's focus. Especially in recent years, the noise pollution is seriously harmful to the human beings' environment, so the research about the noise pollution is a very hot spot. Some noise monitoring technologies and monitoring systems are applied in the environmental noise test, measurement and evaluation. But, the research about the environmental noise forecasting is weak. In this paper, a real-time environmental noise monitoring system is introduced briefly. This monitoring system is working in Mianyang City, Sichuan Province. It is monitoring and collecting the environmental noise about more than 20 enterprises in this district. Based on the large amount of noise data, the noise forecasting by the Support Vector Machine (SVM) is studied in detail. Compared with the time series forecasting model and the artificial neural network forecasting model, the SVM forecasting model has some advantages such as the smaller data size, the higher precision and stability. The noise forecasting results based on the SVM can provide the important and accuracy reference to the prevention and control of the environmental noise.

  18. Real-time forecasting at weekly timescales of the SST and SLA of the Ligurian Sea with a satellite-based ocean forecasting (SOFT) system

    NASA Astrophysics Data System (ADS)

    ÁLvarez, A.; Orfila, A.; Tintoré, J.

    2004-03-01

    Satellites are the only systems able to provide continuous information on the spatiotemporal variability of vast areas of the ocean. Relatively long-term time series of satellite data are nowadays available. These spatiotemporal time series of satellite observations can be employed to build empirical models, called satellite-based ocean forecasting (SOFT) systems, to forecast certain aspects of future ocean states. SOFT systems can predict satellite-observed fields at different timescales. The forecast skill of SOFT systems forecasting the sea surface temperature (SST) at monthly timescales has been extensively explored in previous works. In this work we study the performance of two SOFT systems forecasting, respectively, the SST and sea level anomaly (SLA) at weekly timescales, that is, providing forecasts of the weekly averaged SST and SLA fields with 1 week in advance. The SOFT systems were implemented in the Ligurian Sea (Western Mediterranean Sea). Predictions from the SOFT systems are compared with observations and with the predictions obtained from persistence models. Results indicate that the SOFT system forecasting the SST field is always superior in terms of predictability to persistence. Minimum prediction errors in the SST are obtained during winter and spring seasons. On the other hand, the biggest differences between the performance of SOFT and persistence models are found during summer and autumn. These changes in the predictability are explained on the basis of the particular variability of the SST field in the Ligurian Sea. Concerning the SLA field, no improvements with respect to persistence have been found for the SOFT system forecasting the SLA field.

  19. An Intelligent Decision Support System for Workforce Forecast

    DTIC Science & Technology

    2011-01-01

    ARIMA ) model to forecast the demand for construction skills in Hong Kong. This model was based...Decision Trees ARIMA Rule Based Forecasting Segmentation Forecasting Regression Analysis Simulation Modeling Input-Output Models LP and NLP Markovian...data • When results are needed as a set of easily interpretable rules 4.1.4 ARIMA Auto-regressive, integrated, moving-average ( ARIMA ) models

  20. An investigation into incident duration forecasting for FleetForward

    DOT National Transportation Integrated Search

    2000-08-01

    Traffic condition forecasting is the process of estimating future traffic conditions based on current and archived data. Real-time forecasting is becoming an important tool in Intelligent Transportation Systems (ITS). This type of forecasting allows ...

  1. A Decision Support System for effective use of probability forecasts

    NASA Astrophysics Data System (ADS)

    De Kleermaeker, Simone; Verkade, Jan

    2013-04-01

    Often, water management decisions are based on hydrological forecasts. These forecasts, however, are affected by inherent uncertainties. It is increasingly common for forecasting agencies to make explicit estimates of these uncertainties and thus produce probabilistic forecasts. Associated benefits include the decision makers' increased awareness of forecasting uncertainties and the potential for risk-based decision-making. Also, a stricter separation of responsibilities between forecasters and decision maker can be made. However, simply having probabilistic forecasts available is not sufficient to realise the associated benefits. Additional effort is required in areas such as forecast visualisation and communication, decision making in uncertainty and forecast verification. Also, revised separation of responsibilities requires a shift in institutional arrangements and responsibilities. A recent study identified a number of additional issues related to the effective use of probability forecasts. When moving from deterministic to probability forecasting, a dimension is added to an already multi-dimensional problem; this makes it increasingly difficult for forecast users to extract relevant information from a forecast. A second issue is that while probability forecasts provide a necessary ingredient for risk-based decision making, other ingredients may not be present. For example, in many cases no estimates of flood damage, of costs of management measures and of damage reduction are available. This paper presents the results of the study, including some suggestions for resolving these issues and the integration of those solutions in a prototype decision support system (DSS). A pathway for further development of the DSS is outlined.

  2. Impact of Lidar Wind Sounding on Mesoscale Forecast

    NASA Technical Reports Server (NTRS)

    Miller, Timothy L.; Chou, Shih-Hung; Goodman, H. Michael (Technical Monitor)

    2001-01-01

    An Observing System Simulation Experiment (OSSE) was conducted to study the impact of airborne lidar wind sounding on mesoscale weather forecast. A wind retrieval scheme, which interpolates wind data from a grid data system, simulates the retrieval of wind profile from a satellite lidar system. A mesoscale forecast system based on the PSU/NCAR MM5 model is developed and incorporated the assimilation of the retrieved line-of-sight wind. To avoid the "identical twin" problem, the NCEP reanalysis data is used as our reference "nature" atmosphere. The simulated space-based lidar wind observations were retrieved by interpolating the NCEP values to the observation locations. A modified dataset obtained by smoothing the NCEP dataset was used as the initial state whose forecast was sought to be improved by assimilating the retrieved lidar observations. Forecasts using wind profiles with various lidar instrument parameters has been conducted. The results show that to significantly improve the mesoscale forecast the satellite should fly near the storm center with large scanning radius. Increasing lidar firing rate also improves the forecast. Cloud cover and lack of aerosol degrade the quality of the lidar wind data and, subsequently, the forecast.

  3. Validation of the CME Geomagnetic Forecast Alerts Under the COMESEP Alert System

    NASA Astrophysics Data System (ADS)

    Dumbović, Mateja; Srivastava, Nandita; Rao, Yamini K.; Vršnak, Bojan; Devos, Andy; Rodriguez, Luciano

    2017-08-01

    Under the European Union 7th Framework Programme (EU FP7) project Coronal Mass Ejections and Solar Energetic Particles (COMESEP, http://comesep.aeronomy.be), an automated space weather alert system has been developed to forecast solar energetic particles (SEP) and coronal mass ejection (CME) risk levels at Earth. The COMESEP alert system uses the automated detection tool called Computer Aided CME Tracking (CACTus) to detect potentially threatening CMEs, a drag-based model (DBM) to predict their arrival, and a CME geoeffectiveness tool (CGFT) to predict their geomagnetic impact. Whenever CACTus detects a halo or partial halo CME and issues an alert, the DBM calculates its arrival time at Earth and the CGFT calculates its geomagnetic risk level. The geomagnetic risk level is calculated based on an estimation of the CME arrival probability and its likely geoeffectiveness, as well as an estimate of the geomagnetic storm duration. We present the evaluation of the CME risk level forecast with the COMESEP alert system based on a study of geoeffective CMEs observed during 2014. The validation of the forecast tool is made by comparing the forecasts with observations. In addition, we test the success rate of the automatic forecasts (without human intervention) against the forecasts with human intervention using advanced versions of the DBM and CGFT (independent tools available at the Hvar Observatory website, http://oh.geof.unizg.hr). The results indicate that the success rate of the forecast in its current form is unacceptably low for a realistic operation system. Human intervention improves the forecast, but the false-alarm rate remains unacceptably high. We discuss these results and their implications for possible improvement of the COMESEP alert system.

  4. Forecasting the short-term passenger flow on high-speed railway with neural networks.

    PubMed

    Xie, Mei-Quan; Li, Xia-Miao; Zhou, Wen-Liang; Fu, Yan-Bing

    2014-01-01

    Short-term passenger flow forecasting is an important component of transportation systems. The forecasting result can be applied to support transportation system operation and management such as operation planning and revenue management. In this paper, a divide-and-conquer method based on neural network and origin-destination (OD) matrix estimation is developed to forecast the short-term passenger flow in high-speed railway system. There are three steps in the forecasting method. Firstly, the numbers of passengers who arrive at each station or depart from each station are obtained from historical passenger flow data, which are OD matrices in this paper. Secondly, short-term passenger flow forecasting of the numbers of passengers who arrive at each station or depart from each station based on neural network is realized. At last, the OD matrices in short-term time are obtained with an OD matrix estimation method. The experimental results indicate that the proposed divide-and-conquer method performs well in forecasting the short-term passenger flow on high-speed railway.

  5. Evaluation of precipitation forecasts from 3D-Var and hybrid GSI-based system during Indian summer monsoon 2015

    NASA Astrophysics Data System (ADS)

    Singh, Sanjeev Kumar; Prasad, V. S.

    2018-02-01

    This paper presents a systematic investigation of medium-range rainfall forecasts from two versions of the National Centre for Medium Range Weather Forecasting (NCMRWF)-Global Forecast System based on three-dimensional variational (3D-Var) and hybrid analysis system namely, NGFS and HNGFS, respectively, during Indian summer monsoon (June-September) 2015. The NGFS uses gridpoint statistical interpolation (GSI) 3D-Var data assimilation system, whereas HNGFS uses hybrid 3D ensemble-variational scheme. The analysis includes the evaluation of rainfall fields and comparisons of rainfall using statistical score such as mean precipitation, bias, correlation coefficient, root mean square error and forecast improvement factor. In addition to these, categorical scores like Peirce skill score and bias score are also computed to describe particular aspects of forecasts performance. The comparison results of mean precipitation reveal that both the versions of model produced similar large-scale feature of Indian summer monsoon rainfall for day-1 through day-5 forecasts. The inclusion of fully flow-dependent background error covariance significantly improved the wet biases in HNGFS over the Indian Ocean. The forecast improvement factor and Peirce skill score in the HNGFS have also found better than NGFS for day-1 through day-5 forecasts.

  6. Interactive Forecasting with the National Weather Service River Forecast System

    NASA Technical Reports Server (NTRS)

    Smith, George F.; Page, Donna

    1993-01-01

    The National Weather Service River Forecast System (NWSRFS) consists of several major hydrometeorologic subcomponents to model the physics of the flow of water through the hydrologic cycle. The entire NWSRFS currently runs in both mainframe and minicomputer environments, using command oriented text input to control the system computations. As computationally powerful and graphically sophisticated scientific workstations became available, the National Weather Service (NWS) recognized that a graphically based, interactive environment would enhance the accuracy and timeliness of NWS river and flood forecasts. Consequently, the operational forecasting portion of the NWSRFS has been ported to run under a UNIX operating system, with X windows as the display environment on a system of networked scientific workstations. In addition, the NWSRFS Interactive Forecast Program was developed to provide a graphical user interface to allow the forecaster to control NWSRFS program flow and to make adjustments to forecasts as necessary. The potential market for water resources forecasting is immense and largely untapped. Any private company able to market the river forecasting technologies currently developed by the NWS Office of Hydrology could provide benefits to many information users and profit from providing these services.

  7. A quantitative comparison of precipitation forecasts between the storm-scale numerical weather prediction model and auto-nowcast system in Jiangsu, China

    NASA Astrophysics Data System (ADS)

    Wang, Gaili; Yang, Ji; Wang, Dan; Liu, Liping

    2016-11-01

    Extrapolation techniques and storm-scale Numerical Weather Prediction (NWP) models are two primary approaches for short-term precipitation forecasts. The primary objective of this study is to verify precipitation forecasts and compare the performances of two nowcasting schemes: a Beijing Auto-Nowcast system (BJ-ANC) based on extrapolation techniques and a storm-scale NWP model called the Advanced Regional Prediction System (ARPS). The verification and comparison takes into account six heavy precipitation events that occurred in the summer of 2014 and 2015 in Jiangsu, China. The forecast performances of the two schemes were evaluated for the next 6 h at 1-h intervals using gridpoint-based measures of critical success index, bias, index of agreement, root mean square error, and using an object-based verification method called Structure-Amplitude-Location (SAL) score. Regarding gridpoint-based measures, BJ-ANC outperforms ARPS at first, but then the forecast accuracy decreases rapidly with lead time and performs worse than ARPS after 4-5 h of the initial forecast. Regarding the object-based verification method, most forecasts produced by BJ-ANC focus on the center of the diagram at the 1-h lead time and indicate high-quality forecasts. As the lead time increases, BJ-ANC overestimates precipitation amount and produces widespread precipitation, especially at a 6-h lead time. The ARPS model overestimates precipitation at all lead times, particularly at first.

  8. Evaluation of weather forecast systems for storm surge modeling in the Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Garzon, Juan L.; Ferreira, Celso M.; Padilla-Hernandez, Roberto

    2018-01-01

    Accurate forecast of sea-level heights in coastal areas depends, among other factors, upon a reliable coupling of a meteorological forecast system to a hydrodynamic and wave system. This study evaluates the predictive skills of the coupled circulation and wind-wave model system (ADCIRC+SWAN) for simulating storm tides in the Chesapeake Bay, forced by six different products: (1) Global Forecast System (GFS), (2) Climate Forecast System (CFS) version 2, (3) North American Mesoscale Forecast System (NAM), (4) Rapid Refresh (RAP), (5) European Center for Medium-Range Weather Forecasts (ECMWF), and (6) the Atlantic hurricane database (HURDAT2). This evaluation is based on the hindcasting of four events: Irene (2011), Sandy (2012), Joaquin (2015), and Jonas (2016). By comparing the simulated water levels to observations at 13 monitoring stations, we have found that the ADCIR+SWAN System forced by the following: (1) the HURDAT2-based system exhibited the weakest statistical skills owing to a noteworthy overprediction of the simulated wind speed; (2) the ECMWF, RAP, and NAM products captured the moment of the peak and moderately its magnitude during all storms, with a correlation coefficient ranging between 0.98 and 0.77; (3) the CFS system exhibited the worst averaged root-mean-square difference (excepting HURDAT2); (4) the GFS system (the lowest horizontal resolution product tested) resulted in a clear underprediction of the maximum water elevation. Overall, the simulations forced by NAM and ECMWF systems induced the most accurate results best accuracy to support water level forecasting in the Chesapeake Bay during both tropical and extra-tropical storms.

  9. VERIFICATION OF SURFACE LAYER OZONE FORECASTS IN THE NOAA/EPA AIR QUALITY FORECAST SYSTEM IN DIFFERENT REGIONS UNDER DIFFERENT SYNOPTIC SCENARIOS

    EPA Science Inventory

    An air quality forecast (AQF) system has been established at NOAA/NCEP since 2003 as a collaborative effort of NOAA and EPA. The system is based on NCEP's Eta mesoscale meteorological model and EPA's CMAQ air quality model (Davidson et al, 2004). The vision behind this system is ...

  10. Advances in air quality prediction with the use of integrated systems

    NASA Astrophysics Data System (ADS)

    Dragani, R.; Benedetti, A.; Engelen, R. J.; Peuch, V. H.

    2017-12-01

    Recent years have seen the rise of global operational atmospheric composition forecasting systems for several applications including climate monitoring, provision of boundary conditions for regional air quality forecasting, energy sector applications, to mention a few. Typically, global forecasts are provided in the medium-range up to five days ahead and are initialized with an analysis based on satellite data. In this work we present the latest advances in data assimilation using the ECMWF's 4D-Var system extended to atmospheric composition which is currently operational under the Copernicus Atmosphere Monitoring Service of the European Commission. The service is based on acquisition of all relevant data available in near-real-time, the processing of these datasets in the assimilation and the subsequent dissemination of global forecasts at ECMWF. The global forecasts are used by the CAMS regional models as boundary conditions for the European forecasts based on a multi-model ensemble. The global forecasts are also used to provide boundary conditions for other parts of the world (e.g., China) and are freely available to all interested entities. Some of the regional models also perform assimilation of satellite and ground-based observations. All products are assessed, validated and made publicly available on https://atmosphere.copernicus.eu/.

  11. On the reliability of seasonal climate forecasts.

    PubMed

    Weisheimer, A; Palmer, T N

    2014-07-06

    Seasonal climate forecasts are being used increasingly across a range of application sectors. A recent UK governmental report asked: how good are seasonal forecasts on a scale of 1-5 (where 5 is very good), and how good can we expect them to be in 30 years time? Seasonal forecasts are made from ensembles of integrations of numerical models of climate. We argue that 'goodness' should be assessed first and foremost in terms of the probabilistic reliability of these ensemble-based forecasts; reliable inputs are essential for any forecast-based decision-making. We propose that a '5' should be reserved for systems that are not only reliable overall, but where, in particular, small ensemble spread is a reliable indicator of low ensemble forecast error. We study the reliability of regional temperature and precipitation forecasts of the current operational seasonal forecast system of the European Centre for Medium-Range Weather Forecasts, universally regarded as one of the world-leading operational institutes producing seasonal climate forecasts. A wide range of 'goodness' rankings, depending on region and variable (with summer forecasts of rainfall over Northern Europe performing exceptionally poorly) is found. Finally, we discuss the prospects of reaching '5' across all regions and variables in 30 years time.

  12. System load forecasts for an electric utility. [Hourly loads using Box-Jenkins method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uri, N.D.

    This paper discusses forecasting hourly system load for an electric utility using Box-Jenkins time-series analysis. The results indicate that a model based on the method of Box and Jenkins, given its simplicity, gives excellent results over the forecast horizon.

  13. Influence of Forecast Accuracy of Photovoltaic Power Output on Capacity Optimization of Microgrid Composition under 30 min Power Balancing Control

    NASA Astrophysics Data System (ADS)

    Sone, Akihito; Kato, Takeyoshi; Shimakage, Toyonari; Suzuoki, Yasuo

    A microgrid (MG) is one of the measures for enhancing the high penetration of renewable energy (RE)-based distributed generators (DGs). If a number of MGs are controlled to maintain the predetermined electricity demand including RE-based DGs as negative demand, they would contribute to supply-demand balancing of whole electric power system. For constructing a MG economically, the capacity optimization of controllable DGs against RE-based DGs is essential. By using a numerical simulation model developed based on a demonstrative study on a MG using PAFC and NaS battery as controllable DGs and photovoltaic power generation system (PVS) as a RE-based DG, this study discusses the influence of forecast accuracy of PVS output on the capacity optimization. Three forecast cases with different accuracy are compared. The main results are as follows. Even with no forecast error during every 30 min. as the ideal forecast method, the required capacity of NaS battery reaches about 40% of PVS capacity for mitigating the instantaneous forecast error within 30 min. The required capacity to compensate for the forecast error is doubled with the actual forecast method. The influence of forecast error can be reduced by adjusting the scheduled power output of controllable DGs according to the weather forecast. Besides, the required capacity can be reduced significantly if the error of balancing control in a MG is acceptable for a few percentages of periods, because the total periods of large forecast error is not so often.

  14. Baseline and Target Values for PV Forecasts: Toward Improved Solar Power Forecasting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jie; Hodge, Bri-Mathias; Lu, Siyuan

    2015-10-05

    Accurate solar power forecasting allows utilities to get the most out of the solar resources on their systems. To truly measure the improvements that any new solar forecasting methods can provide, it is important to first develop (or determine) baseline and target solar forecasting at different spatial and temporal scales. This paper aims to develop baseline and target values for solar forecasting metrics. These were informed by close collaboration with utility and independent system operator partners. The baseline values are established based on state-of-the-art numerical weather prediction models and persistence models. The target values are determined based on the reductionmore » in the amount of reserves that must be held to accommodate the uncertainty of solar power output.« less

  15. Assessing skill of a global bimonthly streamflow ensemble prediction system

    NASA Astrophysics Data System (ADS)

    van Dijk, A. I.; Peña-Arancibia, J.; Sheffield, J.; Wood, E. F.

    2011-12-01

    Ideally, a seasonal streamflow forecasting system might be conceived of as a system that ingests skillful climate forecasts from general circulation models and propagates these through thoroughly calibrated hydrological models that are initialised using hydrometric observations. In practice, there are practical problems with each of these aspects. Instead, we analysed whether a comparatively simple hydrological model-based Ensemble Prediction System (EPS) can provide global bimonthly streamflow forecasts with some skill and if so, under what circumstances the greatest skill may be expected. The system tested produces ensemble forecasts for each of six annual bimonthly periods based on the previous 30 years of global daily gridded 1° resolution climate variables and an initialised global hydrological model. To incorporate some of the skill derived from ocean conditions, a post-EPS analog method was used to sample from the ensemble based on El Niño Southern Oscillation (ENSO), Indian Ocean Dipole (IOD), North Atlantic Oscillation (NAO) and Pacific Decadal Oscillation (PDO) index values observed prior to the forecast. Forecasts skill was assessed through a hind-casting experiment for the period 1979-2008. Potential skill was calculated with reference to a model run with the actual forcing for the forecast period (the 'perfect' model) and was compared to actual forecast skill calculated for each of the six forecast times for an average 411 Australian and 51 pan-tropical catchments. Significant potential skill in bimonthly forecasts was largely limited to northern regions during the snow melt period, seasonally wet tropical regions at the transition of wet to dry season, and the Indonesian region where rainfall is well correlated to ENSO. The actual skill was approximately 34-50% of the potential skill. We attribute this primarily to limitations in the model structure, parameterisation and global forcing data. Use of better climate forecasts and remote sensing observations of initial catchment conditions should help to increase actual skill in future. Future work also could address the potential skill gain from using weather and climate forecasts and from a calibrated and/or alternative hydrological model or model ensemble. The approach and data might be useful as a benchmark for joint seasonal forecasting experiments planned under GEWEX.

  16. A system for forecasting and monitoring cash flow : phase I : forecasting payments on construction contracts.

    DOT National Transportation Integrated Search

    1983-01-01

    The research on which this paper is based was performed as part of a study to develop a system for generating a one-to-two year forecast of monthly cash flows for the Virginia Department of Highways and Transportation. It revealed that presently used...

  17. A Prototype Regional GSI-based EnKF-Variational Hybrid Data Assimilation System for the Rapid Refresh Forecasting System: Dual-Resolution Implementation and Testing Results

    NASA Astrophysics Data System (ADS)

    Pan, Yujie; Xue, Ming; Zhu, Kefeng; Wang, Mingjun

    2018-05-01

    A dual-resolution (DR) version of a regional ensemble Kalman filter (EnKF)-3D ensemble variational (3DEnVar) coupled hybrid data assimilation system is implemented as a prototype for the operational Rapid Refresh forecasting system. The DR 3DEnVar system combines a high-resolution (HR) deterministic background forecast with lower-resolution (LR) EnKF ensemble perturbations used for flow-dependent background error covariance to produce a HR analysis. The computational cost is substantially reduced by running the ensemble forecasts and EnKF analyses at LR. The DR 3DEnVar system is tested with 3-h cycles over a 9-day period using a 40/˜13-km grid spacing combination. The HR forecasts from the DR hybrid analyses are compared with forecasts launched from HR Gridpoint Statistical Interpolation (GSI) 3D variational (3DVar) analyses, and single LR hybrid analyses interpolated to the HR grid. With the DR 3DEnVar system, a 90% weight for the ensemble covariance yields the lowest forecast errors and the DR hybrid system clearly outperforms the HR GSI 3DVar. Humidity and wind forecasts are also better than those launched from interpolated LR hybrid analyses, but the temperature forecasts are slightly worse. The humidity forecasts are improved most. For precipitation forecasts, the DR 3DEnVar always outperforms HR GSI 3DVar. It also outperforms the LR 3DEnVar, except for the initial forecast period and lower thresholds.

  18. A forecasting model for power consumption of high energy-consuming industries based on system dynamics

    NASA Astrophysics Data System (ADS)

    Zhou, Zongchuan; Dang, Dongsheng; Qi, Caijuan; Tian, Hongliang

    2018-02-01

    It is of great significance to make accurate forecasting for the power consumption of high energy-consuming industries. A forecasting model for power consumption of high energy-consuming industries based on system dynamics is proposed in this paper. First, several factors that have influence on the development of high energy-consuming industries in recent years are carefully dissected. Next, by analysing the relationship between each factor and power consumption, the system dynamics flow diagram and equations are set up to reflect the relevant relationships among variables. In the end, the validity of the model is verified by forecasting the power consumption of electrolytic aluminium industry in Ningxia according to the proposed model.

  19. Statistical Analysis of Atmospheric Forecast Model Accuracy - A Focus on Multiple Atmospheric Variables and Location-Based Analysis

    DTIC Science & Technology

    2014-04-01

    WRF ) model is a numerical weather prediction system designed for operational forecasting and atmospheric research. This report examined WRF model... WRF , weather research and forecasting, atmospheric effects 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18. NUMBER OF...and Forecasting ( WRF ) model. The authors would also like to thank Ms. Sherry Larson, STS Systems Integration, LLC, ARL Technical Publishing Branch

  20. Assessment of Forecast Sensitivity to Observation and Its Application to Satellite Radiances

    NASA Astrophysics Data System (ADS)

    Ide, K.

    2017-12-01

    The Forecast sensitivity to observation provides practical and useful metric for the assessment of observation impact without conducting computationally intensive data denial experiments. Quite often complex data assimilation systems use a simplified version of the forecast sensitivity formulation based on ensembles. In this talk, we first present the comparison of forecast sensitivity for 4DVar, Hybrid-4DEnVar, and 4DEnKF with or without such simplifications using a highly nonlinear model. We then present the results of ensemble forecast sensitivity to satellite radiance observations for Hybrid-4DEnVart using NOAA's Global Forecast System.

  1. Research and Application of an Air Quality Early Warning System Based on a Modified Least Squares Support Vector Machine and a Cloud Model.

    PubMed

    Wang, Jianzhou; Niu, Tong; Wang, Rui

    2017-03-02

    The worsening atmospheric pollution increases the necessity of air quality early warning systems (EWSs). Despite the fact that a massive amount of investigation about EWS in theory and practicality has been conducted by numerous researchers, studies concerning the quantification of uncertain information and comprehensive evaluation are still lacking, which impedes further development in the area. In this paper, firstly a comprehensive warning system is proposed, which consists of two vital indispensable modules, namely effective forecasting and scientific evaluation, respectively. For the forecasting module, a novel hybrid model combining the theory of data preprocessing and numerical optimization is first developed to implement effective forecasting for air pollutant concentration. Especially, in order to further enhance the accuracy and robustness of the warning system, interval forecasting is implemented to quantify the uncertainties generated by forecasts, which can provide significant risk signals by using point forecasting for decision-makers. For the evaluation module, a cloud model, based on probability and fuzzy set theory, is developed to perform comprehensive evaluations of air quality, which can realize the transformation between qualitative concept and quantitative data. To verify the effectiveness and efficiency of the warning system, extensive simulations based on air pollutants data from Dalian in China were effectively implemented, which illustrate that the warning system is not only remarkably high-performance, but also widely applicable.

  2. Research and Application of an Air Quality Early Warning System Based on a Modified Least Squares Support Vector Machine and a Cloud Model

    PubMed Central

    Wang, Jianzhou; Niu, Tong; Wang, Rui

    2017-01-01

    The worsening atmospheric pollution increases the necessity of air quality early warning systems (EWSs). Despite the fact that a massive amount of investigation about EWS in theory and practicality has been conducted by numerous researchers, studies concerning the quantification of uncertain information and comprehensive evaluation are still lacking, which impedes further development in the area. In this paper, firstly a comprehensive warning system is proposed, which consists of two vital indispensable modules, namely effective forecasting and scientific evaluation, respectively. For the forecasting module, a novel hybrid model combining the theory of data preprocessing and numerical optimization is first developed to implement effective forecasting for air pollutant concentration. Especially, in order to further enhance the accuracy and robustness of the warning system, interval forecasting is implemented to quantify the uncertainties generated by forecasts, which can provide significant risk signals by using point forecasting for decision-makers. For the evaluation module, a cloud model, based on probability and fuzzy set theory, is developed to perform comprehensive evaluations of air quality, which can realize the transformation between qualitative concept and quantitative data. To verify the effectiveness and efficiency of the warning system, extensive simulations based on air pollutants data from Dalian in China were effectively implemented, which illustrate that the warning system is not only remarkably high-performance, but also widely applicable. PMID:28257122

  3. Forecasting the Short-Term Passenger Flow on High-Speed Railway with Neural Networks

    PubMed Central

    Xie, Mei-Quan; Li, Xia-Miao; Zhou, Wen-Liang; Fu, Yan-Bing

    2014-01-01

    Short-term passenger flow forecasting is an important component of transportation systems. The forecasting result can be applied to support transportation system operation and management such as operation planning and revenue management. In this paper, a divide-and-conquer method based on neural network and origin-destination (OD) matrix estimation is developed to forecast the short-term passenger flow in high-speed railway system. There are three steps in the forecasting method. Firstly, the numbers of passengers who arrive at each station or depart from each station are obtained from historical passenger flow data, which are OD matrices in this paper. Secondly, short-term passenger flow forecasting of the numbers of passengers who arrive at each station or depart from each station based on neural network is realized. At last, the OD matrices in short-term time are obtained with an OD matrix estimation method. The experimental results indicate that the proposed divide-and-conquer method performs well in forecasting the short-term passenger flow on high-speed railway. PMID:25544838

  4. Benchmark analysis of forecasted seasonal temperature over different climatic areas

    NASA Astrophysics Data System (ADS)

    Giunta, G.; Salerno, R.; Ceppi, A.; Ercolani, G.; Mancini, M.

    2015-12-01

    From a long-term perspective, an improvement of seasonal forecasting, which is often exclusively based on climatology, could provide a new capability for the management of energy resources in a time scale of just a few months. This paper regards a benchmark analysis in relation to long-term temperature forecasts over Italy in the year 2010, comparing the eni-kassandra meteo forecast (e-kmf®) model, the Climate Forecast System-National Centers for Environmental Prediction (CFS-NCEP) model, and the climatological reference (based on 25-year data) with observations. Statistical indexes are used to understand the reliability of the prediction of 2-m monthly air temperatures with a perspective of 12 weeks ahead. The results show how the best performance is achieved by the e-kmf® system which improves the reliability for long-term forecasts compared to climatology and the CFS-NCEP model. By using the reliable high-performance forecast system, it is possible to optimize the natural gas portfolio and management operations, thereby obtaining a competitive advantage in the European energy market.

  5. Is the economic value of hydrological forecasts related to their quality? Case study of the hydropower sector.

    NASA Astrophysics Data System (ADS)

    Cassagnole, Manon; Ramos, Maria-Helena; Thirel, Guillaume; Gailhard, Joël; Garçon, Rémy

    2017-04-01

    The improvement of a forecasting system and the evaluation of the quality of its forecasts are recurrent steps in operational practice. However, the evaluation of forecast value or forecast usefulness for better decision-making is, to our knowledge, less frequent, even if it might be essential in many sectors such as hydropower and flood warning. In the hydropower sector, forecast value can be quantified by the economic gain obtained with the optimization of operations or reservoir management rules. Several hydropower operational systems use medium-range forecasts (up to 7-10 days ahead) and energy price predictions to optimize hydropower production. Hence, the operation of hydropower systems, including the management of water in reservoirs, is impacted by weather, climate and hydrologic variability as well as extreme events. In order to assess how the quality of hydrometeorological forecasts impact operations, it is essential to first understand if and how operations and management rules are sensitive to input predictions of different quality. This study investigates how 7-day ahead deterministic and ensemble streamflow forecasts of different quality might impact the economic gains of energy production. It is based on a research model developed by Irstea and EDF to investigate issues relevant to the links between quality and value of forecasts in the optimisation of energy production at the short range. Based on streamflow forecasts and pre-defined management constraints, the model defines the best hours (i.e., the hours with high energy prices) to produce electricity. To highlight the link between forecasts quality and their economic value, we built several synthetic ensemble forecasts based on observed streamflow time series. These inputs are generated in a controlled environment in order to obtain forecasts of different quality in terms of accuracy and reliability. These forecasts are used to assess the sensitivity of the decision model to forecast quality. Relationships between forecast quality and economic value are discussed. This work is part of the IMPREX project, a research project supported by the European Commission under the Horizon 2020 Framework programme, with grant No. 641811 (http://www.imprex.eu)

  6. Nationwide validation of ensemble streamflow forecasts from the Hydrologic Ensemble Forecast Service (HEFS) of the U.S. National Weather Service

    NASA Astrophysics Data System (ADS)

    Lee, H. S.; Liu, Y.; Ward, J.; Brown, J.; Maestre, A.; Herr, H.; Fresch, M. A.; Wells, E.; Reed, S. M.; Jones, E.

    2017-12-01

    The National Weather Service's (NWS) Office of Water Prediction (OWP) recently launched a nationwide effort to verify streamflow forecasts from the Hydrologic Ensemble Forecast Service (HEFS) for a majority of forecast locations across the 13 River Forecast Centers (RFCs). Known as the HEFS Baseline Validation (BV), the project involves a joint effort between the OWP and the RFCs. It aims to provide a geographically consistent, statistically robust validation, and a benchmark to guide the operational implementation of the HEFS, inform practical applications, such as impact-based decision support services, and to provide an objective framework for evaluating strategic investments in the HEFS. For the BV, HEFS hindcasts are issued once per day on a 12Z cycle for the period of 1985-2015 with a forecast horizon of 30 days. For the first two weeks, the hindcasts are forced with precipitation and temperature ensemble forecasts from the Global Ensemble Forecast System of the National Centers for Environmental Prediction, and by resampled climatology for the remaining period. The HEFS-generated ensemble streamflow hindcasts are verified using the Ensemble Verification System. Skill is assessed relative to streamflow hindcasts generated from NWS' current operational system, namely climatology-based Ensemble Streamflow Prediction. In this presentation, we summarize the results and findings to date.

  7. A Short-Term and High-Resolution System Load Forecasting Approach Using Support Vector Regression with Hybrid Parameters Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Huaiguang

    This work proposes an approach for distribution system load forecasting, which aims to provide highly accurate short-term load forecasting with high resolution utilizing a support vector regression (SVR) based forecaster and a two-step hybrid parameters optimization method. Specifically, because the load profiles in distribution systems contain abrupt deviations, a data normalization is designed as the pretreatment for the collected historical load data. Then an SVR model is trained by the load data to forecast the future load. For better performance of SVR, a two-step hybrid optimization algorithm is proposed to determine the best parameters. In the first step of themore » hybrid optimization algorithm, a designed grid traverse algorithm (GTA) is used to narrow the parameters searching area from a global to local space. In the second step, based on the result of the GTA, particle swarm optimization (PSO) is used to determine the best parameters in the local parameter space. After the best parameters are determined, the SVR model is used to forecast the short-term load deviation in the distribution system.« less

  8. The Rise of Complexity in Flood Forecasting: Opportunities, Challenges and Tradeoffs

    NASA Astrophysics Data System (ADS)

    Wood, A. W.; Clark, M. P.; Nijssen, B.

    2017-12-01

    Operational flood forecasting is currently undergoing a major transformation. Most national flood forecasting services have relied for decades on lumped, highly calibrated conceptual hydrological models running on local office computing resources, providing deterministic streamflow predictions at gauged river locations that are important to stakeholders and emergency managers. A variety of recent technological advances now make it possible to run complex, high-to-hyper-resolution models for operational hydrologic prediction over large domains, and the US National Weather Service is now attempting to use hyper-resolution models to create new forecast services and products. Yet other `increased-complexity' forecasting strategies also exist that pursue different tradeoffs between model complexity (i.e., spatial resolution, physics) and streamflow forecast system objectives. There is currently a pressing need for a greater understanding in the hydrology community of the opportunities, challenges and tradeoffs associated with these different forecasting approaches, and for a greater participation by the hydrology community in evaluating, guiding and implementing these approaches. Intermediate-resolution forecast systems, for instance, use distributed land surface model (LSM) physics but retain the agility to deploy ensemble methods (including hydrologic data assimilation and hindcast-based post-processing). Fully coupled numerical weather prediction (NWP) systems, another example, use still coarser LSMs to produce ensemble streamflow predictions either at the model scale or after sub-grid scale runoff routing. Based on the direct experience of the authors and colleagues in research and operational forecasting, this presentation describes examples of different streamflow forecast paradigms, from the traditional to the recent hyper-resolution, to illustrate the range of choices facing forecast system developers. We also discuss the degree to which the strengths and weaknesses of each strategy map onto the requirements for different types of forecasting services (e.g., flash flooding, river flooding, seasonal water supply prediction).

  9. On the reliability of seasonal climate forecasts

    PubMed Central

    Weisheimer, A.; Palmer, T. N.

    2014-01-01

    Seasonal climate forecasts are being used increasingly across a range of application sectors. A recent UK governmental report asked: how good are seasonal forecasts on a scale of 1–5 (where 5 is very good), and how good can we expect them to be in 30 years time? Seasonal forecasts are made from ensembles of integrations of numerical models of climate. We argue that ‘goodness’ should be assessed first and foremost in terms of the probabilistic reliability of these ensemble-based forecasts; reliable inputs are essential for any forecast-based decision-making. We propose that a ‘5’ should be reserved for systems that are not only reliable overall, but where, in particular, small ensemble spread is a reliable indicator of low ensemble forecast error. We study the reliability of regional temperature and precipitation forecasts of the current operational seasonal forecast system of the European Centre for Medium-Range Weather Forecasts, universally regarded as one of the world-leading operational institutes producing seasonal climate forecasts. A wide range of ‘goodness’ rankings, depending on region and variable (with summer forecasts of rainfall over Northern Europe performing exceptionally poorly) is found. Finally, we discuss the prospects of reaching ‘5’ across all regions and variables in 30 years time. PMID:24789559

  10. Remote Sensing and River Discharge Forecasting for Major Rivers in South Asia (Invited)

    NASA Astrophysics Data System (ADS)

    Webster, P. J.; Hopson, T. M.; Hirpa, F. A.; Brakenridge, G. R.; De-Groeve, T.; Shrestha, K.; Gebremichael, M.; Restrepo, P. J.

    2013-12-01

    The South Asia is a flashpoint for natural disasters particularly flooding of the Indus, Ganges, and Brahmaputra has profound societal impacts for the region and globally. The 2007 Brahmaputra floods affecting India and Bangladesh, the 2008 avulsion of the Kosi River in India, the 2010 flooding of the Indus River in Pakistan and the 2013 Uttarakhand exemplify disasters on scales almost inconceivable elsewhere. Their frequent occurrence of floods combined with large and rapidly growing populations, high levels of poverty and low resilience, exacerbate the impact of the hazards. Mitigation of these devastating hazards are compounded by limited flood forecast capability, lack of rain/gauge measuring stations and forecast use within and outside the country, and transboundary data sharing on natural hazards. Here, we demonstrate the utility of remotely-derived hydrologic and weather products in producing skillful flood forecasting information without reliance on vulnerable in situ data sources. Over the last decade a forecast system has been providing operational probabilistic forecasts of severe flooding of the Brahmaputra and Ganges Rivers in Bangldesh was developed (Hopson and Webster 2010). The system utilizes ECMWF weather forecast uncertainty information and ensemble weather forecasts, rain gauge and satellite-derived precipitation estimates, together with the limited near-real-time river stage observations from Bangladesh. This system has been expanded to Pakistan and has successfully forecast the 2010-2012 flooding (Shrestha and Webster 2013). To overcome the in situ hydrological data problem, recent efforts in parallel with the numerical modeling have utilized microwave satellite remote sensing of river widths to generate operational discharge advective-based forecasts for the Ganges and Brahmaputra. More than twenty remotely locations upstream of Bangldesh were used to produce stand-alone river flow nowcasts and forecasts at 1-15 days lead time. showing that satellite-based flow estimates are a useful source of dynamical surface water information in data-scarce regions and that they could be used for model calibration and data assimilation purposes in near-time hydrologic forecast applications (Hirpa et al. 2013). More recent efforts during this year's monsoon season are optimally combining these different independent sources of river forecast information along with archived flood inundation imagery of the Dartmouth Flood Observatory to improve the visualization and overall skill of the ongoing CFAB ensemble weather forecast-based flood forecasting system within the unique context of the ongoing flood forecasting efforts for Bangladesh.

  11. GloFAS-Seasonal: Operational Seasonal Ensemble River Flow Forecasts at the Global Scale

    NASA Astrophysics Data System (ADS)

    Emerton, Rebecca; Zsoter, Ervin; Smith, Paul; Salamon, Peter

    2017-04-01

    Seasonal hydrological forecasting has potential benefits for many sectors, including agriculture, water resources management and humanitarian aid. At present, no global scale seasonal hydrological forecasting system exists operationally; although smaller scale systems have begun to emerge around the globe over the past decade, a system providing consistent global scale seasonal forecasts would be of great benefit in regions where no other forecasting system exists, and to organisations operating at the global scale, such as disaster relief. We present here a new operational global ensemble seasonal hydrological forecast, currently under development at ECMWF as part of the Global Flood Awareness System (GloFAS). The proposed system, which builds upon the current version of GloFAS, takes the long-range forecasts from the ECMWF System4 ensemble seasonal forecast system (which incorporates the HTESSEL land surface scheme) and uses this runoff as input to the Lisflood routing model, producing a seasonal river flow forecast out to 4 months lead time, for the global river network. The seasonal forecasts will be evaluated using the global river discharge reanalysis, and observations where available, to determine the potential value of the forecasts across the globe. The seasonal forecasts will be presented as a new layer in the GloFAS interface, which will provide a global map of river catchments, indicating whether the catchment-averaged discharge forecast is showing abnormally high or low flows during the 4-month lead time. Each catchment will display the corresponding forecast as an ensemble hydrograph of the weekly-averaged discharge forecast out to 4 months, with percentile thresholds shown for comparison with the discharge climatology. The forecast visualisation is based on a combination of the current medium-range GloFAS forecasts and the operational EFAS (European Flood Awareness System) seasonal outlook, and aims to effectively communicate the nature of a seasonal outlook while providing useful information to users and partners. We demonstrate the first version of an operational GloFAS seasonal outlook, outlining the model set-up and presenting a first look at the seasonal forecasts that will be displayed in the GloFAS interface, and discuss the initial results of the forecast evaluation.

  12. A global flash flood forecasting system

    NASA Astrophysics Data System (ADS)

    Baugh, Calum; Pappenberger, Florian; Wetterhall, Fredrik; Hewson, Tim; Zsoter, Ervin

    2016-04-01

    The sudden and devastating nature of flash flood events means it is imperative to provide early warnings such as those derived from Numerical Weather Prediction (NWP) forecasts. Currently such systems exist on basin, national and continental scales in Europe, North America and Australia but rely on high resolution NWP forecasts or rainfall-radar nowcasting, neither of which have global coverage. To produce global flash flood forecasts this work investigates the possibility of using forecasts from a global NWP system. In particular we: (i) discuss how global NWP can be used for flash flood forecasting and discuss strengths and weaknesses; (ii) demonstrate how a robust evaluation can be performed given the rarity of the event; (iii) highlight the challenges and opportunities in communicating flash flood uncertainty to decision makers; and (iv) explore future developments which would significantly improve global flash flood forecasting. The proposed forecast system uses ensemble surface runoff forecasts from the ECMWF H-TESSEL land surface scheme. A flash flood index is generated using the ERIC (Enhanced Runoff Index based on Climatology) methodology [Raynaud et al., 2014]. This global methodology is applied to a series of flash floods across southern Europe. Results from the system are compared against warnings produced using the higher resolution COSMO-LEPS limited area model. The global system is evaluated by comparing forecasted warning locations against a flash flood database of media reports created in partnership with floodlist.com. To deal with the lack of objectivity in media reports we carefully assess the suitability of different skill scores and apply spatial uncertainty thresholds to the observations. To communicate the uncertainties of the flash flood system output we experiment with a dynamic region-growing algorithm. This automatically clusters regions of similar return period exceedence probabilities, thus presenting the at-risk areas at a spatial resolution appropriate to the NWP system. We then demonstrate how these warning areas could eventually complement existing global systems such as the Global Flood Awareness System (GloFAS), to give warnings of flash floods. This work demonstrates the possibility of creating a global flash flood forecasting system based on forecasts from existing global NWP systems. Future developments, in post-processing for example, will need to address an under-prediction bias, for extreme point rainfall, that is innate to current-generation global models.

  13. Communicating uncertainty in hydrological forecasts: mission impossible?

    NASA Astrophysics Data System (ADS)

    Ramos, Maria-Helena; Mathevet, Thibault; Thielen, Jutta; Pappenberger, Florian

    2010-05-01

    Cascading uncertainty in meteo-hydrological modelling chains for forecasting and integrated flood risk assessment is an essential step to improve the quality of hydrological forecasts. Although the best methodology to quantify the total predictive uncertainty in hydrology is still debated, there is a common agreement that one must avoid uncertainty misrepresentation and miscommunication, as well as misinterpretation of information by users. Several recent studies point out that uncertainty, when properly explained and defined, is no longer unwelcome among emergence response organizations, users of flood risk information and the general public. However, efficient communication of uncertain hydro-meteorological forecasts is far from being a resolved issue. This study focuses on the interpretation and communication of uncertain hydrological forecasts based on (uncertain) meteorological forecasts and (uncertain) rainfall-runoff modelling approaches to decision-makers such as operational hydrologists and water managers in charge of flood warning and scenario-based reservoir operation. An overview of the typical flow of uncertainties and risk-based decisions in hydrological forecasting systems is presented. The challenges related to the extraction of meaningful information from probabilistic forecasts and the test of its usefulness in assisting operational flood forecasting are illustrated with the help of two case-studies: 1) a study on the use and communication of probabilistic flood forecasting within the European Flood Alert System; 2) a case-study on the use of probabilistic forecasts by operational forecasters from the hydroelectricity company EDF in France. These examples show that attention must be paid to initiatives that promote or reinforce the active participation of expert forecasters in the forecasting chain. The practice of face-to-face forecast briefings, focusing on sharing how forecasters interpret, describe and perceive the model output forecasted scenarios, is essential. We believe that the efficient communication of uncertainty in hydro-meteorological forecasts is not a mission impossible. Questions remaining unanswered in probabilistic hydrological forecasting should not neutralize the goal of such a mission, and the suspense kept should instead act as a catalyst for overcoming the remaining challenges.

  14. SCADA-based Operator Support System for Power Plant Equipment Fault Forecasting

    NASA Astrophysics Data System (ADS)

    Mayadevi, N.; Ushakumari, S. S.; Vinodchandra, S. S.

    2014-12-01

    Power plant equipment must be monitored closely to prevent failures from disrupting plant availability. Online monitoring technology integrated with hybrid forecasting techniques can be used to prevent plant equipment faults. A self learning rule-based expert system is proposed in this paper for fault forecasting in power plants controlled by supervisory control and data acquisition (SCADA) system. Self-learning utilizes associative data mining algorithms on the SCADA history database to form new rules that can dynamically update the knowledge base of the rule-based expert system. In this study, a number of popular associative learning algorithms are considered for rule formation. Data mining results show that the Tertius algorithm is best suited for developing a learning engine for power plants. For real-time monitoring of the plant condition, graphical models are constructed by K-means clustering. To build a time-series forecasting model, a multi layer preceptron (MLP) is used. Once created, the models are updated in the model library to provide an adaptive environment for the proposed system. Graphical user interface (GUI) illustrates the variation of all sensor values affecting a particular alarm/fault, as well as the step-by-step procedure for avoiding critical situations and consequent plant shutdown. The forecasting performance is evaluated by computing the mean absolute error and root mean square error of the predictions.

  15. Comparison of Observation Impacts in Two Forecast Systems using Adjoint Methods

    NASA Technical Reports Server (NTRS)

    Gelaro, Ronald; Langland, Rolf; Todling, Ricardo

    2009-01-01

    An experiment is being conducted to compare directly the impact of all assimilated observations on short-range forecast errors in different operational forecast systems. We use the adjoint-based method developed by Langland and Baker (2004), which allows these impacts to be efficiently calculated. This presentation describes preliminary results for a "baseline" set of observations, including both satellite radiances and conventional observations, used by the Navy/NOGAPS and NASA/GEOS-5 forecast systems for the month of January 2007. In each system, about 65% of the total reduction in 24-h forecast error is provided by satellite observations, although the impact of rawinsonde, aircraft, land, and ship-based observations remains significant. Only a small majority (50- 55%) of all observations assimilated improves the forecast, while the rest degrade it. It is found that most of the total forecast error reduction comes from observations with moderate-size innovations providing small to moderate impacts, not from outliers with very large positive or negative innovations. In a global context, the relative impacts of the major observation types are fairly similar in each system, although regional differences in observation impact can be significant. Of particular interest is the fact that while satellite radiances have a large positive impact overall, they degrade the forecast in certain locations common to both systems, especially over land and ice surfaces. Ongoing comparisons of this type, with results expected from other operational centers, should lead to more robust conclusions about the impacts of the various components of the observing system as well as about the strengths and weaknesses of the methodologies used to assimilate them.

  16. Forecast skill impact of drifting buoys in the Southern Hemisphere

    NASA Technical Reports Server (NTRS)

    Kalnay, E.; Atlas, R.; Baker, W.; Halem, M.

    1984-01-01

    Two analyses are performed to evaluate the effect of drift buoys and the FGGE's special observing system (SOS) on forecasting. The FGGE analysis utilizes all level II-b conventional and special data, and the Nosat analysis employs only surface and conventional upper air data. Twelve five-day forecasts are produced from these data. An additional experiment utilizing the FGGE data base minus buoys data, and the Nosat data base including buoys data is being conducted. The forecasts are compared and synoptic evaluation of the effect of buoys data is described. The results reveal that the FGGE data base with the SOS significantly improves forecasting in the Southern Hemisphere and the loss of buoys data does not have a great effect on forecasting. The Nosat data has less impact on forecasting; however, the addition of buoys data provides an improvement in forecast skills.

  17. Precipitation forecasts for rainfall runoff predictions. A case study in poorly gauged Ribb and Gumara catchments, upper Blue Nile, Ethiopia

    NASA Astrophysics Data System (ADS)

    Seyoum, Mesgana; van Andel, Schalk Jan; Xuan, Yunqing; Amare, Kibreab

    Flow forecasting in poorly gauged, flood-prone Ribb and Gumara sub-catchments of the Blue Nile was studied with the aim of testing the performance of Quantitative Precipitation Forecasts (QPFs). Four types of QPFs namely MM5 forecasts with a spatial resolution of 2 km; the Maximum, Mean and Minimum members (MaxEPS, MeanEPS and MinEPS where EPS stands for Ensemble Prediction System) of the fixed, low resolution (2.5 by 2.5 degrees) National Oceanic and Atmospheric Administration Global Forecast System (NOAA GFS) ensemble forecasts were used. Both the MM5 and the EPS were not calibrated (bias correction, downscaling (for EPS), etc.). In addition, zero forecasts assuming no rainfall in the coming days, and monthly average forecasts assuming average monthly rainfall in the coming days, were used. These rainfall forecasts were then used to drive the Hydrologic Engineering Center’s-Hydrologic Modeling System, HEC-HMS, hydrologic model for flow predictions. The results show that flow predictions using MaxEPS and MM5 precipitation forecasts over-predicted the peak flow for most of the seven events analyzed, whereas under-predicted peak flow was found using zero- and monthly average rainfall. The comparison of observed and predicted flow hydrographs shows that MM5, MaxEPS and MeanEPS precipitation forecasts were able to capture the rainfall signal that caused peak flows. Flow predictions based on MaxEPS and MeanEPS gave results that were quantitatively close to the observed flow for most events, whereas flow predictions based on MM5 resulted in large overestimations for some events. In follow-up research for this particular case study, calibration of the MM5 model will be performed. The overall analysis shows that freely available atmospheric forecasting products can provide additional information on upcoming rainfall and peak flow events in areas where only base-line forecasts such as no-rainfall or climatology are available.

  18. Flood monitoring for ungauged rivers: the power of combining space-based monitoring and global forecasting models

    NASA Astrophysics Data System (ADS)

    Revilla-Romero, Beatriz; Netgeka, Victor; Raynaud, Damien; Thielen, Jutta

    2013-04-01

    Flood warning systems typically rely on forecasts from national meteorological services and in-situ observations from hydrological gauging stations. This capacity is not equally developed in flood-prone developing countries. Low-cost satellite monitoring systems and global flood forecasting systems can be an alternative source of information for national flood authorities. The Global Flood Awareness System (GloFAS) has been develop jointly with the European Centre for Medium-Range Weather Forecast (ECMWF) and the Joint Research Centre, and it is running quasi operational now since June 2011. The system couples state-of-the art weather forecasts with a hydrological model driven at a continental scale. The system provides downstream countries with information on upstream river conditions as well as continental and global overviews. In its test phase, this global forecast system provides probabilities for large transnational river flooding at the global scale up to 30 days in advance. It has shown its real-life potential for the first time during the flood in Southeast Asia in 2011, and more recently during the floods in Australia in March 2012, India (Assam, September-October 2012) and Chad Floods (August-October 2012).The Joint Research Centre is working on further research and development, rigorous testing and adaptations of the system to create an operational tool for decision makers, including national and regional water authorities, water resource managers, hydropower companies, civil protection and first line responders, and international humanitarian aid organizations. Currently efforts are being made to link GloFAS to the Global Flood Detection System (GFDS). GFDS is a Space-based river gauging and flood monitoring system using passive microwave remote sensing which was developed by a collaboration between the JRC and Dartmouth Flood Observatory. GFDS provides flood alerts based on daily water surface change measurements from space. Alerts are shown on a world map, with detailed reports for individual gauging sites. A comparison of discharge estimates from the Global Flood Detection System (GFDS) and the Global Flood Awareness System (GloFAS) with observations for representative climatic zones is presented. Both systems have demonstrated strong potential in forecasting and detecting recent catastrophic floods. The usefulness of their combined information on global scale for decision makers at different levels is discussed. Combining space-based monitoring and global forecasting models is an innovative approach and has significant benefits for international river commissions as well as international aid organisations. This is in line with the objectives of the Hyogo and the Post-2015 Framework that aim at the development of systems which involve trans-boundary collaboration, space-based earth observation, flood forecasting and early warning.

  19. Assessment of GNSS-based height data of multiple ships for measuring and forecasting great tsunamis

    NASA Astrophysics Data System (ADS)

    Inazu, Daisuke; Waseda, Takuji; Hibiya, Toshiyuki; Ohta, Yusaku

    2016-12-01

    Ship height positioning by the Global Navigation Satellite System (GNSS) was investigated for measuring and forecasting great tsunamis. We first examined GNSS height-positioning data of a navigating vessel. If we use the kinematic precise point positioning (PPP) method, tsunamis greater than 10-1 m will be detected by ship height positioning. Based on Automatic Identification System (AIS) data, we found that tens of cargo ships and tankers are usually identified to navigate over the Nankai Trough, southwest Japan. We assumed that a future Nankai Trough great earthquake tsunami will be observed by the kinematic PPP height positioning of an AIS-derived ship distribution, and examined the tsunami forecast capability of the offshore tsunami measurements based on the PPP-based ship height. A method to estimate the initial tsunami height distribution using offshore tsunami observations was used for forecasting. Tsunami forecast tests were carried out using simulated tsunami data by the PPP-based ship height of 92 cargo ships/tankers, and by currently operating deep-sea pressure and Global Positioning System (GPS) buoy observations at 71 stations over the Nankai Trough. The forecast capability using the PPP-based height of the 92 ships was shown to be comparable to or better than that using the operating offshore observatories at the 71 stations. We suppose that, immediately after the occurrence of a great earthquake, stations receiving successive ship information (AIS data) along certain areas of the coast would fail to acquire ship data due to strong ground shaking, especially near the epicenter. Such a situation would significantly deteriorate the tsunami-forecast capability using ship data. On the other hand, operational real-time analysis of seismic/geodetic data would be carried out for estimating a tsunamigenic fault model. Incorporating the seismic/geodetic fault model estimation into the tsunami forecast above possibly compensates for the deteriorated forecast capability.

  20. An Agent-Based Interface to Terrestrial Ecological Forecasting

    NASA Technical Reports Server (NTRS)

    Golden, Keith; Nemani, Ramakrishna; Pang, Wan-Lin; Votava, Petr; Etzioni, Oren

    2004-01-01

    This paper describes a flexible agent-based ecological forecasting system that combines multiple distributed data sources and models to provide near-real-time answers to questions about the state of the Earth system We build on novel techniques in automated constraint-based planning and natural language interfaces to automatically generate data products based on descriptions of the desired data products.

  1. Measuring and forecasting great tsunamis by GNSS-based vertical positioning of multiple ships

    NASA Astrophysics Data System (ADS)

    Inazu, D.; Waseda, T.; Hibiya, T.; Ohta, Y.

    2016-12-01

    Vertical ship positioning by the Global Navigation Satellite System (GNSS) was investigated for measuring and forecasting great tsunamis. We first examined existing GNSS vertical position data of a navigating vessel. The result indicated that by using the kinematic Precise Point Positioning (PPP) method, tsunamis greater than 10^-1 m can be detected from the vertical position of the ship. Based on Automatic Identification System (AIS) data, tens of cargo ships and tankers are regularly identified navigating over the Nankai Trough, southwest of Japan. We then assumed that a future Nankai Trough great earthquake tsunami will be observed by ships at locations based on AIS data. The tsunami forecast capability by these virtual offshore tsunami measurements was examined. A conventional Green's function based inversion was used to determine the initial tsunami height distribution. Tsunami forecast tests over the Nankai Trough were carried out using simulated tsunami data of the vertical positions of multiple cargo ships/tankers on a certain day, and of the currently operating observations by deep-sea pressure gauges and Global Positioning System (GPS) buoys. The forecast capability of ship-based tsunami height measurements alone was shown to be comparable to or better than that using the existing offshore observations.

  2. Validation of the CME Geomagnetic forecast alerts under COMESEP alert system

    NASA Astrophysics Data System (ADS)

    Dumbovic, Mateja; Srivastava, Nandita; Khodia, Yamini; Vršnak, Bojan; Devos, Andy; Rodriguez, Luciano

    2017-04-01

    An automated space weather alert system has been developed under the EU FP7 project COMESEP (COronal Mass Ejections and Solar Energetic Particles: http://comesep.aeronomy.be) to forecast solar energetic particles (SEP) and coronal mass ejection (CME) risk levels at Earth. COMESEP alert system uses automated detection tool CACTus to detect potentially threatening CMEs, drag-based model (DBM) to predict their arrival and CME geo-effectiveness tool (CGFT) to predict their geomagnetic impact. Whenever CACTus detects a halo or partial halo CME and issues an alert, DBM calculates its arrival time at Earth and CGFT calculates its geomagnetic risk level. Geomagnetic risk level is calculated based on an estimation of the CME arrival probability and its likely geo-effectiveness, as well as an estimate of the geomagnetic-storm duration. We present the evaluation of the CME risk level forecast with COMESEP alert system based on a study of geo-effective CMEs observed during 2014. The validation of the forecast tool is done by comparing the forecasts with observations. In addition, we test the success rate of the automatic forecasts (without human intervention) against the forecasts with human intervention using advanced versions of DBM and CGFT (self standing tools available at Hvar Observatory website: http://oh.geof.unizg.hr). The results implicate that the success rate of the forecast is higher with human intervention and using more advanced tools. This work has received funding from the European Commission FP7 Project COMESEP (263252). We acknowledge the support of Croatian Science Foundation under the project 6212 „Solar and Stellar Variability".

  3. Seasonal forecasting of groundwater levels in natural aquifers in the United Kingdom

    NASA Astrophysics Data System (ADS)

    Mackay, Jonathan; Jackson, Christopher; Pachocka, Magdalena; Brookshaw, Anca; Scaife, Adam

    2014-05-01

    Groundwater aquifers comprise the world's largest freshwater resource and provide resilience to climate extremes which could become more frequent under future climate changes. Prolonged dry conditions can induce groundwater drought, often characterised by significantly low groundwater levels which may persist for months to years. In contrast, lasting wet conditions can result in anomalously high groundwater levels which result in flooding, potentially at large economic cost. Using computational models to produce groundwater level forecasts allows appropriate management strategies to be considered in advance of extreme events. The majority of groundwater level forecasting studies to date use data-based models, which exploit the long response time of groundwater levels to meteorological drivers and make forecasts based only on the current state of the system. Instead, seasonal meteorological forecasts can be used to drive hydrological models and simulate groundwater levels months into the future. Such approaches have not been used in the past due to a lack of skill in these long-range forecast products. However systems such as the latest version of the Met Office Global Seasonal Forecast System (GloSea5) are now showing increased skill up to a 3-month lead time. We demonstrate the first groundwater level ensemble forecasting system using a multi-member ensemble of hindcasts from GloSea5 between 1996 and 2009 to force 21 simple lumped conceptual groundwater models covering most of the UK's major aquifers. We present the results from this hindcasting study and demonstrate that the system can be used to forecast groundwater levels with some skill up to three months into the future.

  4. A system for forecasting and monitoring cash flow : phase II, forecasting federal and state revenues, maintenance contracts, other expenditures, and cash balances.

    DOT National Transportation Integrated Search

    1985-01-01

    The research on which this report is based was performed as part of a study to develop an improved system for generating a two-year forecast of monthly cash flows for the Virginia Department of Highways and Transportation. It revealed that current te...

  5. Enhancing Community Based Early Warning Systems in Nepal with Flood Forecasting Using Local and Global Models

    NASA Astrophysics Data System (ADS)

    Dugar, Sumit; Smith, Paul; Parajuli, Binod; Khanal, Sonu; Brown, Sarah; Gautam, Dilip; Bhandari, Dinanath; Gurung, Gehendra; Shakya, Puja; Kharbuja, RamGopal; Uprety, Madhab

    2017-04-01

    Operationalising effective Flood Early Warning Systems (EWS) in developing countries like Nepal poses numerous challenges, with complex topography and geology, sparse network of river and rainfall gauging stations and diverse socio-economic conditions. Despite these challenges, simple real-time monitoring based EWSs have been in place for the past decade. A key constraint of these simple systems is the very limited lead time for response - as little as 2-3 hours, especially for rivers originating from steep mountainous catchments. Efforts to increase lead time for early warning are focusing on imbedding forecasts into the existing early warning systems. In 2016, the Nepal Department of Hydrology and Meteorology (DHM) piloted an operational Probabilistic Flood Forecasting Model in major river basins across Nepal. This comprised a low data approach to forecast water levels, developed jointly through a research/practitioner partnership with Lancaster University and WaterNumbers (UK) and the International NGO Practical Action. Using Data-Based Mechanistic Modelling (DBM) techniques, the model assimilated rainfall and water levels to generate localised hourly flood predictions, which are presented as probabilistic forecasts, increasing lead times from 2-3 hours to 7-8 hours. The Nepal DHM has simultaneously started utilizing forecasts from the Global Flood Awareness System (GLoFAS) that provides streamflow predictions at the global scale based upon distributed hydrological simulations using numerical ensemble weather forecasts from the ECMWF (European Centre for Medium-Range Weather Forecasts). The aforementioned global and local models have already affected the approach to early warning in Nepal, being operational during the 2016 monsoon in the West Rapti basin in Western Nepal. On 24 July 2016, GLoFAS hydrological forecasts for the West Rapti indicated a sharp rise in river discharge above 1500 m3/sec (equivalent to the river warning level at 5 meters) with 53% probability of exceeding the Medium Level Alert in two days. Rainfall stations upstream of the West Rapti catchment recorded heavy rainfall on 26 July, and localized forecasts from the probabilistic model at 8 am suggested that the water level would cross a pre-determined warning level in the next 3 hours. The Flood Forecasting Section at DHM issued a flood advisory, and disseminated SMS flood alerts to more than 13,000 at-risk people residing along the floodplains. Water levels crossed the danger threshold (5.4 meters) at 11 am, peaking at 8.15 meters at 10 pm. Extension of the warning lead time from probabilistic forecasts was significant in minimising the risk to lives and livelihoods as communities gained extra time to prepare, evacuate and respond. Likewise, longer timescale forecasts from GLoFAS could be potentially linked with no-regret early actions leading to improved preparedness and emergency response. These forecasting tools have contributed to enhance the effectiveness and efficiency of existing community based systems, increasing the lead time for response. Nevertheless, extensive work is required on appropriate ways to interpret and disseminate probabilistic forecasts having longer (2-14 days) and shorter (3-5 hours) time horizon for operational deployment as there are numerous uncertainties associated with predictions.

  6. Short-term load and wind power forecasting using neural network-based prediction intervals.

    PubMed

    Quan, Hao; Srinivasan, Dipti; Khosravi, Abbas

    2014-02-01

    Electrical power systems are evolving from today's centralized bulk systems to more decentralized systems. Penetrations of renewable energies, such as wind and solar power, significantly increase the level of uncertainty in power systems. Accurate load forecasting becomes more complex, yet more important for management of power systems. Traditional methods for generating point forecasts of load demands cannot properly handle uncertainties in system operations. To quantify potential uncertainties associated with forecasts, this paper implements a neural network (NN)-based method for the construction of prediction intervals (PIs). A newly introduced method, called lower upper bound estimation (LUBE), is applied and extended to develop PIs using NN models. A new problem formulation is proposed, which translates the primary multiobjective problem into a constrained single-objective problem. Compared with the cost function, this new formulation is closer to the primary problem and has fewer parameters. Particle swarm optimization (PSO) integrated with the mutation operator is used to solve the problem. Electrical demands from Singapore and New South Wales (Australia), as well as wind power generation from Capital Wind Farm, are used to validate the PSO-based LUBE method. Comparative results show that the proposed method can construct higher quality PIs for load and wind power generation forecasts in a short time.

  7. An Automated Weather Research and Forecasting (WRF)-Based Nowcasting System: Software Description

    DTIC Science & Technology

    2013-10-01

    14. ABSTRACT A Web service /Web interface software package has been engineered to address the need for an automated means to run the Weather Research...An Automated Weather Research and Forecasting (WRF)- Based Nowcasting System: Software Description by Stephen F. Kirby, Brian P. Reen, and...Based Nowcasting System: Software Description Stephen F. Kirby, Brian P. Reen, and Robert E. Dumais Jr. Computational and Information Sciences

  8. Seasonal Forecasting of Reservoir Inflow for the Segura River Basin, Spain

    NASA Astrophysics Data System (ADS)

    de Tomas, Alberto; Hunink, Johannes

    2017-04-01

    A major threat to the agricultural sector in Europe is an increasing occurrence of low water availability for irrigation, affecting the local and regional food security and economies. Especially in the Mediterranean region, such as in the Segura river basin (Spain), drought epidodes are relatively frequent. Part of the irrigation water demand in this basin is met by a water transfer from the Tagus basin (central Spain), but also in this basin an increasing pressure on the water resources has reduced the water available to be transferred. Currently, Drought Management Plans in these Spanish basins are in place and mitigate the impact of drought periods to some extent. Drought indicators that are derived from the available water in the storage reservoirs impose a set of drought mitigation measures. Decisions on water transfers are dependent on a regression-based time series forecast from the reservoir inflows of the preceding months. This user-forecast has its limitations and can potentially be improved using more advanced techniques. Nowadays, seasonal climate forecasts have shown to have increasing skill for certain areas and for certain applications. So far, such forecasts have not been evaluated in a seasonal hydrologic forecasting system in the Spanish context. The objective of this work is to develop a prototype of a Seasonal Hydrologic Forecasting System and compare this with a reference forecast. The reference forecast in this case is the locally used regression-based forecast. Additionally, hydrological simulations derived from climatological reanalysis (ERA-Interim) are taken as a reference forecast. The Spatial Processes in Hydrology model (SPHY - http://www.sphy.nl/) forced with the ECMWF- SFS4 (15 ensembles) Seasonal Forecast Systems is used to predict reservoir inflows of the upper basins of the Segura and Tagus rivers. The system is evaluated for 4 seasons with a forecasting lead time of 3 months. First results show that only for certain initialization months and lead times, the developed system outperforms the reference forecast. This research is carried out within the European research project IMPREX (www.imprex.eu) that aims at investigating the value of improving predictions of hydro-meteorological extremes in a number of water sectors, including agriculture . The next step is to integrate improved seasonal forecasts into the system and evaluate these. This should finally lead to a more robust forecasting system that allows water managers and irrigators to better anticipate to drought episodes and putting into practice more effective water allocation and mitigation practices.

  9. Verification of ECMWF System 4 for seasonal hydrological forecasting in a northern climate

    NASA Astrophysics Data System (ADS)

    Bazile, Rachel; Boucher, Marie-Amélie; Perreault, Luc; Leconte, Robert

    2017-11-01

    Hydropower production requires optimal dam and reservoir management to prevent flooding damage and avoid operation losses. In a northern climate, where spring freshet constitutes the main inflow volume, seasonal forecasts can help to establish a yearly strategy. Long-term hydrological forecasts often rely on past observations of streamflow or meteorological data. Another alternative is to use ensemble meteorological forecasts produced by climate models. In this paper, those produced by the ECMWF (European Centre for Medium-Range Forecast) System 4 are examined and bias is characterized. Bias correction, through the linear scaling method, improves the performance of the raw ensemble meteorological forecasts in terms of continuous ranked probability score (CRPS). Then, three seasonal ensemble hydrological forecasting systems are compared: (1) the climatology of simulated streamflow, (2) the ensemble hydrological forecasts based on climatology (ESP) and (3) the hydrological forecasts based on bias-corrected ensemble meteorological forecasts from System 4 (corr-DSP). Simulated streamflow computed using observed meteorological data is used as benchmark. Accounting for initial conditions is valuable even for long-term forecasts. ESP and corr-DSP both outperform the climatology of simulated streamflow for lead times from 1 to 5 months depending on the season and watershed. Integrating information about future meteorological conditions also improves monthly volume forecasts. For the 1-month lead time, a gain exists for almost all watersheds during winter, summer and fall. However, volume forecasts performance for spring varies from one watershed to another. For most of them, the performance is close to the performance of ESP. For longer lead times, the CRPS skill score is mostly in favour of ESP, even if for many watersheds, ESP and corr-DSP have comparable skill. Corr-DSP appears quite reliable but, in some cases, under-dispersion or bias is observed. A more complex bias-correction method should be further investigated to remedy this weakness and take more advantage of the ensemble forecasts produced by the climate model. Overall, in this study, bias-corrected ensemble meteorological forecasts appear to be an interesting source of information for hydrological forecasting for lead times up to 1 month. They could also complement ESP for longer lead times.

  10. Extended Range Prediction of Indian Summer Monsoon: Current status

    NASA Astrophysics Data System (ADS)

    Sahai, A. K.; Abhilash, S.; Borah, N.; Joseph, S.; Chattopadhyay, R.; S, S.; Rajeevan, M.; Mandal, R.; Dey, A.

    2014-12-01

    The main focus of this study is to develop forecast consensus in the extended range prediction (ERP) of monsoon Intraseasonal oscillations using a suit of different variants of Climate Forecast system (CFS) model. In this CFS based Grand MME prediction system (CGMME), the ensemble members are generated by perturbing the initial condition and using different configurations of CFSv2. This is to address the role of different physical mechanisms known to have control on the error growth in the ERP in the 15-20 day time scale. The final formulation of CGMME is based on 21 ensembles of the standalone Global Forecast System (GFS) forced with bias corrected forecasted SST from CFS, 11 low resolution CFST126 and 11 high resolution CFST382. Thus, we develop the multi-model consensus forecast for the ERP of Indian summer monsoon (ISM) using a suite of different variants of CFS model. This coordinated international effort lead towards the development of specific tailor made regional forecast products over Indian region. Skill of deterministic and probabilistic categorical rainfall forecast as well the verification of large-scale low frequency monsoon intraseasonal oscillations has been carried out using hindcast from 2001-2012 during the monsoon season in which all models are initialized at every five days starting from 16May to 28 September. The skill of deterministic forecast from CGMME is better than the best participating single model ensemble configuration (SME). The CGMME approach is believed to quantify the uncertainty in both initial conditions and model formulation. Main improvement is attained in probabilistic forecast which is because of an increase in the ensemble spread, thereby reducing the error due to over-confident ensembles in a single model configuration. For probabilistic forecast, three tercile ranges are determined by ranking method based on the percentage of ensemble members from all the participating models falls in those three categories. CGMME further added value to both deterministic and probability forecast compared to raw SME's and this better skill is probably flows from large spread and improved spread-error relationship. CGMME system is currently capable of generating ER prediction in real time and successfully delivering its experimental operational ER forecast of ISM for the last few years.

  11. Probabilistic Wind Power Ramp Forecasting Based on a Scenario Generation Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Qin; Florita, Anthony R; Krishnan, Venkat K

    Wind power ramps (WPRs) are particularly important in the management and dispatch of wind power and currently drawing the attention of balancing authorities. With the aim to reduce the impact of WPRs for power system operations, this paper develops a probabilistic ramp forecasting method based on a large number of simulated scenarios. An ensemble machine learning technique is first adopted to forecast the basic wind power forecasting scenario and calculate the historical forecasting errors. A continuous Gaussian mixture model (GMM) is used to fit the probability distribution function (PDF) of forecasting errors. The cumulative distribution function (CDF) is analytically deduced.more » The inverse transform method based on Monte Carlo sampling and the CDF is used to generate a massive number of forecasting error scenarios. An optimized swinging door algorithm is adopted to extract all the WPRs from the complete set of wind power forecasting scenarios. The probabilistic forecasting results of ramp duration and start-time are generated based on all scenarios. Numerical simulations on publicly available wind power data show that within a predefined tolerance level, the developed probabilistic wind power ramp forecasting method is able to predict WPRs with a high level of sharpness and accuracy.« less

  12. Probabilistic Wind Power Ramp Forecasting Based on a Scenario Generation Method: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Qin; Florita, Anthony R; Krishnan, Venkat K

    2017-08-31

    Wind power ramps (WPRs) are particularly important in the management and dispatch of wind power, and they are currently drawing the attention of balancing authorities. With the aim to reduce the impact of WPRs for power system operations, this paper develops a probabilistic ramp forecasting method based on a large number of simulated scenarios. An ensemble machine learning technique is first adopted to forecast the basic wind power forecasting scenario and calculate the historical forecasting errors. A continuous Gaussian mixture model (GMM) is used to fit the probability distribution function (PDF) of forecasting errors. The cumulative distribution function (CDF) ismore » analytically deduced. The inverse transform method based on Monte Carlo sampling and the CDF is used to generate a massive number of forecasting error scenarios. An optimized swinging door algorithm is adopted to extract all the WPRs from the complete set of wind power forecasting scenarios. The probabilistic forecasting results of ramp duration and start time are generated based on all scenarios. Numerical simulations on publicly available wind power data show that within a predefined tolerance level, the developed probabilistic wind power ramp forecasting method is able to predict WPRs with a high level of sharpness and accuracy.« less

  13. Toward seamless high-resolution flash flood forecasting over Europe based on radar nowcasting and NWP: An evaluation with case studies

    NASA Astrophysics Data System (ADS)

    Park, Shinju; Berenguer, Marc; Sempere-Torres, Daniel; Baugh, Calum; Smith, Paul

    2017-04-01

    Flash floods induced by heavy rain are one of the hazardous natural events that significantly affect human lives. Because flash floods are characterized by their rapid onset, forecasting flash flood to lead an effective response requires accurate rainfall predictions with high spatial and temporal resolution and adequate representation of the hydrologic and hydraulic processes within a catchment that determine rainfall-runoff accumulations. We present extreme flash flood cases which occurred throughout Europe in 2015-2016 that were identified and forecasted by two real-time approaches: 1) the European Rainfall-Induced Hazard Assessment System (ERICHA) and 2) the European Runoff Index based on Climatology (ERIC). ERICHA is based on the nowcasts of accumulated precipitation generated from the pan-European radar composites produced by the EUMETNET project OPERA. It has the advantage of high-resolution precipitation inputs and rapidly updated forecasts (every 15 minutes), but limited forecast lead time (up to 8 hours). ERIC, on the other hand, provides 5-day forecasts based on the COSMO-LEPS NWP simulations updated 2 times a day but is only produced at a 7 km resolution. We compare the products from both systems and focus on showing the advantages, limitations and complementarities of ERICHA and ERIC for seamless high-resolution flash flood forecasting.

  14. Improving wave forecasting by integrating ensemble modelling and machine learning

    NASA Astrophysics Data System (ADS)

    O'Donncha, F.; Zhang, Y.; James, S. C.

    2017-12-01

    Modern smart-grid networks use technologies to instantly relay information on supply and demand to support effective decision making. Integration of renewable-energy resources with these systems demands accurate forecasting of energy production (and demand) capacities. For wave-energy converters, this requires wave-condition forecasting to enable estimates of energy production. Current operational wave forecasting systems exhibit substantial errors with wave-height RMSEs of 40 to 60 cm being typical, which limits the reliability of energy-generation predictions thereby impeding integration with the distribution grid. In this study, we integrate physics-based models with statistical learning aggregation techniques that combine forecasts from multiple, independent models into a single "best-estimate" prediction of the true state. The Simulating Waves Nearshore physics-based model is used to compute wind- and currents-augmented waves in the Monterey Bay area. Ensembles are developed based on multiple simulations perturbing input data (wave characteristics supplied at the model boundaries and winds) to the model. A learning-aggregation technique uses past observations and past model forecasts to calculate a weight for each model. The aggregated forecasts are compared to observation data to quantify the performance of the model ensemble and aggregation techniques. The appropriately weighted ensemble model outperforms an individual ensemble member with regard to forecasting wave conditions.

  15. Valuing year-to-go hydrologic forecast improvements for a peaking hydropower system in the Sierra Nevada

    NASA Astrophysics Data System (ADS)

    Rheinheimer, David E.; Bales, Roger C.; Oroza, Carlos A.; Lund, Jay R.; Viers, Joshua H.

    2016-05-01

    We assessed the potential value of hydrologic forecasting improvements for a snow-dominated high-elevation hydropower system in the Sierra Nevada of California, using a hydropower optimization model. To mimic different forecasting skill levels for inflow time series, rest-of-year inflows from regression-based forecasts were blended in different proportions with representative inflows from a spatially distributed hydrologic model. The statistical approach mimics the simpler, historical forecasting approach that is still widely used. Revenue was calculated using historical electricity prices, with perfect price foresight assumed. With current infrastructure and operations, perfect hydrologic forecasts increased annual hydropower revenue by 0.14 to 1.6 million, with lower values in dry years and higher values in wet years, or about $0.8 million (1.2%) on average, representing overall willingness-to-pay for perfect information. A second sensitivity analysis found a wider range of annual revenue gain or loss using different skill levels in snow measurement in the regression-based forecast, mimicking expected declines in skill as the climate warms and historical snow measurements no longer represent current conditions. The value of perfect forecasts was insensitive to storage capacity for small and large reservoirs, relative to average inflow, and modestly sensitive to storage capacity with medium (current) reservoir storage. The value of forecasts was highly sensitive to powerhouse capacity, particularly for the range of capacities in the northern Sierra Nevada. The approach can be extended to multireservoir, multipurpose systems to help guide investments in forecasting.

  16. Probabilistic short-term forecasting of eruption rate at Kīlauea Volcano using a physics-based model

    NASA Astrophysics Data System (ADS)

    Anderson, K. R.

    2016-12-01

    Deterministic models of volcanic eruptions yield predictions of future activity conditioned on uncertainty in the current state of the system. Physics-based eruption models are well-suited for deterministic forecasting as they can relate magma physics with a wide range of observations. Yet, physics-based eruption forecasting is strongly limited by an inadequate understanding of volcanic systems, and the need for eruption models to be computationally tractable. At Kīlauea Volcano, Hawaii, episodic depressurization-pressurization cycles of the magma system generate correlated, quasi-exponential variations in ground deformation and surface height of the active summit lava lake. Deflations are associated with reductions in eruption rate, or even brief eruptive pauses, and thus partly control lava flow advance rates and associated hazard. Because of the relatively well-understood nature of Kīlauea's shallow magma plumbing system, and because more than 600 of these events have been recorded to date, they offer a unique opportunity to refine a physics-based effusive eruption forecasting approach and apply it to lava eruption rates over short (hours to days) time periods. A simple physical model of the volcano ascribes observed data to temporary reductions in magma supply to an elastic reservoir filled with compressible magma. This model can be used to predict the evolution of an ongoing event, but because the mechanism that triggers events is unknown, event durations are modeled stochastically from previous observations. A Bayesian approach incorporates diverse data sets and prior information to simultaneously estimate uncertain model parameters and future states of the system. Forecasts take the form of probability distributions for eruption rate or cumulative erupted volume at some future time. Results demonstrate the significant uncertainties that still remain even for short-term eruption forecasting at a well-monitored volcano - but also the value of a physics-based, mixed deterministic-probabilistic eruption forecasting approach in reducing and quantifying these uncertainties.

  17. Predictive Skill of Meteorological Drought Based on Multi-Model Ensemble Forecasts: A Real-Time Assessment

    NASA Astrophysics Data System (ADS)

    Chen, L. C.; Mo, K. C.; Zhang, Q.; Huang, J.

    2014-12-01

    Drought prediction from monthly to seasonal time scales is of critical importance to disaster mitigation, agricultural planning, and multi-purpose reservoir management. Starting in December 2012, NOAA Climate Prediction Center (CPC) has been providing operational Standardized Precipitation Index (SPI) Outlooks using the North American Multi-Model Ensemble (NMME) forecasts, to support CPC's monthly drought outlooks and briefing activities. The current NMME system consists of six model forecasts from U.S. and Canada modeling centers, including the CFSv2, CM2.1, GEOS-5, CCSM3.0, CanCM3, and CanCM4 models. In this study, we conduct an assessment of the predictive skill of meteorological drought using real-time NMME forecasts for the period from May 2012 to May 2014. The ensemble SPI forecasts are the equally weighted mean of the six model forecasts. Two performance measures, the anomaly correlation coefficient and root-mean-square errors against the observations, are used to evaluate forecast skill.Similar to the assessment based on NMME retrospective forecasts, predictive skill of monthly-mean precipitation (P) forecasts is generally low after the second month and errors vary among models. Although P forecast skill is not large, SPI predictive skill is high and the differences among models are small. The skill mainly comes from the P observations appended to the model forecasts. This factor also contributes to the similarity of SPI prediction among the six models. Still, NMME SPI ensemble forecasts have higher skill than those based on individual models or persistence, and the 6-month SPI forecasts are skillful out to four months. The three major drought events occurred during the 2012-2014 period, the 2012 Central Great Plains drought, the 2013 Upper Midwest flash drought, and 2013-2014 California drought, are used as examples to illustrate the system's strength and limitations. For precipitation-driven drought events, such as the 2012 Central Great Plains drought, NMME SPI forecasts perform well in predicting drought severity and spatial patterns. For fast-developing drought events, such as the 2013 Upper Midwest flash drought, the system failed to capture the onset of the drought.

  18. Evaluation of Clear-Air Turbulence Diagnostics: GTG in Korea

    NASA Astrophysics Data System (ADS)

    Kim, J.-H.; Chun, H.-Y.; Jang, W.; Sharman, R. D.

    2009-04-01

    Turbulence forecasting algorithm, the Graphical Turbulence Guidance (GTG) system developed at NCAR (Sharman et al., 2006), is evaluated with available turbulence observations (e.g. pilot reports; PIREPs) reported in South Korea during the recent 4 years (2003-2007). Clear-air turbulence (CAT) is extracted from PIREPs by using cloud-to-ground lightning flash data from Korean Meteorological Administration (KMA). The GTG system includes several steps. First, 45 turbulence indices are calculated in the East Asian region near Korean peninsula using the Regional Data Assimilation and Prediction System (RDAPS) analysis data with 30 km horizontal grid spacing provided by KMA. Second, 10 CAT indices that performed ten best forecasting score are selected. The scoring method is based on the probability of detection, which is calculated using PIREPs exclusively of moderate-or-greater intensity. Various statistical examinations and sensitivity tests of the GTG system are performed by yearly and seasonally classified PIREPs in South Korea. Performance of GTG is more consistent and stable than that of any individual diagnostic in each year and season. In addition, current-year forecasting based on yearly PIREPs is better than adjacent-year forecasting and year-after-year forecasting. Seasonal forecasting is generally better than yearly forecasting, because selected CAT indices in each season represent meteorological condition much more properly than applying the selected CAT indices to all seasons. Wintertime forecasting is the best among the four seasonal forecastings. This is likely due to that the GTG system consists of many CAT indices related to jet stream, and turbulence associated with the jet can be most activated in wintertime under strong jet magnitude. On the other hand, summertime forecasting skill is much less than in wintertime. To acquire better performance for summertime forecasting, it is likely to develop more turbulence indices related to, for example, convections. By sensitivity test to the number of combined indices, it is found that yearly and seasonal GTG is the best when about 7 CAT indices are combined.

  19. Forecast Based Financing for Managing Weather and Climate Risks to Reduce Potential Disaster Impacts

    NASA Astrophysics Data System (ADS)

    Arrighi, J.

    2017-12-01

    There is a critical window of time to reduce potential impacts of a disaster after a forecast for heightened risk is issued and before an extreme event occurs. The concept of Forecast-based Financing focuses on this window of opportunity. Through advanced preparation during system set-up, tailored methodologies are used to 1) analyze a range of potential extreme event forecasts, 2) identify emergency preparedness measures that can be taken when factoring in forecast lead time and inherent uncertainty and 3) develop standard operating procedures that are agreed on and tied to guaranteed funding sources to facilitate emergency measures led by the Red Cross or government actors when preparedness measures are triggered. This presentation will focus on a broad overview of the current state of theory and approaches used in developing a forecast-based financing systems - with a specific focus on hydrologic events, case studies of success and challenges in various contexts where this approach is being piloted, as well as what is on the horizon to be further explored and developed from a research perspective as the application of this approach continues to expand.

  20. Moving beyond the cost-loss ratio: economic assessment of streamflow forecasts for a risk-averse decision maker

    NASA Astrophysics Data System (ADS)

    Matte, Simon; Boucher, Marie-Amélie; Boucher, Vincent; Fortier Filion, Thomas-Charles

    2017-06-01

    A large effort has been made over the past 10 years to promote the operational use of probabilistic or ensemble streamflow forecasts. Numerous studies have shown that ensemble forecasts are of higher quality than deterministic ones. Many studies also conclude that decisions based on ensemble rather than deterministic forecasts lead to better decisions in the context of flood mitigation. Hence, it is believed that ensemble forecasts possess a greater economic and social value for both decision makers and the general population. However, the vast majority of, if not all, existing hydro-economic studies rely on a cost-loss ratio framework that assumes a risk-neutral decision maker. To overcome this important flaw, this study borrows from economics and evaluates the economic value of early warning flood systems using the well-known Constant Absolute Risk Aversion (CARA) utility function, which explicitly accounts for the level of risk aversion of the decision maker. This new framework allows for the full exploitation of the information related to a forecasts' uncertainty, making it especially suited for the economic assessment of ensemble or probabilistic forecasts. Rather than comparing deterministic and ensemble forecasts, this study focuses on comparing different types of ensemble forecasts. There are multiple ways of assessing and representing forecast uncertainty. Consequently, there exist many different means of building an ensemble forecasting system for future streamflow. One such possibility is to dress deterministic forecasts using the statistics of past error forecasts. Such dressing methods are popular among operational agencies because of their simplicity and intuitiveness. Another approach is the use of ensemble meteorological forecasts for precipitation and temperature, which are then provided as inputs to one or many hydrological model(s). In this study, three concurrent ensemble streamflow forecasting systems are compared: simple statistically dressed deterministic forecasts, forecasts based on meteorological ensembles, and a variant of the latter that also includes an estimation of state variable uncertainty. This comparison takes place for the Montmorency River, a small flood-prone watershed in southern central Quebec, Canada. The assessment of forecasts is performed for lead times of 1 to 5 days, both in terms of forecasts' quality (relative to the corresponding record of observations) and in terms of economic value, using the new proposed framework based on the CARA utility function. It is found that the economic value of a forecast for a risk-averse decision maker is closely linked to the forecast reliability in predicting the upper tail of the streamflow distribution. Hence, post-processing forecasts to avoid over-forecasting could help improve both the quality and the value of forecasts.

  1. Operational Earthquake Forecasting of Aftershocks for New England

    NASA Astrophysics Data System (ADS)

    Ebel, J.; Fadugba, O. I.

    2015-12-01

    Although the forecasting of mainshocks is not possible, recent research demonstrates that probabilistic forecasts of expected aftershock activity following moderate and strong earthquakes is possible. Previous work has shown that aftershock sequences in intraplate regions behave similarly to those in California, and thus the operational aftershocks forecasting methods that are currently employed in California can be adopted for use in areas of the eastern U.S. such as New England. In our application, immediately after a felt earthquake in New England, a forecast of expected aftershock activity for the next 7 days will be generated based on a generic aftershock activity model. Approximately 24 hours after the mainshock, the parameters of the aftershock model will be updated using the observed aftershock activity observed to that point in time, and a new forecast of expected aftershock activity for the next 7 days will be issued. The forecast will estimate the average number of weak, felt aftershocks and the average expected number of aftershocks based on the aftershock statistics of past New England earthquakes. The forecast also will estimate the probability that an earthquake that is stronger than the mainshock will take place during the next 7 days. The aftershock forecast will specify the expected aftershocks locations as well as the areas over which aftershocks of different magnitudes could be felt. The system will use web pages, email and text messages to distribute the aftershock forecasts. For protracted aftershock sequences, new forecasts will be issued on a regular basis, such as weekly. Initially, the distribution system of the aftershock forecasts will be limited, but later it will be expanded as experience with and confidence in the system grows.

  2. Metrics for Evaluating the Accuracy of Solar Power Forecasting: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, J.; Hodge, B. M.; Florita, A.

    2013-10-01

    Forecasting solar energy generation is a challenging task due to the variety of solar power systems and weather regimes encountered. Forecast inaccuracies can result in substantial economic losses and power system reliability issues. This paper presents a suite of generally applicable and value-based metrics for solar forecasting for a comprehensive set of scenarios (i.e., different time horizons, geographic locations, applications, etc.). In addition, a comprehensive framework is developed to analyze the sensitivity of the proposed metrics to three types of solar forecasting improvements using a design of experiments methodology, in conjunction with response surface and sensitivity analysis methods. The resultsmore » show that the developed metrics can efficiently evaluate the quality of solar forecasts, and assess the economic and reliability impact of improved solar forecasting.« less

  3. How much are you prepared to PAY for a forecast?

    NASA Astrophysics Data System (ADS)

    Arnal, Louise; Coughlan, Erin; Ramos, Maria-Helena; Pappenberger, Florian; Wetterhall, Fredrik; Bachofen, Carina; van Andel, Schalk Jan

    2015-04-01

    Probabilistic hydro-meteorological forecasts are a crucial element of the decision-making chain in the field of flood prevention. The operational use of probabilistic forecasts is increasingly promoted through the development of new novel state-of-the-art forecast methods and numerical skill is continuously increasing. However, the value of such forecasts for flood early-warning systems is a topic of diverging opinions. Indeed, the word value, when applied to flood forecasting, is multifaceted. It refers, not only to the raw cost of acquiring and maintaining a probabilistic forecasting system (in terms of human and financial resources, data volume and computational time), but also and most importantly perhaps, to the use of such products. This game aims at investigating this point. It is a willingness to pay game, embedded in a risk-based decision-making experiment. Based on a ``Red Cross/Red Crescent, Climate Centre'' game, it is a contribution to the international Hydrologic Ensemble Prediction Experiment (HEPEX). A limited number of probabilistic forecasts will be auctioned to the participants; the price of these forecasts being market driven. All participants (irrespective of having bought or not a forecast set) will then be taken through a decision-making process to issue warnings for extreme rainfall. This game will promote discussions around the topic of the value of forecasts for decision-making in the field of flood prevention.

  4. Evaluation of Wind Power Forecasts from the Vermont Weather Analytics Center and Identification of Improvements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Optis, Michael; Scott, George N.; Draxl, Caroline

    The goal of this analysis was to assess the wind power forecast accuracy of the Vermont Weather Analytics Center (VTWAC) forecast system and to identify potential improvements to the forecasts. Based on the analysis at Georgia Mountain, the following recommendations for improving forecast performance were made: 1. Resolve the significant negative forecast bias in February-March 2017 (50% underprediction on average) 2. Improve the ability of the forecast model to capture the strong diurnal cycle of wind power 3. Add ability for forecast model to assess internal wake loss, particularly at sites where strong diurnal shifts in wind direction are present.more » Data availability and quality limited the robustness of this forecast assessment. A more thorough analysis would be possible given a longer period of record for the data (at least one full year), detailed supervisory control and data acquisition data for each wind plant, and more detailed information on the forecast system input data and methodologies.« less

  5. Building the Sun4Cast System: Improvements in Solar Power Forecasting

    DOE PAGES

    Haupt, Sue Ellen; Kosovic, Branko; Jensen, Tara; ...

    2017-06-16

    The Sun4Cast System results from a research-to-operations project built on a value chain approach, and benefiting electric utilities’ customers, society, and the environment by improving state-of-the-science solar power forecasting capabilities. As integration of solar power into the national electric grid rapidly increases, it becomes imperative to improve forecasting of this highly variable renewable resource. Thus, a team of researchers from public, private, and academic sectors partnered to develop and assess a new solar power forecasting system, Sun4Cast. The partnership focused on improving decision-making for utilities and independent system operators, ultimately resulting in improved grid stability and cost savings for consumers.more » The project followed a value chain approach to determine key research and technology needs to reach desired results. Sun4Cast integrates various forecasting technologies across a spectrum of temporal and spatial scales to predict surface solar irradiance. Anchoring the system is WRF-Solar, a version of the Weather Research and Forecasting (WRF) numerical weather prediction (NWP) model optimized for solar irradiance prediction. Forecasts from multiple NWP models are blended via the Dynamic Integrated Forecast (DICast) System, the basis of the system beyond about 6 h. For short-range (0-6 h) forecasts, Sun4Cast leverages several observation-based nowcasting technologies. These technologies are blended via the Nowcasting Expert System Integrator (NESI). The NESI and DICast systems are subsequently blended to produce short to mid-term irradiance forecasts for solar array locations. The irradiance forecasts are translated into power with uncertainties quantified using an analog ensemble approach, and are provided to the industry partners for real-time decision-making. The Sun4Cast system ran operationally throughout 2015 and results were assessed. As a result, this paper analyzes the collaborative design process, discusses the project results, and provides recommendations for best-practice solar forecasting.« less

  6. Building the Sun4Cast System: Improvements in Solar Power Forecasting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haupt, Sue Ellen; Kosovic, Branko; Jensen, Tara

    The Sun4Cast System results from a research-to-operations project built on a value chain approach, and benefiting electric utilities’ customers, society, and the environment by improving state-of-the-science solar power forecasting capabilities. As integration of solar power into the national electric grid rapidly increases, it becomes imperative to improve forecasting of this highly variable renewable resource. Thus, a team of researchers from public, private, and academic sectors partnered to develop and assess a new solar power forecasting system, Sun4Cast. The partnership focused on improving decision-making for utilities and independent system operators, ultimately resulting in improved grid stability and cost savings for consumers.more » The project followed a value chain approach to determine key research and technology needs to reach desired results. Sun4Cast integrates various forecasting technologies across a spectrum of temporal and spatial scales to predict surface solar irradiance. Anchoring the system is WRF-Solar, a version of the Weather Research and Forecasting (WRF) numerical weather prediction (NWP) model optimized for solar irradiance prediction. Forecasts from multiple NWP models are blended via the Dynamic Integrated Forecast (DICast) System, the basis of the system beyond about 6 h. For short-range (0-6 h) forecasts, Sun4Cast leverages several observation-based nowcasting technologies. These technologies are blended via the Nowcasting Expert System Integrator (NESI). The NESI and DICast systems are subsequently blended to produce short to mid-term irradiance forecasts for solar array locations. The irradiance forecasts are translated into power with uncertainties quantified using an analog ensemble approach, and are provided to the industry partners for real-time decision-making. The Sun4Cast system ran operationally throughout 2015 and results were assessed. As a result, this paper analyzes the collaborative design process, discusses the project results, and provides recommendations for best-practice solar forecasting.« less

  7. Development of visibility forecasting modeling framework for the Lower Fraser Valley of British Columbia using Canada's Regional Air Quality Deterministic Prediction System.

    PubMed

    So, Rita; Teakles, Andrew; Baik, Jonathan; Vingarzan, Roxanne; Jones, Keith

    2018-05-01

    Visibility degradation, one of the most noticeable indicators of poor air quality, can occur despite relatively low levels of particulate matter when the risk to human health is low. The availability of timely and reliable visibility forecasts can provide a more comprehensive understanding of the anticipated air quality conditions to better inform local jurisdictions and the public. This paper describes the development of a visibility forecasting modeling framework, which leverages the existing air quality and meteorological forecasts from Canada's operational Regional Air Quality Deterministic Prediction System (RAQDPS) for the Lower Fraser Valley of British Columbia. A baseline model (GM-IMPROVE) was constructed using the revised IMPROVE algorithm based on unprocessed forecasts from the RAQDPS. Three additional prototypes (UMOS-HYB, GM-MLR, GM-RF) were also developed and assessed for forecast performance of up to 48 hr lead time during various air quality and meteorological conditions. Forecast performance was assessed by examining their ability to provide both numerical and categorical forecasts in the form of 1-hr total extinction and Visual Air Quality Ratings (VAQR), respectively. While GM-IMPROVE generally overestimated extinction more than twofold, it had skill in forecasting the relative species contribution to visibility impairment, including ammonium sulfate and ammonium nitrate. Both statistical prototypes, GM-MLR and GM-RF, performed well in forecasting 1-hr extinction during daylight hours, with correlation coefficients (R) ranging from 0.59 to 0.77. UMOS-HYB, a prototype based on postprocessed air quality forecasts without additional statistical modeling, provided reasonable forecasts during most daylight hours. In terms of categorical forecasts, the best prototype was approximately 75 to 87% correct, when forecasting for a condensed three-category VAQR. A case study, focusing on a poor visual air quality yet low Air Quality Health Index episode, illustrated that the statistical prototypes were able to provide timely and skillful visibility forecasts with lead time up to 48 hr. This study describes the development of a visibility forecasting modeling framework, which leverages the existing air quality and meteorological forecasts from Canada's operational Regional Air Quality Deterministic Prediction System. The main applications include tourism and recreation planning, input into air quality management programs, and educational outreach. Visibility forecasts, when supplemented with the existing air quality and health based forecasts, can assist jurisdictions to anticipate the visual air quality impacts as perceived by the public, which can potentially assist in formulating the appropriate air quality bulletins and recommendations.

  8. A Real-time Irrigation Forecasting System in Jiefangzha Irrigation District, China

    NASA Astrophysics Data System (ADS)

    Cong, Z.

    2015-12-01

    In order to improve the irrigation efficiency, we need to know when and how much to irrigate in real time. If we know the soil moisture content at this time, we can forecast the soil moisture content in the next days based on the rainfall forecasting and the crop evapotranspiration forecasting. Then the irrigation should be considered when the forecasting soil moisture content reaches to a threshold. Jiefangzha Irrigation District, a part of Hetao Irrigation District, is located in Inner Mongolia, China. The irrigated area of this irrigation district is about 140,000 ha mainly planting wheat, maize and sunflower. The annual precipitation is below 200mm, so the irrigation is necessary and the irrigation water comes from the Yellow river. We set up 10 sites with 4 TDR sensors at each site (20cm, 40cm, 60cm and 80cm depth) to monitor the soil moisture content. The weather forecasting data are downloaded from the website of European Centre for Medium-Range Weather Forecasts (ECMWF). The reference evapotranspiration is estimated based on FAO-Blaney-Criddle equation with only the air temperature from ECMWF. Then the crop water requirement is forecasted by the crop coefficient multiplying the reference evapotranspiration. Finally, the soil moisture content is forecasted based on soil water balance with the initial condition is set as the monitoring soil moisture content. When the soil moisture content reaches to a threshold, the irrigation warning will be announced. The irrigation mount can be estimated through three ways: (1) making the soil moisture content be equal to the field capacity; (2) making the soil moisture saturated; or (3) according to the irrigation quota. The forecasting period is 10 days. The system is developed according to B2C model with Java language. All the databases and the data analysis are carried out in the server. The customers can log in the website with their own username and password then get the information about the irrigation forecasting and other information about the irrigation. This system can be expanded in other irrigation districts. In future, it is even possible to upgrade the system for the mobile user.

  9. Advanced, Cost-Based Indices for Forecasting the Generation of Photovoltaic Power

    NASA Astrophysics Data System (ADS)

    Bracale, Antonio; Carpinelli, Guido; Di Fazio, Annarita; Khormali, Shahab

    2014-01-01

    Distribution systems are undergoing significant changes as they evolve toward the grids of the future, which are known as smart grids (SGs). The perspective of SGs is to facilitate large-scale penetration of distributed generation using renewable energy sources (RESs), encourage the efficient use of energy, reduce systems' losses, and improve the quality of power. Photovoltaic (PV) systems have become one of the most promising RESs due to the expected cost reduction and the increased efficiency of PV panels and interfacing converters. The ability to forecast power-production information accurately and reliably is of primary importance for the appropriate management of an SG and for making decisions relative to the energy market. Several forecasting methods have been proposed, and many indices have been used to quantify the accuracy of the forecasts of PV power production. Unfortunately, the indices that have been used have deficiencies and usually do not directly account for the economic consequences of forecasting errors in the framework of liberalized electricity markets. In this paper, advanced, more accurate indices are proposed that account directly for the economic consequences of forecasting errors. The proposed indices also were compared to the most frequently used indices in order to demonstrate their different, improved capability. The comparisons were based on the results obtained using a forecasting method based on an artificial neural network. This method was chosen because it was deemed to be one of the most promising methods available due to its capability for forecasting PV power. Numerical applications also are presented that considered an actual PV plant to provide evidence of the forecasting performances of all of the indices that were considered.

  10. Bayesian Hierarchical Models to Augment the Mediterranean Forecast System

    DTIC Science & Technology

    2010-09-30

    In part 2 (Bonazzi et al., 2010), the impact of the ensemble forecast methodology based on MFS-Wind-BHM perturbations is documented. Forecast...absence of dt data stage inputs, the forecast impact of MFS-Error-BHM is neutral. Experiments are underway now to introduce dt back into the MFS-Error...BHM and quantify forecast impacts at MFS. MFS-SuperEnsemble-BHM We have assembled all needed datasets and completed algorithmic development

  11. Physics-based Space Weather Forecasting in the Project for Solar-Terrestrial Environment Prediction (PSTEP) in Japan

    NASA Astrophysics Data System (ADS)

    Kusano, K.

    2016-12-01

    Project for Solar-Terrestrial Environment Prediction (PSTEP) is a Japanese nation-wide research collaboration, which was recently launched. PSTEP aims to develop a synergistic interaction between predictive and scientific studies of the solar-terrestrial environment and to establish the basis for next-generation space weather forecasting using the state-of-the-art observation systems and the physics-based models. For this project, we coordinate the four research groups, which develop (1) the integration of space weather forecast system, (2) the physics-based solar storm prediction, (3) the predictive models of magnetosphere and ionosphere dynamics, and (4) the model of solar cycle activity and its impact on climate, respectively. In this project, we will build the coordinated physics-based model to answer the fundamental questions concerning the onset of solar eruptions and the mechanism for radiation belt dynamics in the Earth's magnetosphere. In this paper, we will show the strategy of PSTEP, and discuss about the role and prospect of the physics-based space weather forecasting system being developed by PSTEP.

  12. The Ensemble Space Weather Modeling System (eSWMS): Status, Capabilities and Challenges

    NASA Astrophysics Data System (ADS)

    Fry, C. D.; Eccles, J. V.; Reich, J. P.

    2010-12-01

    Marking a milestone in space weather forecasting, the Space Weather Modeling System (SWMS) successfully completed validation testing in advance of operational testing at Air Force Weather Agency’s primary space weather production center. This is the first coupling of stand-alone, physics-based space weather models that are currently in operations at AFWA supporting the warfighter. Significant development effort went into ensuring the component models were portable and scalable while maintaining consistent results across diverse high performance computing platforms. Coupling was accomplished under the Earth System Modeling Framework (ESMF). The coupled space weather models are the Hakamada-Akasofu-Fry version 2 (HAFv2) solar wind model and GAIM1, the ionospheric forecast component of the Global Assimilation of Ionospheric Measurements (GAIM) model. The SWMS was developed by team members from AFWA, Explorations Physics International, Inc. (EXPI) and Space Environment Corporation (SEC). The successful development of the SWMS provides new capabilities beyond enabling extended lead-time, data-driven ionospheric forecasts. These include ingesting diverse data sets at higher resolution, incorporating denser computational grids at finer time steps, and performing probability-based ensemble forecasts. Work of the SWMS development team now focuses on implementing the ensemble-based probability forecast capability by feeding multiple scenarios of 5 days of solar wind forecasts to the GAIM1 model based on the variation of the input fields to the HAFv2 model. The ensemble SWMS (eSWMS) will provide the most-likely space weather scenario with uncertainty estimates for important forecast fields. The eSWMS will allow DoD mission planners to consider the effects of space weather on their systems with more advance warning than is currently possible. The payoff is enhanced, tailored support to the warfighter with improved capabilities, such as point-to-point HF propagation forecasts, single-frequency GPS error corrections, and high cadence, high-resolution Space Situational Awareness (SSA) products. We present the current status of eSWMS, its capabilities, limitations and path of transition to operational use.

  13. A Space Weather Forecasting System with Multiple Satellites Based on a Self-Recognizing Network

    PubMed Central

    Tokumitsu, Masahiro; Ishida, Yoshiteru

    2014-01-01

    This paper proposes a space weather forecasting system at geostationary orbit for high-energy electron flux (>2 MeV). The forecasting model involves multiple sensors on multiple satellites. The sensors interconnect and evaluate each other to predict future conditions at geostationary orbit. The proposed forecasting model is constructed using a dynamic relational network for sensor diagnosis and event monitoring. The sensors of the proposed model are located at different positions in space. The satellites for solar monitoring equip with monitoring devices for the interplanetary magnetic field and solar wind speed. The satellites orbit near the Earth monitoring high-energy electron flux. We investigate forecasting for typical two examples by comparing the performance of two models with different numbers of sensors. We demonstrate the prediction by the proposed model against coronal mass ejections and a coronal hole. This paper aims to investigate a possibility of space weather forecasting based on the satellite network with in-situ sensing. PMID:24803190

  14. A space weather forecasting system with multiple satellites based on a self-recognizing network.

    PubMed

    Tokumitsu, Masahiro; Ishida, Yoshiteru

    2014-05-05

    This paper proposes a space weather forecasting system at geostationary orbit for high-energy electron flux (>2 MeV). The forecasting model involves multiple sensors on multiple satellites. The sensors interconnect and evaluate each other to predict future conditions at geostationary orbit. The proposed forecasting model is constructed using a dynamic relational network for sensor diagnosis and event monitoring. The sensors of the proposed model are located at different positions in space. The satellites for solar monitoring equip with monitoring devices for the interplanetary magnetic field and solar wind speed. The satellites orbit near the Earth monitoring high-energy electron flux. We investigate forecasting for typical two examples by comparing the performance of two models with different numbers of sensors. We demonstrate the prediction by the proposed model against coronal mass ejections and a coronal hole. This paper aims to investigate a possibility of space weather forecasting based on the satellite network with in-situ sensing.

  15. An enhanced PM 2.5 air quality forecast model based on nonlinear regression and back-trajectory concentrations

    NASA Astrophysics Data System (ADS)

    Cobourn, W. Geoffrey

    2010-08-01

    An enhanced PM 2.5 air quality forecast model based on nonlinear regression (NLR) and back-trajectory concentrations has been developed for use in the Louisville, Kentucky metropolitan area. The PM 2.5 air quality forecast model is designed for use in the warm season, from May through September, when PM 2.5 air quality is more likely to be critical for human health. The enhanced PM 2.5 model consists of a basic NLR model, developed for use with an automated air quality forecast system, and an additional parameter based on upwind PM 2.5 concentration, called PM24. The PM24 parameter is designed to be determined manually, by synthesizing backward air trajectory and regional air quality information to compute 24-h back-trajectory concentrations. The PM24 parameter may be used by air quality forecasters to adjust the forecast provided by the automated forecast system. In this study of the 2007 and 2008 forecast seasons, the enhanced model performed well using forecasted meteorological data and PM24 as input. The enhanced PM 2.5 model was compared with three alternative models, including the basic NLR model, the basic NLR model with a persistence parameter added, and the NLR model with persistence and PM24. The two models that included PM24 were of comparable accuracy. The two models incorporating back-trajectory concentrations had lower mean absolute errors and higher rates of detecting unhealthy PM2.5 concentrations compared to the other models.

  16. Drought Monitoring and Forecasting Using the Princeton/U Washington National Hydrologic Forecasting System

    NASA Astrophysics Data System (ADS)

    Wood, E. F.; Yuan, X.; Roundy, J. K.; Lettenmaier, D. P.; Mo, K. C.; Xia, Y.; Ek, M. B.

    2011-12-01

    Extreme hydrologic events in the form of droughts or floods are a significant source of social and economic damage in many parts of the world. Having sufficient warning of extreme events allows managers to prepare for and reduce the severity of their impacts. A hydrologic forecast system can give seasonal predictions that can be used by mangers to make better decisions; however there is still much uncertainty associated with such a system. Therefore it is important to understand the forecast skill of the system before transitioning to operational usage. Seasonal reforecasts (1982 - 2010) from the NCEP Climate Forecast System (both version 1 (CFS) and version 2 (CFSv2), Climate Prediction Center (CPC) outlooks and the European Seasonal Interannual Prediction (EUROSIP) system, are assessed for forecasting skill in drought prediction across the U.S., both singularly and as a multi-model system The Princeton/U Washington national hydrologic monitoring and forecast system is being implemented at NCEP/EMC via their Climate Test Bed as the experimental hydrological forecast system to support U.S. operational drought prediction. Using our system, the seasonal forecasts are biased corrected, downscaled and used to drive the Variable Infiltration Capacity (VIC) land surface model to give seasonal forecasts of hydrologic variables with lead times of up to six months. Results are presented for a number of events, with particular focus on the Apalachicola-Chattahoochee-Flint (ACF) River Basin in the South Eastern United States, which has experienced a number of severe droughts in recent years and is a pilot study basin for the National Integrated Drought Information System (NIDIS). The performance of the VIC land surface model is evaluated using observational forcing when compared to observed streamflow. The effectiveness of the forecast system to predict streamflow and soil moisture is evaluated when compared with observed streamflow and modeled soil moisture driven by observed atmospheric forcing. The forecast skills from the dynamical seasonal models (CFSv1, CFSv2, EUROSIP) and CPC are also compared with forecasts based on the Ensemble Streamflow Prediction (ESP) method, which uses initial conditions and historical forcings to generate seasonal forecasts. The skill of the system to predict drought, drought recovery and related hydrological conditions such as low-flows is assessed, along with quantified uncertainty.

  17. Skill of Global Raw and Postprocessed Ensemble Predictions of Rainfall over Northern Tropical Africa

    NASA Astrophysics Data System (ADS)

    Vogel, Peter; Knippertz, Peter; Fink, Andreas H.; Schlueter, Andreas; Gneiting, Tilmann

    2018-04-01

    Accumulated precipitation forecasts are of high socioeconomic importance for agriculturally dominated societies in northern tropical Africa. In this study, we analyze the performance of nine operational global ensemble prediction systems (EPSs) relative to climatology-based forecasts for 1 to 5-day accumulated precipitation based on the monsoon seasons 2007-2014 for three regions within northern tropical Africa. To assess the full potential of raw ensemble forecasts across spatial scales, we apply state-of-the-art statistical postprocessing methods in form of Bayesian Model Averaging (BMA) and Ensemble Model Output Statistics (EMOS), and verify against station and spatially aggregated, satellite-based gridded observations. Raw ensemble forecasts are uncalibrated, unreliable, and underperform relative to climatology, independently of region, accumulation time, monsoon season, and ensemble. Differences between raw ensemble and climatological forecasts are large, and partly stem from poor prediction for low precipitation amounts. BMA and EMOS postprocessed forecasts are calibrated, reliable, and strongly improve on the raw ensembles, but - somewhat disappointingly - typically do not outperform climatology. Most EPSs exhibit slight improvements over the period 2007-2014, but overall have little added value compared to climatology. We suspect that the parametrization of convection is a potential cause for the sobering lack of ensemble forecast skill in a region dominated by mesoscale convective systems.

  18. A Public-Private-Acadmic Partnership to Advance Solar Power Forecasting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haupt, Sue Ellen

    The National Center for Atmospheric Research (NCAR) is pleased to have led a partnership to advance the state-of-the-science of solar power forecasting by designing, developing, building, deploying, testing, and assessing the SunCast™ Solar Power Forecasting System. The project has included cutting edge research, testing in several geographically- and climatologically-diverse high penetration solar utilities and Independent System Operators (ISOs), and wide dissemination of the research results to raise the bar on solar power forecasting technology. The partners include three other national laboratories, six universities, and industry partners. This public-private-academic team has worked in concert to perform use-inspired research to advance solarmore » power forecasting through cutting-edge research to advance both the necessary forecasting technologies and the metrics for evaluating them. The project has culminated in a year-long, full-scale demonstration of provide irradiance and power forecasts to utilities and ISOs to use in their operations. The project focused on providing elements of a value chain, beginning with the weather that causes a deviation from clear sky irradiance and progresses through monitoring and observations, modeling, forecasting, dissemination and communication of the forecasts, interpretation of the forecast, and through decision-making, which produces outcomes that have an economic value. The system has been evaluated using metrics developed specifically for this project, which has provided rich information on model and system performance. Research was accomplished on the very short range (0-6 hours) Nowcasting system as well as on the longer term (6-72 hour) forecasting system. The shortest range forecasts are based on observations in the field. The shortest range system, built by Brookhaven National Laboratory (BNL) and based on Total Sky Imagers (TSIs) is TSICast, which operates on the shortest time scale with a latency of only a few minutes and forecasts that currently go out to about 15 min. This project has facilitated research in improving the hardware and software so that the new high definition cameras deployed at multiple nearby locations allow discernment of the clouds at varying levels and advection according to the winds observed at those levels. Improvements over “smart persistence” are about 29% for even these very short forecasts. StatCast is based on pyranometer data measured at the site as well as concurrent meteorological observations and forecasts. StatCast is based on regime-dependent artificial intelligence forecasting techniques and has been shown to improve on “smart persistence” forecasts by 15-50%. A second category of short-range forecasting systems employ satellite imagery and use that information to discern clouds and their motion, allowing them to project the clouds, and the resulting blockage of irradiance, in time. CIRACast (the system produced by the Cooperative Institute for Atmospheric Research [CIRA] at Colorado State University) was already one of the more advanced cloud motion systems, which is the reason that team was brought to this project. During the project timeframe, the CIRA team was able to advance cloud shadowing, parallax removal, and implementation of better advecting winds at different altitudes. CIRACast shows generally a 25-40% improvement over Smart Persistence between sunrise and approximately 1600 UTC (Coordinated Universal Time) . A second satellite-based system, MADCast (Multi-sensor Advective Diffusive foreCast system), assimilates data from multiple satellite imagers and profilers to assimilate a fully three-dimensional picture of the cloud into the dynamic core of WRF. During 2015, MADCast (provided at least 70% improvement over Smart Persistence, with most of that skill being derived during partly cloudy conditions. That allows advection of the clouds via the Weather Research and Forecasting (WRF) model dynamics directly. After WRF-Solar™ showed initial success, it was also deployed in nowcasting mode with coarser runs out to 6 hours made hourly. It provided improvements on the order of 50-60% over Smart Persistence for forecasts up to 1600 UTC. The advantages of WRF-Solar-Nowcasting and MADCast were then blended to develop the new MAD-WRF model that incorporates the most important features of each of those models, both assimilating satellite cloud fields and using WRF-So far physics to develop and dissipate clouds. MAE improvements for MAD-WRF for forecasts from 3-6 hours are improved over WRF-Solar-Now by 20%. While all the Nowcasting system components by themselves provide improvement over Smart Persistence, the largest benefit is derived when they are smartly blended together by the Nowcasting Integrator to produce an integrated forecast. The development of WRF-Solar™ under this project has provided the first numerical weather prediction (NWP) model specifically designed to meet the needs of irradiance forecasting. The first augmentation improved the solar tracking algorithm to account for deviations associated with the eccentricity of the Earth’s orbit and the obliquity of the Earth. Second, WRF-Solar™ added the direct normal irradiance (DNI) and diffuse (DIF) components from the radiation parameterization to the model output. Third, efficient parameterizations were implemented to either interpolate the irradiance in between calls to the expensive radiative transfer parameterization, or to use a fast radiative transfer code that avoids computing three-dimensional heating rates but provides the surface irradiance. Fourth, a new parameterization was developed to improve the representation of absorption and scattering of radiation by aerosols (aerosol direct effect). A fifth advance is that the aerosols now interact with the cloud microphysics, altering the cloud evolution and radiative properties, an effect that has been traditionally only implemented in atmospheric computationally costly chemistry models. A sixth development accounts for the feedbacks that sub-grid scale clouds produce in shortwave irradiance as implemented in a shallow cumulus parameterization Finally, WRF-Solar™ also allows assimilation of infrared irradiances from satellites to determine the three dimensional cloud field, allowing for an improved initialization of the cloud field that increases the performance of short-range forecasts. We find that WRF-Solar™ can improve clear sky irradiance prediction by 15-80% over a standard version of WRF, depending on location and cloud conditions. In a formal comparison to the NAM baseline, WRF-Solar™ showed improvements in the Day-Ahead forecast of 22-42%. The SunCast™ system requires substantial software engineering to blend all of the new model components as well as existing publically available NWP model runs. To do this we use an expert system for the Nowcasting blender and the Dynamic Integrated foreCast (DICast®) system for the NWP models. These two systems are then blended, we use an empirical power conversion method to convert the irradiance predictions to power, then apply an analog ensemble (AnEn) approach to further tune the forecast as well as to estimate its uncertainty. The AnEn module decreased RMSE (root mean squared error) by 17% over the blended SunCast™ power forecasts and provided skill in the probabilistic forecast with a Brier Skill Score of 0.55. In addition, we have also developed a Gridded Atmospheric Forecast System (GRAFS) in parallel, leveraging cost share funds. An economic evaluation based on Production Cost Modeling in the Public Service Company of Colorado showed that the observed 50% improvement in forecast accuracy will save their customers $819,200 with the projected MW deployment for 2024. Using econometrics, NCAR has scaled this savings to a national level and shown that an annual expected savings for this 50% forecast error reduction ranges from $11M in 2015 to $43M expected in 2040 with increased solar deployment. This amounts to a $455M discounted savings over the 26 year period of analysis.« less

  19. Development of a model-based flood emergency management system in Yujiang River Basin, South China

    NASA Astrophysics Data System (ADS)

    Zeng, Yong; Cai, Yanpeng; Jia, Peng; Mao, Jiansu

    2014-06-01

    Flooding is the most frequent disaster in China. It affects people's lives and properties, causing considerable economic loss. Flood forecast and operation of reservoirs are important in flood emergency management. Although great progress has been achieved in flood forecast and reservoir operation through using computer, network technology, and geographic information system technology in China, the prediction accuracy of models are not satisfactory due to the unavailability of real-time monitoring data. Also, real-time flood control scenario analysis is not effective in many regions and can seldom provide online decision support function. In this research, a decision support system for real-time flood forecasting in Yujiang River Basin, South China (DSS-YRB) is introduced in this paper. This system is based on hydrological and hydraulic mathematical models. The conceptual framework and detailed components of the proposed DSS-YRB is illustrated, which employs real-time rainfall data conversion, model-driven hydrologic forecasting, model calibration, data assimilation methods, and reservoir operational scenario analysis. Multi-tiered architecture offers great flexibility, portability, reusability, and reliability. The applied case study results show the development and application of a decision support system for real-time flood forecasting and operation is beneficial for flood control.

  20. THE EMERGENCE OF NUMERICAL AIR QUALITY FORECASTING MODELS AND THEIR APPLICATION

    EPA Science Inventory

    In recent years the U.S. and other nations have begun programs for short-term local through regional air quality forecasting based upon numerical three-dimensional air quality grid models. These numerical air quality forecast (NAQF) models and systems have been developed and test...

  1. Linking Science of Flood Forecasts to Humanitarian Actions for Improved Preparedness and Effective Response

    NASA Astrophysics Data System (ADS)

    Uprety, M.; Dugar, S.; Gautam, D.; Kanel, D.; Kshetri, M.; Kharbuja, R. G.; Acharya, S. H.

    2017-12-01

    Advances in flood forecasting have provided opportunities for humanitarian responders to employ a range of preparedness activities at different forecast time horizons. Yet, the science of prediction is less understood and realized across the humanitarian landscape, and often preparedness plans are based upon average level of flood risk. Working under the remit of Forecast Based Financing (FbF), we present a pilot from Nepal on how available flood and weather forecast products are informing specific pre-emptive actions in the local preparedness and response plans, thereby supporting government stakeholders and humanitarian agencies to take early actions before an impending flood event. In Nepal, forecasting capabilities are limited but in a state of positive flux. Whilst local flood forecasts based upon rainfall-runoff models are yet to be operationalized, streamflow predictions from Global Flood Awareness System (GLoFAS) can be utilized to plan and implement preparedness activities several days in advance. Likewise, 3-day rainfall forecasts from Nepal Department of Hydrology and Meteorology (DHM) can further inform specific set of early actions for potential flash floods due to heavy precipitation. Existing community based early warning systems in the major river basins of Nepal are utilizing real time monitoring of water levels and rainfall together with localised probabilistic flood forecasts which has increased warning lead time from 2-3 hours to 7-8 hours. Based on these available forecast products, thresholds and trigger levels have been determined for different flood scenarios. Matching these trigger levels and assigning responsibilities to relevant actors for early actions, a set of standard operating procedures (SOPs) are being developed, broadly covering general preparedness activities and science informed anticipatory actions for different forecast lead times followed by the immediate response activities. These SOPs are currently being rolled out and tested by the Ministry of Home Affairs (MoHA) through its district emergency operation centres in West Nepal. Potential scale up and successful implementation of this science based approach would be instrumental to take forward global commitments on disaster risk reduction, climate change adaptation and sustainable goals in Nepal.

  2. A Diagnostics Tool to detect ensemble forecast system anomaly and guide operational decisions

    NASA Astrophysics Data System (ADS)

    Park, G. H.; Srivastava, A.; Shrestha, E.; Thiemann, M.; Day, G. N.; Draijer, S.

    2017-12-01

    The hydrologic community is moving toward using ensemble forecasts to take uncertainty into account during the decision-making process. The New York City Department of Environmental Protection (DEP) implements several types of ensemble forecasts in their decision-making process: ensemble products for a statistical model (Hirsch and enhanced Hirsch); the National Weather Service (NWS) Advanced Hydrologic Prediction Service (AHPS) forecasts based on the classical Ensemble Streamflow Prediction (ESP) technique; and the new NWS Hydrologic Ensemble Forecasting Service (HEFS) forecasts. To remove structural error and apply the forecasts to additional forecast points, the DEP post processes both the AHPS and the HEFS forecasts. These ensemble forecasts provide mass quantities of complex data, and drawing conclusions from these forecasts is time-consuming and difficult. The complexity of these forecasts also makes it difficult to identify system failures resulting from poor data, missing forecasts, and server breakdowns. To address these issues, we developed a diagnostic tool that summarizes ensemble forecasts and provides additional information such as historical forecast statistics, forecast skill, and model forcing statistics. This additional information highlights the key information that enables operators to evaluate the forecast in real-time, dynamically interact with the data, and review additional statistics, if needed, to make better decisions. We used Bokeh, a Python interactive visualization library, and a multi-database management system to create this interactive tool. This tool compiles and stores data into HTML pages that allows operators to readily analyze the data with built-in user interaction features. This paper will present a brief description of the ensemble forecasts, forecast verification results, and the intended applications for the diagnostic tool.

  3. A short-term and high-resolution distribution system load forecasting approach using support vector regression with hybrid parameters optimization

    DOE PAGES

    Jiang, Huaiguang; Zhang, Yingchen; Muljadi, Eduard; ...

    2016-01-01

    This paper proposes an approach for distribution system load forecasting, which aims to provide highly accurate short-term load forecasting with high resolution utilizing a support vector regression (SVR) based forecaster and a two-step hybrid parameters optimization method. Specifically, because the load profiles in distribution systems contain abrupt deviations, a data normalization is designed as the pretreatment for the collected historical load data. Then an SVR model is trained by the load data to forecast the future load. For better performance of SVR, a two-step hybrid optimization algorithm is proposed to determine the best parameters. In the first step of themore » hybrid optimization algorithm, a designed grid traverse algorithm (GTA) is used to narrow the parameters searching area from a global to local space. In the second step, based on the result of the GTA, particle swarm optimization (PSO) is used to determine the best parameters in the local parameter space. After the best parameters are determined, the SVR model is used to forecast the short-term load deviation in the distribution system. The performance of the proposed approach is compared to some classic methods in later sections of the paper.« less

  4. A Solar Time-Based Analog Ensemble Method for Regional Solar Power Forecasting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodge, Brian S; Zhang, Xinmin; Li, Yuan

    This paper presents a new analog ensemble method for day-ahead regional photovoltaic (PV) power forecasting with hourly resolution. By utilizing open weather forecast and power measurement data, this prediction method is processed within a set of historical data with similar meteorological data (temperature and irradiance), and astronomical date (solar time and earth declination angle). Further, clustering and blending strategies are applied to improve its accuracy in regional PV forecasting. The robustness of the proposed method is demonstrated with three different numerical weather prediction models, the North American Mesoscale Forecast System, the Global Forecast System, and the Short-Range Ensemble Forecast, formore » both region level and single site level PV forecasts. Using real measured data, the new forecasting approach is applied to the load zone in Southeastern Massachusetts as a case study. The normalized root mean square error (NRMSE) has been reduced by 13.80%-61.21% when compared with three tested baselines.« less

  5. Some economic benefits of a synchronous earth observatory satellite

    NASA Technical Reports Server (NTRS)

    Battacharyya, R. K.; Greenberg, J. S.; Lowe, D. S.; Sattinger, I. J.

    1974-01-01

    An analysis was made of the economic benefits which might be derived from reduced forecasting errors made possible by data obtained from a synchronous satellite system which can collect earth observation and meteorological data continuously and on demand. User costs directly associated with achieving benefits are included. In the analysis, benefits were evaluated which might be obtained as a result of improved thunderstorm forecasting, frost warning, and grain harvest forecasting capabilities. The anticipated system capabilities were used to arrive at realistic estimates of system performance on which to base the benefit analysis. Emphasis was placed on the benefits which result from system forecasting accuracies. Benefits from improved thunderstorm forecasts are indicated for the construction, air transportation, and agricultural industries. The effects of improved frost warning capability on the citrus crop are determined. The benefits from improved grain forecasting capability are evaluated in terms of both U.S. benefits resulting from domestic grain distribution and U.S. benefits from international grain distribution.

  6. Space weather forecasting: Past, Present, Future

    NASA Astrophysics Data System (ADS)

    Lanzerotti, L. J.

    2012-12-01

    There have been revolutionary advances in electrical technologies over the last 160 years. The historical record demonstrates that space weather processes have often provided surprises in the implementation and operation of many of these technologies. The historical record also demonstrates that as the complexity of systems increase, including their interconnectedness and interoperability, they can become more susceptible to space weather effects. An engineering goal, beginning during the decades following the 1859 Carrington event, has been to attempt to forecast solar-produced disturbances that could affect technical systems, be they long grounded conductor-based or radio-based or required for exploration, or the increasingly complex systems immersed in the space environment itself. Forecasting of space weather events involves both frontier measurements and models to address engineering requirements, and industrial and governmental policies that encourage and permit creativity and entrepreneurship. While analogies of space weather forecasting to terrestrial weather forecasting are frequently made, and while many of the analogies are valid, there are also important differences. This presentation will provide some historical perspectives on the forecast problem, a personal assessment of current status of several areas including important policy issues, and a look into the not-too-distant future.

  7. Seasonal Forecasting of Fire Weather Based on a New Global Fire Weather Database

    NASA Technical Reports Server (NTRS)

    Dowdy, Andrew J.; Field, Robert D.; Spessa, Allan C.

    2016-01-01

    Seasonal forecasting of fire weather is examined based on a recently produced global database of the Fire Weather Index (FWI) system beginning in 1980. Seasonal average values of the FWI are examined in relation to measures of the El Nino-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD). The results are used to examine seasonal forecasts of fire weather conditions throughout the world.

  8. An Ensemble System Based on Hybrid EGARCH-ANN with Different Distributional Assumptions to Predict S&P 500 Intraday Volatility

    NASA Astrophysics Data System (ADS)

    Lahmiri, S.; Boukadoum, M.

    2015-10-01

    Accurate forecasting of stock market volatility is an important issue in portfolio risk management. In this paper, an ensemble system for stock market volatility is presented. It is composed of three different models that hybridize the exponential generalized autoregressive conditional heteroscedasticity (GARCH) process and the artificial neural network trained with the backpropagation algorithm (BPNN) to forecast stock market volatility under normal, t-Student, and generalized error distribution (GED) assumption separately. The goal is to design an ensemble system where each single hybrid model is capable to capture normality, excess skewness, or excess kurtosis in the data to achieve complementarity. The performance of each EGARCH-BPNN and the ensemble system is evaluated by the closeness of the volatility forecasts to realized volatility. Based on mean absolute error and mean of squared errors, the experimental results show that proposed ensemble model used to capture normality, skewness, and kurtosis in data is more accurate than the individual EGARCH-BPNN models in forecasting the S&P 500 intra-day volatility based on one and five-minute time horizons data.

  9. The Betting Odds Rating System: Using soccer forecasts to forecast soccer.

    PubMed

    Wunderlich, Fabian; Memmert, Daniel

    2018-01-01

    Betting odds are frequently found to outperform mathematical models in sports related forecasting tasks, however the factors contributing to betting odds are not fully traceable and in contrast to rating-based forecasts no straightforward measure of team-specific quality is deducible from the betting odds. The present study investigates the approach of combining the methods of mathematical models and the information included in betting odds. A soccer forecasting model based on the well-known ELO rating system and taking advantage of betting odds as a source of information is presented. Data from almost 15.000 soccer matches (seasons 2007/2008 until 2016/2017) are used, including both domestic matches (English Premier League, German Bundesliga, Spanish Primera Division and Italian Serie A) and international matches (UEFA Champions League, UEFA Europe League). The novel betting odds based ELO model is shown to outperform classic ELO models, thus demonstrating that betting odds prior to a match contain more relevant information than the result of the match itself. It is shown how the novel model can help to gain valuable insights into the quality of soccer teams and its development over time, thus having a practical benefit in performance analysis. Moreover, it is argued that network based approaches might help in further improving rating and forecasting methods.

  10. The Betting Odds Rating System: Using soccer forecasts to forecast soccer

    PubMed Central

    Memmert, Daniel

    2018-01-01

    Betting odds are frequently found to outperform mathematical models in sports related forecasting tasks, however the factors contributing to betting odds are not fully traceable and in contrast to rating-based forecasts no straightforward measure of team-specific quality is deducible from the betting odds. The present study investigates the approach of combining the methods of mathematical models and the information included in betting odds. A soccer forecasting model based on the well-known ELO rating system and taking advantage of betting odds as a source of information is presented. Data from almost 15.000 soccer matches (seasons 2007/2008 until 2016/2017) are used, including both domestic matches (English Premier League, German Bundesliga, Spanish Primera Division and Italian Serie A) and international matches (UEFA Champions League, UEFA Europe League). The novel betting odds based ELO model is shown to outperform classic ELO models, thus demonstrating that betting odds prior to a match contain more relevant information than the result of the match itself. It is shown how the novel model can help to gain valuable insights into the quality of soccer teams and its development over time, thus having a practical benefit in performance analysis. Moreover, it is argued that network based approaches might help in further improving rating and forecasting methods. PMID:29870554

  11. Development of a WRF-RTFDDA-based high-resolution hybrid data-assimilation and forecasting system toward to operation in the Middle East

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Wu, W.; Zhang, Y.; Kucera, P. A.; Liu, Y.; Pan, L.

    2012-12-01

    Weather forecasting in the Middle East is challenging because of its complicated geographical nature including massive coastal area and heterogeneous land, and regional spare observational network. Strong air-land-sea interactions form multi-scale weather regimes in the area, which require a numerical weather prediction model capable of properly representing multi-scale atmospheric flow with appropriate initial conditions. The WRF-based Real-Time Four Dimensional Data Assimilation (RTFDDA) system is one of advanced multi-scale weather analysis and forecasting facilities developed at the Research Applications Laboratory (RAL) of NCAR. The forecasting system is applied for the Middle East with careful configuration. To overcome the limitation of the very sparsely available conventional observations in the region, we develop a hybrid data assimilation algorithm combining RTFDDA and WRF-3DVAR, which ingests remote sensing data from satellites and radar. This hybrid data assimilation blends Newtonian nudging FDDA and 3DVAR technology to effectively assimilate both conventional observations and remote sensing measurements and provide improved initial conditions for the forecasting system. For brevity, the forecasting system is called RTF3H (RTFDDA-3DVAR Hybrid). In this presentation, we will discuss the hybrid data assimilation algorithm, and its implementation, and the applications for high-impact weather events in the area. Sensitivity studies are conducted to understand the strength and limitations of this hybrid data assimilation algorithm.

  12. Model-Aided Altimeter-Based Water Level Forecasting System in Mekong River

    NASA Astrophysics Data System (ADS)

    Chang, C. H.; Lee, H.; Hossain, F.; Okeowo, M. A.; Basnayake, S. B.; Jayasinghe, S.; Saah, D. S.; Anderson, E.; Hwang, E.

    2017-12-01

    Mekong River, one of the massive river systems in the world, has drainage area of about 795,000 km2 covering six countries. People living in its drainage area highly rely on resources given by the river in terms of agriculture, fishery, and hydropower. Monitoring and forecasting the water level in a timely manner, is urgently needed over the Mekong River. Recently, using TOPEX/Poseidon (T/P) altimetry water level measurements in India, Biancamaria et al. [2011] has demonstrated the capability of an altimeter-based flood forecasting system in Bangladesh, with RMSE from 0.6 - 0.8 m for lead times up to 5 days on 10-day basis due to T/P's repeat period. Hossain et al. [2013] further established a daily water level forecasting system in Bangladesh using observations from Jason-2 in India and HEC-RAS hydraulic model, with RMSE from 0.5 - 1.5 m and an underestimating mean bias of 0.25 - 1.25 m. However, such daily forecasting system relies on a collection of Jason-2 virtual stations (VSs) to ensure frequent sampling and data availability. Since the Mekong River is a meridional river with few number of VSs, the direct application of this system to the Mekong River becomes challenging. To address this problem, we propose a model-aided altimeter-based forecasting system. The discharge output by Variable Infiltration Capacity hydrologic model is used to reconstruct a daily water level product at upstream Jason-2 VSs based on the discharge-to-level rating curve. The reconstructed daily water level is then used to perform regression analysis with downstream in-situ water level to build regression models, which are used to forecast a daily water level. In the middle reach of the Mekong River from Nakhon Phanom to Kratie, a 3-day lead time forecasting can reach RMSE about 0.7 - 1.3 m with correlation coefficient around 0.95. For the lower reach of the Mekong River, the water flow becomes more complicated due to the reversal flow between the Tonle Sap Lake and the Mekong River, while ocean tide can also propagate into this region. By considering the influence of Tonle Sap Lake and the Mekong River through multi-variable regression analysis, the forecasting results from Prek Kdam to Chau Doc/Tan Chau reach RMSE from about 0.3 - 0.65 m and correlation coefficient about 0.93- 0.97 with 5-day lead time.

  13. Electricity Load Forecasting Using Support Vector Regression with Memetic Algorithms

    PubMed Central

    Hu, Zhongyi; Xiong, Tao

    2013-01-01

    Electricity load forecasting is an important issue that is widely explored and examined in power systems operation literature and commercial transactions in electricity markets literature as well. Among the existing forecasting models, support vector regression (SVR) has gained much attention. Considering the performance of SVR highly depends on its parameters; this study proposed a firefly algorithm (FA) based memetic algorithm (FA-MA) to appropriately determine the parameters of SVR forecasting model. In the proposed FA-MA algorithm, the FA algorithm is applied to explore the solution space, and the pattern search is used to conduct individual learning and thus enhance the exploitation of FA. Experimental results confirm that the proposed FA-MA based SVR model can not only yield more accurate forecasting results than the other four evolutionary algorithms based SVR models and three well-known forecasting models but also outperform the hybrid algorithms in the related existing literature. PMID:24459425

  14. Electricity load forecasting using support vector regression with memetic algorithms.

    PubMed

    Hu, Zhongyi; Bao, Yukun; Xiong, Tao

    2013-01-01

    Electricity load forecasting is an important issue that is widely explored and examined in power systems operation literature and commercial transactions in electricity markets literature as well. Among the existing forecasting models, support vector regression (SVR) has gained much attention. Considering the performance of SVR highly depends on its parameters; this study proposed a firefly algorithm (FA) based memetic algorithm (FA-MA) to appropriately determine the parameters of SVR forecasting model. In the proposed FA-MA algorithm, the FA algorithm is applied to explore the solution space, and the pattern search is used to conduct individual learning and thus enhance the exploitation of FA. Experimental results confirm that the proposed FA-MA based SVR model can not only yield more accurate forecasting results than the other four evolutionary algorithms based SVR models and three well-known forecasting models but also outperform the hybrid algorithms in the related existing literature.

  15. A seamless global hydrological monitoring and forecasting system for water resources assessment and hydrological hazard early warning

    NASA Astrophysics Data System (ADS)

    Sheffield, Justin; He, Xiaogang; Wood, Eric; Pan, Ming; Wanders, Niko; Zhan, Wang; Peng, Liqing

    2017-04-01

    Sustainable management of water resources and mitigation of the impacts of hydrological hazards are becoming ever more important at large scales because of inter-basin, inter-country and inter-continental connections in water dependent sectors. These include water resources management, food production, and energy production, whose needs must be weighed against the water needs of ecosystems and preservation of water resources for future generations. The strains on these connections are likely to increase with climate change and increasing demand from burgeoning populations and rapid development, with potential for conflict over water. At the same time, network connections may provide opportunities to alleviate pressures on water availability through more efficient use of resources such as trade in water dependent goods. A key constraint on understanding, monitoring and identifying solutions to increasing competition for water resources and hazard risk is the availability of hydrological data for monitoring and forecasting water resources and hazards. We present a global online system that provides continuous and consistent water products across time scales, from the historic instrumental period, to real-time monitoring, short-term and seasonal forecasts, and climate change projections. The system is intended to provide data and tools for analysis of historic hydrological variability and trends, water resources assessment, monitoring of evolving hazards and forecasts for early warning, and climate change scale projections of changes in water availability and extreme events. The system is particular useful for scientists and stakeholders interested in regions with less available in-situ data, and where forecasts have the potential to help decision making. The system is built on a database of high-resolution climate data from 1950 to present that merges available observational records with bias-corrected reanalysis and satellite data, which then drives a coupled land surface model-flood inundation model to produce hydrological variables and indices at daily, 0.25-degree resolution, globally. The system is updated in near real-time (< 2 days) using satellite precipitation and weather model data, and produces forecasts at short-term (out to 7 days) based on the Global Forecast System (GFS) and seasonal (up to 6 months) based on U.S. National Multi-Model Ensemble (NMME) seasonal forecasts. Climate change projections are based on bias-corrected and downscaled CMIP5 climate data that is used to force the hydrological model. Example products from the system include real-time and forecast drought indices for precipitation, soil moisture, and streamflow, and flood magnitude and extent indices. The model outputs are complemented by satellite based products and indices based on satellite data for vegetation health (MODIS NDVI) and soil moisture (SMAP). We show examples of the validation of the system at regional scales, including how local information can significantly improve predictions, and examples of how the system can be used to understand large-scale water resource issues, and in real-world contexts for early warning, decision making and planning.

  16. Potential for malaria seasonal forecasting in Africa

    NASA Astrophysics Data System (ADS)

    Tompkins, Adrian; Di Giuseppe, Francesca; Colon-Gonzalez, Felipe; Namanya, Didas; Friday, Agabe

    2014-05-01

    As monthly and seasonal dynamical prediction systems have improved their skill in the tropics over recent years, there is now the potential to use these forecasts to drive dynamical malaria modelling systems to provide early warnings in epidemic and meso-endemic regions. We outline a new pilot operational system that has been developed at ECMWF and ICTP. It uses a precipitation bias correction methodology to seamlessly join the monthly ensemble prediction system (EPS) and seasonal (system 4) forecast systems of ECMWF together. The resulting temperature and rainfall forecasts for Africa are then used to drive the recently developed ICTP malaria model known as VECTRI. The resulting coupled system of ECMWF climate forecasts and VECTRI thus produces predictions of malaria prevalence rates and transmission intensity across Africa. The forecasts are filtered to highlight the regions and months in which the system has particular value due to high year to year variability. In addition to epidemic areas, these also include meso and hyper-endemic regions which undergo considerable variability in the onset months. We demonstrate the limits of the forecast skill as a function of lead-time, showing that for many areas the dynamical system can add one to two months additional warning time to a system based on environmental monitoring. We then evaluate the past forecasts against district level case data in Uganda and show that when interventions can be discounted, the system can show significant skill at predicting interannual variability in transmission intensity up to 3 or 4 months ahead at the district scale. The prospects for a operational implementation will be briefly discussed.

  17. How do I know if I’ve improved my continental scale flood early warning system?

    NASA Astrophysics Data System (ADS)

    Cloke, Hannah L.; Pappenberger, Florian; Smith, Paul J.; Wetterhall, Fredrik

    2017-04-01

    Flood early warning systems mitigate damages and loss of life and are an economically efficient way of enhancing disaster resilience. The use of continental scale flood early warning systems is rapidly growing. The European Flood Awareness System (EFAS) is a pan-European flood early warning system forced by a multi-model ensemble of numerical weather predictions. Responses to scientific and technical changes can be complex in these computationally expensive continental scale systems, and improvements need to be tested by evaluating runs of the whole system. It is demonstrated here that forecast skill is not correlated with the value of warnings. In order to tell if the system has been improved an evaluation strategy is required that considers both forecast skill and warning value. The combination of a multi-forcing ensemble of EFAS flood forecasts is evaluated with a new skill-value strategy. The full multi-forcing ensemble is recommended for operational forecasting, but, there are spatial variations in the optimal forecast combination. Results indicate that optimizing forecasts based on value rather than skill alters the optimal forcing combination and the forecast performance. Also indicated is that model diversity and ensemble size are both important in achieving best overall performance. The use of several evaluation measures that consider both skill and value is strongly recommended when considering improvements to early warning systems.

  18. The FireWork air quality forecast system with near-real-time biomass burning emissions: Recent developments and evaluation of performance for the 2015 North American wildfire season.

    PubMed

    Pavlovic, Radenko; Chen, Jack; Anderson, Kerry; Moran, Michael D; Beaulieu, Paul-André; Davignon, Didier; Cousineau, Sophie

    2016-09-01

    Environment and Climate Change Canada's FireWork air quality (AQ) forecast system for North America with near-real-time biomass burning emissions has been running experimentally during the Canadian wildfire season since 2013. The system runs twice per day with model initializations at 00 UTC and 12 UTC, and produces numerical AQ forecast guidance with 48-hr lead time. In this work we describe the FireWork system, which incorporates near-real-time biomass burning emissions based on the Canadian Wildland Fire Information System (CWFIS) as an input to the operational Regional Air Quality Deterministic Prediction System (RAQDPS). To demonstrate the capability of the system we analyzed two forecast periods in 2015 (June 2-July 15, and August 15-31) when fire activity was high, and observed fire-smoke-impacted areas in western Canada and the western United States. Modeled PM2.5 surface concentrations were compared with surface measurements and benchmarked with results from the operational RAQDPS, which did not consider near-real-time biomass burning emissions. Model performance statistics showed that FireWork outperformed RAQDPS with improvements in forecast hourly PM2.5 across the region; the results were especially significant for stations near the path of fire plume trajectories. Although the hourly PM2.5 concentrations predicted by FireWork still displayed bias for areas with active fires for these two periods (mean bias [MB] of -7.3 µg m(-3) and 3.1 µg m(-3)), it showed better forecast skill than the RAQDPS (MB of -11.7 µg m(-3) and -5.8 µg m(-3)) and demonstrated a greater ability to capture temporal variability of episodic PM2.5 events (correlation coefficient values of 0.50 and 0.69 for FireWork compared to 0.03 and 0.11 for RAQDPS). A categorical forecast comparison based on an hourly PM2.5 threshold of 30 µg m(-3) also showed improved scores for probability of detection (POD), critical success index (CSI), and false alarm rate (FAR). Smoke from wildfires can have a large impact on regional air quality (AQ) and can expose populations to elevated pollution levels. Environment and Climate Change Canada has been producing operational air quality forecasts for all of Canada since 2009 and is now working to include near-real-time wildfire emissions (NRTWE) in its operational AQ forecasting system. An experimental forecast system named FireWork, which includes NRTWE, has been undergoing testing and evaluation since 2013. A performance analysis of FireWork forecasts for the 2015 wildfire season shows that FireWork provides significant improvements to surface PM2.5 forecasts and valuable guidance to regional forecasters and first responders.

  19. Risky Business: Development, Communication and Use of Hydroclimatic Forecasts

    NASA Astrophysics Data System (ADS)

    Lall, U.

    2012-12-01

    Inter-seasonal and longer hydroclimatic forecasts have been made increasingly in the last two decades following the increase in ENSO activity since the early 1980s and the success in seasonal ENSO forecasting. Yet, the number of examples of systematic use of these forecasts and their incorporation into water systems operation continue to be few. This may be due in part to the limited skill in such forecasts over much of the world, but is also likely due to the limited evolution of methods and opportunities to "safely" use uncertain forecasts. There has been a trend to rely more on "physically based" rather than "physically informed" empirical forecasts, and this may in part explain the limited success in developing usable products in more locations. Given the limited skill, forecasters have tended to "dumb" down their forecasts - either formally or subjectively shrinking the forecasts towards climatology, or reducing them to tercile forecasts that serve to obscure the potential information in the forecast. Consequently, the potential utility of such forecasts for decision making is compromised. Water system operating rules are often designed to be robust in the face of historical climate variability, and consequently are adapted to the potential conditions that a forecast seeks to inform. In such situations, there is understandable reluctance by managers to use the forecasts as presented, except in special cases where an alternate course of action is pragmatically appealing in any case. In this talk, I review opportunities to present targeted forecasts for use with decision systems that directly address climate risk and the risk induced by unbiased yet uncertain forecasts, focusing especially on extreme events and water allocation in a competitive environment. Examples from Brazil and India covering surface and ground water conjunctive use strategies that could potentially be insured and lead to improvements over the traditional system operation and resource allocation are provided.

  20. Evaluation of Ensemble Water Supply and Demands Forecasts for Water Management in the Klamath River Basin

    NASA Astrophysics Data System (ADS)

    Broman, D.; Gangopadhyay, S.; McGuire, M.; Wood, A.; Leady, Z.; Tansey, M. K.; Nelson, K.; Dahm, K.

    2017-12-01

    The Upper Klamath River Basin in south central Oregon and north central California is home to the Klamath Irrigation Project, which is operated by the Bureau of Reclamation and provides water to around 200,000 acres of agricultural lands. The project is managed in consideration of not only water deliveries to irrigators, but also wildlife refuge water demands, biological opinion requirements for Endangered Species Act (ESA) listed fish, and Tribal Trust responsibilities. Climate change has the potential to impact water management in terms of volume and timing of water and the ability to meet multiple objectives. Current operations use a spreadsheet-based decision support tool, with water supply forecasts from the National Resources Conservation Service (NRCS) and California-Nevada River Forecast Center (CNRFC). This tool is currently limited in its ability to incorporate in ensemble forecasts, which offer the potential for improved operations by quantifying forecast uncertainty. To address these limitations, this study has worked to develop a RiverWare based water resource systems model, flexible enough to use across multiple decision time-scales, from short-term operations out to long-range planning. Systems model development has been accompanied by operational system development to handle data management and multiple modeling components. Using a set of ensemble hindcasts, this study seeks to answer several questions: A) Do a new set of ensemble streamflow forecasts have additional skill beyond what?, and allow for improved decision making under changing conditions? B) Do net irrigation water requirement forecasts developed in this project to quantify agricultural demands and reservoir evaporation forecasts provide additional benefits to decision making beyond water supply forecasts? C) What benefit do ensemble forecasts have in the context of water management decisions?

  1. A global empirical system for probabilistic seasonal climate prediction

    NASA Astrophysics Data System (ADS)

    Eden, J. M.; van Oldenborgh, G. J.; Hawkins, E.; Suckling, E. B.

    2015-12-01

    Preparing for episodes with risks of anomalous weather a month to a year ahead is an important challenge for governments, non-governmental organisations, and private companies and is dependent on the availability of reliable forecasts. The majority of operational seasonal forecasts are made using process-based dynamical models, which are complex, computationally challenging and prone to biases. Empirical forecast approaches built on statistical models to represent physical processes offer an alternative to dynamical systems and can provide either a benchmark for comparison or independent supplementary forecasts. Here, we present a simple empirical system based on multiple linear regression for producing probabilistic forecasts of seasonal surface air temperature and precipitation across the globe. The global CO2-equivalent concentration is taken as the primary predictor; subsequent predictors, including large-scale modes of variability in the climate system and local-scale information, are selected on the basis of their physical relationship with the predictand. The focus given to the climate change signal as a source of skill and the probabilistic nature of the forecasts produced constitute a novel approach to global empirical prediction. Hindcasts for the period 1961-2013 are validated against observations using deterministic (correlation of seasonal means) and probabilistic (continuous rank probability skill scores) metrics. Good skill is found in many regions, particularly for surface air temperature and most notably in much of Europe during the spring and summer seasons. For precipitation, skill is generally limited to regions with known El Niño-Southern Oscillation (ENSO) teleconnections. The system is used in a quasi-operational framework to generate empirical seasonal forecasts on a monthly basis.

  2. An empirical system for probabilistic seasonal climate prediction

    NASA Astrophysics Data System (ADS)

    Eden, Jonathan; van Oldenborgh, Geert Jan; Hawkins, Ed; Suckling, Emma

    2016-04-01

    Preparing for episodes with risks of anomalous weather a month to a year ahead is an important challenge for governments, non-governmental organisations, and private companies and is dependent on the availability of reliable forecasts. The majority of operational seasonal forecasts are made using process-based dynamical models, which are complex, computationally challenging and prone to biases. Empirical forecast approaches built on statistical models to represent physical processes offer an alternative to dynamical systems and can provide either a benchmark for comparison or independent supplementary forecasts. Here, we present a simple empirical system based on multiple linear regression for producing probabilistic forecasts of seasonal surface air temperature and precipitation across the globe. The global CO2-equivalent concentration is taken as the primary predictor; subsequent predictors, including large-scale modes of variability in the climate system and local-scale information, are selected on the basis of their physical relationship with the predictand. The focus given to the climate change signal as a source of skill and the probabilistic nature of the forecasts produced constitute a novel approach to global empirical prediction. Hindcasts for the period 1961-2013 are validated against observations using deterministic (correlation of seasonal means) and probabilistic (continuous rank probability skill scores) metrics. Good skill is found in many regions, particularly for surface air temperature and most notably in much of Europe during the spring and summer seasons. For precipitation, skill is generally limited to regions with known El Niño-Southern Oscillation (ENSO) teleconnections. The system is used in a quasi-operational framework to generate empirical seasonal forecasts on a monthly basis.

  3. Research on Nonlinear Time Series Forecasting of Time-Delay NN Embedded with Bayesian Regularization

    NASA Astrophysics Data System (ADS)

    Jiang, Weijin; Xu, Yusheng; Xu, Yuhui; Wang, Jianmin

    Based on the idea of nonlinear prediction of phase space reconstruction, this paper presented a time delay BP neural network model, whose generalization capability was improved by Bayesian regularization. Furthermore, the model is applied to forecast the imp&exp trades in one industry. The results showed that the improved model has excellent generalization capabilities, which not only learned the historical curve, but efficiently predicted the trend of business. Comparing with common evaluation of forecasts, we put on a conclusion that nonlinear forecast can not only focus on data combination and precision improvement, it also can vividly reflect the nonlinear characteristic of the forecasting system. While analyzing the forecasting precision of the model, we give a model judgment by calculating the nonlinear characteristic value of the combined serial and original serial, proved that the forecasting model can reasonably 'catch' the dynamic characteristic of the nonlinear system which produced the origin serial.

  4. Improving the health forecasting alert system for cold weather and heat-waves in England: a case-study approach using temperature-mortality relationships

    NASA Astrophysics Data System (ADS)

    Masato, Giacomo; Cavany, Sean; Charlton-Perez, Andrew; Dacre, Helen; Bone, Angie; Carmicheal, Katie; Murray, Virginia; Danker, Rutger; Neal, Rob; Sarran, Christophe

    2015-04-01

    The health forecasting alert system for cold weather and heatwaves currently in use in the Cold Weather and Heatwave plans for England is based on 5 alert levels, with levels 2 and 3 dependent on a forecast or actual single temperature action trigger. Epidemiological evidence indicates that for both heat and cold, the impact on human health is gradual, with worsening impact for more extreme temperatures. The 60% risk of heat and cold forecasts used by the alerts is a rather crude probabilistic measure, which could be substantially improved thanks to the state-of-the-art forecast techniques. In this study a prototype of a new health forecasting alert system is developed, which is aligned to the approach used in the Met Office's (MO) National Severe Weather Warning Service (NSWWS). This is in order to improve information available to responders in the health and social care system by linking temperatures more directly to risks of mortality, and developing a system more coherent with other weather alerts. The prototype is compared to the current system in the Cold Weather and Heatwave plans via a case-study approach to verify its potential advantages and shortcomings. The prototype health forecasting alert system introduces an "impact vs likelihood matrix" for the health impacts of hot and cold temperatures which is similar to those used operationally for other weather hazards as part of the NSWWS. The impact axis of this matrix is based on existing epidemiological evidence, which shows an increasing relative risk of death at extremes of outdoor temperature beyond a threshold which can be identified epidemiologically. The likelihood axis is based on a probability measure associated with the temperature forecast. The new method is tested for two case studies (one during summer 2013, one during winter 2013), and compared to the performance of the current alert system. The prototype shows some clear improvements over the current alert system. It allows for a much greater degree of flexibility, provides more detailed regional information about the health risks associated with periods of extreme temperatures, and is more coherent with other weather alerts which may make it easier for front line responders to use. It will require validation and engagement with stakeholders before it can be considered for use.

  5. Introduction on the operational storm surge forecasting system in Korea Operational Oceanographic System (KOOS)

    NASA Astrophysics Data System (ADS)

    Kwon, Jae-Il; Park, Kwang-Soon; Choi, Jung-Woon; Lee, Jong-Chan; Heo, Ki-Young; Kim, Sang-Ik

    2017-04-01

    During last more than 50 years, 258 typhoons passed and affected the Korean peninsula in terms of high winds, storm surges and extreme waves. In this study we explored the performance of the operational storm surge forecasting system in the Korea Operational Oceanographic System (KOOS) with 8 typhoons from 2010 to 2016. The operation storm surge forecasting system for the typhoon in KOOS is based on 2D depth averaged model with tides and CE (U.S. Army Corps of Engineers) wind model. Two key parameters of CE wind model, the locations of typhoon center and its central atmospheric pressure are based from Korea Meteorological administrative (KMA)'s typhoon information provided from 1 day to 3 hour intervals with the approach of typhoon through the KMA's web-site. For 8 typhoons cases, the overall errors, other performances and analysis such as peak time and surge duration are presented in each case. The most important factor in the storm surge errors in the operational forecasting system is the accuracy of typhoon passage prediction.

  6. Community-based early warning systems for flood risk mitigation in Nepal

    NASA Astrophysics Data System (ADS)

    Smith, Paul J.; Brown, Sarah; Dugar, Sumit

    2017-03-01

    This paper focuses on the use of community-based early warning systems for flood resilience in Nepal. The first part of the work outlines the evolution and current status of these community-based systems, highlighting the limited lead times currently available for early warning. The second part of the paper focuses on the development of a robust operational flood forecasting methodology for use by the Nepal Department of Hydrology and Meteorology (DHM) to enhance early warning lead times. The methodology uses data-based physically interpretable time series models and data assimilation to generate probabilistic forecasts, which are presented in a simple visual tool. The approach is designed to work in situations of limited data availability with an emphasis on sustainability and appropriate technology. The successful application of the forecast methodology to the flood-prone Karnali River basin in western Nepal is outlined, increasing lead times from 2-3 to 7-8 h. The challenges faced in communicating probabilistic forecasts to the last mile of the existing community-based early warning systems across Nepal is discussed. The paper concludes with an assessment of the applicability of this approach in basins and countries beyond Karnali and Nepal and an overview of key lessons learnt from this initiative.

  7. ENSURF: multi-model sea level forecast - implementation and validation results for the IBIROOS and Western Mediterranean regions

    NASA Astrophysics Data System (ADS)

    Pérez, B.; Brouwer, R.; Beckers, J.; Paradis, D.; Balseiro, C.; Lyons, K.; Cure, M.; Sotillo, M. G.; Hackett, B.; Verlaan, M.; Fanjul, E. A.

    2012-03-01

    ENSURF (Ensemble SURge Forecast) is a multi-model application for sea level forecast that makes use of several storm surge or circulation models and near-real time tide gauge data in the region, with the following main goals: 1. providing easy access to existing forecasts, as well as to its performance and model validation, by means of an adequate visualization tool; 2. generation of better forecasts of sea level, including confidence intervals, by means of the Bayesian Model Average technique (BMA). The Bayesian Model Average technique generates an overall forecast probability density function (PDF) by making a weighted average of the individual forecasts PDF's; the weights represent the Bayesian likelihood that a model will give the correct forecast and are continuously updated based on the performance of the models during a recent training period. This implies the technique needs the availability of sea level data from tide gauges in near-real time. The system was implemented for the European Atlantic facade (IBIROOS region) and Western Mediterranean coast based on the MATROOS visualization tool developed by Deltares. Results of validation of the different models and BMA implementation for the main harbours are presented for these regions where this kind of activity is performed for the first time. The system is currently operational at Puertos del Estado and has proved to be useful in the detection of calibration problems in some of the circulation models, in the identification of the systematic differences between baroclinic and barotropic models for sea level forecasts and to demonstrate the feasibility of providing an overall probabilistic forecast, based on the BMA method.

  8. Comparative assessment of several post-processing methods for correcting evapotranspiration forecasts derived from TIGGE datasets.

    NASA Astrophysics Data System (ADS)

    Tian, D.; Medina, H.

    2017-12-01

    Post-processing of medium range reference evapotranspiration (ETo) forecasts based on numerical weather prediction (NWP) models has the potential of improving the quality and utility of these forecasts. This work compares the performance of several post-processing methods for correcting ETo forecasts over the continental U.S. generated from The Observing System Research and Predictability Experiment (THORPEX) Interactive Grand Global Ensemble (TIGGE) database using data from Europe (EC), the United Kingdom (MO), and the United States (NCEP). The pondered post-processing techniques are: simple bias correction, the use of multimodels, the Ensemble Model Output Statistics (EMOS, Gneitting et al., 2005) and the Bayesian Model Averaging (BMA, Raftery et al., 2005). ETo estimates based on quality-controlled U.S. Regional Climate Reference Network measurements, and computed with the FAO 56 Penman Monteith equation, are adopted as baseline. EMOS and BMA are generally the most efficient post-processing techniques of the ETo forecasts. Nevertheless, the simple bias correction of the best model is commonly much more rewarding than using multimodel raw forecasts. Our results demonstrate the potential of different forecasting and post-processing frameworks in operational evapotranspiration and irrigation advisory systems at national scale.

  9. Testing an innovative framework for flood forecasting, monitoring and mapping in Europe

    NASA Astrophysics Data System (ADS)

    Dottori, Francesco; Kalas, Milan; Lorini, Valerio; Wania, Annett; Pappenberger, Florian; Salamon, Peter; Ramos, Maria Helena; Cloke, Hannah; Castillo, Carlos

    2017-04-01

    Between May and June 2016, France was hit by severe floods, particularly in the Loire and Seine river basins. In this work, we use this case study to test an innovative framework for flood forecasting, mapping and monitoring. More in detail, the system integrates in real-time two components of the Copernicus Emergency mapping services, namely the European Flood Awareness System and the satellite-based Rapid Mapping, with new procedures for rapid risk assessment and social media and news monitoring. We explore in detail the performance of each component of the system, demonstrating the improvements in respect to stand-alone flood forecasting and monitoring systems. We show how the performances of the forecasting component can be refined using the real-time feedback from social media monitoring to identify which areas were flooded, to evaluate the flood intensity, and therefore to correct impact estimations. Moreover, we show how the integration with impact forecast and social media monitoring can improve the timeliness and efficiency of satellite based emergency mapping, and reduce the chances of missing areas where flooding is already happening. These results illustrate how the new integrated approach leads to a better and earlier decision making and a timely evaluation of impacts.

  10. Temporal patterns and a disease forecasting model of dengue hemorrhagic fever in Jakarta based on 10 years of surveillance data.

    PubMed

    Sitepu, Monika S; Kaewkungwal, Jaranit; Luplerdlop, Nathanej; Soonthornworasiri, Ngamphol; Silawan, Tassanee; Poungsombat, Supawadee; Lawpoolsri, Saranath

    2013-03-01

    This study aimed to describe the temporal patterns of dengue transmission in Jakarta from 2001 to 2010, using data from the national surveillance system. The Box-Jenkins forecasting technique was used to develop a seasonal autoregressive integrated moving average (SARIMA) model for the study period and subsequently applied to forecast DHF incidence in 2011 in Jakarta Utara, Jakarta Pusat, Jakarta Barat, and the municipalities of Jakarta Province. Dengue incidence in 2011, based on the forecasting model was predicted to increase from the previous year.

  11. Seasonal fire danger forecasts for the USA

    Treesearch

    J. Roads; F. Fujioka; S. Chen; R. Burgan

    2005-01-01

    The Scripps Experimental Climate Prediction Center has been making experimental, near-real-time, weekly to seasonal fire danger forecasts for the past 5 years. US fire danger forecasts and validations are based on standard indices from the National Fire Danger Rating System (DFDRS), which include the ignition component (IC), energy release component (ER), burning...

  12. DEFENDER: Detecting and Forecasting Epidemics Using Novel Data-Analytics for Enhanced Response.

    PubMed

    Thapen, Nicholas; Simmie, Donal; Hankin, Chris; Gillard, Joseph

    2016-01-01

    In recent years social and news media have increasingly been used to explain patterns in disease activity and progression. Social media data, principally from the Twitter network, has been shown to correlate well with official disease case counts. This fact has been exploited to provide advance warning of outbreak detection, forecasting of disease levels and the ability to predict the likelihood of individuals developing symptoms. In this paper we introduce DEFENDER, a software system that integrates data from social and news media and incorporates algorithms for outbreak detection, situational awareness and forecasting. As part of this system we have developed a technique for creating a location network for any country or region based purely on Twitter data. We also present a disease nowcasting (forecasting the current but still unknown level) approach which leverages counts from multiple symptoms, which was found to improve the nowcasting accuracy by 37 percent over a model that used only previous case data. Finally we attempt to forecast future levels of symptom activity based on observed user movement on Twitter, finding a moderate gain of 5 percent over a time series forecasting model.

  13. Wind Energy Management System Integration Project Incorporating Wind Generation and Load Forecast Uncertainties into Power Grid Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makarov, Yuri V.; Huang, Zhenyu; Etingov, Pavel V.

    2010-09-01

    The power system balancing process, which includes the scheduling, real time dispatch (load following) and regulation processes, is traditionally based on deterministic models. Since the conventional generation needs time to be committed and dispatched to a desired megawatt level, the scheduling and load following processes use load and wind power production forecasts to achieve future balance between the conventional generation and energy storage on the one side, and system load, intermittent resources (such as wind and solar generation) and scheduled interchange on the other side. Although in real life the forecasting procedures imply some uncertainty around the load and windmore » forecasts (caused by forecast errors), only their mean values are actually used in the generation dispatch and commitment procedures. Since the actual load and intermittent generation can deviate from their forecasts, it becomes increasingly unclear (especially, with the increasing penetration of renewable resources) whether the system would be actually able to meet the conventional generation requirements within the look-ahead horizon, what the additional balancing efforts would be needed as we get closer to the real time, and what additional costs would be incurred by those needs. In order to improve the system control performance characteristics, maintain system reliability, and minimize expenses related to the system balancing functions, it becomes necessary to incorporate the predicted uncertainty ranges into the scheduling, load following, and, in some extent, into the regulation processes. It is also important to address the uncertainty problem comprehensively, by including all sources of uncertainty (load, intermittent generation, generators’ forced outages, etc.) into consideration. All aspects of uncertainty such as the imbalance size (which is the same as capacity needed to mitigate the imbalance) and generation ramping requirement must be taken into account. The latter unique features make this work a significant step forward toward the objective of incorporating of wind, solar, load, and other uncertainties into power system operations. In this report, a new methodology to predict the uncertainty ranges for the required balancing capacity, ramping capability and ramp duration is presented. Uncertainties created by system load forecast errors, wind and solar forecast errors, generation forced outages are taken into account. The uncertainty ranges are evaluated for different confidence levels of having the actual generation requirements within the corresponding limits. The methodology helps to identify system balancing reserve requirement based on a desired system performance levels, identify system “breaking points”, where the generation system becomes unable to follow the generation requirement curve with the user-specified probability level, and determine the time remaining to these potential events. The approach includes three stages: statistical and actual data acquisition, statistical analysis of retrospective information, and prediction of future grid balancing requirements for specified time horizons and confidence intervals. Assessment of the capacity and ramping requirements is performed using a specially developed probabilistic algorithm based on a histogram analysis incorporating all sources of uncertainty and parameters of a continuous (wind forecast and load forecast errors) and discrete (forced generator outages and failures to start up) nature. Preliminary simulations using California Independent System Operator (California ISO) real life data have shown the effectiveness of the proposed approach. A tool developed based on the new methodology described in this report will be integrated with the California ISO systems. Contractual work is currently in place to integrate the tool with the AREVA EMS system.« less

  14. Regional early flood warning system: design and implementation

    NASA Astrophysics Data System (ADS)

    Chang, L. C.; Yang, S. N.; Kuo, C. L.; Wang, Y. F.

    2017-12-01

    This study proposes a prototype of the regional early flood inundation warning system in Tainan City, Taiwan. The AI technology is used to forecast multi-step-ahead regional flood inundation maps during storm events. The computing time is only few seconds that leads to real-time regional flood inundation forecasting. A database is built to organize data and information for building real-time forecasting models, maintaining the relations of forecasted points, and displaying forecasted results, while real-time data acquisition is another key task where the model requires immediately accessing rain gauge information to provide forecast services. All programs related database are constructed in Microsoft SQL Server by using Visual C# to extracting real-time hydrological data, managing data, storing the forecasted data and providing the information to the visual map-based display. The regional early flood inundation warning system use the up-to-date Web technologies driven by the database and real-time data acquisition to display the on-line forecasting flood inundation depths in the study area. The friendly interface includes on-line sequentially showing inundation area by Google Map, maximum inundation depth and its location, and providing KMZ file download of the results which can be watched on Google Earth. The developed system can provide all the relevant information and on-line forecast results that helps city authorities to make decisions during typhoon events and make actions to mitigate the losses.

  15. Evaluation of CMAQ and CAMx Ensemble Air Quality Forecasts during the 2015 MAPS-Seoul Field Campaign

    NASA Astrophysics Data System (ADS)

    Kim, E.; Kim, S.; Bae, C.; Kim, H. C.; Kim, B. U.

    2015-12-01

    The performance of Air quality forecasts during the 2015 MAPS-Seoul Field Campaign was evaluated. An forecast system has been operated to support the campaign's daily aircraft route decisions for airborne measurements to observe long-range transporting plume. We utilized two real-time ensemble systems based on the Weather Research and Forecasting (WRF)-Sparse Matrix Operator Kernel Emissions (SMOKE)-Comprehensive Air quality Model with extensions (CAMx) modeling framework and WRF-SMOKE- Community Multi_scale Air Quality (CMAQ) framework over northeastern Asia to simulate PM10 concentrations. Global Forecast System (GFS) from National Centers for Environmental Prediction (NCEP) was used to provide meteorological inputs for the forecasts. For an additional set of retrospective simulations, ERA Interim Reanalysis from European Centre for Medium-Range Weather Forecasts (ECMWF) was also utilized to access forecast uncertainties from the meteorological data used. Model Inter-Comparison Study for Asia (MICS-Asia) and National Institute of Environment Research (NIER) Clean Air Policy Support System (CAPSS) emission inventories are used for foreign and domestic emissions, respectively. In the study, we evaluate the CMAQ and CAMx model performance during the campaign by comparing the results to the airborne and surface measurements. Contributions of foreign and domestic emissions are estimated using a brute force method. Analyses on model performance and emissions will be utilized to improve air quality forecasts for the upcoming KORUS-AQ field campaign planned in 2016.

  16. Should we use seasonnal meteorological ensemble forecasts for hydrological forecasting? A case study for nordic watersheds in Canada.

    NASA Astrophysics Data System (ADS)

    Bazile, Rachel; Boucher, Marie-Amélie; Perreault, Luc; Leconte, Robert; Guay, Catherine

    2017-04-01

    Hydro-electricity is a major source of energy for many countries throughout the world, including Canada. Long lead-time streamflow forecasts are all the more valuable as they help decision making and dam management. Different techniques exist for long-term hydrological forecasting. Perhaps the most well-known is 'Extended Streamflow Prediction' (ESP), which considers past meteorological scenarios as possible, often equiprobable, future scenarios. In the ESP framework, those past-observed meteorological scenarios (climatology) are used in turn as the inputs of a chosen hydrological model to produce ensemble forecasts (one member corresponding to each year in the available database). Many hydropower companies, including Hydro-Québec (province of Quebec, Canada) use variants of the above described ESP system operationally for long-term operation planning. The ESP system accounts for the hydrological initial conditions and for the natural variability of the meteorological variables. However, it cannot consider the current initial state of the atmosphere. Climate models can help remedy this drawback. In the context of a changing climate, dynamical forecasts issued from climate models seem to be an interesting avenue to improve upon the ESP method and could help hydropower companies to adapt their management practices to an evolving climate. Long-range forecasts from climate models can also be helpful for water management at locations where records of past meteorological conditions are short or nonexistent. In this study, we compare 7-month hydrological forecasts obtained from climate model outputs to an ESP system. The ESP system mimics the one used operationally at Hydro-Québec. The dynamical climate forecasts are produced by the European Center for Medium range Weather Forecasts (ECMWF) System4. Forecasts quality is assessed using numerical scores such as the Continuous Ranked Probability Score (CRPS) and the Ignorance score and also graphical tools such as the reliability diagram. This study covers 10 nordic watersheds. We show that forecast performance according to the CRPS varies with lead-time but also with the period of the year. The raw forecasts from the ECMWF System4 display important biases for both temperature and precipitation, which need to be corrected. The linear scaling method is used for this purpose and is found effective. Bias correction improves forecasts performance, especially during the summer when the precipitations are over-estimated. According to the CRPS, bias corrected forecasts from System4 show performances comparable to those of the ESP system. However, the Ignorance score, which penalizes the lack of calibration (under-dispersive forecasts in this case) more severely than the CRPS, provides a different outlook for the comparison of the two systems. In fact, according to the Ignorance score, the ESP system outperforms forecasts based on System4 in most cases. This illustrates that the joint use of several metrics is crucial to assess the quality of a forecasts system thoroughly. Globally, ESP provide reliable forecasts which can be over-dispersed whereas bias corrected ECMWF System4 forecasts are sharper but at the risk of missing events.

  17. Applications of a shadow camera system for energy meteorology

    NASA Astrophysics Data System (ADS)

    Kuhn, Pascal; Wilbert, Stefan; Prahl, Christoph; Garsche, Dominik; Schüler, David; Haase, Thomas; Ramirez, Lourdes; Zarzalejo, Luis; Meyer, Angela; Blanc, Philippe; Pitz-Paal, Robert

    2018-02-01

    Downward-facing shadow cameras might play a major role in future energy meteorology. Shadow cameras directly image shadows on the ground from an elevated position. They are used to validate other systems (e.g. all-sky imager based nowcasting systems, cloud speed sensors or satellite forecasts) and can potentially provide short term forecasts for solar power plants. Such forecasts are needed for electricity grids with high penetrations of renewable energy and can help to optimize plant operations. In this publication, two key applications of shadow cameras are briefly presented.

  18. Alternative Approaches to Land Initialization for Seasonal Precipitation and Temperature Forecasts

    NASA Technical Reports Server (NTRS)

    Koster, Randal; Suarez, Max; Liu, Ping; Jambor, Urszula

    2004-01-01

    The seasonal prediction system of the NASA Global Modeling and Assimilation Office is used to generate ensembles of summer forecasts utilizing realistic soil moisture initialization. To derive the realistic land states, we drive offline the system's land model with realistic meteorological forcing over the period 1979-1993 (in cooperation with the Global Land Data Assimilation System project at GSFC) and then extract the state variables' values on the chosen forecast start dates. A parallel series of forecast ensembles is performed with a random (though climatologically consistent) set of land initial conditions; by comparing the two sets of ensembles, we can isolate the impact of land initialization on forecast skill from that of the imposed SSTs. The base initialization experiment is supplemented with several forecast ensembles that use alternative initialization techniques. One ensemble addresses the impact of minimizing climate drift in the system through the scaling of the initial conditions, and another is designed to isolate the importance of the precipitation signal from that of all other signals in the antecedent offline forcing. A third ensemble includes a more realistic initialization of the atmosphere along with the land initialization. The impact of each variation on forecast skill is quantified.

  19. [Application of artificial neural networks in forecasting the number of circulatory system diseases death toll].

    PubMed

    Zhang, Ying; Shao, Yi; Shang, Kezheng; Wang, Shigong; Wang, Jinyan

    2014-09-01

    Set up the model of forecasting the number of circulatorys death toll based on back-propagation (BP) artificial neural networks discuss the relationship between the circulatory system diseases death toll meteorological factors and ambient air pollution. The data of tem deaths, meteorological factors, and ambient air pollution within the m 2004 to 2009 in Nanjing were collected. On the basis of analyzing the ficient between CSDDT meteorological factors and ambient air pollution, leutral network model of CSDDT was built for 2004 - 2008 based on factors and ambient air pollution within the same time, and the data of 2009 est the predictive power of the model. There was a closely system diseases relationship between meteorological factors, ambient air pollution and the circulatory system diseases death toll. The ANN model structure was 17 -16 -1, 17 input notes, 16 hidden notes and 1 output note. The training precision was 0. 005 and the final error was 0. 004 999 42 after 487 training steps. The results of forecast show that predict accuracy over 78. 62%. This method is easy to be finished with smaller error, and higher ability on circulatory system death toll on independent prediction, which can provide a new method for forecasting medical-meteorological forecast and have the value of further research.

  20. Global Turbulence Decision Support for Aviation

    NASA Astrophysics Data System (ADS)

    Williams, J.; Sharman, R.; Kessinger, C.; Feltz, W.; Wimmers, A.

    2009-09-01

    Turbulence is widely recognized as the leading cause of injuries to flight attendants and passengers on commercial air carriers, yet legacy decision support products such as SIGMETs and SIGWX charts provide relatively low spatial- and temporal-resolution assessments and forecasts of turbulence, with limited usefulness for strategic planning and tactical turbulence avoidance. A new effort is underway to develop an automated, rapid-update, gridded global turbulence diagnosis and forecast system that addresses upper-level clear-air turbulence, mountain-wave turbulence, and convectively-induced turbulence. This NASA-funded effort, modeled on the U.S. Federal Aviation Administration's Graphical Turbulence Guidance (GTG) and GTG Nowcast systems, employs NCEP Global Forecast System (GFS) model output and data from NASA and operational satellites to produce quantitative turbulence nowcasts and forecasts. A convective nowcast element based on GFS forecasts and satellite data provides a basis for diagnosing convective turbulence. An operational prototype "Global GTG” system has been running in real-time at the U.S. National Center for Atmospheric Research since the spring of 2009. Initial verification based on data from TRMM, Cloudsat and MODIS (for the convection nowcasting) and AIREPs and AMDAR data (for turbulence) are presented. This product aims to provide the "single authoritative source” for global turbulence information for the U.S. Next Generation Air Transportation System.

  1. Rate of recovery from perturbations as a means to forecast future stability of living systems.

    PubMed

    Ghadami, Amin; Gourgou, Eleni; Epureanu, Bogdan I

    2018-06-18

    Anticipating critical transitions in complex ecological and living systems is an important need because it is often difficult to restore a system to its pre-transition state once the transition occurs. Recent studies demonstrate that several indicators based on changes in ecological time series can indicate that the system is approaching an impending transition. An exciting question is, however, whether we can predict more characteristics of the future system stability using measurements taken away from the transition. We address this question by introducing a model-less forecasting method to forecast catastrophic transition of an experimental ecological system. The experiment is based on the dynamics of a yeast population, which is known to exhibit a catastrophic transition as the environment deteriorates. By measuring the system's response to perturbations prior to transition, we forecast the distance to the upcoming transition, the type of the transition (i.e., catastrophic/non-catastrophic) and the future equilibrium points within a range near the transition. Experimental results suggest a strong potential for practical applicability of this approach for ecological systems which are at risk of catastrophic transitions, where there is a pressing need for information about upcoming thresholds.

  2. On the reliable use of satellite-derived surface water products for global flood monitoring

    NASA Astrophysics Data System (ADS)

    Hirpa, F. A.; Revilla-Romero, B.; Thielen, J.; Salamon, P.; Brakenridge, R.; Pappenberger, F.; de Groeve, T.

    2015-12-01

    Early flood warning and real-time monitoring systems play a key role in flood risk reduction and disaster response management. To this end, real-time flood forecasting and satellite-based detection systems have been developed at global scale. However, due to the limited availability of up-to-date ground observations, the reliability of these systems for real-time applications have not been assessed in large parts of the globe. In this study, we performed comparative evaluations of the commonly used satellite-based global flood detections and operational flood forecasting system using 10 major flood cases reported over three years (2012-2014). Specially, we assessed the flood detection capabilities of the near real-time global flood maps from the Global Flood Detection System (GFDS), and from the Moderate Resolution Imaging Spectroradiometer (MODIS), and the operational forecasts from the Global Flood Awareness System (GloFAS) for the major flood events recorded in global flood databases. We present the evaluation results of the global flood detection and forecasting systems in terms of correctly indicating the reported flood events and highlight the exiting limitations of each system. Finally, we propose possible ways forward to improve the reliability of large scale flood monitoring tools.

  3. Economic analysis for transmission operation and planning

    NASA Astrophysics Data System (ADS)

    Zhou, Qun

    2011-12-01

    Restructuring of the electric power industry has caused dramatic changes in the use of transmission system. The increasing congestion conditions as well as the necessity of integrating renewable energy introduce new challenges and uncertainties to transmission operation and planning. Accurate short-term congestion forecasting facilitates market traders in bidding and trading activities. Cost sharing and recovery issue is a major impediment for long-term transmission investment to integrate renewable energy. In this research, a new short-term forecasting algorithm is proposed for predicting congestion, LMPs, and other power system variables based on the concept of system patterns. The advantage of this algorithm relative to standard statistical forecasting methods is that structural aspects underlying power market operations are exploited to reduce the forecasting error. The advantage relative to previously proposed structural forecasting methods is that data requirements are substantially reduced. Forecasting results based on a NYISO case study demonstrate the feasibility and accuracy of the proposed algorithm. Moreover, a negotiation methodology is developed to guide transmission investment for integrating renewable energy. Built on Nash Bargaining theory, the negotiation of investment plans and payment rate can proceed between renewable generation and transmission companies for cost sharing and recovery. The proposed approach is applied to Garver's six bus system. The numerical results demonstrate fairness and efficiency of the approach, and hence can be used as guidelines for renewable energy investors. The results also shed light on policy-making of renewable energy subsidies.

  4. The meta-Gaussian Bayesian Processor of forecasts and associated preliminary experiments

    NASA Astrophysics Data System (ADS)

    Chen, Fajing; Jiao, Meiyan; Chen, Jing

    2013-04-01

    Public weather services are trending toward providing users with probabilistic weather forecasts, in place of traditional deterministic forecasts. Probabilistic forecasting techniques are continually being improved to optimize available forecasting information. The Bayesian Processor of Forecast (BPF), a new statistical method for probabilistic forecast, can transform a deterministic forecast into a probabilistic forecast according to the historical statistical relationship between observations and forecasts generated by that forecasting system. This technique accounts for the typical forecasting performance of a deterministic forecasting system in quantifying the forecast uncertainty. The meta-Gaussian likelihood model is suitable for a variety of stochastic dependence structures with monotone likelihood ratios. The meta-Gaussian BPF adopting this kind of likelihood model can therefore be applied across many fields, including meteorology and hydrology. The Bayes theorem with two continuous random variables and the normal-linear BPF are briefly introduced. The meta-Gaussian BPF for a continuous predictand using a single predictor is then presented and discussed. The performance of the meta-Gaussian BPF is tested in a preliminary experiment. Control forecasts of daily surface temperature at 0000 UTC at Changsha and Wuhan stations are used as the deterministic forecast data. These control forecasts are taken from ensemble predictions with a 96-h lead time generated by the National Meteorological Center of the China Meteorological Administration, the European Centre for Medium-Range Weather Forecasts, and the US National Centers for Environmental Prediction during January 2008. The results of the experiment show that the meta-Gaussian BPF can transform a deterministic control forecast of surface temperature from any one of the three ensemble predictions into a useful probabilistic forecast of surface temperature. These probabilistic forecasts quantify the uncertainty of the control forecast; accordingly, the performance of the probabilistic forecasts differs based on the source of the underlying deterministic control forecasts.

  5. Automated system for smoke dispersion prediction due to wild fires in Alaska

    NASA Astrophysics Data System (ADS)

    Kulchitsky, A.; Stuefer, M.; Higbie, L.; Newby, G.

    2007-12-01

    Community climate models have enabled development of specific environmental forecast systems. The University of Alaska (UAF) smoke group was created to adapt a smoke forecast system to the Alaska region. The US Forest Service (USFS) Missoula Fire Science Lab had developed a smoke forecast system based on the Weather Research and Forecasting (WRF) Model including chemistry (WRF/Chem). Following the successful experience of USFS, which runs their model operationally for the contiguous U.S., we develop a similar system for Alaska in collaboration with scientists from the USFS Missoula Fire Science Lab. Wildfires are a significant source of air pollution in Alaska because the climate and vegetation favor annual summer fires that burn huge areas. Extreme cases occurred in 2004, when an area larger than Maryland (more than 25000~km2) burned. Small smoke particles with a diameter less than 10~μm can penetrate deep into lungs causing health problems. Smoke also creates a severe restriction to air transport and has tremendous economical effect. The smoke dispersion and forecast system for Alaska was developed at the Geophysical Institute (GI) and the Arctic Region Supercomputing Center (ARSC), both at University of Alaska Fairbanks (UAF). They will help the public and plan activities a few days in advance to avoid dangerous smoke exposure. The availability of modern high performance supercomputers at ARSC allows us to create and run high-resolution, WRF-based smoke dispersion forecast for the entire State of Alaska. The core of the system is a Python program that manages the independent pieces. Our adapted Alaska system performs the following steps \\begin{itemize} Calculate the medium-resolution weather forecast using WRF/Met. Adapt the near real-time satellite-derived wildfire location and extent data that are received via direct broadcast from UAF's "Geographic Information Network of Alaska" (GINA) Calculate fuel moisture using WRF forecasts and National Fire Danger Rating System (NFDRS) fuel maps Calculate smoke emission components using a first order fire emission model Model the smoke plume rise yielding a vertically distribution that accounts for one-dimensional (vertical) concentrations of smoke constituents in the atmosphere above the fire Run WRF/Chem at high resolution for the forecast Use standard graphical tools to provide accessible smoke dispersion The system run twice each day at ARSC. The results will be freely available from a dedicated wildfire smoke web portal at ARSC.

  6. Rapid wave and storm surge warning system for tropical cyclones in Mexico

    NASA Astrophysics Data System (ADS)

    Appendini, C. M.; Rosengaus, M.; Meza, R.; Camacho, V.

    2015-12-01

    The National Hurricane Center (NHC) in Miami, is responsible for the forecast of tropical cyclones in the North Atlantic and Eastern North Pacific basins. As such, Mexico, Central America and Caribbean countries depend on the information issued by the NHC related to the characteristics of a particular tropical cyclone and associated watch and warning areas. Despite waves and storm surge are important hazards for marine operations and coastal dwellings, their forecast is not part of the NHC responsibilities. This work presents a rapid wave and storm surge warning system based on 3100 synthetic tropical cyclones doing landfall in Mexico. Hydrodynamic and wave models were driven by the synthetic events to create a robust database composed of maximum envelops of wind speed, significant wave height and storm surge for each event. The results were incorporated into a forecast system that uses the NHC advisory to locate the synthetic events passing inside specified radiuses for the present and forecast position of the real event. Using limited computer resources, the system displays the information meeting the search criteria, and the forecaster can select specific events to generate the desired hazard map (i.e. wind, waves, and storm surge) based on the maximum envelop maps. This system was developed in a limited time frame to be operational in 2015 by the National Hurricane and Severe Storms Unit of the Mexican National Weather Service, and represents a pilot project for other countries in the region not covered by detailed storm surge and waves forecasts.

  7. Skill of a global seasonal ensemble streamflow forecasting system

    NASA Astrophysics Data System (ADS)

    Candogan Yossef, Naze; Winsemius, Hessel; Weerts, Albrecht; van Beek, Rens; Bierkens, Marc

    2013-04-01

    Forecasting of water availability and scarcity is a prerequisite for managing the risks and opportunities caused by the inter-annual variability of streamflow. Reliable seasonal streamflow forecasts are necessary to prepare for an appropriate response in disaster relief, management of hydropower reservoirs, water supply, agriculture and navigation. Seasonal hydrological forecasting on a global scale could be valuable especially for developing regions of the world, where effective hydrological forecasting systems are scarce. In this study, we investigate the forecasting skill of the global seasonal streamflow forecasting system FEWS-World, using the global hydrological model PCR-GLOBWB. FEWS-World has been setup within the European Commission 7th Framework Programme project Global Water Scarcity Information Service (GLOWASIS). Skill is assessed in historical simulation mode as well as retroactive forecasting mode. The assessment in historical simulation mode used a meteorological forcing based on observations from the Climate Research Unit of the University of East Anglia and the ERA-40 reanalysis of the European Center for Medium-Range Weather Forecasts (ECMWF). We assessed the skill of the global hydrological model PCR-GLOBWB in reproducing past discharge extremes in 20 large rivers of the world. This preliminary assessment concluded that the prospects for seasonal forecasting with PCR-GLOBWB or comparable models are positive. However this assessment did not include actual meteorological forecasts. Thus the meteorological forcing errors were not assessed. Yet, in a forecasting setup, the predictive skill of a hydrological forecasting system is affected by errors due to uncertainty from numerical weather prediction models. For the assessment in retroactive forecasting mode, the model is forced with actual ensemble forecasts from the seasonal forecast archives of ECMWF. Skill is assessed at 78 stations on large river basins across the globe, for all the months of the year and for lead times up to 6 months. The forecasted discharges are compared with observed monthly streamflow records using the ensemble verification measures Brier Skill Score (BSS) and Continuous Ranked Probability Score (CRPS). The eventual goal is to transfer FEWS-World to operational forecasting mode, where the system will use operational seasonal forecasts from ECMWF. The results will be disseminated on the internet, and hopefully provide information that is valuable for users in data and model-poor regions of the world.

  8. Evaluating Downscaling Methods for Seasonal Climate Forecasts over East Africa

    NASA Technical Reports Server (NTRS)

    Roberts, J. Brent; Robertson, Franklin R.; Bosilovich, Michael; Lyon, Bradfield; Funk, Chris

    2013-01-01

    The U.S. National Multi-Model Ensemble seasonal forecasting system is providing hindcast and real-time data streams to be used in assessing and improving seasonal predictive capacity. The NASA / USAID SERVIR project, which leverages satellite and modeling-based resources for environmental decision making in developing nations, is focusing on the evaluation of NMME forecasts specifically for use in impact modeling within hub regions including East Africa, the Hindu Kush-Himalayan (HKH) region and Mesoamerica. One of the participating models in NMME is the NASA Goddard Earth Observing System (GEOS5). This work will present an intercomparison of downscaling methods using the GEOS5 seasonal forecasts of temperature and precipitation over East Africa. The current seasonal forecasting system provides monthly averaged forecast anomalies. These anomalies must be spatially downscaled and temporally disaggregated for use in application modeling (e.g. hydrology, agriculture). There are several available downscaling methodologies that can be implemented to accomplish this goal. Selected methods include both a non-homogenous hidden Markov model and an analogue based approach. A particular emphasis will be placed on quantifying the ability of different methods to capture the intermittency of precipitation within both the short and long rain seasons. Further, the ability to capture spatial covariances will be assessed. Both probabilistic and deterministic skill measures will be evaluated over the hindcast period

  9. Evaluating Downscaling Methods for Seasonal Climate Forecasts over East Africa

    NASA Technical Reports Server (NTRS)

    Robertson, Franklin R.; Roberts, J. Brent; Bosilovich, Michael; Lyon, Bradfield

    2013-01-01

    The U.S. National Multi-Model Ensemble seasonal forecasting system is providing hindcast and real-time data streams to be used in assessing and improving seasonal predictive capacity. The NASA / USAID SERVIR project, which leverages satellite and modeling-based resources for environmental decision making in developing nations, is focusing on the evaluation of NMME forecasts specifically for use in impact modeling within hub regions including East Africa, the Hindu Kush-Himalayan (HKH) region and Mesoamerica. One of the participating models in NMME is the NASA Goddard Earth Observing System (GEOS5). This work will present an intercomparison of downscaling methods using the GEOS5 seasonal forecasts of temperature and precipitation over East Africa. The current seasonal forecasting system provides monthly averaged forecast anomalies. These anomalies must be spatially downscaled and temporally disaggregated for use in application modeling (e.g. hydrology, agriculture). There are several available downscaling methodologies that can be implemented to accomplish this goal. Selected methods include both a non-homogenous hidden Markov model and an analogue based approach. A particular emphasis will be placed on quantifying the ability of different methods to capture the intermittency of precipitation within both the short and long rain seasons. Further, the ability to capture spatial covariances will be assessed. Both probabilistic and deterministic skill measures will be evaluated over the hindcast period.

  10. System designed for issuing landslide alerts in the San Francisco Bay area

    USGS Publications Warehouse

    Finley, D.

    1987-01-01

    A system for forecasting landslides during major storms has been developed for the San Francisco Bay area by the U.S Geological Survey and was successfully tested during heavy storms in the bay area during February 1986. Based on the forecasts provided by the USGS, the National Weather Service (NWS) included landslide warnings in its regular weather forecasts or in special weather statements transmitted to local radio and television stations and other news media. USGS scientists said the landslide forecasting and warning system for the San Francisco Bay area can be used as a prototype in developing similar systems for other parts of the Nation susceptible to landsliding. Studies show damage from landslides in the United States averages an estimated $1.5 billion per year. 

  11. Power Grid Maintenance Scheduling Intelligence Arrangement Supporting System Based on Power Flow Forecasting

    NASA Astrophysics Data System (ADS)

    Xie, Chang; Wen, Jing; Liu, Wenying; Wang, Jiaming

    With the development of intelligent dispatching, the intelligence level of network control center full-service urgent need to raise. As an important daily work of network control center, the application of maintenance scheduling intelligent arrangement to achieve high-quality and safety operation of power grid is very important. By analyzing the shortages of the traditional maintenance scheduling software, this paper designs a power grid maintenance scheduling intelligence arrangement supporting system based on power flow forecasting, which uses the advanced technologies in maintenance scheduling, such as artificial intelligence, online security checking, intelligent visualization techniques. It implements the online security checking of maintenance scheduling based on power flow forecasting and power flow adjusting based on visualization, in order to make the maintenance scheduling arrangement moreintelligent and visual.

  12. Uncertainty quantification and reliability assessment in operational oil spill forecast modeling system.

    PubMed

    Hou, Xianlong; Hodges, Ben R; Feng, Dongyu; Liu, Qixiao

    2017-03-15

    As oil transport increasing in the Texas bays, greater risks of ship collisions will become a challenge, yielding oil spill accidents as a consequence. To minimize the ecological damage and optimize rapid response, emergency managers need to be informed with how fast and where oil will spread as soon as possible after a spill. The state-of-the-art operational oil spill forecast modeling system improves the oil spill response into a new stage. However uncertainty due to predicted data inputs often elicits compromise on the reliability of the forecast result, leading to misdirection in contingency planning. Thus understanding the forecast uncertainty and reliability become significant. In this paper, Monte Carlo simulation is implemented to provide parameters to generate forecast probability maps. The oil spill forecast uncertainty is thus quantified by comparing the forecast probability map and the associated hindcast simulation. A HyosPy-based simple statistic model is developed to assess the reliability of an oil spill forecast in term of belief degree. The technologies developed in this study create a prototype for uncertainty and reliability analysis in numerical oil spill forecast modeling system, providing emergency managers to improve the capability of real time operational oil spill response and impact assessment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Fews-Risk: A step towards risk-based flood forecasting

    NASA Astrophysics Data System (ADS)

    Bachmann, Daniel; Eilander, Dirk; de Leeuw, Annemargreet; Diermanse, Ferdinand; Weerts, Albrecht; de Bruijn, Karin; Beckers, Joost; Boelee, Leonore; Brown, Emma; Hazlewood, Caroline

    2015-04-01

    Operational flood prediction and the assessment of flood risk are important components of flood management. Currently, the model-based prediction of discharge and/or water level in a river is common practice for operational flood forecasting. Based on the prediction of these values decisions about specific emergency measures are made within operational flood management. However, the information provided for decision support is restricted to pure hydrological or hydraulic aspects of a flood. Information about weak sections within the flood defences, flood prone areas and assets at risk in the protected areas are rarely used in a model-based flood forecasting system. This information is often available for strategic planning, but is not in an appropriate format for operational purposes. The idea of FEWS-Risk is the extension of existing flood forecasting systems with elements of strategic flood risk analysis, such as probabilistic failure analysis, two dimensional flood spreading simulation and the analysis of flood impacts and consequences. Thus, additional information is provided to the decision makers, such as: • Location, timing and probability of failure of defined sections of the flood defence line; • Flood spreading, extent and hydraulic values in the hinterland caused by an overflow or a breach flow • Impacts and consequences in case of flooding in the protected areas, such as injuries or casualties and/or damages to critical infrastructure or economy. In contrast with purely hydraulic-based operational information, these additional data focus upon decision support for answering crucial questions within an operational flood forecasting framework, such as: • Where should I reinforce my flood defence system? • What type of action can I take to mend a weak spot in my flood defences? • What are the consequences of a breach? • Which areas should I evacuate first? This presentation outlines the additional required workflows towards risk-based flood forecasting systems. In a cooperation between HR Wallingford and Deltares, the extended workflows are being integrated into the Delft-FEWS software system. Delft-FEWS provides modules for managing the data handling and forecasting process. Results of a pilot study that demonstrates the new tools are presented. The value of the newly generated information for decision support during a flood event is discussed.

  14. ASSESSMENT OF ETA-CMAQ FORECASTS OF PARTICULATE MATTER DISTRIBUTIONS THROUGH COMPARISONS WITH SURFACE NETWORK AND SPECIALIZED MEASUREMENTS

    EPA Science Inventory

    An air-quality forecasting (AQF) system based on the National Weather Service (NWS) National Centers for Environmental Prediction's (NCEP's) Eta model and the U.S. EPA's Community Multiscale Air Quality (CMAQ) Modeling System is used to simulate the distributions of tropospheric ...

  15. An Approach to Assess Observation Impact Based on Observation-Minus-Forecast Residuals

    NASA Technical Reports Server (NTRS)

    Todling, Ricardo

    2009-01-01

    Langland and Baker (2004) introduced an approach to assess the impact of observations on the forecasts. In that, a state-space aspect of the forecast is defined and a procedure is derived that relates changes in the aspect with changes in the initial conditions associated with the assimilation of observations) ultimately providing information about the impact of individual observations on the forecast. Some features of the approach are to be noted. The typical choice of forecast aspect employed in related works is rather arbitrary and leads to an incomplete assessment of the observing system. Furthermore, the state-space forecast aspect requires availability of a verification state that should ideally be uncorrelated with the forecast but in practice is not. Lastly, the approach involves the adjoint operator of the entire data assimilation system and as such it is constrained by the validity of this operator. In this presentation, an observation-space metric is used that, for a relatively time-homogeneous observing system, allows inferring observation impact on the forecast without some of the limitations above. Specifically, using observation-minus-forecast residuals leads to an approach with the following features: (i) it suggests a rather natural choice of forecast aspect, directly linked to the analysis system and providing full assessment of the observations; (ii) it naturally avoids introducing undesirable correlations in the forecast aspect by verifying against the observations; and (iii) it does not involve linearization and use of adjoints; therefore being applicable to any length of forecast. The state and observation-space approaches might be complementary to some degree, and involve different limitations and complexities. Illustrations are given using the NASA GEOS-5 data.

  16. Influence of Forecast Accuracy of Photovoltaic Power Output on Facility Planning and Operation of Microgrid under 30 min Power Balancing Control

    NASA Astrophysics Data System (ADS)

    Kato, Takeyoshi; Sone, Akihito; Shimakage, Toyonari; Suzuoki, Yasuo

    A microgrid (MG) is one of the measures for enhancing the high penetration of renewable energy (RE)-based distributed generators (DGs). For constructing a MG economically, the capacity optimization of controllable DGs against RE-based DGs is essential. By using a numerical simulation model developed based on the demonstrative studies on a MG using PAFC and NaS battery as controllable DGs and photovoltaic power generation system (PVS) as a RE-based DG, this study discusses the influence of forecast accuracy of PVS output on the capacity optimization and daily operation evaluated with the cost. The main results are as follows. The required capacity of NaS battery must be increased by 10-40% against the ideal situation without the forecast error of PVS power output. The influence of forecast error on the received grid electricity would not be so significant on annual basis because the positive and negative forecast error varies with days. The annual total cost of facility and operation increases by 2-7% due to the forecast error applied in this study. The impact of forecast error on the facility optimization and operation optimization is almost the same each other at a few percentages, implying that the forecast accuracy should be improved in terms of both the number of times with large forecast error and the average error.

  17. Seasonal scale water deficit forecasting in Africa and the Middle East using NASA's Land Information System (LIS)

    NASA Astrophysics Data System (ADS)

    Peters-Lidard, C. D.; Arsenault, K. R.; Shukla, S.; Getirana, A.; McNally, A.; Koster, R. D.; Zaitchik, B. F.; Badr, H. S.; Roningen, J. M.; Kumar, S.; Funk, C. C.

    2017-12-01

    A seamless and effective water deficit monitoring and early warning system is critical for assessing food security in Africa and the Middle East. In this presentation, we report on the ongoing development and validation of a seasonal scale water deficit forecasting system based on NASA's Land Information System (LIS) and seasonal climate forecasts. First, our presentation will focus on the implementation and validation of drought and water availability monitoring products in the region. Next, it will focus on evaluating drought and water availability forecasts. Finally, details will be provided of our ongoing collaboration with end-user partners in the region (e.g., USAID's Famine Early Warning Systems Network, FEWS NET), on formulating meaningful early warning indicators, effective communication and seamless dissemination of the products through NASA's web-services. The water deficit forecasting system thus far incorporates NASA GMAO's Catchment and the Noah Multi-Physics (MP) LSMs. In addition, the LSMs' surface and subsurface runoff are routed through the Hydrological Modeling and Analysis Platform (HyMAP) to simulate surface water dynamics. To establish a climatology from 1981-2015, the two LSMs are driven by NASA/GMAO's Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2), and the USGS and UCSB Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) daily rainfall dataset. Comparison of the models' energy and hydrological budgets with independent observations suggests that major droughts are well-reflected in the climatology. The system uses seasonal climate forecasts from NASA's GEOS-5 (the Goddard Earth Observing System Model-5) and NCEP's Climate Forecast System-2, and it produces forecasts of soil moisture, ET and streamflow out to 6 months in the future. Forecasts of those variables are formulated in terms of indicators to provide forecasts of drought and water availability in the region. Current work suggests that for the Blue Nile basin, (1) the combination of GEOS-5 and CFSv2 is equivalent in skill to the full North American Multimodel Ensemble (NMME); and (2) the seasonal water deficit forecasting system skill for both soil moisture and streamflow anomalies is greater than the standard Ensemble Streamflow Prediction (ESP) approach.

  18. The case for probabilistic forecasting in hydrology

    NASA Astrophysics Data System (ADS)

    Krzysztofowicz, Roman

    2001-08-01

    That forecasts should be stated in probabilistic, rather than deterministic, terms has been argued from common sense and decision-theoretic perspectives for almost a century. Yet most operational hydrological forecasting systems produce deterministic forecasts and most research in operational hydrology has been devoted to finding the 'best' estimates rather than quantifying the predictive uncertainty. This essay presents a compendium of reasons for probabilistic forecasting of hydrological variates. Probabilistic forecasts are scientifically more honest, enable risk-based warnings of floods, enable rational decision making, and offer additional economic benefits. The growing demand for information about risk and the rising capability to quantify predictive uncertainties create an unparalleled opportunity for the hydrological profession to dramatically enhance the forecasting paradigm.

  19. An operational procedure for rapid flood risk assessment in Europe

    NASA Astrophysics Data System (ADS)

    Dottori, Francesco; Kalas, Milan; Salamon, Peter; Bianchi, Alessandra; Alfieri, Lorenzo; Feyen, Luc

    2017-07-01

    The development of methods for rapid flood mapping and risk assessment is a key step to increase the usefulness of flood early warning systems and is crucial for effective emergency response and flood impact mitigation. Currently, flood early warning systems rarely include real-time components to assess potential impacts generated by forecasted flood events. To overcome this limitation, this study describes the benchmarking of an operational procedure for rapid flood risk assessment based on predictions issued by the European Flood Awareness System (EFAS). Daily streamflow forecasts produced for major European river networks are translated into event-based flood hazard maps using a large map catalogue derived from high-resolution hydrodynamic simulations. Flood hazard maps are then combined with exposure and vulnerability information, and the impacts of the forecasted flood events are evaluated in terms of flood-prone areas, economic damage and affected population, infrastructures and cities.An extensive testing of the operational procedure has been carried out by analysing the catastrophic floods of May 2014 in Bosnia-Herzegovina, Croatia and Serbia. The reliability of the flood mapping methodology is tested against satellite-based and report-based flood extent data, while modelled estimates of economic damage and affected population are compared against ground-based estimations. Finally, we evaluate the skill of risk estimates derived from EFAS flood forecasts with different lead times and combinations of probabilistic forecasts. Results highlight the potential of the real-time operational procedure in helping emergency response and management.

  20. A real-time evaluation and demonstration of strategies for 'Over-The-Loop' ensemble streamflow forecasting in US watersheds

    NASA Astrophysics Data System (ADS)

    Wood, Andy; Clark, Elizabeth; Mendoza, Pablo; Nijssen, Bart; Newman, Andy; Clark, Martyn; Nowak, Kenneth; Arnold, Jeffrey

    2017-04-01

    Many if not most national operational streamflow prediction systems rely on a forecaster-in-the-loop approach that require the hands-on-effort of an experienced human forecaster. This approach evolved from the need to correct for long-standing deficiencies in the models and datasets used in forecasting, and the practice often leads to skillful flow predictions despite the use of relatively simple, conceptual models. Yet the 'in-the-loop' forecast process is not reproducible, which limits opportunities to assess and incorporate new techniques systematically, and the effort required to make forecasts in this way is an obstacle to expanding forecast services - e.g., though adding new forecast locations or more frequent forecast updates, running more complex models, or producing forecast and hindcasts that can support verification. In the last decade, the hydrologic forecasting community has begun develop more centralized, 'over-the-loop' systems. The quality of these new forecast products will depend on their ability to leverage research in areas including earth system modeling, parameter estimation, data assimilation, statistical post-processing, weather and climate prediction, verification, and uncertainty estimation through the use of ensembles. Currently, many national operational streamflow forecasting and water management communities have little experience with the strengths and weaknesses of over-the-loop approaches, even as such systems are beginning to be deployed operationally in centers such as ECMWF. There is thus a need both to evaluate these forecasting advances and to demonstrate their potential in a public arena, raising awareness in forecast user communities and development programs alike. To address this need, the US National Center for Atmospheric Research is collaborating with the University of Washington, the Bureau of Reclamation and the US Army Corps of Engineers, using the NCAR 'System for Hydromet Analysis Research and Prediction Applications' (SHARP) to implement, assess and demonstrate real-time over-the-loop ensemble flow forecasts in a range of US watersheds. The system relies on fully ensemble techniques, including: an 100-member ensemble of meteorological model forcings and an ensemble particle filter data assimilation for initializing watershed states; analog/regression-based downscaling of ensemble weather forecasts from GEFS; and statistical post-processing of ensemble forecast outputs, all of which run in real-time within a workflow managed by ECWMF's ecFlow libraries over large US regional domains. We describe SHARP and present early hindcast and verification results for short to seasonal range streamflow forecasts in a number of US case study watersheds.

  1. The potential predictability of fire danger provided by ECMWF forecast

    NASA Astrophysics Data System (ADS)

    Di Giuseppe, Francesca

    2017-04-01

    The European Forest Fire Information System (EFFIS), is currently being developed in the framework of the Copernicus Emergency Management Services to monitor and forecast fire danger in Europe. The system provides timely information to civil protection authorities in 38 nations across Europe and mostly concentrates on flagging regions which might be at high danger of spontaneous ignition due to persistent drought. The daily predictions of fire danger conditions are based on the US Forest Service National Fire Danger Rating System (NFDRS), the Canadian forest service Fire Weather Index Rating System (FWI) and the Australian McArthur (MARK-5) rating systems. Weather forcings are provided in real time by the European Centre for Medium range Weather Forecasts (ECMWF) forecasting system. The global system's potential predictability is assessed using re-analysis fields as weather forcings. The Global Fire Emissions Database (GFED4) provides 11 years of observed burned areas from satellite measurements and is used as a validation dataset. The fire indices implemented are good predictors to highlight dangerous conditions. High values are correlated with observed fire and low values correspond to non observed events. A more quantitative skill evaluation was performed using the Extremal Dependency Index which is a skill score specifically designed for rare events. It revealed that the three indices were more skilful on a global scale than the random forecast to detect large fires. The performance peaks in the boreal forests, in the Mediterranean, the Amazon rain-forests and southeast Asia. The skill-scores were then aggregated at country level to reveal which nations could potentiallty benefit from the system information in aid of decision making and fire control support. Overall we found that fire danger modelling based on weather forecasts, can provide reasonable predictability over large parts of the global landmass.

  2. The FireWork air quality forecast system with near-real-time biomass burning emissions: Recent developments and evaluation of performance for the 2015 North American wildfire season

    PubMed Central

    Pavlovic, Radenko; Chen, Jack; Anderson, Kerry; Moran, Michael D.; Beaulieu, Paul-André; Davignon, Didier; Cousineau, Sophie

    2016-01-01

    ABSTRACT Environment and Climate Change Canada’s FireWork air quality (AQ) forecast system for North America with near-real-time biomass burning emissions has been running experimentally during the Canadian wildfire season since 2013. The system runs twice per day with model initializations at 00 UTC and 12 UTC, and produces numerical AQ forecast guidance with 48-hr lead time. In this work we describe the FireWork system, which incorporates near-real-time biomass burning emissions based on the Canadian Wildland Fire Information System (CWFIS) as an input to the operational Regional Air Quality Deterministic Prediction System (RAQDPS). To demonstrate the capability of the system we analyzed two forecast periods in 2015 (June 2–July 15, and August 15–31) when fire activity was high, and observed fire-smoke-impacted areas in western Canada and the western United States. Modeled PM2.5 surface concentrations were compared with surface measurements and benchmarked with results from the operational RAQDPS, which did not consider near-real-time biomass burning emissions. Model performance statistics showed that FireWork outperformed RAQDPS with improvements in forecast hourly PM2.5 across the region; the results were especially significant for stations near the path of fire plume trajectories. Although the hourly PM2.5 concentrations predicted by FireWork still displayed bias for areas with active fires for these two periods (mean bias [MB] of –7.3 µg m−3 and 3.1 µg m−3), it showed better forecast skill than the RAQDPS (MB of –11.7 µg m−3 and –5.8 µg m−3) and demonstrated a greater ability to capture temporal variability of episodic PM2.5 events (correlation coefficient values of 0.50 and 0.69 for FireWork compared to 0.03 and 0.11 for RAQDPS). A categorical forecast comparison based on an hourly PM2.5 threshold of 30 µg m−3 also showed improved scores for probability of detection (POD), critical success index (CSI), and false alarm rate (FAR). Implications: Smoke from wildfires can have a large impact on regional air quality (AQ) and can expose populations to elevated pollution levels. Environment and Climate Change Canada has been producing operational air quality forecasts for all of Canada since 2009 and is now working to include near-real-time wildfire emissions (NRTWE) in its operational AQ forecasting system. An experimental forecast system named FireWork, which includes NRTWE, has been undergoing testing and evaluation since 2013. A performance analysis of FireWork forecasts for the 2015 wildfire season shows that FireWork provides significant improvements to surface PM2.5 forecasts and valuable guidance to regional forecasters and first responders. PMID:26934496

  3. Forecasting urban PM10 and PM2.5 pollution episodes in very stable nocturnal conditions and complex terrain using WRF-Chem CO tracer model

    NASA Astrophysics Data System (ADS)

    Saide, Pablo E.; Carmichael, Gregory R.; Spak, Scott N.; Gallardo, Laura; Osses, Axel E.; Mena-Carrasco, Marcelo A.; Pagowski, Mariusz

    2011-05-01

    This study presents a system to predict high pollution events that develop in connection with enhanced subsidence due to coastal lows, particularly in winter over Santiago de Chile. An accurate forecast of these episodes is of interest since the local government is entitled by law to take actions in advance to prevent public exposure to PM10 concentrations in excess of 150 μg m -3 (24 h running averages). The forecasting system is based on accurately simulating carbon monoxide (CO) as a PM10/PM2.5 surrogate, since during episodes and within the city there is a high correlation (over 0.95) among these pollutants. Thus, by accurately forecasting CO, which behaves closely to a tracer on this scale, a PM estimate can be made without involving aerosol-chemistry modeling. Nevertheless, the very stable nocturnal conditions over steep topography associated with maxima in concentrations are hard to represent in models. Here we propose a forecast system based on the WRF-Chem model with optimum settings, determined through extensive testing, that best describe both meteorological and air quality available measurements. Some of the important configurations choices involve the boundary layer (PBL) scheme, model grid resolution (both vertical and horizontal), meteorological initial and boundary conditions and spatial and temporal distribution of the emissions. A forecast for the 2008 winter is performed showing that this forecasting system is able to perform similarly to the authority decision for PM10 and better than persistence when forecasting PM10 and PM2.5 high pollution episodes. Problems regarding false alarm predictions could be related to different uncertainties in the model such as day to day emission variability, inability of the model to completely resolve the complex topography and inaccuracy in meteorological initial and boundary conditions. Finally, according to our simulations, emissions from previous days dominate episode concentrations, which highlights the need for 48 h forecasts that can be achieved by the system presented here. This is in fact the largest advantage of the proposed system.

  4. Impact of Representing Model Error in a Hybrid Ensemble-Variational Data Assimilation System for Track Forecast of Tropical Cyclones over the Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Kutty, Govindan; Muraleedharan, Rohit; Kesarkar, Amit P.

    2018-03-01

    Uncertainties in the numerical weather prediction models are generally not well-represented in ensemble-based data assimilation (DA) systems. The performance of an ensemble-based DA system becomes suboptimal, if the sources of error are undersampled in the forecast system. The present study examines the effect of accounting for model error treatments in the hybrid ensemble transform Kalman filter—three-dimensional variational (3DVAR) DA system (hybrid) in the track forecast of two tropical cyclones viz. Hudhud and Thane, formed over the Bay of Bengal, using Advanced Research Weather Research and Forecasting (ARW-WRF) model. We investigated the effect of two types of model error treatment schemes and their combination on the hybrid DA system; (i) multiphysics approach, which uses different combination of cumulus, microphysics and planetary boundary layer schemes, (ii) stochastic kinetic energy backscatter (SKEB) scheme, which perturbs the horizontal wind and potential temperature tendencies, (iii) a combination of both multiphysics and SKEB scheme. Substantial improvements are noticed in the track positions of both the cyclones, when flow-dependent ensemble covariance is used in 3DVAR framework. Explicit model error representation is found to be beneficial in treating the underdispersive ensembles. Among the model error schemes used in this study, a combination of multiphysics and SKEB schemes has outperformed the other two schemes with improved track forecast for both the tropical cyclones.

  5. How seasonal forecast could help a decision maker: an example of climate service for water resource management

    NASA Astrophysics Data System (ADS)

    Viel, Christian; Beaulant, Anne-Lise; Soubeyroux, Jean-Michel; Céron, Jean-Pierre

    2016-04-01

    The FP7 project EUPORIAS was a great opportunity for the climate community to co-design with stakeholders some original and innovative climate services at seasonal time scales. In this framework, Météo-France proposed a prototype that aimed to provide to water resource managers some tailored information to better anticipate the coming season. It is based on a forecasting system, built on a refined hydrological suite, forced by a coupled seasonal forecast model. It particularly delivers probabilistic river flow prediction on river basins all over the French territory. This paper presents the work we have done with "EPTB Seine Grands Lacs" (EPTB SGL), an institutional stakeholder in charge of the management of 4 great reservoirs on the upper Seine Basin. First, we present the co-design phase, which means the translation of classical climate outputs into several indices, relevant to influence the stakeholder's decision making process (DMP). And second, we detail the evaluation of the impact of the forecast on the DMP. This evaluation is based on an experiment realised in collaboration with the stakeholder. Concretely EPTB SGL has replayed some past decisions, in three different contexts: without any forecast, with a forecast A and with a forecast B. One of forecast A and B really contained seasonal forecast, the other only contained random forecasts taken from past climate. This placebo experiment, realised in a blind test, allowed us to calculate promising skill scores of the DMP based on seasonal forecast in comparison to a classical approach based on climatology, and to EPTG SGL current practice.

  6. Efficient ensemble forecasting of marine ecology with clustered 1D models and statistical lateral exchange: application to the Red Sea

    NASA Astrophysics Data System (ADS)

    Dreano, Denis; Tsiaras, Kostas; Triantafyllou, George; Hoteit, Ibrahim

    2017-07-01

    Forecasting the state of large marine ecosystems is important for many economic and public health applications. However, advanced three-dimensional (3D) ecosystem models, such as the European Regional Seas Ecosystem Model (ERSEM), are computationally expensive, especially when implemented within an ensemble data assimilation system requiring several parallel integrations. As an alternative to 3D ecological forecasting systems, we propose to implement a set of regional one-dimensional (1D) water-column ecological models that run at a fraction of the computational cost. The 1D model domains are determined using a Gaussian mixture model (GMM)-based clustering method and satellite chlorophyll-a (Chl-a) data. Regionally averaged Chl-a data is assimilated into the 1D models using the singular evolutive interpolated Kalman (SEIK) filter. To laterally exchange information between subregions and improve the forecasting skills, we introduce a new correction step to the assimilation scheme, in which we assimilate a statistical forecast of future Chl-a observations based on information from neighbouring regions. We apply this approach to the Red Sea and show that the assimilative 1D ecological models can forecast surface Chl-a concentration with high accuracy. The statistical assimilation step further improves the forecasting skill by as much as 50%. This general approach of clustering large marine areas and running several interacting 1D ecological models is very flexible. It allows many combinations of clustering, filtering and regression technics to be used and can be applied to build efficient forecasting systems in other large marine ecosystems.

  7. Forecasting sea fog on the coast of southern China

    NASA Astrophysics Data System (ADS)

    Huang, H.; Huang, B.; Liu, C.; Tu, J.; Wen, G.; Mao, W.

    2016-12-01

    Forecast sea fog is still full of challenges. We have performed the numerical forecasting of sea fog on the coast of southern China by using the operational meso-scale regional model GRAPES (Global/Regional assimilation and prediction system). The GRAPES model horizontal resolution was 3km and with 66 vertical levels. A total of 72 hours forecasting of sea fog was conducted with hourly outputs over the sea fog event. The results show that the model system can predict reasonable characteristics of typical sea fog events on the coast of southern China. The scope of sea fog coincides with the observations of meteorological stations, the observations of the Marine Meteorological Science Experiment Base (MMSEB) at Bohe, Maoming and satellite products of sea fog. The goal of this study is to establish an operational numerical forecasting model system of sea fog on the coast of southern China.

  8. Product demand forecasts using wavelet kernel support vector machine and particle swarm optimization in manufacture system

    NASA Astrophysics Data System (ADS)

    Wu, Qi

    2010-03-01

    Demand forecasts play a crucial role in supply chain management. The future demand for a certain product is the basis for the respective replenishment systems. Aiming at demand series with small samples, seasonal character, nonlinearity, randomicity and fuzziness, the existing support vector kernel does not approach the random curve of the sales time series in the space (quadratic continuous integral space). In this paper, we present a hybrid intelligent system combining the wavelet kernel support vector machine and particle swarm optimization for demand forecasting. The results of application in car sale series forecasting show that the forecasting approach based on the hybrid PSOWv-SVM model is effective and feasible, the comparison between the method proposed in this paper and other ones is also given, which proves that this method is, for the discussed example, better than hybrid PSOv-SVM and other traditional methods.

  9. A Comparison Study of Two Numerical Tsunami Forecasting Systems

    NASA Astrophysics Data System (ADS)

    Greenslade, Diana J. M.; Titov, Vasily V.

    2008-12-01

    This paper presents a comparison of two tsunami forecasting systems: the NOAA/PMEL system (SIFT) and the Australian Bureau of Meteorology system (T1). Both of these systems are based on a tsunami scenario database and both use the same numerical model. However, there are some major differences in the way in which the scenarios are constructed and in the implementation of the systems. Two tsunami events are considered here: Tonga 2006 and Sumatra 2007. The results show that there are some differences in the distribution of maximum wave amplitude, particularly for the Tonga event, however both systems compare well to the available tsunameter observations. To assess differences in the forecasts for coastal amplitude predictions, the offshore forecast results from both systems were used as boundary conditions for a high-resolution model for Hilo, Hawaii. The minor differences seen between the two systems in deep water become considerably smaller at the tide gauge and both systems compare very well with the observations.

  10. Rapid weather information dissemination in Florida

    NASA Technical Reports Server (NTRS)

    Martsolf, J. D.; Heinemann, P. H.; Gerber, J. F.; Crosby, F. L.; Smith, D. L.

    1984-01-01

    The development of the Florida Agricultural Services and Technology (FAST) plan to provide ports for users to call for weather information is described. FAST is based on the Satellite Frost Forecast System, which makes a broad base of weather data available to its users. The methods used for acquisition and dissemination of data from various networks under the FAST plan are examined. The system provides color coded IR or thermal maps, precipitation maps, and textural forecast information. A diagram of the system is provided.

  11. Solar power satellite system definition study. Volume 1, phase 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A systems definition study of the solar satellite system (SPS) is presented. The technical feasibility of solar power satellites based on forecasts of technical capability in the various applicable technologies is assessed. The performance, cost, operational characteristics, reliability, and the suitability of SPS's as power generators for typical commercial electricity grids are discussed. The uncertainties inherent in the system characteristics forecasts are assessed.

  12. The Value of Humans in the Operational River Forecasting Enterprise

    NASA Astrophysics Data System (ADS)

    Pagano, T. C.

    2012-04-01

    The extent of human control over operational river forecasts, such as by adjusting model inputs and outputs, varies from nearly completely automated systems to those where forecasts are generated after discussion among a group of experts. Historical and realtime data availability, the complexity of hydrologic processes, forecast user needs, and forecasting institution support/resource availability (e.g. computing power, money for model maintenance) influence the character and effectiveness of operational forecasting systems. Automated data quality algorithms, if used at all, are typically very basic (e.g. checks for impossible values); substantial human effort is devoted to cleaning up forcing data using subjective methods. Similarly, although it is an active research topic, nearly all operational forecasting systems struggle to make quantitative use of Numerical Weather Prediction model-based precipitation forecasts, instead relying on the assessment of meteorologists. Conversely, while there is a strong tradition in meteorology of making raw model outputs available to forecast users via the Internet, this is rarely done in hydrology; Operational river forecasters express concerns about exposing users to raw guidance, due to the potential for misinterpretation and misuse. However, this limits the ability of users to build their confidence in operational products through their own value-added analyses. Forecasting agencies also struggle with provenance (i.e. documenting the production process and archiving the pieces that went into creating a forecast) although this is necessary for quantifying the benefits of human involvement in forecasting and diagnosing weak links in the forecasting chain. In hydrology, the space between model outputs and final operational products is nearly unstudied by the academic community, although some studies exist in other fields such as meteorology.

  13. Earthquake forecasts for the CSEP Japan experiment based on the RI algorithm

    NASA Astrophysics Data System (ADS)

    Nanjo, K. Z.

    2011-03-01

    An earthquake forecast testing experiment for Japan, the first of its kind, is underway within the framework of the Collaboratory for the Study of Earthquake Predictability (CSEP) under a controlled environment. Here we give an overview of the earthquake forecast models, based on the RI algorithm, which we have submitted to the CSEP Japan experiment. Models have been submitted to a total of 9 categories, corresponding to 3 testing classes (3 years, 1 year, and 3 months) and 3 testing regions. The RI algorithm is originally a binary forecast system based on the working assumption that large earthquakes are more likely to occur in the future at locations of higher seismicity in the past. It is based on simple counts of the number of past earthquakes, which is called the Relative Intensity (RI) of seismicity. To improve its forecast performance, we first expand the RI algorithm by introducing spatial smoothing. We then convert the RI representation from a binary system to a CSEP-testable model that produces forecasts for the number of earthquakes of predefined magnitudes. We use information on past seismicity to tune the parameters. The final submittal consists of 36 executable computer codes: 4 variants corresponding to different smoothing parameters for each of the 9 categories. They will help to elucidate which categories and which smoothing parameters are the most meaningful for the RI hypothesis. The main purpose of our participation in the experiment is to better understand the significance of the relative intensity of seismicity for earthquake forecastability in Japan.

  14. Using Forecast and Observed Weather Data to Assess Performance of Forecast Products in Identifying Heat Waves and Estimating Heat Wave Effects on Mortality

    PubMed Central

    Chen, Yeh-Hsin; Schwartz, Joel D.; Rood, Richard B.; O’Neill, Marie S.

    2014-01-01

    Background: Heat wave and health warning systems are activated based on forecasts of health-threatening hot weather. Objective: We estimated heat–mortality associations based on forecast and observed weather data in Detroit, Michigan, and compared the accuracy of forecast products for predicting heat waves. Methods: We derived and compared apparent temperature (AT) and heat wave days (with heat waves defined as ≥ 2 days of daily mean AT ≥ 95th percentile of warm-season average) from weather observations and six different forecast products. We used Poisson regression with and without adjustment for ozone and/or PM10 (particulate matter with aerodynamic diameter ≤ 10 μm) to estimate and compare associations of daily all-cause mortality with observed and predicted AT and heat wave days. Results: The 1-day-ahead forecast of a local operational product, Revised Digital Forecast, had about half the number of false positives compared with all other forecasts. On average, controlling for heat waves, days with observed AT = 25.3°C were associated with 3.5% higher mortality (95% CI: –1.6, 8.8%) than days with AT = 8.5°C. Observed heat wave days were associated with 6.2% higher mortality (95% CI: –0.4, 13.2%) than non–heat wave days. The accuracy of predictions varied, but associations between mortality and forecast heat generally tended to overestimate heat effects, whereas associations with forecast heat waves tended to underestimate heat wave effects, relative to associations based on observed weather metrics. Conclusions: Our findings suggest that incorporating knowledge of local conditions may improve the accuracy of predictions used to activate heat wave and health warning systems. Citation: Zhang K, Chen YH, Schwartz JD, Rood RB, O’Neill MS. 2014. Using forecast and observed weather data to assess performance of forecast products in identifying heat waves and estimating heat wave effects on mortality. Environ Health Perspect 122:912–918; http://dx.doi.org/10.1289/ehp.1306858 PMID:24833618

  15. Medium Range Flood Forecasting for Agriculture Damage Reduction

    NASA Astrophysics Data System (ADS)

    Fakhruddin, S. H. M.

    2014-12-01

    Early warning is a key element for disaster risk reduction. In recent decades, major advancements have been made in medium range and seasonal flood forecasting. This progress provides a great opportunity to reduce agriculture damage and improve advisories for early action and planning for flood hazards. This approach can facilitate proactive rather than reactive management of the adverse consequences of floods. In the agricultural sector, for instance, farmers can take a diversity of options such as changing cropping patterns, applying fertilizer, irrigating and changing planting timing. An experimental medium range (1-10 day) flood forecasting model has been developed for Bangladesh and Thailand. It provides 51 sets of discharge ensemble forecasts of 1-10 days with significant persistence and high certainty. This type of forecast could assist farmers and other stakeholders for differential preparedness activities. These ensembles probabilistic flood forecasts have been customized based on user-needs for community-level application focused on agriculture system. The vulnerabilities of agriculture system were calculated based on exposure, sensitivity and adaptive capacity. Indicators for risk and vulnerability assessment were conducted through community consultations. The forecast lead time requirement, user-needs, impacts and management options for crops were identified through focus group discussions, informal interviews and community surveys. This paper illustrates potential applications of such ensembles for probabilistic medium range flood forecasts in a way that is not commonly practiced globally today.

  16. Improvement of forecast skill for severe weather by merging radar-based extrapolation and storm-scale NWP corrected forecast

    NASA Astrophysics Data System (ADS)

    Wang, Gaili; Wong, Wai-Kin; Hong, Yang; Liu, Liping; Dong, Jili; Xue, Ming

    2015-03-01

    The primary objective of this study is to improve the performance of deterministic high resolution rainfall forecasts caused by severe storms by merging an extrapolation radar-based scheme with a storm-scale Numerical Weather Prediction (NWP) model. Effectiveness of Multi-scale Tracking and Forecasting Radar Echoes (MTaRE) model was compared with that of a storm-scale NWP model named Advanced Regional Prediction System (ARPS) for forecasting a violent tornado event that developed over parts of western and much of central Oklahoma on May 24, 2011. Then the bias corrections were performed to improve the forecast accuracy of ARPS forecasts. Finally, the corrected ARPS forecast and radar-based extrapolation were optimally merged by using a hyperbolic tangent weight scheme. The comparison of forecast skill between MTaRE and ARPS in high spatial resolution of 0.01° × 0.01° and high temporal resolution of 5 min showed that MTaRE outperformed ARPS in terms of index of agreement and mean absolute error (MAE). MTaRE had a better Critical Success Index (CSI) for less than 20-min lead times and was comparable to ARPS for 20- to 50-min lead times, while ARPS had a better CSI for more than 50-min lead times. Bias correction significantly improved ARPS forecasts in terms of MAE and index of agreement, although the CSI of corrected ARPS forecasts was similar to that of the uncorrected ARPS forecasts. Moreover, optimally merging results using hyperbolic tangent weight scheme further improved the forecast accuracy and became more stable.

  17. Application of satellite-based rainfall and medium range meteorological forecast in real-time flood forecasting in the Mahanadi River basin

    NASA Astrophysics Data System (ADS)

    Nanda, Trushnamayee; Beria, Harsh; Sahoo, Bhabagrahi; Chatterjee, Chandranath

    2016-04-01

    Increasing frequency of hydrologic extremes in a warming climate call for the development of reliable flood forecasting systems. The unavailability of meteorological parameters in real-time, especially in the developing parts of the world, makes it a challenging task to accurately predict flood, even at short lead times. The satellite-based Tropical Rainfall Measuring Mission (TRMM) provides an alternative to the real-time precipitation data scarcity. Moreover, rainfall forecasts by the numerical weather prediction models such as the medium term forecasts issued by the European Center for Medium range Weather Forecasts (ECMWF) are promising for multistep-ahead flow forecasts. We systematically evaluate these rainfall products over a large catchment in Eastern India (Mahanadi River basin). We found spatially coherent trends, with both the real-time TRMM rainfall and ECMWF rainfall forecast products overestimating low rainfall events and underestimating high rainfall events. However, no significant bias was found for the medium rainfall events. Another key finding was that these rainfall products captured the phase of the storms pretty well, but suffered from consistent under-prediction. The utility of the real-time TRMM and ECMWF forecast products are evaluated by rainfall-runoff modeling using different artificial neural network (ANN)-based models up to 3-days ahead. Keywords: TRMM; ECMWF; forecast; ANN; rainfall-runoff modeling

  18. Evaluation of streamflow forecast for the National Water Model of U.S. National Weather Service

    NASA Astrophysics Data System (ADS)

    Rafieeinasab, A.; McCreight, J. L.; Dugger, A. L.; Gochis, D.; Karsten, L. R.; Zhang, Y.; Cosgrove, B.; Liu, Y.

    2016-12-01

    The National Water Model (NWM), an implementation of the community WRF-Hydro modeling system, is an operational hydrologic forecasting model for the contiguous United States. The model forecasts distributed hydrologic states and fluxes, including soil moisture, snowpack, ET, and ponded water. In particular, the NWM provides streamflow forecasts at more than 2.7 million river reaches for three forecast ranges: short (15 hr), medium (10 days), and long (30 days). In this study, we verify short and medium range streamflow forecasts in the context of the verification of their respective quantitative precipitation forecasts/forcing (QPF), the High Resolution Rapid Refresh (HRRR) and the Global Forecast System (GFS). The streamflow evaluation is performed for summer of 2016 at more than 6,000 USGS gauges. Both individual forecasts and forecast lead times are examined. Selected case studies of extreme events aim to provide insight into the quality of the NWM streamflow forecasts. A goal of this comparison is to address how much streamflow bias originates from precipitation forcing bias. To this end, precipitation verification is performed over the contributing areas above (and between assimilated) USGS gauge locations. Precipitation verification is based on the aggregated, blended StageIV/StageII data as the "reference truth". We summarize the skill of the streamflow forecasts, their skill relative to the QPF, and make recommendations for improving NWM forecast skill.

  19. Study on Battery Capacity for Grid-connection Power Planning with Forecasts in Clustered Photovoltaic Systems

    NASA Astrophysics Data System (ADS)

    Shimada, Takae; Kawasaki, Norihiro; Ueda, Yuzuru; Sugihara, Hiroyuki; Kurokawa, Kosuke

    This paper aims to clarify the battery capacity required by a residential area with densely grid-connected photovoltaic (PV) systems. This paper proposes a planning method of tomorrow's grid-connection power from/to the external electric power system by using demand power forecasting and insolation forecasting for PV power predictions, and defines a operation method of the electricity storage device to control the grid-connection power as planned. A residential area consisting of 389 houses consuming 2390 MWh/year of electricity with 2390kW PV systems is simulated based on measured data and actual forecasts. The simulation results show that 8.3MWh of battery capacity is required in the conditions of half-hour planning and 1% or less of planning error ratio and PV output limiting loss ratio. The results also show that existing technologies of forecasting reduce required battery capacity to 49%, and increase the allowable installing PV amount to 210%.

  20. Weather Forecasting Systems and Methods

    NASA Technical Reports Server (NTRS)

    Mecikalski, John (Inventor); MacKenzie, Wayne M., Jr. (Inventor); Walker, John Robert (Inventor)

    2014-01-01

    A weather forecasting system has weather forecasting logic that receives raw image data from a satellite. The raw image data has values indicative of light and radiance data from the Earth as measured by the satellite, and the weather forecasting logic processes such data to identify cumulus clouds within the satellite images. For each identified cumulus cloud, the weather forecasting logic applies interest field tests to determine a score indicating the likelihood of the cumulus cloud forming precipitation and/or lightning in the future within a certain time period. Based on such scores, the weather forecasting logic predicts in which geographic regions the identified cumulus clouds will produce precipitation and/or lighting within during the time period. Such predictions may then be used to provide a weather map thereby providing users with a graphical illustration of the areas predicted to be affected by precipitation within the time period.

  1. Evaluation of the Plant-Craig stochastic convection scheme (v2.0) in the ensemble forecasting system MOGREPS-R (24 km) based on the Unified Model (v7.3)

    NASA Astrophysics Data System (ADS)

    Keane, Richard J.; Plant, Robert S.; Tennant, Warren J.

    2016-05-01

    The Plant-Craig stochastic convection parameterization (version 2.0) is implemented in the Met Office Regional Ensemble Prediction System (MOGREPS-R) and is assessed in comparison with the standard convection scheme with a simple stochastic scheme only, from random parameter variation. A set of 34 ensemble forecasts, each with 24 members, is considered, over the month of July 2009. Deterministic and probabilistic measures of the precipitation forecasts are assessed. The Plant-Craig parameterization is found to improve probabilistic forecast measures, particularly the results for lower precipitation thresholds. The impact on deterministic forecasts at the grid scale is neutral, although the Plant-Craig scheme does deliver improvements when forecasts are made over larger areas. The improvements found are greater in conditions of relatively weak synoptic forcing, for which convective precipitation is likely to be less predictable.

  2. Evaluating probabilistic dengue risk forecasts from a prototype early warning system for Brazil.

    PubMed

    Lowe, Rachel; Coelho, Caio As; Barcellos, Christovam; Carvalho, Marilia Sá; Catão, Rafael De Castro; Coelho, Giovanini E; Ramalho, Walter Massa; Bailey, Trevor C; Stephenson, David B; Rodó, Xavier

    2016-02-24

    Recently, a prototype dengue early warning system was developed to produce probabilistic forecasts of dengue risk three months ahead of the 2014 World Cup in Brazil. Here, we evaluate the categorical dengue forecasts across all microregions in Brazil, using dengue cases reported in June 2014 to validate the model. We also compare the forecast model framework to a null model, based on seasonal averages of previously observed dengue incidence. When considering the ability of the two models to predict high dengue risk across Brazil, the forecast model produced more hits and fewer missed events than the null model, with a hit rate of 57% for the forecast model compared to 33% for the null model. This early warning model framework may be useful to public health services, not only ahead of mass gatherings, but also before the peak dengue season each year, to control potentially explosive dengue epidemics.

  3. Weather Research and Forecasting Model Wind Sensitivity Study at Edwards Air Force Base, CA

    NASA Technical Reports Server (NTRS)

    Watson, Leela R.; Bauman, William H., III; Hoeth, Brian

    2009-01-01

    This abstract describes work that will be done by the Applied Meteorology Unit (AMU) in assessing the success of different model configurations in predicting "wind cycling" cases at Edwards Air Force Base, CA (EAFB), in which the wind speeds and directions oscillate among towers near the EAFB runway. The Weather Research and Forecasting (WRF) model allows users to choose among two dynamical cores - the Advanced Research WRF (ARW) and the Non-hydrostatic Mesoscale Model (NMM). There are also data assimilation analysis packages available for the initialization of the WRF model - the Local Analysis and Prediction System (LAPS) and the Advanced Regional Prediction System (ARPS) Data Analysis System (ADAS). Having a series of initialization options and WRF cores, as well as many options within each core, creates challenges for local forecasters, such as determining which configuration options are best to address specific forecast concerns. The goal of this project is to assess the different configurations available and determine which configuration will best predict surface wind speed and direction at EAFB.

  4. Using Climate Regionalization to Understand Climate Forecast System Version 2 (CFSv2) Precipitation Performance for the Conterminous United States (CONUS)

    NASA Technical Reports Server (NTRS)

    Regonda, Satish K.; Zaitchik, Benjamin F.; Badr, Hamada S.; Rodell, Matthew

    2016-01-01

    Dynamically based seasonal forecasts are prone to systematic spatial biases due to imperfections in the underlying global climate model (GCM). This can result in low-forecast skill when the GCM misplaces teleconnections or fails to resolve geographic barriers, even if the prediction of large-scale dynamics is accurate. To characterize and address this issue, this study applies objective climate regionalization to identify discrepancies between the Climate Forecast SystemVersion 2 (CFSv2) and precipitation observations across the Contiguous United States (CONUS). Regionalization shows that CFSv2 1 month forecasts capture the general spatial character of warm season precipitation variability but that forecast regions systematically differ from observation in some transition zones. CFSv2 predictive skill for these misclassified areas is systematically reduced relative to correctly regionalized areas and CONUS as a whole. In these incorrectly regionalized areas, higher skill can be obtained by using a regional-scale forecast in place of the local grid cell prediction.

  5. Supporting inland waterway transport on German waterways by operational forecasting services - water-levels, discharges, river ice

    NASA Astrophysics Data System (ADS)

    Meißner, Dennis; Klein, Bastian; Ionita, Monica; Hemri, Stephan; Rademacher, Silke

    2017-04-01

    Inland waterway transport (IWT) is an important commercial sector significantly vulnerable to hydrological impacts. River ice and floods limit the availability of the waterway network and may cause considerable damages to waterway infrastructure. Low flows significantly affect IWT's operation efficiency usually several months a year due to the close correlation of (low) water levels / water depths and (high) transport costs. Therefore "navigation-related" hydrological forecasts focussing on the specific requirements of water-bound transport (relevant forecast locations, target parameters, skill characteristics etc.) play a major role in order to mitigate IWT's vulnerability to hydro-meteorological impacts. In light of continuing transport growth within the European Union, hydrological forecasts for the waterways are essential to stimulate the use of the free capacity IWT still offers more consequently. An overview of the current operational and pre-operational forecasting systems for the German waterways predicting water levels, discharges and river ice thickness on various time-scales will be presented. While short-term (deterministic) forecasts have a long tradition in navigation-related forecasting, (probabilistic) forecasting services offering extended lead-times are not yet well-established and are still subject to current research and development activities (e.g. within the EU-projects EUPORIAS and IMPREX). The focus is on improving technical aspects as well as on exploring adequate ways of disseminating and communicating probabilistic forecast information. For the German stretch of the River Rhine, one of the most frequented inland waterways worldwide, the existing deterministic forecast scheme has been extended by ensemble forecasts combined with statistical post-processing modules applying EMOS (Ensemble Model Output Statistics) and ECC (Ensemble Copula Coupling) in order to generate water level predictions up to 10 days and to estimate its predictive uncertainty properly. Additionally for the key locations at the international waterways Rhine, Elbe and Danube three competing forecast approaches are currently tested in a pre-operational set-up in order to generate monthly to seasonal (up to 3 months) forecasts: (1) the well-known Ensemble Streamflow Prediction approach (ensemble based on historical meteorology), (2) coupling hydrological models with post-processed outputs from ECMWF's general circulation model (System 4), and (3) a purely statistical approach based on the stable relationship (teleconnection) of global or regional oceanic, climate and hydrological data with river flows. The current results, still pre-operational, reveal the existence of a valuable predictability of water levels and streamflow also at monthly up to seasonal time-scales along the larger rivers used as waterways in Germany. Last but not least insight into the technical set-up of the aforementioned forecasting systems operated at the Federal Institute of Hydrology, which are based on a Delft-FEWS application, will be given focussing on the step-wise extension of the former system by integrating new components in order to meet the growing needs of the customers and to improve and extend the forecast portfolio for waterway users.

  6. An Integrated Ensemble-Based Operational Framework to Predict Urban Flooding: A Case Study of Hurricane Sandy in the Passaic and Hackensack River Basins

    NASA Astrophysics Data System (ADS)

    Saleh, F.; Ramaswamy, V.; Georgas, N.; Blumberg, A. F.; Wang, Y.

    2016-12-01

    Advances in computational resources and modeling techniques are opening the path to effectively integrate existing complex models. In the context of flood prediction, recent extreme events have demonstrated the importance of integrating components of the hydrosystem to better represent the interactions amongst different physical processes and phenomena. As such, there is a pressing need to develop holistic and cross-disciplinary modeling frameworks that effectively integrate existing models and better represent the operative dynamics. This work presents a novel Hydrologic-Hydraulic-Hydrodynamic Ensemble (H3E) flood prediction framework that operationally integrates existing predictive models representing coastal (New York Harbor Observing and Prediction System, NYHOPS), hydrologic (US Army Corps of Engineers Hydrologic Modeling System, HEC-HMS) and hydraulic (2-dimensional River Analysis System, HEC-RAS) components. The state-of-the-art framework is forced with 125 ensemble meteorological inputs from numerical weather prediction models including the Global Ensemble Forecast System, the European Centre for Medium-Range Weather Forecasts (ECMWF), the Canadian Meteorological Centre (CMC), the Short Range Ensemble Forecast (SREF) and the North American Mesoscale Forecast System (NAM). The framework produces, within a 96-hour forecast horizon, on-the-fly Google Earth flood maps that provide critical information for decision makers and emergency preparedness managers. The utility of the framework was demonstrated by retrospectively forecasting an extreme flood event, hurricane Sandy in the Passaic and Hackensack watersheds (New Jersey, USA). Hurricane Sandy caused significant damage to a number of critical facilities in this area including the New Jersey Transit's main storage and maintenance facility. The results of this work demonstrate that ensemble based frameworks provide improved flood predictions and useful information about associated uncertainties, thus improving the assessment of risks as when compared to a deterministic forecast. The work offers perspectives for short-term flood forecasts, flood mitigation strategies and best management practices for climate change scenarios.

  7. Oregon Washington Coastal Ocean Forecast System: Real-time Modeling and Data Assimilation

    NASA Astrophysics Data System (ADS)

    Erofeeva, S.; Kurapov, A. L.; Pasmans, I.

    2016-02-01

    Three-day forecasts of ocean currents, temperature and salinity along the Oregon and Washington coasts are produced daily by a numerical ROMS-based ocean circulation model. NAM is used to derive atmospheric forcing for the model. Fresh water discharge from Columbia River, Fraser River, and small rivers in Puget Sound are included. The forecast is constrained by open boundary conditions derived from the global Navy HYCOM model and once in 3 days assimilation of recent data, including HF radar surface currents, sea surface temperature from the GOES satellite, and SSH from several satellite altimetry missions. 4-dimensional variational data assimilation is implemented in 3-day time windows using the tangent linear and adjoint codes developed at OSU. The system is semi-autonomous - all the data, including NAM and HYCOM fields are automatically updated, and daily operational forecast is automatically initiated. The pre-assimilation data quality control and post-assimilation forecast quality control require the operator's involvement. The daily forecast and 60 days of hindcast fields are available for public on opendap. As part of the system model validation plots to various satellites and SEAGLIDER are also automatically updated and available on the web (http://ingria.coas.oregonstate.edu/rtdavow/). Lessons learned in this pilot real-time coastal ocean forecasting project help develop and test metrics for forecast skill assessment for the West Coast Operational Forecast System (WCOFS), currently at testing and development phase at the National Oceanic and Atmospheric Administration (NOAA).

  8. Analysing trends and forecasting malaria epidemics in Madagascar using a sentinel surveillance network: a web-based application.

    PubMed

    Girond, Florian; Randrianasolo, Laurence; Randriamampionona, Lea; Rakotomanana, Fanjasoa; Randrianarivelojosia, Milijaona; Ratsitorahina, Maherisoa; Brou, Télesphore Yao; Herbreteau, Vincent; Mangeas, Morgan; Zigiumugabe, Sixte; Hedje, Judith; Rogier, Christophe; Piola, Patrice

    2017-02-13

    The use of a malaria early warning system (MEWS) to trigger prompt public health interventions is a key step in adding value to the epidemiological data routinely collected by sentinel surveillance systems. This study describes a system using various epidemic thresholds and a forecasting component with the support of new technologies to improve the performance of a sentinel MEWS. Malaria-related data from 21 sentinel sites collected by Short Message Service are automatically analysed to detect malaria trends and malaria outbreak alerts with automated feedback reports. Roll Back Malaria partners can, through a user-friendly web-based tool, visualize potential outbreaks and generate a forecasting model. The system already demonstrated its ability to detect malaria outbreaks in Madagascar in 2014. This approach aims to maximize the usefulness of a sentinel surveillance system to predict and detect epidemics in limited-resource environments.

  9. Improved regional water management utilizing climate forecasts: An interbasin transfer model with a risk management framework

    NASA Astrophysics Data System (ADS)

    Li, Weihua; Sankarasubramanian, A.; Ranjithan, R. S.; Brill, E. D.

    2014-08-01

    Regional water supply systems undergo surplus and deficit conditions due to differences in inflow characteristics as well as due to their seasonal demand patterns. This study proposes a framework for regional water management by proposing an interbasin transfer (IBT) model that uses climate-information-based inflow forecast for minimizing the deviations from the end-of-season target storage across the participating pools. Using the ensemble streamflow forecast, the IBT water allocation model was applied for two reservoir systems in the North Carolina Triangle Area. Results show that interbasin transfers initiated by the ensemble streamflow forecast could potentially improve the overall water supply reliability as the demand continues to grow in the Triangle Area. To further understand the utility of climate forecasts in facilitating IBT under different spatial correlation structures between inflows and between the initial storages of the two systems, a synthetic experiment was designed to evaluate the framework under inflow forecast having different skills. Findings from the synthetic study can be summarized as follows: (a) inflow forecasts combined with the proposed IBT optimization model provide improved allocation in comparison to the allocations obtained under the no-transfer scenario as well as under transfers obtained with climatology; (b) spatial correlations between inflows and between initial storages among participating reservoirs could also influence the potential benefits that could be achieved through IBT; (c) IBT is particularly beneficial for systems that experience low correlations between inflows or between initial storages or on both attributes of the regional water supply system. Thus, if both infrastructure and permitting structures exist for promoting interbasin transfers, season-ahead inflow forecasts could provide added benefits in forecasting surplus/deficit conditions among the participating pools in the regional water supply system.

  10. Improved Regional Water Management Utilizing Climate Forecasts: An Inter-basin Transfer Model with a Risk Management Framework

    NASA Astrophysics Data System (ADS)

    Li, W.; Arumugam, S.; Ranjithan, R. S.; Brill, E. D., Jr.

    2014-12-01

    Regional water supply systems undergo surplus and deficit conditions due to differences in inflow characteristics as well as due to their seasonal demand patterns. This study presents a framework for regional water management by proposing an Inter-Basin Transfer (IBT) model that uses climate-information-based inflow forecast for minimizing the deviations from the end- of-season target storage across the participating reservoirs. Using the ensemble streamflow forecast, the IBT water allocation model was applied for two reservoir systems in the North Carolina Triangle area. Results show that inter-basin transfers initiated by the ensemble streamflow forecast could potentially improve the overall water supply reliability as the demand continues to grow in the Triangle Area. To further understand the utility of climate forecasts in facilitating IBT under different spatial correlation structures between inflows and between the initial storages of the two systems, a synthetic experiment was designed to evaluate the framework under inflow forecast having different skills. Findings from the synthetic study can be summarized as follows: (a) Inflow forecasts combined with the proposed IBT optimization model provide improved allocation in comparison to the allocations obtained under the no- transfer scenario as well as under transfers obtained with climatology; (b) Spatial correlations between inflows and between initial storages among participating reservoirs could also influence the potential benefits that could be achieved through IBT; (c) IBT is particularly beneficial for systems that experience low correlations between inflows or between initial storages or on both attributes of the regional water supply system. Thus, if both infrastructure and permitting structures exist for promoting inter-basin transfers, season-ahead inflow forecasts could provide added benefits in forecasting surplus/deficit conditions among the participating reservoirs in the regional water supply system.

  11. Wave ensemble forecast system for tropical cyclones in the Australian region

    NASA Astrophysics Data System (ADS)

    Zieger, Stefan; Greenslade, Diana; Kepert, Jeffrey D.

    2018-05-01

    Forecasting of waves under extreme conditions such as tropical cyclones is vitally important for many offshore industries, but there remain many challenges. For Northwest Western Australia (NW WA), wave forecasts issued by the Australian Bureau of Meteorology have previously been limited to products from deterministic operational wave models forced by deterministic atmospheric models. The wave models are run over global (resolution 1/4∘) and regional (resolution 1/10∘) domains with forecast ranges of + 7 and + 3 day respectively. Because of this relatively coarse resolution (both in the wave models and in the forcing fields), the accuracy of these products is limited under tropical cyclone conditions. Given this limited accuracy, a new ensemble-based wave forecasting system for the NW WA region has been developed. To achieve this, a new dedicated 8-km resolution grid was nested in the global wave model. Over this grid, the wave model is forced with winds from a bias-corrected European Centre for Medium Range Weather Forecast atmospheric ensemble that comprises 51 ensemble members to take into account the uncertainties in location, intensity and structure of a tropical cyclone system. A unique technique is used to select restart files for each wave ensemble member. The system is designed to operate in real time during the cyclone season providing + 10-day forecasts. This paper will describe the wave forecast components of this system and present the verification metrics and skill for specific events.

  12. A clustering-based fuzzy wavelet neural network model for short-term load forecasting.

    PubMed

    Kodogiannis, Vassilis S; Amina, Mahdi; Petrounias, Ilias

    2013-10-01

    Load forecasting is a critical element of power system operation, involving prediction of the future level of demand to serve as the basis for supply and demand planning. This paper presents the development of a novel clustering-based fuzzy wavelet neural network (CB-FWNN) model and validates its prediction on the short-term electric load forecasting of the Power System of the Greek Island of Crete. The proposed model is obtained from the traditional Takagi-Sugeno-Kang fuzzy system by replacing the THEN part of fuzzy rules with a "multiplication" wavelet neural network (MWNN). Multidimensional Gaussian type of activation functions have been used in the IF part of the fuzzyrules. A Fuzzy Subtractive Clustering scheme is employed as a pre-processing technique to find out the initial set and adequate number of clusters and ultimately the number of multiplication nodes in MWNN, while Gaussian Mixture Models with the Expectation Maximization algorithm are utilized for the definition of the multidimensional Gaussians. The results corresponding to the minimum and maximum power load indicate that the proposed load forecasting model provides significantly accurate forecasts, compared to conventional neural networks models.

  13. Skilful seasonal forecasts of streamflow over Europe?

    NASA Astrophysics Data System (ADS)

    Arnal, Louise; Cloke, Hannah L.; Stephens, Elisabeth; Wetterhall, Fredrik; Prudhomme, Christel; Neumann, Jessica; Krzeminski, Blazej; Pappenberger, Florian

    2018-04-01

    This paper considers whether there is any added value in using seasonal climate forecasts instead of historical meteorological observations for forecasting streamflow on seasonal timescales over Europe. A Europe-wide analysis of the skill of the newly operational EFAS (European Flood Awareness System) seasonal streamflow forecasts (produced by forcing the Lisflood model with the ECMWF System 4 seasonal climate forecasts), benchmarked against the ensemble streamflow prediction (ESP) forecasting approach (produced by forcing the Lisflood model with historical meteorological observations), is undertaken. The results suggest that, on average, the System 4 seasonal climate forecasts improve the streamflow predictability over historical meteorological observations for the first month of lead time only (in terms of hindcast accuracy, sharpness and overall performance). However, the predictability varies in space and time and is greater in winter and autumn. Parts of Europe additionally exhibit a longer predictability, up to 7 months of lead time, for certain months within a season. In terms of hindcast reliability, the EFAS seasonal streamflow hindcasts are on average less skilful than the ESP for all lead times. The results also highlight the potential usefulness of the EFAS seasonal streamflow forecasts for decision-making (measured in terms of the hindcast discrimination for the lower and upper terciles of the simulated streamflow). Although the ESP is the most potentially useful forecasting approach in Europe, the EFAS seasonal streamflow forecasts appear more potentially useful than the ESP in some regions and for certain seasons, especially in winter for almost 40 % of Europe. Patterns in the EFAS seasonal streamflow hindcast skill are however not mirrored in the System 4 seasonal climate hindcasts, hinting at the need for a better understanding of the link between hydrological and meteorological variables on seasonal timescales, with the aim of improving climate-model-based seasonal streamflow forecasting.

  14. Operational hydrological forecasting in Bavaria. Part II: Ensemble forecasting

    NASA Astrophysics Data System (ADS)

    Ehret, U.; Vogelbacher, A.; Moritz, K.; Laurent, S.; Meyer, I.; Haag, I.

    2009-04-01

    In part I of this study, the operational flood forecasting system in Bavaria and an approach to identify and quantify forecast uncertainty was introduced. The approach is split into the calculation of an empirical 'overall error' from archived forecasts and the calculation of an empirical 'model error' based on hydrometeorological forecast tests, where rainfall observations were used instead of forecasts. The 'model error' can especially in upstream catchments where forecast uncertainty is strongly dependent on the current predictability of the atrmosphere be superimposed on the spread of a hydrometeorological ensemble forecast. In Bavaria, two meteorological ensemble prediction systems are currently tested for operational use: the 16-member COSMO-LEPS forecast and a poor man's ensemble composed of DWD GME, DWD Cosmo-EU, NCEP GFS, Aladin-Austria, MeteoSwiss Cosmo-7. The determination of the overall forecast uncertainty is dependent on the catchment characteristics: 1. Upstream catchment with high influence of weather forecast a) A hydrological ensemble forecast is calculated using each of the meteorological forecast members as forcing. b) Corresponding to the characteristics of the meteorological ensemble forecast, each resulting forecast hydrograph can be regarded as equally likely. c) The 'model error' distribution, with parameters dependent on hydrological case and lead time, is added to each forecast timestep of each ensemble member d) For each forecast timestep, the overall (i.e. over all 'model error' distribution of each ensemble member) error distribution is calculated e) From this distribution, the uncertainty range on a desired level (here: the 10% and 90% percentile) is extracted and drawn as forecast envelope. f) As the mean or median of an ensemble forecast does not necessarily exhibit meteorologically sound temporal evolution, a single hydrological forecast termed 'lead forecast' is chosen and shown in addition to the uncertainty bounds. This can be either an intermediate forecast between the extremes of the ensemble spread or a manually selected forecast based on a meteorologists advice. 2. Downstream catchments with low influence of weather forecast In downstream catchments with strong human impact on discharge (e.g. by reservoir operation) and large influence of upstream gauge observation quality on forecast quality, the 'overall error' may in most cases be larger than the combination of the 'model error' and an ensemble spread. Therefore, the overall forecast uncertainty bounds are calculated differently: a) A hydrological ensemble forecast is calculated using each of the meteorological forecast members as forcing. Here, additionally the corresponding inflow hydrograph from all upstream catchments must be used. b) As for an upstream catchment, the uncertainty range is determined by combination of 'model error' and the ensemble member forecasts c) In addition, the 'overall error' is superimposed on the 'lead forecast'. For reasons of consistency, the lead forecast must be based on the same meteorological forecast in the downstream and all upstream catchments. d) From the resulting two uncertainty ranges (one from the ensemble forecast and 'model error', one from the 'lead forecast' and 'overall error'), the envelope is taken as the most prudent uncertainty range. In sum, the uncertainty associated with each forecast run is calculated and communicated to the public in the form of 10% and 90% percentiles. As in part I of this study, the methodology as well as the useful- or uselessness of the resulting uncertainty ranges will be presented and discussed by typical examples.

  15. A simplified real time method to forecast semi-enclosed basins storm surge

    NASA Astrophysics Data System (ADS)

    Pasquali, D.; Di Risio, M.; De Girolamo, P.

    2015-11-01

    Semi-enclosed basins are often prone to storm surge events. Indeed, their meteorological exposition, the presence of large continental shelf and their shape can lead to strong sea level set-up. A real time system aimed at forecasting storm surge may be of great help to protect human activities (i.e. to forecast flooding due to storm surge events), to manage ports and to safeguard coasts safety. This paper aims at illustrating a simple method able to forecast storm surge events in semi-enclosed basins in real time. The method is based on a mixed approach in which the results obtained by means of a simplified physics based model with low computational costs are corrected by means of statistical techniques. The proposed method is applied to a point of interest located in the Northern part of the Adriatic Sea. The comparison of forecasted levels against observed values shows the satisfactory reliability of the forecasts.

  16. Forecasting seasonal outbreaks of influenza.

    PubMed

    Shaman, Jeffrey; Karspeck, Alicia

    2012-12-11

    Influenza recurs seasonally in temperate regions of the world; however, our ability to predict the timing, duration, and magnitude of local seasonal outbreaks of influenza remains limited. Here we develop a framework for initializing real-time forecasts of seasonal influenza outbreaks, using a data assimilation technique commonly applied in numerical weather prediction. The availability of real-time, web-based estimates of local influenza infection rates makes this type of quantitative forecasting possible. Retrospective ensemble forecasts are generated on a weekly basis following assimilation of these web-based estimates for the 2003-2008 influenza seasons in New York City. The findings indicate that real-time skillful predictions of peak timing can be made more than 7 wk in advance of the actual peak. In addition, confidence in those predictions can be inferred from the spread of the forecast ensemble. This work represents an initial step in the development of a statistically rigorous system for real-time forecast of seasonal influenza.

  17. Forecasting seasonal outbreaks of influenza

    PubMed Central

    Shaman, Jeffrey; Karspeck, Alicia

    2012-01-01

    Influenza recurs seasonally in temperate regions of the world; however, our ability to predict the timing, duration, and magnitude of local seasonal outbreaks of influenza remains limited. Here we develop a framework for initializing real-time forecasts of seasonal influenza outbreaks, using a data assimilation technique commonly applied in numerical weather prediction. The availability of real-time, web-based estimates of local influenza infection rates makes this type of quantitative forecasting possible. Retrospective ensemble forecasts are generated on a weekly basis following assimilation of these web-based estimates for the 2003–2008 influenza seasons in New York City. The findings indicate that real-time skillful predictions of peak timing can be made more than 7 wk in advance of the actual peak. In addition, confidence in those predictions can be inferred from the spread of the forecast ensemble. This work represents an initial step in the development of a statistically rigorous system for real-time forecast of seasonal influenza. PMID:23184969

  18. Applications products of aviation forecast models

    NASA Technical Reports Server (NTRS)

    Garthner, John P.

    1988-01-01

    A service called the Optimum Path Aircraft Routing System (OPARS) supplies products based on output data from the Naval Oceanographic Global Atmospheric Prediction System (NOGAPS), a model run on a Cyber-205 computer. Temperatures and winds are extracted from the surface to 100 mb, approximately 55,000 ft. Forecast winds are available in six-hour time steps.

  19. Development of an Experimental African Drought Monitoring and Seasonal Forecasting System: A First Step towards a Global Drought Information System

    NASA Astrophysics Data System (ADS)

    Wood, E. F.; Chaney, N.; Sheffield, J.; Yuan, X.

    2012-12-01

    Extreme hydrologic events in the form of droughts are a significant source of social and economic damage. Internationally, organizations such as UNESCO, the Group on Earth Observations (GEO), and the World Climate Research Programme (WCRP) have recognized the need for drought monitoring, especially for the developing world where drought has had devastating impacts on local populations through food insecurity and famine. Having the capacity to monitor droughts in real-time, and to provide drought forecasts with sufficient warning will help developing countries and international programs move from the management of drought crises to the management of drought risk. While observation-based assessments, such as those produced by the US Drought Monitor, are effective for monitoring in countries with extensive observation networks (of precipitation in particular), their utility is lessened in areas (e.g., Africa) where observing networks are sparse. For countries with sparse networks and weak reporting systems, remote sensing observations can provide the real-time data for the monitoring of drought. More importantly, these datasets are now available for at least a decade, which allows for the construction of a climatology against which current conditions can be compared. In this presentation we discuss the development of our multi-lingual experimental African Drought Monitor (ADM) (see http://hydrology.princeton.edu/~nchaney/ADM_ML). At the request of UNESCO, the ADM system has been installed at AGRHYMET, a regional climate and agricultural center in Niamey, Niger and at the ICPAC climate center in Nairobi, Kenya. The ADM system leverages off our U.S. drought monitoring and forecasting system (http://hydrology.princeton.edu/forecasting) that uses the NLDAS data to force the VIC land surface model (LSM) at 1/8th degree spatial resolution for the estimation of our soil moisture drought index (Sheffield et al., 2004). For the seasonal forecast of drought, CFSv2 climate forecasts are bias corrected, downscaled and used as inputs to the VIC LSM as well as forecasts based on ESP and CPC official seasonal outlook. For Africa, data from a combination of remote sensing (TMPA-based precipitation, land cover characteristics) and GFS analysis fields (temperature and wind) are used to monitor drought using our soil moisture drought index as well as 1, 3 and and 6-month SPI. River discharge is also estimated at over 900 locations. Seasonal forecasts have been developed using CFSv2 climate forecasts following the approaches used over CONUS. We will discuss the performance of the system to evaluate the depiction of drought over various scales, from regional to the African continent, and over a number of years to capture multiple drought events. Furthermore, the hindcasts from the seasonal drought forecast system are analyzed to assess the ability of seasonal climate models to detect drought on-set and its recovery. Finally, we will discuss whether our ADM provides a pathway to a Global Drought Information System, a goal of the WCRP Drought Task Force.

  20. Challenges for operational forecasting and early warning of rainfall induced landslides

    NASA Astrophysics Data System (ADS)

    Guzzetti, Fausto

    2017-04-01

    In many areas of the world, landslides occur every year, claiming lives and producing severe economic and environmental damage. Many of the landslides with human or economic consequences are the result of intense or prolonged rainfall. For this reason, in many areas the timely forecast of rainfall-induced landslides is of both scientific interest and social relevance. In the recent years, there has been a mounting interest and an increasing demand for operational landslide forecasting, and for associated landslide early warning systems. Despite the relevance of the problem, and the increasing interest and demand, only a few systems have been designed, and are currently operated. Inspection of the - limited - literature on operational landslide forecasting, and on the associated early warning systems, reveals that common criteria and standards for the design, the implementation, the operation, and the evaluation of the performances of the systems, are lacking. This limits the possibility to compare and to evaluate the systems critically, to identify their inherent strengths and weaknesses, and to improve the performance of the systems. Lack of common criteria and of established standards can also limit the credibility of the systems, and consequently their usefulness and potential practical impact. Landslides are very diversified phenomena, and the information and the modelling tools used to attempt landslide forecasting vary largely, depending on the type and size of the landslides, the extent of the geographical area considered, the timeframe of the forecasts, and the scope of the predictions. Consequently, systems for landslide forecasting and early warning can be designed and implemented at several different geographical scales, from the local (site or slope specific) to the regional, or even national scale. The talk focuses on regional to national scale landslide forecasting systems, and specifically on operational systems based on empirical rainfall threshold models. Building on the experience gained in designing, implementing, and operating national and regional landslide forecasting systems in Italy, and on a preliminary review of the existing literature on regional landslide early warning systems, the talk discusses concepts, limitations and challenges inherent to the design of reliable forecasting and early warning systems for rainfall-triggered landslides, the evaluation of the performances of the systems, and on problems related to the use of the forecasts and the issuing of landslide warnings. Several of the typical elements of an operational landslide forecasting system are considered, including: (i) the rainfall and landslide information used to establish the threshold models, (ii) the methods and tools used to define the empirical rainfall thresholds, and their associated uncertainty, (iii) the quality (e.g., the temporal and spatial resolution) of the rainfall information used for operational forecasting, including rain gauge and radar measurements, satellite estimates, and quantitative weather forecasts, (iv) the ancillary information used to prepare the forecasts, including e.g., the terrain subdivisions and the landslide susceptibility zonations, (v) the criteria used to transform the forecasts into landslide warnings and the methods used to communicate the warnings, and (vi) the criteria and strategies adopted to evaluate the performances of the systems, and to define minimum or optimal performance levels.

  1. DEFENDER: Detecting and Forecasting Epidemics Using Novel Data-Analytics for Enhanced Response

    PubMed Central

    Simmie, Donal; Hankin, Chris; Gillard, Joseph

    2016-01-01

    In recent years social and news media have increasingly been used to explain patterns in disease activity and progression. Social media data, principally from the Twitter network, has been shown to correlate well with official disease case counts. This fact has been exploited to provide advance warning of outbreak detection, forecasting of disease levels and the ability to predict the likelihood of individuals developing symptoms. In this paper we introduce DEFENDER, a software system that integrates data from social and news media and incorporates algorithms for outbreak detection, situational awareness and forecasting. As part of this system we have developed a technique for creating a location network for any country or region based purely on Twitter data. We also present a disease nowcasting (forecasting the current but still unknown level) approach which leverages counts from multiple symptoms, which was found to improve the nowcasting accuracy by 37 percent over a model that used only previous case data. Finally we attempt to forecast future levels of symptom activity based on observed user movement on Twitter, finding a moderate gain of 5 percent over a time series forecasting model. PMID:27192059

  2. How to Improve Fault Tolerance in Disaster Predictions: A Case Study about Flash Floods Using IoT, ML and Real Data.

    PubMed

    Furquim, Gustavo; Filho, Geraldo P R; Jalali, Roozbeh; Pessin, Gustavo; Pazzi, Richard W; Ueyama, Jó

    2018-03-19

    The rise in the number and intensity of natural disasters is a serious problem that affects the whole world. The consequences of these disasters are significantly worse when they occur in urban districts because of the casualties and extent of the damage to goods and property that is caused. Until now feasible methods of dealing with this have included the use of wireless sensor networks (WSNs) for data collection and machine-learning (ML) techniques for forecasting natural disasters. However, there have recently been some promising new innovations in technology which have supplemented the task of monitoring the environment and carrying out the forecasting. One of these schemes involves adopting IP-based (Internet Protocol) sensor networks, by using emerging patterns for IoT. In light of this, in this study, an attempt has been made to set out and describe the results achieved by SENDI (System for dEtecting and forecasting Natural Disasters based on IoT). SENDI is a fault-tolerant system based on IoT, ML and WSN for the detection and forecasting of natural disasters and the issuing of alerts. The system was modeled by means of ns-3 and data collected by a real-world WSN installed in the town of São Carlos - Brazil, which carries out the data collection from rivers in the region. The fault-tolerance is embedded in the system by anticipating the risk of communication breakdowns and the destruction of the nodes during disasters. It operates by adding intelligence to the nodes to carry out the data distribution and forecasting, even in extreme situations. A case study is also included for flash flood forecasting and this makes use of the ns-3 SENDI model and data collected by WSN.

  3. Hydrologic and hydraulic flood forecasting constrained by remote sensing data

    NASA Astrophysics Data System (ADS)

    Li, Y.; Grimaldi, S.; Pauwels, V. R. N.; Walker, J. P.; Wright, A. J.

    2017-12-01

    Flooding is one of the most destructive natural disasters, resulting in many deaths and billions of dollars of damages each year. An indispensable tool to mitigate the effect of floods is to provide accurate and timely forecasts. An operational flood forecasting system typically consists of a hydrologic model, converting rainfall data into flood volumes entering the river system, and a hydraulic model, converting these flood volumes into water levels and flood extents. Such a system is prone to various sources of uncertainties from the initial conditions, meteorological forcing, topographic data, model parameters and model structure. To reduce those uncertainties, current forecasting systems are typically calibrated and/or updated using ground-based streamflow measurements, and such applications are limited to well-gauged areas. The recent increasing availability of spatially distributed remote sensing (RS) data offers new opportunities to improve flood forecasting skill. Based on an Australian case study, this presentation will discuss the use of 1) RS soil moisture to constrain a hydrologic model, and 2) RS flood extent and level to constrain a hydraulic model.The GRKAL hydrological model is calibrated through a joint calibration scheme using both ground-based streamflow and RS soil moisture observations. A lag-aware data assimilation approach is tested through a set of synthetic experiments to integrate RS soil moisture to constrain the streamflow forecasting in real-time.The hydraulic model is LISFLOOD-FP which solves the 2-dimensional inertial approximation of the Shallow Water Equations. Gauged water level time series and RS-derived flood extent and levels are used to apply a multi-objective calibration protocol. The effectiveness with which each data source or combination of data sources constrained the parameter space will be discussed.

  4. How to Improve Fault Tolerance in Disaster Predictions: A Case Study about Flash Floods Using IoT, ML and Real Data

    PubMed Central

    Furquim, Gustavo; Filho, Geraldo P. R.; Pessin, Gustavo; Pazzi, Richard W.

    2018-01-01

    The rise in the number and intensity of natural disasters is a serious problem that affects the whole world. The consequences of these disasters are significantly worse when they occur in urban districts because of the casualties and extent of the damage to goods and property that is caused. Until now feasible methods of dealing with this have included the use of wireless sensor networks (WSNs) for data collection and machine-learning (ML) techniques for forecasting natural disasters. However, there have recently been some promising new innovations in technology which have supplemented the task of monitoring the environment and carrying out the forecasting. One of these schemes involves adopting IP-based (Internet Protocol) sensor networks, by using emerging patterns for IoT. In light of this, in this study, an attempt has been made to set out and describe the results achieved by SENDI (System for dEtecting and forecasting Natural Disasters based on IoT). SENDI is a fault-tolerant system based on IoT, ML and WSN for the detection and forecasting of natural disasters and the issuing of alerts. The system was modeled by means of ns-3 and data collected by a real-world WSN installed in the town of São Carlos - Brazil, which carries out the data collection from rivers in the region. The fault-tolerance is embedded in the system by anticipating the risk of communication breakdowns and the destruction of the nodes during disasters. It operates by adding intelligence to the nodes to carry out the data distribution and forecasting, even in extreme situations. A case study is also included for flash flood forecasting and this makes use of the ns-3 SENDI model and data collected by WSN. PMID:29562657

  5. Near real time wind energy forecasting incorporating wind tunnel modeling

    NASA Astrophysics Data System (ADS)

    Lubitz, William David

    A series of experiments and investigations were carried out to inform the development of a day-ahead wind power forecasting system. An experimental near-real time wind power forecasting system was designed and constructed that operates on a desktop PC and forecasts 12--48 hours in advance. The system uses model output of the Eta regional scale forecast (RSF) to forecast the power production of a wind farm in the Altamont Pass, California, USA from 12 to 48 hours in advance. It is of modular construction and designed to also allow diagnostic forecasting using archived RSF data, thereby allowing different methods of completing each forecasting step to be tested and compared using the same input data. Wind-tunnel investigations of the effect of wind direction and hill geometry on wind speed-up above a hill were conducted. Field data from an Altamont Pass, California site was used to evaluate several speed-up prediction algorithms, both with and without wind direction adjustment. These algorithms were found to be of limited usefulness for the complex terrain case evaluated. Wind-tunnel and numerical simulation-based methods were developed for determining a wind farm power curve (the relation between meteorological conditions at a point in the wind farm and the power production of the wind farm). Both methods, as well as two methods based on fits to historical data, ultimately showed similar levels of accuracy: mean absolute errors predicting power production of 5 to 7 percent of the wind farm power capacity. The downscaling of RSF forecast data to the wind farm was found to be complicated by the presence of complex terrain. Poor results using the geostrophic drag law and regression methods motivated the development of a database search method that is capable of forecasting not only wind speeds but also power production with accuracy better than persistence.

  6. An operational ensemble prediction system for catchment rainfall over eastern Africa spanning multiple temporal and spatial scales

    NASA Astrophysics Data System (ADS)

    Riddle, E. E.; Hopson, T. M.; Gebremichael, M.; Boehnert, J.; Broman, D.; Sampson, K. M.; Rostkier-Edelstein, D.; Collins, D. C.; Harshadeep, N. R.; Burke, E.; Havens, K.

    2017-12-01

    While it is not yet certain how precipitation patterns will change over Africa in the future, it is clear that effectively managing the available water resources is going to be crucial in order to mitigate the effects of water shortages and floods that are likely to occur in a changing climate. One component of effective water management is the availability of state-of-the-art and easy to use rainfall forecasts across multiple spatial and temporal scales. We present a web-based system for displaying and disseminating ensemble forecast and observed precipitation data over central and eastern Africa. The system provides multi-model rainfall forecasts integrated to relevant hydrological catchments for timescales ranging from one day to three months. A zoom-in features is available to access high resolution forecasts for small-scale catchments. Time series plots and data downloads with forecasts, recent rainfall observations and climatological data are available by clicking on individual catchments. The forecasts are calibrated using a quantile regression technique and an optimal multi-model forecast is provided at each timescale. The forecast skill at the various spatial and temporal scales will discussed, as will current applications of this tool for managing water resources in Sudan and optimizing hydropower operations in Ethiopia and Tanzania.

  7. Impact of scatterometer wind (ASCAT-A/B) data assimilation on semi real-time forecast system at KIAPS

    NASA Astrophysics Data System (ADS)

    Han, H. J.; Kang, J. H.

    2016-12-01

    Since Jul. 2015, KIAPS (Korea Institute of Atmospheric Prediction Systems) has been performing the semi real-time forecast system to assess the performance of their forecast system as a NWP model. KPOP (KIAPS Protocol for Observation Processing) is a part of KIAPS data assimilation system and has been performing well in KIAPS semi real-time forecast system. In this study, due to the fact that KPOP would be able to treat the scatterometer wind data, we analyze the effect of scatterometer wind (ASCAT-A/B) on KIAPS semi real-time forecast system. O-B global distribution and statistics of scatterometer wind give use two information which are the difference between background field and observation is not too large and KPOP processed the scatterometer wind data well. The changes of analysis increment because of O-B global distribution appear remarkably at the bottom of atmospheric field. It also shows that scatterometer wind data cover wide ocean where data would be able to short. Performance of scatterometer wind data can be checked through the vertical error reduction against IFS between background and analysis field and vertical statistics of O-A. By these analysis result, we can notice that scatterometer wind data will influence the positive effect on lower level performance of semi real-time forecast system at KIAPS. After, long-term result based on effect of scatterometer wind data will be analyzed.

  8. Weather assessment and forecasting

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Data management program activities centered around the analyses of selected far-term Office of Applications (OA) objectives, with the intent of determining if significant data-related problems would be encountered and if so what alternative solutions would be possible. Three far-term (1985 and beyond) OA objectives selected for analyses as having potential significant data problems were large-scale weather forecasting, local weather and severe storms forecasting, and global marine weather forecasting. An overview of general weather forecasting activities and their implications upon the ground based data system is provided. Selected topics were specifically oriented to the use of satellites.

  9. Verifying and Postprocesing the Ensemble Spread-Error Relationship

    NASA Astrophysics Data System (ADS)

    Hopson, Tom; Knievel, Jason; Liu, Yubao; Roux, Gregory; Wu, Wanli

    2013-04-01

    With the increased utilization of ensemble forecasts in weather and hydrologic applications, there is a need to verify their benefit over less expensive deterministic forecasts. One such potential benefit of ensemble systems is their capacity to forecast their own forecast error through the ensemble spread-error relationship. The paper begins by revisiting the limitations of the Pearson correlation alone in assessing this relationship. Next, we introduce two new metrics to consider in assessing the utility an ensemble's varying dispersion. We argue there are two aspects of an ensemble's dispersion that should be assessed. First, and perhaps more fundamentally: is there enough variability in the ensembles dispersion to justify the maintenance of an expensive ensemble prediction system (EPS), irrespective of whether the EPS is well-calibrated or not? To diagnose this, the factor that controls the theoretical upper limit of the spread-error correlation can be useful. Secondly, does the variable dispersion of an ensemble relate to variable expectation of forecast error? Representing the spread-error correlation in relation to its theoretical limit can provide a simple diagnostic of this attribute. A context for these concepts is provided by assessing two operational ensembles: 30-member Western US temperature forecasts for the U.S. Army Test and Evaluation Command and 51-member Brahmaputra River flow forecasts of the Climate Forecast and Applications Project for Bangladesh. Both of these systems utilize a postprocessing technique based on quantile regression (QR) under a step-wise forward selection framework leading to ensemble forecasts with both good reliability and sharpness. In addition, the methodology utilizes the ensemble's ability to self-diagnose forecast instability to produce calibrated forecasts with informative skill-spread relationships. We will describe both ensemble systems briefly, review the steps used to calibrate the ensemble forecast, and present verification statistics using error-spread metrics, along with figures from operational ensemble forecasts before and after calibration.

  10. Why preferring parametric forecasting to nonparametric methods?

    PubMed

    Jabot, Franck

    2015-05-07

    A recent series of papers by Charles T. Perretti and collaborators have shown that nonparametric forecasting methods can outperform parametric methods in noisy nonlinear systems. Such a situation can arise because of two main reasons: the instability of parametric inference procedures in chaotic systems which can lead to biased parameter estimates, and the discrepancy between the real system dynamics and the modeled one, a problem that Perretti and collaborators call "the true model myth". Should ecologists go on using the demanding parametric machinery when trying to forecast the dynamics of complex ecosystems? Or should they rely on the elegant nonparametric approach that appears so promising? It will be here argued that ecological forecasting based on parametric models presents two key comparative advantages over nonparametric approaches. First, the likelihood of parametric forecasting failure can be diagnosed thanks to simple Bayesian model checking procedures. Second, when parametric forecasting is diagnosed to be reliable, forecasting uncertainty can be estimated on virtual data generated with the fitted to data parametric model. In contrast, nonparametric techniques provide forecasts with unknown reliability. This argumentation is illustrated with the simple theta-logistic model that was previously used by Perretti and collaborators to make their point. It should convince ecologists to stick to standard parametric approaches, until methods have been developed to assess the reliability of nonparametric forecasting. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Seasonal Forecast Skill And Teleconnections Over East Africa

    NASA Astrophysics Data System (ADS)

    MacLeod, D.; Palmer, T.

    2017-12-01

    Many people living in East Africa are significantly exposed to risks arising from climate variability. The region experiences two rainy seasons and poor performance of either or both of these (such as seen recently in 2016/17) reduces agricultural productivity and threatens food security. In combination with other factors this can lead to famine. By utilizing seasonal climate forecasts, preparatory actions can be taken in order to mitigate the risks arising from such climate variability. As part of the project ForPAc: "Towards forecast-based preparedness action", we are working with humanitarian agencies in Kenya to build such early warning systems on subseasonal-to-seasonal timescales. Here, the seasonal predictability and forecast skill of the two East African rainy seasons will be presented. Results from the new ECMWF operational forecasting system SEAS5 will be shown and compared to the previous System 4. Analysis of a new 110 year long atmosphere-only simulation will also be discussed, demonstrating impacts of atmosphere-ocean coupling as well as putting operational forecast skill in a long-term context. Particular focus will be given to the model representation of teleconnections of seasonal climate with global sea surface temperatures; highlighting sources of forecast error and informing future model development.

  12. Ocean state and uncertainty forecasts using HYCOM with Local Ensemble Transfer Kalman Filter (LETKF)

    NASA Astrophysics Data System (ADS)

    Wei, Mozheng; Hogan, Pat; Rowley, Clark; Smedstad, Ole-Martin; Wallcraft, Alan; Penny, Steve

    2017-04-01

    An ensemble forecast system based on the US Navy's operational HYCOM using Local Ensemble Transfer Kalman Filter (LETKF) technology has been developed for ocean state and uncertainty forecasts. One of the advantages is that the best possible initial analysis states for the HYCOM forecasts are provided by the LETKF which assimilates the operational observations using ensemble method. The background covariance during this assimilation process is supplied with the ensemble, thus it avoids the difficulty of developing tangent linear and adjoint models for 4D-VAR from the complicated hybrid isopycnal vertical coordinate in HYCOM. Another advantage is that the ensemble system provides the valuable uncertainty estimate corresponding to every state forecast from HYCOM. Uncertainty forecasts have been proven to be critical for the downstream users and managers to make more scientifically sound decisions in numerical prediction community. In addition, ensemble mean is generally more accurate and skilful than the single traditional deterministic forecast with the same resolution. We will introduce the ensemble system design and setup, present some results from 30-member ensemble experiment, and discuss scientific, technical and computational issues and challenges, such as covariance localization, inflation, model related uncertainties and sensitivity to the ensemble size.

  13. System for NIS Forecasting Based on Ensembles Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2014-01-02

    BMA-NIS is a package/library designed to be called by a script (e.g. Perl or Python). The software itself is written in the language of R. The software assists electric power delivery systems in planning resource availability and demand, based on historical data and current data variables. Net Interchange Schedule (NIS) is the algebraic sum of all energy scheduled to flow into or out of a balancing area during any interval. Accurate forecasts for NIS are important so that the Area Control Error (ACE) stays within an acceptable limit. To date, there are many approaches for forecasting NIS but all nonemore » of these are based on single models that can be sensitive to time of day and day of week effects.« less

  14. Towards an improved ensemble precipitation forecast: A probabilistic post-processing approach

    NASA Astrophysics Data System (ADS)

    Khajehei, Sepideh; Moradkhani, Hamid

    2017-03-01

    Recently, ensemble post-processing (EPP) has become a commonly used approach for reducing the uncertainty in forcing data and hence hydrologic simulation. The procedure was introduced to build ensemble precipitation forecasts based on the statistical relationship between observations and forecasts. More specifically, the approach relies on a transfer function that is developed based on a bivariate joint distribution between the observations and the simulations in the historical period. The transfer function is used to post-process the forecast. In this study, we propose a Bayesian EPP approach based on copula functions (COP-EPP) to improve the reliability of the precipitation ensemble forecast. Evaluation of the copula-based method is carried out by comparing the performance of the generated ensemble precipitation with the outputs from an existing procedure, i.e. mixed type meta-Gaussian distribution. Monthly precipitation from Climate Forecast System Reanalysis (CFS) and gridded observation from Parameter-Elevation Relationships on Independent Slopes Model (PRISM) have been employed to generate the post-processed ensemble precipitation. Deterministic and probabilistic verification frameworks are utilized in order to evaluate the outputs from the proposed technique. Distribution of seasonal precipitation for the generated ensemble from the copula-based technique is compared to the observation and raw forecasts for three sub-basins located in the Western United States. Results show that both techniques are successful in producing reliable and unbiased ensemble forecast, however, the COP-EPP demonstrates considerable improvement in the ensemble forecast in both deterministic and probabilistic verification, in particular in characterizing the extreme events in wet seasons.

  15. Evaluations of Extended-Range tropical Cyclone Forecasts in the Western North Pacific by using the Ensemble Reforecasts: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Tsai, Hsiao-Chung; Chen, Pang-Cheng; Elsberry, Russell L.

    2017-04-01

    The objective of this study is to evaluate the predictability of the extended-range forecasts of tropical cyclone (TC) in the western North Pacific using reforecasts from National Centers for Environmental Prediction (NCEP) Global Ensemble Forecast System (GEFS) during 1996-2015, and from the Climate Forecast System (CFS) during 1999-2010. Tsai and Elsberry have demonstrated that an opportunity exists to support hydrological operations by using the extended-range TC formation and track forecasts in the western North Pacific from the ECMWF 32-day ensemble. To demonstrate this potential for the decision-making processes regarding water resource management and hydrological operation in Taiwan reservoir watershed areas, special attention is given to the skill of the NCEP GEFS and CFS models in predicting the TCs affecting the Taiwan area. The first objective of this study is to analyze the skill of NCEP GEFS and CFS TC forecasts and quantify the forecast uncertainties via verifications of categorical binary forecasts and probabilistic forecasts. The second objective is to investigate the relationships among the large-scale environmental factors [e.g., El Niño Southern Oscillation (ENSO), Madden-Julian Oscillation (MJO), etc.] and the model forecast errors by using the reforecasts. Preliminary results are indicating that the skill of the TC activity forecasts based on the raw forecasts can be further improved if the model biases are minimized by utilizing these reforecasts.

  16. WOD - Weather On Demand forecasting system

    NASA Astrophysics Data System (ADS)

    Rognvaldsson, Olafur; Ragnarsson, Logi; Stanislawska, Karolina

    2017-04-01

    The backbone of the Belgingur forecasting system (called WOD - Weather On Demand) is the WRF-Chem atmospheric model, with a number of in-house customisations. Initial and boundary data are taken from the Global Forecasting System, operated by the National Oceanic and Atmospheric Administration (NOAA). Operational forecasts use cycling of a number of parameters, mainly deep soil and surface fields. This is done to minimise spin-up effects and to ensure proper book-keeping of hydrological fields such as snow accumulation and runoff, as well as the constituents of various chemical parameters. The WOD system can be used to create conventional short- to medium-range weather forecasts for any location on the globe. The WOD system can also be used for air quality purposes (e.g. dispersion forecasts from volcanic eruptions) and as a tool to provide input to other modelling systems, such as hydrological models. A wide variety of post-processing options are also available, making WOD an ideal tool for creating highly customised output that can be tailored to the specific needs of individual end-users. The most recent addition to the WOD system is an integrated verification system where forecasts can be compared to surface observations from chosen locations. Forecast visualisation, such as weather charts, meteograms, weather icons and tables, is done via number of web components that can be configured to serve the varying needs of different end-users. The WOD system itself can be installed in an automatic way on hardware running a range of Linux based OS. System upgrades can also be done in semi-automatic fashion, i.e. upgrades and/or bug-fixes can be pushed to the end-user hardware without system downtime. Importantly, the WOD system requires only rudimentary knowledge of the WRF modelling, and the Linux operating systems on behalf of the end-user, making it an ideal NWP tool in locations with limited IT infrastructure.

  17. Medium range flood forecasts at global scale

    NASA Astrophysics Data System (ADS)

    Voisin, N.; Wood, A. W.; Lettenmaier, D. P.; Wood, E. F.

    2006-12-01

    While weather and climate forecast methods have advanced greatly over the last two decades, this capability has yet to be evidenced in mitigation of water-related natural hazards (primarily floods and droughts), especially in the developing world. Examples abound of extreme property damage and loss of life due to floods in the underdeveloped world. For instance, more than 4.5 million people were affected by the July 2000 flooding of the Mekong River and its tributaries in Cambodia, Vietnam, Laos and Thailand. The February- March 2000 floods in the Limpopo River of Mozambique caused extreme disruption to that country's fledgling economy. Mitigation of these events through advance warning has typically been modest at best. Despite the above noted improvement in weather and climate forecasts, there is at present no system for forecasting of floods globally, notwithstanding that the potential clearly exists. We describe a methodology that is eventually intended to generate global flood predictions routinely. It draws heavily from the experimental North American Land Data Assimilation System (NLDAS) and the companion Global Land Data Assimilation System (GLDAS) for development of nowcasts, and the University of Washington Experimental Hydrologic Prediction System to develop ensemble hydrologic forecasts based on Numerical Weather Prediction (NWP) models which serve both as nowcasts (and hence reduce the need for in situ precipitation and other observations in parts of the world where surface networks are critically deficient) and provide forecasts for lead times as long as fifteen days. The heart of the hydrologic modeling system is the University of Washington/Princeton University Variable Infiltration Capacity (VIC) macroscale hydrology model. In the prototype (tested using retrospective data), VIC is driven globally up to the time of forecast with daily ERA40 precipitation (rescaled on a monthly basis to a station-based global climatology), ERA40 wind, and ERA40 average surface air temperature (with temperature ranges adjusted to a station-based climatology). In the retrospective forecasting mode, VIC is driven by global NCEP ensemble 15-day reforecasts provided by Tom Hamill (NOAA/ERL), bias corrected with respect to the adjusted ERA40 data and further downscaled spatially using higher spatial resolution Global Precipitation Climatology Project (GPCP) 1dd daily precipitation. Downward solar and longwave radiation, surface relative humidity, and other model forcings are derived from relationships with the daily temperature range during both the retrospective (spinup) and forecast period. The initial system is implemented globally at one-half degree spatial resolution. We evaluate model performance retrospectively for predictions of major floods for the Oder River in 1997, the Mekong River in 2000 and the Limpopo River in 2000.

  18. Practical implementation of a particle filter data assimilation approach to estimate initial hydrologic conditions and initialize medium-range streamflow forecasts

    NASA Astrophysics Data System (ADS)

    Clark, E.; Wood, A.; Nijssen, B.; Newman, A. J.; Mendoza, P. A.

    2016-12-01

    The System for Hydrometeorological Applications, Research and Prediction (SHARP), developed at the National Center for Atmospheric Research (NCAR), University of Washington, U.S. Army Corps of Engineers, and U.S. Bureau of Reclamation, is a fully automated ensemble prediction system for short-term to seasonal applications. It incorporates uncertainty in initial hydrologic conditions (IHCs) and in hydrometeorological predictions. In this implementation, IHC uncertainty is estimated by propagating an ensemble of 100 plausible temperature and precipitation time series through the Sacramento/Snow-17 model. The forcing ensemble explicitly accounts for measurement and interpolation uncertainties in the development of gridded meteorological forcing time series. The resulting ensemble of derived IHCs exhibits a broad range of possible soil moisture and snow water equivalent (SWE) states. To select the IHCs that are most consistent with the observations, we employ a particle filter (PF) that weights IHC ensemble members based on observations of streamflow and SWE. These particles are then used to initialize ensemble precipitation and temperature forecasts downscaled from the Global Ensemble Forecast System (GEFS), generating a streamflow forecast ensemble. We test this method in two basins in the Pacific Northwest that are important for water resources management: 1) the Green River upstream of Howard Hanson Dam, and 2) the South Fork Flathead River upstream of Hungry Horse Dam. The first of these is characterized by mixed snow and rain, while the second is snow-dominated. The PF-based forecasts are compared to forecasts based on a single IHC (corresponding to median streamflow) paired with the full GEFS ensemble, and 2) the full IHC ensemble, without filtering, paired with the full GEFS ensemble. In addition to assessing improvements in the spread of IHCs, we perform a hindcast experiment to evaluate the utility of PF-based data assimilation on streamflow forecasts at 1- to 7-day lead times.

  19. GPS-based PWV for precipitation forecasting and its application to a typhoon event

    NASA Astrophysics Data System (ADS)

    Zhao, Qingzhi; Yao, Yibin; Yao, Wanqiang

    2018-01-01

    The temporal variability of precipitable water vapour (PWV) derived from Global Navigation Satellite System (GNSS) observations can be used to forecast precipitation events. A number of case studies of precipitation events have been analysed in Zhejiang Province, and a forecasting method for precipitation events was proposed. The PWV time series retrieved from the Global Positioning System (GPS) observations was processed by using a least-squares fitting method, so as to obtain the line tendency of ascents and descents over PWV. The increment of PWV for a short time (two to six hours) and PWV slope for a longer time (a few hours to more than ten hours) during the PWV ascending period are considered as predictive factors with which to forecast the precipitation event. The numerical results show that about 80%-90% of precipitation events and more than 90% of heavy rain events can be forecasted two to six hours in advance of the precipitation event based on the proposed method. 5-minute PWV data derived from GPS observations based on real-time precise point positioning (RT-PPP) were used for the typhoon event that passed over Zhejiang Province between 10 and 12 July, 2015. A good result was acquired using the proposed method and about 74% of precipitation events were predicted at some ten to thirty minutes earlier than their onset with a false alarm rate of 18%. This study shows that the GPS-based PWV was promising for short-term and now-casting precipitation forecasting.

  20. Case studies of NOAA 6/TIROS N data impact on numerical weather forecasts

    NASA Technical Reports Server (NTRS)

    Druyan, L. M.; Alperson, Z.; Ben-Amram, T.

    1984-01-01

    The impact of satellite temperatures from systems which predate the launching of the third generation of vertical sounding instruments aboard TIROS N (13 Oct 1978) and NOAA 6 (27 June 1979) is reported. The first evaluation of soundings from TIROS N found that oceanic, cloudy retrievals over NH mid latitudes show a cold bias in winter. It is confirmed for both satellite systems using a larger data base. It is shown that RMS differences between retrievals and colocated radiosonde observations within the swath 30-60N during the 1979-80 winter were generally 2-3K in clear air and higher for cloudy columns. A positive impact of TIROS N temperatures on the analysis of synoptic weather systems is shown. Analyses prepared from only satellite temperatures seemed to give a better definition to weather systems' thermal structure than that provided by corresponding NMC analyses without satellite data. The results of a set of 14 numerical forecast experiments performed with the PE model of the Israel Meteorological Service (IMS) are summarized; these were designed to test the impact of TIROS N and NOAA 6 temperatures within the IMS analysis and forecast cycle. The satellite data coverage over the NH, the mean area/period S1 and RMS verification scores and the spatial distribution of SAT versus NO SAT forecast differences are discussed and it is concluded that positive forecast impact occurs over ocean areas where the extra data improve the specification which is otherwise available from conventional observations. The forecast impact for three cases from the same set of experiments was examined and it is found that satellite temperatures, observed over the Atlantic Ocean contribute to better forecasts over Iceland and central Europe although a worse result was verified over Spain. It is also shown that the better scores of a forecast based also on satellite data and verified over North America actually represent a mixed impact on the forecast synoptic patterns. A superior 48 hr 500 mb forecast over the western US due to the better initial specification afforded by satellite observed temperatures over the North Pacific Ocean is shown.

  1. Towards smart energy systems: application of kernel machine regression for medium term electricity load forecasting.

    PubMed

    Alamaniotis, Miltiadis; Bargiotas, Dimitrios; Tsoukalas, Lefteri H

    2016-01-01

    Integration of energy systems with information technologies has facilitated the realization of smart energy systems that utilize information to optimize system operation. To that end, crucial in optimizing energy system operation is the accurate, ahead-of-time forecasting of load demand. In particular, load forecasting allows planning of system expansion, and decision making for enhancing system safety and reliability. In this paper, the application of two types of kernel machines for medium term load forecasting (MTLF) is presented and their performance is recorded based on a set of historical electricity load demand data. The two kernel machine models and more specifically Gaussian process regression (GPR) and relevance vector regression (RVR) are utilized for making predictions over future load demand. Both models, i.e., GPR and RVR, are equipped with a Gaussian kernel and are tested on daily predictions for a 30-day-ahead horizon taken from the New England Area. Furthermore, their performance is compared to the ARMA(2,2) model with respect to mean average percentage error and squared correlation coefficient. Results demonstrate the superiority of RVR over the other forecasting models in performing MTLF.

  2. Flood Warning and Forecasting System in Slovakia

    NASA Astrophysics Data System (ADS)

    Leskova, Danica

    2016-04-01

    In 2015, it finished project Flood Warning and Forecasting System (POVAPSYS) as part of the flood protection in Slovakia till 2010. The aim was to build POVAPSYS integrated computerized flood forecasting and warning system. It took a qualitatively higher level of output meteorological and hydrological services in case of floods affecting large territorial units, as well as local flood events. It is further unfolding demands on performance and coordination of meteorological and hydrological services, troubleshooting observation, evaluation of data, fast communication, modeling and forecasting of meteorological and hydrological processes. Integration of all information entering and exiting to and from the project POVAPSYS provides Hydrological Flood Forecasting System (HYPOS). The system provides information on the current hydrometeorological situation and its evolution with the generation of alerts and notifications in case of exceeding predefined thresholds. HYPOS's functioning of the system requires flawless operability in critical situations while minimizing the loss of its key parts. HYPOS is a core part of the project POVAPSYS, it is a comprehensive software solutions based on a modular principle, providing data and processed information including alarms, in real time. In order to achieve full functionality of the system, in proposal, we have put emphasis on reliability, robustness, availability and security.

  3. Global scale predictability of floods

    NASA Astrophysics Data System (ADS)

    Weerts, Albrecht; Gijsbers, Peter; Sperna Weiland, Frederiek

    2016-04-01

    Flood (and storm surge) forecasting at the continental and global scale has only become possible in recent years (Emmerton et al., 2016; Verlaan et al., 2015) due to the availability of meteorological forecast, global scale precipitation products and global scale hydrologic and hydrodynamic models. Deltares has setup GLOFFIS a research-oriented multi model operational flood forecasting system based on Delft-FEWS in an open experimental ICT facility called Id-Lab. In GLOFFIS both the W3RA and PCRGLOB-WB model are run in ensemble mode using GEFS and ECMWF-EPS (latency 2 days). GLOFFIS will be used for experiments into predictability of floods (and droughts) and their dependency on initial state estimation, meteorological forcing and the hydrologic model used. Here we present initial results of verification of the ensemble flood forecasts derived with the GLOFFIS system. Emmerton, R., Stephens, L., Pappenberger, F., Pagano, T., Weerts, A., Wood, A. Salamon, P., Brown, J., Hjerdt, N., Donnelly, C., Cloke, H. Continental and Global Scale Flood Forecasting Systems, WIREs Water (accepted), 2016 Verlaan M, De Kleermaeker S, Buckman L. GLOSSIS: Global storm surge forecasting and information system 2015, Australasian Coasts & Ports Conference, 15-18 September 2015,Auckland, New Zealand.

  4. Operational water management of Rijnland water system and pilot of ensemble forecasting system for flood control

    NASA Astrophysics Data System (ADS)

    van der Zwan, Rene

    2013-04-01

    The Rijnland water system is situated in the western part of the Netherlands, and is a low-lying area of which 90% is below sea-level. The area covers 1,100 square kilometres, where 1.3 million people live, work, travel and enjoy leisure. The District Water Control Board of Rijnland is responsible for flood defence, water quantity and quality management. This includes design and maintenance of flood defence structures, control of regulating structures for an adequate water level management, and waste water treatment. For water quantity management Rijnland uses, besides an online monitoring network for collecting water level and precipitation data, a real time control decision support system. This decision support system consists of deterministic hydro-meteorological forecasts with a 24-hr forecast horizon, coupled with a control module that provides optimal operation schedules for the storage basin pumping stations. The uncertainty of the rainfall forecast is not forwarded in the hydrological prediction. At this moment 65% of the pumping capacity of the storage basin pumping stations can be automatically controlled by the decision control system. Within 5 years, after renovation of two other pumping stations, the total capacity of 200 m3/s will be automatically controlled. In critical conditions there is a need of both a longer forecast horizon and a probabilistic forecast. Therefore ensemble precipitation forecasts of the ECMWF are already consulted off-line during dry-spells, and Rijnland is running a pilot operational system providing 10-day water level ensemble forecasts. The use of EPS during dry-spells and the findings of the pilot will be presented. Challenges and next steps towards on-line implementation of ensemble forecasts for risk-based operational management of the Rijnland water system will be discussed. An important element in that discussion is the question: will policy and decision makers, operator and citizens adapt this Anticipatory Water management, including temporary lower storage basin levels and a reduction in extra investments for infrastructural measures.

  5. Towards a better knowledge of flash flood forecasting at the Three Gorges Region: Progress over the past decade and challenges ahead

    NASA Astrophysics Data System (ADS)

    Li, Zhe; Yang, Dawen; Yang, Hanbo; Wu, Tianjiao; Xu, Jijun; Gao, Bing; Xu, Tao

    2015-04-01

    The study area, the Three Gorges Region (TGR), plays a critical role in predicting the floods drained into the Three Gorges Reservoir, as reported local floods often exceed 10000m3/s during rainstorm events and trigger fast as well as significant impacts on the Three Gorges Reservoir's regulation. Meanwhile, it is one of typical mountainous areas in China, which is located in the transition zone between two monsoon systems: the East Asian monsoon and the South Asian (Indian) monsoon. This climatic feature, combined with local irregular terrains, has shaped complicated rainfall-runoff regimes in this focal region. However, due to the lack of high-resolution hydrometeorological data and physically-based hydrologic modeling framework, there was little knowledge about rainfall variability and flood pattern in this historically ungauged region, which posed great uncertainties to flash flood forecasting in the past. The present study summarize latest progresses of regional flash floods monitoring and prediction, including installation of a ground-based Hydrometeorological Observation Network (TGR-HMON), application of a regional geomorphology-based hydrological model (TGR-GBHM), development of an integrated forecasting and modeling system (TGR-INFORMS), and evaluation of quantitative precipitation estimations (QPE) and quantitative precipitation forecasting (QPF) products in TGR flash flood forecasting. With these continuing efforts to improve the forecasting performance of flash floods in TGR, we have addressed several critical issues: (1) Current observation network is still insufficient to capture localized rainstorms, and weather radar provides valuable information to forecast flash floods induced by localized rainstorms, although current radar QPE products can be improved substantially in future; (2) Long-term evaluation shows that the geomorphology-based distributed hydrologic model (GBHM) is able to simulate flash flooding processes reasonably, while model performance will decline at hourly scale with larger uncertainties. However, model comparison suggests that this physically-based distributed model (GBHM), compared with a traditional lumped model (Xin'anjiang model), shows more robust performance and larger transferability for prediction in those ungauged basins in TGR; (3) Operational test of our integrated forecasting system (TRG-INFORMS) shows that it works reasonably to simulate the flood routing in Three Gorges reservoir, indicating the accuracy of simulation of total floods generated at region scale; (4) Current operational QPF is too coarse to provide valuable information even for flood forecasting of whole TGR, thus, downscaling and high-resolution QPF are necessary to unravel the potentials of weather forecasting. Finally, according to these results, we also discuss about some possible solutions with high priority for future advanced forecasting scheme of local flash floods in TGR.

  6. ENSO Prediction in the NASA GMAO GEOS-5 Seasonal Forecasting System

    NASA Astrophysics Data System (ADS)

    Kovach, R. M.; Borovikov, A.; Marshak, J.; Pawson, S.; Vernieres, G.

    2016-12-01

    Seasonal-to-Interannual coupled forecasts are conducted in near-real time with the Goddard Earth Observing System (GEOS) Atmosphere-Ocean General Circulation Model (AOGCM). A 30-year suite of 9-month hindcasts is available, initialized with the MERRA-Ocean, MERRA-Land, and MERRA atmospheric fields. These forecasts are used to predict the timing and magnitude of ENSO and other short-term climate variability. The 2015 El Niño peaked in November 2015 and was considered a "very strong" event with the Equatorial Pacific Ocean sea-surface-temperature (SST) anomalies higher than 2.0 °C. These very strong temperature anomalies began in Sep/Oct/Nov (SON) of 2015 and persisted through Dec/Jan/Feb (DJF) of 2016. The other two very strong El Niño events recently recorded occurred in 1981/82 and 1997/98. The GEOS-5 system began predicting a very strong El Niño for SON starting with the March 2015 forecast. At this time, the GMAO forecast was an outlier in both the NMME and IRI multi-model ensemble prediction plumes. The GMAO May 2015 forecast for the November 2015 peak in temperature anomaly in the Niño3.4 region was in excellent agreement with the real event, but in May this forecast was still one of the outliers in the multi-model forecasts. The GEOS-5 May 2015 forecast also correctly predicted the weakening of the Eastern Pacific (Niño1+2) anomalies for SON. We will present a summary of the NASA GMAO GEOS-5 Seasonal Forecast System skills based on historic hindcasts. Initial conditions, prediction of ocean surface and subsurface evolution for the 2015/16 El Niño will be compared to the 1998/97 event. GEOS-5 capability to predict the precipitation, i.e. to model the teleconnection patterns associated with El Niño will also be shown. To conclude, we will highlight some new developments in the GEOS forecasting system.

  7. Against all odds -- Probabilistic forecasts and decision making

    NASA Astrophysics Data System (ADS)

    Liechti, Katharina; Zappa, Massimiliano

    2015-04-01

    In the city of Zurich (Switzerland) the setting is such that the damage potential due to flooding of the river Sihl is estimated to about 5 billion US dollars. The flood forecasting system that is used by the administration for decision making runs continuously since 2007. It has a time horizon of max. five days and operates at hourly time steps. The flood forecasting system includes three different model chains. Two of those are run by the deterministic NWP models COSMO-2 and COSMO-7 and one is driven by the probabilistic NWP COSMO-Leps. The model chains are consistent since February 2010, so five full years are available for the evaluation for the system. The system was evaluated continuously and is a very nice example to present the added value that lies in probabilistic forecasts. The forecasts are available on an online-platform to the decision makers. Several graphical representations of the forecasts and forecast-history are available to support decision making and to rate the current situation. The communication between forecasters and decision-makers is quite close. To put it short, an ideal situation. However, an event or better put a non-event in summer 2014 showed that the knowledge about the general superiority of probabilistic forecasts doesn't necessarily mean that the decisions taken in a specific situation will be based on that probabilistic forecast. Some years of experience allow gaining confidence in the system, both for the forecasters and for the decision-makers. Even if from the theoretical point of view the handling during crisis situation is well designed, a first event demonstrated that the dialog with the decision-makers still lacks of exercise during such situations. We argue, that a false alarm is a needed experience to consolidate real-time emergency procedures relying on ensemble predictions. A missed event would probably also fit, but, in our case, we are very happy not to report about this option.

  8. Objective Lightning Forecasting at Kennedy Space Center/Cape Canaveral Air Force Station using Cloud-to-Ground Lightning Surveillance System Data

    NASA Technical Reports Server (NTRS)

    Lambert, Winifred; Wheeler, Mark

    2004-01-01

    The 45th Weather Squadron (45 WS) forecasters at Cape Canaveral Air Force Station (CCAFS) in Florida include a probability of thunderstorm occurrence in their daily morning briefings. This information is used by personnel involved in determining the possibility of violating Launch Commit Criteria, evaluating Flight Rules for the Space Shuttle, and daily planning for ground operation activities on Kennedy Space Center (KSC)/CCAFS. Much of the current lightning probability forecast is based on a subjective analysis of model and observational data. The forecasters requested that a lightning probability forecast tool based on statistical analysis of historical warm-season (May - September) data be developed in order to increase the objectivity of the daily thunderstorm probability forecast. The tool is a set of statistical lightning forecast equations that provide a lightning occurrence probability for the day by 1100 UTC (0700 EDT) during the warm season. This study used 15 years (1989-2003) of warm season data to develop the objective forecast equations. The local CCAFS 1000 UTC sounding was used to calculate stability parameters for equation predictors. The Cloud-to-Ground Lightning Surveillance System (CGLSS) data were used to determine lightning occurrence for each day. The CGLSS data have been found to be more reliable indicators of lightning in the area than surface observations through local informal analyses. This work was based on the results from two earlier research projects. Everitt (1999) used surface observations and rawinsonde data to develop logistic regression equations that forecast the daily thunderstorm probability at CCAFS. The Everitt (1999) equations showed an improvement in skill over the Neumann-Pfeffer thunderstorm index (Neumann 1971), which uses multiple linear regression, and also persistence and climatology forecasts. Lericos et al. (2002) developed lightning distributions over the Florida peninsula based on specific flow regimes. The flow regimes were inferred from the average wind direction in the 1000-700 mb layer at Miami (MIA), Tampa (TBW), and Jacksonville (JAX), Florida, and the lightning data were from the National Lightning Detection Network. The results suggested that the daily flow regime may be an important predictor of lightning occurrence on KSC/CCAFS.

  9. An operational integrated short-term warning solution for solar radiation storms: introducing the Forecasting Solar Particle Events and Flares (FORSPEF) system

    NASA Astrophysics Data System (ADS)

    Anastasiadis, Anastasios; Sandberg, Ingmar; Papaioannou, Athanasios; Georgoulis, Manolis; Tziotziou, Kostas; Jiggens, Piers; Hilgers, Alain

    2015-04-01

    We present a novel integrated prediction system, of both solar flares and solar energetic particle (SEP) events, which is in place to provide short-term warnings for hazardous solar radiation storms. FORSPEF system provides forecasting of solar eruptive events, such as solar flares with a projection to coronal mass ejections (CMEs) (occurrence and velocity) and the likelihood of occurrence of a SEP event. It also provides nowcasting of SEP events based on actual solar flare and CME near real-time alerts, as well as SEP characteristics (peak flux, fluence, rise time, duration) per parent solar event. The prediction of solar flares relies on a morphological method which is based on the sophisticated derivation of the effective connected magnetic field strength (Beff) of potentially flaring active-region (AR) magnetic configurations and it utilizes analysis of a large number of AR magnetograms. For the prediction of SEP events a new reductive statistical method has been implemented based on a newly constructed database of solar flares, CMEs and SEP events that covers a large time span from 1984-2013. The method is based on flare location (longitude), flare size (maximum soft X-ray intensity), and the occurrence (or not) of a CME. Warnings are issued for all > C1.0 soft X-ray flares. The warning time in the forecasting scheme extends to 24 hours with a refresh rate of 3 hours while the respective warning time for the nowcasting scheme depends on the availability of the near real-time data and falls between 15-20 minutes. We discuss the modules of the FORSPEF system, their interconnection and the operational set up. The dual approach in the development of FORPSEF (i.e. forecasting and nowcasting scheme) permits the refinement of predictions upon the availability of new data that characterize changes on the Sun and the interplanetary space, while the combined usage of solar flare and SEP forecasting methods upgrades FORSPEF to an integrated forecasting solution. This work has been funded through the "FORSPEF: FORecasting Solar Particle Events and Flares", ESA Contract No. 4000109641/13/NL/AK

  10. Optimising seasonal streamflow forecast lead time for operational decision making in Australia

    NASA Astrophysics Data System (ADS)

    Schepen, Andrew; Zhao, Tongtiegang; Wang, Q. J.; Zhou, Senlin; Feikema, Paul

    2016-10-01

    Statistical seasonal forecasts of 3-month streamflow totals are released in Australia by the Bureau of Meteorology and updated on a monthly basis. The forecasts are often released in the second week of the forecast period, due to the onerous forecast production process. The current service relies on models built using data for complete calendar months, meaning the forecast production process cannot begin until the first day of the forecast period. Somehow, the bureau needs to transition to a service that provides forecasts before the beginning of the forecast period; timelier forecast release will become critical as sub-seasonal (monthly) forecasts are developed. Increasing the forecast lead time to one month ahead is not considered a viable option for Australian catchments that typically lack any predictability associated with snowmelt. The bureau's forecasts are built around Bayesian joint probability models that have antecedent streamflow, rainfall and climate indices as predictors. In this study, we adapt the modelling approach so that forecasts have any number of days of lead time. Daily streamflow and sea surface temperatures are used to develop predictors based on 28-day sliding windows. Forecasts are produced for 23 forecast locations with 0-14- and 21-day lead time. The forecasts are assessed in terms of continuous ranked probability score (CRPS) skill score and reliability metrics. CRPS skill scores, on average, reduce monotonically with increase in days of lead time, although both positive and negative differences are observed. Considering only skilful forecast locations, CRPS skill scores at 7-day lead time are reduced on average by 4 percentage points, with differences largely contained within +5 to -15 percentage points. A flexible forecasting system that allows for any number of days of lead time could benefit Australian seasonal streamflow forecast users by allowing more time for forecasts to be disseminated, comprehended and made use of prior to the commencement of a forecast season. The system would allow for forecasts to be updated if necessary.

  11. Flood Forecast Accuracy and Decision Support System Approach: the Venice Case

    NASA Astrophysics Data System (ADS)

    Canestrelli, A.; Di Donato, M.

    2016-02-01

    In the recent years numerical models for weather predictions have experienced continuous advances in technology. As a result, all the disciplines making use of weather forecasts have made significant steps forward. In the case of the Safeguard of Venice, a large effort has been put in order to improve the forecast of tidal levels. In this context, the Istituzione Centro Previsioni e Segnalazioni Maree (ICPSM) of the Venice Municipality has developed and tested many different forecast models, both of the statistical and deterministic type, and has shown to produce very accurate forecasts. For Venice, the maximum admissible forecast error should be (ideally) of the order of ten centimeters at 24 hours. The entity of the forecast error clearly affects the decisional process, which mainly consists of alerting the population, activating the movable barriers installed at the three tidal inlets and contacting the port authority. This process becomes more challenging whenever the weather predictions, and therefore the water level forecasts, suddenly change. These new forecasts have to be quickly transformed into operational tasks. Therefore, it is of the utter importance to set up scheduled alerts and emergency plans by means of easy-to-follow procedures. On this direction, Technital has set up a Decision Support System based on expert procedures that minimizes the human mistakes and, as a consequence, reduces the risk of flooding of the historical center. Moreover, the Decision Support System can communicate predefined alerts to all the interested subjects. The System uses the water levels forecasts produced by the ICPSM by taking into account the accuracy at different leading times. The Decision Support System has been successfully tested with 8 years of data, 6 of them in real time. Venice experience shows that the Decision Support System is an essential tool which assesses the risks associated with a particular event, provides clear operational procedures and minimizes the impact of natural floods on human lives, private properties and historical monuments.

  12. Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoff, Thomas Hoff; Kankiewicz, Adam

    Four major research objectives were completed over the course of this study. Three of the objectives were to evaluate three, new, state-of-the-art solar irradiance forecasting models. The fourth objective was to improve the California Independent System Operator’s (ISO) load forecasts by integrating behind-the-meter (BTM) PV forecasts. The three, new, state-of-the-art solar irradiance forecasting models included: the infrared (IR) satellite-based cloud motion vector (CMV) model; the WRF-SolarCA model and variants; and the Optimized Deep Machine Learning (ODML)-training model. The first two forecasting models targeted known weaknesses in current operational solar forecasts. They were benchmarked against existing operational numerical weather prediction (NWP)more » forecasts, visible satellite CMV forecasts, and measured PV plant power production. IR CMV, WRF-SolarCA, and ODML-training forecasting models all improved the forecast to a significant degree. Improvements varied depending on time of day, cloudiness index, and geographic location. The fourth objective was to demonstrate that the California ISO’s load forecasts could be improved by integrating BTM PV forecasts. This objective represented the project’s most exciting and applicable gains. Operational BTM forecasts consisting of 200,000+ individual rooftop PV forecasts were delivered into the California ISO’s real-time automated load forecasting (ALFS) environment. They were then evaluated side-by-side with operational load forecasts with no BTM-treatment. Overall, ALFS-BTM day-ahead (DA) forecasts performed better than baseline ALFS forecasts when compared to actual load data. Specifically, ALFS-BTM DA forecasts were observed to have the largest reduction of error during the afternoon on cloudy days. Shorter term 30 minute-ahead ALFS-BTM forecasts were shown to have less error under all sky conditions, especially during the morning time periods when traditional load forecasts often experience their largest uncertainties. This work culminated in a GO decision being made by the California ISO to include zonal BTM forecasts into its operational load forecasting system. The California ISO’s Manager of Short Term Forecasting, Jim Blatchford, summarized the research performed in this project with the following quote: “The behind-the-meter (BTM) California ISO region forecasting research performed by Clean Power Research and sponsored by the Department of Energy’s SUNRISE program was an opportunity to verify value and demonstrate improved load forecast capability. In 2016, the California ISO will be incorporating the BTM forecast into the Hour Ahead and Day Ahead load models to look for improvements in the overall load forecast accuracy as BTM PV capacity continues to grow.”« less

  13. The quality and value of seasonal precipitation forecasts for an early warning of large-scale droughts and floods in West Africa

    NASA Astrophysics Data System (ADS)

    Bliefernicht, Jan; Seidel, Jochen; Salack, Seyni; Waongo, Moussa; Laux, Patrick; Kunstmann, Harald

    2017-04-01

    Seasonal precipitation forecasts are a crucial source of information for an early warning of hydro-meteorological extremes in West Africa. However, the current seasonal forecasting system used by the West African weather services in the framework of the West African Climate Outlook forum (PRESAO) is limited to probabilistic precipitation forecasts of 1-month lead time. To improve this provision, we use an ensemble-based quantile-quantile transformation for bias correction of precipitation forecasts provided by a global seasonal ensemble prediction system, the Climate Forecast System Version 2 (CFS2). The statistical technique eliminates systematic differences between global forecasts and observations with the potential to preserve the signal from the model. The technique has also the advantage that it can be easily implemented at national weather services with low capacities. The statistical technique is used to generate probabilistic forecasts of monthly and seasonal precipitation amount and other precipitation indices useful for an early warning of large-scale drought and floods in West Africa. The evaluation of the statistical technique is done using CFS hindcasts (1982 to 2009) in a cross-validation mode to determine the performance of the precipitation forecasts for several lead times focusing on drought and flood events depicted over the Volta and Niger basins. In addition, operational forecasts provided by PRESAO are analyzed from 1998 to 2015. The precipitation forecasts are compared to low-skill reference forecasts generated from gridded observations (i.e. GPCC, CHIRPS) and a novel in-situ gauge database from national observation networks (see Poster EGU2017-10271). The forecasts are evaluated using state-of-the-art verification techniques to determine specific quality attributes of probabilistic forecasts such as reliability, accuracy and skill. In addition, cost-loss approaches are used to determine the value of probabilistic forecasts for multiple users in warning situations. The outcomes of the hindcasts experiment for the Volta basin illustrate that the statistical technique can clearly improve the CFS precipitation forecasts with the potential to provide skillful and valuable early precipitation warnings for large-scale drought and flood situations several months in ahead. In this presentation we give a detailed overview about the ensemble-based quantile-quantile-transformation, its validation and verification and the possibilities of this technique to complement PRESAO. We also highlight the performance of this technique for extremes such as the Sahel drought in the 80ties and in comparison to the various reference data sets (e.g. CFS2, PRESAO, observational data sets) used in this study.

  14. Application research for 4D technology in flood forecasting and evaluation

    NASA Astrophysics Data System (ADS)

    Li, Ziwei; Liu, Yutong; Cao, Hongjie

    1998-08-01

    In order to monitor the region which disaster flood happened frequently in China, satisfy the great need of province governments for high accuracy monitoring and evaluated data for disaster and improve the efficiency for repelling disaster, under the Ninth Five-year National Key Technologies Programme, the method was researched for flood forecasting and evaluation using satellite and aerial remoted sensed image and land monitor data. The effective and practicable flood forecasting and evaluation system was established and DongTing Lake was selected as the test site. Modern Digital photogrammetry, remote sensing and GIS technology was used in this system, the disastrous flood could be forecasted and loss can be evaluated base on '4D' (DEM -- Digital Elevation Model, DOQ -- Digital OrthophotoQuads, DRG -- Digital Raster Graph, DTI -- Digital Thematic Information) disaster background database. The technology of gathering and establishing method for '4D' disaster environment background database, application technology for flood forecasting and evaluation based on '4D' background data and experimental results for DongTing Lake test site were introduced in detail in this paper.

  15. Tsunami Forecasting and Monitoring in New Zealand

    NASA Astrophysics Data System (ADS)

    Power, William; Gale, Nora

    2011-06-01

    New Zealand is exposed to tsunami threats from several sources that vary significantly in their potential impact and travel time. One route for reducing the risk from these tsunami sources is to provide advance warning based on forecasting and monitoring of events in progress. In this paper the National Tsunami Warning System framework, including the responsibilities of key organisations and the procedures that they follow in the event of a tsunami threatening New Zealand, are summarised. A method for forecasting threat-levels based on tsunami models is presented, similar in many respects to that developed for Australia by Allen and Greenslade (Nat Hazards 46:35-52, 2008), and a simple system for easy access to the threat-level forecasts using a clickable pdf file is presented. Once a tsunami enters or initiates within New Zealand waters, its progress and evolution can be monitored in real-time using a newly established network of online tsunami gauge sensors placed at strategic locations around the New Zealand coasts and offshore islands. Information from these gauges can be used to validate and revise forecasts, and assist in making the all-clear decision.

  16. Advancing Data Assimilation in Operational Hydrologic Forecasting: Progresses, Challenges, and Emerging Opportunities

    NASA Technical Reports Server (NTRS)

    Liu, Yuqiong; Weerts, A.; Clark, M.; Hendricks Franssen, H.-J; Kumar, S.; Moradkhani, H.; Seo, D.-J.; Schwanenberg, D.; Smith, P.; van Dijk, A. I. J. M.; hide

    2012-01-01

    Data assimilation (DA) holds considerable potential for improving hydrologic predictions as demonstrated in numerous research studies. However, advances in hydrologic DA research have not been adequately or timely implemented in operational forecast systems to improve the skill of forecasts for better informed real-world decision making. This is due in part to a lack of mechanisms to properly quantify the uncertainty in observations and forecast models in real-time forecasting situations and to conduct the merging of data and models in a way that is adequately efficient and transparent to operational forecasters. The need for effective DA of useful hydrologic data into the forecast process has become increasingly recognized in recent years. This motivated a hydrologic DA workshop in Delft, the Netherlands in November 2010, which focused on advancing DA in operational hydrologic forecasting and water resources management. As an outcome of the workshop, this paper reviews, in relevant detail, the current status of DA applications in both hydrologic research and operational practices, and discusses the existing or potential hurdles and challenges in transitioning hydrologic DA research into cost-effective operational forecasting tools, as well as the potential pathways and newly emerging opportunities for overcoming these challenges. Several related aspects are discussed, including (1) theoretical or mathematical aspects in DA algorithms, (2) the estimation of different types of uncertainty, (3) new observations and their objective use in hydrologic DA, (4) the use of DA for real-time control of water resources systems, and (5) the development of community-based, generic DA tools for hydrologic applications. It is recommended that cost-effective transition of hydrologic DA from research to operations should be helped by developing community-based, generic modeling and DA tools or frameworks, and through fostering collaborative efforts among hydrologic modellers, DA developers, and operational forecasters.

  17. Development of a satellite-based nowcasting system for surface solar radiation

    NASA Astrophysics Data System (ADS)

    Limbach, Sebastian; Hungershoefer, Katja; Müller, Richard; Trentmann, Jörg; Asmus, Jörg; Schömer, Elmar; Groß, André

    2014-05-01

    The goal of the RadNowCast project was the development of a tool-chain for a satellite-based nowcasting of the all sky global and direct surface solar radiation. One important application of such short-term forecasts is the computation of the expected energy yield of photovoltaic systems. This information is of great importance for an efficient balancing of power generation and consumption in large, decentralized power grids. Our nowcasting approach is based on an optical-flow analysis of a series of Meteosat SEVIRI satellite images. For this, we extended and combined several existing software tools and set up a series of benchmarks for determining the optimal forecasting parameters. The first step in our processing-chain is the determination of the cloud albedo from the HRV (High Resolution Visible)-satellite images using a Heliosat-type method. The actual nowcasting is then performed by a commercial software system in two steps: First, vector fields characterizing the movement of the clouds are derived from the cloud albedo data from the previous 15 min to 2 hours. Next, these vector fields are combined with the most recent cloud albedo data in order to extrapolate the cloud albedo in the near future. In the last step of the processing, the Gnu-Magic software is used to calculate the global and direct solar radiation based on the forecasted cloud albedo data. For an evaluation of the strengths and weaknesses of our nowcastig system, we analyzed four different benchmarks, each of which covered different weather conditions. We compared the forecasted data with radiation data derived from the real satellite images of the corresponding time steps. The impact of different parameters on the cloud albedo nowcasting and the surface radiation computation has been analysed. Additionally, we could show that our cloud-albedo-based forecasts outperform forecasts based on the original HRV images. Possible future extension are the incorporation of additional data sources, for example NWC-SAF high resolution wind fields, in order to improve the quality of the atmospheric motion fields, and experiments with custom, optimized software components for the optical-flow estimation and the nowcasting.

  18. Application of Medium and Seasonal Flood Forecasts for Agriculture Damage Assessment

    NASA Astrophysics Data System (ADS)

    Fakhruddin, Shamsul; Ballio, Francesco; Menoni, Scira

    2015-04-01

    Early warning is a key element for disaster risk reduction. In recent decades, major advancements have been made in medium range and seasonal flood forecasting. This progress provides a great opportunity to reduce agriculture damage and improve advisories for early action and planning for flood hazards. This approach can facilitate proactive rather than reactive management of the adverse consequences of floods. In the agricultural sector, for instance, farmers can take a diversity of options such as changing cropping patterns, applying fertilizer, irrigating and changing planting timing. An experimental medium range (1-10 day) and seasonal (20-25 days) flood forecasting model has been developed for Thailand and Bangladesh. It provides 51 sets of discharge ensemble forecasts of 1-10 days with significant persistence and high certainty and qualitative outlooks for 20-25 days. This type of forecast could assist farmers and other stakeholders for differential preparedness activities. These ensembles probabilistic flood forecasts have been customized based on user-needs for community-level application focused on agriculture system. The vulnerabilities of agriculture system were calculated based on exposure, sensitivity and adaptive capacity. Indicators for risk and vulnerability assessment were conducted through community consultations. The forecast lead time requirement, user-needs, impacts and management options for crops were identified through focus group discussions, informal interviews and community surveys. This paper illustrates potential applications of such ensembles for probabilistic medium range and seasonal flood forecasts in a way that is not commonly practiced globally today.

  19. [Research on engine remaining useful life prediction based on oil spectrum analysis and particle filtering].

    PubMed

    Sun, Lei; Jia, Yun-xian; Cai, Li-ying; Lin, Guo-yu; Zhao, Jin-song

    2013-09-01

    The spectrometric oil analysis(SOA) is an important technique for machine state monitoring, fault diagnosis and prognosis, and SOA based remaining useful life(RUL) prediction has an advantage of finding out the optimal maintenance strategy for machine system. Because the complexity of machine system, its health state degradation process can't be simply characterized by linear model, while particle filtering(PF) possesses obvious advantages over traditional Kalman filtering for dealing nonlinear and non-Gaussian system, the PF approach was applied to state forecasting by SOA, and the RUL prediction technique based on SOA and PF algorithm is proposed. In the prediction model, according to the estimating result of system's posterior probability, its prior probability distribution is realized, and the multi-step ahead prediction model based on PF algorithm is established. Finally, the practical SOA data of some engine was analyzed and forecasted by the above method, and the forecasting result was compared with that of traditional Kalman filtering method. The result fully shows the superiority and effectivity of the

  20. Toward Seasonal Forecasting of Global Droughts: Evaluation over USA and Africa

    NASA Astrophysics Data System (ADS)

    Wood, Eric; Yuan, Xing; Roundy, Joshua; Sheffield, Justin; Pan, Ming

    2013-04-01

    Extreme hydrologic events in the form of droughts are significant sources of social and economic damage. In the United States according to the National Climatic Data Center, the losses from drought exceed US210 billion during 1980-2011, and account for about 24% of all losses from major weather disasters. Internationally, especially for the developing world, drought has had devastating impacts on local populations through food insecurity and famine. Providing reliable drought forecasts with sufficient early warning will help the governments to move from the management of drought crises to the management of drought risk. After working on drought monitoring and forecasting over the USA for over 10 years, the Princeton land surface hydrology group is now developing a global drought monitoring and forecasting system using a dynamical seasonal climate-hydrologic LSM-model (CHM) approach. Currently there is an active debate on the merits of the CHM-based seasonal hydrologic forecasts as compared to Ensemble Streamflow Prediction (ESP). We use NCEP's operational forecast system, the Climate Forecast System version 2 (CFSv2) and its previous version CFSv1, to investigate the value of seasonal climate model forecasts by conducting a set of 27-year seasonal hydrologic hindcasts over the USA. Through Bayesian downscaling, climate models have higher squared correlation (R2) and smaller error than ESP for monthly precipitation averaged over major river basins across the USA, and the forecasts conditional on ENSO show further improvements (out to four months) over river basins in the southern USA. All three approaches have plausible predictions of soil moisture drought frequency over central USA out to six months because of strong soil moisture memory, and seasonal climate models provide better results over central and eastern USA. The R2 of drought extent is higher for arid basins and for the forecasts initiated during dry seasons, but significant improvements from CFSv2 occur in different seasons for different basins. The R2 of drought severity accumulated over USA is higher during winter, and climate models present added value especially at long leads. For countries with sparse networks and weak reporting systems, remote sensing observations can provide the realtime data for the monitoring of drought. More importantly, these datasets are now available for at least a decade, which allows for estimating a climatology against which current conditions can be compared. Based on our established experimental African Drought Monitor (ADM) (see http://hydrology.princeton.edu/~nchaney/ADM_ML), we use the downscaled CFSv2 climate forcings to drive the re-calibrated VIC model and produce 6-month, 20-member ensemble hydrologic forecasts over Africa starting on the 1st of each calendar month during 1982-2007. Our CHM-based seasonal hydrologic forecasts are now being analyzed for its skill in predicting short-term soil moisture droughts over Africa. Besides relying on a single seasonal climate model or a single drought index, preliminary forecast results will be presented using multiple seasonal climate models based on the NOAA-supported National Multi-Model Ensemble (NMME) project, and with multiple drought indices. Results will be presented for the USA NIDIS test beds such as Southeast US and Colorado NIDIS (National Integrated Drought Information System) test beds, and potentially for other regions of the globe.

  1. Coastal ocean forecasting with an unstructured grid model in the southern Adriatic and northern Ionian seas

    NASA Astrophysics Data System (ADS)

    Federico, Ivan; Pinardi, Nadia; Coppini, Giovanni; Oddo, Paolo; Lecci, Rita; Mossa, Michele

    2017-01-01

    SANIFS (Southern Adriatic Northern Ionian coastal Forecasting System) is a coastal-ocean operational system based on the unstructured grid finite-element three-dimensional hydrodynamic SHYFEM model, providing short-term forecasts. The operational chain is based on a downscaling approach starting from the large-scale system for the entire Mediterranean Basin (MFS, Mediterranean Forecasting System), which provides initial and boundary condition fields to the nested system. The model is configured to provide hydrodynamics and active tracer forecasts both in open ocean and coastal waters of southeastern Italy using a variable horizontal resolution from the open sea (3-4 km) to coastal areas (50-500 m). Given that the coastal fields are driven by a combination of both local (also known as coastal) and deep-ocean forcings propagating along the shelf, the performance of SANIFS was verified both in forecast and simulation mode, first (i) on the large and shelf-coastal scales by comparing with a large-scale survey CTD (conductivity-temperature-depth) in the Gulf of Taranto and then (ii) on the coastal-harbour scale (Mar Grande of Taranto) by comparison with CTD, ADCP (acoustic doppler current profiler) and tide gauge data. Sensitivity tests were performed on initialization conditions (mainly focused on spin-up procedures) and on surface boundary conditions by assessing the reliability of two alternative datasets at different horizontal resolution (12.5 and 6.5 km). The SANIFS forecasts at a lead time of 1 day were compared with the MFS forecasts, highlighting that SANIFS is able to retain the large-scale dynamics of MFS. The large-scale dynamics of MFS are correctly propagated to the shelf-coastal scale, improving the forecast accuracy (+17 % for temperature and +6 % for salinity compared to MFS). Moreover, the added value of SANIFS was assessed on the coastal-harbour scale, which is not covered by the coarse resolution of MFS, where the fields forecasted by SANIFS reproduced the observations well (temperature RMSE equal to 0.11 °C). Furthermore, SANIFS simulations were compared with hourly time series of temperature, sea level and velocity measured on the coastal-harbour scale, showing a good agreement. Simulations in the Gulf of Taranto described a circulation mainly characterized by an anticyclonic gyre with the presence of cyclonic vortexes in shelf-coastal areas. A surface water inflow from the open sea to Mar Grande characterizes the coastal-harbour scale.

  2. A stochastic post-processing method for solar irradiance forecasts derived from NWPs models

    NASA Astrophysics Data System (ADS)

    Lara-Fanego, V.; Pozo-Vazquez, D.; Ruiz-Arias, J. A.; Santos-Alamillos, F. J.; Tovar-Pescador, J.

    2010-09-01

    Solar irradiance forecast is an important area of research for the future of the solar-based renewable energy systems. Numerical Weather Prediction models (NWPs) have proved to be a valuable tool for solar irradiance forecasting with lead time up to a few days. Nevertheless, these models show low skill in forecasting the solar irradiance under cloudy conditions. Additionally, climatic (averaged over seasons) aerosol loading are usually considered in these models, leading to considerable errors for the Direct Normal Irradiance (DNI) forecasts during high aerosols load conditions. In this work we propose a post-processing method for the Global Irradiance (GHI) and DNI forecasts derived from NWPs. Particularly, the methods is based on the use of Autoregressive Moving Average with External Explanatory Variables (ARMAX) stochastic models. These models are applied to the residuals of the NWPs forecasts and uses as external variables the measured cloud fraction and aerosol loading of the day previous to the forecast. The method is evaluated for a set one-moth length three-days-ahead forecast of the GHI and DNI, obtained based on the WRF mesoscale atmospheric model, for several locations in Andalusia (Southern Spain). The Cloud fraction is derived from MSG satellite estimates and the aerosol loading from the MODIS platform estimates. Both sources of information are readily available at the time of the forecast. Results showed a considerable improvement of the forecasting skill of the WRF model using the proposed post-processing method. Particularly, relative improvement (in terms of the RMSE) for the DNI during summer is about 20%. A similar value is obtained for the GHI during the winter.

  3. Real-time drought forecasting system for irrigation management

    NASA Astrophysics Data System (ADS)

    Ceppi, A.; Ravazzani, G.; Corbari, C.; Salerno, R.; Meucci, S.; Mancini, M.

    2014-09-01

    In recent years frequent periods of water scarcity have enhanced the need to use water more carefully, even in European areas which traditionally have an abundant supply of water, such as the Po Valley in northern Italy. In dry periods, water shortage problems can be enhanced by conflicting uses of water, such as irrigation, industry and power production (hydroelectric and thermoelectric). Furthermore, in the last decade the social perspective in relation to this issue has been increasing due to the possible impact of climate change and global warming scenarios which emerge from the IPCC Fifth Assessment Report (IPCC, 2013). Hence, the increased frequency of drought periods has stimulated the improvement of irrigation and water management. In this study we show the development and implementation of the PREGI real-time drought forecasting system; PREGI is an Italian acronym that means "hydro-meteorological forecast for irrigation management". The system, planned as a tool for irrigation optimization, is based on meteorological ensemble forecasts (20 members) at medium range (30 days) coupled with hydrological simulations of water balance to forecast the soil water content on a maize field in the Muzza Bassa Lodigiana (MBL) consortium in northern Italy. The hydrological model was validated against measurements of latent heat flux acquired by an eddy-covariance station, and soil moisture measured by TDR (time domain reflectivity) probes; the reliability of this forecasting system and its benefits were assessed in the 2012 growing season. The results obtained show how the proposed drought forecasting system is able to have a high reliability of forecast at least for 7-10 days ahead of time.

  4. Modeled Forecasts of Dengue Fever in San Juan, Puerto Rico Using NASA Satellite Enhanced Weather Forecasts

    NASA Astrophysics Data System (ADS)

    Morin, C.; Quattrochi, D. A.; Zavodsky, B.; Case, J.

    2015-12-01

    Dengue fever (DF) is an important mosquito transmitted disease that is strongly influenced by meteorological and environmental conditions. Recent research has focused on forecasting DF case numbers based on meteorological data. However, these forecasting tools have generally relied on empirical models that require long DF time series to train. Additionally, their accuracy has been tested retrospectively, using past meteorological data. Consequently, the operational utility of the forecasts are still in question because the error associated with weather and climate forecasts are not reflected in the results. Using up-to-date weekly dengue case numbers for model parameterization and weather forecast data as meteorological input, we produced weekly forecasts of DF cases in San Juan, Puerto Rico. Each week, the past weeks' case counts were used to re-parameterize a process-based DF model driven with updated weather forecast data to generate forecasts of DF case numbers. Real-time weather forecast data was produced using the Weather Research and Forecasting (WRF) numerical weather prediction (NWP) system enhanced using additional high-resolution NASA satellite data. This methodology was conducted in a weekly iterative process with each DF forecast being evaluated using county-level DF cases reported by the Puerto Rico Department of Health. The one week DF forecasts were accurate especially considering the two sources of model error. First, weather forecasts were sometimes inaccurate and generally produced lower than observed temperatures. Second, the DF model was often overly influenced by the previous weeks DF case numbers, though this phenomenon could be lessened by increasing the number of simulations included in the forecast. Although these results are promising, we would like to develop a methodology to produce longer range forecasts so that public health workers can better prepare for dengue epidemics.

  5. A national-scale seasonal hydrological forecast system: development and evaluation over Britain

    NASA Astrophysics Data System (ADS)

    Bell, Victoria A.; Davies, Helen N.; Kay, Alison L.; Brookshaw, Anca; Scaife, Adam A.

    2017-09-01

    Skilful winter seasonal predictions for the North Atlantic circulation and northern Europe have now been demonstrated and the potential for seasonal hydrological forecasting in the UK is now being explored. One of the techniques being used combines seasonal rainfall forecasts provided by operational weather forecast systems with hydrological modelling tools to provide estimates of seasonal mean river flows up to a few months ahead. The work presented here shows how spatial information contained in a distributed hydrological model typically requiring high-resolution (daily or better) rainfall data can be used to provide an initial condition for a much simpler forecast model tailored to use low-resolution monthly rainfall forecasts. Rainfall forecasts (hindcasts) from the GloSea5 model (1996 to 2009) are used to provide the first assessment of skill in these national-scale flow forecasts. The skill in the combined modelling system is assessed for different seasons and regions of Britain, and compared to what might be achieved using other approaches such as use of an ensemble of historical rainfall in a hydrological model, or a simple flow persistence forecast. The analysis indicates that only limited forecast skill is achievable for Spring and Summer seasonal hydrological forecasts; however, Autumn and Winter flows can be reasonably well forecast using (ensemble mean) rainfall forecasts based on either GloSea5 forecasts or historical rainfall (the preferred type of forecast depends on the region). Flow forecasts using ensemble mean GloSea5 rainfall perform most consistently well across Britain, and provide the most skilful forecasts overall at the 3-month lead time. Much of the skill (64 %) in the 1-month ahead seasonal flow forecasts can be attributed to the hydrological initial condition (particularly in regions with a significant groundwater contribution to flows), whereas for the 3-month ahead lead time, GloSea5 forecasts account for ˜ 70 % of the forecast skill (mostly in areas of high rainfall to the north and west) and only 30 % of the skill arises from hydrological memory (typically groundwater-dominated areas). Given the high spatial heterogeneity in typical patterns of UK rainfall and evaporation, future development of skilful spatially distributed seasonal forecasts could lead to substantial improvements in seasonal flow forecast capability, potentially benefitting practitioners interested in predicting hydrological extremes, not only in the UK but also across Europe.

  6. The Canadian seasonal forecast and the APCC exchange.

    NASA Astrophysics Data System (ADS)

    Archambault, B.; Fontecilla, J.; Kharin, V.; Bourgouin, P.; Ashok, K.; Lee, D.

    2009-05-01

    In this talk, we will first describe the Canadian seasonal forecast system. This system uses a 4 model ensemble approach with each of these models generating a 10 members ensemble. Multi-model issues related to this system will be describes. Secondly, we will describe an international multi-system initiative. The Asia-Pacific Economic Cooperation (APEC) is a forum for 21 Pacific Rim countries or regions including Canada. The APEC Climate Center (APCC) provides seasonal forecasts to their regional climate centers with a Multi Model Ensemble (MME) approach. The APCC MME is based on 13 ensemble prediction systems from different institutions including MSC(Canada), NCEP(USA), COLA(USA), KMA(Korea), JMA(Japan), BOM(Australia) and others. In this presentation, we will describe the basics of this international cooperation.

  7. Towards the Operational Ensemble-based Data Assimilation System for the Wave Field at the National Weather Service

    NASA Astrophysics Data System (ADS)

    Flampouris, Stylianos; Penny, Steve; Alves, Henrique

    2017-04-01

    The National Centers for Environmental Prediction (NCEP) of the National Oceanic and Atmospheric Administration (NOAA) provides the operational wave forecast for the US National Weather Service (NWS). Given the continuous efforts to improve forecast, NCEP is developing an ensemble-based data assimilation system, based on the local ensemble transform Kalman filter (LETKF), the existing operational global wave ensemble system (GWES) and on satellite and in-situ observations. While the LETKF was designed for atmospheric applications (Hunt et al 2007), and has been adapted for several ocean models (e.g. Penny 2016), this is the first time applied for oceanic waves assimilation. This new wave assimilation system provides a global estimation of the surface sea state and its approximate uncertainty. It achieves this by analyzing the 21-member ensemble of the significant wave height provided by GWES every 6h. Observations from four altimeters and all the available in-situ measurements are used in this analysis. The analysis of the significant wave height is used for initializing the next forecasting cycle; the data assimilation system is currently being tested for operational use.

  8. Ecological Forecasting of Vibrio sp. in U.S. Coastal Waters Using an Operational Platform, a Pilot Project of the NOAA Ecological Forecasting Roadmap. Development of Web based Tools and Forecasts to Help the Public Avoid Exposure to Vibrio vulnificus and Shell Fish Harvesters Avoid Dangerous Concentrations of Vibrio parahaemolyticus.

    NASA Astrophysics Data System (ADS)

    Daniels, R. M.; Jacobs, J. M.; Paranjpye, R.; Lanerolle, L. W.

    2016-02-01

    The Pathogens group of the NOAA Ecological Forecasting Roadmap has begun a range of efforts to monitor and predict potential pathogen occurrences in shellfish and in U.S. Coastal waters. NOAA/NCOSS along with NMFS/NWFSC have led the Pathogens group and the development of web based tools and forecasts for both Vibrio vulnificus and Vibrio parahaemolyticus. A strong relationship with FDA has allowed the team to develop forecasts that will serve U.S. shellfish harvesters and consumers. NOAA/NOS/CSDL has provided modeling expertise to help the group use the hydrodynamic models and their forecasts of physical variables that drive the ecological predictions. The NOAA/NWS/Ocean Prediction Center has enabled these ecological forecasting efforts by providing the infrastructure, computing knowledge and experience in an operational culture. Daily forecasts have been demonstrated and are available from the web for the Chesapeake Bay, Delaware Bay, Northern Gulf of Mexico, Tampa Bay, Puget Sound and Long Island Sound. The forecast systems run on a daily basis being fed by NOS model data from the NWS/NCEP super computers. New forecast tools including V. parahaemolyticus post harvest growth and doubling time in ambient air temperature will be described.

  9. Interval forecasting of cyber-attacks on industrial control systems

    NASA Astrophysics Data System (ADS)

    Ivanyo, Y. M.; Krakovsky, Y. M.; Luzgin, A. N.

    2018-03-01

    At present, cyber-security issues of industrial control systems occupy one of the key niches in a state system of planning and management Functional disruption of these systems via cyber-attacks may lead to emergencies related to loss of life, environmental disasters, major financial and economic damage, or disrupted activities of cities and settlements. There is then an urgent need to develop protection methods against cyber-attacks. This paper studied the results of cyber-attack interval forecasting with a pre-set intensity level of cyber-attacks. Interval forecasting is the forecasting of one interval from two predetermined ones in which a future value of the indicator will be obtained. For this, probability estimates of these events were used. For interval forecasting, a probabilistic neural network with a dynamic updating value of the smoothing parameter was used. A dividing bound of these intervals was determined by a calculation method based on statistical characteristics of the indicator. The number of cyber-attacks per hour that were received through a honeypot from March to September 2013 for the group ‘zeppo-norcal’ was selected as the indicator.

  10. Verification of an ensemble prediction system for storm surge forecast in the Adriatic Sea

    NASA Astrophysics Data System (ADS)

    Mel, Riccardo; Lionello, Piero

    2014-12-01

    In the Adriatic Sea, storm surges present a significant threat to Venice and to the flat coastal areas of the northern coast of the basin. Sea level forecast is of paramount importance for the management of daily activities and for operating the movable barriers that are presently being built for the protection of the city. In this paper, an EPS (ensemble prediction system) for operational forecasting of storm surge in the northern Adriatic Sea is presented and applied to a 3-month-long period (October-December 2010). The sea level EPS is based on the HYPSE (hydrostatic Padua Sea elevation) model, which is a standard single-layer nonlinear shallow water model, whose forcings (mean sea level pressure and surface wind fields) are provided by the ensemble members of the ECMWF (European Center for Medium-Range Weather Forecasts) EPS. Results are verified against observations at five tide gauges located along the Croatian and Italian coasts of the Adriatic Sea. Forecast uncertainty increases with the predicted value of the storm surge and with the forecast lead time. The EMF (ensemble mean forecast) provided by the EPS has a rms (root mean square) error lower than the DF (deterministic forecast), especially for short (up to 3 days) lead times. Uncertainty for short lead times of the forecast and for small storm surges is mainly caused by uncertainty of the initial condition of the hydrodynamical model. Uncertainty for large lead times and large storm surges is mainly caused by uncertainty in the meteorological forcings. The EPS spread increases with the rms error of the forecast. For large lead times the EPS spread and the forecast error substantially coincide. However, the EPS spread in this study, which does not account for uncertainty in the initial condition, underestimates the error during the early part of the forecast and for small storm surge values. On the contrary, it overestimates the rms error for large surge values. The PF (probability forecast) of the EPS has a clear skill in predicting the actual probability distribution of sea level, and it outperforms simple "dressed" PF methods. A probability estimate based on the single DF is shown to be inadequate. However, a PF obtained with a prescribed Gaussian distribution and centered on the DF value performs very similarly to the EPS-based PF.

  11. Verification of space weather forecasts at the UK Met Office

    NASA Astrophysics Data System (ADS)

    Bingham, S.; Sharpe, M.; Jackson, D.; Murray, S.

    2017-12-01

    The UK Met Office Space Weather Operations Centre (MOSWOC) has produced space weather guidance twice a day since its official opening in 2014. Guidance includes 4-day probabilistic forecasts of X-ray flares, geomagnetic storms, high-energy electron events and high-energy proton events. Evaluation of such forecasts is important to forecasters, stakeholders, model developers and users to understand the performance of these forecasts and also strengths and weaknesses to enable further development. Met Office terrestrial near real-time verification systems have been adapted to provide verification of X-ray flare and geomagnetic storm forecasts. Verification is updated daily to produce Relative Operating Characteristic (ROC) curves and Reliability diagrams, and rolling Ranked Probability Skill Scores (RPSSs) thus providing understanding of forecast performance and skill. Results suggest that the MOSWOC issued X-ray flare forecasts are usually not statistically significantly better than a benchmark climatological forecast (where the climatology is based on observations from the previous few months). By contrast, the issued geomagnetic storm activity forecast typically performs better against this climatological benchmark.

  12. A human judgment approach to epidemiological forecasting

    PubMed Central

    Farrow, David C.; Brooks, Logan C.; Rosenfeld, Roni

    2017-01-01

    Infectious diseases impose considerable burden on society, despite significant advances in technology and medicine over the past century. Advanced warning can be helpful in mitigating and preparing for an impending or ongoing epidemic. Historically, such a capability has lagged for many reasons, including in particular the uncertainty in the current state of the system and in the understanding of the processes that drive epidemic trajectories. Presently we have access to data, models, and computational resources that enable the development of epidemiological forecasting systems. Indeed, several recent challenges hosted by the U.S. government have fostered an open and collaborative environment for the development of these technologies. The primary focus of these challenges has been to develop statistical and computational methods for epidemiological forecasting, but here we consider a serious alternative based on collective human judgment. We created the web-based “Epicast” forecasting system which collects and aggregates epidemic predictions made in real-time by human participants, and with these forecasts we ask two questions: how accurate is human judgment, and how do these forecasts compare to their more computational, data-driven alternatives? To address the former, we assess by a variety of metrics how accurately humans are able to predict influenza and chikungunya trajectories. As for the latter, we show that real-time, combined human predictions of the 2014–2015 and 2015–2016 U.S. flu seasons are often more accurate than the same predictions made by several statistical systems, especially for short-term targets. We conclude that there is valuable predictive power in collective human judgment, and we discuss the benefits and drawbacks of this approach. PMID:28282375

  13. A human judgment approach to epidemiological forecasting.

    PubMed

    Farrow, David C; Brooks, Logan C; Hyun, Sangwon; Tibshirani, Ryan J; Burke, Donald S; Rosenfeld, Roni

    2017-03-01

    Infectious diseases impose considerable burden on society, despite significant advances in technology and medicine over the past century. Advanced warning can be helpful in mitigating and preparing for an impending or ongoing epidemic. Historically, such a capability has lagged for many reasons, including in particular the uncertainty in the current state of the system and in the understanding of the processes that drive epidemic trajectories. Presently we have access to data, models, and computational resources that enable the development of epidemiological forecasting systems. Indeed, several recent challenges hosted by the U.S. government have fostered an open and collaborative environment for the development of these technologies. The primary focus of these challenges has been to develop statistical and computational methods for epidemiological forecasting, but here we consider a serious alternative based on collective human judgment. We created the web-based "Epicast" forecasting system which collects and aggregates epidemic predictions made in real-time by human participants, and with these forecasts we ask two questions: how accurate is human judgment, and how do these forecasts compare to their more computational, data-driven alternatives? To address the former, we assess by a variety of metrics how accurately humans are able to predict influenza and chikungunya trajectories. As for the latter, we show that real-time, combined human predictions of the 2014-2015 and 2015-2016 U.S. flu seasons are often more accurate than the same predictions made by several statistical systems, especially for short-term targets. We conclude that there is valuable predictive power in collective human judgment, and we discuss the benefits and drawbacks of this approach.

  14. Weather monitoring and forecasting over eastern Attica (Greece) in the frame of FLIRE project

    NASA Astrophysics Data System (ADS)

    Kotroni, Vassiliki; Lagouvardos, Konstantinos; Chrysoulakis, Nektarios; Makropoulos, Christtos; Mimikou, Maria; Papathanasiou, Chrysoula; Poursanidis, Dimitris

    2015-04-01

    In the frame of FLIRE project a Decision Support System has been built with the aim to support decision making of Civil Protection Agencies and local stakeholders in the area of east Attica (Greece), in the cases of forest fires and floods. In this presentation we focus on a specific action that focuses on the provision of high resolution short-term weather forecasting data as well as of dense meteorological observations over the study area. Both weather forecasts and observations serve as an input in the Weather Information Management Tool (WIMT) of the Decision Support System. We focus on: (a) the description of the adopted strategy for setting-up the operational weather forecasting chain that provides the weather forecasts for the FLIRE project needs, (b) the presentation of the surface network station that provides real-time weather monitoring of the study area and (c) the strategy adopted for issuing smart alerts for thunderstorm forecasting based of real-time lightning observations as well as satellite observations.

  15. Impact of single-point GPS integrated water vapor estimates on short-range WRF model forecasts over southern India

    NASA Astrophysics Data System (ADS)

    Kumar, Prashant; Gopalan, Kaushik; Shukla, Bipasha Paul; Shyam, Abhineet

    2017-11-01

    Specifying physically consistent and accurate initial conditions is one of the major challenges of numerical weather prediction (NWP) models. In this study, ground-based global positioning system (GPS) integrated water vapor (IWV) measurements available from the International Global Navigation Satellite Systems (GNSS) Service (IGS) station in Bangalore, India, are used to assess the impact of GPS data on NWP model forecasts over southern India. Two experiments are performed with and without assimilation of GPS-retrieved IWV observations during the Indian winter monsoon period (November-December, 2012) using a four-dimensional variational (4D-Var) data assimilation method. Assimilation of GPS data improved the model IWV analysis as well as the subsequent forecasts. There is a positive impact of ˜10 % over Bangalore and nearby regions. The Weather Research and Forecasting (WRF) model-predicted 24-h surface temperature forecasts have also improved when compared with observations. Small but significant improvements were found in the rainfall forecasts compared to control experiments.

  16. Evaluating probabilistic dengue risk forecasts from a prototype early warning system for Brazil

    PubMed Central

    Lowe, Rachel; Coelho, Caio AS; Barcellos, Christovam; Carvalho, Marilia Sá; Catão, Rafael De Castro; Coelho, Giovanini E; Ramalho, Walter Massa; Bailey, Trevor C; Stephenson, David B; Rodó, Xavier

    2016-01-01

    Recently, a prototype dengue early warning system was developed to produce probabilistic forecasts of dengue risk three months ahead of the 2014 World Cup in Brazil. Here, we evaluate the categorical dengue forecasts across all microregions in Brazil, using dengue cases reported in June 2014 to validate the model. We also compare the forecast model framework to a null model, based on seasonal averages of previously observed dengue incidence. When considering the ability of the two models to predict high dengue risk across Brazil, the forecast model produced more hits and fewer missed events than the null model, with a hit rate of 57% for the forecast model compared to 33% for the null model. This early warning model framework may be useful to public health services, not only ahead of mass gatherings, but also before the peak dengue season each year, to control potentially explosive dengue epidemics. DOI: http://dx.doi.org/10.7554/eLife.11285.001 PMID:26910315

  17. Validation of Seasonal Forecast of Indian Summer Monsoon Rainfall

    NASA Astrophysics Data System (ADS)

    Das, Sukanta Kumar; Deb, Sanjib Kumar; Kishtawal, C. M.; Pal, Pradip Kumar

    2015-06-01

    The experimental seasonal forecast of Indian summer monsoon (ISM) rainfall during June through September using Community Atmosphere Model (CAM) version 3 has been carried out at the Space Applications Centre Ahmedabad since 2009. The forecasts, based on a number of ensemble members (ten minimum) of CAM, are generated in several phases and updated on regular basis. On completion of 5 years of experimental seasonal forecasts in operational mode, it is required that the overall validation or correctness of the forecast system is quantified and that the scope is assessed for further improvements of the forecast over time, if any. The ensemble model climatology generated by a set of 20 identical CAM simulations is considered as the model control simulation. The performance of the forecast has been evaluated by assuming the control simulation as the model reference. The forecast improvement factor shows positive improvements, with higher values for the recent forecasted years as compared to the control experiment over the Indian landmass. The Taylor diagram representation of the Pearson correlation coefficient (PCC), standard deviation and centered root mean square difference has been used to demonstrate the best PCC, in the order of 0.74-0.79, recorded for the seasonal forecast made during 2013. Further, the bias score of different phases of experiment revealed the fact that the ISM rainfall forecast is affected by overestimation in predicting the low rain-rate (less than 7 mm/day), but by underestimation in the medium and high rain-rate (higher than 11 mm/day). Overall, the analysis shows significant improvement of the ISM forecast over the last 5 years, viz. 2009-2013, due to several important modifications that have been implemented in the forecast system. The validation exercise has also pointed out a number of shortcomings in the forecast system; these will be addressed in the upcoming years of experiments to improve the quality of the ISM prediction.

  18. Incorporating Wind Power Forecast Uncertainties Into Stochastic Unit Commitment Using Neural Network-Based Prediction Intervals.

    PubMed

    Quan, Hao; Srinivasan, Dipti; Khosravi, Abbas

    2015-09-01

    Penetration of renewable energy resources, such as wind and solar power, into power systems significantly increases the uncertainties on system operation, stability, and reliability in smart grids. In this paper, the nonparametric neural network-based prediction intervals (PIs) are implemented for forecast uncertainty quantification. Instead of a single level PI, wind power forecast uncertainties are represented in a list of PIs. These PIs are then decomposed into quantiles of wind power. A new scenario generation method is proposed to handle wind power forecast uncertainties. For each hour, an empirical cumulative distribution function (ECDF) is fitted to these quantile points. The Monte Carlo simulation method is used to generate scenarios from the ECDF. Then the wind power scenarios are incorporated into a stochastic security-constrained unit commitment (SCUC) model. The heuristic genetic algorithm is utilized to solve the stochastic SCUC problem. Five deterministic and four stochastic case studies incorporated with interval forecasts of wind power are implemented. The results of these cases are presented and discussed together. Generation costs, and the scheduled and real-time economic dispatch reserves of different unit commitment strategies are compared. The experimental results show that the stochastic model is more robust than deterministic ones and, thus, decreases the risk in system operations of smart grids.

  19. Space Transportation System Meteorological Expert

    NASA Technical Reports Server (NTRS)

    Beller, Arthur E.; Stafford, Sue P.

    1987-01-01

    The STS Meteorological Expert (STSMET) is a long-term project to acquire general Shuttle operational weather forecasting expertise specific to the launch locale, to apply it to Shuttle operational weather forecasting tasks at the Cape Canaveral Forecast Facility, and ultimately to provide an on-line real-time operational aid to the duty forecasters in performing their tasks. Particular attention is given to the development of an approach called scenario-based reasoning, with specific application to summer thunderstorms; this type of reasoning can also be applied to frontal weather phenomena, visibility including fog, and wind shear.

  20. SONARC: A Sea Ice Monitoring and Forecasting System to Support Safe Operations and Navigation in Arctic Seas

    NASA Astrophysics Data System (ADS)

    Stephenson, S. R.; Babiker, M.; Sandven, S.; Muckenhuber, S.; Korosov, A.; Bobylev, L.; Vesman, A.; Mushta, A.; Demchev, D.; Volkov, V.; Smirnov, K.; Hamre, T.

    2015-12-01

    Sea ice monitoring and forecasting systems are important tools for minimizing accident risk and environmental impacts of Arctic maritime operations. Satellite data such as synthetic aperture radar (SAR), combined with atmosphere-ice-ocean forecasting models, navigation models and automatic identification system (AIS) transponder data from ships are essential components of such systems. Here we present first results from the SONARC project (project term: 2015-2017), an international multidisciplinary effort to develop novel and complementary ice monitoring and forecasting systems for vessels and offshore platforms in the Arctic. Automated classification methods (Zakhvatkina et al., 2012) are applied to Sentinel-1 dual-polarization SAR images from the Barents and Kara Sea region to identify ice types (e.g. multi-year ice, level first-year ice, deformed first-year ice, new/young ice, open water) and ridges. Short-term (1-3 days) ice drift forecasts are computed from SAR images using feature tracking and pattern tracking methods (Berg & Eriksson, 2014). Ice classification and drift forecast products are combined with ship positions based on AIS data from a selected period of 3-4 weeks to determine optimal vessel speed and routing in ice. Results illustrate the potential of high-resolution SAR data for near-real-time monitoring and forecasting of Arctic ice conditions. Over the next 3 years, SONARC findings will contribute new knowledge about sea ice in the Arctic while promoting safe and cost-effective shipping, domain awareness, resource management, and environmental protection.

  1. Development and application of an atmospheric-hydrologic-hydraulic flood forecasting model driven by TIGGE ensemble forecasts

    NASA Astrophysics Data System (ADS)

    Bao, Hongjun; Zhao, Linna

    2012-02-01

    A coupled atmospheric-hydrologic-hydraulic ensemble flood forecasting model, driven by The Observing System Research and Predictability Experiment (THORPEX) Interactive Grand Global Ensemble (TIGGE) data, has been developed for flood forecasting over the Huaihe River. The incorporation of numerical weather prediction (NWP) information into flood forecasting systems may increase forecast lead time from a few hours to a few days. A single NWP model forecast from a single forecast center, however, is insufficient as it involves considerable non-predictable uncertainties and leads to a high number of false alarms. The availability of global ensemble NWP systems through TIGGE offers a new opportunity for flood forecast. The Xinanjiang model used for hydrological rainfall-runoff modeling and the one-dimensional unsteady flow model applied to channel flood routing are coupled with ensemble weather predictions based on the TIGGE data from the Canadian Meteorological Centre (CMC), the European Centre for Medium-Range Weather Forecasts (ECMWF), the UK Met Office (UKMO), and the US National Centers for Environmental Prediction (NCEP). The developed ensemble flood forecasting model is applied to flood forecasting of the 2007 flood season as a test case. The test case is chosen over the upper reaches of the Huaihe River above Lutaizi station with flood diversion and retarding areas. The input flood discharge hydrograph from the main channel to the flood diversion area is estimated with the fixed split ratio of the main channel discharge. The flood flow inside the flood retarding area is calculated as a reservoir with the water balance method. The Muskingum method is used for flood routing in the flood diversion area. A probabilistic discharge and flood inundation forecast is provided as the end product to study the potential benefits of using the TIGGE ensemble forecasts. The results demonstrate satisfactory flood forecasting with clear signals of probability of floods up to a few days in advance, and show that TIGGE ensemble forecast data are a promising tool for forecasting of flood inundation, comparable with that driven by raingauge observations.

  2. Improving Global Forecast System of extreme precipitation events with regional statistical model: Application of quantile-based probabilistic forecasts

    NASA Astrophysics Data System (ADS)

    Shastri, Hiteshri; Ghosh, Subimal; Karmakar, Subhankar

    2017-02-01

    Forecasting of extreme precipitation events at a regional scale is of high importance due to their severe impacts on society. The impacts are stronger in urban regions due to high flood potential as well high population density leading to high vulnerability. Although significant scientific improvements took place in the global models for weather forecasting, they are still not adequate at a regional scale (e.g., for an urban region) with high false alarms and low detection. There has been a need to improve the weather forecast skill at a local scale with probabilistic outcome. Here we develop a methodology with quantile regression, where the reliably simulated variables from Global Forecast System are used as predictors and different quantiles of rainfall are generated corresponding to that set of predictors. We apply this method to a flood-prone coastal city of India, Mumbai, which has experienced severe floods in recent years. We find significant improvements in the forecast with high detection and skill scores. We apply the methodology to 10 ensemble members of Global Ensemble Forecast System and find a reduction in ensemble uncertainty of precipitation across realizations with respect to that of original precipitation forecasts. We validate our model for the monsoon season of 2006 and 2007, which are independent of the training/calibration data set used in the study. We find promising results and emphasize to implement such data-driven methods for a better probabilistic forecast at an urban scale primarily for an early flood warning.

  3. Improved Weather and Power Forecasts for Energy Operations - the German Research Project EWeLiNE

    NASA Astrophysics Data System (ADS)

    Lundgren, Kristina; Siefert, Malte; Hagedorn, Renate; Majewski, Detlev

    2014-05-01

    The German energy system is going through a fundamental change. Based on the energy plans of the German federal government, the share of electrical power production from renewables should increase to 35% by 2020. This means that, in the near future at certain times renewable energies will provide a major part of Germany's power production. Operating a power supply system with a large share of weather-dependent power sources in a secure way requires improved power forecasts. One of the most promising strategies to improve the existing wind power and PV power forecasts is to optimize the underlying weather forecasts and to enhance the collaboration between the meteorology and energy sectors. Deutscher Wetterdienst addresses these challenges in collaboration with Fraunhofer IWES within the research project EWeLiNE. The overarching goal of the project is to improve the wind and PV power forecasts by combining improved power forecast models and optimized weather forecasts. During the project, the numerical weather prediction models COSMO-DE and COSMO-DE-EPS (Ensemble Prediction System) by Deutscher Wetterdienst will be generally optimized towards improved wind power and PV forecasts. For instance, it will be investigated whether the assimilation of new types of data, e.g. power production data, can lead to improved weather forecasts. With regard to the probabilistic forecasts, the focus is on the generation of ensembles and ensemble calibration. One important aspect of the project is to integrate the probabilistic information into decision making processes by developing user-specified products. In this paper we give an overview of the project and present first results.

  4. A Real-Time California Coastal Ocean Nowcast/Forecast System: Skill Assessment, User Products, and Transition from Research to Operations

    NASA Astrophysics Data System (ADS)

    Farrara, J. D.; Chao, Y.; Chai, F.; Zhang, H.

    2016-02-01

    The real-time California coastal ocean nowcast/forecast system is described. The model is based on the Regional Ocean Modeling System (ROMS) and covers the entire California coastal ocean with a horizontal resolution of 3 km and 40 vertical layers. The atmospheric forcing is derived from the operational regional atmospheric model forecasts. The lateral boundary conditions are provided by the operational ocean model forecasts. A multi-scale 3-dimensional variational (3DVAR) data assimilation scheme is used to assimilate both in situ (e.g., vertical profiles of temperature and salinity) and remotely sensed data from both satellite (e.g., sea surface temperature and sea surface height) and land-based platforms (e.g., surface current). The performance of our nowcast/forecast system is evaluated in real-time by a number of metrics that are published as soon as they become available. User tools and products have been developed for both general users and super-users (e.g., NOAA Office of Response and Restoration and USCG). Recent results comparing the 3DVAR with the ensemble Kalman Filter (EnKF) using Data Assimilation Research Testbed (DART) will be presented. Preliminary results coupling the ROMS circulation model with a biogeochemistry/ecosystem model (i.e., CoSiNE) will also discussed. Cloud computing services (e.g., Microsoft, Google) are now being tested to increase the reliability and timeliness in order to be accepted as a truly operational system in the near future.

  5. Design and skill assessment of an Operational Forecasting System for currents and sea level variability to the Santos Estuarine System - Brazil

    NASA Astrophysics Data System (ADS)

    Godoi Rezende Costa, C.; Castro, B. M.; Blumberg, A. F.; Leite, J. R. B., Sr.

    2017-12-01

    Santos City is subject to an average of 12 storm tide events per year. Such events bring coastal flooding able to threat human life and damage coastal infrastructure. Severe events have forced the interruption of ferry boat services and ship traffic through Santos Harbor, causing great impacts to Santos Port, the largest in South America, activities. Several studies have focused on the hydrodynamics of storm tide events but only a few of those studies have pursued an operational initiative to predict short term (< 3 days) sea level variability. The goals of this study are (i) to describe the design of an operational forecasting system built to predict sea surface elevation and currents in the Santos Estuarine System and (ii) to evaluate model performance in simulating observed sea surface elevation. The Santos Operational Forecasting System (SOFS) hydrodynamic module is based on the Stevens Institute Estuarine and Coastal Ocean Model (sECOM). The fully automated SOFS is designed to provide up to 71 h forecast of sea surface elevations and currents every day. The system automatically collects results from global models to run the SOFS nested into another sECOM based model for the South Brazil Bight (SBB). Global forecasting results used to force both models come from Mercator Ocean, released by Copernicus Marine Service, and from the Brazilian developments on the Regional Atmospheric Modeling System (BRAMS) stablished by the Center for Weather Forecasts and Climate Studies (with Portuguese acronym CPTEC). The complete routines task take about 8 hours of run time to finish. SOFS was able to hindcast a severe storm tide event that took place in Santos on August 21-22, 2016. Comparisons with observed sea level provided skills of 0.92 and maximum root mean square errors of 25 cm. The good agreement with observed data shows the potential of the designed system to predict storm tides and to support both human and assets protection.

  6. Interval forecasting of cyberattack intensity on informatization objects of industry using probability cluster model

    NASA Astrophysics Data System (ADS)

    Krakovsky, Y. M.; Luzgin, A. N.; Mikhailova, E. A.

    2018-05-01

    At present, cyber-security issues associated with the informatization objects of industry occupy one of the key niches in the state management system. As a result of functional disruption of these systems via cyberattacks, an emergency may arise related to loss of life, environmental disasters, major financial and economic damage, or disrupted activities of cities and settlements. When cyberattacks occur with high intensity, in these conditions there is the need to develop protection against them, based on machine learning methods. This paper examines interval forecasting and presents results with a pre-set intensity level. The interval forecasting is carried out based on a probabilistic cluster model. This method involves forecasting of one of the two predetermined intervals in which a future value of the indicator will be located; probability estimates are used for this purpose. A dividing bound of these intervals is determined by a calculation method based on statistical characteristics of the indicator. Source data are used that includes a number of hourly cyberattacks using a honeypot from March to September 2013.

  7. Development of speed models for improving travel forecasting and highway performance evaluation : [technical summary].

    DOT National Transportation Integrated Search

    2013-12-01

    Travel forecasting models predict travel demand based on the present transportation system and its use. Transportation modelers must develop, validate, and calibrate models to ensure that predicted travel demand is as close to reality as possible. Mo...

  8. Bias correction of satellite precipitation products for flood forecasting application at the Upper Mahanadi River Basin in Eastern India

    NASA Astrophysics Data System (ADS)

    Beria, H.; Nanda, T., Sr.; Chatterjee, C.

    2015-12-01

    High resolution satellite precipitation products such as Tropical Rainfall Measuring Mission (TRMM), Climate Forecast System Reanalysis (CFSR), European Centre for Medium-Range Weather Forecasts (ECMWF), etc., offer a promising alternative to flood forecasting in data scarce regions. At the current state-of-art, these products cannot be used in the raw form for flood forecasting, even at smaller lead times. In the current study, these precipitation products are bias corrected using statistical techniques, such as additive and multiplicative bias corrections, and wavelet multi-resolution analysis (MRA) with India Meteorological Department (IMD) gridded precipitation product,obtained from gauge-based rainfall estimates. Neural network based rainfall-runoff modeling using these bias corrected products provide encouraging results for flood forecasting upto 48 hours lead time. We will present various statistical and graphical interpretations of catchment response to high rainfall events using both the raw and bias corrected precipitation products at different lead times.

  9. Cable Overheating Risk Warning Method Based on Impedance Parameter Estimation in Distribution Network

    NASA Astrophysics Data System (ADS)

    Yu, Zhang; Xiaohui, Song; Jianfang, Li; Fei, Gao

    2017-05-01

    Cable overheating will lead to the cable insulation level reducing, speed up the cable insulation aging, even easy to cause short circuit faults. Cable overheating risk identification and warning is nessesary for distribution network operators. Cable overheating risk warning method based on impedance parameter estimation is proposed in the paper to improve the safty and reliability operation of distribution network. Firstly, cable impedance estimation model is established by using least square method based on the data from distribiton SCADA system to improve the impedance parameter estimation accuracy. Secondly, calculate the threshold value of cable impedance based on the historical data and the forecast value of cable impedance based on the forecasting data in future from distribiton SCADA system. Thirdly, establish risks warning rules library of cable overheating, calculate the cable impedance forecast value and analysis the change rate of impedance, and then warn the overheating risk of cable line based on the overheating risk warning rules library according to the variation relationship between impedance and line temperature rise. Overheating risk warning method is simulated in the paper. The simulation results shows that the method can identify the imedance and forecast the temperature rise of cable line in distribution network accurately. The result of overheating risk warning can provide decision basis for operation maintenance and repair.

  10. Multi-platform operational validation of the Western Mediterranean SOCIB forecasting system

    NASA Astrophysics Data System (ADS)

    Juza, Mélanie; Mourre, Baptiste; Renault, Lionel; Tintoré, Joaquin

    2014-05-01

    The development of science-based ocean forecasting systems at global, regional, and local scales can support a better management of the marine environment (maritime security, environmental and resources protection, maritime and commercial operations, tourism, ...). In this context, SOCIB (the Balearic Islands Coastal Observing and Forecasting System, www.socib.es) has developed an operational ocean forecasting system in the Western Mediterranean Sea (WMOP). WMOP uses a regional configuration of the Regional Ocean Modelling System (ROMS, Shchepetkin and McWilliams, 2005) nested in the larger scale Mediterranean Forecasting System (MFS) with a spatial resolution of 1.5-2km. WMOP aims at reproducing both the basin-scale ocean circulation and the mesoscale variability which is known to play a crucial role due to its strong interaction with the large scale circulation in this region. An operational validation system has been developed to systematically assess the model outputs at daily, monthly and seasonal time scales. Multi-platform observations are used for this validation, including satellite products (Sea Surface Temperature, Sea Level Anomaly), in situ measurements (from gliders, Argo floats, drifters and fixed moorings) and High-Frequency radar data. The validation procedures allow to monitor and certify the general realism of the daily production of the ocean forecasting system before its distribution to users. Additionally, different indicators (Sea Surface Temperature and Salinity, Eddy Kinetic Energy, Mixed Layer Depth, Heat Content, transports in key sections) are computed every day both at the basin-scale and in several sub-regions (Alboran Sea, Balearic Sea, Gulf of Lion). The daily forecasts, validation diagnostics and indicators from the operational model over the last months are available at www.socib.es.

  11. Assessment of seasonal soil moisture forecasts over Southern South America with emphasis on dry and wet events

    NASA Astrophysics Data System (ADS)

    Spennemann, Pablo; Rivera, Juan Antonio; Osman, Marisol; Saulo, Celeste; Penalba, Olga

    2017-04-01

    The importance of forecasting extreme wet and dry conditions from weeks to months in advance relies on the need to prevent considerable socio-economic losses, mainly in regions of large populations and where agriculture is a key value for the economies, like Southern South America (SSA). Therefore, to improve the understanding of the performance and uncertainties of seasonal soil moisture and precipitation forecasts over SSA, this study aims to: 1) perform a general assessment of the Climate Forecast System version-2 (CFSv2) soil moisture and precipitation forecasts; and 2) evaluate the CFSv2 ability to represent an extreme drought event merging observations with forecasted Standardized Precipitation Index (SPI) and the Standardized Soil Moisture Anomalies (SSMA) based on GLDAS-2.0 simulations. Results show that both SPI and SSMA forecast skill are regionally and seasonally dependent. In general a fast degradation of the forecasts skill is observed as the lead time increases with no significant metrics for forecast lead times longer than 2 months. Based on the assessment of the 2008-2009 extreme drought event it is evident that the CFSv2 forecasts have limitations regarding the identification of drought onset, duration, severity and demise, considering both meteorological (SPI) and agricultural (SSMA) drought conditions. These results have some implications upon the use of seasonal forecasts to assist agricultural practices in SSA, given that forecast skill is still too low to be useful for lead times longer than 2 months.

  12. Cellular Automata-Based Application for Driver Assistance in Indoor Parking Areas.

    PubMed

    Caballero-Gil, Cándido; Caballero-Gil, Pino; Molina-Gil, Jezabel

    2016-11-15

    This work proposes an adaptive recommendation mechanism for smart parking that takes advantage of the popularity of smartphones and the rise of the Internet of Things. The proposal includes a centralized system to forecast available indoor parking spaces, and a low-cost mobile application to obtain data of actual and predicted parking occupancy. The described scheme uses data from both sources bidirectionally so that the centralized forecast system is fed with data obtained with the distributed system based on smartphones, and vice versa. The mobile application uses different wireless technologies to provide the forecast system with actual parking data and receive from the system useful recommendations about where to park. Thus, the proposal can be used by any driver to easily find available parking spaces in indoor facilities. The client software developed for smartphones is a lightweight Android application that supplies precise indoor positioning systems based on Quick Response codes or Near Field Communication tags, and semi-precise indoor positioning systems based on Bluetooth Low Energy beacons. The performance of the proposed approach has been evaluated by conducting computer simulations and real experimentation with a preliminary implementation. The results have shown the strengths of the proposal in the reduction of the time and energy costs to find available parking spaces.

  13. Cellular Automata-Based Application for Driver Assistance in Indoor Parking Areas †

    PubMed Central

    Caballero-Gil, Cándido; Caballero-Gil, Pino; Molina-Gil, Jezabel

    2016-01-01

    This work proposes an adaptive recommendation mechanism for smart parking that takes advantage of the popularity of smartphones and the rise of the Internet of Things. The proposal includes a centralized system to forecast available indoor parking spaces, and a low-cost mobile application to obtain data of actual and predicted parking occupancy. The described scheme uses data from both sources bidirectionally so that the centralized forecast system is fed with data obtained with the distributed system based on smartphones, and vice versa. The mobile application uses different wireless technologies to provide the forecast system with actual parking data and receive from the system useful recommendations about where to park. Thus, the proposal can be used by any driver to easily find available parking spaces in indoor facilities. The client software developed for smartphones is a lightweight Android application that supplies precise indoor positioning systems based on Quick Response codes or Near Field Communication tags, and semi-precise indoor positioning systems based on Bluetooth Low Energy beacons. The performance of the proposed approach has been evaluated by conducting computer simulations and real experimentation with a preliminary implementation. The results have shown the strengths of the proposal in the reduction of the time and energy costs to find available parking spaces. PMID:27854282

  14. Real-time short-term forecast of water inflow into Bureyskaya reservoir

    NASA Astrophysics Data System (ADS)

    Motovilov, Yury

    2017-04-01

    During several recent years, a methodology for operational optimization in hydrosystems including forecasts of the hydrological situation has been developed on example of Burea reservoir. The forecasts accuracy improvement of the water inflow into the reservoir during planning of water and energy regime was one of the main goals for implemented research. Burea river is the second left largest Amur tributary after Zeya river with its 70.7 thousand square kilometers watershed and 723 km-long river course. A variety of natural conditions - from plains in the southern part to northern mountainous areas determine a significant spatio-temporal variability in runoff generation patterns and river regime. Bureyskaya hydropower plant (HPP) with watershed area 65.2 thousand square kilometers is a key station in the Russian Far Eastern energy system providing its reliable operation. With a spacious reservoir, Bureyskaya HPP makes a significant contribution to the protection of the Amur region from catastrophic floods. A physically-based distributed model of runoff generation based on the ECOMAG (ECOlogical Model for Applied Geophysics) hydrological modeling platform has been developed for the Burea River basin. The model describes processes of interception of rainfall/snowfall by the canopy, snow accumulation and melt, soil freezing and thawing, water infiltration into unfrozen and frozen soil, evapotranspiration, thermal and water regime of soil, overland, subsurface, ground and river flow. The governing model's equations are derived from integration of the basic hydro- and thermodynamics equations of water and heat vertical transfer in snowpack, frozen/unfrozen soil, horizontal water flow under and over catchment slopes, etc. The model setup for Bureya river basin included watershed and river network schematization with GIS module by DEM analysis, meteorological time-series preparation, model calibration and validation against historical observations. The results showed good model performance as compared to observed inflow data into the Bureya reservoir and high diagnostic potential of data-modeling system of the runoff formation. With the use of this system the following flowchart for short-range forecasting inflow into Bureyskoe reservoir and forecast correction technique using continuously updated hydrometeorological data has been developed: 1 - Daily renewal of weather observations and forecasts database via the Internet; 2 - Daily runoff calculation from the beginning of the current year to current date is conducted; 3 - Short-range (up to 7 days) forecast is generated based on weather forecast. The idea underlying the model assimilation of newly obtained hydro meteorological information to adjust short-range hydrological forecasts lies in the assumption of the forecast errors inertia. Then the difference between calculated and observed streamflow at the forecast release date is "scattered" with specific weights to calculated streamflow for the forecast lead time. During 2016 this forecasts method of the inflow into the Bureyskaya reservoir up to 7 days is tested in online mode. Satisfactory evaluated short-range inflow forecast success rate is obtained. Tests of developed method have shown strong sensitivity to the results of short-term precipitation forecasts.

  15. Forecast of jet engine exhaust emissions for future high altitude commercial aircraft

    NASA Technical Reports Server (NTRS)

    Grobman, J.; Ingebo, R. D.

    1974-01-01

    Projected minimum levels of engine exhaust emissions that may be practicably achievable for future commercial aircraft operating at high altitude cruise conditions are presented. The forecasts are based on: (1) current knowledge of emission characteristics of combustors and augmentors; (2) the current status of combustion research in emission reduction technology; (3) predictable trends in combustion systems and operating conditions as required for projected engine designs that are candidates for advanced subsonic or supersonic commercial aircraft. Results are presented for cruise conditions in terms of an emission index, g pollutant/kg fuel. Two sets of engine exhaust emission predictions are presented: the first, based on an independent NASA study and the second, based on the consensus of an ad hoc committee composed of industry, university, and government representatives. The consensus forecasts are in general agreement with the NASA forecasts.

  16. Forecast of jet engine exhaust emissions for future high altitude commercial aircraft

    NASA Technical Reports Server (NTRS)

    Grobman, J.; Ingebo, R. D.

    1974-01-01

    Projected minimum levels of engine exhaust emissions that may be practicably achievable for future commercial aircraft operating at high altitude cruise conditions are presented. The forecasts are based on: (1) current knowledge of emission characteristics of combustors and augmentors; (2) the current status of combustion research in emission reduction technology; and (3) predictable trends in combustion systems and operating conditions as required for projected engine designs that are candidates for advanced subsonic or supersonic commercial aircraft. Results are presented for cruise conditions in terms of an emission index, g pollutant/kg fuel. Two sets of engine exhaust emission predictions are presented: the first, based on an independent NASA study and the second, based on the consensus of an ad hoc committee composed of industry, university, and government representatives. The consensus forecasts are in general agreement with the NASA forecasts.

  17. Advanced solar irradiances applied to satellite and ionospheric operational systems

    NASA Astrophysics Data System (ADS)

    Tobiska, W. Kent; Schunk, Robert; Eccles, Vince; Bouwer, Dave

    Satellite and ionospheric operational systems require solar irradiances in a variety of time scales and spectral formats. We describe the development of a system using operational grade solar irradiances that are applied to empirical thermospheric density models and physics-based ionospheric models used by operational systems that require a space weather characterization. The SOLAR2000 (S2K) and SOLARFLARE (SFLR) models developed by Space Environment Technologies (SET) provide solar irradiances from the soft X-rays (XUV) through the Far Ultraviolet (FUV) spectrum. The irradiances are provided as integrated indices for the JB2006 empirical atmosphere density models and as line/band spectral irradiances for the physics-based Ionosphere Forecast Model (IFM) developed by the Space Environment Corporation (SEC). We describe the integration of these irradiances in historical, current epoch, and forecast modes through the Communication Alert and Prediction System (CAPS). CAPS provides real-time and forecast HF radio availability for global and regional users and global total electron content (TEC) conditions.

  18. Operational coupled atmosphere - ocean - ice forecast system for the Gulf of St. Lawrence, Canada

    NASA Astrophysics Data System (ADS)

    Faucher, M.; Roy, F.; Desjardins, S.; Fogarty, C.; Pellerin, P.; Ritchie, H.; Denis, B.

    2009-09-01

    A fully interactive coupled atmosphere-ocean-ice forecasting system for the Gulf of St. Lawrence (GSL) has been running in experimental mode at the Canadian Meteorological Centre (CMC) for the last two winter seasons. The goal of this project is to provide more accurate weather and sea ice forecasts over the GSL and adjacent coastal areas by including atmosphere-oceanice interactions in the CMC operational forecast system using a formal coupling strategy between two independent modeling components. The atmospheric component is the Canadian operational GEM model (Côté et al. 1998) and the oceanic component is the ocean-ice model for the Gulf of St. Lawrence developed at the Maurice Lamontagne Institute (IML) (Saucier et al. 2003, 2004). The coupling between those two models is achieved by exchanging surface fluxes and variables through MPI communication. The re-gridding of the variables is done with a package developed at the Recherche en Prevision Numerique centre (RPN, Canada). Coupled atmosphere - ocean - ice forecasts are issued once a day based on 00GMT data. Results for the past two years have demonstrated that the coupled system produces improved forecasts in and around the GSL during all seasons, proving that atmosphere-ocean-ice interactions are indeed important even for short-term Canadian weather forecasts. This has important implications for other coupled modeling and data assimilation partnerships that are in progress involving EC, the Department of Fisheries and Oceans (DFO) and the National Defense (DND). Following this experimental phase, it is anticipated that this GSL system will be the first fully interactive coupled system to be implemented at CMC.

  19. Forecasting the ocean optical environment in support of Navy mine warfare operations

    NASA Astrophysics Data System (ADS)

    Ladner, S. D.; Arnone, R.; Jolliff, J.; Casey, B.; Matulewski, K.

    2012-06-01

    A 3D ocean optical forecast system called TODS (Tactical Ocean Data System) has been developed to determine the performance of underwater LIDAR detection/identification systems. TODS fuses optical measurements from gliders, surface satellite optical properties, and 3D ocean forecast circulation models to extend the 2-dimensional surface satellite optics into a 3-dimensional optical volume including subsurface optical layers of beam attenuation coefficient (c) and diver visibility. Optical 3D nowcast and forecasts are combined with electro-optical identification (EOID) models to determine the underwater LIDAR imaging performance field used to identify subsurface mine threats in rapidly changing coastal regions. TODS was validated during a recent mine warfare exercise with Helicopter Mine Countermeasures Squadron (HM-14). Results include the uncertainties in the optical forecast and lidar performance and sensor tow height predictions that are based on visual detection and identification metrics using actual mine target images from the EOID system. TODS is a new capability of coupling the 3D optical environment and EOID system performance and is proving important for the MIW community as both a tactical decision aid and for use in operational planning, improving timeliness and efficiency in clearance operations.

  20. Predictability of short-range forecasting: a multimodel approach

    NASA Astrophysics Data System (ADS)

    García-Moya, Jose-Antonio; Callado, Alfons; Escribà, Pau; Santos, Carlos; Santos-Muñoz, Daniel; Simarro, Juan

    2011-05-01

    Numerical weather prediction (NWP) models (including mesoscale) have limitations when it comes to dealing with severe weather events because extreme weather is highly unpredictable, even in the short range. A probabilistic forecast based on an ensemble of slightly different model runs may help to address this issue. Among other ensemble techniques, Multimodel ensemble prediction systems (EPSs) are proving to be useful for adding probabilistic value to mesoscale deterministic models. A Multimodel Short Range Ensemble Prediction System (SREPS) focused on forecasting the weather up to 72 h has been developed at the Spanish Meteorological Service (AEMET). The system uses five different limited area models (LAMs), namely HIRLAM (HIRLAM Consortium), HRM (DWD), the UM (UKMO), MM5 (PSU/NCAR) and COSMO (COSMO Consortium). These models run with initial and boundary conditions provided by five different global deterministic models, namely IFS (ECMWF), UM (UKMO), GME (DWD), GFS (NCEP) and CMC (MSC). AEMET-SREPS (AE) validation on the large-scale flow, using ECMWF analysis, shows a consistent and slightly underdispersive system. For surface parameters, the system shows high skill forecasting binary events. 24-h precipitation probabilistic forecasts are verified using an up-scaling grid of observations from European high-resolution precipitation networks, and compared with ECMWF-EPS (EC).

  1. Utilizing Climate Forecasts for Improving Water and Power Systems Coordination

    NASA Astrophysics Data System (ADS)

    Arumugam, S.; Queiroz, A.; Patskoski, J.; Mahinthakumar, K.; DeCarolis, J.

    2016-12-01

    Climate forecasts, typically monthly-to-seasonal precipitation forecasts, are commonly used to develop streamflow forecasts for improving reservoir management. Irrespective of their high skill in forecasting, temperature forecasts in developing power demand forecasts are not often considered along with streamflow forecasts for improving water and power systems coordination. In this study, we consider a prototype system to analyze the utility of climate forecasts, both precipitation and temperature, for improving water and power systems coordination. The prototype system, a unit-commitment model that schedules power generation from various sources, is considered and its performance is compared with an energy system model having an equivalent reservoir representation. Different skill sets of streamflow forecasts and power demand forecasts are forced on both water and power systems representations for understanding the level of model complexity required for utilizing monthly-to-seasonal climate forecasts to improve coordination between these two systems. The analyses also identify various decision-making strategies - forward purchasing of fuel stocks, scheduled maintenance of various power systems and tradeoff on water appropriation between hydropower and other uses - in the context of various water and power systems configurations. Potential application of such analyses for integrating large power systems with multiple river basins is also discussed.

  2. A non-parametric postprocessor for bias-correcting multi-model ensemble forecasts of hydrometeorological and hydrologic variables

    NASA Astrophysics Data System (ADS)

    Brown, James; Seo, Dong-Jun

    2010-05-01

    Operational forecasts of hydrometeorological and hydrologic variables often contain large uncertainties, for which ensemble techniques are increasingly used. However, the utility of ensemble forecasts depends on the unbiasedness of the forecast probabilities. We describe a technique for quantifying and removing biases from ensemble forecasts of hydrometeorological and hydrologic variables, intended for use in operational forecasting. The technique makes no a priori assumptions about the distributional form of the variables, which is often unknown or difficult to model parametrically. The aim is to estimate the conditional cumulative distribution function (ccdf) of the observed variable given a (possibly biased) real-time ensemble forecast from one or several forecasting systems (multi-model ensembles). The technique is based on Bayesian optimal linear estimation of indicator variables, and is analogous to indicator cokriging (ICK) in geostatistics. By developing linear estimators for the conditional expectation of the observed variable at many thresholds, ICK provides a discrete approximation of the full ccdf. Since ICK minimizes the conditional error variance of the indicator expectation at each threshold, it effectively minimizes the Continuous Ranked Probability Score (CRPS) when infinitely many thresholds are employed. However, the ensemble members used as predictors in ICK, and other bias-correction techniques, are often highly cross-correlated, both within and between models. Thus, we propose an orthogonal transform of the predictors used in ICK, which is analogous to using their principal components in the linear system of equations. This leads to a well-posed problem in which a minimum number of predictors are used to provide maximum information content in terms of the total variance explained. The technique is used to bias-correct precipitation ensemble forecasts from the NCEP Global Ensemble Forecast System (GEFS), for which independent validation results are presented. Extension to multimodel ensembles from the NCEP GFS and Short Range Ensemble Forecast (SREF) systems is also proposed.

  3. Assessing the Impact of Observations on Numerical Weather Forecasts Using the Adjoint Method

    NASA Technical Reports Server (NTRS)

    Gelaro, Ronald

    2012-01-01

    The adjoint of a data assimilation system provides a flexible and efficient tool for estimating observation impacts on short-range weather forecasts. The impacts of any or all observations can be estimated simultaneously based on a single execution of the adjoint system. The results can be easily aggregated according to data type, location, channel, etc., making this technique especially attractive for examining the impacts of new hyper-spectral satellite instruments and for conducting regular, even near-real time, monitoring of the entire observing system. This talk provides a general overview of the adjoint method, including the theoretical basis and practical implementation of the technique. Results are presented from the adjoint-based observation impact monitoring tool in NASA's GEOS-5 global atmospheric data assimilation and forecast system. When performed in conjunction with standard observing system experiments (OSEs), the adjoint results reveal both redundancies and dependencies between observing system impacts as observations are added or removed from the assimilation system. Understanding these dependencies may be important for optimizing the use of the current observational network and defining requirements for future observing systems

  4. Improved Weather Forecasting for the Dynamic Scheduling System of the Green Bank Telescope

    NASA Astrophysics Data System (ADS)

    Henry, Kari; Maddalena, Ronald

    2018-01-01

    The Robert C Byrd Green Bank Telescope (GBT) uses a software system that dynamically schedules observations based on models of vertical weather forecasts produced by the National Weather Service (NWS). The NWS provides hourly forecasted values for ~60 layers that extend into the stratosphere over the observatory. We use models, recommended by the Radiocommunication Sector of the International Telecommunications Union, to derive the absorption coefficient in each layer for each hour in the NWS forecasts and for all frequencies over which the GBT has receivers, 0.1 to 115 GHz. We apply radiative transfer models to derive the opacity and the atmospheric contributions to the system temperature, thereby deriving forecasts applicable to scheduling radio observations for up to 10 days into the future. Additionally, the algorithms embedded in the data processing pipeline use historical values of the forecasted opacity to calibrate observations. Until recently, we have concentrated on predictions for high frequency (> 15 GHz) observing, as these need to be scheduled carefully around bad weather. We have been using simple models for the contribution of rain and clouds since we only schedule low-frequency observations under these conditions. In this project, we wanted to improve the scheduling of the GBT and data calibration at low frequencies by deriving better algorithms for clouds and rain. To address the limitation at low frequency, the observatory acquired a Radiometrics Corporation MP-1500A radiometer, which operates in 27 channels between 22 and 30 GHz. By comparing 16 months of measurements from the radiometer against forecasted system temperatures, we have confirmed that forecasted system temperatures are indistinguishable from those measured under good weather conditions. Small miss-calibrations of the radiometer data dominate the comparison. By using recalibrated radiometer measurements, we looked at bad weather days to derive better models for forecasting the contribution of clouds to the opacity and system temperatures. We will show how these revised algorithms should help us improve both data calibration and the accuracy of scheduling low-frequency observations.

  5. Real-time prediction of atmospheric Lagrangian coherent structures based on forecast data: An application and error analysis

    NASA Astrophysics Data System (ADS)

    BozorgMagham, Amir E.; Ross, Shane D.; Schmale, David G.

    2013-09-01

    The language of Lagrangian coherent structures (LCSs) provides a new means for studying transport and mixing of passive particles advected by an atmospheric flow field. Recent observations suggest that LCSs govern the large-scale atmospheric motion of airborne microorganisms, paving the way for more efficient models and management strategies for the spread of infectious diseases affecting plants, domestic animals, and humans. In addition, having reliable predictions of the timing of hyperbolic LCSs may contribute to improved aerobiological sampling of microorganisms with unmanned aerial vehicles and LCS-based early warning systems. Chaotic atmospheric dynamics lead to unavoidable forecasting errors in the wind velocity field, which compounds errors in LCS forecasting. In this study, we reveal the cumulative effects of errors of (short-term) wind field forecasts on the finite-time Lyapunov exponent (FTLE) fields and the associated LCSs when realistic forecast plans impose certain limits on the forecasting parameters. Objectives of this paper are to (a) quantify the accuracy of prediction of FTLE-LCS features and (b) determine the sensitivity of such predictions to forecasting parameters. Results indicate that forecasts of attracting LCSs exhibit less divergence from the archive-based LCSs than the repelling features. This result is important since attracting LCSs are the backbone of long-lived features in moving fluids. We also show under what circumstances one can trust the forecast results if one merely wants to know if an LCS passed over a region and does not need to precisely know the passage time.

  6. Global Drought Monitoring and Forecasting based on Satellite Data and Land Surface Modeling

    NASA Astrophysics Data System (ADS)

    Sheffield, J.; Lobell, D. B.; Wood, E. F.

    2010-12-01

    Monitoring drought globally is challenging because of the lack of dense in-situ hydrologic data in many regions. In particular, soil moisture measurements are absent in many regions and in real time. This is especially problematic for developing regions such as Africa where water information is arguably most needed, but virtually non-existent on the ground. With the emergence of remote sensing estimates of all components of the water cycle there is now the potential to monitor the full terrestrial water cycle from space to give global coverage and provide the basis for drought monitoring. These estimates include microwave-infrared merged precipitation retrievals, evapotranspiration based on satellite radiation, temperature and vegetation data, gravity recovery measurements of changes in water storage, microwave based retrievals of soil moisture and altimetry based estimates of lake levels and river flows. However, many challenges remain in using these data, especially due to biases in individual satellite retrieved components, their incomplete sampling in time and space, and their failure to provide budget closure in concert. A potential way forward is to use modeling to provide a framework to merge these disparate sources of information to give physically consistent and spatially and temporally continuous estimates of the water cycle and drought. Here we present results from our experimental global water cycle monitor and its African drought monitor counterpart (http://hydrology.princeton.edu/monitor). The system relies heavily on satellite data to drive the Variable Infiltration Capacity (VIC) land surface model to provide near real-time estimates of precipitation, evapotranspiraiton, soil moisture, snow pack and streamflow. Drought is defined in terms of anomalies of soil moisture and other hydrologic variables relative to a long-term (1950-2000) climatology. We present some examples of recent droughts and how they are identified by the system, including objective quantification and tracking of their spatial-temporal characteristics. Further we present strategies for merging various sources of information, including bias correction of satellite precipitation and assimilation of remotely sensed soil moisture, which can augment the monitoring in regions where satellite precipitation is most uncertain. Ongoing work is adding a drought forecast component based on a successful implementation over the U.S. and agricultural productivity estimates based on output from crop yield models. The forecast component uses seasonal global climate forecasts from the NCEP Climate Forecast System (CFS). These are merged with observed climatology in a Bayesian framework to produce ensemble atmospheric forcings that better capture the uncertainties. At the same time, the system bias corrects and downscales the monthly CFS data. We show some initial seasonal (up to 6-month lead) hydrologic forecast results for the African system. Agricultural monitoring is based on the precipitation, temperature and soil moisture from the system to force statistical and process based crop yield models. We demonstrate the feasibility of monitoring major crop types across the world and show a strategy for providing predictions of yields within our drought forecast mode.

  7. MOSE: A Demonstrator for an Automatic Operational System for the Optical Turbulence Forecast for ESO Sites

    NASA Astrophysics Data System (ADS)

    Masciadri, Elena; Lascaux, F.; Turchi, A.; Fini, L.

    2017-09-01

    "Most of the observations performed with new-generation ground-based telescopes are employing the Service Mode. To optimize the flexible-scheduling of scientific programs and instruments, the optical turbulence (OT) forecast is a must, particularly when observations are supported by adaptive optics (AO) and Interferometry. Reliable OT forecast are crucial to optimize the usage of AO and interferometric facilities which is not possible when using only optical measurements. Numerical techniques are the best placed to achieve such a goal. The MOSE project (MOdeling ESO Sites), co-funded by ESO, aimed at proving the feasibility of the forecast of (1) all the classical atmospheric parameters (such as temperature, wind speed and direction, relative humidity) and (2) the optical turbulence i.e. the CN 2 profiles and all the main integrated astro-climatic parameters derived from the CN 2 (the seeing, the isoplanatic angle, the wavefront coherence time) above the two ESO sites of Cerro Paranal and Cerro Armazones. The proposed technique is based on the use of a non-hydrostatic atmospheric meso-scale model and a dedicated code for the optical turbulence. The final goal of the project aimed at implementing an automatic system for the operational forecasts of the aforementioned parameters to support the astronomical observations above the two sites. MOSE Phase A and B have been completed and a set of dedicated papers have been published on the topic. Model performances have been extensively quantified with several dedicated figures of merit and we proved that our tool is able to provide reliable forecasts of optical turbulence and atmospheric parameters with very satisfactory score of success. This should guarantee us to make a step ahead in the framework of the Service Mode of new generation telescopes. A conceptual design as well as an operational plan of the automatic system has been submitted to ESO as integral part of the feasibility study. We completed a negotiation with ESO for the implementation of the demonstrator of system on March 2016. In this seminar I will review the principles on which the proposed technique is based on; I will briefly review the most important challenges associated to the optical turbulence forecast for ground-based observations, I will summarize the most important results we achieved at conclusion of the feasibility study, how our results open new scenarios for the operation of the most sophisticated AO systems (WFAO), the next steps for the implementation of a demonstrator and plans for the forecast of further parameters. I will conclude showing a few outputs of the operational system we implemented for the LBT in the context of a similar project (ALTA Project). "

  8. Olive Actual "on Year" Yield Forecast Tool Based on the Tree Canopy Geometry Using UAS Imagery.

    PubMed

    Sola-Guirado, Rafael R; Castillo-Ruiz, Francisco J; Jiménez-Jiménez, Francisco; Blanco-Roldan, Gregorio L; Castro-Garcia, Sergio; Gil-Ribes, Jesus A

    2017-07-30

    Olive has a notable importance in countries of Mediterranean basin and its profitability depends on several factors such as actual yield, production cost or product price. Actual "on year" Yield (AY) is production (kg tree -1 ) in "on years", and this research attempts to relate it with geometrical parameters of the tree canopy. Regression equation to forecast AY based on manual canopy volume was determined based on data acquired from different orchard categories and cultivars during different harvesting seasons in southern Spain. Orthoimages were acquired with unmanned aerial systems (UAS) imagery calculating individual crown for relating to canopy volume and AY. Yield levels did not vary between orchard categories; however, it did between irrigated orchards (7000-17,000 kg ha -1 ) and rainfed ones (4000-7000 kg ha -1 ). After that, manual canopy volume was related with the individual crown area of trees that were calculated by orthoimages acquired with UAS imagery. Finally, AY was forecasted using both manual canopy volume and individual tree crown area as main factors for olive productivity. AY forecast only by using individual crown area made it possible to get a simple and cheap forecast tool for a wide range of olive orchards. Finally, the acquired information was introduced in a thematic map describing spatial AY variability obtained from orthoimage analysis that may be a powerful tool for farmers, insurance systems, market forecasts or to detect agronomical problems.

  9. Olive Actual “on Year” Yield Forecast Tool Based on the Tree Canopy Geometry Using UAS Imagery

    PubMed Central

    Sola-Guirado, Rafael R.; Castillo-Ruiz, Francisco J.; Jiménez-Jiménez, Francisco; Blanco-Roldan, Gregorio L.; Gil-Ribes, Jesus A.

    2017-01-01

    Olive has a notable importance in countries of Mediterranean basin and its profitability depends on several factors such as actual yield, production cost or product price. Actual “on year” Yield (AY) is production (kg tree−1) in “on years”, and this research attempts to relate it with geometrical parameters of the tree canopy. Regression equation to forecast AY based on manual canopy volume was determined based on data acquired from different orchard categories and cultivars during different harvesting seasons in southern Spain. Orthoimages were acquired with unmanned aerial systems (UAS) imagery calculating individual crown for relating to canopy volume and AY. Yield levels did not vary between orchard categories; however, it did between irrigated orchards (7000–17,000 kg ha−1) and rainfed ones (4000–7000 kg ha−1). After that, manual canopy volume was related with the individual crown area of trees that were calculated by orthoimages acquired with UAS imagery. Finally, AY was forecasted using both manual canopy volume and individual tree crown area as main factors for olive productivity. AY forecast only by using individual crown area made it possible to get a simple and cheap forecast tool for a wide range of olive orchards. Finally, the acquired information was introduced in a thematic map describing spatial AY variability obtained from orthoimage analysis that may be a powerful tool for farmers, insurance systems, market forecasts or to detect agronomical problems. PMID:28758945

  10. Battery Energy Storage State-of-Charge Forecasting: Models, Optimization, and Accuracy

    DOE PAGES

    Rosewater, David; Ferreira, Summer; Schoenwald, David; ...

    2018-01-25

    Battery energy storage systems (BESS) are a critical technology for integrating high penetration renewable power on an intelligent electrical grid. As limited energy restricts the steady-state operational state-of-charge (SoC) of storage systems, SoC forecasting models are used to determine feasible charge and discharge schedules that supply grid services. Smart grid controllers use SoC forecasts to optimize BESS schedules to make grid operation more efficient and resilient. This study presents three advances in BESS state-of-charge forecasting. First, two forecasting models are reformulated to be conducive to parameter optimization. Second, a new method for selecting optimal parameter values based on operational datamore » is presented. Last, a new framework for quantifying model accuracy is developed that enables a comparison between models, systems, and parameter selection methods. The accuracies achieved by both models, on two example battery systems, with each method of parameter selection are then compared in detail. The results of this analysis suggest variation in the suitability of these models for different battery types and applications. Finally, the proposed model formulations, optimization methods, and accuracy assessment framework can be used to improve the accuracy of SoC forecasts enabling better control over BESS charge/discharge schedules.« less

  11. Demand for satellite-provided domestic communications services up to the year 2000

    NASA Technical Reports Server (NTRS)

    Stevenson, S.; Poley, W.; Lekan, J.; Salzman, J. A.

    1984-01-01

    Three fixed service telecommunications demand assessment studies were completed for NASA by The Western Union Telegraph Company and the U.S. Telephone and Telegraph Corporation. They provided forecasts of the total U.S. domestic demand, from 1980 to the year 2000, for voice, data, and video services. That portion that is technically and economically suitable for transmission by satellite systems, both large trunking systems and customer premises services (CPS) systems was also estimated. In order to provide a single set of forecasts a NASA synthesis of the above studies was conducted. The services, associated forecast techniques, and data bases employed by both contractors were examined, those elements of each judged to be the most appropriate were selected, and new forecasts were made. The demand for voice, data, and video services was first forecast in fundamental units of call-seconds, bits/year, and channels, respectively. Transmission technology characteristics and capabilities were then forecast, and the fundamental demand converted to an equivalent transmission capacity. The potential demand for satellite-provided services was found to grow by a factor of 6, from 400 to 2400 equivalent 36 MHz satellite transponders over the 20-year period. About 80 percent of this was found to be more appropriate for trunking systems and 20 percent CPS.

  12. Battery Energy Storage State-of-Charge Forecasting: Models, Optimization, and Accuracy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosewater, David; Ferreira, Summer; Schoenwald, David

    Battery energy storage systems (BESS) are a critical technology for integrating high penetration renewable power on an intelligent electrical grid. As limited energy restricts the steady-state operational state-of-charge (SoC) of storage systems, SoC forecasting models are used to determine feasible charge and discharge schedules that supply grid services. Smart grid controllers use SoC forecasts to optimize BESS schedules to make grid operation more efficient and resilient. This study presents three advances in BESS state-of-charge forecasting. First, two forecasting models are reformulated to be conducive to parameter optimization. Second, a new method for selecting optimal parameter values based on operational datamore » is presented. Last, a new framework for quantifying model accuracy is developed that enables a comparison between models, systems, and parameter selection methods. The accuracies achieved by both models, on two example battery systems, with each method of parameter selection are then compared in detail. The results of this analysis suggest variation in the suitability of these models for different battery types and applications. Finally, the proposed model formulations, optimization methods, and accuracy assessment framework can be used to improve the accuracy of SoC forecasts enabling better control over BESS charge/discharge schedules.« less

  13. Demand for satellite-provided domestic communications services up to the year 2000

    NASA Astrophysics Data System (ADS)

    Stevenson, S.; Poley, W.; Lekan, J.; Salzman, J. A.

    1984-11-01

    Three fixed service telecommunications demand assessment studies were completed for NASA by The Western Union Telegraph Company and the U.S. Telephone and Telegraph Corporation. They provided forecasts of the total U.S. domestic demand, from 1980 to the year 2000, for voice, data, and video services. That portion that is technically and economically suitable for transmission by satellite systems, both large trunking systems and customer premises services (CPS) systems was also estimated. In order to provide a single set of forecasts a NASA synthesis of the above studies was conducted. The services, associated forecast techniques, and data bases employed by both contractors were examined, those elements of each judged to be the most appropriate were selected, and new forecasts were made. The demand for voice, data, and video services was first forecast in fundamental units of call-seconds, bits/year, and channels, respectively. Transmission technology characteristics and capabilities were then forecast, and the fundamental demand converted to an equivalent transmission capacity. The potential demand for satellite-provided services was found to grow by a factor of 6, from 400 to 2400 equivalent 36 MHz satellite transponders over the 20-year period. About 80 percent of this was found to be more appropriate for trunking systems and 20 percent CPS.

  14. ENSURF: multi-model sea level forecast - implementation and validation results for the IBIROOS and Western Mediterranean regions

    NASA Astrophysics Data System (ADS)

    Pérez, B.; Brower, R.; Beckers, J.; Paradis, D.; Balseiro, C.; Lyons, K.; Cure, M.; Sotillo, M. G.; Hacket, B.; Verlaan, M.; Alvarez Fanjul, E.

    2011-04-01

    ENSURF (Ensemble SURge Forecast) is a multi-model application for sea level forecast that makes use of existing storm surge or circulation models today operational in Europe, as well as near-real time tide gauge data in the region, with the following main goals: - providing an easy access to existing forecasts, as well as to its performance and model validation, by means of an adequate visualization tool - generation of better forecasts of sea level, including confidence intervals, by means of the Bayesian Model Average Technique (BMA) The system was developed and implemented within ECOOP (C.No. 036355) European Project for the NOOS and the IBIROOS regions, based on MATROOS visualization tool developed by Deltares. Both systems are today operational at Deltares and Puertos del Estado respectively. The Bayesian Modelling Average technique generates an overall forecast probability density function (PDF) by making a weighted average of the individual forecasts PDF's; the weights represent the probability that a model will give the correct forecast PDF and are determined and updated operationally based on the performance of the models during a recent training period. This implies the technique needs the availability of sea level data from tide gauges in near-real time. Results of validation of the different models and BMA implementation for the main harbours will be presented for the IBIROOS and Western Mediterranean regions, where this kind of activity is performed for the first time. The work has proved to be useful to detect problems in some of the circulation models not previously well calibrated with sea level data, to identify the differences on baroclinic and barotropic models for sea level applications and to confirm the general improvement of the BMA forecasts.

  15. Towards seasonal forecasting of malaria in India.

    PubMed

    Lauderdale, Jonathan M; Caminade, Cyril; Heath, Andrew E; Jones, Anne E; MacLeod, David A; Gouda, Krushna C; Murty, Upadhyayula Suryanarayana; Goswami, Prashant; Mutheneni, Srinivasa R; Morse, Andrew P

    2014-08-10

    Malaria presents public health challenge despite extensive intervention campaigns. A 30-year hindcast of the climatic suitability for malaria transmission in India is presented, using meteorological variables from a state of the art seasonal forecast model to drive a process-based, dynamic disease model. The spatial distribution and seasonal cycles of temperature and precipitation from the forecast model are compared to three observationally-based meteorological datasets. These time series are then used to drive the disease model, producing a simulated forecast of malaria and three synthetic malaria time series that are qualitatively compared to contemporary and pre-intervention malaria estimates. The area under the Relative Operator Characteristic (ROC) curve is calculated as a quantitative metric of forecast skill, comparing the forecast to the meteorologically-driven synthetic malaria time series. The forecast shows probabilistic skill in predicting the spatial distribution of Plasmodium falciparum incidence when compared to the simulated meteorologically-driven malaria time series, particularly where modelled incidence shows high seasonal and interannual variability such as in Orissa, West Bengal, and Jharkhand (North-east India), and Gujarat, Rajastan, Madhya Pradesh and Maharashtra (North-west India). Focusing on these two regions, the malaria forecast is able to distinguish between years of "high", "above average" and "low" malaria incidence in the peak malaria transmission seasons, with more than 70% sensitivity and a statistically significant area under the ROC curve. These results are encouraging given that the three month forecast lead time used is well in excess of the target for early warning systems adopted by the World Health Organization. This approach could form the basis of an operational system to identify the probability of regional malaria epidemics, allowing advanced and targeted allocation of resources for combatting malaria in India.

  16. Severe rainfall prediction systems for civil protection purposes

    NASA Astrophysics Data System (ADS)

    Comellas, A.; Llasat, M. C.; Molini, L.; Parodi, A.; Siccardi, F.

    2010-09-01

    One of the most common natural hazards impending on Mediterranean regions is the occurrence of severe weather structures able to produce heavy rainfall. Floods have killed about 1000 people across all Europe in last 10 years. With the aim of mitigating this kind of risk, quantitative precipitation forecasts (QPF) and rain probability forecasts are two tools nowadays available for national meteorological services and institutions responsible for weather forecasting in order to and predict rainfall, by using either the deterministic or the probabilistic approach. This study provides an insight of the different approaches used by Italian (DPC) and Catalonian (SMC) Civil Protection and the results they achieved with their peculiar issuing-system for early warnings. For the former, the analysis considers the period between 2006-2009 in which the predictive ability of the forecasting system, based on the numerical weather prediction model COSMO-I7, has been put into comparison with ground based observations (composed by more than 2000 raingauge stations, Molini et al., 2009). Italian system is mainly focused on regional-scale warnings providing forecasts for periods never shorter than 18 hours and very often have a 36-hour maximum duration . The information contained in severe weather bulletins is not quantitative and usually is referred to a specific meteorological phenomena (thunderstorms, wind gales et c.). Updates and refining have a usual refresh time of 24 hours. SMC operates within the Catalonian boundaries and uses a warning system that mixes both quantitative and probabilistic information. For each administrative region ("comarca") Catalonia is divided into, forecasters give an approximate value of the average predicted rainfall and the probability of overcoming that threshold. Usually warnings are re-issued every 6 hours and their duration depends on the predicted time extent of the storm. In order to provide a comprehensive QPF verification, the rainfall predicted by Mesoscale Model 5 (MM5), the SMC forecast operational model, is compared with the local rain gauge network for year 2008 (Comellas et al., 2010). This study presents benefits and drawbacks of both Italian and Catalonian systems. Moreover, a particular attention is paid on the link between system's predictive ability and the predicted severe weather type as a function of its space-time development.

  17. Water and Power Systems Co-optimization under a High Performance Computing Framework

    NASA Astrophysics Data System (ADS)

    Xuan, Y.; Arumugam, S.; DeCarolis, J.; Mahinthakumar, K.

    2016-12-01

    Water and energy systems optimizations are traditionally being treated as two separate processes, despite their intrinsic interconnections (e.g., water is used for hydropower generation, and thermoelectric cooling requires a large amount of water withdrawal). Given the challenges of urbanization, technology uncertainty and resource constraints, and the imminent threat of climate change, a cyberinfrastructure is needed to facilitate and expedite research into the complex management of these two systems. To address these issues, we developed a High Performance Computing (HPC) framework for stochastic co-optimization of water and energy resources to inform water allocation and electricity demand. The project aims to improve conjunctive management of water and power systems under climate change by incorporating improved ensemble forecast models of streamflow and power demand. First, by downscaling and spatio-temporally disaggregating multimodel climate forecasts from General Circulation Models (GCMs), temperature and precipitation forecasts are obtained and input into multi-reservoir and power systems models. Extended from Optimus (Optimization Methods for Universal Simulators), the framework drives the multi-reservoir model and power system model, Temoa (Tools for Energy Model Optimization and Analysis), and uses Particle Swarm Optimization (PSO) algorithm to solve high dimensional stochastic problems. The utility of climate forecasts on the cost of water and power systems operations is assessed and quantified based on different forecast scenarios (i.e., no-forecast, multimodel forecast and perfect forecast). Analysis of risk management actions and renewable energy deployments will be investigated for the Catawba River basin, an area with adequate hydroclimate predicting skill and a critical basin with 11 reservoirs that supplies water and generates power for both North and South Carolina. Further research using this scalable decision supporting framework will provide understanding and elucidate the intricate and interdependent relationship between water and energy systems and enhance the security of these two critical public infrastructures.

  18. Drought Monitoring and Forecasting: Experiences from the US and Africa

    NASA Astrophysics Data System (ADS)

    Sheffield, Justin; Chaney, Nate; Yuan, Xing; Wood, Eric

    2013-04-01

    Drought has important but very different consequences regionally due to differences in vulnerability. These differences derive from variations in exposure related to climate variability and change, sensitivity of local populations, and coping capacity at all levels. Managing the risk of drought impacts relies on a variety of measures to reduce vulnerability that includes forewarning of drought development through early-warning systems. Existing systems rely on a variety of observing systems from satellites to local observers, modeling tools, and data dissemination methods. They range from sophisticated state-of-the-art systems to simple ground reports. In some regions, systems are virtually non-existent due to limited national capacity. This talk describes our experiences in developing and implementing drought monitoring and seasonal forecast systems in the US and sub-Saharan Africa as contrasting examples of the scientific challenges and user needs in developing early warning systems. In particular, early warning can help improve livelihoods based on subsistence farming in sub-Saharan Africa; whist reduction of economic impacts is generally foremost in the US. For the US, our national drought monitoring and seasonal forecast system has been operational for over 8 years and provides near real-time updates on hydrological states at ~12km resolution and hydrological forecasts out to 9 months. Output from the system contributes to national assessments such as from the NOAA Climate Prediction Center (CPC) and the US National Drought Monitor (USDM). For sub-Saharan Africa, our experimental drought monitoring system was developed as a translation of the US system but presents generally greater challenges due to, for example, lack of ground data and unique user needs. The system provides near real-time updates based on hydrological modeling and satellite based precipitation estimates, and has recently been augmented by a seasonal forecast component. We discuss the differences in experiences in development and implementation between the two systems in terms of the scientific challenges and the utility of the systems to stakeholders, for whom the information must be relevant to local conditions and needs.

  19. Demand forecasting for automotive sector in Malaysia by system dynamics approach

    NASA Astrophysics Data System (ADS)

    Zulkepli, Jafri; Fong, Chan Hwa; Abidin, Norhaslinda Zainal

    2015-12-01

    In general, Proton as an automotive company needs to forecast future demand of the car to assist in decision making related to capacity expansion planning. One of the forecasting approaches that based on judgemental or subjective factors is normally used to forecast the demand. As a result, demand could be overstock that eventually will increase the operation cost; or the company will face understock, which resulted losing their customers. Due to automotive industry is very challenging process because of high level of complexity and uncertainty involved in the system, an accurate tool to forecast the future of automotive demand from the modelling perspective is required. Hence, the main objective of this paper is to forecast the demand of automotive Proton car industry in Malaysia using system dynamics approach. Two types of intervention namely optimistic and pessimistic experiments scenarios have been tested to determine the capacity expansion that can prevent the company from overstocking. Finding from this study highlighted that the management needs to expand their production for optimistic scenario, whilst pessimistic give results that would otherwise. Finally, this study could help Proton Edar Sdn. Bhd (PESB) to manage the long-term capacity planning in order to meet the future demand of the Proton cars.

  20. Assessing a 3D smoothed seismicity model of induced earthquakes

    NASA Astrophysics Data System (ADS)

    Zechar, Jeremy; Király, Eszter; Gischig, Valentin; Wiemer, Stefan

    2016-04-01

    As more energy exploration and extraction efforts cause earthquakes, it becomes increasingly important to control induced seismicity. Risk management schemes must be improved and should ultimately be based on near-real-time forecasting systems. With this goal in mind, we propose a test bench to evaluate models of induced seismicity based on metrics developed by the CSEP community. To illustrate the test bench, we consider a model based on the so-called seismogenic index and a rate decay; to produce three-dimensional forecasts, we smooth past earthquakes in space and time. We explore four variants of this model using the Basel 2006 and Soultz-sous-Forêts 2004 datasets to make short-term forecasts, test their consistency, and rank the model variants. Our results suggest that such a smoothed seismicity model is useful for forecasting induced seismicity within three days, and giving more weight to recent events improves forecast performance. Moreover, the location of the largest induced earthquake is forecast well by this model. Despite the good spatial performance, the model does not estimate the seismicity rate well: it frequently overestimates during stimulation and during the early post-stimulation period, and it systematically underestimates around shut-in. In this presentation, we also describe a robust estimate of information gain, a modification that can also benefit forecast experiments involving tectonic earthquakes.

  1. Integration of Weather Data into Airspace and Traffic Operations Simulation (ATOS) for Trajectory- Based Operations Research

    NASA Technical Reports Server (NTRS)

    Peters, Mark; Boisvert, Ben; Escala, Diego

    2009-01-01

    Explicit integration of aviation weather forecasts with the National Airspace System (NAS) structure is needed to improve the development and execution of operationally effective weather impact mitigation plans and has become increasingly important due to NAS congestion and associated increases in delay. This article considers several contemporary weather-air traffic management (ATM) integration applications: the use of probabilistic forecasts of visibility at San Francisco, the Route Availability Planning Tool to facilitate departures from the New York airports during thunderstorms, the estimation of en route capacity in convective weather, and the application of mixed-integer optimization techniques to air traffic management when the en route and terminal capacities are varying with time because of convective weather impacts. Our operational experience at San Francisco and New York coupled with very promising initial results of traffic flow optimizations suggests that weather-ATM integrated systems warrant significant research and development investment. However, they will need to be refined through rapid prototyping at facilities with supportive operational users We have discussed key elements of an emerging aviation weather research area: the explicit integration of aviation weather forecasts with NAS structure to improve the effectiveness and timeliness of weather impact mitigation plans. Our insights are based on operational experiences with Lincoln Laboratory-developed integrated weather sensing and processing systems, and derivative early prototypes of explicit ATM decision support tools such as the RAPT in New York City. The technical components of this effort involve improving meteorological forecast skill, tailoring the forecast outputs to the problem of estimating airspace impacts, developing models to quantify airspace impacts, and prototyping automated tools that assist in the development of objective broad-area ATM strategies, given probabilistic weather forecasts. Lincoln Laboratory studies and prototype demonstrations in this area are helping to define the weather-assimilated decision-making system that is envisioned as a key capability for the multi-agency Next Generation Air Transportation System [1]. The Laboratory's work in this area has involved continuing, operations-based evolution of both weather forecasts and models for weather impacts on the NAS. Our experience has been that the development of usable ATM technologies that address weather impacts must proceed via rapid prototyping at facilities whose users are highly motivated to participate in system evolution.

  2. Towards uncertainty estimation for operational forecast products - a multi-model-ensemble approach for the North Sea and the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Golbeck, Inga; Li, Xin; Janssen, Frank

    2014-05-01

    Several independent operational ocean models provide forecasts of the ocean state (e.g. sea level, temperature, salinity and ice cover) in the North Sea and the Baltic Sea on a daily basis. These forecasts are the primary source of information for a variety of information and emergency response systems used e.g. to issue sea level warnings or carry out oil drift forecast. The forecasts are of course highly valuable as such, but often suffer from a lack of information on their uncertainty. With the aim of augmenting the existing operational ocean forecasts in the North Sea and the Baltic Sea by a measure of uncertainty a multi-model-ensemble (MME) system for sea surface temperature (SST), sea surface salinity (SSS) and water transports has been set up in the framework of the MyOcean-2 project. Members of MyOcean-2, the NOOS² and HIROMB/BOOS³ communities provide 48h-forecasts serving as inputs. Different variables are processed separately due to their different physical characteristics. Based on the so far collected daily MME products of SST and SSS, a statistical method, Empirical Orthogonal Function (EOF) analysis is applied to assess their spatial and temporal variability. For sea surface currents, progressive vector diagrams at specific points are consulted to estimate the performance of the circulation models especially in hydrodynamic important areas, e.g. inflow/outflow of the Baltic Sea, Norwegian trench and English Channel. For further versions of the MME system, it is planned to extend the MME to other variables like e.g. sea level, ocean currents or ice cover based on the needs of the model providers and their customers. It is also planned to include in-situ data to augment the uncertainty information and for validation purposes. Additionally, weighting methods will be implemented into the MME system to develop more complex uncertainty measures. The methodology used to create the MME will be outlined and different ensemble products will be presented. In addition, some preliminary results based on the statistical analysis of the uncertainty measures provide first estimates of the regional and temporal performance of the ocean models for each parameter. ²Northwest European Shelf Operational Oceanography System ³High-resolution Operational Model of the Baltic / Baltic Operational Oceanographic System

  3. The application of a Grey Markov Model to forecasting annual maximum water levels at hydrological stations

    NASA Astrophysics Data System (ADS)

    Dong, Sheng; Chi, Kun; Zhang, Qiyi; Zhang, Xiangdong

    2012-03-01

    Compared with traditional real-time forecasting, this paper proposes a Grey Markov Model (GMM) to forecast the maximum water levels at hydrological stations in the estuary area. The GMM combines the Grey System and Markov theory into a higher precision model. The GMM takes advantage of the Grey System to predict the trend values and uses the Markov theory to forecast fluctuation values, and thus gives forecast results involving two aspects of information. The procedure for forecasting annul maximum water levels with the GMM contains five main steps: 1) establish the GM (1, 1) model based on the data series; 2) estimate the trend values; 3) establish a Markov Model based on relative error series; 4) modify the relative errors caused in step 2, and then obtain the relative errors of the second order estimation; 5) compare the results with measured data and estimate the accuracy. The historical water level records (from 1960 to 1992) at Yuqiao Hydrological Station in the estuary area of the Haihe River near Tianjin, China are utilized to calibrate and verify the proposed model according to the above steps. Every 25 years' data are regarded as a hydro-sequence. Eight groups of simulated results show reasonable agreement between the predicted values and the measured data. The GMM is also applied to the 10 other hydrological stations in the same estuary. The forecast results for all of the hydrological stations are good or acceptable. The feasibility and effectiveness of this new forecasting model have been proved in this paper.

  4. APPLICATION OF BIAS AND ADJUSTMENT TECHNIQUES TO THE ETA-CMAQ AIR QUALITY FORECAST

    EPA Science Inventory

    The current air quality forecast system, based on linking NOAA's Eta meteorological model with EPA's Community Multiscale Air Quality (CMAQ) model, consistently overpredicts surface ozone concentrations, but simulates its day-to-day variability quite well. The ability of bias cor...

  5. Air Pollution Forecasts: An Overview

    PubMed Central

    Bai, Lu; Wang, Jianzhou; Lu, Haiyan

    2018-01-01

    Air pollution is defined as a phenomenon harmful to the ecological system and the normal conditions of human existence and development when some substances in the atmosphere exceed a certain concentration. In the face of increasingly serious environmental pollution problems, scholars have conducted a significant quantity of related research, and in those studies, the forecasting of air pollution has been of paramount importance. As a precaution, the air pollution forecast is the basis for taking effective pollution control measures, and accurate forecasting of air pollution has become an important task. Extensive research indicates that the methods of air pollution forecasting can be broadly divided into three classical categories: statistical forecasting methods, artificial intelligence methods, and numerical forecasting methods. More recently, some hybrid models have been proposed, which can improve the forecast accuracy. To provide a clear perspective on air pollution forecasting, this study reviews the theory and application of those forecasting models. In addition, based on a comparison of different forecasting methods, the advantages and disadvantages of some methods of forecasting are also provided. This study aims to provide an overview of air pollution forecasting methods for easy access and reference by researchers, which will be helpful in further studies. PMID:29673227

  6. Air Pollution Forecasts: An Overview.

    PubMed

    Bai, Lu; Wang, Jianzhou; Ma, Xuejiao; Lu, Haiyan

    2018-04-17

    Air pollution is defined as a phenomenon harmful to the ecological system and the normal conditions of human existence and development when some substances in the atmosphere exceed a certain concentration. In the face of increasingly serious environmental pollution problems, scholars have conducted a significant quantity of related research, and in those studies, the forecasting of air pollution has been of paramount importance. As a precaution, the air pollution forecast is the basis for taking effective pollution control measures, and accurate forecasting of air pollution has become an important task. Extensive research indicates that the methods of air pollution forecasting can be broadly divided into three classical categories: statistical forecasting methods, artificial intelligence methods, and numerical forecasting methods. More recently, some hybrid models have been proposed, which can improve the forecast accuracy. To provide a clear perspective on air pollution forecasting, this study reviews the theory and application of those forecasting models. In addition, based on a comparison of different forecasting methods, the advantages and disadvantages of some methods of forecasting are also provided. This study aims to provide an overview of air pollution forecasting methods for easy access and reference by researchers, which will be helpful in further studies.

  7. Short-term load forecasting of power system

    NASA Astrophysics Data System (ADS)

    Xu, Xiaobin

    2017-05-01

    In order to ensure the scientific nature of optimization about power system, it is necessary to improve the load forecasting accuracy. Power system load forecasting is based on accurate statistical data and survey data, starting from the history and current situation of electricity consumption, with a scientific method to predict the future development trend of power load and change the law of science. Short-term load forecasting is the basis of power system operation and analysis, which is of great significance to unit combination, economic dispatch and safety check. Therefore, the load forecasting of the power system is explained in detail in this paper. First, we use the data from 2012 to 2014 to establish the partial least squares model to regression analysis the relationship between daily maximum load, daily minimum load, daily average load and each meteorological factor, and select the highest peak by observing the regression coefficient histogram Day maximum temperature, daily minimum temperature and daily average temperature as the meteorological factors to improve the accuracy of load forecasting indicators. Secondly, in the case of uncertain climate impact, we use the time series model to predict the load data for 2015, respectively, the 2009-2014 load data were sorted out, through the previous six years of the data to forecast the data for this time in 2015. The criterion for the accuracy of the prediction is the average of the standard deviations for the prediction results and average load for the previous six years. Finally, considering the climate effect, we use the BP neural network model to predict the data in 2015, and optimize the forecast results on the basis of the time series model.

  8. Effect of initial conditions of a catchment on seasonal streamflow prediction using ensemble streamflow prediction (ESP) technique for the Rangitata and Waitaki River basins on the South Island of New Zealand

    NASA Astrophysics Data System (ADS)

    Singh, Shailesh Kumar; Zammit, Christian; Hreinsson, Einar; Woods, Ross; Clark, Martyn; Hamlet, Alan

    2013-04-01

    Increased access to water is a key pillar of the New Zealand government plan for economic growths. Variable climatic conditions coupled with market drivers and increased demand on water resource result in critical decision made by water managers based on climate and streamflow forecast. Because many of these decisions have serious economic implications, accurate forecast of climate and streamflow are of paramount importance (eg irrigated agriculture and electricity generation). New Zealand currently does not have a centralized, comprehensive, and state-of-the-art system in place for providing operational seasonal to interannual streamflow forecasts to guide water resources management decisions. As a pilot effort, we implement and evaluate an experimental ensemble streamflow forecasting system for the Waitaki and Rangitata River basins on New Zealand's South Island using a hydrologic simulation model (TopNet) and the familiar ensemble streamflow prediction (ESP) paradigm for estimating forecast uncertainty. To provide a comprehensive database for evaluation of the forecasting system, first a set of retrospective model states simulated by the hydrologic model on the first day of each month were archived from 1972-2009. Then, using the hydrologic simulation model, each of these historical model states was paired with the retrospective temperature and precipitation time series from each historical water year to create a database of retrospective hindcasts. Using the resulting database, the relative importance of initial state variables (such as soil moisture and snowpack) as fundamental drivers of uncertainties in forecasts were evaluated for different seasons and lead times. The analysis indicate that the sensitivity of flow forecast to initial condition uncertainty is depend on the hydrological regime and season of forecast. However initial conditions do not have a large impact on seasonal flow uncertainties for snow dominated catchments. Further analysis indicates that this result is valid when the hindcast database is conditioned by ENSO classification. As a result hydrological forecasts based on ESP technique, where present initial conditions with histological forcing data are used may be plausible for New Zealand catchments.

  9. Basic Diagnosis and Prediction of Persistent Contrail Occurrence using High-resolution Numerical Weather Analyses/Forecasts and Logistic Regression. Part II: Evaluation of Sample Models

    NASA Technical Reports Server (NTRS)

    Duda, David P.; Minnis, Patrick

    2009-01-01

    Previous studies have shown that probabilistic forecasting may be a useful method for predicting persistent contrail formation. A probabilistic forecast to accurately predict contrail formation over the contiguous United States (CONUS) is created by using meteorological data based on hourly meteorological analyses from the Advanced Regional Prediction System (ARPS) and from the Rapid Update Cycle (RUC) as well as GOES water vapor channel measurements, combined with surface and satellite observations of contrails. Two groups of logistic models were created. The first group of models (SURFACE models) is based on surface-based contrail observations supplemented with satellite observations of contrail occurrence. The second group of models (OUTBREAK models) is derived from a selected subgroup of satellite-based observations of widespread persistent contrails. The mean accuracies for both the SURFACE and OUTBREAK models typically exceeded 75 percent when based on the RUC or ARPS analysis data, but decreased when the logistic models were derived from ARPS forecast data.

  10. Road icing forecasting and detecting system

    NASA Astrophysics Data System (ADS)

    Xu, Hongke; Zheng, Jinnan; Li, Peiqi; Wang, Qiucai

    2017-05-01

    Regard for the facts that the low accuracy and low real-time of the artificial observation to determine the road icing condition, and it is difficult to forecast icing situation, according to the main factors influencing the road-icing, and the electrical characteristics reflected by the pavement ice layer, this paper presents an innovative system, that is, ice-forecasting of the highway's dangerous section. The system bases on road surface water salinity measurements and pavement temperature measurement to calculate the freezing point of water and temperature change trend, and then predicts the occurrence time of road icing; using capacitance measurements to verdict the road surface is frozen or not; This paper expounds the method of using single chip microcomputer as the core of the control system and described the business process of the system.

  11. Integrating Satellite Measurements from Polar-orbiting instruments into Smoke Disperson Forecasts

    NASA Astrophysics Data System (ADS)

    Smith, N.; Pierce, R. B.; Barnet, C.; Gambacorta, A.; Davies, J. E.; Strabala, K.

    2015-12-01

    The IDEA-I (Infusion of Satellite Data into Environmental Applications-International) is a real-time system that currently generates trajectory-based forecasts of aerosol dispersion and stratospheric intrusions. Here we demonstrate new capabilities that use satellite measurements from the Joint Polar Satellite System (JPSS) Suomi-NPP (S-NPP) instruments (operational since 2012) in the generation of trajectory-based predictions of smoke dispersion from North American wildfires. Two such data products are used, namely the Visible Infrared Imaging Radiometer Suite (VIIRS) Aerosol Optical Depth (AOD) and the combined Cross-track Infrared Sounder (CrIS) and Advanced Technology Microwave Sounder (ATMS) NOAA-Unique CrIS-ATMS Processing System (NUCAPS) carbon monoxide (CO) retrievals. The latter is a new data product made possible by the release of full spectral-resolution CrIS measurements since December 2014. Once NUCAPS CO becomes operationally available it will be used in real-time applications such as IDEA-I along with VIIRS AOD and meteorological forecast fields to support National Weather Service (NWS) Incident Meteorologist (IMET) and air quality management decision making. By combining different measurements, the information content of the IDEA-I transport and dispersion forecast is improved within the complex terrain features that dominate the Western US and Alaska. The primary user community of smoke forecasts is the Western regions of the National Weather Service (NWS) and US Environmental Protection Agency (EPA) due to the significant impacts of wildfires in these regions. With this we demonstrate the quality of the smoke dispersion forecasts that can be achieved by integrating polar-orbiting satellite measurements with forecast models to enable on-site decision support services for fire incident management teams and other real-time air quality agencies.

  12. Hybrid vs Adaptive Ensemble Kalman Filtering for Storm Surge Forecasting

    NASA Astrophysics Data System (ADS)

    Altaf, M. U.; Raboudi, N.; Gharamti, M. E.; Dawson, C.; McCabe, M. F.; Hoteit, I.

    2014-12-01

    Recent storm surge events due to Hurricanes in the Gulf of Mexico have motivated the efforts to accurately forecast water levels. Toward this goal, a parallel architecture has been implemented based on a high resolution storm surge model, ADCIRC. However the accuracy of the model notably depends on the quality and the recentness of the input data (mainly winds and bathymetry), model parameters (e.g. wind and bottom drag coefficients), and the resolution of the model grid. Given all these uncertainties in the system, the challenge is to build an efficient prediction system capable of providing accurate forecasts enough ahead of time for the authorities to evacuate the areas at risk. We have developed an ensemble-based data assimilation system to frequently assimilate available data into the ADCIRC model in order to improve the accuracy of the model. In this contribution we study and analyze the performances of different ensemble Kalman filter methodologies for efficient short-range storm surge forecasting, the aim being to produce the most accurate forecasts at the lowest possible computing time. Using Hurricane Ike meteorological data to force the ADCIRC model over a domain including the Gulf of Mexico coastline, we implement and compare the forecasts of the standard EnKF, the hybrid EnKF and an adaptive EnKF. The last two schemes have been introduced as efficient tools for enhancing the behavior of the EnKF when implemented with small ensembles by exploiting information from a static background covariance matrix. Covariance inflation and localization are implemented in all these filters. Our results suggest that both the hybrid and the adaptive approach provide significantly better forecasts than those resulting from the standard EnKF, even when implemented with much smaller ensembles.

  13. Streamflow Forecasting Using Nuero-Fuzzy Inference System

    NASA Astrophysics Data System (ADS)

    Nanduri, U. V.; Swain, P. C.

    2005-12-01

    The prediction of flow into a reservoir is fundamental in water resources planning and management. The need for timely and accurate streamflow forecasting is widely recognized and emphasized by many in water resources fraternity. Real-time forecasts of natural inflows to reservoirs are of particular interest for operation and scheduling. The physical system of the river basin that takes the rainfall as an input and produces the runoff is highly nonlinear, complicated and very difficult to fully comprehend. The system is influenced by large number of factors and variables. The large spatial extent of the systems forces the uncertainty into the hydrologic information. A variety of methods have been proposed for forecasting reservoir inflows including conceptual (physical) and empirical (statistical) models (WMO 1994), but none of them can be considered as unique superior model (Shamseldin 1997). Owing to difficulties of formulating reasonable non-linear watershed models, recent attempts have resorted to Neural Network (NN) approach for complex hydrologic modeling. In recent years the use of soft computing in the field of hydrological forecasting is gaining ground. The relatively new soft computing technique of Adaptive Neuro-Fuzzy Inference System (ANFIS), developed by Jang (1993) is able to take care of the non-linearity, uncertainty, and vagueness embedded in the system. It is a judicious combination of the Neural Networks and fuzzy systems. It can learn and generalize highly nonlinear and uncertain phenomena due to the embedded neural network (NN). NN is efficient in learning and generalization, and the fuzzy system mimics the cognitive capability of human brain. Hence, ANFIS can learn the complicated processes involved in the basin and correlate the precipitation to the corresponding discharge. In the present study, one step ahead forecasts are made for ten-daily flows, which are mostly required for short term operational planning of multipurpose reservoirs. A Neuro-Fuzzy model is developed to forecast ten-daily flows into the Hirakud reservoir on River Mahanadi in the state of Orissa in India. Correlation analysis is carried out to find out the most influential variables on the ten daily flow at Hirakud. Based on this analysis, four variables, namely, flow during the previous time period, ql1, rainfall during the previous two time periods, rl1 and rl2, and flow during the same period in previous year, qpy, are identified as the most influential variables to forecast the ten daily flow. Performance measures such as Root Mean Square Error (RMSE), Correlation Coefficient (CORR) and coefficient of efficiency R2 are computed for training and testing phases of the model to evaluate its performance. The results indicate that the ten-daily forecasting model is efficient in predicting the high and medium flows with reasonable accuracy. The forecast of low flows is associated with less efficiency. REFERENCES Jang, J.S.R. (1993). "ANFIS: Adaptive - network- based fuzzy inference system." IEEE Trans. on Systems, Man and Cybernetics, 23 (3), 665-685. Shamseldin, A.Y. (1997). "Application of a neural network technique to rainfall-runoff modeling." Journal of Hydrology, 199, 272-294. World Meteorological Organization (1975). Intercomparison of conceptual models used in operational hydrological forecasting. World Meteorological Organization, Technical Report No.429, Geneva, Switzerland.

  14. A computerized system to measure and predict air quality for emission control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crooks, G.; Ciccone, A.; Frattolillo, P.

    1997-12-31

    A Supplementary Emission Control (SEC) system has been developed on behalf of the Association Industrielle de l`Est de Montreal (AIEM). The objective of the SEC is to avoid exceedences of the Montreal Urban Community (MUC) 24 hour ambient Air Quality Standard (AQS) for sulphur dioxide in the industrial East Montreal area. The SEC system is comprised of: 3 continuous SO{sub 2} monitoring stations with data loggers and remote communications; a meteorological tower with data logger and modem for acquiring local meteorology; communications with Environment Canada to download meteorological forecast data; a polling PC for data retrieval; and Windows NT basedmore » software running on the AIEM computer server. The SEC software utilizes relational databases to store and maintain measured SO{sub 2} concentration data, emission data, as well as observed and forecast meteorological data. The SEC system automatically executes a numerical dispersion model to forecast SO{sub 2} concentrations up to six hours in the future. Based on measured SO{sub 2} concentrations at the monitoring stations and the six hour forecast concentrations, the system determines if local sources should reduce their emission levels to avoid potential exceedences of the AQS. The SEC system also includes a Graphical User Interface (GUI) for user access to the system. The SEC system and software are described, and the accuracy of the system at forecasting SO{sub 2} concentrations is examined.« less

  15. Flood Risk Assessment and Forecasting for the Ganges-Brahmaputra-Meghna River Basins

    NASA Astrophysics Data System (ADS)

    Hopson, T. M.; Priya, S.; Young, W.; Avasthi, A.; Clayton, T. D.; Brakenridge, G. R.; Birkett, C. M.; Riddle, E. E.; Broman, D.; Boehnert, J.; Sampson, K. M.; Kettner, A.; Singh, D.

    2017-12-01

    During the 2017 South Asia monsoon, torrential rains and catastrophic floods affected more than 45 million people, including 16 million children, across the Ganges-Brahmaputra-Meghna (GBM) basins. The basin is recognized as one of the world's most disaster-prone regions, with severe floods occurring almost annually causing extreme loss of life and property. In light of this vulnerability, the World Bank and collaborators have contributed toward reducing future flood impacts through recent developments to improve operational preparedness for such events, as well as efforts in more general preparedness and resilience building through planning based on detailed risk assessments. With respect to improved event-specific flood preparedness through operational warnings, we discuss a new forecasting system that provides probability-based flood forecasts developed for more than 85 GBM locations. Forecasts are available online, along with near-real-time data maps of rainfall (predicted and actual) and river levels. The new system uses multiple data sets and multiple models to enhance forecasting skill, and provides improved forecasts up to 16 days in advance of the arrival of high waters. These longer lead times provide the opportunity to save both lives and livelihoods. With sufficient advance notice, for example, farmers can harvest a threatened rice crop or move vulnerable livestock to higher ground. Importantly, the forecasts not only predict future water levels but indicate the level of confidence in each forecast. Knowing whether the probability of a danger-level flood is 10 percent or 90 percent helps people to decide what, if any, action to take. With respect to efforts in general preparedness and resilience building, we also present a recent flood risk assessment, and how it provides, for the first time, a numbers-based view of the impacts of different size floods across the Ganges basin. The findings help identify priority areas for tackling flood risks (for example, relocating levees, improving flood warning systems, or boosting overall economic resilience). The assessment includes the locations and numbers of people at risk, as well as the locations and value of buildings, roads and railways, and crops at risk. An accompanying atlas includes easy-to-use risk maps and tables for the Ganges basins.

  16. Regional crop yield forecasting: a probabilistic approach

    NASA Astrophysics Data System (ADS)

    de Wit, A.; van Diepen, K.; Boogaard, H.

    2009-04-01

    Information on the outlook on yield and production of crops over large regions is essential for government services dealing with import and export of food crops, for agencies with a role in food relief, for international organizations with a mandate in monitoring the world food production and trade, and for commodity traders. Process-based mechanistic crop models are an important tool for providing such information, because they can integrate the effect of crop management, weather and soil on crop growth. When properly integrated in a yield forecasting system, the aggregated model output can be used to predict crop yield and production at regional, national and continental scales. Nevertheless, given the scales at which these models operate, the results are subject to large uncertainties due to poorly known weather conditions and crop management. Current yield forecasting systems are generally deterministic in nature and provide no information about the uncertainty bounds on their output. To improve on this situation we present an ensemble-based approach where uncertainty bounds can be derived from the dispersion of results in the ensemble. The probabilistic information provided by this ensemble-based system can be used to quantify uncertainties (risk) on regional crop yield forecasts and can therefore be an important support to quantitative risk analysis in a decision making process.

  17. Evaluating Snow Data Assimilation Framework for Streamflow Forecasting Applications Using Hindcast Verification

    NASA Astrophysics Data System (ADS)

    Barik, M. G.; Hogue, T. S.; Franz, K. J.; He, M.

    2012-12-01

    Snow water equivalent (SWE) estimation is a key factor in producing reliable streamflow simulations and forecasts in snow dominated areas. However, measuring or predicting SWE has significant uncertainty. Sequential data assimilation, which updates states using both observed and modeled data based on error estimation, has been shown to reduce streamflow simulation errors but has had limited testing for forecasting applications. In the current study, a snow data assimilation framework integrated with the National Weather System River Forecasting System (NWSRFS) is evaluated for use in ensemble streamflow prediction (ESP). Seasonal water supply ESP hindcasts are generated for the North Fork of the American River Basin (NFARB) in northern California. Parameter sets from the California Nevada River Forecast Center (CNRFC), the Differential Evolution Adaptive Metropolis (DREAM) algorithm and the Multistep Automated Calibration Scheme (MACS) are tested both with and without sequential data assimilation. The traditional ESP method considers uncertainty in future climate conditions using historical temperature and precipitation time series to generate future streamflow scenarios conditioned on the current basin state. We include data uncertainty analysis in the forecasting framework through the DREAM-based parameter set which is part of a recently developed Integrated Uncertainty and Ensemble-based data Assimilation framework (ICEA). Extensive verification of all tested approaches is undertaken using traditional forecast verification measures, including root mean square error (RMSE), Nash-Sutcliffe efficiency coefficient (NSE), volumetric bias, joint distribution, rank probability score (RPS), and discrimination and reliability plots. In comparison to the RFC parameters, the DREAM and MACS sets show significant improvement in volumetric bias in flow. Use of assimilation improves hindcasts of higher flows but does not significantly improve performance in the mid flow and low flow categories.

  18. The Weather Forecast Using Data Mining Research Based on Cloud Computing.

    NASA Astrophysics Data System (ADS)

    Wang, ZhanJie; Mazharul Mujib, A. B. M.

    2017-10-01

    Weather forecasting has been an important application in meteorology and one of the most scientifically and technologically challenging problem around the world. In my study, we have analyzed the use of data mining techniques in forecasting weather. This paper proposes a modern method to develop a service oriented architecture for the weather information systems which forecast weather using these data mining techniques. This can be carried out by using Artificial Neural Network and Decision tree Algorithms and meteorological data collected in Specific time. Algorithm has presented the best results to generate classification rules for the mean weather variables. The results showed that these data mining techniques can be enough for weather forecasting.

  19. Short-term Drought Prediction in India.

    NASA Astrophysics Data System (ADS)

    Shah, R.; Mishra, V.

    2014-12-01

    Medium range soil moisture drought forecast helps in decision making in the field of agriculture and water resources management. Part of skills in medium range drought forecast comes from precipitation. Proper evaluation and correction of precipitation forecast may improve drought predictions. Here, we evaluate skills of ensemble mean precipitation forecast from Global Ensemble Forecast System (GEFS) for medium range drought predictions over India. Climatological mean (CLIM) of historic data (OBS) are used as reference forecast to evaluate GEFS precipitation forecast. Analysis was conducted based on forecast initiated on 1st and 15th dates of each month for lead up to 7-days. Correlation and RMSE were used to estimate skill scores of accumulated GEFS precipitation forecast from lead 1 to 7-days. Volumetric indices based on the 2X2 contingency table were used to check missed and falsely predicted historic volume of daily precipitation from GEFS in different regions and at different thresholds. GEFS showed improvement in correlation of 0.44 over CLIM during the monsoon season and 0.55 during the winter season. Lower RMSE was showed by GEFS than CLIM. Ratio of RMSE in GEFS and CLIM comes out as 0.82 and 0.4 (perfect skill is at zero) during the monsoon and winter season, respectively. We finally used corrected GEFS forecast to derive the Variable Infiltration Capacity (VIC) model, which was used to develop short-term forecast of hydrologic and agricultural (soil moisture) droughts in India.

  20. Financial forecasts accuracy in Brazil's social security system.

    PubMed

    Silva, Carlos Patrick Alves da; Puty, Claudio Alberto Castelo Branco; Silva, Marcelino Silva da; Carvalho, Solon Venâncio de; Francês, Carlos Renato Lisboa

    2017-01-01

    Long-term social security statistical forecasts produced and disseminated by the Brazilian government aim to provide accurate results that would serve as background information for optimal policy decisions. These forecasts are being used as support for the government's proposed pension reform that plans to radically change the Brazilian Constitution insofar as Social Security is concerned. However, the reliability of official results is uncertain since no systematic evaluation of these forecasts has ever been published by the Brazilian government or anyone else. This paper aims to present a study of the accuracy and methodology of the instruments used by the Brazilian government to carry out long-term actuarial forecasts. We base our research on an empirical and probabilistic analysis of the official models. Our empirical analysis shows that the long-term Social Security forecasts are systematically biased in the short term and have significant errors that render them meaningless in the long run. Moreover, the low level of transparency in the methods impaired the replication of results published by the Brazilian Government and the use of outdated data compromises forecast results. In the theoretical analysis, based on a mathematical modeling approach, we discuss the complexity and limitations of the macroeconomic forecast through the computation of confidence intervals. We demonstrate the problems related to error measurement inherent to any forecasting process. We then extend this exercise to the computation of confidence intervals for Social Security forecasts. This mathematical exercise raises questions about the degree of reliability of the Social Security forecasts.

  1. Financial forecasts accuracy in Brazil’s social security system

    PubMed Central

    2017-01-01

    Long-term social security statistical forecasts produced and disseminated by the Brazilian government aim to provide accurate results that would serve as background information for optimal policy decisions. These forecasts are being used as support for the government’s proposed pension reform that plans to radically change the Brazilian Constitution insofar as Social Security is concerned. However, the reliability of official results is uncertain since no systematic evaluation of these forecasts has ever been published by the Brazilian government or anyone else. This paper aims to present a study of the accuracy and methodology of the instruments used by the Brazilian government to carry out long-term actuarial forecasts. We base our research on an empirical and probabilistic analysis of the official models. Our empirical analysis shows that the long-term Social Security forecasts are systematically biased in the short term and have significant errors that render them meaningless in the long run. Moreover, the low level of transparency in the methods impaired the replication of results published by the Brazilian Government and the use of outdated data compromises forecast results. In the theoretical analysis, based on a mathematical modeling approach, we discuss the complexity and limitations of the macroeconomic forecast through the computation of confidence intervals. We demonstrate the problems related to error measurement inherent to any forecasting process. We then extend this exercise to the computation of confidence intervals for Social Security forecasts. This mathematical exercise raises questions about the degree of reliability of the Social Security forecasts. PMID:28859172

  2. Towards a coastal ocean forecasting system in Southern Adriatic Northern Ionian seas based on unstructured-grid model

    NASA Astrophysics Data System (ADS)

    Federico, Ivan; Oddo, Paolo; Pinardi, Nadia; Coppini, Giovanni

    2014-05-01

    The Southern Adriatic Northern Ionian Forecasting System (SANIFS) operational chain is based on a nesting approach. The large scale model for the entire Mediterranean basin (MFS, Mediterranean Forecasting system, operated by INGV, e.g. Tonani et al. 2008, Oddo et al. 2009) provides lateral open boundary conditions to the regional model for Adriatic and Ionian seas (AIFS, Adriatic Ionian Forecasting System) which provides the open-sea fields (initial conditions and lateral open boundary conditions) to SANIFS. The latter, here presented, is a coastal ocean model based on SHYFEM (Shallow HYdrodynamics Finite Element Model) code, which is an unstructured grid, finite element three-dimensional hydrodynamic model (e.g. Umgiesser et al., 2004, Ferrarin et al., 2013). The SANIFS hydrodynamic model component has been designed to provide accurate information of hydrodynamics and active tracer fields in the coastal waters of Southern Eastern Italy (Apulia, Basilicata and Calabria regions), where the model is characterized by a resolution of about of 200-500 m. The horizontal resolution is also accurate in open-sea areas, where the elements size is approximately 3 km. During the development phase the model has been initialized and forced at the lateral open boundaries through a full nesting strategy directly with the MFS fields. The heat fluxes has been computed by bulk formulae using as input data the operational analyses of European Centre for Medium-Range Weather Forecasts. Short range pre-operational forecast tests have been performed in different seasons to evaluate the robustness of the implemented model in different oceanographic conditions. Model results are validated by means of comparison with MFS operational results and observations. The model is able to reproduce the large-scale oceanographic structures of the area (keeping similar structures of MFS in open sea), while in the coastal area significant improvements in terms of reproduced structures and dynamics are evident.

  3. Influenza forecasting with Google Flu Trends.

    PubMed

    Dugas, Andrea Freyer; Jalalpour, Mehdi; Gel, Yulia; Levin, Scott; Torcaso, Fred; Igusa, Takeru; Rothman, Richard E

    2013-01-01

    We developed a practical influenza forecast model based on real-time, geographically focused, and easy to access data, designed to provide individual medical centers with advanced warning of the expected number of influenza cases, thus allowing for sufficient time to implement interventions. Secondly, we evaluated the effects of incorporating a real-time influenza surveillance system, Google Flu Trends, and meteorological and temporal information on forecast accuracy. Forecast models designed to predict one week in advance were developed from weekly counts of confirmed influenza cases over seven seasons (2004-2011) divided into seven training and out-of-sample verification sets. Forecasting procedures using classical Box-Jenkins, generalized linear models (GLM), and generalized linear autoregressive moving average (GARMA) methods were employed to develop the final model and assess the relative contribution of external variables such as, Google Flu Trends, meteorological data, and temporal information. A GARMA(3,0) forecast model with Negative Binomial distribution integrating Google Flu Trends information provided the most accurate influenza case predictions. The model, on the average, predicts weekly influenza cases during 7 out-of-sample outbreaks within 7 cases for 83% of estimates. Google Flu Trend data was the only source of external information to provide statistically significant forecast improvements over the base model in four of the seven out-of-sample verification sets. Overall, the p-value of adding this external information to the model is 0.0005. The other exogenous variables did not yield a statistically significant improvement in any of the verification sets. Integer-valued autoregression of influenza cases provides a strong base forecast model, which is enhanced by the addition of Google Flu Trends confirming the predictive capabilities of search query based syndromic surveillance. This accessible and flexible forecast model can be used by individual medical centers to provide advanced warning of future influenza cases.

  4. Present and future hydropower scheduling in Statkraft

    NASA Astrophysics Data System (ADS)

    Bruland, O.

    2012-12-01

    Statkraft produces close to 40 TWH in an average year and is one of the largest hydropower producers in Europe. For hydropower producers the scheduling of electricity generation is the key to success and this depend on optimal use of the water resources. The hydrologist and his forecasts both on short and on long terms are crucial to this success. The hydrological forecasts in Statkraft and most hydropower companies in Scandinavia are based on lumped models and the HBV concept. But before the hydrological model there is a complex system for collecting, controlling and correcting data applied in the models and the production scheduling and, equally important, routines for surveillance of the processes and manual intervention. Prior to the forecasting the states in the hydrological models are updated based on observations. When snow is present in the catchments snow surveys are an important source for model updating. The meteorological forecast is another premise provider to the hydrological forecast and to get as precise meteorological forecast as possible Statkraft hires resources from the governmental forecasting center. Their task is to interpret the meteorological situation, describe the uncertainties and if necessary use their knowledge and experience to manually correct the forecast in the hydropower production regions. This is one of several forecast applied further in the scheduling process. Both to be able to compare and evaluate different forecast providers and to ensure that we get the best available forecast, forecasts from different sources are applied. Some of these forecasts have undergone statistical corrections to reduce biases. The uncertainties related to the meteorological forecast have for a long time been approached and described by ensemble forecasts. But also the observations used for updating the model have a related uncertainty. Both to the observations itself and to how well they represent the catchment. Though well known, these uncertainties have thus far been handled superficially. Statkraft has initiated a program called ENKI to approach these issues. A part of this program is to apply distributed models for hydrological forecasting. Developing methodologies to handle uncertainties in the observations, the meteorological forecasts, the model itself and how to update the model with this information are other parts of the program. Together with energy price expectations and information about the state of the energy production system the hydrological forecast is input to the next step in the production scheduling both on short and long term. The long term schedule for reservoir filling is premise provider to the short term optimizing of water. The long term schedule is based on the actual reservoir levels, snow storages and a long history of meteorological observations and gives an overall schedule at a regional level. Within the regions a more detailed tool is used for short term optimizing of the hydropower production Each reservoir is scheduled taking into account restrictions in the water courses and cost of start and stop of aggregates. The value of the water is calculated for each reservoir and reflects the risk of water spillage. This compared to the energy price determines whether an aggregate will run or not. In a gradually more complex energy system with relatively lower regulated capacity this is an increasingly more challenging task.

  5. THE EMERGENCE OF NUMERICAL AIR QUALITY FORCASTING MODELS AND THEIR APPLICATIONS

    EPA Science Inventory

    In recent years the U.S. and other nations have begun programs for short-term local through regional air quality forecasting based upon numerical three-dimensional air quality grid models. These numerical air quality forecast (NAQF) models and systems have been developed and test...

  6. How Hydroclimate Influences the Effectiveness of Particle Filter Data Assimilation of Streamflow in Initializing Short- to Medium-range Streamflow Forecasts

    NASA Astrophysics Data System (ADS)

    Clark, E.; Wood, A.; Nijssen, B.; Clark, M. P.

    2017-12-01

    Short- to medium-range (1- to 7-day) streamflow forecasts are important for flood control operations and in issuing potentially life-save flood warnings. In the U.S., the National Weather Service River Forecast Centers (RFCs) issue such forecasts in real time, depending heavily on a manual data assimilation (DA) approach. Forecasters adjust model inputs, states, parameters and outputs based on experience and consideration of a range of supporting real-time information. Achieving high-quality forecasts from new automated, centralized forecast systems will depend critically on the adequacy of automated DA approaches to make analogous corrections to the forecasting system. Such approaches would further enable systematic evaluation of real-time flood forecasting methods and strategies. Toward this goal, we have implemented a real-time Sequential Importance Resampling particle filter (SIR-PF) approach to assimilate observed streamflow into simulated initial hydrologic conditions (states) for initializing ensemble flood forecasts. Assimilating streamflow alone in SIR-PF improves simulated streamflow and soil moisture during the model spin up period prior to a forecast, with consequent benefits for forecasts. Nevertheless, it only consistently limits error in simulated snow water equivalent during the snowmelt season and in basins where precipitation falls primarily as snow. We examine how the simulated initial conditions with and without SIR-PF propagate into 1- to 7-day ensemble streamflow forecasts. Forecasts are evaluated in terms of reliability and skill over a 10-year period from 2005-2015. The focus of this analysis is on how interactions between hydroclimate and SIR-PF performance impact forecast skill. To this end, we examine forecasts for 5 hydroclimatically diverse basins in the western U.S. Some of these basins receive most of their precipitation as snow, others as rain. Some freeze throughout the mid-winter while others experience significant mid-winter melt events. We describe the methodology and present seasonal and inter-basin variations in DA-enhanced forecast skill.

  7. CEREF: A hybrid data-driven model for forecasting annual streamflow from a socio-hydrological system

    NASA Astrophysics Data System (ADS)

    Zhang, Hongbo; Singh, Vijay P.; Wang, Bin; Yu, Yinghao

    2016-09-01

    Hydrological forecasting is complicated by flow regime alterations in a coupled socio-hydrologic system, encountering increasingly non-stationary, nonlinear and irregular changes, which make decision support difficult for future water resources management. Currently, many hybrid data-driven models, based on the decomposition-prediction-reconstruction principle, have been developed to improve the ability to make predictions of annual streamflow. However, there exist many problems that require further investigation, the chief among which is the direction of trend components decomposed from annual streamflow series and is always difficult to ascertain. In this paper, a hybrid data-driven model was proposed to capture this issue, which combined empirical mode decomposition (EMD), radial basis function neural networks (RBFNN), and external forces (EF) variable, also called the CEREF model. The hybrid model employed EMD for decomposition and RBFNN for intrinsic mode function (IMF) forecasting, and determined future trend component directions by regression with EF as basin water demand representing the social component in the socio-hydrologic system. The Wuding River basin was considered for the case study, and two standard statistical measures, root mean squared error (RMSE) and mean absolute error (MAE), were used to evaluate the performance of CEREF model and compare with other models: the autoregressive (AR), RBFNN and EMD-RBFNN. Results indicated that the CEREF model had lower RMSE and MAE statistics, 42.8% and 7.6%, respectively, than did other models, and provided a superior alternative for forecasting annual runoff in the Wuding River basin. Moreover, the CEREF model can enlarge the effective intervals of streamflow forecasting compared to the EMD-RBFNN model by introducing the water demand planned by the government department to improve long-term prediction accuracy. In addition, we considered the high-frequency component, a frequent subject of concern in EMD-based forecasting, and results showed that removing high-frequency component is an effective measure to improve forecasting precision and is suggested for use with the CEREF model for better performance. Finally, the study concluded that the CEREF model can be used to forecast non-stationary annual streamflow change as a co-evolution of hydrologic and social systems with better accuracy. Also, the modification about removing high-frequency can further improve the performance of the CEREF model. It should be noted that the CEREF model is beneficial for data-driven hydrologic forecasting in complex socio-hydrologic systems, and as a simple data-driven socio-hydrologic forecasting model, deserves more attention.

  8. Real-time drought forecasting system for irrigation managment

    NASA Astrophysics Data System (ADS)

    Ceppi, Alessandro; Ravazzani, Giovanni; Corbari, Chiara; Masseroni, Daniele; Meucci, Stefania; Pala, Francesca; Salerno, Raffaele; Meazza, Giuseppe; Chiesa, Marco; Mancini, Marco

    2013-04-01

    In recent years frequent periods of water scarcity have enhanced the need to use water more carefully, even in in European areas traditionally rich of water such as the Po Valley. In dry periods, the problem of water shortage can be enhanced by conflictual use of water such as irrigation, industrial and power production (hydroelectric and thermoelectric). Further, over the last decade the social perspective on this issue is increasing due to climate change and global warming scenarios which come out from the last IPCC Report. The increased frequency of dry periods has stimulated the improvement of irrigation and water management. In this study we show the development and implementation of the real-time drought forecasting system Pre.G.I., an Italian acronym that stands for "Hydro-Meteorological forecast for irrigation management". The system is based on ensemble prediction at long range (30 days) with hydrological simulation of water balance to forecast the soil water content in every parcel over the Consorzio Muzza basin. The studied area covers 74,000 ha in the middle of the Po Valley, near the city of Lodi. The hydrological ensemble forecasts are based on 20 meteorological members of the non-hydrostatic WRF model with 30 days as lead-time, provided by Epson Meteo Centre, while the hydrological model used to generate the soil moisture and water table simulations is the rainfall-runoff distributed FEST-WB model, developed at Politecnico di Milano. The hydrological model was validated against measurements of latent heat flux and soil moisture acquired by an eddy-covariance station. Reliability of the forecasting system and its benefits was assessed on some cases-study occurred in the recent years.

  9. New Radiosonde Temperature Bias Adjustments for Potential NWP Applications Based on GPS RO Data

    NASA Astrophysics Data System (ADS)

    Sun, B.; Reale, A.; Ballish, B.; Seidel, D. J.

    2014-12-01

    Conventional radiosonde observations (RAOBs), along with satellite and other in situ data, are assimilated in numerical weather prediction (NWP) models to generate a forecast. Radiosonde temperature observations, however, have solar and thermal radiation induced biases (typically a warm daytime bias from sunlight heating the sensor and a cold bias at night as the sensor emits longwave radiation). Radiation corrections made at stations based on algorithms provided by radiosonde manufacturers or national meteorological agencies may not be adequate, so biases remain. To adjust these biases, NWP centers may make additional adjustments to radiosonde data. However, the radiation correction (RADCOR) schemes used in the NOAA NCEP data assimilation and forecasting system is outdated and does not cover several widely-used contemporary radiosonde types. This study focuses on work whose objective is to improve these corrections and test their impacts on the NWP forecasting and analysis. GPS Radio Occultation (RO) dry temperature (Tdry) is considered to be highly accurate in the upper troposphere and low stratosphere where atmospheric water vapor is negligible. This study uses GPS RO Tdry from the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) as the reference to quantify the radiation induced RAOB temperature errors by analyzing ~ 3-yr collocated RAOB and COSMIC GPS RO data compile by the NOAA Products Validation System (NPROVS). The new radiation adjustments are developed for different solar angle categories and for all common sonde types flown in the WMO global operational upper air network. Results for global and several commonly used sondes are presented in the context of NCEP Global Forecast System observation-minus-background analysis, indicating projected impacts in reducing forecast error. Dedicated NWP impact studies to quantify the impact of the new RADCOR schemes on the NCEP analyses and forecast are under consideration.

  10. PRESTIGRIS: an operational system for water resources and droughts management on Tuscany, Central Italy

    NASA Astrophysics Data System (ADS)

    Campo, Lorenzo; Caparrini, Francesca; Castelli, Fabio

    2013-04-01

    In the last years the problems of water management faced by local administration due to the growing demand of the territory and to the changes in terms of availability became more and more important. Also in view of problems issued by the Climate Change, it is necessary to have the availability of information about the present and the future state of the water resources on the territory, both in terms of stress of the water bodies and of trends in the near-future. In this respect, an adequate management and planning of the water resources can make use of meteorological seasonal forecasts (one-three month) for the assessment of the primary sources of fresh water in a given region. The PRESTIGRIS project (PREvisioni STagionali Idrologiche per la Gestione della Risorsa Idrica e della Siccità - hydrologic seasonal forecasts for water resources and droughts management), implemented at the University of Florence in collaboration with Eumechanos Environmental Engineering and LaMMa (Laboratorio di Monitoraggio e Modellistica ambientale, Laboratory for Environmental Monitoring and Modeling), is aimed to provide hydrological seasonal forecasts on the territory of the Tuscany Region, Central Italy, basing on the seasonal meteorological forecasts available at different Weather Services (NOAA, IRI, etc.). The PRESTIGRIS system is based on a stochastic disaggregation of the monthly seasonal forecasts of minimum and maximum air temperature at the ground and of the total rainfall height. Through an analysis based on Principal Component Analysis (PCA) techniques, the forecasts are disaggregated in daily maps at a spatial resolution (500 m) compatible with a complete hydrological balance simulation, performed on the entire Tuscany region (about 22000 km2) by the distributed hydrological model MOBIDIC (MOdello di BIlancio Distribuito e Continuo), developed at the Department of Civil and Environmental Engineering of the University of Florence. Given a single seasonal forecast, the system performs an ensemble of 50 hydrological simulations. Basing on the results of the simulations, significant quantiles of the main variables of interest (soil saturation, discharge flows in the stream network, evapotranspiration) are mapped on the territory. The results of the simulations for the year 2003, in particular during the severe drought occurred during the summer, are shown as an example of the capabilities of the system.

  11. The use of seasonal forecasts in a crop failure early warning system for West Africa

    NASA Astrophysics Data System (ADS)

    Nicklin, K. J.; Challinor, A.; Tompkins, A.

    2011-12-01

    Seasonal rainfall in semi-arid West Africa is highly variable. Farming systems in the region are heavily dependent on the monsoon rains leading to large variability in crop yields and a population that is vulnerable to drought. The existing crop yield forecasting system uses observed weather to calculate a water satisfaction index, which is then related to expected crop yield (Traore et al, 2006). Seasonal climate forecasts may be able to increase the lead-time of yield forecasts and reduce the humanitarian impact of drought. This study assesses the potential for a crop failure early warning system, which uses dynamic seasonal forecasts and a process-based crop model. Two sets of simulations are presented. In the first, the crop model is driven with observed weather as a control run. Observed rainfall is provided by the GPCP 1DD data set, whilst observed temperature and solar radiation data are given by the ERA-Interim reanalysis. The crop model used is the groundnut version of the General Large Area Model for annual crops (GLAM), which has been designed to operate on the grids used by seasonal weather forecasts (Challinor et al, 2004). GLAM is modified for use in West Africa by allowing multiple planting dates each season, replanting failed crops and producing parameter sets for Spanish- and Virginia- type West African groundnut. Crop yields are simulated for three different assumptions concerning the distribution and relative abundance of Spanish- and Virginia- type groundnut. Model performance varies with location, but overall shows positive skill in reproducing observed crop failure. The results for the three assumptions are similar, suggesting that the performance of the system is limited by something other than information on the type of groundnut grown. In the second set of simulations the crop model is driven with observed weather up to the forecast date, followed by ECMWF system 3 seasonal forecasts until harvest. The variation of skill with forecast date is assessed along with the extent to which forecasts can be improved by bias correction of the rainfall data. Two forms of bias correction are applied: a novel method of spatially bias correcting daily data, and statistical bias correction of the frequency and intensity distribution. Results are presented using both observed yields and the control run as the reference for verification. The potential for current dynamic seasonal forecasts to form part of an operational system giving timely and accurate warnings of crop failure is discussed. Traore S.B. et al., 2006. A Review of Agrometeorological Monitoring Tools and Methods Used in the West African Sahel. In: Motha R.P. et al., Strengthening Operational Agrometeorological Services at the National Level. Technical Bulletin WAOB-2006-1 and AGM-9, WMO/TD No. 1277. Pages 209-220. www.wamis.org/agm/pubs/agm9/WMO-TD1277.pdf Challinor A.J. et al., 2004. Design and optimisation of a large-area process based model for annual crops. Agric. For. Meteorol. 124, 99-120.

  12. AFFECTS - Advanced Forecast For Ensuring Communications Through Space

    NASA Astrophysics Data System (ADS)

    Bothmer, Volker

    2013-04-01

    Through the AFFECTS project funded by the European Union's 7th Framework Programme, European and US scientists develop an advanced proto-type space weather warning system to safeguard the operation of telecommunication and navigation systems on Earth to the threat of solar storms. The project is led by the University of Göttingen's Institute for Astrophysics and comprises worldwide leading research and academic institutions and industrial enterprises from Germany, Belgium, Ukraine, Norway and the United States. The key objectives of the AFFECTS project are: State-of-the-art analysis and modelling of the Sun-Earth chain of effects on the Earth's ionosphere and their subsequent impacts on communication systems based on multipoint space observations and complementary ground-based data. Development of a prototype space weather early warning system and reliable space weather forecasts, with specific emphasis on ionospheric applications. Dissemination of new space weather products and services to end users, the scientific community and general public. The presentation summarizes the project highlights, with special emphasis on the developed space weather forecast tools.

  13. Forecasting European Droughts using the North American Multi-Model Ensemble (NMME)

    NASA Astrophysics Data System (ADS)

    Thober, Stephan; Kumar, Rohini; Samaniego, Luis; Sheffield, Justin; Schäfer, David; Mai, Juliane

    2015-04-01

    Soil moisture droughts have the potential to diminish crop yields causing economic damage or even threatening the livelihood of societies. State-of-the-art drought forecasting systems incorporate seasonal meteorological forecasts to estimate future drought conditions. Meteorological forecasting skill (in particular that of precipitation), however, is limited to a few weeks because of the chaotic behaviour of the atmosphere. One of the most important challenges in drought forecasting is to understand how the uncertainty in the atmospheric forcings (e.g., precipitation and temperature) is further propagated into hydrologic variables such as soil moisture. The North American Multi-Model Ensemble (NMME) provides the latest collection of a multi-institutional seasonal forecasting ensemble for precipitation and temperature. In this study, we analyse the skill of NMME forecasts for predicting European drought events. The monthly NMME forecasts are downscaled to daily values to force the mesoscale hydrological model (mHM). The mHM soil moisture forecasts obtained with the forcings of the dynamical models are then compared against those obtained with the Ensemble Streamflow Prediction (ESP) approach. ESP recombines historical meteorological forcings to create a new ensemble forecast. Both forecasts are compared against reference soil moisture conditions obtained using observation based meteorological forcings. The study is conducted for the period from 1982 to 2009 and covers a large part of the Pan-European domain (10°W to 40°E and 35°N to 55°N). Results indicate that NMME forecasts are better at predicting the reference soil moisture variability as compared to ESP. For example, NMME explains 50% of the variability in contrast to only 31% by ESP at a six-month lead time. The Equitable Threat Skill Score (ETS), which combines the hit and false alarm rates, is analysed for drought events using a 0.2 threshold of a soil moisture percentile index. On average, the NMME based ensemble forecasts have consistently higher skill than the ESP based ones (ETS of 13% as compared to 5% at a six-month lead time). Additionally, the ETS ensemble spread of NMME forecasts is considerably narrower than that of ESP; the lower boundary of the NMME ensemble spread coincides most of the time with the ensemble median of ESP. Among the NMME models, NCEP-CFSv2 outperforms the other models in terms of ETS most of the time. Removing the three worst performing models does not deteriorate the ensemble performance (neither in skill nor in spread), but would substantially reduce the computational resources required in an operational forecasting system. For major European drought events (e.g., 1990, 1992, 2003, and 2007), NMME forecasts tend to underestimate area under drought and drought magnitude during times of drought development. During drought recovery, this underestimation is weaker for area under drought or even reversed into an overestimation for drought magnitude. This indicates that the NMME models are too wet during drought development and too dry during drought recovery. In summary, soil moisture drought forecasts by NMME are more skillful than those of an ESP based approach. However, they still show systematic biases in reproducing the observed drought dynamics during drought development and recovery.

  14. Maximizing Statistical Power When Verifying Probabilistic Forecasts of Hydrometeorological Events

    NASA Astrophysics Data System (ADS)

    DeChant, C. M.; Moradkhani, H.

    2014-12-01

    Hydrometeorological events (i.e. floods, droughts, precipitation) are increasingly being forecasted probabilistically, owing to the uncertainties in the underlying causes of the phenomenon. In these forecasts, the probability of the event, over some lead time, is estimated based on some model simulations or predictive indicators. By issuing probabilistic forecasts, agencies may communicate the uncertainty in the event occurring. Assuming that the assigned probability of the event is correct, which is referred to as a reliable forecast, the end user may perform some risk management based on the potential damages resulting from the event. Alternatively, an unreliable forecast may give false impressions of the actual risk, leading to improper decision making when protecting resources from extreme events. Due to this requisite for reliable forecasts to perform effective risk management, this study takes a renewed look at reliability assessment in event forecasts. Illustrative experiments will be presented, showing deficiencies in the commonly available approaches (Brier Score, Reliability Diagram). Overall, it is shown that the conventional reliability assessment techniques do not maximize the ability to distinguish between a reliable and unreliable forecast. In this regard, a theoretical formulation of the probabilistic event forecast verification framework will be presented. From this analysis, hypothesis testing with the Poisson-Binomial distribution is the most exact model available for the verification framework, and therefore maximizes one's ability to distinguish between a reliable and unreliable forecast. Application of this verification system was also examined within a real forecasting case study, highlighting the additional statistical power provided with the use of the Poisson-Binomial distribution.

  15. A New Integrated Weighted Model in SNOW-V10: Verification of Categorical Variables

    NASA Astrophysics Data System (ADS)

    Huang, Laura X.; Isaac, George A.; Sheng, Grant

    2014-01-01

    This paper presents the verification results for nowcasts of seven categorical variables from an integrated weighted model (INTW) and the underlying numerical weather prediction (NWP) models. Nowcasting, or short range forecasting (0-6 h), over complex terrain with sufficient accuracy is highly desirable but a very challenging task. A weighting, evaluation, bias correction and integration system (WEBIS) for generating nowcasts by integrating NWP forecasts and high frequency observations was used during the Vancouver 2010 Olympic and Paralympic Winter Games as part of the Science of Nowcasting Olympic Weather for Vancouver 2010 (SNOW-V10) project. Forecast data from Canadian high-resolution deterministic NWP system with three nested grids (at 15-, 2.5- and 1-km horizontal grid-spacing) were selected as background gridded data for generating the integrated nowcasts. Seven forecast variables of temperature, relative humidity, wind speed, wind gust, visibility, ceiling and precipitation rate are treated as categorical variables for verifying the integrated weighted forecasts. By analyzing the verification of forecasts from INTW and the NWP models among 15 sites, the integrated weighted model was found to produce more accurate forecasts for the 7 selected forecast variables, regardless of location. This is based on the multi-categorical Heidke skill scores for the test period 12 February to 21 March 2010.

  16. How to improve an un-alterable model forecast? A sequential data assimilation based error updating approach

    NASA Astrophysics Data System (ADS)

    Gragne, A. S.; Sharma, A.; Mehrotra, R.; Alfredsen, K. T.

    2012-12-01

    Accuracy of reservoir inflow forecasts is instrumental for maximizing value of water resources and influences operation of hydropower reservoirs significantly. Improving hourly reservoir inflow forecasts over a 24 hours lead-time is considered with the day-ahead (Elspot) market of the Nordic exchange market in perspectives. The procedure presented comprises of an error model added on top of an un-alterable constant parameter conceptual model, and a sequential data assimilation routine. The structure of the error model was investigated using freely available software for detecting mathematical relationships in a given dataset (EUREQA) and adopted to contain minimum complexity for computational reasons. As new streamflow data become available the extra information manifested in the discrepancies between measurements and conceptual model outputs are extracted and assimilated into the forecasting system recursively using Sequential Monte Carlo technique. Besides improving forecast skills significantly, the probabilistic inflow forecasts provided by the present approach entrains suitable information for reducing uncertainty in decision making processes related to hydropower systems operation. The potential of the current procedure for improving accuracy of inflow forecasts at lead-times unto 24 hours and its reliability in different seasons of the year will be illustrated and discussed thoroughly.

  17. Practical implementation of a particle filter data assimilation approach to estimate initial hydrologic conditions and initialize medium-range streamflow forecasts

    NASA Astrophysics Data System (ADS)

    Clark, Elizabeth; Wood, Andy; Nijssen, Bart; Mendoza, Pablo; Newman, Andy; Nowak, Kenneth; Arnold, Jeffrey

    2017-04-01

    In an automated forecast system, hydrologic data assimilation (DA) performs the valuable function of correcting raw simulated watershed model states to better represent external observations, including measurements of streamflow, snow, soil moisture, and the like. Yet the incorporation of automated DA into operational forecasting systems has been a long-standing challenge due to the complexities of the hydrologic system, which include numerous lags between state and output variations. To help demonstrate that such methods can succeed in operational automated implementations, we present results from the real-time application of an ensemble particle filter (PF) for short-range (7 day lead) ensemble flow forecasts in western US river basins. We use the System for Hydromet Applications, Research and Prediction (SHARP), developed by the National Center for Atmospheric Research (NCAR) in collaboration with the University of Washington, U.S. Army Corps of Engineers, and U.S. Bureau of Reclamation. SHARP is a fully automated platform for short-term to seasonal hydrologic forecasting applications, incorporating uncertainty in initial hydrologic conditions (IHCs) and in hydrometeorological predictions through ensemble methods. In this implementation, IHC uncertainty is estimated by propagating an ensemble of 100 temperature and precipitation time series through conceptual and physically-oriented models. The resulting ensemble of derived IHCs exhibits a broad range of possible soil moisture and snow water equivalent (SWE) states. The PF selects and/or weights and resamples the IHCs that are most consistent with external streamflow observations, and uses the particles to initialize a streamflow forecast ensemble driven by ensemble precipitation and temperature forecasts downscaled from the Global Ensemble Forecast System (GEFS). We apply this method in real-time for several basins in the western US that are important for water resources management, and perform a hindcast experiment to evaluate the utility of PF-based data assimilation on streamflow forecasts skill. This presentation describes findings, including a comparison of sequential and non-sequential particle weighting methods.

  18. Development of a multi-sensor based urban discharge forecasting system using remotely sensed data: A case study of extreme rainfall in South Korea

    NASA Astrophysics Data System (ADS)

    Yoon, Sunkwon; Jang, Sangmin; Park, Kyungwon

    2017-04-01

    Extreme weather due to changing climate is a main source of water-related disasters such as flooding and inundation and its damage will be accelerated somewhere in world wide. To prevent the water-related disasters and mitigate their damage in urban areas in future, we developed a multi-sensor based real-time discharge forecasting system using remotely sensed data such as radar and satellite. We used Communication, Ocean and Meteorological Satellite (COMS) and Korea Meteorological Agency (KMA) weather radar for quantitative precipitation estimation. The Automatic Weather System (AWS) and McGill Algorithm for Precipitation Nowcasting by Lagrangian Extrapolation (MAPLE) were used for verification of rainfall accuracy. The optimal Z-R relation was applied the Tropical Z-R relationship (Z=32R1.65), it has been confirmed that the accuracy is improved in the extreme rainfall events. In addition, the performance of blended multi-sensor combining rainfall was improved in 60mm/h rainfall and more strong heavy rainfall events. Moreover, we adjusted to forecast the urban discharge using Storm Water Management Model (SWMM). Several statistical methods have been used for assessment of model simulation between observed and simulated discharge. In terms of the correlation coefficient and r-squared discharge between observed and forecasted were highly correlated. Based on this study, we captured a possibility of real-time urban discharge forecasting system using remotely sensed data and its utilization for real-time flood warning. Acknowledgement This research was supported by a grant (13AWMP-B066744-01) from Advanced Water Management Research Program (AWMP) funded by Ministry of Land, Infrastructure and Transport (MOLIT) of Korean government.

  19. Workstation-Based Real-Time Mesoscale Modeling Designed for Weather Support to Operations at the Kennedy Space Center and Cape Canaveral Air Station

    NASA Technical Reports Server (NTRS)

    Manobianco, John; Zack, John W.; Taylor, Gregory E.

    1996-01-01

    This paper describes the capabilities and operational utility of a version of the Mesoscale Atmospheric Simulation System (MASS) that has been developed to support operational weather forecasting at the Kennedy Space Center (KSC) and Cape Canaveral Air Station (CCAS). The implementation of local, mesoscale modeling systems at KSC/CCAS is designed to provide detailed short-range (less than 24 h) forecasts of winds, clouds, and hazardous weather such as thunderstorms. Short-range forecasting is a challenge for daily operations, and manned and unmanned launches since KSC/CCAS is located in central Florida where the weather during the warm season is dominated by mesoscale circulations like the sea breeze. For this application, MASS has been modified to run on a Stardent 3000 workstation. Workstation-based, real-time numerical modeling requires a compromise between the requirement to run the system fast enough so that the output can be used before expiration balanced against the desire to improve the simulations by increasing resolution and using more detailed physical parameterizations. It is now feasible to run high-resolution mesoscale models such as MASS on local workstations to provide timely forecasts at a fraction of the cost required to run these models on mainframe supercomputers. MASS has been running in the Applied Meteorology Unit (AMU) at KSC/CCAS since January 1994 for the purpose of system evaluation. In March 1995, the AMU began sending real-time MASS output to the forecasters and meteorologists at CCAS, Spaceflight Meteorology Group (Johnson Space Center, Houston, Texas), and the National Weather Service (Melbourne, Florida). However, MASS is not yet an operational system. The final decision whether to transition MASS for operational use will depend on a combination of forecaster feedback, the AMU's final evaluation results, and the life-cycle costs of the operational system.

  20. Superensemble forecasts of dengue outbreaks

    PubMed Central

    Kandula, Sasikiran; Shaman, Jeffrey

    2016-01-01

    In recent years, a number of systems capable of predicting future infectious disease incidence have been developed. As more of these systems are operationalized, it is important that the forecasts generated by these different approaches be formally reconciled so that individual forecast error and bias are reduced. Here we present a first example of such multi-system, or superensemble, forecast. We develop three distinct systems for predicting dengue, which are applied retrospectively to forecast outbreak characteristics in San Juan, Puerto Rico. We then use Bayesian averaging methods to combine the predictions from these systems and create superensemble forecasts. We demonstrate that on average, the superensemble approach produces more accurate forecasts than those made from any of the individual forecasting systems. PMID:27733698

  1. Intelligent Ensemble Forecasting System of Stock Market Fluctuations Based on Symetric and Asymetric Wavelet Functions

    NASA Astrophysics Data System (ADS)

    Lahmiri, Salim; Boukadoum, Mounir

    2015-08-01

    We present a new ensemble system for stock market returns prediction where continuous wavelet transform (CWT) is used to analyze return series and backpropagation neural networks (BPNNs) for processing CWT-based coefficients, determining the optimal ensemble weights, and providing final forecasts. Particle swarm optimization (PSO) is used for finding optimal weights and biases for each BPNN. To capture symmetry/asymmetry in the underlying data, three wavelet functions with different shapes are adopted. The proposed ensemble system was tested on three Asian stock markets: The Hang Seng, KOSPI, and Taiwan stock market data. Three statistical metrics were used to evaluate the forecasting accuracy; including, mean of absolute errors (MAE), root mean of squared errors (RMSE), and mean of absolute deviations (MADs). Experimental results showed that our proposed ensemble system outperformed the individual CWT-ANN models each with different wavelet function. In addition, the proposed ensemble system outperformed the conventional autoregressive moving average process. As a result, the proposed ensemble system is suitable to capture symmetry/asymmetry in financial data fluctuations for better prediction accuracy.

  2. Development of On-line Wildfire Emissions for the Operational Canadian Air Quality Forecast System

    NASA Astrophysics Data System (ADS)

    Pavlovic, R.; Menard, S.; Chen, J.; Anselmo, D.; Paul-Andre, B.; Gravel, S.; Moran, M. D.; Davignon, D.

    2013-12-01

    An emissions processing system has been developed to incorporate near-real-time emissions from wildfires and large prescribed burns into Environment Canada's real-time GEM-MACH air quality (AQ) forecast system. Since the GEM-MACH forecast domain covers Canada and most of the USA, including Alaska, fire location information is needed for both of these large countries. Near-real-time satellite data are obtained and processed separately for the two countries for organizational reasons. Fire location and fuel consumption data for Canada are provided by the Canadian Forest Service's Canadian Wild Fire Information System (CWFIS) while fire location and emissions data for the U.S. are provided by the SMARTFIRE (Satellite Mapping Automated Reanalysis Tool for Fire Incident Reconciliation) system via the on-line BlueSky Gateway. During AQ model runs, emissions from individual fire sources are injected into elevated model layers based on plume-rise calculations and then transport and chemistry calculations are performed. This 'on the fly' approach to the insertion of emissions provides greater flexibility since on-line meteorology is used and reduces computational overhead in emission pre-processing. An experimental wildfire version of GEM-MACH was run in real-time mode for the summers of 2012 and 2013. 48-hour forecasts were generated every 12 hours (at 00 and 12 UTC). Noticeable improvements in the AQ forecasts for PM2.5 were seen in numerous regions where fire activity was high. Case studies evaluating model performance for specific regions, computed objective scores, and subjective evaluations by AQ forecasters will be included in this presentation. Using the lessons learned from the last two summers, Environment Canada will continue to work towards the goal of incorporating near-real-time intermittent wildfire emissions within the operational air quality forecast system.

  3. Operational value of ensemble streamflow forecasts for hydropower production: A Canadian case study

    NASA Astrophysics Data System (ADS)

    Boucher, Marie-Amélie; Tremblay, Denis; Luc, Perreault; François, Anctil

    2010-05-01

    Ensemble and probabilistic forecasts have many advantages over deterministic ones, both in meteorology and hydrology (e.g. Krzysztofowicz, 2001). Mainly, they inform the user on the uncertainty linked to the forecast. It has been brought to attention that such additional information could lead to improved decision making (e.g. Wilks and Hamill, 1995; Mylne, 2002; Roulin, 2007), but very few studies concentrate on operational situations involving the use of such forecasts. In addition, many authors have demonstrated that ensemble forecasts outperform deterministic forecasts in terms of performance (e.g. Jaun et al., 2005; Velazquez et al., 2009; Laio and Tamea, 2007). However, such performance is mostly assessed on the basis of numerical scoring rules, which compare the forecasts to the observations, and seldom in terms of management gains. The proposed case study adopts an operational point of view, on the basis that a novel forecasting system has value only if it leads to increase monetary and societal gains (e.g. Murphy, 1994; Laio and Tamea, 2007). More specifically, Environment Canada operational ensemble precipitation forecasts are used to drive the HYDROTEL distributed hydrological model (Fortin et al., 1995), calibrated on the Gatineau watershed located in Québec, Canada. The resulting hydrological ensemble forecasts are then incorporated into Hydro-Québec SOHO stochastic management optimization tool that automatically search for optimal operation decisions for the all reservoirs and hydropower plants located on the basin. The timeline of the study is the fall season of year 2003. This period is especially relevant because of high precipitations that nearly caused a major spill, and forced the preventive evacuation of a portion of the population located near one of the dams. We show that the use of the ensemble forecasts would have reduced the occurrence of spills and flooding, which is of particular importance for dams located in populous area, and increased hydropower production. The ensemble precipitation forecasts extend from March 1st of 2002 to December 31st of 2003. They were obtained using two atmospheric models, SEF (8 members plus the control deterministic forecast) and GEM (8 members). The corresponding deterministic precipitation forecast issued by SEF model is also used within HYDROTEL in order to compare ensemble streamflow forecasts with their deterministic counterparts. Although this study does not incorporate all the sources of uncertainty, precipitation is certainly the most important input for hydrological modeling and conveys a great portion of the total uncertainty. References: Fortin, J.P., Moussa, R., Bocquillon, C. and Villeneuve, J.P. 1995: HYDROTEL, un modèle hydrologique distribué pouvant bénéficier des données fournies par la télédétection et les systèmes d'information géographique, Revue des Sciences de l'Eau, 8(1), 94-124. Jaun, S., Ahrens, B., Walser, A., Ewen, T. and Schaer, C. 2008: A probabilistic view on the August 2005 floods in the upper Rhine catchment, Natural Hazards and Earth System Sciences, 8 (2), 281-291. Krzysztofowicz, R. 2001: The case for probabilistic forecasting in hydrology, Journal of Hydrology, 249, 2-9. Murphy, A.H. 1994: Assessing the economic value of weather forecasts: An overview of methods, results and issues, Meteorological Applications, 1, 69-73. Mylne, K.R. 2002: Decision-Making from probability forecasts based on forecast value, Meteorological Applications, 9, 307-315. Laio, F. and Tamea, S. 2007: Verification tools for probabilistic forecasts of continuous hydrological variables, Hydrology and Earth System Sciences, 11, 1267-1277. Roulin, E. 2007: Skill and relative economic value of medium-range hydrological ensemble predictions, Hydrology and Earth System Sciences, 11, 725-737. Velazquez, J.-A., Petit, T., Lavoie, A., Boucher, M.-A., Turcotte, R., Fortin, V. and Anctil, F. 2009: An evaluation of the Canadian global meteorological ensemble prediction system for short-term hydrological forecasting, Hydrology and Earth System Sciences, 13(11), 2221-2231. Wilks, D.S. and Hamill, T.M. 1995: Potential economic value of ensemble-based surface weather forecasts, Monthly Weather Review, 123(12), 3565-3575.

  4. Hydrological time series modeling: A comparison between adaptive neuro-fuzzy, neural network and autoregressive techniques

    NASA Astrophysics Data System (ADS)

    Lohani, A. K.; Kumar, Rakesh; Singh, R. D.

    2012-06-01

    SummaryTime series modeling is necessary for the planning and management of reservoirs. More recently, the soft computing techniques have been used in hydrological modeling and forecasting. In this study, the potential of artificial neural networks and neuro-fuzzy system in monthly reservoir inflow forecasting are examined by developing and comparing monthly reservoir inflow prediction models, based on autoregressive (AR), artificial neural networks (ANNs) and adaptive neural-based fuzzy inference system (ANFIS). To take care the effect of monthly periodicity in the flow data, cyclic terms are also included in the ANN and ANFIS models. Working with time series flow data of the Sutlej River at Bhakra Dam, India, several ANN and adaptive neuro-fuzzy models are trained with different input vectors. To evaluate the performance of the selected ANN and adaptive neural fuzzy inference system (ANFIS) models, comparison is made with the autoregressive (AR) models. The ANFIS model trained with the input data vector including previous inflows and cyclic terms of monthly periodicity has shown a significant improvement in the forecast accuracy in comparison with the ANFIS models trained with the input vectors considering only previous inflows. In all cases ANFIS gives more accurate forecast than the AR and ANN models. The proposed ANFIS model coupled with the cyclic terms is shown to provide better representation of the monthly inflow forecasting for planning and operation of reservoir.

  5. Three-Month Real-Time Dengue Forecast Models: An Early Warning System for Outbreak Alerts and Policy Decision Support in Singapore.

    PubMed

    Shi, Yuan; Liu, Xu; Kok, Suet-Yheng; Rajarethinam, Jayanthi; Liang, Shaohong; Yap, Grace; Chong, Chee-Seng; Lee, Kim-Sung; Tan, Sharon S Y; Chin, Christopher Kuan Yew; Lo, Andrew; Kong, Waiming; Ng, Lee Ching; Cook, Alex R

    2016-09-01

    With its tropical rainforest climate, rapid urbanization, and changing demography and ecology, Singapore experiences endemic dengue; the last large outbreak in 2013 culminated in 22,170 cases. In the absence of a vaccine on the market, vector control is the key approach for prevention. We sought to forecast the evolution of dengue epidemics in Singapore to provide early warning of outbreaks and to facilitate the public health response to moderate an impending outbreak. We developed a set of statistical models using least absolute shrinkage and selection operator (LASSO) methods to forecast the weekly incidence of dengue notifications over a 3-month time horizon. This forecasting tool used a variety of data streams and was updated weekly, including recent case data, meteorological data, vector surveillance data, and population-based national statistics. The forecasting methodology was compared with alternative approaches that have been proposed to model dengue case data (seasonal autoregressive integrated moving average and step-down linear regression) by fielding them on the 2013 dengue epidemic, the largest on record in Singapore. Operationally useful forecasts were obtained at a 3-month lag using the LASSO-derived models. Based on the mean average percentage error, the LASSO approach provided more accurate forecasts than the other methods we assessed. We demonstrate its utility in Singapore's dengue control program by providing a forecast of the 2013 outbreak for advance preparation of outbreak response. Statistical models built using machine learning methods such as LASSO have the potential to markedly improve forecasting techniques for recurrent infectious disease outbreaks such as dengue. Shi Y, Liu X, Kok SY, Rajarethinam J, Liang S, Yap G, Chong CS, Lee KS, Tan SS, Chin CK, Lo A, Kong W, Ng LC, Cook AR. 2016. Three-month real-time dengue forecast models: an early warning system for outbreak alerts and policy decision support in Singapore. Environ Health Perspect 124:1369-1375; http://dx.doi.org/10.1289/ehp.1509981.

  6. Demonstration of successful malaria forecasts for Botswana using an operational seasonal climate model

    NASA Astrophysics Data System (ADS)

    MacLeod, Dave A.; Jones, Anne; Di Giuseppe, Francesca; Caminade, Cyril; Morse, Andrew P.

    2015-04-01

    The severity and timing of seasonal malaria epidemics is strongly linked with temperature and rainfall. Advance warning of meteorological conditions from seasonal climate models can therefore potentially anticipate unusually strong epidemic events, building resilience and adapting to possible changes in the frequency of such events. Here we present validation of a process-based, dynamic malaria model driven by hindcasts from a state-of-the-art seasonal climate model from the European Centre for Medium-Range Weather Forecasts. We validate the climate and malaria models against observed meteorological and incidence data for Botswana over the period 1982-2006 the longest record of observed incidence data which has been used to validate a modeling system of this kind. We consider the impact of climate model biases, the relationship between climate and epidemiological predictability and the potential for skillful malaria forecasts. Forecast skill is demonstrated for upper tercile malaria incidence for the Botswana malaria season (January-May), using forecasts issued at the start of November; the forecast system anticipates six out of the seven upper tercile malaria seasons in the observational period. The length of the validation time series gives confidence in the conclusion that it is possible to make reliable forecasts of seasonal malaria risk, forming a key part of a health early warning system for Botswana and contributing to efforts to adapt to climate change.

  7. An Experimental Real-Time Ocean Nowcast/Forecast System for Intra America Seas

    NASA Astrophysics Data System (ADS)

    Ko, D. S.; Preller, R. H.; Martin, P. J.

    2003-04-01

    An experimental real-time Ocean Nowcast/Forecast System has been developed for the Intra America Seas (IASNFS). The area of coverage includes the Caribbean Sea, the Gulf of Mexico and the Straits of Florida. The system produces nowcast and up to 72 hours forecast the sea level variation, 3D ocean current, temperature and salinity fields. IASNFS consists an 1/24 degree (~5 km), 41-level sigma-z data-assimilating ocean model based on NCOM. For daily nowcast/forecast the model is restarted from previous nowcast. Once model is restarted it continuously assimilates the synthetic temperature/salinity profiles generated by a data analysis model called MODAS to produce nowcast. Real-time data come from satellite altimeter (GFO, TOPEX/Poseidon, ERS-2) sea surface height anomaly and AVHRR sea surface temperature. Three hourly surface heat fluxes, including solar radiation, wind stresses and sea level air pressure from NOGAPS/FNMOC are applied for surface forcing. Forecasts are produced with available NOGAPS forecasts. Once the nowcast/forecast are produced they are distributed through the Internet via the updated web pages. The open boundary conditions including sea surface elevation, transport, temperature, salinity and currents are provided by the NRL 1/8 degree Global NCOM which is operated daily. An one way coupling scheme is used to ingest those boundary conditions into the IAS model. There are 41 rivers with monthly discharges included in the IASNFS.

  8. The development of a model and decision support system to use in forecasting truck freight flow in the continental United States

    DOT National Transportation Integrated Search

    2001-01-01

    This research develops a regression-based model for forecasting truck borne freight in the continental United States. This model is capable of predicting freight commodity flow information via trucks to assist transportation planners who wish to unde...

  9. Objective Lightning Forecasting at Kennedy Space Center and Cape Canaveral Air Force Station using Cloud-to-Ground Lightning Surveillance System Data

    NASA Technical Reports Server (NTRS)

    Lambert, Winfred; Wheeler, Mark; Roeder, William

    2005-01-01

    The 45th Weather Squadron (45 WS) at Cape Canaveral Air-Force Station (CCAFS)ln Florida issues a probability of lightning occurrence in their daily 24-hour and weekly planning forecasts. This information is used for general planning of operations at CCAFS and Kennedy Space Center (KSC). These facilities are located in east-central Florida at the east end of a corridor known as 'Lightning Alley', an indication that lightning has a large impact on space-lift operations. Much of the current lightning probability forecast is based on a subjective analysis of model and observational data and an objective forecast tool developed over 30 years ago. The 45 WS requested that a new lightning probability forecast tool based on statistical analysis of more recent historical warm season (May-September) data be developed in order to increase the objectivity of the daily thunderstorm probability forecast. The resulting tool is a set of statistical lightning forecast equations, one for each month of the warm season, that provide a lightning occurrence probability for the day by 1100 UTC (0700 EDT) during the warm season.

  10. Daily water level forecasting using wavelet decomposition and artificial intelligence techniques

    NASA Astrophysics Data System (ADS)

    Seo, Youngmin; Kim, Sungwon; Kisi, Ozgur; Singh, Vijay P.

    2015-01-01

    Reliable water level forecasting for reservoir inflow is essential for reservoir operation. The objective of this paper is to develop and apply two hybrid models for daily water level forecasting and investigate their accuracy. These two hybrid models are wavelet-based artificial neural network (WANN) and wavelet-based adaptive neuro-fuzzy inference system (WANFIS). Wavelet decomposition is employed to decompose an input time series into approximation and detail components. The decomposed time series are used as inputs to artificial neural networks (ANN) and adaptive neuro-fuzzy inference system (ANFIS) for WANN and WANFIS models, respectively. Based on statistical performance indexes, the WANN and WANFIS models are found to produce better efficiency than the ANN and ANFIS models. WANFIS7-sym10 yields the best performance among all other models. It is found that wavelet decomposition improves the accuracy of ANN and ANFIS. This study evaluates the accuracy of the WANN and WANFIS models for different mother wavelets, including Daubechies, Symmlet and Coiflet wavelets. It is found that the model performance is dependent on input sets and mother wavelets, and the wavelet decomposition using mother wavelet, db10, can further improve the efficiency of ANN and ANFIS models. Results obtained from this study indicate that the conjunction of wavelet decomposition and artificial intelligence models can be a useful tool for accurate forecasting daily water level and can yield better efficiency than the conventional forecasting models.

  11. Meteorological air quality forecasting using the WRF-Chem model during the LMOS2017 field campaign

    NASA Astrophysics Data System (ADS)

    Stanier, C. O.; Abdioskouei, M.; Carmichael, G. R.; Christiansen, M.; Sobhani, N.

    2017-12-01

    The Lake Michigan Ozone Study (LMOS 2017) occurred during May and June 2017 to address the high ozone episodes in coastal communities surrounding Lake Michigan. Aircraft, ship, mobile lab, and ground-based stations were used in this campaign to build an extensive dataset regarding ozone, its precursors, and particulate matter. The University of Iowa produced high-resolution (4x4 km2 horizontal resolution and 53 vertical levels) forecast products using the WRF-Chem modeling system in support of experimental planning during LMOS 2017. The base forecast system used WRF-Chem 3.6.1 and updated National Emission Inventory (NEI-2011v2). In the updated NEI-2011v2, we reduced the NOx emissions by 28% based on EPA's estimated NOx trends from 2011 to 2017. We ran another daily forecast (perturbed forecast) with 50% reduced NOx emission to capture the sensitivity of ozone to NOx emission and account for the impact of weekend emissions on ozone values. Preliminary in-field evaluation of model performance for clouds, on-shore flows, and surface and aircraft sampled ozone and NOx concentrations found that the model successfully captured much of the observed synoptic variability of onshore flows. The model captured the variability of O3 well, but underpredicted peak ozone during high O3 episodes. In post-campaign WRF-Chem simulations, we investigated the sensitivity of the model to the hydrocarbon emission.

  12. A New Multivariate Approach in Generating Ensemble Meteorological Forcings for Hydrological Forecasting

    NASA Astrophysics Data System (ADS)

    Khajehei, Sepideh; Moradkhani, Hamid

    2015-04-01

    Producing reliable and accurate hydrologic ensemble forecasts are subject to various sources of uncertainty, including meteorological forcing, initial conditions, model structure, and model parameters. Producing reliable and skillful precipitation ensemble forecasts is one approach to reduce the total uncertainty in hydrological applications. Currently, National Weather Prediction (NWP) models are developing ensemble forecasts for various temporal ranges. It is proven that raw products from NWP models are biased in mean and spread. Given the above state, there is a need for methods that are able to generate reliable ensemble forecasts for hydrological applications. One of the common techniques is to apply statistical procedures in order to generate ensemble forecast from NWP-generated single-value forecasts. The procedure is based on the bivariate probability distribution between the observation and single-value precipitation forecast. However, one of the assumptions of the current method is fitting Gaussian distribution to the marginal distributions of observed and modeled climate variable. Here, we have described and evaluated a Bayesian approach based on Copula functions to develop an ensemble precipitation forecast from the conditional distribution of single-value precipitation forecasts. Copula functions are known as the multivariate joint distribution of univariate marginal distributions, which are presented as an alternative procedure in capturing the uncertainties related to meteorological forcing. Copulas are capable of modeling the joint distribution of two variables with any level of correlation and dependency. This study is conducted over a sub-basin in the Columbia River Basin in USA using the monthly precipitation forecasts from Climate Forecast System (CFS) with 0.5x0.5 Deg. spatial resolution to reproduce the observations. The verification is conducted on a different period and the superiority of the procedure is compared with Ensemble Pre-Processor approach currently used by National Weather Service River Forecast Centers in USA.

  13. Incorporating Medium-Range Weather Forecasts in Seasonal Crop Scenarios over the Greater Horn of Africa to Support National/Regional/Local Decision Makers

    NASA Astrophysics Data System (ADS)

    Shukla, S.; Husak, G. J.; Funk, C. C.; Verdin, J. P.

    2015-12-01

    The USAID's Famine Early Warning Systems Network (FEWS NET) provides seasonal assessments of crop conditions over the Greater Horn of Africa (GHA) and other food insecure regions. These assessments and current livelihood, nutrition, market conditions and conflicts are used to generate food security scenarios that help national, regional and local decision makers target their resources and mitigate socio-economic losses. Among the various tools that FEWS NET uses is the FAO's Water Requirement Satisfaction Index (WRSI). The WRSI is a simple yet powerful crop assessment model that incorporates current moisture conditions (at the time of the issuance of forecast), precipitation scenarios, potential evapotranspiration and crop parameters to categorize crop conditions into different classes ranging from "failure" to "very good". The WRSI tool has been shown to have a good agreement with local crop yields in the GHA region. At present, the precipitation scenarios used to drive the WRSI are based on either a climatological forecast (that assigns equal chances of occurrence to all possible scenarios and has no skill over the forecast period) or a sea-surface temperature anomaly based scenario (which at best have skill at the seasonal scale). In both cases, the scenarios fail to capture the skill that can be attained by initial atmospheric conditions (i.e., medium-range weather forecasts). During the middle of a cropping season, when a week or two of poor rains can have a devastating effect, two weeks worth of skillful precipitation forecasts could improve the skill of the crop scenarios. With this working hypothesis, we examine the value of incorporating medium-range weather forecasts in improving the skill of crop scenarios in the GHA region. We use the NCEP's Global Ensemble Forecast system (GEFS) weather forecasts and examine the skill of crop scenarios generated using the GEFS weather forecasts with respect to the scenarios based solely on the climatological forecast. The period of analysis is from 1985-2010 (over which the reforecasts of GEFS is available) and the focus season is October-November-December. We examine the improvement (if any) in long-term skill, and present results for several recent drought events in the region.

  14. Mixture EMOS model for calibrating ensemble forecasts of wind speed.

    PubMed

    Baran, S; Lerch, S

    2016-03-01

    Ensemble model output statistics (EMOS) is a statistical tool for post-processing forecast ensembles of weather variables obtained from multiple runs of numerical weather prediction models in order to produce calibrated predictive probability density functions. The EMOS predictive probability density function is given by a parametric distribution with parameters depending on the ensemble forecasts. We propose an EMOS model for calibrating wind speed forecasts based on weighted mixtures of truncated normal (TN) and log-normal (LN) distributions where model parameters and component weights are estimated by optimizing the values of proper scoring rules over a rolling training period. The new model is tested on wind speed forecasts of the 50 member European Centre for Medium-range Weather Forecasts ensemble, the 11 member Aire Limitée Adaptation dynamique Développement International-Hungary Ensemble Prediction System ensemble of the Hungarian Meteorological Service, and the eight-member University of Washington mesoscale ensemble, and its predictive performance is compared with that of various benchmark EMOS models based on single parametric families and combinations thereof. The results indicate improved calibration of probabilistic and accuracy of point forecasts in comparison with the raw ensemble and climatological forecasts. The mixture EMOS model significantly outperforms the TN and LN EMOS methods; moreover, it provides better calibrated forecasts than the TN-LN combination model and offers an increased flexibility while avoiding covariate selection problems. © 2016 The Authors Environmetrics Published by JohnWiley & Sons Ltd.

  15. Integrated Urban Flood Analysis considering Optimal Operation of Flood Control Facilities in Urban Drainage Networks

    NASA Astrophysics Data System (ADS)

    Moon, Y. I.; Kim, M. S.; Choi, J. H.; Yuk, G. M.

    2017-12-01

    eavy rainfall has become a recent major cause of urban area flooding due to the climate change and urbanization. To prevent property damage along with casualties, a system which can alert and forecast urban flooding must be developed. Optimal performance of reducing flood damage can be expected of urban drainage facilities when operated in smaller rainfall events over extreme ones. Thus, the purpose of this study is to execute: A) flood forecasting system using runoff analysis based on short term rainfall; and B) flood warning system which operates based on the data from pump stations and rainwater storage in urban basins. In result of the analysis, it is shown that urban drainage facilities using short term rainfall forecasting data by radar will be more effective to reduce urban flood damage than using only the inflow data of the facility. Keywords: Heavy Rainfall, Urban Flood, Short-term Rainfall Forecasting, Optimal operating of urban drainage facilities. AcknowledgmentsThis research was supported by a grant (17AWMP-B066744-05) from Advanced Water Management Research Program (AWMP) funded by Ministry of Land, Infrastructure and Transport of Korean government.

  16. Long-Range Atmosphere-Ocean Forecasting in Support of Undersea Warfare Operations in the Western North Pacific

    DTIC Science & Technology

    2009-09-01

    Forecasts ECS East China Sea ESRL Earth Systems Research Laboratory FA False alarm FARate False alarm rate xviii GDEM Generalized Digital...uses a LTM based, global ocean climatology database called Generalized Digital Environment Model ( GDEM ), in tactical decision aid (TDA) software, such...environment for USW planning. GDEM climatology is derived using temperature and salinity profiles from the Modular Ocean Data Assimilation System

  17. Application study of monthly precipitation forecast in Northeast China based on the cold vortex persistence activity index

    NASA Astrophysics Data System (ADS)

    Gang, Liu; Meihui, Qu; Guolin, Feng; Qucheng, Chu; Jing, Cao; Jie, Yang; Ling, Cao; Yao, Feng

    2018-03-01

    This paper introduces three quantitative indicators to conduct research for characterizing Northeast China cold vortex persistence activity: cold vortex persistence, generalized "cold vortex," and cold vortex precipitation. As discussed in the first part of paper, a hindcast is performed by multiple regressions using Northeast China precipitation from 2012 to 2014 combination with the previous winter 144 air-sea system factors. The results show that the mentioned three cold vortex index series can reflect the spatial and temporal distributions of observational precipitation in 2012-2014 and obtain results. The cold vortex factors are then added to the Forecast System on Dynamical and Analogy Skills (FODAS) to carry out dynamic statistical hindcast of precipitation in Northeast China from 2003 to 2012. Based on the characteristics and significance of each index, precipitation hindcast is carried out for Northeast China in May, June, July, August, May-June, and July-August. It turns out that the Northeast Cold Vortex Index Series, as defined in this paper, can make positive corrections to the FODAS forecast system, and most of the index correction results are higher than the system's own correction value. This study provides quantitative index products and supplies a solid technical foundation and support for monthly precipitation forecast in Northeast China.

  18. Waste information management system: a web-based system for DOE waste forecasting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geisler, T.J.; Shoffner, P.A.; Upadhyay, U.

    2007-07-01

    The implementation of the Department of Energy (DOE) mandated accelerated cleanup program has created significant potential technical impediments that must be overcome. The schedule compression will require close coordination and a comprehensive review and prioritization of the barriers that may impede treatment and disposition of the waste streams at each site. Many issues related to site waste treatment and disposal have now become potential critical path issues under the accelerated schedules. In order to facilitate accelerated cleanup initiatives, waste managers at DOE field sites and at DOE headquarters in Washington, D.C., need timely waste forecast information regarding the volumes andmore » types of waste that will be generated by DOE sites over the next 25 years. Each local DOE site has historically collected, organized, and displayed site waste forecast information in separate and unique systems. However, waste information from all sites needs a common application to allow interested parties to understand and view the complete complex-wide picture. A common application would allow identification of total waste volumes, material classes, disposition sites, choke points, and technological or regulatory barriers to treatment and disposal. The Applied Research Center (ARC) at Florida International University (FIU) in Miami, Florida, has completed the development of this web-based forecast system. (authors)« less

  19. Development of a multi-ensemble Prediction Model for China

    NASA Astrophysics Data System (ADS)

    Brasseur, G. P.; Bouarar, I.; Petersen, A. K.

    2016-12-01

    As part of the EU-sponsored Panda and MarcoPolo Projects, a multi-model prediction system including 7 models has been developed. Most regional models use global air quality predictions provided by the Copernicus Atmospheric Monitoring Service and downscale the forecast at relatively high spatial resolution in eastern China. The paper will describe the forecast system and show examples of forecasts produced for several Chinese urban areas and displayed on a web site developed by the Dutch Meteorological service. A discussion on the accuracy of the predictions based on a detailed validation process using surface measurements from the Chinese monitoring network will be presented.

  20. Assessing the Impact of Advanced Satellite Observations in the NASA GEOS-5 Forecast System Using the Adjoint Method

    NASA Technical Reports Server (NTRS)

    Gelaro, Ron; Liu, Emily; Sienkiewicz, Meta

    2011-01-01

    The adjoint of a data assimilation system provides a flexible and efficient tool for estimating observation impacts on short-range weather forecasts. The impacts of any or all observations can be estimated simultaneously based on a single execution of the adjoint system. The results can be easily aggregated according to data type, location, channel, etc., making this technique especially attractive for examining the impacts of new hyper-spectral satellite instruments and for conducting regular, even near-real time, monitoring of the entire observing system. In this talk, we present results from the adjoint-based observation impact monitoring tool in NASA's GEOS-5 global atmospheric data assimilation and forecast system. The tool has been running in various off-line configurations for some time, and is scheduled to run as a regular part of the real-time forecast suite beginning in autumn 20 I O. We focus on the impacts of the newest components of the satellite observing system, including AIRS, IASI and GPS. For AIRS and IASI, it is shown that the vast majority of the channels assimilated have systematic positive impacts (of varying magnitudes), although some channels degrade the forecast. Of the latter, most are moisture-sensitive or near-surface channels. The impact of GPS observations in the southern hemisphere is found to be a considerable overall benefit to the system. In addition, the spatial variability of observation impacts reveals coherent patterns of positive and negative impacts that may point to deficiencies in the use of certain observations over, for example, specific surface types. When performed in conjunction with selected observing system experiments (OSEs), the adjoint results reveal both redundancies and dependencies between observing system impacts as observations are added or removed from the assimilation system. Understanding these dependencies appears to pose a major challenge for optimizing the use of the current observational network and defining requirements for future observing systems.

  1. Drought Prediction for Socio-Cultural Stability Project

    NASA Technical Reports Server (NTRS)

    Peters-Lidard, Christa; Eylander, John B.; Koster, Randall; Narapusetty, Balachandrudu; Kumar, Sujay; Rodell, Matt; Bolten, John; Mocko, David; Walker, Gregory; Arsenault, Kristi; hide

    2014-01-01

    The primary objective of this project is to answer the question: "Can existing, linked infrastructures be used to predict the onset of drought months in advance?" Based on our work, the answer to this question is "yes" with the qualifiers that skill depends on both lead-time and location, and especially with the associated teleconnections (e.g., ENSO, Indian Ocean Dipole) active in a given region season. As part of this work, we successfully developed a prototype drought early warning system based on existing/mature NASA Earth science components including the Goddard Earth Observing System Data Assimilation System Version 5 (GEOS-5) forecasting model, the Land Information System (LIS) land data assimilation software framework, the Catchment Land Surface Model (CLSM), remotely sensed terrestrial water storage from the Gravity Recovery and Climate Experiment (GRACE) and remotely sensed soil moisture products from the Aqua/Advanced Microwave Scanning Radiometer - EOS (AMSR-E). We focused on a single drought year - 2011 - during which major agricultural droughts occurred with devastating impacts in the Texas-Mexico region of North America (TEXMEX) and the Horn of Africa (HOA). Our results demonstrate that GEOS-5 precipitation forecasts show skill globally at 1-month lead, and can show up to 3 months skill regionally in the TEXMEX and HOA areas. Our results also demonstrate that the CLSM soil moisture percentiles are a goof indicator of drought, as compared to the North American Drought Monitor of TEXMEX and a combination of Famine Early Warning Systems Network (FEWS NET) data and Moderate Resolution Imaging Spectrometer (MODIS)'s Normalizing Difference Vegetation Index (NDVI) anomalies over HOA. The data assimilation experiments produced mixed results. GRACE terrestrial water storage (TWS) assimilation was found to significantly improve soil moisture and evapotransportation, as well as drought monitoring via soil moisture percentiles, while AMSR-E soil moisture assimilation produced marginal benefits. We carried out 1-3 month lead-time forecast experiments using GEOS-5 forecasts as input to LIS/CLSM. Based on these forecast experiments, we find that the expected skill in GEOS-5 forecasts from 1-3 months is present in the soil moisture percentiles used to indicate drought. In the case of the HOA drought, the failure of the long rains in April appears in the February 1, March 1 and April 1 initialized forecasts, suggesting that for this case, drought forecasting would have provided some advance warning about the drought conditions observed in 2011. Three key recommendations for follow-up work include: (1) carry out a comprehensive analysis of droughts observed over the entire period of record for GEOS-5 forecasts; (2) continue to analyze the GEOS-5 forecasts in HOA stratifying by anomalies in long and short rains; and (3) continue to include GRACE TWS, Soil Moisture/Ocean Salinity (SMOS) and the upcoming NASA Soil Moisture Active/Passive (SMAP) soil moisture products in a routine activity building on this prototype to further quantify the benefits for drought assessment and prediction.

  2. Aerosols and Aerosol-related haze forecasting in China Meteorological Adminstration

    NASA Astrophysics Data System (ADS)

    Zhou, Chunhong; Zhang, Xiaoye; Gong, Sunling; Liu, Hongli; Xue, Min

    2017-04-01

    CMA Unified Atmospheric Chemistry Environmental Forecasting System (CUACE) is a unified numerical chemical weather forecasting system with BC, OC, Sulfate, Nitrate, Ammonia, Dust and Sea-Salt aerosols and their sources, gas to particle processes, SOA, microphysics and transformation. With an open interface, CUACE has been online coupled to mesoscale model MM5 and the new NWP system GRAPES (Global/Regional Assimilation and Prediction Enhanced System)min CMA. With Chinese Emissions from Cao and Zhang(2012 and 2013), a forecasting system called CUACE/Haze-fog has been running in real time in CMA and issue 5-days PM10, O3 and Visibility forecasts. A comprehensive ACI scheme has also been developed in CUACE Calculated by a sectional aerosol activation scheme based on the information of size and mass from CUACE and the thermal-dynamic and humid states from the weather model at each time step, the cloud condensation nuclei (CCN) is fed online interactively into a two-moment cloud scheme (WDM6) and a convective parameterization to drive the cloud physics and precipitation formation processes. The results show that interactive aerosols with the WDM6 in CUACE obviously improve the clouds properties and the precipitation, showing 24% to 48% enhancements of TS scoring for 6-h precipitation .

  3. Validation of reactive gases and aerosols in the MACC global analysis and forecast system

    NASA Astrophysics Data System (ADS)

    Eskes, H.; Huijnen, V.; Arola, A.; Benedictow, A.; Blechschmidt, A.-M.; Botek, E.; Boucher, O.; Bouarar, I.; Chabrillat, S.; Cuevas, E.; Engelen, R.; Flentje, H.; Gaudel, A.; Griesfeller, J.; Jones, L.; Kapsomenakis, J.; Katragkou, E.; Kinne, S.; Langerock, B.; Razinger, M.; Richter, A.; Schultz, M.; Schulz, M.; Sudarchikova, N.; Thouret, V.; Vrekoussis, M.; Wagner, A.; Zerefos, C.

    2015-11-01

    The European MACC (Monitoring Atmospheric Composition and Climate) project is preparing the operational Copernicus Atmosphere Monitoring Service (CAMS), one of the services of the European Copernicus Programme on Earth observation and environmental services. MACC uses data assimilation to combine in situ and remote sensing observations with global and regional models of atmospheric reactive gases, aerosols, and greenhouse gases, and is based on the Integrated Forecasting System of the European Centre for Medium-Range Weather Forecasts (ECMWF). The global component of the MACC service has a dedicated validation activity to document the quality of the atmospheric composition products. In this paper we discuss the approach to validation that has been developed over the past 3 years. Topics discussed are the validation requirements, the operational aspects, the measurement data sets used, the structure of the validation reports, the models and assimilation systems validated, the procedure to introduce new upgrades, and the scoring methods. One specific target of the MACC system concerns forecasting special events with high-pollution concentrations. Such events receive extra attention in the validation process. Finally, a summary is provided of the results from the validation of the latest set of daily global analysis and forecast products from the MACC system reported in November 2014.

  4. Forecasting the magnitude and onset of El Niño based on climate network

    NASA Astrophysics Data System (ADS)

    Meng, Jun; Fan, Jingfang; Ashkenazy, Yosef; Bunde, Armin; Havlin, Shlomo

    2018-04-01

    El Niño is probably the most influential climate phenomenon on inter-annual time scales. It affects the global climate system and is associated with natural disasters; it has serious consequences in many aspects of human life. However, the forecasting of the onset and in particular the magnitude of El Niño are still not accurate enough, at least more than half a year ahead. Here, we introduce a new forecasting index based on climate network links representing the similarity of low frequency temporal temperature anomaly variations between different sites in the Niño 3.4 region. We find that significant upward trends in our index forecast the onset of El Niño approximately 1 year ahead, and the highest peak since the end of last El Niño in our index forecasts the magnitude of the following event. We study the forecasting capability of the proposed index on several datasets, including, ERA-Interim, NCEP Reanalysis I, PCMDI-AMIP 1.1.3 and ERSST.v5.

  5. The capability of radial basis function to forecast the volume fractions of the annular three-phase flow of gas-oil-water.

    PubMed

    Roshani, G H; Karami, A; Salehizadeh, A; Nazemi, E

    2017-11-01

    The problem of how to precisely measure the volume fractions of oil-gas-water mixtures in a pipeline remains as one of the main challenges in the petroleum industry. This paper reports the capability of Radial Basis Function (RBF) in forecasting the volume fractions in a gas-oil-water multiphase system. Indeed, in the present research, the volume fractions in the annular three-phase flow are measured based on a dual energy metering system including the 152 Eu and 137 Cs and one NaI detector, and then modeled by a RBF model. Since the summation of volume fractions are constant (equal to 100%), therefore it is enough for the RBF model to forecast only two volume fractions. In this investigation, three RBF models are employed. The first model is used to forecast the oil and water volume fractions. The next one is utilized to forecast the water and gas volume fractions, and the last one to forecast the gas and oil volume fractions. In the next stage, the numerical data obtained from MCNP-X code must be introduced to the RBF models. Then, the average errors of these three models are calculated and compared. The model which has the least error is picked up as the best predictive model. Based on the results, the best RBF model, forecasts the oil and water volume fractions with the mean relative error of less than 0.5%, which indicates that the RBF model introduced in this study ensures an effective enough mechanism to forecast the results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. A domain analysis approach to clear-air turbulence forecasting using high-density in-situ measurements

    NASA Astrophysics Data System (ADS)

    Abernethy, Jennifer A.

    Pilots' ability to avoid clear-air turbulence (CAT) during flight affects the safety of the millions of people who fly commercial airlines and other aircraft, and turbulence costs millions in injuries and aircraft maintenance every year. Forecasting CAT is not straightforward, however; microscale features like the turbulence eddies that affect aircraft (100m) are below the current resolution of operational numerical weather prediction (NWP) models, and the only evidence of CAT episodes, until recently, has been sparse, subjective reports from pilots known as PIREPs. To forecast CAT, researchers use a simple weighted sum of top-performing turbulence indicators derived from NWP model outputs---termed diagnostics---based on their agreement with current PIREPs. However, a new, quantitative source of observation data---high-density measurements made by sensor equipment and software on aircraft, called in-situ measurements---is now available. The main goal of this thesis is to develop new data analysis and processing techniques to apply to the model and new observation data, in order to improve CAT forecasting accuracy. This thesis shows that using in-situ data improves forecasting accuracy and that automated machine learning algorithms such as support vector machines (SVM), logistic regression, and random forests, can match current performance while eliminating almost all hand-tuning. Feature subset selection is paired with the new algorithms to choose diagnostics that predict well as a group rather than individually. Specializing forecasts and choice of diagnostics by geographic region further improves accuracy because of the geographic variation in turbulence sources. This work uses random forests to find climatologically-relevant regions based on these variations and implements a forecasting system testbed which brings these techniques together to rapidly prototype new, regionalized versions of operational CAT forecasting systems.

  7. Simultaneous calibration of ensemble river flow predictions over an entire range of lead times

    NASA Astrophysics Data System (ADS)

    Hemri, S.; Fundel, F.; Zappa, M.

    2013-10-01

    Probabilistic estimates of future water levels and river discharge are usually simulated with hydrologic models using ensemble weather forecasts as main inputs. As hydrologic models are imperfect and the meteorological ensembles tend to be biased and underdispersed, the ensemble forecasts for river runoff typically are biased and underdispersed, too. Thus, in order to achieve both reliable and sharp predictions statistical postprocessing is required. In this work Bayesian model averaging (BMA) is applied to statistically postprocess ensemble runoff raw forecasts for a catchment in Switzerland, at lead times ranging from 1 to 240 h. The raw forecasts have been obtained using deterministic and ensemble forcing meteorological models with different forecast lead time ranges. First, BMA is applied based on mixtures of univariate normal distributions, subject to the assumption of independence between distinct lead times. Then, the independence assumption is relaxed in order to estimate multivariate runoff forecasts over the entire range of lead times simultaneously, based on a BMA version that uses multivariate normal distributions. Since river runoff is a highly skewed variable, Box-Cox transformations are applied in order to achieve approximate normality. Both univariate and multivariate BMA approaches are able to generate well calibrated probabilistic forecasts that are considerably sharper than climatological forecasts. Additionally, multivariate BMA provides a promising approach for incorporating temporal dependencies into the postprocessed forecasts. Its major advantage against univariate BMA is an increase in reliability when the forecast system is changing due to model availability.

  8. Improving inflow forecasting into hydropower reservoirs through a complementary modelling framework

    NASA Astrophysics Data System (ADS)

    Gragne, A. S.; Sharma, A.; Mehrotra, R.; Alfredsen, K.

    2014-10-01

    Accuracy of reservoir inflow forecasts is instrumental for maximizing the value of water resources and benefits gained through hydropower generation. Improving hourly reservoir inflow forecasts over a 24 h lead-time is considered within the day-ahead (Elspot) market of the Nordic exchange market. We present here a new approach for issuing hourly reservoir inflow forecasts that aims to improve on existing forecasting models that are in place operationally, without needing to modify the pre-existing approach, but instead formulating an additive or complementary model that is independent and captures the structure the existing model may be missing. Besides improving forecast skills of operational models, the approach estimates the uncertainty in the complementary model structure and produces probabilistic inflow forecasts that entrain suitable information for reducing uncertainty in the decision-making processes in hydropower systems operation. The procedure presented comprises an error model added on top of an un-alterable constant parameter conceptual model, the models being demonstrated with reference to the 207 km2 Krinsvatn catchment in central Norway. The structure of the error model is established based on attributes of the residual time series from the conceptual model. Deterministic and probabilistic evaluations revealed an overall significant improvement in forecast accuracy for lead-times up to 17 h. Season based evaluations indicated that the improvement in inflow forecasts varies across seasons and inflow forecasts in autumn and spring are less successful with the 95% prediction interval bracketing less than 95% of the observations for lead-times beyond 17 h.

  9. Uses and Applications of Climate Forecasts for Power Utilities.

    NASA Astrophysics Data System (ADS)

    Changnon, Stanley A.; Changnon, Joyce M.; Changnon, David

    1995-05-01

    The uses and potential applications of climate forecasts for electric and gas utilities were assessed 1) to discern needs for improving climate forecasts and guiding future research, and 2) to assist utilities in making wise use of forecasts. In-depth structured interviews were conducted with 56 decision makers in six utilities to assess existing and potential uses of climate forecasts. Only 3 of the 56 use forecasts. Eighty percent of those sampled envisioned applications of climate forecasts, given certain changes and additional information. Primary applications exist in power trading, load forecasting, fuel acquisition, and systems planning, with slight differences in interests between utilities. Utility staff understand probability-based forecasts but desire climatological information related to forecasted outcomes, including analogs similar to the forecasts, and explanations of the forecasts. Desired lead times vary from a week to three months, along with forecasts of up to four seasons ahead. The new NOAA forecasts initiated in 1995 provide the lead times and longer-term forecasts desired. Major hindrances to use of forecasts are hard-to-understand formats, lack of corporate acceptance, and lack of access to expertise. Recent changes in government regulations altered the utility industry, leading to a more competitive world wherein information about future weather conditions assumes much more value. Outreach efforts by government forecast agencies appear valuable to help achieve the appropriate and enhanced use of climate forecasts by the utility industry. An opportunity for service exists also for the private weather sector.

  10. Signature-forecasting and early outbreak detection system

    PubMed Central

    Naumova, Elena N.; MacNeill, Ian B.

    2008-01-01

    SUMMARY Daily disease monitoring via a public health surveillance system provides valuable information on population risks. Efficient statistical tools for early detection of rapid changes in the disease incidence are a must for modern surveillance. The need for statistical tools for early detection of outbreaks that are not based on historical information is apparent. A system is discussed for monitoring cases of infections with a view to early detection of outbreaks and to forecasting the extent of detected outbreaks. We propose a set of adaptive algorithms for early outbreak detection that does not rely on extensive historical recording. We also include knowledge of infection disease epidemiology into forecasts. To demonstrate this system we use data from the largest water-borne outbreak of cryptosporidiosis, which occurred in Milwaukee in 1993. Historical data are smoothed using a loess-type smoother. Upon receipt of a new datum, the smoothing is updated and estimates are made of the first two derivatives of the smooth curve, and these are used for near-term forecasting. Recent data and the near-term forecasts are used to compute a color-coded warning index, which quantify the level of concern. The algorithms for computing the warning index have been designed to balance Type I errors (false prediction of an epidemic) and Type II errors (failure to correctly predict an epidemic). If the warning index signals a sufficiently high probability of an epidemic, then a forecast of the possible size of the outbreak is made. This longer term forecast is made by fitting a ‘signature’ curve to the available data. The effectiveness of the forecast depends upon the extent to which the signature curve captures the shape of outbreaks of the infection under consideration. PMID:18716671

  11. Expert and Knowledge Based Systems.

    ERIC Educational Resources Information Center

    Demaid, Adrian; Edwards, Lyndon

    1987-01-01

    Discusses the nature and current state of knowledge-based systems and expert systems. Describes an expert system from the viewpoints of a computer programmer and an applications expert. Addresses concerns related to materials selection and forecasts future developments in the teaching of materials engineering. (ML)

  12. The CMEMS IBI-MFC Forecasting Service in 2017: Evolution and Novelties associated to the CMEMS service release

    NASA Astrophysics Data System (ADS)

    Lorente, Pablo; Sotillo, Marcos G.; Gutknecht, Elodie; Dabrowski, Tomasz; Aouf, Lotfi; Toledano, Cristina; Amo-Baladron, Arancha; Aznar, Roland; De Pascual, Alvaro; Levier, Bruno; Bowyer, Peter; Rainaud, Romain; Alvarez-Fanjul, Enrique

    2017-04-01

    The IBI-MFC (Iberia-Biscay-Ireland Monitoring & Forecasting Centre) has been providing daily ocean model estimates and forecasts of diverse physical parameters for the IBI regional seas since 2011, first in the frame of MyOcean projects and later as part of the Copernicus Marine Environment Monitoring Service (CMEMS). By April 2017, coincident with the V3 CMEMS Service Release, the IBI-MFC will extend their near real time (NRT) forecast capabilities. Two new operational IBI forecast systems will be operationally run to generate high resolution biochemical (BIO) and wave (WAV) products on the IBI area. The IBI-NRT-BIO forecast system, based on a 1/36° NEMO-PISCES model application, is run once a week coupled with the IBI physical forecast solution and nested to the CMEMS GLOBAL-BIO solution. On the other hand, the IBI-NRT-WAV system, based on a MeteoFrance-WAM 10km resolution model application, runs twice a day using ECMWF wind forcing. Among other novelties related to the evolution of the IBI physical (PHY) solution, it is worthwhile mentioning the provision, as part of the IBI-NRT-PHY product daily updated, of three-dimensional hourly data on specific areas within the IBI domain. The delivery of these new hourly data along the whole water column has been achieved after the request from IBI users, in order to foster downscaling approaches by providing coherent open boundary conditions to any potential high-resolution coastal model nested to IBI regional solution. An extensive skill assessment of IBI-NRT forecast products has been conducted through the NARVAL (North Atlantic Regional VALidation) web tool, by means of the automatic computation of statistical metrics and quality indicators. By now, this tool has been focused on the validation of the IBI-NRT-PHY system. Nowadays, NARVAL is facing a significant upgrade to validate the aforementioned new biogeochemical and wave IBI products. To this aim, satellite derived observations of chlorophyll and significant wave height will be used, together with in-situ wave parameters measured by mooring buoys. Within this validation framework, special emphasis has been placed on the intercomparison of different forecast model solutions in overlapping areas in order to evaluate models' performances and prognostic capabilities. This common uncertainty estimates of IBI and other model solution is currently performed by NARVAL using both CMEMS forecast model sources (i.e. GLOBAL-MFC, MED-MFC and NWS-MFC) and non-CMEMS operational forecast solutions (mostly downstream application nested to the IBI solution). With respect to the IBI multi-year (MY) products, it is worth mentioning that the actual biogeochemical and physical reanalysis products will be re-run along year 2017, extending its time coverage backwards until 1992. Based on these IBI-MY products, a variety of climatic indicators related to essential oceanographic processes (i.e. western coastal upwelling or the Mediterranean Outflow Water) are currently being computed.

  13. Benefits of Sharing Information: Supermodel Ensemble and Applications in South America

    NASA Astrophysics Data System (ADS)

    Dias, P. L.

    2006-05-01

    A model intercomparison program involving a large number of academic and operational institutions has been implemented in South America since 2003, motivated by the SALLJEX Intercomparison Program in 2003 (a research program focused on the identification of the role of the Andes low level jet moisture transport from the Amazon to the Plata basin) and the WMO/THORPEX (www.wmo.int/thorpex) goals to improve predictability through the proper combination of numerical weather forecasts. This program also explores the potential predictability associated with the combination of a large number of possible scenarios in the time scale of a few days to up to 15 days. Five academic institutions and five operational forecasting centers in several countries in South America, 1 academic institution in the USA, and the main global forecasting centers (NCEP, UKMO, ECMWF) agreed to provide numerical products based on operational and experimental models. The metric for model validation is concentrated on the fit of the forecast to surface observations. Meteorological data from airports, synoptic stations operated by national weather services, automatic data platforms maintained by different institutions, the PIRATA buoys etc are all collected through LDM/NCAR or direct transmission. Approximately 40 models outputs are available on a daily basis, twice a day. A simple procedure based on data assimilation principles was quite successful in combining the available forecasts in order to produce temperature, dew point, wind, pressure and precipitation forecasts at station points in S. America. The procedure is based on removing each model bias at the observational point and a weighted average based on the mean square error of the forecasts. The base period for estimating the bias and mean square error is of the order of 15 to 30 days. Products of the intercomparison model program and the optimal statistical combination of the available forecasts are public and available in real time (www.master.iag.usp.br/). Monitoring of the use of the products reveal a growing trend in the last year (reaching about 10.000 accesses per day in recent months). The intercomparison program provides a rich data set for educational products (real time use in Synoptic Meteorology and Numerical Weather Forecasting lectures), operational weather forecasts in national or regional weather centers and for research purposes. During the first phase of the program it was difficult to convince potential participants to share the information in the public homepage. However, as the system evolved, more and more institutions became associated with the program. The general opinion of the participants is that the system provides an unified metric for evaluation, a forum for discussion of the physical origin of the model forecast differences and therefore improvement of the quality of the numerical guidance.

  14. Assessment of reservoir system variable forecasts

    NASA Astrophysics Data System (ADS)

    Kistenmacher, Martin; Georgakakos, Aris P.

    2015-05-01

    Forecast ensembles are a convenient means to model water resources uncertainties and to inform planning and management processes. For multipurpose reservoir systems, forecast types include (i) forecasts of upcoming inflows and (ii) forecasts of system variables and outputs such as reservoir levels, releases, flood damage risks, hydropower production, water supply withdrawals, water quality conditions, navigation opportunities, and environmental flows, among others. Forecasts of system variables and outputs are conditional on forecasted inflows as well as on specific management policies and can provide useful information for decision-making processes. Unlike inflow forecasts (in ensemble or other forms), which have been the subject of many previous studies, reservoir system variable and output forecasts are not formally assessed in water resources management theory or practice. This article addresses this gap and develops methods to rectify potential reservoir system forecast inconsistencies and improve the quality of management-relevant information provided to stakeholders and managers. The overarching conclusion is that system variable and output forecast consistency is critical for robust reservoir management and needs to be routinely assessed for any management model used to inform planning and management processes. The above are demonstrated through an application from the Sacramento-American-San Joaquin reservoir system in northern California.

  15. MERIT: A man/computer data management and enhancement system for upper air nowcasting/forecasting in the United States. [Minimum Energy Routes using Interactive Techniques (MERIT)

    NASA Technical Reports Server (NTRS)

    Steinberg, R.

    1984-01-01

    It is suggested that the very short range forecast problem for aviation is one of data management rather than model development and the possibility of improving the aviation forecast using current technology is underlined. The MERIT concept of modeling technology, and advanced man/computer interactive data management and enhancement techniques to provide a tailored, accurate and timely forecast for aviation is outlined. The MERIT includes utilization of the Langrangian approach, extensive use of the automated aircraft report to complement the present data base and provide the most current observations; and the concept that a 2 to 12 hour forecast provided every 3 hr can meet the domestic needs of aviation instead of the present 18 and 24 hr forecast provided every 12 hr.

  16. Development of the GEM-MACH-FireWork System: An Air Quality Model with On-line Wildfire Emissions within the Canadian Operational Air Quality Forecast System

    NASA Astrophysics Data System (ADS)

    Pavlovic, Radenko; Chen, Jack; Beaulieu, Paul-Andre; Anselmp, David; Gravel, Sylvie; Moran, Mike; Menard, Sylvain; Davignon, Didier

    2014-05-01

    A wildfire emissions processing system has been developed to incorporate near-real-time emissions from wildfires and large prescribed burns into Environment Canada's real-time GEM-MACH air quality (AQ) forecast system. Since the GEM-MACH forecast domain covers Canada and most of the U.S.A., including Alaska, fire location information is needed for both of these large countries. During AQ model runs, emissions from individual fire sources are injected into elevated model layers based on plume-rise calculations and then transport and chemistry calculations are performed. This "on the fly" approach to the insertion of the fire emissions provides flexibility and efficiency since on-line meteorology is used and computational overhead in emissions pre-processing is reduced. GEM-MACH-FireWork, an experimental wildfire version of GEM-MACH, was run in real-time mode for the summers of 2012 and 2013 in parallel with the normal operational version. 48-hour forecasts were generated every 12 hours (at 00 and 12 UTC). Noticeable improvements in the AQ forecasts for PM2.5 were seen in numerous regions where fire activity was high. Case studies evaluating model performance for specific regions and computed objective scores will be included in this presentation. Using the lessons learned from the last two summers, Environment Canada will continue to work towards the goal of incorporating near-real-time intermittent wildfire emissions into the operational air quality forecast system.

  17. Demand forecasting for automotive sector in Malaysia by system dynamics approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zulkepli, Jafri, E-mail: zhjafri@uum.edu.my; Abidin, Norhaslinda Zainal, E-mail: nhaslinda@uum.edu.my; Fong, Chan Hwa, E-mail: hfchan7623@yahoo.com

    In general, Proton as an automotive company needs to forecast future demand of the car to assist in decision making related to capacity expansion planning. One of the forecasting approaches that based on judgemental or subjective factors is normally used to forecast the demand. As a result, demand could be overstock that eventually will increase the operation cost; or the company will face understock, which resulted losing their customers. Due to automotive industry is very challenging process because of high level of complexity and uncertainty involved in the system, an accurate tool to forecast the future of automotive demand frommore » the modelling perspective is required. Hence, the main objective of this paper is to forecast the demand of automotive Proton car industry in Malaysia using system dynamics approach. Two types of intervention namely optimistic and pessimistic experiments scenarios have been tested to determine the capacity expansion that can prevent the company from overstocking. Finding from this study highlighted that the management needs to expand their production for optimistic scenario, whilst pessimistic give results that would otherwise. Finally, this study could help Proton Edar Sdn. Bhd (PESB) to manage the long-term capacity planning in order to meet the future demand of the Proton cars.« less

  18. An online tool for Operational Probabilistic Drought Forecasting System (OPDFS): a Statistical-Dynamical Framework

    NASA Astrophysics Data System (ADS)

    Zarekarizi, M.; Moradkhani, H.; Yan, H.

    2017-12-01

    The Operational Probabilistic Drought Forecasting System (OPDFS) is an online tool recently developed at Portland State University for operational agricultural drought forecasting. This is an integrated statistical-dynamical framework issuing probabilistic drought forecasts monthly for the lead times of 1, 2, and 3 months. The statistical drought forecasting method utilizes copula functions in order to condition the future soil moisture values on the antecedent states. Due to stochastic nature of land surface properties, the antecedent soil moisture states are uncertain; therefore, data assimilation system based on Particle Filtering (PF) is employed to quantify the uncertainties associated with the initial condition of the land state, i.e. soil moisture. PF assimilates the satellite soil moisture data to Variable Infiltration Capacity (VIC) land surface model and ultimately updates the simulated soil moisture. The OPDFS builds on the NOAA's seasonal drought outlook by offering drought probabilities instead of qualitative ordinal categories and provides the user with the probability maps associated with a particular drought category. A retrospective assessment of the OPDFS showed that the forecasting of the 2012 Great Plains and 2014 California droughts were possible at least one month in advance. The OPDFS offers a timely assistance to water managers, stakeholders and decision-makers to develop resilience against uncertain upcoming droughts.

  19. Appendix I1-2 to Wind HUI Initiative 1: Field Campaign Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John Zack; Deborah Hanley; Dora Nakafuji

    This report is an appendix to the Hawaii WindHUI efforts to dev elop and operationalize short-term wind forecasting and wind ramp event forecasting capabilities. The report summarizes the WindNET field campaign deployment experiences and challenges. As part of the WindNET project on the Big Island of Hawaii, AWS Truepower (AWST) conducted a field campaign to assess the viability of deploying a network of monitoring systems to aid in local wind energy forecasting. The data provided at these monitoring locations, which were strategically placed around the Big Island of Hawaii based upon results from the Oahu Wind Integration and Transmission Studymore » (OWITS) observational targeting study (Figure 1), provided predictive indicators for improving wind forecasts and developing responsive strategies for managing real-time, wind-related system events. The goal of the field campaign was to make measurements from a network of remote monitoring devices to improve 1- to 3-hour look ahead forecasts for wind facilities.« less

  20. Sustainable Odds

    NASA Astrophysics Data System (ADS)

    Smith, L. A.

    2016-12-01

    While probability forecasting has many philosophical and mathematical attractions, it is something of a dishonest nonsense if acting on such forecasts is expected to lead to rapid ruin. Model-based probabilities, when interpreted as actionable, are shown to lead to the rapid ruin of a cooperative entity offering odds interpreting the probability forecasts at face value. Arguably, these odds would not be considered "fair", but inasmuch as some definitions of "fair odds" include this case, this presentation will focus on "sustainable odds": Odds which are not expected to lead to the rapid ruin of the cooperative under the assumption that those placing bets have no information beyond that available to the forecast system. It is argued that sustainable odds will not correspond to probabilities outside the Perfect Model Scenario, that the "implied probabilities" determined from sustainable odds will always sum to more than one, and that the excess of this sum over one reflects the skill of the forecast system, being a quantitative measure of structural model error.

  1. Load Forecasting Based Distribution System Network Reconfiguration -- A Distributed Data-Driven Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Huaiguang; Zhang, Yingchen; Muljadi, Eduard

    In this paper, a short-term load forecasting approach based network reconfiguration is proposed in a parallel manner. Specifically, a support vector regression (SVR) based short-term load forecasting approach is designed to provide an accurate load prediction and benefit the network reconfiguration. Because of the nonconvexity of the three-phase balanced optimal power flow, a second-order cone program (SOCP) based approach is used to relax the optimal power flow problem. Then, the alternating direction method of multipliers (ADMM) is used to compute the optimal power flow in distributed manner. Considering the limited number of the switches and the increasing computation capability, themore » proposed network reconfiguration is solved in a parallel way. The numerical results demonstrate the feasible and effectiveness of the proposed approach.« less

  2. Predicting Earth orientation changes from global forecasts of atmosphere-hydrosphere dynamics

    NASA Astrophysics Data System (ADS)

    Dobslaw, Henryk; Dill, Robert

    2018-02-01

    Effective Angular Momentum (EAM) functions obtained from global numerical simulations of atmosphere, ocean, and land surface dynamics are routinely processed by the Earth System Modelling group at Deutsches GeoForschungsZentrum. EAM functions are available since January 1976 with up to 3 h temporal resolution. Additionally, 6 days-long EAM forecasts are routinely published every day. Based on hindcast experiments with 305 individual predictions distributed over 15 months, we demonstrate that EAM forecasts improve the prediction accuracy of the Earth Orientation Parameters at all forecast horizons between 1 and 6 days. At day 6, prediction accuracy improves down to 1.76 mas for the terrestrial pole offset, and 2.6 mas for Δ UT1, which correspond to an accuracy increase of about 41% over predictions published in Bulletin A by the International Earth Rotation and Reference System Service.

  3. A short-term ensemble wind speed forecasting system for wind power applications

    NASA Astrophysics Data System (ADS)

    Baidya Roy, S.; Traiteur, J. J.; Callicutt, D.; Smith, M.

    2011-12-01

    This study develops an adaptive, blended forecasting system to provide accurate wind speed forecasts 1 hour ahead of time for wind power applications. The system consists of an ensemble of 21 forecasts with different configurations of the Weather Research and Forecasting Single Column Model (WRFSCM) and a persistence model. The ensemble is calibrated against observations for a 2 month period (June-July, 2008) at a potential wind farm site in Illinois using the Bayesian Model Averaging (BMA) technique. The forecasting system is evaluated against observations for August 2008 at the same site. The calibrated ensemble forecasts significantly outperform the forecasts from the uncalibrated ensemble while significantly reducing forecast uncertainty under all environmental stability conditions. The system also generates significantly better forecasts than persistence, autoregressive (AR) and autoregressive moving average (ARMA) models during the morning transition and the diurnal convective regimes. This forecasting system is computationally more efficient than traditional numerical weather prediction models and can generate a calibrated forecast, including model runs and calibration, in approximately 1 minute. Currently, hour-ahead wind speed forecasts are almost exclusively produced using statistical models. However, numerical models have several distinct advantages over statistical models including the potential to provide turbulence forecasts. Hence, there is an urgent need to explore the role of numerical models in short-term wind speed forecasting. This work is a step in that direction and is likely to trigger a debate within the wind speed forecasting community.

  4. Comparison of the economic impact of different wind power forecast systems for producers

    NASA Astrophysics Data System (ADS)

    Alessandrini, S.; Davò, F.; Sperati, S.; Benini, M.; Delle Monache, L.

    2014-05-01

    Deterministic forecasts of wind production for the next 72 h at a single wind farm or at the regional level are among the main end-users requirement. However, for an optimal management of wind power production and distribution it is important to provide, together with a deterministic prediction, a probabilistic one. A deterministic forecast consists of a single value for each time in the future for the variable to be predicted, while probabilistic forecasting informs on probabilities for potential future events. This means providing information about uncertainty (i.e. a forecast of the PDF of power) in addition to the commonly provided single-valued power prediction. A significant probabilistic application is related to the trading of energy in day-ahead electricity markets. It has been shown that, when trading future wind energy production, using probabilistic wind power predictions can lead to higher benefits than those obtained by using deterministic forecasts alone. In fact, by using probabilistic forecasting it is possible to solve economic model equations trying to optimize the revenue for the producer depending, for example, on the specific penalties for forecast errors valid in that market. In this work we have applied a probabilistic wind power forecast systems based on the "analog ensemble" method for bidding wind energy during the day-ahead market in the case of a wind farm located in Italy. The actual hourly income for the plant is computed considering the actual selling energy prices and penalties proportional to the unbalancing, defined as the difference between the day-ahead offered energy and the actual production. The economic benefit of using a probabilistic approach for the day-ahead energy bidding are evaluated, resulting in an increase of 23% of the annual income for a wind farm owner in the case of knowing "a priori" the future energy prices. The uncertainty on price forecasting partly reduces the economic benefit gained by using a probabilistic energy forecast system.

  5. Understanding the land-atmospheric interaction in drought forecast from CFSv2 for the 2011 Texas and 2012 Upper Midwest US droughts

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Roundy, J. K.; Ek, M. B.; Wood, E. F.

    2015-12-01

    Prediction and thus preparedness in advance of hydrological extremes, such as drought and flood events, is crucial for proactively reducing their social and economic impacts. In the summers of 2011 Texas, and 2012 the Upper Midwest, experienced intense droughts that affected crops and the food market in the US. It is expected that seasonal forecasts with sufficient skill would reduce the negative impacts through planning and preparation. However, the forecast skill from models such as Climate Forecast System Version 2 (CFSv2) from National Centers for Environmental Prediction (NCEP) is low over the US, especially during the warm season (Jun - Sep), which restricts their practical use for drought prediction. This study analyzes the processes that lead to premature termination of 2011 and 2012 US summer droughts in CFSv2 forecast resulting in its low forecast skill. Using the North American Land Data Assimilation System version 2 (NLDAS2) and Climate Forecast System Reanalysis (CFSR) as references, this study investigates the forecast skills of CFSv2 initialized at 00, 06, 12, 18z from May 15 - 31 (leads out to September) for each event in terms of land-atmosphere interaction, through a recently developed Coupling Drought Index (CDI), which is based on the Convective Triggering Potential-Humidity Index-soil moisture (CTP-HI-SM) classification of four climate regimes: wet coupling, dry coupling, transitional and atmospherically controlled. A recycling model is used to trace the moisture sources in the CFSv2 forecasts of anomalous precipitation, which lead to the breakdown of drought conditions and a lack of drought forecasting skills. This is then compared with tracing the moisture source in CFSR with the same recycling model, which is used as the verification for the same periods. This helps to identify the parameterization that triggered precipitation in CFSv2 during 2011 and 2012 summer in the US thus has the potential to improve the forecast skill of CSFv2.

  6. Seasonal scale water deficit forecasting in Africa and the Middle East using NASA's Land Information System (LIS)

    NASA Astrophysics Data System (ADS)

    Shukla, Shraddhanand; Arsenault, Kristi R.; Getirana, Augusto; Kumar, Sujay V.; Roningen, Jeanne; Zaitchik, Ben; McNally, Amy; Koster, Randal D.; Peters-Lidard, Christa

    2017-04-01

    Drought and water scarcity are among the important issues facing several regions within Africa and the Middle East. A seamless and effective monitoring and early warning system is needed by regional/national stakeholders. Such system should support a proactive drought management approach and mitigate the socio-economic losses up to the extent possible. In this presentation, we report on the ongoing development and validation of a seasonal scale water deficit forecasting system based on NASA's Land Information System (LIS) and seasonal climate forecasts. First, our presentation will focus on the implementation and validation of the LIS models used for drought and water availability monitoring in the region. The second part will focus on evaluating drought and water availability forecasts. Finally, details will be provided of our ongoing collaboration with end-user partners in the region (e.g., USAID's Famine Early Warning Systems Network, FEWS NET), on formulating meaningful early warning indicators, effective communication and seamless dissemination of the monitoring and forecasting products through NASA's web-services. The water deficit forecasting system thus far incorporates NOAA's Noah land surface model (LSM), version 3.3, the Variable Infiltration Capacity (VIC) model, version 4.12, NASA GMAO's Catchment LSM, and the Noah Multi-Physics (MP) LSM (the latter two incorporate prognostic water table schemes). In addition, the LSMs' surface and subsurface runoff are routed through the Hydrological Modeling and Analysis Platform (HyMAP) to simulate surface water dynamics. The LSMs are driven by NASA/GMAO's Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2), and the USGS and UCSB Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) daily rainfall dataset. The LIS software framework integrates these forcing datasets and drives the four LSMs and HyMAP. The Land Verification Toolkit (LVT) is used for the evaluation of the LSMs, as it provides model ensemble metrics and the ability to compare against a variety of remotely sensed measurements, like different evapotranspiration (ET) and soil moisture products, and other reanalysis datasets that are available for this region. Comparison of the models' energy and hydrological budgets will be shown for this region (and sub-basin level, e.g., Blue Nile River) and time period (1981-2015), along with evaluating ET, streamflow, groundwater storage and soil moisture, using evaluation metrics (e.g., anomaly correlation, RMSE, etc.). The system uses seasonal climate forecasts from NASA's GMAO (the Goddard Earth Observing System Model, version 5) and NCEP's Climate Forecast System, version 2, and it produces forecasts of soil moisture, ET and streamflow out to 6 months in the future. Forecasts of those variables are formulated in terms of indicators to provide forecasts of drought and water availability in the region.

  7. A study for systematic errors of the GLA forecast model in tropical regions

    NASA Technical Reports Server (NTRS)

    Chen, Tsing-Chang; Baker, Wayman E.; Pfaendtner, James; Corrigan, Martin

    1988-01-01

    From the sensitivity studies performed with the Goddard Laboratory for Atmospheres (GLA) analysis/forecast system, it was revealed that the forecast errors in the tropics affect the ability to forecast midlatitude weather in some cases. Apparently, the forecast errors occurring in the tropics can propagate to midlatitudes. Therefore, the systematic error analysis of the GLA forecast system becomes a necessary step in improving the model's forecast performance. The major effort of this study is to examine the possible impact of the hydrological-cycle forecast error on dynamical fields in the GLA forecast system.

  8. A gain-loss framework based on ensemble flow forecasts to switch the urban drainage-wastewater system management towards energy optimization during dry periods

    NASA Astrophysics Data System (ADS)

    Courdent, Vianney; Grum, Morten; Munk-Nielsen, Thomas; Mikkelsen, Peter S.

    2017-05-01

    Precipitation is the cause of major perturbation to the flow in urban drainage and wastewater systems. Flow forecasts, generated by coupling rainfall predictions with a hydrologic runoff model, can potentially be used to optimize the operation of integrated urban drainage-wastewater systems (IUDWSs) during both wet and dry weather periods. Numerical weather prediction (NWP) models have significantly improved in recent years, having increased their spatial and temporal resolution. Finer resolution NWP are suitable for urban-catchment-scale applications, providing longer lead time than radar extrapolation. However, forecasts are inevitably uncertain, and fine resolution is especially challenging for NWP. This uncertainty is commonly addressed in meteorology with ensemble prediction systems (EPSs). Handling uncertainty is challenging for decision makers and hence tools are necessary to provide insight on ensemble forecast usage and to support the rationality of decisions (i.e. forecasts are uncertain and therefore errors will be made; decision makers need tools to justify their choices, demonstrating that these choices are beneficial in the long run). This study presents an economic framework to support the decision-making process by providing information on when acting on the forecast is beneficial and how to handle the EPS. The relative economic value (REV) approach associates economic values with the potential outcomes and determines the preferential use of the EPS forecast. The envelope curve of the REV diagram combines the results from each probability forecast to provide the highest relative economic value for a given gain-loss ratio. This approach is traditionally used at larger scales to assess mitigation measures for adverse events (i.e. the actions are taken when events are forecast). The specificity of this study is to optimize the energy consumption in IUDWS during low-flow periods by exploiting the electrical smart grid market (i.e. the actions are taken when no events are forecast). Furthermore, the results demonstrate the benefit of NWP neighbourhood post-processing methods to enhance the forecast skill and increase the range of beneficial uses.

  9. Application and verification of ECMWF seasonal forecast for wind energy

    NASA Astrophysics Data System (ADS)

    Žagar, Mark; Marić, Tomislav; Qvist, Martin; Gulstad, Line

    2015-04-01

    A good understanding of long-term annual energy production (AEP) is crucial when assessing the business case of investing in green energy like wind power. The art of wind-resource assessment has emerged into a scientific discipline on its own, which has advanced at high pace over the last decade. This has resulted in continuous improvement of the AEP accuracy and, therefore, increase in business case certainty. Harvesting the full potential output of a wind farm or a portfolio of wind farms depends heavily on optimizing operation and management strategy. The necessary information for short-term planning (up to 14 days) is provided by standard weather and power forecasting services, and the long-term plans are based on climatology. However, the wind-power industry is lacking quality information on intermediate scales of the expected variability in seasonal and intra-annual variations and their geographical distribution. The seasonal power forecast presented here is designed to bridge this gap. The seasonal power production forecast is based on the ECMWF seasonal weather forecast and the Vestas' high-resolution, mesoscale weather library. The seasonal weather forecast is enriched through a layer of statistical post-processing added to relate large-scale wind speed anomalies to mesoscale climatology. The resulting predicted energy production anomalies, thus, include mesoscale effects not captured by the global forecasting systems. The turbine power output is non-linearly related to the wind speed, which has important implications for the wind power forecast. In theory, the wind power is proportional to the cube of wind speed. However, due to the nature of turbine design, this exponent is close to 3 only at low wind speeds, becomes smaller as the wind speed increases, and above 11-13 m/s the power output remains constant, called the rated power. The non-linear relationship between wind speed and the power output generally increases sensitivity of the forecasted power to the wind speed anomalies. On the other hand, in some cases and areas where turbines operate close to, or above the rated power, the sensitivity of power forecast is reduced. Thus, the seasonal power forecasting system requires good knowledge of the changes in frequency of events with sufficient wind speeds to have acceptable skill. The scientific background for the Vestas seasonal power forecasting system is described and the relationship between predicted monthly wind speed anomalies and observed wind energy production are investigated for a number of operating wind farms in different climate zones. Current challenges will be discussed and some future research and development areas identified.

  10. Spatial Ensemble Postprocessing of Precipitation Forecasts Using High Resolution Analyses

    NASA Astrophysics Data System (ADS)

    Lang, Moritz N.; Schicker, Irene; Kann, Alexander; Wang, Yong

    2017-04-01

    Ensemble prediction systems are designed to account for errors or uncertainties in the initial and boundary conditions, imperfect parameterizations, etc. However, due to sampling errors and underestimation of the model errors, these ensemble forecasts tend to be underdispersive, and to lack both reliability and sharpness. To overcome such limitations, statistical postprocessing methods are commonly applied to these forecasts. In this study, a full-distributional spatial post-processing method is applied to short-range precipitation forecasts over Austria using Standardized Anomaly Model Output Statistics (SAMOS). Following Stauffer et al. (2016), observation and forecast fields are transformed into standardized anomalies by subtracting a site-specific climatological mean and dividing by the climatological standard deviation. Due to the need of fitting only a single regression model for the whole domain, the SAMOS framework provides a computationally inexpensive method to create operationally calibrated probabilistic forecasts for any arbitrary location or for all grid points in the domain simultaneously. Taking advantage of the INCA system (Integrated Nowcasting through Comprehensive Analysis), high resolution analyses are used for the computation of the observed climatology and for model training. The INCA system operationally combines station measurements and remote sensing data into real-time objective analysis fields at 1 km-horizontal resolution and 1 h-temporal resolution. The precipitation forecast used in this study is obtained from a limited area model ensemble prediction system also operated by ZAMG. The so called ALADIN-LAEF provides, by applying a multi-physics approach, a 17-member forecast at a horizontal resolution of 10.9 km and a temporal resolution of 1 hour. The performed SAMOS approach statistically combines the in-house developed high resolution analysis and ensemble prediction system. The station-based validation of 6 hour precipitation sums shows a mean improvement of more than 40% in CRPS when compared to bilinearly interpolated uncalibrated ensemble forecasts. The validation on randomly selected grid points, representing the true height distribution over Austria, still indicates a mean improvement of 35%. The applied statistical model is currently set up for 6-hourly and daily accumulation periods, but will be extended to a temporal resolution of 1-3 hours within a new probabilistic nowcasting system operated by ZAMG.

  11. Landslide early warning based on failure forecast models: the example of Mt. de La Saxe rockslide, northern Italy

    NASA Astrophysics Data System (ADS)

    Manconi, A.; Giordan, D.

    2015-02-01

    We investigate the use of landslide failure forecast models by exploiting near-real-time monitoring data. Starting from the inverse velocity theory, we analyze landslide surface displacements on different temporal windows, and apply straightforward statistical methods to obtain confidence intervals on the estimated time of failure. Here we describe the main concepts of our method, and show an example of application to a real emergency scenario, the La Saxe rockslide, Aosta Valley region, northern Italy. Based on the herein presented case study, we identify operational thresholds based on the reliability of the forecast models, in order to support the management of early warning systems in the most critical phases of the landslide emergency.

  12. A Wind Forecasting System for Energy Application

    NASA Astrophysics Data System (ADS)

    Courtney, Jennifer; Lynch, Peter; Sweeney, Conor

    2010-05-01

    Accurate forecasting of available energy is crucial for the efficient management and use of wind power in the national power grid. With energy output critically dependent upon wind strength there is a need to reduce the errors associated wind forecasting. The objective of this research is to get the best possible wind forecasts for the wind energy industry. To achieve this goal, three methods are being applied. First, a mesoscale numerical weather prediction (NWP) model called WRF (Weather Research and Forecasting) is being used to predict wind values over Ireland. Currently, a gird resolution of 10km is used and higher model resolutions are being evaluated to establish whether they are economically viable given the forecast skill improvement they produce. Second, the WRF model is being used in conjunction with ECMWF (European Centre for Medium-Range Weather Forecasts) ensemble forecasts to produce a probabilistic weather forecasting product. Due to the chaotic nature of the atmosphere, a single, deterministic weather forecast can only have limited skill. The ECMWF ensemble methods produce an ensemble of 51 global forecasts, twice a day, by perturbing initial conditions of a 'control' forecast which is the best estimate of the initial state of the atmosphere. This method provides an indication of the reliability of the forecast and a quantitative basis for probabilistic forecasting. The limitation of ensemble forecasting lies in the fact that the perturbed model runs behave differently under different weather patterns and each model run is equally likely to be closest to the observed weather situation. Models have biases, and involve assumptions about physical processes and forcing factors such as underlying topography. Third, Bayesian Model Averaging (BMA) is being applied to the output from the ensemble forecasts in order to statistically post-process the results and achieve a better wind forecasting system. BMA is a promising technique that will offer calibrated probabilistic wind forecasts which will be invaluable in wind energy management. In brief, this method turns the ensemble forecasts into a calibrated predictive probability distribution. Each ensemble member is provided with a 'weight' determined by its relative predictive skill over a training period of around 30 days. Verification of data is carried out using observed wind data from operational wind farms. These are then compared to existing forecasts produced by ECMWF and Met Eireann in relation to skill scores. We are developing decision-making models to show the benefits achieved using the data produced by our wind energy forecasting system. An energy trading model will be developed, based on the rules currently used by the Single Electricity Market Operator for energy trading in Ireland. This trading model will illustrate the potential for financial savings by using the forecast data generated by this research.

  13. Improving the Forecast Accuracy of an Ocean Observation and Prediction System by Adaptive Control of the Sensor Network

    NASA Astrophysics Data System (ADS)

    Talukder, A.; Panangadan, A. V.; Blumberg, A. F.; Herrington, T.; Georgas, N.

    2008-12-01

    The New York Harbor Observation and Prediction System (NYHOPS) is a real-time, estuarine and coastal ocean observing and modeling system for the New York Harbor and surrounding waters. Real-time measurements from in-situ mobile and stationary sensors in the NYHOPS networks are assimilated into marine forecasts in order to reduce the discrepancy with ground truth. The forecasts are obtained from the ECOMSED hydrodynamic model, a shallow water derivative of the Princeton Ocean Model. Currently, all sensors in the NYHOPS system are operated in a fixed mode with uniform sampling rates. This technology infusion effort demonstrates the use of Model Predictive Control (MPC) to autonomously adapt the operation of both mobile and stationary sensors in response to changing events that are -automatically detected from the ECOMSED forecasts. The controller focuses sensing resources on those regions that are expected to be impacted by the detected events. The MPC approach involves formulating the problem of calculating the optimal sensor parameters as a constrained multi-objective optimization problem. We have developed an objective function that takes into account the spatiotemporal relationship of the in-situ sensor locations and the locations of events detected by the model. Experiments in simulation were carried out using data collected during a freshwater flooding event. The location of the resulting freshwater plume was calculated from the corresponding model forecasts and was used by the MPC controller to derive control parameters for the sensing assets. The operational parameters that are controlled include the sampling rates of stationary sensors, paths of unmanned underwater vehicles (UUVs), and data transfer routes between sensors and the central modeling computer. The simulation experiments show that MPC-based sensor control reduces the RMS error in the forecast by a factor of 380% as compared to uniform sampling. The paths of multiple UUVs were simultaneously calculated such that measurements from on-board sensors would lead to maximal reduction in the forecast error after data assimilation. The MPC controller also reduces the consumption of system resources such as energy expended in sampling and wireless communication. The MPC-based control approach can be generalized to accept data from remote sensing satellites. This will enable in-situ sensors to be regulated using forecasts generated by assimilating local high resolution in-situ measurements with wide-area observations from remote sensing satellites.

  14. Big data driven cycle time parallel prediction for production planning in wafer manufacturing

    NASA Astrophysics Data System (ADS)

    Wang, Junliang; Yang, Jungang; Zhang, Jie; Wang, Xiaoxi; Zhang, Wenjun Chris

    2018-07-01

    Cycle time forecasting (CTF) is one of the most crucial issues for production planning to keep high delivery reliability in semiconductor wafer fabrication systems (SWFS). This paper proposes a novel data-intensive cycle time (CT) prediction system with parallel computing to rapidly forecast the CT of wafer lots with large datasets. First, a density peak based radial basis function network (DP-RBFN) is designed to forecast the CT with the diverse and agglomerative CT data. Second, the network learning method based on a clustering technique is proposed to determine the density peak. Third, a parallel computing approach for network training is proposed in order to speed up the training process with large scaled CT data. Finally, an experiment with respect to SWFS is presented, which demonstrates that the proposed CTF system can not only speed up the training process of the model but also outperform the radial basis function network, the back-propagation-network and multivariate regression methodology based CTF methods in terms of the mean absolute deviation and standard deviation.

  15. Weather forecasting with open source software

    NASA Astrophysics Data System (ADS)

    Rautenhaus, Marc; Dörnbrack, Andreas

    2013-04-01

    To forecast the weather situation during aircraft-based atmospheric field campaigns, we employ a tool chain of existing and self-developed open source software tools and open standards. Of particular value are the Python programming language with its extension libraries NumPy, SciPy, PyQt4, Matplotlib and the basemap toolkit, the NetCDF standard with the Climate and Forecast (CF) Metadata conventions, and the Open Geospatial Consortium Web Map Service standard. These open source libraries and open standards helped to implement the "Mission Support System", a Web Map Service based tool to support weather forecasting and flight planning during field campaigns. The tool has been implemented in Python and has also been released as open source (Rautenhaus et al., Geosci. Model Dev., 5, 55-71, 2012). In this presentation we discuss the usage of free and open source software for weather forecasting in the context of research flight planning, and highlight how the field campaign work benefits from using open source tools and open standards.

  16. Advanced Intelligent System Application to Load Forecasting and Control for Hybrid Electric Bus

    NASA Technical Reports Server (NTRS)

    Momoh, James; Chattopadhyay, Deb; Elfayoumy, Mahmoud

    1996-01-01

    The primary motivation for this research emanates from providing a decision support system to the electric bus operators in the municipal and urban localities which will guide the operators to maintain an optimal compromise among the noise level, pollution level, fuel usage etc. This study is backed up by our previous studies on study of battery characteristics, permanent magnet DC motor studies and electric traction motor size studies completed in the first year. The operator of the Hybrid Electric Car must determine optimal power management schedule to meet a given load demand for different weather and road conditions. The decision support system for the bus operator comprises three sub-tasks viz. forecast of the electrical load for the route to be traversed divided into specified time periods (few minutes); deriving an optimal 'plan' or 'preschedule' based on the load forecast for the entire time-horizon (i.e., for all time periods) ahead of time; and finally employing corrective control action to monitor and modify the optimal plan in real-time. A fully connected artificial neural network (ANN) model is developed for forecasting the kW requirement for hybrid electric bus based on inputs like climatic conditions, passenger load, road inclination, etc. The ANN model is trained using back-propagation algorithm employing improved optimization techniques like projected Lagrangian technique. The pre-scheduler is based on a Goal-Programming (GP) optimization model with noise, pollution and fuel usage as the three objectives. GP has the capability of analyzing the trade-off among the conflicting objectives and arriving at the optimal activity levels, e.g., throttle settings. The corrective control action or the third sub-task is formulated as an optimal control model with inputs from the real-time data base as well as the GP model to minimize the error (or deviation) from the optimal plan. These three activities linked with the ANN forecaster proving the output to the GP model which in turn produces the pre-schedule of the optimal control model. Some preliminary results based on a hypothetical test case will be presented for the load forecasting module. The computer codes for the three modules will be made available fe adoption by bus operating agencies. Sample results will be provided using these models. The software will be a useful tool for supporting the control systems for the Electric Bus project of NASA.

  17. Forecasting Hourly Water Demands With Seasonal Autoregressive Models for Real-Time Application

    NASA Astrophysics Data System (ADS)

    Chen, Jinduan; Boccelli, Dominic L.

    2018-02-01

    Consumer water demands are not typically measured at temporal or spatial scales adequate to support real-time decision making, and recent approaches for estimating unobserved demands using observed hydraulic measurements are generally not capable of forecasting demands and uncertainty information. While time series modeling has shown promise for representing total system demands, these models have generally not been evaluated at spatial scales appropriate for representative real-time modeling. This study investigates the use of a double-seasonal time series model to capture daily and weekly autocorrelations to both total system demands and regional aggregated demands at a scale that would capture demand variability across a distribution system. Emphasis was placed on the ability to forecast demands and quantify uncertainties with results compared to traditional time series pattern-based demand models as well as nonseasonal and single-seasonal time series models. Additional research included the implementation of an adaptive-parameter estimation scheme to update the time series model when unobserved changes occurred in the system. For two case studies, results showed that (1) for the smaller-scale aggregated water demands, the log-transformed time series model resulted in improved forecasts, (2) the double-seasonal model outperformed other models in terms of forecasting errors, and (3) the adaptive adjustment of parameters during forecasting improved the accuracy of the generated prediction intervals. These results illustrate the capabilities of time series modeling to forecast both water demands and uncertainty estimates at spatial scales commensurate for real-time modeling applications and provide a foundation for developing a real-time integrated demand-hydraulic model.

  18. Multi-RCM ensemble downscaling of global seasonal forecasts (MRED)

    NASA Astrophysics Data System (ADS)

    Arritt, R.

    2009-04-01

    Regional climate models (RCMs) have long been used to downscale global climate simulations. In contrast the ability of RCMs to downscale seasonal climate forecasts has received little attention. The Multi-RCM Ensemble Downscaling (MRED) project was recently initiated to address the question, Does dynamical downscaling using RCMs provide additional useful information for seasonal forecasts made by global models? MRED is using a suite of RCMs to downscale seasonal forecasts produced by the National Centers for Environmental Prediction (NCEP) Climate Forecast System (CFS) seasonal forecast system and the NASA GEOS5 system. The initial focus is on wintertime forecasts in order to evaluate topographic forcing, snowmelt, and the usefulness of higher resolution for near-surface fields influenced by high resolution orography. Each RCM covers the conterminous U.S. at approximately 32 km resolution, comparable to the scale of the North American Regional Reanalysis (NARR) which will be used to evaluate the models. The forecast ensemble for each RCM is comprised of 15 members over a period of 22+ years (from 1982 to 2003+) for the forecast period 1 December - 30 April. Each RCM will create a 15-member lagged ensemble by starting on different dates in the preceding November. This results in a 120-member ensemble for each projection (8 RCMs by 15 members per RCM). The RCMs will be continually updated at their lateral boundaries using 6-hourly output from CFS or GEOS5. Hydrometeorological output will be produced in a standard netCDF-based format for a common analysis grid, which simplifies both model intercomparison and the generation of ensembles. MRED will compare individual RCM and global forecasts as well as ensemble mean precipitation and temperature forecasts, which are currently being used to drive macroscale land surface models (LSMs). Metrics of ensemble spread will also be evaluated. Extensive process-oriented analysis will be performed to link improvements in downscaled forecast skill to regional forcings and physical mechanisms. Our overarching goal is to determine what additional skill can be provided by a community ensemble of high resolution regional models, which we believe will define a strategy for more skillful and useful regional seasonal climate forecasts.

  19. Multicomponent ensemble models to forecast induced seismicity

    NASA Astrophysics Data System (ADS)

    Király-Proag, E.; Gischig, V.; Zechar, J. D.; Wiemer, S.

    2018-01-01

    In recent years, human-induced seismicity has become a more and more relevant topic due to its economic and social implications. Several models and approaches have been developed to explain underlying physical processes or forecast induced seismicity. They range from simple statistical models to coupled numerical models incorporating complex physics. We advocate the need for forecast testing as currently the best method for ascertaining if models are capable to reasonably accounting for key physical governing processes—or not. Moreover, operational forecast models are of great interest to help on-site decision-making in projects entailing induced earthquakes. We previously introduced a standardized framework following the guidelines of the Collaboratory for the Study of Earthquake Predictability, the Induced Seismicity Test Bench, to test, validate, and rank induced seismicity models. In this study, we describe how to construct multicomponent ensemble models based on Bayesian weightings that deliver more accurate forecasts than individual models in the case of Basel 2006 and Soultz-sous-Forêts 2004 enhanced geothermal stimulation projects. For this, we examine five calibrated variants of two significantly different model groups: (1) Shapiro and Smoothed Seismicity based on the seismogenic index, simple modified Omori-law-type seismicity decay, and temporally weighted smoothed seismicity; (2) Hydraulics and Seismicity based on numerically modelled pore pressure evolution that triggers seismicity using the Mohr-Coulomb failure criterion. We also demonstrate how the individual and ensemble models would perform as part of an operational Adaptive Traffic Light System. Investigating seismicity forecasts based on a range of potential injection scenarios, we use forecast periods of different durations to compute the occurrence probabilities of seismic events M ≥ 3. We show that in the case of the Basel 2006 geothermal stimulation the models forecast hazardous levels of seismicity days before the occurrence of felt events.

  20. Road landslide information management and forecasting system base on GIS.

    PubMed

    Wang, Wei Dong; Du, Xiang Gang; Xie, Cui Ming

    2009-09-01

    Take account of the characters of road geological hazard and its supervision, it is very important to develop the Road Landslides Information Management and Forecasting System based on Geographic Information System (GIS). The paper presents the system objective, function, component modules and key techniques in the procedure of system development. The system, based on the spatial information and attribute information of road geological hazard, was developed and applied in Guizhou, a province of China where there are numerous and typical landslides. The manager of communication, using the system, can visually inquire all road landslides information based on regional road network or on the monitoring network of individual landslide. Furthermore, the system, integrated with mathematical prediction models and the GIS's strongpoint on spatial analyzing, can assess and predict landslide developing procedure according to the field monitoring data. Thus, it can efficiently assists the road construction or management units in making decision to control the landslides and to reduce human vulnerability.

  1. National Centers for Environmental Prediction

    Science.gov Websites

    SYSTEM CFS CLIMATE FORECAST SYSTEM NAQFC NAQFC MODEL GEFS GLOBAL ENSEMBLE FORECAST SYSTEM HWRF HURRICANE WEATHER RESEARCH and FORECASTING HMON HMON - OPERATIONAL HURRICANE FORECASTING WAVEWATCH III WAVEWATCH III

  2. NSF's Perspective on Space Weather Research for Building Forecasting Capabilities

    NASA Astrophysics Data System (ADS)

    Bisi, M. M.; Pulkkinen, A. A.; Bisi, M. M.; Pulkkinen, A. A.; Webb, D. F.; Oughton, E. J.; Azeem, S. I.

    2017-12-01

    Space weather research at the National Science Foundation (NSF) is focused on scientific discovery and on deepening knowledge of the Sun-Geospace system. The process of maturation of knowledge base is a requirement for the development of improved space weather forecast models and for the accurate assessment of potential mitigation strategies. Progress in space weather forecasting requires advancing in-depth understanding of the underlying physical processes, developing better instrumentation and measurement techniques, and capturing the advancements in understanding in large-scale physics based models that span the entire chain of events from the Sun to the Earth. This presentation will provide an overview of current and planned programs pertaining to space weather research at NSF and discuss the recommendations of the Geospace Section portfolio review panel within the context of space weather forecasting capabilities.

  3. Probabilistic forecasting of extreme weather events based on extreme value theory

    NASA Astrophysics Data System (ADS)

    Van De Vyver, Hans; Van Schaeybroeck, Bert

    2016-04-01

    Extreme events in weather and climate such as high wind gusts, heavy precipitation or extreme temperatures are commonly associated with high impacts on both environment and society. Forecasting extreme weather events is difficult, and very high-resolution models are needed to describe explicitly extreme weather phenomena. A prediction system for such events should therefore preferably be probabilistic in nature. Probabilistic forecasts and state estimations are nowadays common in the numerical weather prediction community. In this work, we develop a new probabilistic framework based on extreme value theory that aims to provide early warnings up to several days in advance. We consider the combined events when an observation variable Y (for instance wind speed) exceeds a high threshold y and its corresponding deterministic forecasts X also exceeds a high forecast threshold y. More specifically two problems are addressed:} We consider pairs (X,Y) of extreme events where X represents a deterministic forecast, and Y the observation variable (for instance wind speed). More specifically two problems are addressed: Given a high forecast X=x_0, what is the probability that Y>y? In other words: provide inference on the conditional probability: [ Pr{Y>y|X=x_0}. ] Given a probabilistic model for Problem 1, what is the impact on the verification analysis of extreme events. These problems can be solved with bivariate extremes (Coles, 2001), and the verification analysis in (Ferro, 2007). We apply the Ramos and Ledford (2009) parametric model for bivariate tail estimation of the pair (X,Y). The model accommodates different types of extremal dependence and asymmetry within a parsimonious representation. Results are presented using the ensemble reforecast system of the European Centre of Weather Forecasts (Hagedorn, 2008). Coles, S. (2001) An Introduction to Statistical modelling of Extreme Values. Springer-Verlag.Ferro, C.A.T. (2007) A probability model for verifying deterministic forecasts of extreme events. Wea. Forecasting {22}, 1089-1100.Hagedorn, R. (2008) Using the ECMWF reforecast dataset to calibrate EPS forecasts. ECMWF Newsletter, {117}, 8-13.Ramos, A., Ledford, A. (2009) A new class of models for bivariate joint tails. J.R. Statist. Soc. B {71}, 219-241.

  4. An operational global ocean forecast system and its applications

    NASA Astrophysics Data System (ADS)

    Mehra, A.; Tolman, H. L.; Rivin, I.; Rajan, B.; Spindler, T.; Garraffo, Z. D.; Kim, H.

    2012-12-01

    A global Real-Time Ocean Forecast System (RTOFS) was implemented in operations at NCEP/NWS/NOAA on 10/25/2011. This system is based on an eddy resolving 1/12 degree global HYCOM (HYbrid Coordinates Ocean Model) and is part of a larger national backbone capability of ocean modeling at NWS in strong partnership with US Navy. The forecast system is run once a day and produces a 6 day long forecast using the daily initialization fields produced at NAVOCEANO using NCODA (Navy Coupled Ocean Data Assimilation), a 3D multi-variate data assimilation methodology. As configured within RTOFS, HYCOM has a horizontal equatorial resolution of 0.08 degrees or ~9 km. The HYCOM grid is on a Mercator projection from 78.64 S to 47 N and north of this it employs an Arctic dipole patch where the poles are shifted over land to avoid a singularity at the North Pole. This gives a mid-latitude (polar) horizontal resolution of approximately 7 km (3.5 km). The coastline is fixed at 10 m isobath with open Bering Straits. This version employs 32 hybrid vertical coordinate surfaces with potential density referenced to 2000 m. Vertical coordinates can be isopycnals, often best for resolving deep water masses, levels of equal pressure (fixed depths), best for the well mixed unstratified upper ocean and sigma-levels (terrain-following), often the best choice in shallow water. The dynamic ocean model is coupled to a thermodynamic energy loan ice model and uses a non-slab mixed layer formulation. The forecast system is forced with 3-hourly momentum, radiation and precipitation fluxes from the operational Global Forecast System (GFS) fields. Results include global sea surface height and three dimensional fields of temperature, salinity, density and velocity fields used for validation and evaluation against available observations. Several downstream applications of this forecast system will also be discussed which include search and rescue operations at US Coast Guard, navigation safety information provided by OPC using real time ocean model guidance from Global RTOFS surface ocean currents, operational guidance on radionuclide dispersion near Fukushima using 3D tracers, boundary conditions for various operational coastal ocean forecast systems (COFS) run by NOS etc.

  5. Global analysis of seasonal streamflow predictability using an ensemble prediction system and observations from 6192 small catchments worldwide

    NASA Astrophysics Data System (ADS)

    van Dijk, Albert I. J. M.; Peña-Arancibia, Jorge L.; Wood, Eric F.; Sheffield, Justin; Beck, Hylke E.

    2013-05-01

    Ideally, a seasonal streamflow forecasting system would ingest skilful climate forecasts and propagate these through calibrated hydrological models initialized with observed catchment conditions. At global scale, practical problems exist in each of these aspects. For the first time, we analyzed theoretical and actual skill in bimonthly streamflow forecasts from a global ensemble streamflow prediction (ESP) system. Forecasts were generated six times per year for 1979-2008 by an initialized hydrological model and an ensemble of 1° resolution daily climate estimates for the preceding 30 years. A post-ESP conditional sampling method was applied to 2.6% of forecasts, based on predictive relationships between precipitation and 1 of 21 climate indices prior to the forecast date. Theoretical skill was assessed against a reference run with historic forcing. Actual skill was assessed against streamflow records for 6192 small (<10,000 km2) catchments worldwide. The results show that initial catchment conditions provide the main source of skill. Post-ESP sampling enhanced skill in equatorial South America and Southeast Asia, particularly in terms of tercile probability skill, due to the persistence and influence of the El Niño Southern Oscillation. Actual skill was on average 54% of theoretical skill but considerably more for selected regions and times of year. The realized fraction of the theoretical skill probably depended primarily on the quality of precipitation estimates. Forecast skill could be predicted as the product of theoretical skill and historic model performance. Increases in seasonal forecast skill are likely to require improvement in the observation of precipitation and initial hydrological conditions.

  6. Test operation of a real-time tsunami inundation forecast system using actual data observed by S-net

    NASA Astrophysics Data System (ADS)

    Suzuki, W.; Yamamoto, N.; Miyoshi, T.; Aoi, S.

    2017-12-01

    If the tsunami inundation information can be rapidly and stably forecast before the large tsunami attacks, the information would have effectively people realize the impeding danger and necessity of evacuation. Toward that goal, we have developed a prototype system to perform the real-time tsunami inundation forecast for Chiba prefecture, eastern Japan, using off-shore ocean bottom pressure data observed by the seafloor observation network for earthquakes and tsunamis along the Japan Trench (S-net) (Aoi et al., 2015, AGU). Because tsunami inundation simulation requires a large computation cost, we employ a database approach searching the pre-calculated tsunami scenarios that reasonably explain the observed S-net pressure data based on the multi-index method (Yamamoto et al., 2016, EPS). The scenario search is regularly repeated, not triggered by the occurrence of the tsunami event, and the forecast information is generated from the selected scenarios that meet the criterion. Test operation of the prototype system using the actual observation data started in April, 2017 and the performance and behavior of the system during non-tsunami event periods have been examined. It is found that the treatment of the noises affecting the observed data is the main issue to be solved toward the improvement of the system. Even if the observed pressure data are filtered to extract the tsunami signals, the noises in ordinary times or unusually large noises like high ocean waves due to storm affect the comparison between the observed and scenario data. Due to the noises, the tsunami scenarios are selected and the tsunami is forecast although any tsunami event does not actually occur. In most cases, the selected scenarios due to the noises have the fault models in the region along the Kurile or Izu-Bonin Trenches, far from the S-net region, or the fault models below the land. Based on the parallel operation of the forecast system with a different scenario search condition and examination of the fault models, we improve the stability and performance of the forecast system.This work was supported by Council for Science, Technology and Innovation(CSTI), Cross-ministerial Strategic Innovation Promotion Program (SIP), "Enhancement of societal resiliency against natural disasters"(Funding agency: JST).

  7. Waste Information Management System-2012 - 12114

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Upadhyay, H.; Quintero, W.; Shoffner, P.

    2012-07-01

    The Waste Information Management System (WIMS) -2012 was updated to support the Department of Energy (DOE) accelerated cleanup program. The schedule compression required close coordination and a comprehensive review and prioritization of the barriers that impeded treatment and disposition of the waste streams at each site. Many issues related to waste treatment and disposal were potential critical path issues under the accelerated schedule. In order to facilitate accelerated cleanup initiatives, waste managers at DOE field sites and at DOE Headquarters in Washington, D.C., needed timely waste forecast and transportation information regarding the volumes and types of radioactive waste that wouldmore » be generated by DOE sites over the next 40 years. Each local DOE site historically collected, organized, and displayed waste forecast information in separate and unique systems. In order for interested parties to understand and view the complete DOE complex-wide picture, the radioactive waste and shipment information of each DOE site needed to be entered into a common application. The WIMS application was therefore created to serve as a common application to improve stakeholder comprehension and improve DOE radioactive waste treatment and disposal planning and scheduling. WIMS allows identification of total forecasted waste volumes, material classes, disposition sites, choke points, technological or regulatory barriers to treatment and disposal, along with forecasted waste transportation information by rail, truck and inter-modal shipments. The Applied Research Center (ARC) at Florida International University (FIU) in Miami, Florida, developed and deployed the web-based forecast and transportation system and is responsible for updating the radioactive waste forecast and transportation data on a regular basis to ensure the long-term viability and value of this system. WIMS continues to successfully accomplish the goals and objectives set forth by DOE for this project. It has replaced the historic process of each DOE site gathering, organizing, and reporting their waste forecast information utilizing different databases and display technologies. In addition, WIMS meets DOE's objective to have the complex-wide waste forecast and transportation information available to all stakeholders and the public in one easy-to-navigate system. The enhancements to WIMS made since its initial deployment include the addition of new DOE sites and facilities, an updated waste and transportation information, and the ability to easily display and print customized waste forecast, the disposition maps, GIS maps and transportation information. The system also allows users to customize and generate reports over the web. These reports can be exported to various formats, such as Adobe{sup R} PDF, Microsoft Excel{sup R}, and Microsoft Word{sup R} and downloaded to the user's computer. Future enhancements will include database/application migration to the next level. A new data import interface will be developed to integrate 2012-13 forecast waste streams. In addition, the application is updated on a continuous basis based on DOE feedback. (authors)« less

  8. Application of Satellite information (JASON-2) in improvement of Flood Forecasting and Early Warning Service in Bangladesh

    NASA Astrophysics Data System (ADS)

    Hossain, M. A.; Anderson, E. R.; Bhuiyan, M. A.; Hossain, F.; Shah-Newaz, S. M.

    2014-12-01

    Bangladesh is the lowest riparian of the huge system of the Ganges, Brahmaputra and Meghna (GBM) basins, second to that of Amazan, with 1.75 million sq-km catchment area, only 7% is inside Bangladesh. High inflow from GBM associated with the intense rainfall is the source of flood in Bangladesh. Flood Forecasting and Early Warning (FFEW) is the mandate and responsibility of Bangladesh Water Development Board (BWDB) and Flood Forecasting and Warning Center (FFWC) under BWDB has been carrying out this responsibility since 1972 and operational on 7-days a week during monsoon (May to October). FFEW system started with few hours lead time has been upgraded up to to 5-days with reasonable accuracy. At FFWC numerical Hydrodynamic model is used for generating water level (WL) forecast upto 5-days at 54 points on 29 rivers based on real-time observed WL of 83 and rainfall of 56 stations with boundary estimationa on daily basis. Main challenge of this system is the boundary estimation is the limited upstream data of the transboundary rivers, obstacle for increasing lead-time for FFEW. The satellite based upper catchment data may overcome this limitation. Recent NASA-French joint Satellite mission JASON-2 records Water Elevation (WE) and it may be used within 24 hours. Using JASON-2 recorded WE data of 4 and 3 virtual stations on the Ganges and Brahmaputra rivers , respectively (upper catchment), a new methodology has been developed for increasing lead time of forecast. Correlation between the JASON-2 recorded WE on the virtual stations at the upper catchment and WL of 2 dominating boundary stations at model boundary on the Ganges and Brahmaputra has been derived for generating WL forecast at those 2 boundary stations, which used as input in model. FFWC has started experimental 8-days lead-time WL forecast at 09 stations (5 in Brahmaputra and 4 in Ganges) using generated boundary data and regularly updating the results in the website. The trend of the forecasted WL using JASON-2 data is similar to those upto 5-days forecast generated in the existing system. This is a new approach in FFEW in Bangladesh where boundary estimation becomes possible using JASON-2 observed WE data of the Transboundary rivers. There is scope of further development of this system along with increase of lead time. Reference: www.ffwc.gov.bd

  9. Predictability and prediction of tropical cyclones on daily to interannual time scales

    NASA Astrophysics Data System (ADS)

    Belanger, James Ian

    The spatial and temporal complexity of tropical cyclones (TCs) raises a number of scientific questions regarding their genesis, movement, intensification, and variability. In this dissertation, the principal goal is to determine the current state of predictability for each of these processes using global numerical prediction systems. The predictability findings are then used in conjunction with several new statistical calibration techniques to develop a proof-of-concept, operational forecast system for North Atlantic TCs on daily to intraseasonal time scales. To quantify the current extent of tropical cyclone predictability, we assess probabilistic forecasts from the most advanced global numerical weather prediction system to date, the ECMWF Variable Resolution Ensemble Prediction System (VarEPS; Hamill et al. 2008, Hagedorn et al. 2012). Using a new false alarm clustering technique to maximize the utility of the VarEPS, the ensemble system is shown to provide well-calibrated probabilistic forecasts for TC genesis through a lead-time of one week and pregenesis track forecasts with similar skill compared to the VarEPS's postgenesis track forecasts. These findings provide evidence that skillful real-time TC genesis predictions may be made in the North Indian Ocean—a region that even today has limited forecast warning windows for TCs relative to other ocean basins. To quantify the predictability of TCs on intraseasonal time scales, forecasts from the ECMWF Monthly Forecast System (ECMFS) are examined for the North Atlantic Ocean. From this assessment, dynamically based forecasts from the ECMFS provide forecast skill exceeding climatology out to weeks three and four for portions of the southern Gulf of Mexico, western Caribbean and the Main Development Region. Forecast skill in these regions is traced to the model's ability to capture correctly the variability in deep-layer vertical wind shear as well as the relative frequency of easterly waves moving through these regions. Following the TC predictability studies, a proof-of-concept operational forecast system for North Atlantic TCs is presented for daily to intraseasonal time scales. Findings from the predictability studies are used in conjunction with recently developed forecast calibration techniques to render the VarEPS and ECMFS forecasts more useful in an operational setting. The proposed combination of bias-calibrated regional probabilistic forecast guidance along with objectively-defined measures of confidence is a new way of providing TC forecasts on intraseasonal time scales. On interannual time scales, the predictability of TCs is examined by considering their relationship with tropical Atlantic easterly waves. First, a set of easterly wave climatologies for the Climate Forecast System-Reanalysis, ERA-Interim, ERA-40, and NCEP/NCAR Reanalysis are developed using a new easterly wave tracking algorithm based on 700 hPa curvature relative vorticity anomalies. From the reanalysis-derived easterly wave climatologies, a moderately positive and statistically significant relationship is seen with tropical Atlantic TCs, suggesting that approximately 20-30% of the total variance in the number of TCs on interannual time scales may be explained by the frequency of easterly waves. In relation to large-scale climate modes, the Atlantic Multidecadal Oscillation (AMO) and Atlantic Meridional Mode (AMM) exhibit the strongest positive covariability with Atlantic easterly wave frequency. Besides changes in the number of easterly waves, the intensification efficiency of easterly waves, which is the percentage of waves that induce North Atlantic TC formation, has also been evaluated. These findings offer a plausible physical explanation for the recent increase in the number of NATL TCs, as it has been concomitant with an increasing trend in both the number of tropical Atlantic easterly waves and intensification efficiency. In addition, the easterly wave-tropical cyclone pathway is likely an important mechanism governing how the AMO and AMM modulate North Atlantic TC frequency—more so than previous thought (e.g., Thorncroft and Hodges 2001, Hopsch et al. 2007, Kossin and Vimont 2007). The last component of this dissertation examines how the historical variability in U.S. landfalling TCs has impacted the annual TC tornado record. To reconcile the inhomogeneous, historical tornado record, two statistical tornado models, developed from a set of a priori predictors for TC tornado formation, are used to reconstruct the TC tornado climatology. Based on the evaluation period during the most reliable portion of the TC tornado record, these models possess moderate skill in forecasting the magnitude of a tornado outbreak from a Gulf landfalling TC and have high skill in forecasting the annual number of TC tornadoes. While the synthetic TC tornado record also reflects decadal scale variations in association with the AMO, a comparison of the current warm phase of the AMO with the previous warm phase period shows that the median number of tornadoes per Gulf TC landfall has significantly increased. This change likely reflects the increase in median TC size (by 35%) of Gulf landfalling TCs along with an increased frequency of large TCs at landfall.

  10. Potential influences of neglecting aerosol effects on the NCEP GFS precipitation forecast

    NASA Astrophysics Data System (ADS)

    Jiang, Mengjiao; Feng, Jinqin; Li, Zhanqing; Sun, Ruiyu; Hou, Yu-Tai; Zhu, Yuejian; Wan, Bingcheng; Guo, Jianping; Cribb, Maureen

    2017-11-01

    Aerosol-cloud interactions (ACIs) have been widely recognized as a factor affecting precipitation. However, they have not been considered in the operational National Centers for Environmental Predictions Global Forecast System model. We evaluated the potential impact of neglecting ACI on the operational rainfall forecast using ground-based and satellite observations and model reanalysis. The Climate Prediction Center unified gauge-based precipitation analysis and the Modern-Era Retrospective analysis for Research and Applications Version 2 aerosol reanalysis were used to evaluate the forecast in three countries for the year 2015. The overestimation of light rain (47.84 %) and underestimation of heavier rain (31.83, 52.94, and 65.74 % for moderate rain, heavy rain, and very heavy rain, respectively) from the model are qualitatively consistent with the potential errors arising from not accounting for ACI, although other factors cannot be totally ruled out. The standard deviation of the forecast bias was significantly correlated with aerosol optical depth in Australia, the US, and China. To gain further insight, we chose the province of Fujian in China to pursue a more insightful investigation using a suite of variables from gauge-based observations of precipitation, visibility, water vapor, convective available potential energy (CAPE), and satellite datasets. Similar forecast biases were found: over-forecasted light rain and under-forecasted heavy rain. Long-term analyses revealed an increasing trend in heavy rain in summer and a decreasing trend in light rain in other seasons, accompanied by a decreasing trend in visibility, no trend in water vapor, and a slight increasing trend in summertime CAPE. More aerosols decreased cloud effective radii for cases where the liquid water path was greater than 100 g m-2. All findings are consistent with the effects of ACI, i.e., where aerosols inhibit the development of shallow liquid clouds and invigorate warm-base mixed-phase clouds (especially in summertime), which in turn affects precipitation. While we cannot establish rigorous causal relations based on the analyses presented in this study, the significant rainfall forecast bias seen in operational weather forecast model simulations warrants consideration in future model improvements.

  11. A preliminary study of the impact of the ERS 1 C band scatterometer wind data on the European Centre for Medium-Range Weather Forecasts global data assimilation system

    NASA Technical Reports Server (NTRS)

    Hoffman, Ross N.

    1993-01-01

    A preliminary assessment of the impact of the ERS 1 scatterometer wind data on the current European Centre for Medium-Range Weather Forecasts analysis and forecast system has been carried out. Although the scatterometer data results in changes to the analyses and forecasts, there is no consistent improvement or degradation. Our results are based on comparing analyses and forecasts from assimilation cycles. The two sets of analyses are very similar except for the low level wind fields over the ocean. Impacts on the analyzed wind fields are greater over the southern ocean, where other data are scarce. For the most part the mass field increments are too small to balance the wind increments. The effect of the nonlinear normal mode initialization on the analysis differences is quite small, but we observe that the differences tend to wash out in the subsequent 6-hour forecast. In the Northern Hemisphere, analysis differences are very small, except directly at the scatterometer locations. Forecast comparisons reveal large differences in the Southern Hemisphere after 72 hours. Notable differences in the Northern Hemisphere do not appear until late in the forecast. Overall, however, the Southern Hemisphere impacts are neutral. The experiments described are preliminary in several respects. We expect these data to ultimately prove useful for global data assimilation.

  12. Approaches in Health Human Resource Forecasting: A Roadmap for Improvement.

    PubMed

    Rafiei, Sima; Mohebbifar, Rafat; Hashemi, Fariba; Ezzatabadi, Mohammad Ranjbar; Farzianpour, Fereshteh

    2016-09-01

    Forecasting the demand and supply of health manpower in an accurate manner makes appropriate planning possible. The aim of this paper was to review approaches and methods for health manpower forecasting and consequently propose the features that improve the effectiveness of this important process of health manpower planning. A literature review was conducted for studies published in English from 1990-2014 using Pub Med, Science Direct, Pro Quest, and Google Scholar databases. Review articles, qualitative studies, retrospective and prospective studies describing or applying various types of forecasting approaches and methods in health manpower forecasting were included in the review. The authors designed an extraction data sheet based on study questions to collect data on studies' references, designs, and types of forecasting approaches, whether discussed or applied, with their strengths and weaknesses. Forty studies were included in the review. As a result, two main categories of approaches (conceptual and analytical) for health manpower forecasting were identified. Each approach had several strengths and weaknesses. As a whole, most of them were faced with some challenges, such as being static and unable to capture dynamic variables in manpower forecasting and causal relationships. They also lacked the capacity to benefit from scenario making to assist policy makers in effective decision making. An effective forecasting approach is supposed to resolve all the deficits that exist in current approaches and meet the key features found in the literature in order to develop an open system and a dynamic and comprehensive method necessary for today complex health care systems.

  13. Do quantitative decadal forecasts from GCMs provide decision relevant skill?

    NASA Astrophysics Data System (ADS)

    Suckling, E. B.; Smith, L. A.

    2012-04-01

    It is widely held that only physics-based simulation models can capture the dynamics required to provide decision-relevant probabilistic climate predictions. This fact in itself provides no evidence that predictions from today's GCMs are fit for purpose. Empirical (data-based) models are employed to make probability forecasts on decadal timescales, where it is argued that these 'physics free' forecasts provide a quantitative 'zero skill' target for the evaluation of forecasts based on more complicated models. It is demonstrated that these zero skill models are competitive with GCMs on decadal scales for probability forecasts evaluated over the last 50 years. Complications of statistical interpretation due to the 'hindcast' nature of this experiment, and the likely relevance of arguments that the lack of hindcast skill is irrelevant as the signal will soon 'come out of the noise' are discussed. A lack of decision relevant quantiative skill does not bring the science-based insights of anthropogenic warming into doubt, but it does call for a clear quantification of limits, as a function of lead time, for spatial and temporal scales on which decisions based on such model output are expected to prove maladaptive. Failing to do so may risk the credibility of science in support of policy in the long term. The performance amongst a collection of simulation models is evaluated, having transformed ensembles of point forecasts into probability distributions through the kernel dressing procedure [1], according to a selection of proper skill scores [2] and contrasted with purely data-based empirical models. Data-based models are unlikely to yield realistic forecasts for future climate change if the Earth system moves away from the conditions observed in the past, upon which the models are constructed; in this sense the empirical model defines zero skill. When should a decision relevant simulation model be expected to significantly outperform such empirical models? Probability forecasts up to ten years ahead (decadal forecasts) are considered, both on global and regional spatial scales for surface air temperature. Such decadal forecasts are not only important in terms of providing information on the impacts of near-term climate change, but also from the perspective of climate model validation, as hindcast experiments and a sufficient database of historical observations allow standard forecast verification methods to be used. Simulation models from the ENSEMBLES hindcast experiment [3] are evaluated and contrasted with static forecasts of the observed climatology, persistence forecasts and against simple statistical models, called dynamic climatology (DC). It is argued that DC is a more apropriate benchmark in the case of a non-stationary climate. It is found that the ENSEMBLES models do not demonstrate a significant increase in skill relative to the empirical models even at global scales over any lead time up to a decade ahead. It is suggested that the contsruction and co-evaluation with the data-based models become a regular component of the reporting of large simulation model forecasts. The methodology presented may easily be adapted to other forecasting experiments and is expected to influence the design of future experiments. The inclusion of comparisons with dynamic climatology and other data-based approaches provide important information to both scientists and decision makers on which aspects of state-of-the-art simulation forecasts are likely to be fit for purpose. [1] J. Bröcker and L. A. Smith. From ensemble forecasts to predictive distributions, Tellus A, 60(4), 663-678 (2007). [2] J. Bröcker and L. A. Smith. Scoring probabilistic forecasts: The importance of being proper, Weather and Forecasting, 22, 382-388 (2006). [3] F. J. Doblas-Reyes, A. Weisheimer, T. N. Palmer, J. M. Murphy and D. Smith. Forecast quality asessment of the ENSEMBLES seasonal-to-decadal stream 2 hindcasts, ECMWF Technical Memorandum, 621 (2010).

  14. Effects of temperature on flood forecasting: analysis of an operative case study in Alpine basins

    NASA Astrophysics Data System (ADS)

    Ceppi, A.; Ravazzani, G.; Salandin, A.; Rabuffetti, D.; Montani, A.; Borgonovo, E.; Mancini, M.

    2013-04-01

    In recent years the interest in the forecast and prevention of natural hazards related to hydro-meteorological events has increased the challenge for numerical weather modelling, in particular for limited area models, to improve the quantitative precipitation forecasts (QPF) for hydrological purposes. After the encouraging results obtained in the MAP D-PHASE Project, we decided to devote further analyses to show recent improvements in the operational use of hydro-meteorological chains, and above all to better investigate the key role played by temperature during snowy precipitation. In this study we present a reanalysis simulation of one meteorological event, which occurred in November 2008 in the Piedmont Region. The attention is focused on the key role of air temperature, which is a crucial feature in determining the partitioning of precipitation in solid and liquid phase, influencing the quantitative discharge forecast (QDF) into the Alpine region. This is linked to the basin ipsographic curve and therefore by the total contributing area related to the snow line of the event. In order to assess hydrological predictions affected by meteorological forcing, a sensitivity analysis of the model output was carried out to evaluate different simulation scenarios, considering the forecast effects which can radically modify the discharge forecast. Results show how in real-time systems hydrological forecasters have to consider also the temperature uncertainty in forecasts in order to better understand the snow dynamics and its effect on runoff during a meteorological warning with a crucial snow line over the basin. The hydrological ensemble forecasts are based on the 16 members of the meteorological ensemble system COSMO-LEPS (developed by ARPA-SIMC) based on the non-hydrostatic model COSMO, while the hydrological model used to generate the runoff simulations is the rainfall-runoff distributed FEST-WB model, developed at Politecnico di Milano.

  15. Quantifying the Usefulness of Ensemble-Based Precipitation Forecasts with Respect to Water Use and Yield during a Field Trial

    NASA Astrophysics Data System (ADS)

    Christ, E.; Webster, P. J.; Collins, G.; Byrd, S.

    2014-12-01

    Recent droughts and the continuing water wars between the states of Georgia, Alabama and Florida have made agricultural producers more aware of the importance of managing their irrigation systems more efficiently. Many southeastern states are beginning to consider laws that will require monitoring and regulation of water used for irrigation. Recently, Georgia suspended issuing irrigation permits in some areas of the southwestern portion of the state to try and limit the amount of water being used in irrigation. However, even in southern Georgia, which receives on average between 23 and 33 inches of rain during the growing season, irrigation can significantly impact crop yields. In fact, studies have shown that when fields do not receive rainfall at the most critical stages in the life of cotton, yield for irrigated fields can be up to twice as much as fields for non-irrigated cotton. This leads to the motivation for this study, which is to produce a forecast tool that will enable producers to make more efficient irrigation management decisions. We will use the ECMWF (European Centre for Medium-Range Weather Forecasts) vars EPS (Ensemble Prediction System) model precipitation forecasts for the grid points included in the 1◦ x 1◦ lat/lon square surrounding the point of interest. We will then apply q-to-q bias corrections to the forecasts. Once we have applied the bias corrections, we will use the check-book method of irrigation scheduling to determine the probability of receiving the required amount of rainfall for each week of the growing season. These forecasts will be used during a field trial conducted at the CM Stripling Irrigation Research Park in Camilla, Georgia. This research will compare differences in yield and water use among the standard checkbook method of irrigation, which uses no precipitation forecast knowledge, the weather.com forecast, a dry land plot, and the ensemble-based forecasts mentioned above.

  16. Nonmechanistic forecasts of seasonal influenza with iterative one-week-ahead distributions.

    PubMed

    Brooks, Logan C; Farrow, David C; Hyun, Sangwon; Tibshirani, Ryan J; Rosenfeld, Roni

    2018-06-15

    Accurate and reliable forecasts of seasonal epidemics of infectious disease can assist in the design of countermeasures and increase public awareness and preparedness. This article describes two main contributions we made recently toward this goal: a novel approach to probabilistic modeling of surveillance time series based on "delta densities", and an optimization scheme for combining output from multiple forecasting methods into an adaptively weighted ensemble. Delta densities describe the probability distribution of the change between one observation and the next, conditioned on available data; chaining together nonparametric estimates of these distributions yields a model for an entire trajectory. Corresponding distributional forecasts cover more observed events than alternatives that treat the whole season as a unit, and improve upon multiple evaluation metrics when extracting key targets of interest to public health officials. Adaptively weighted ensembles integrate the results of multiple forecasting methods, such as delta density, using weights that can change from situation to situation. We treat selection of optimal weightings across forecasting methods as a separate estimation task, and describe an estimation procedure based on optimizing cross-validation performance. We consider some details of the data generation process, including data revisions and holiday effects, both in the construction of these forecasting methods and when performing retrospective evaluation. The delta density method and an adaptively weighted ensemble of other forecasting methods each improve significantly on the next best ensemble component when applied separately, and achieve even better cross-validated performance when used in conjunction. We submitted real-time forecasts based on these contributions as part of CDC's 2015/2016 FluSight Collaborative Comparison. Among the fourteen submissions that season, this system was ranked by CDC as the most accurate.

  17. Seasonal drought predictability in Portugal using statistical-dynamical techniques

    NASA Astrophysics Data System (ADS)

    Ribeiro, A. F. S.; Pires, C. A. L.

    2016-08-01

    Atmospheric forecasting and predictability are important to promote adaption and mitigation measures in order to minimize drought impacts. This study estimates hybrid (statistical-dynamical) long-range forecasts of the regional drought index SPI (3-months) over homogeneous regions from mainland Portugal, based on forecasts from the UKMO operational forecasting system, with lead-times up to 6 months. ERA-Interim reanalysis data is used for the purpose of building a set of SPI predictors integrating recent past information prior to the forecast launching. Then, the advantage of combining predictors with both dynamical and statistical background in the prediction of drought conditions at different lags is evaluated. A two-step hybridization procedure is performed, in which both forecasted and observed 500 hPa geopotential height fields are subjected to a PCA in order to use forecasted PCs and persistent PCs as predictors. A second hybridization step consists on a statistical/hybrid downscaling to the regional SPI, based on regression techniques, after the pre-selection of the statistically significant predictors. The SPI forecasts and the added value of combining dynamical and statistical methods are evaluated in cross-validation mode, using the R2 and binary event scores. Results are obtained for the four seasons and it was found that winter is the most predictable season, and that most of the predictive power is on the large-scale fields from past observations. The hybridization improves the downscaling based on the forecasted PCs, since they provide complementary information (though modest) beyond that of persistent PCs. These findings provide clues about the predictability of the SPI, particularly in Portugal, and may contribute to the predictability of crops yields and to some guidance on users (such as farmers) decision making process.

  18. Total Electron Content forecast model over Australia

    NASA Astrophysics Data System (ADS)

    Bouya, Zahra; Terkildsen, Michael; Francis, Matthew

    Ionospheric perturbations can cause serious propagation errors in modern radio systems such as Global Navigation Satellite Systems (GNSS). Forecasting ionospheric parameters is helpful to estimate potential degradation of the performance of these systems. Our purpose is to establish an Australian Regional Total Electron Content (TEC) forecast model at IPS. In this work we present an approach based on the combined use of the Principal Component Analysis (PCA) and Artificial Neural Network (ANN) to predict future TEC values. PCA is used to reduce the dimensionality of the original TEC data by mapping it into its eigen-space. In this process the top- 5 eigenvectors are chosen to reflect the directions of the maximum variability. An ANN approach was then used for the multicomponent prediction. We outline the design of the ANN model with its parameters. A number of activation functions along with different spectral ranges and different numbers of Principal Components (PCs) were tested to find the PCA-ANN models reaching the best results. Keywords: GNSS, Space Weather, Regional, Forecast, PCA, ANN.

  19. Time Series Forecasting of Daily Reference Evapotranspiration by Neural Network Ensemble Learning for Irrigation System

    NASA Astrophysics Data System (ADS)

    Manikumari, N.; Murugappan, A.; Vinodhini, G.

    2017-07-01

    Time series forecasting has gained remarkable interest of researchers in the last few decades. Neural networks based time series forecasting have been employed in various application areas. Reference Evapotranspiration (ETO) is one of the most important components of the hydrologic cycle and its precise assessment is vital in water balance and crop yield estimation, water resources system design and management. This work aimed at achieving accurate time series forecast of ETO using a combination of neural network approaches. This work was carried out using data collected in the command area of VEERANAM Tank during the period 2004 - 2014 in India. In this work, the Neural Network (NN) models were combined by ensemble learning in order to improve the accuracy for forecasting Daily ETO (for the year 2015). Bagged Neural Network (Bagged-NN) and Boosted Neural Network (Boosted-NN) ensemble learning were employed. It has been proved that Bagged-NN and Boosted-NN ensemble models are better than individual NN models in terms of accuracy. Among the ensemble models, Boosted-NN reduces the forecasting errors compared to Bagged-NN and individual NNs. Regression co-efficient, Mean Absolute Deviation, Mean Absolute Percentage error and Root Mean Square Error also ascertain that Boosted-NN lead to improved ETO forecasting performance.

  20. Improving medium-range ensemble streamflow forecasts through statistical post-processing

    NASA Astrophysics Data System (ADS)

    Mendoza, Pablo; Wood, Andy; Clark, Elizabeth; Nijssen, Bart; Clark, Martyn; Ramos, Maria-Helena; Nowak, Kenneth; Arnold, Jeffrey

    2017-04-01

    Probabilistic hydrologic forecasts are a powerful source of information for decision-making in water resources operations. A common approach is the hydrologic model-based generation of streamflow forecast ensembles, which can be implemented to account for different sources of uncertainties - e.g., from initial hydrologic conditions (IHCs), weather forecasts, and hydrologic model structure and parameters. In practice, hydrologic ensemble forecasts typically have biases and spread errors stemming from errors in the aforementioned elements, resulting in a degradation of probabilistic properties. In this work, we compare several statistical post-processing techniques applied to medium-range ensemble streamflow forecasts obtained with the System for Hydromet Applications, Research and Prediction (SHARP). SHARP is a fully automated prediction system for the assessment and demonstration of short-term to seasonal streamflow forecasting applications, developed by the National Center for Atmospheric Research, University of Washington, U.S. Army Corps of Engineers, and U.S. Bureau of Reclamation. The suite of post-processing techniques includes linear blending, quantile mapping, extended logistic regression, quantile regression, ensemble analogs, and the generalized linear model post-processor (GLMPP). We assess and compare these techniques using multi-year hindcasts in several river basins in the western US. This presentation discusses preliminary findings about the effectiveness of the techniques for improving probabilistic skill, reliability, discrimination, sharpness and resolution.

  1. Nambe Pueblo Water Budget and Forecasting model.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brainard, James Robert

    2009-10-01

    This report documents The Nambe Pueblo Water Budget and Water Forecasting model. The model has been constructed using Powersim Studio (PS), a software package designed to investigate complex systems where flows and accumulations are central to the system. Here PS has been used as a platform for modeling various aspects of Nambe Pueblo's current and future water use. The model contains three major components, the Water Forecast Component, Irrigation Scheduling Component, and the Reservoir Model Component. In each of the components, the user can change variables to investigate the impacts of water management scenarios on future water use. The Watermore » Forecast Component includes forecasting for industrial, commercial, and livestock use. Domestic demand is also forecasted based on user specified current population, population growth rates, and per capita water consumption. Irrigation efficiencies are quantified in the Irrigated Agriculture component using critical information concerning diversion rates, acreages, ditch dimensions and seepage rates. Results from this section are used in the Water Demand Forecast, Irrigation Scheduling, and the Reservoir Model components. The Reservoir Component contains two sections, (1) Storage and Inflow Accumulations by Categories and (2) Release, Diversion and Shortages. Results from both sections are derived from the calibrated Nambe Reservoir model where historic, pre-dam or above dam USGS stream flow data is fed into the model and releases are calculated.« less

  2. Probabilistic Forecasting of Arctic Sea Ice Extent

    NASA Astrophysics Data System (ADS)

    Slater, A. G.

    2013-12-01

    Sea ice in the Arctic is changing rapidly. Most noticeable has been the series of record, or near-record, annual minimums in sea ice extent in the past six years. The changing regime of sea ice has prompted much interest in seasonal prediction of sea ice extent, particularly as opportunities for Arctic shipping and resource exploration or extraction increase. This study presents a daily sea ice extent probabilistic forecast method with a 50-day lead time. A base projection is made from historical data and near-real-time sea ice concentration is assimilated on the issue date of the forecast. When considering the September mean ice extent for the period 1995-2012, the performance of the 50-day lead time forecast is very good: correlation=0.94, Bias = 0.14 ×106 km^2 and RMSE = 0.36 ×106 km^2. Forecasts for the daily minimum contains equal skill levels. The system is highly competitive with any of the SEARCH Sea Ice Outlook estimates. The primary finding of this study is that large amounts of forecast skill can be gained from knowledge of the initial conditions of concentration (perhaps more than previously thought). Given the simplicity of the forecast model, improved skill should be available from system refinement and with suitable proxies for large scale atmosphere and ocean circulation.

  3. An operational real-time flood forecasting system in Southern Italy

    NASA Astrophysics Data System (ADS)

    Ortiz, Enrique; Coccia, Gabriele; Todini, Ezio

    2015-04-01

    A real-time flood forecasting system has been operating since year 2012 as a non-structural measure for mitigating the flood risk in Campania Region (Southern Italy), within the Sele river basin (3.240 km2). The Sele Flood Forecasting System (SFFS) has been built within the FEWS (Flood Early Warning System) platform developed by Deltares and it assimilates the numerical weather predictions of the COSMO LAM family: the deterministic COSMO-LAMI I2, the deterministic COSMO-LAMI I7 and the ensemble numerical weather predictions COSMO-LEPS (16 members). Sele FFS is composed by a cascade of three main models. The first model is a fully continuous physically based distributed hydrological model, named TOPKAPI-eXtended (Idrologia&Ambiente s.r.l., Naples, Italy), simulating the dominant processes controlling the soil water dynamics, runoff generation and discharge with a spatial resolution of 250 m. The second module is a set of Neural-Networks (ANN) built for forecasting the river stages at a set of monitored cross-sections. The third component is a Model Conditional Processor (MCP), which provides the predictive uncertainty (i.e., the probability of occurrence of a future flood event) within the framework of a multi-temporal forecast, according to the most recent advancements on this topic (Coccia and Todini, HESS, 2011). The MCP provides information about the probability of exceedance of a maximum river stage within the forecast lead time, by means of a discrete time function representing the variation of cumulative probability of exceeding a river stage during the forecast lead time and the distribution of the time occurrence of the flood peak, starting from one or more model forecasts. This work shows the Sele FFS performance after two years of operation, evidencing the added-values that can provide to a flood early warning and emergency management system.

  4. Sea Ice Outlook for September 2015 June Report - NASA Global Modeling and Assimilation Office

    NASA Technical Reports Server (NTRS)

    Cullather, Richard I.; Keppenne, Christian L.; Marshak, Jelena; Pawson, Steven; Schubert, Siegfried D.; Suarez, Max J.; Vernieres, Guillaume; Zhao, Bin

    2015-01-01

    The recent decline in perennial sea ice cover in Arctic Ocean is a topic of enormous scientific interest and has relevance to a broad variety of scientific disciplines and human endeavors including biological and physical oceanography, atmospheric circulation, high latitude ecology, the sustainability of indigenous communities, commerce, and resource exploration. A credible seasonal prediction of sea ice extent would be of substantial use to many of the stakeholders in these fields and may also reveal details on the physical processes that result in the current trends in the ice cover. Forecasts are challenging due in part to limitations in the polar observing network, the large variability in the climate system, and an incomplete knowledge of the significant processes. Nevertheless it is a useful to understand the current capabilities of high latitude seasonal forecasting and identify areas where such forecasts may be improved. Since 2008 the Arctic Research Consortium of the United States (ARCUS) has conducted a seasonal forecasting contest in which the average Arctic sea ice extent for the month of September (the month of the annual extent minimum) is predicted from available forecasts in early June, July, and August. The competition is known as the Sea Ice Outlook (SIO) but recently came under the auspices of the Sea Ice Prediction Network (SIPN), and multi-agency funded project to evaluate the SIO. The forecasts are submitted based on modeling, statistical, and heuristic methods. Forecasts of Arctic sea ice extent from the GMAO are derived from seasonal prediction system of the NASA Goddard Earth Observing System model, version 5 (GEOS 5) coupled atmosphere and ocean general circulation model (AOGCM). The projections are made in order to understand the relative skill of the forecasting system and to determine the effects of future improvements to the system. This years prediction is for a September average Arctic ice extent of 5.030.41 million km2.

  5. Flash flood warnings for ungauged basins based on high-resolution precipitation forecasts

    NASA Astrophysics Data System (ADS)

    Demargne, Julie; Javelle, Pierre; Organde, Didier; de Saint Aubin, Céline; Janet, Bruno

    2016-04-01

    Early detection of flash floods, which are typically triggered by severe rainfall events, is still challenging due to large meteorological and hydrologic uncertainties at the spatial and temporal scales of interest. Also the rapid rising of waters necessarily limits the lead time of warnings to alert communities and activate effective emergency procedures. To better anticipate such events and mitigate their impacts, the French national service in charge of flood forecasting (SCHAPI) is implementing a national flash flood warning system for small-to-medium (up to 1000 km²) ungauged basins based on a discharge-threshold flood warning method called AIGA (Javelle et al. 2014). The current deterministic AIGA system has been run in real-time in the South of France since 2005 and has been tested in the RHYTMME project (rhytmme.irstea.fr/). It ingests the operational radar-gauge QPE grids from Météo-France to run a simplified hourly distributed hydrologic model at a 1-km² resolution every 15 minutes. This produces real-time peak discharge estimates along the river network, which are subsequently compared to regionalized flood frequency estimates to provide warnings according to the AIGA-estimated return period of the ongoing event. The calibration and regionalization of the hydrologic model has been recently enhanced for implementing the national flash flood warning system for the entire French territory by 2016. To further extend the effective warning lead time, the flash flood warning system is being enhanced to ingest Météo-France's AROME-NWC high-resolution precipitation nowcasts. The AROME-NWC system combines the most recent available observations with forecasts from the nowcasting version of the AROME convection-permitting model (Auger et al. 2015). AROME-NWC pre-operational deterministic precipitation forecasts, produced every hour at a 2.5-km resolution for a 6-hr forecast horizon, were provided for 3 significant rain events in September and November 2014 and ingested as time-lagged ensembles. The time-lagged approach is a practical choice of accounting for the atmospheric forecast uncertainty when no extensive forecast archive is available for statistical modelling. The evaluation on 185 basins in the South of France showed significant improvements in terms of flash flood event detection and effective warning lead-time, compared to warnings from the current AIGA setup (without any future precipitation). Various verification metrics (e.g., Relative Mean Error, Brier Skill Score) show the skill of ensemble precipitation and flow forecasts compared to single-valued persistency benchmarks. Planned enhancements include integrating additional probabilistic NWP products (e.g., AROME precipitation ensembles on longer forecast horizon), accounting for and reducing hydrologic uncertainties from the model parameters and initial conditions via data assimilation, and developing a comprehensive observational and post-event damage database to determine decision-relevant warning thresholds for flood magnitude and probability. Javelle, P., Demargne, J., Defrance, D., Arnaud, P., 2014. Evaluating flash flood warnings at ungauged locations using post-event surveys: a case study with the AIGA warning system. Hydrological Sciences Journal, doi: 10.1080/02626667.2014.923970 Auger, L., Dupont, O., Hagelin, S., Brousseau, P., Brovelli, P., 2015. AROME-NWC: a new nowcasting tool based on an operational mesoscale forecasting system. Quarterly Journal of the Royal Meteorological Society, 141: 1603-1611, doi: 10.1002/qj.2463

  6. Ensemble forecasting of short-term system scale irrigation demands using real-time flow data and numerical weather predictions

    NASA Astrophysics Data System (ADS)

    Perera, Kushan C.; Western, Andrew W.; Robertson, David E.; George, Biju; Nawarathna, Bandara

    2016-06-01

    Irrigation demands fluctuate in response to weather variations and a range of irrigation management decisions, which creates challenges for water supply system operators. This paper develops a method for real-time ensemble forecasting of irrigation demand and applies it to irrigation command areas of various sizes for lead times of 1 to 5 days. The ensemble forecasts are based on a deterministic time series model coupled with ensemble representations of the various inputs to that model. Forecast inputs include past flow, precipitation, and potential evapotranspiration. These inputs are variously derived from flow observations from a modernized irrigation delivery system; short-term weather forecasts derived from numerical weather prediction models and observed weather data available from automatic weather stations. The predictive performance for the ensemble spread of irrigation demand was quantified using rank histograms, the mean continuous rank probability score (CRPS), the mean CRPS reliability and the temporal mean of the ensemble root mean squared error (MRMSE). The mean forecast was evaluated using root mean squared error (RMSE), Nash-Sutcliffe model efficiency (NSE) and bias. The NSE values for evaluation periods ranged between 0.96 (1 day lead time, whole study area) and 0.42 (5 days lead time, smallest command area). Rank histograms and comparison of MRMSE, mean CRPS, mean CRPS reliability and RMSE indicated that the ensemble spread is generally a reliable representation of the forecast uncertainty for short lead times but underestimates the uncertainty for long lead times.

  7. Waste Information Management System: One Year After Web Deployment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shoffner, P.A.; Geisler, T.J.; Upadhyay, H.

    2008-07-01

    The implementation of the Department of Energy (DOE) mandated accelerated cleanup program created significant potential technical impediments. The schedule compression required close coordination and a comprehensive review and prioritization of the barriers that impeded treatment and disposition of the waste streams at each site. Many issues related to site waste treatment and disposal were potential critical path issues under the accelerated schedules. In order to facilitate accelerated cleanup initiatives, waste managers at DOE field sites and at DOE Headquarters in Washington, D.C., needed timely waste forecast information regarding the volumes and types of waste that would be generated by DOEmore » sites over the next 30 years. Each local DOE site has historically collected, organized, and displayed site waste forecast information in separate and unique systems. However, waste information from all sites needed a common application to allow interested parties to understand and view the complete complex-wide picture. A common application allows identification of total waste volumes, material classes, disposition sites, choke points, and technological or regulatory barriers to treatment and disposal. The Applied Research Center (ARC) at Florida International University (FIU) in Miami, Florida, has completed the deployment of this fully operational, web-based forecast system. New functional modules and annual waste forecast data updates have been added to ensure the long-term viability and value of this system. In conclusion: WIMS continues to successfully accomplish the goals and objectives set forth by DOE for this project. WIMS has replaced the historic process of each DOE site gathering, organizing, and reporting their waste forecast information utilizing different database and display technologies. In addition, WIMS meets DOE's objective to have the complex-wide waste forecast information available to all stakeholders and the public in one easy-to-navigate system. The enhancements to WIMS made over the year since its web deployment include the addition of new DOE sites, an updated data set, and the ability to easily print the forecast data tables, the disposition maps, and the GIS maps. Future enhancements will include a high-level waste summary, a display of waste forecast by mode of transportation, and a user help module. The waste summary display module will provide a high-level summary view of the waste forecast data based on the selection of sites, facilities, material types, and forecast years. The waste summary report module will allow users to build custom filtered reports in a variety of formats, such as MS Excel, MS Word, and PDF. The user help module will provide a step-by-step explanation of various modules, using screen shots and general tutorials. The help module will also provide instructions for printing and margin/layout settings to assist users in using their local printers to print maps and reports. (authors)« less

  8. Integrating Remote Sensing and Disease Surveillance to Forecast Malaria Epidemics

    NASA Astrophysics Data System (ADS)

    Wimberly, M. C.; Beyane, B.; DeVos, M.; Liu, Y.; Merkord, C. L.; Mihretie, A.

    2015-12-01

    Advance information about the timing and locations of malaria epidemics can facilitate the targeting of resources for prevention and emergency response. Early detection methods can detect incipient outbreaks by identifying deviations from expected seasonal patterns, whereas early warning approaches typically forecast future malaria risk based on lagged responses to meteorological factors. A critical limiting factor for implementing either of these approaches is the need for timely and consistent acquisition, processing and analysis of both environmental and epidemiological data. To address this need, we have developed EPIDEMIA - an integrated system for surveillance and forecasting of malaria epidemics. The EPIDEMIA system includes a public health interface for uploading and querying weekly surveillance reports as well as algorithms for automatically validating incoming data and updating the epidemiological surveillance database. The newly released EASTWeb 2.0 software application automatically downloads, processes, and summaries remotely-sensed environmental data from multiple earth science data archives. EASTWeb was implemented as a component of the EPIDEMIA system, which combines the environmental monitoring data and epidemiological surveillance data into a unified database that supports both early detection and early warning models. Dynamic linear models implemented with Kalman filtering were used to carry out forecasting and model updating. Preliminary forecasts have been disseminated to public health partners in the Amhara Region of Ethiopia and will be validated and refined as the EPIDEMIA system ingests new data. In addition to continued model development and testing, future work will involve updating the public health interface to provide a broader suite of outbreak alerts and data visualization tools that are useful to our public health partners. The EPIDEMIA system demonstrates a feasible approach to synthesizing the information from epidemiological surveillance systems and remotely-sensed environmental monitoring systems to improve malaria epidemic detection and forecasting.

  9. Forecasting Global Point Rainfall using ECMWF's Ensemble Forecasting System

    NASA Astrophysics Data System (ADS)

    Pillosu, Fatima; Hewson, Timothy; Zsoter, Ervin; Baugh, Calum

    2017-04-01

    ECMWF (the European Centre for Medium range Weather Forecasts), in collaboration with the EFAS (European Flood Awareness System) and GLOFAS (GLObal Flood Awareness System) teams, has developed a new operational system that post-processes grid box rainfall forecasts from its ensemble forecasting system to provide global probabilistic point-rainfall predictions. The project attains a higher forecasting skill by applying an understanding of how different rainfall generation mechanisms lead to different degrees of sub-grid variability in rainfall totals. In turn this approach facilitates identification of cases in which very localized extreme totals are much more likely. This approach aims also to improve the rainfall input required in different hydro-meteorological applications. Flash flood forecasting, in particular in urban areas, is a good example. In flash flood scenarios precipitation is typically characterised by high spatial variability and response times are short. In this case, to move beyond radar based now casting, the classical approach has been to use very high resolution hydro-meteorological models. Of course these models are valuable but they can represent only very limited areas, may not be spatially accurate and may give reasonable results only for limited lead times. On the other hand, our method aims to use a very cost-effective approach to downscale global rainfall forecasts to a point scale. It needs only rainfall totals from standard global reporting stations and forecasts over a relatively short period to train it, and it can give good results even up to day 5. For these reasons we believe that this approach better satisfies user needs around the world. This presentation aims to describe two phases of the project: The first phase, already completed, is the implementation of this new system to provide 6 and 12 hourly point-rainfall accumulation probabilities. To do this we use a limited number of physically relevant global model parameters (i.e. convective precipitation ratio, speed of steering winds, CAPE - Convective Available Potential Energy - and solar radiation), alongside the rainfall forecasts themselves, to define the "weather types" that in turn define the expected sub-grid variability. The calibration and computational strategy intrinsic to the system will be illustrated. The quality of the global point rainfall forecasts is also illustrated by analysing recent case studies in which extreme totals and a greatly elevated flash flood risk could be foreseen some days in advance but especially by a longer-term verification that arises out of retrospective global point rainfall forecasting for 2016. The second phase, currently in development, is focussing on the relationships with other relevant geographical aspects, for instance, orography and coastlines. Preliminary results will be presented. These are promising but need further study to fully understand their impact on the spatial distribution of point rainfall totals.

  10. Statistical and Hydrological evaluation of precipitation forecasts from IMD MME and ECMWF numerical weather forecasts for Indian River basins

    NASA Astrophysics Data System (ADS)

    Mohite, A. R.; Beria, H.; Behera, A. K.; Chatterjee, C.; Singh, R.

    2016-12-01

    Flood forecasting using hydrological models is an important and cost-effective non-structural flood management measure. For forecasting at short lead times, empirical models using real-time precipitation estimates have proven to be reliable. However, their skill depreciates with increasing lead time. Coupling a hydrologic model with real-time rainfall forecasts issued from numerical weather prediction (NWP) systems could increase the lead time substantially. In this study, we compared 1-5 days precipitation forecasts from India Meteorological Department (IMD) Multi-Model Ensemble (MME) with European Center for Medium Weather forecast (ECMWF) NWP forecasts for over 86 major river basins in India. We then evaluated the hydrologic utility of these forecasts over Basantpur catchment (approx. 59,000 km2) of the Mahanadi River basin. Coupled MIKE 11 RR (NAM) and MIKE 11 hydrodynamic (HD) models were used for the development of flood forecast system (FFS). RR model was calibrated using IMD station rainfall data. Cross-sections extracted from SRTM 30 were used as input to the MIKE 11 HD model. IMD started issuing operational MME forecasts from the year 2008, and hence, both the statistical and hydrologic evaluation were carried out from 2008-2014. The performance of FFS was evaluated using both the NWP datasets separately for the year 2011, which was a large flood year in Mahanadi River basin. We will present figures and metrics for statistical (threshold based statistics, skill in terms of correlation and bias) and hydrologic (Nash Sutcliffe efficiency, mean and peak error statistics) evaluation. The statistical evaluation will be at pan-India scale for all the major river basins and the hydrologic evaluation will be for the Basantpur catchment of the Mahanadi River basin.

  11. From Research to Operations: Transitioning Noaa's Lake Erie Harmful Algal Bloom Forecast System

    NASA Astrophysics Data System (ADS)

    Kavanaugh, K. E.; Stumpf, R. P.

    2016-02-01

    A key priority of NOAA's Harmful Algal Bloom Operational Forecast System (HAB-OFS) is to leverage the Ecological Forecasting Roadmap to systematically transition to operations scientifically mature HAB forecasts in regions of the country where there is a strong user need identified and an operational framework can be supported. While in the demonstration phase, the Lake Erie HAB forecast has proven its utility. Over the next two years, NOAA will be transitioning the Lake Erie HAB forecast to operations with an initial operating capability established in the HAB OFS' operational infrastructure by the 2016 bloom season. Blooms of cyanobacteria are a recurring problem in Lake Erie, and the dominant bloom forming species, Microcystis aeruginosa, produces a toxin called microcystin that is poisonous to humans, livestock and pets. Once the toxins have contaminated the source water used for drinking water, it is costly for public water suppliers to remove them. As part of the Lake Erie HAB forecast demonstration, NOAA has provided information regarding the cyanobacterial blooms in a biweekly Experimental HAB Bulletin, which includes information about the current and forecasted distribution, toxicity, potential for vertical mixing or scum formation, mixing of the water column, and predictions of bloom decline. Coastal resource managers, public water suppliers and public health officials use the Experimental HAB Bulletins to respond to and mitigate the impacts of cyanobacterial blooms. The transition to operations will benefit stakeholders through ensuring that future Lake Erie HAB forecast products are sustained, systematic, reliable, and robust. Once operational, the forecasts will continue to be assessed and improvements will be made based on the results of emerging scientific research. In addition, the lessons learned from the Lake Erie transition will be used to streamline the process for future HAB forecasts presently in development.

  12. Visualizing Coastal Erosion, Overwash and Coastal Flooding in New England

    NASA Astrophysics Data System (ADS)

    Young Morse, R.; Shyka, T.

    2017-12-01

    Powerful East Coast storms and their associated storm tides and large, battering waves can lead to severe coastal change through erosion and re-deposition of beach sediment. The United States Geological Survey (USGS) has modeled such potential for geological response using a storm-impact scale that compares predicted elevations of hurricane-induced water levels and associated wave action to known elevations of coastal topography. The resulting storm surge and wave run-up hindcasts calculate dynamic surf zone collisions with dune structures using discrete regime categories of; "collision" (dune erosion), "overwash" and "inundation". The National Weather Service (NWS) recently began prototyping this empirical technique under the auspices of the North Atlantic Regional Team (NART). Real-time erosion and inundation forecasts were expanded to include both tropical and extra-tropical cyclones along vulnerable beaches (hotspots) on the New England coast. Preliminary results showed successful predictions of impact during hurricane Sandy and several intense Nor'easters. The forecasts were verified using observational datasets, including "ground truth" reports from Emergency Managers and storm-based, dune profile measurements organized through a Maine Sea Grant partnership. In an effort to produce real-time visualizations of this forecast output, the Northeastern Regional Association of Coastal Ocean Observing Systems (NERACOOS) and the Gulf of Maine Research Institute (GMRI) partnered with NART to create graphical products of wave run-up levels for each New England "hotspot". The resulting prototype system updates the forecasts twice daily and allows users the ability to adjust atmospheric and sea state input into the calculations to account for model errors and forecast uncertainty. This talk will provide an overview of the empirical wave run-up calculations, the system used to produce forecast output and a demonstration of the new web based tool.

  13. Variational Continuous Assimilation of TMI and SSM/I Rain Rates: Impact on GEOS-3 Hurricane Analyses and Forecasts

    NASA Technical Reports Server (NTRS)

    Hou, Arthur Y.; Zhang, Sara Q.; Reale, Oreste

    2003-01-01

    We describe a variational continuous assimilation (VCA) algorithm for assimilating tropical rainfall data using moisture and temperature tendency corrections as the control variable to offset model deficiencies. For rainfall assimilation, model errors are of special concern since model-predicted precipitation is based on parameterized moist physics, which can have substantial systematic errors. This study examines whether a VCA scheme using the forecast model as a weak constraint offers an effective pathway to precipitation assimilation. The particular scheme we exarnine employs a '1+1' dimension precipitation observation operator based on a 6-h integration of a column model of moist physics from the Goddard Earth Observing System (GEOS) global data assimilation system DAS). In earlier studies, we tested a simplified version of this scheme and obtained improved monthly-mean analyses and better short-range forecast skills. This paper describes the full implementation ofthe 1+1D VCA scheme using background and observation error statistics, and examines how it may improve GEOS analyses and forecasts of prominent tropical weather systems such as hurricanes. Parallel assimilation experiments with and without rainfall data for Hurricanes Bonnie and Floyd show that assimilating 6-h TMI and SSM/I surfice rain rates leads to more realistic storm features in the analysis, which, in turn, provide better initial conditions for 5-day storm track prediction and precipitation forecast. These results provide evidence that addressing model deficiencies in moisture tendency may be crucial to making effective use of precipitation information in data assimilation.

  14. Evaluation of Flood Forecast and Warning in Elbe river basin - Impact of Forecaster's Strategy

    NASA Astrophysics Data System (ADS)

    Danhelka, Jan; Vlasak, Tomas

    2010-05-01

    Czech Hydrometeorological Institute (CHMI) is responsible for flood forecasting and warning in the Czech Republic. To meet that issue CHMI operates hydrological forecasting systems and publish flow forecast in selected profiles. Flood forecast and warning is an output of system that links observation (flow and atmosphere), data processing, weather forecast (especially NWP's QPF), hydrological modeling and modeled outputs evaluation and interpretation by forecaster. Forecast users are interested in final output without separating uncertainties of separate steps of described process. Therefore an evaluation of final operational forecasts was done for profiles within Elbe river basin produced by AquaLog forecasting system during period 2002 to 2008. Effects of uncertainties of observation, data processing and especially meteorological forecasts were not accounted separately. Forecast of flood levels exceedance (peak over the threshold) during forecasting period was the main criterion as flow increase forecast is of the highest importance. Other evaluation criteria included peak flow and volume difference. In addition Nash-Sutcliffe was computed separately for each time step (1 to 48 h) of forecasting period to identify its change with the lead time. Textual flood warnings are issued for administrative regions to initiate flood protection actions in danger of flood. Flood warning hit rate was evaluated at regions level and national level. Evaluation found significant differences of model forecast skill between forecasting profiles, particularly less skill was evaluated at small headwater basins due to domination of QPF uncertainty in these basins. The average hit rate was 0.34 (miss rate = 0.33, false alarm rate = 0.32). However its explored spatial difference is likely to be influenced also by different fit of parameters sets (due to different basin characteristics) and importantly by different impact of human factor. Results suggest that the practice of interactive model operation, experience and forecasting strategy differs between responsible forecasting offices. Warning is based on model outputs interpretation by hydrologists-forecaster. Warning hit rate reached 0.60 for threshold set to lowest flood stage of which 0.11 was underestimation of flood degree (miss 0.22, false alarm 0.28). Critical success index of model forecast was 0.34, while the same criteria for warning reached 0.55. We assume that the increase accounts not only to change of scale from single forecasting point to region for warning, but partly also to forecaster's added value. There is no official warning strategy preferred in the Czech Republic (f.e. tolerance towards higher false alarm rate). Therefore forecaster decision and personal strategy is of great importance. Results show quite successful warning for 1st flood level exceedance, over-warning for 2nd flood level, but under-warning for 3rd (highest) flood level. That suggests general forecaster's preference of medium level warning (2nd flood level is legally determined to be the start of the flood and flood protection activities). In conclusion human forecaster's experience and analysis skill increases flood warning performance notably. However society preference should be specifically addressed in the warning strategy definition to support forecaster's decision making.

  15. Time series analysis of malaria in Afghanistan: using ARIMA models to predict future trends in incidence.

    PubMed

    Anwar, Mohammad Y; Lewnard, Joseph A; Parikh, Sunil; Pitzer, Virginia E

    2016-11-22

    Malaria remains endemic in Afghanistan. National control and prevention strategies would be greatly enhanced through a better ability to forecast future trends in disease incidence. It is, therefore, of interest to develop a predictive tool for malaria patterns based on the current passive and affordable surveillance system in this resource-limited region. This study employs data from Ministry of Public Health monthly reports from January 2005 to September 2015. Malaria incidence in Afghanistan was forecasted using autoregressive integrated moving average (ARIMA) models in order to build a predictive tool for malaria surveillance. Environmental and climate data were incorporated to assess whether they improve predictive power of models. Two models were identified, each appropriate for different time horizons. For near-term forecasts, malaria incidence can be predicted based on the number of cases in the four previous months and 12 months prior (Model 1); for longer-term prediction, malaria incidence can be predicted using the rates 1 and 12 months prior (Model 2). Next, climate and environmental variables were incorporated to assess whether the predictive power of proposed models could be improved. Enhanced vegetation index was found to have increased the predictive accuracy of longer-term forecasts. Results indicate ARIMA models can be applied to forecast malaria patterns in Afghanistan, complementing current surveillance systems. The models provide a means to better understand malaria dynamics in a resource-limited context with minimal data input, yielding forecasts that can be used for public health planning at the national level.

  16. Advancing Data assimilation for Baltic Monitoring and Forecasting Center: implementation and evaluation of HBP-PDAF system

    NASA Astrophysics Data System (ADS)

    Korabel, Vasily; She, Jun; Huess, Vibeke; Woge Nielsen, Jacob; Murawsky, Jens; Nerger, Lars

    2017-04-01

    The potential of an efficient data assimilation (DA) scheme to improve model forecast skill was successfully demonstrated by many operational centres around the world. The Baltic-North Sea region is one of the most heavily monitored seas. Ferryboxes, buoys, ADCP moorings, shallow water Argo floats, and research vessels are providing more and more near-real time observations. Coastal altimetry has now providing increasing amount of high resolution sea level observations, which will be significantly expanded by the launch of SWOT satellite in next years. This will turn operational DA into a valuable tool for improving forecast quality in the region. This motivated us to focus on advancing DA for the Baltic Monitoring and Forecasting Centre (BAL MFC) in order to create a common framework for operational data assimilation in the Baltic Sea. We have implemented HBM-PDAF system based on the Parallel Data Assimilation Framework (PDAF), a highly versatile and optimised parallel suit with a choice of sequential schemes originally developed at AWI, and a hydrodynamic HIROMB-BOOS Model (HBM). At initial phase, only the satellite Sea Surface Temperature (SST) Level 3 data has been assimilated. Several related aspects are discussed, including improvements of the forecast quality for both surface and subsurface fields, the estimation of ensemble-based forecast error covariance, as well as possibilities of assimilating new types of observations, such as in-situ salinity and temperature profiles, coastal altimetry, and ice concentration.

  17. a system approach to the long term forecasting of the climat data in baikal region

    NASA Astrophysics Data System (ADS)

    Abasov, N.; Berezhnykh, T.

    2003-04-01

    The Angara river running from Baikal with a cascade of hydropower plants built on it plays a peculiar role in economy of the region. With view of high variability of water inflow into the rivers and lakes (long-term low water periods and catastrophic floods) that is due to climatic peculiarities of the water resource formation, a long-term forecasting is developed and applied for risk decreasing at hydropower plants. Methodology and methods of long-term forecasting of natural-climatic processes employs some ideas of the research schools by Academician I.P.Druzhinin and Prof. A.P.Reznikhov and consists in detailed investigation of cause-effect relations, finding out physical analogs and their application to formalized methods of long-term forecasting. They are divided into qualitative (background method; method of analogs based on solar activity), probabilistic and approximative methods (analog-similarity relations; discrete-continuous model). These forecasting methods have been implemented in the form of analytical aids of the information-forecasting software "GIPSAR" that provides for some elements of artificial intelligence. Background forecasts of the runoff of the Ob, the Yenisei, the Angara Rivers in the south of Siberia are based on space-time regularities that were revealed on taking account of the phase shifts in occurrence of secular maxima and minima on integral-difference curves of many-year hydrological processes in objects compared. Solar activity plays an essential role in investigations of global variations of climatic processes. Its consideration in the method of superimposed epochs has allowed a conclusion to be made on the higher probability of the low-water period in the actual inflow to Lake Baikal that takes place on the increasing branch of solar activity of its 11-year cycle. The higher probability of a high-water period is observed on the decreasing branch of solar activity from the 2nd to the 5th year after its maximum. Probabilistic method of forecasting (with a year in advance) is based on the property of alternation of series of years with increase and decrease in the observed indicators (characteristic indices) of natural processes. Most of the series (98.4-99.6%) are represented by series of one to three years. The problem of forecasting is divided into two parts: 1) qualitative forecast of the probability that the started series will either continue or be replaced by a new series during the next year that is based on the frequency characteristics of series of years with increase or decrease of the forecasted sequence); 2) quantitative estimate of the forecasted value in the form of a curve of conditional frequencies is made on the base of intra-sequence interrelations among hydrometeorological elements by their differentiation with respect to series of years of increase or decrease, by construction of particular curves of conditional frequencies of the runoff for each expected variant of series development and by subsequent construction a generalized curve. Approximative learning methods form forecasted trajectories of the studied process indices for a long-term perspective. The method of analog-similarity relations is based on the fact that long periods of observations reveal some similarities in the character of variability of indices for some fragments of the sequence x (t) by definite criteria. The idea of the method is to estimate similarity of such fragments of the sequence that have been called the analogs. The method applies multistage optimization of both external parameters (e.g. the number of iterations of the sliding averaging needed to decompose the sequence into two components: the smoothed one with isolated periodic oscillations and the residual or random one). The method is applicable to current terms of forecasts and ending with the double solar cycle. Using a special procedure of integration, it separates terms with the best results for the given optimization subsample. Several optimal vectors of parameters obtained are tested on the examination (verifying) subsample. If the procedure is successful, the forecast is immediately made by integration of several best solutions. Peculiarities of forecasting extreme processes. Methods of long-term forecasting allow the sufficiently reliable forecasts to be made within the interval of xmin+Δ_1, xmax - Δ_2 (i.e. in the interval of medium values of indices). Meanwhile, in the intervals close to extreme ones, reliability of forecasts is substantially lower. While for medium values the statistics of the100-year sequence gives acceptable results owing to a sufficiently large number of revealed analogs that correspond to prognostic samples, for extreme values the situation is quite different, first of all by virtue of poverty of statistical data. Decreasing the values of Δ_1,Δ_2: Δ_1,Δ_2 rightarrow 0 (by including them into optimization parameters of the considered forecasting methods) could be one of the ways to improve reliability of forecasts. Partially, such an approach has been realized in the method of analog-similarity relations, giving the possibility to form a range of possible forecasted trajectories in two variants - from the minimum possible trajectory to the maximum possible one. Reliability of long-term forecasts. Both the methodology and the methods considered above have been realized as the information-forecasting system "GIPSAR". The system includes some tools implementing several methods of forecasting, analysis of initial and forecasted information, a developed database, a set of tools for verification of algorithms, additional information on the algorithms of statistical processing of sequences (sliding averaging, integral-difference curves, etc.), aids to organize input of initial information (in its various forms) as well as aids to draw up output prognostic documents. Risk management. The normal functioning of the Angara cascade is periodically interrupted by risks of two types that take place in the Baikal, the Bratsk and Ust-Ilimsk reservoirs: long low-water periods and sudden periods of extremely high water levels. For example, low-water periods, observed in the reservoirs of the Angara cascade can be classified under four risk categories : 1 - acceptable (negligible reduction of electric power generation by hydropower plants; certain difficulty in meeting environmental and navigation requirements); 2 - significant (substantial reduction of electric power generation by hydropower plants; certain restriction on water releases for navigation; violation of environmental requirements in some years); 3 - emergency (big losses in electric power generation; limited electricity supply to large consumers; significant restriction of water releases for navigation; threat of exposure of drinkable water intake works; violation of environmental requirements for a number of years); 4 - catastrophic (energy crisis; social crisis exposure of drinkable water intake works; termination of navigation; environmental catastrophe). Management of energy systems consists in operative, many-year regulation and perspective planning and has to take into account the analysis of operative data (water reserves in reservoirs), long-term statistics and relations among natural processes and also forecasts - short-term (for a day, week, decade), long-term and/or super-long-term (from a month to several decades). Such natural processes as water inflow to reservoirs, air temperatures during heating periods depend in turn on external factors: prevailing types of atmospheric circulation, intensity of the 11- and 22-year cycles of solar activity, volcanic activity, interaction between the ocean and atmosphere, etc. Until recently despite the formed scientific schools on long-term forecasting (I.P.Druzhinin, A.P.Reznikhov) the energy system management has been based on specially drawn dispatching schedules and long-term hydrometeorological forecasts only without attraction of perspective forecasted indices. Insertion of a parallel block of forecast (based on the analysis of data on natural processes and special methods of forecasting) into the scheme can largely smooth unfavorable consequences from the impact of natural processes on sustainable development of energy systems and especially on its safe operation. However, the requirements to reliability and accuracy of long-term forecasts significantly increase. The considered approach to long term forecasting can be used for prediction: mean winter and summer air temperatures, droughts and wood fires.

  18. Airfreight forecasting methodology and results

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A series of econometric behavioral equations was developed to explain and forecast the evolution of airfreight traffic demand for the total U.S. domestic airfreight system, the total U.S. international airfreight system, and the total scheduled international cargo traffic carried by the top 44 foreign airlines. The basic explanatory variables used in these macromodels were the real gross national products of the countries involved and a measure of relative transportation costs. The results of the econometric analysis reveal that the models explain more than 99 percent of the historical evolution of freight traffic. The long term traffic forecasts generated with these models are based on scenarios of the likely economic outlook in the United States and 31 major foreign countries.

  19. Summer drought predictability over Europe: empirical versus dynamical forecasts

    NASA Astrophysics Data System (ADS)

    Turco, Marco; Ceglar, Andrej; Prodhomme, Chloé; Soret, Albert; Toreti, Andrea; Doblas-Reyes Francisco, J.

    2017-08-01

    Seasonal climate forecasts could be an important planning tool for farmers, government and insurance companies that can lead to better and timely management of seasonal climate risks. However, climate seasonal forecasts are often under-used, because potential users are not well aware of the capabilities and limitations of these products. This study aims at assessing the merits and caveats of a statistical empirical method, the ensemble streamflow prediction system (ESP, an ensemble based on reordering historical data) and an operational dynamical forecast system, the European Centre for Medium-Range Weather Forecasts—System 4 (S4) in predicting summer drought in Europe. Droughts are defined using the Standardized Precipitation Evapotranspiration Index for the month of August integrated over 6 months. Both systems show useful and mostly comparable deterministic skill. We argue that this source of predictability is mostly attributable to the observed initial conditions. S4 shows only higher skill in terms of ability to probabilistically identify drought occurrence. Thus, currently, both approaches provide useful information and ESP represents a computationally fast alternative to dynamical prediction applications for drought prediction.

  20. GIS model-based real-time hydrological forecasting and operation management system for the Lake Balaton and its watershed

    NASA Astrophysics Data System (ADS)

    Adolf Szabó, János; Zoltán Réti, Gábor; Tóth, Tünde

    2017-04-01

    Today, the most significant mission of the decision makers on integrated water management issues is to carry out sustainable management for sharing the resources between a variety of users and the environment under conditions of considerable uncertainty (such as climate/land-use/population/etc. change) conditions. In light of this increasing water management complexity, we consider that the most pressing needs is to develop and implement up-to-date GIS model-based real-time hydrological forecasting and operation management systems for aiding decision-making processes to improve water management. After years of researches and developments the HYDROInform Ltd. has developed an integrated, on-line IT system (DIWA-HFMS: DIstributed WAtershed - Hydrologyc Forecasting & Modelling System) which is able to support a wide-ranging of the operational tasks in water resources management such as: forecasting, operation of lakes and reservoirs, water-control and management, etc. Following a test period, the DIWA-HFMS has been implemented for the Lake Balaton and its watershed (in 500 m resolution) at Central-Transdanubian Water Directorate (KDTVIZIG). The significant pillars of the system are: - The DIWA (DIstributed WAtershed) hydrologic model, which is a 3D dynamic water-balance model that distributed both in space and its parameters, and which was developed along combined principles but its mostly based on physical foundations. The DIWA integrates 3D soil-, 2D surface-, and 1D channel-hydraulic components as well. - Lakes and reservoir-operating component; - Radar-data integration module; - fully online data collection tools; - scenario manager tool to create alternative scenarios, - interactive, intuitive, highly graphical user interface. In Vienna, the main functions, operations and results-management of the system will be presented.

  1. Location-Based Rainfall Nowcasting Service for Public

    NASA Astrophysics Data System (ADS)

    Woo, Wang-chun

    2013-04-01

    The Hong Kong Observatory has developed the "Short-range Warning of Intense Rainstorms in Localized Systems (SWIRLS)", a radar-based rainfall nowcasting system originally to support forecasters in rainstorm warning and severe weather forecasting such as hail, lightning and strong wind gusts in Hong Kong. The system has since been extended to provide rainfall nowcast service direct for the public in recent years. Following the launch of "Rainfall Nowcast for the Pearl River Delta Region" service provided via a Geographical Information System (GIS) platform in 2008, a location-based rainfall nowcast service served through "MyObservatory", a smartphone app for iOS and Android developed by the Observatory, debuted in September 2012. The new service takes advantage of the capability of smartphones to detect own locations and utilizes the quantitative precipitation forecast (QPF) from SWIRLS to provide location-based rainfall nowcast to the public. The conversion of radar reflectivity data (at 2 or 3 km above ground) to rainfall in SWIRLS is based on the Z-R relationship (Z=aRb) with dynamical calibration of the coefficients a and b determined using real-time rain gauge data. Adopting the "Multi-scale Optical-flow by Variational Analysis (MOVA)" scheme to track the movement of radar echoes and Semi-Lagrangian Advection (SLA) scheme to extrapolate their movement, the system is capable of producing QPF for the next six hours in a grid of 480 x 480 that covers a domain of 256 km x 256 km once every 6 minutes. Referencing the closest point in a resampled 2-km grid over the territory of Hong Kong, a prediction as to whether there will be rainfall exceeding 0.5 mm in every 30 minute intervals for the next two hours at users' own or designated locations are made available to the users in both textual and graphical format. For those users who have opted to receive notifications, a message would pop up on the user's phone whenever rain is predicted in the next two hours in a user-configurable manner. Verification indicates that the service achieves a detection rate of 76% and a false alarm rate of 26% in the first 30 minute forecast. The skill decreases as the forecast range extends, with the detection rate lowered to 40% and false alarm rate increased to 63% for the two hour forecast. A number of factors affect the accuracy of the forecast, notably the anomalous propagation, the sensitivity and vertical coverage of the radar, as well as the growth and decay of the rain echoes. The service has been gaining popularity rapidly since launch, and has already registered over 12,000 users who have opted for notifications. The successful launch of the location-based rainfall nowcast service in Hong Kong and favourable verification results reveal the high practicality of such services.

  2. Slovak Flood Forecasting Service at the National and International Level

    NASA Astrophysics Data System (ADS)

    Leskova, Danica; Mikuličková, Michaela

    2017-04-01

    National Flood Forecasting Service is based on national legislation /Slovak legislation/ so that it could deal with the flood situation at the local level. Information about international rivers, e.g.: Danube, March (Morava), Uh, and Latorica are received on the basis of bilateral agreements. An important supplementary information is the European Flood Awareness System (EFAS). In this presentation a forecasting system POVAPSYS, which has been in Slovakia in use since 2016, is also shown. The Slovak Hydrometeorological Institute (SHMI) is a partner of EFAS, but simultaneously is a part of consortium of the EFAS Dissemination Centre, and its role is to analyze results of models, to analyze hydrometeorological situation, to disseminate information, and to send flood notifications to the EFAS partners. Both systems will be presented.

  3. Analog-Based Postprocessing of Navigation-Related Hydrological Ensemble Forecasts

    NASA Astrophysics Data System (ADS)

    Hemri, S.; Klein, B.

    2017-11-01

    Inland waterway transport benefits from probabilistic forecasts of water levels as they allow to optimize the ship load and, hence, to minimize the transport costs. Probabilistic state-of-the-art hydrologic ensemble forecasts inherit biases and dispersion errors from the atmospheric ensemble forecasts they are driven with. The use of statistical postprocessing techniques like ensemble model output statistics (EMOS) allows for a reduction of these systematic errors by fitting a statistical model based on training data. In this study, training periods for EMOS are selected based on forecast analogs, i.e., historical forecasts that are similar to the forecast to be verified. Due to the strong autocorrelation of water levels, forecast analogs have to be selected based on entire forecast hydrographs in order to guarantee similar hydrograph shapes. Custom-tailored measures of similarity for forecast hydrographs comprise hydrological series distance (SD), the hydrological matching algorithm (HMA), and dynamic time warping (DTW). Verification against observations reveals that EMOS forecasts for water level at three gauges along the river Rhine with training periods selected based on SD, HMA, and DTW compare favorably with reference EMOS forecasts, which are based on either seasonal training periods or on training periods obtained by dividing the hydrological forecast trajectories into runoff regimes.

  4. Assimilation of MODIS Dark Target and Deep Blue Observations in the Dust Aerosol Component of NMMB-MONARCH version 1.0

    NASA Technical Reports Server (NTRS)

    Di Tomaso, Enza; Schutgens, Nick A. J.; Jorba, Oriol; Perez Garcia-Pando, Carlos

    2017-01-01

    A data assimilation capability has been built for the NMMB-MONARCH chemical weather prediction system, with a focus on mineral dust, a prominent type of aerosol. An ensemble-based Kalman filter technique (namely the local ensemble transform Kalman filter - LETKF) has been utilized to optimally combine model background and satellite retrievals. Our implementation of the ensemble is based on known uncertainties in the physical parametrizations of the dust emission scheme. Experiments showed that MODIS AOD retrievals using the Dark Target algorithm can help NMMB-MONARCH to better characterize atmospheric dust. This is particularly true for the analysis of the dust outflow in the Sahel region and over the African Atlantic coast. The assimilation of MODIS AOD retrievals based on the Deep Blue algorithm has a further positive impact in the analysis downwind from the strongest dust sources of the Sahara and in the Arabian Peninsula. An analysis-initialized forecast performs better (lower forecast error and higher correlation with observations) than a standard forecast, with the exception of underestimating dust in the long-range Atlantic transport and degradation of the temporal evolution of dust in some regions after day 1. Particularly relevant is the improved forecast over the Sahara throughout the forecast range thanks to the assimilation of Deep Blue retrievals over areas not easily covered by other observational datasets.The present study on mineral dust is a first step towards data assimilation with a complete aerosol prediction system that includes multiple aerosol species.

  5. Post Alpbach-summerschool project: CARRINGTON MISSION FOR CME DETECTION TO IMPROVE SPACE WEATHER FORECAST

    NASA Astrophysics Data System (ADS)

    Scheucher, Markus; Urbar, Jaroslav; Musset, Sophie; Andersson, Viktor; Gini, Francesco; Gorski, Jedrzej; Jüstel, Peter; Kiefer, René; Lee, Arrow; Meskers, Arjan; Miles, Oscar; Perakis, Nikolas; Rußwurm, Michael; Scully, Stephen; Seifert, Bernhard; Sorba, Arianna

    2014-05-01

    The effects of solar activity, especially Coronal Mass Ejections (CMEs), on Earth- and satellite-based systems are well-known and can cause major damage to space-dependent infrastructure. The main problem in current space weather forecasting is the inability to determine necessary forecast parameters of CMEs and Corotating Interaction Regions (CIRs) early enough to react. We present the design for a novel space mission consisting of two spacecraft that is aimed to perform stereoscopic measurements on Earth-directed CMEs and in-situ measurements of CIRs. The magnetic field orientation and structure of CMEs will be measured close to the Sun, using spectro-polarimetry. Geoeffectiveness will be derived by remote sensing the CMEs magnetic field at 0.64AU from the Sun, determining the full magnetic field vector of a CME. This will be achieved by the novel concept of measuring its polarising effects on spacecraft to spacecraft laser beams based upon heterodyne interferometry. Overall structure and trajectory of CMEs will also be monitored by heliospheric imagers and in-situ plasma instruments. To achieve the mission objectives, the orbit is heliocentric at 1AU with a separation angle from the Earth of ±50°. The operational mission lifetime is 6 years with a proposed 6 year extension. If implemented, Carrington will serve as a forecast system which will significantly improve the minimum forecast time for the fastest CMEs with 2000 km/s, from 13 minutes based on current L1 satellites, to around 3 hours.

  6. Assimilation of MODIS Dark Target and Deep Blue observations in the dust aerosol component of NMMB-MONARCH version 1.0

    NASA Astrophysics Data System (ADS)

    Di Tomaso, Enza; Schutgens, Nick A. J.; Jorba, Oriol; Pérez García-Pando, Carlos

    2017-03-01

    A data assimilation capability has been built for the NMMB-MONARCH chemical weather prediction system, with a focus on mineral dust, a prominent type of aerosol. An ensemble-based Kalman filter technique (namely the local ensemble transform Kalman filter - LETKF) has been utilized to optimally combine model background and satellite retrievals. Our implementation of the ensemble is based on known uncertainties in the physical parametrizations of the dust emission scheme. Experiments showed that MODIS AOD retrievals using the Dark Target algorithm can help NMMB-MONARCH to better characterize atmospheric dust. This is particularly true for the analysis of the dust outflow in the Sahel region and over the African Atlantic coast. The assimilation of MODIS AOD retrievals based on the Deep Blue algorithm has a further positive impact in the analysis downwind from the strongest dust sources of the Sahara and in the Arabian Peninsula. An analysis-initialized forecast performs better (lower forecast error and higher correlation with observations) than a standard forecast, with the exception of underestimating dust in the long-range Atlantic transport and degradation of the temporal evolution of dust in some regions after day 1. Particularly relevant is the improved forecast over the Sahara throughout the forecast range thanks to the assimilation of Deep Blue retrievals over areas not easily covered by other observational datasets. The present study on mineral dust is a first step towards data assimilation with a complete aerosol prediction system that includes multiple aerosol species.

  7. Enhancing Famine Early Warning Systems with Improved Forecasts, Satellite Observations and Hydrologic Simulations

    NASA Astrophysics Data System (ADS)

    Funk, C. C.; Verdin, J.; Thiaw, W. M.; Hoell, A.; Korecha, D.; McNally, A.; Shukla, S.; Arsenault, K. R.; Magadzire, T.; Novella, N.; Peters-Lidard, C. D.; Robjohn, M.; Pomposi, C.; Galu, G.; Rowland, J.; Budde, M. E.; Landsfeld, M. F.; Harrison, L.; Davenport, F.; Husak, G. J.; Endalkachew, E.

    2017-12-01

    Drought early warning science, in support of famine prevention, is a rapidly advancing field that is helping to save lives and livelihoods. In 2015-2017, a series of extreme droughts afflicted Ethiopia, Southern Africa, Eastern Africa in OND and Eastern Africa in MAM, pushing more than 50 million people into severe food insecurity. Improved drought forecasts and monitoring tools, however, helped motivate and target large and effective humanitarian responses. Here we describe new science being developed by a long-established early warning system - the USAID Famine Early Warning Systems Network (FEWS NET). FEWS NET is a leading provider of early warning and analysis on food insecurity. FEWS NET research is advancing rapidly on several fronts, providing better climate forecasts and more effective drought monitoring tools that are being used to support enhanced famine early warning. We explore the philosophy and science underlying these successes, suggesting that a modal view of climate change can support enhanced seasonal prediction. Under this modal perspective, warming of the tropical oceans may interact with natural modes of variability, like the El Niño-Southern Oscillation, to enhance Indo-Pacific sea surface temperature gradients during both El Niño and La Niña-like climate states. Using empirical data and climate change simulations, we suggest that a sequence of droughts may commence in northern Ethiopia and Southern Africa with the advent of a moderate-to-strong El Niño, and then continue with La Niña/West Pacific related droughts in equatorial eastern East Africa. Scientifically, we show that a new hybrid statistical-dynamic precipitation forecast system, the FEWS NET Integrated Forecast System (FIFS), based on reformulations of the Global Ensemble Forecast System weather forecasts and National Multi-Model Ensemble (NMME) seasonal climate predictions, can effectively anticipate recent East and Southern African drought events. Using cross-validation, we evaluate FIFS' skill and compare it to the NMME and the International Research Institute forecasts. Our study concludes with an overview of the satellite observations provided by FEWS NET partners at NOAA, NASA, USGS, and UC Santa Barbara, and the assimilation of these products within the FEWS NET Land Data Assimilation System (FLDAS).

  8. Medium-range reference evapotranspiration forecasts for the contiguous United States based on multi-model numerical weather predictions

    NASA Astrophysics Data System (ADS)

    Medina, Hanoi; Tian, Di; Srivastava, Puneet; Pelosi, Anna; Chirico, Giovanni B.

    2018-07-01

    Reference evapotranspiration (ET0) plays a fundamental role in agronomic, forestry, and water resources management. Estimating and forecasting ET0 have long been recognized as a major challenge for researchers and practitioners in these communities. This work explored the potential of multiple leading numerical weather predictions (NWPs) for estimating and forecasting summer ET0 at 101 U.S. Regional Climate Reference Network stations over nine climate regions across the contiguous United States (CONUS). Three leading global NWP model forecasts from THORPEX Interactive Grand Global Ensemble (TIGGE) dataset were used in this study, including the single model ensemble forecasts from the European Centre for Medium-Range Weather Forecasts (EC), the National Centers for Environmental Prediction Global Forecast System (NCEP), and the United Kingdom Meteorological Office forecasts (MO), as well as multi-model ensemble forecasts from the combinations of these NWP models. A regression calibration was employed to bias correct the ET0 forecasts. Impact of individual forecast variables on ET0 forecasts were also evaluated. The results showed that the EC forecasts provided the least error and highest skill and reliability, followed by the MO and NCEP forecasts. The multi-model ensembles constructed from the combination of EC and MO forecasts provided slightly better performance than the single model EC forecasts. The regression process greatly improved ET0 forecast performances, particularly for the regions involving stations near the coast, or with a complex orography. The performance of EC forecasts was only slightly influenced by the size of the ensemble members, particularly at short lead times. Even with less ensemble members, EC still performed better than the other two NWPs. Errors in the radiation forecasts, followed by those in the wind, had the most detrimental effects on the ET0 forecast performances.

  9. Real time soil moisture forecasts for irrigation management: the Pre.G.I. project

    NASA Astrophysics Data System (ADS)

    Ceppi, A.; Ravazzani, G.; Mancini, M.; Salerno, R.

    2012-04-01

    In recent years frequent periods of water scarcity have enhanced the need to use water more carefully. Future climate change scenarios, combined with limited water resources require better irrigation management and planning for farmers' water cooperatives. This has occurred also in areas traditionally rich of water as Lombardy Region, in the North of Italy. In this study we show the development and implementation of a real-time drought forecasting system with a soil moisture hydrological alert, in particular we describe preliminary results of the Pre.G.I. Project, an Italian acronym that stands for "Hydro-Meteorological forecast for irrigation management", funded by Lombardy Region. The project develops a support decision system based on an ensemble weather prediction in the medium-long range (up to 30 days) with hydrological simulation of water balance to forecast the soil water content in every parcel over the Consorzio Muzza basin, in order to use the irrigation water in a wiser and thriftier way. The studied area covers 74,000 ha in the middle of the Po Valley, near Lodi city. The hydrological ensemble forecasts are based on 20 meteorological members of a modified version of the non-hydrostatic WRF model, with multiple nesting to scale to the region of interest. Different physical schemes are also used to take into account a larger variability; these data are provided by Epson Meteo Centre. The hydrological model used to generate the soil moisture and water table simulations is the rainfall-runoff distributed FEST-WB model, developed at Politecnico di Milano. The analysis shows the system reliability based on most significant case-studies occurred in the recent years.

  10. Implementation of remote sensing data for flood forecasting

    NASA Astrophysics Data System (ADS)

    Grimaldi, S.; Li, Y.; Pauwels, V. R. N.; Walker, J. P.; Wright, A. J.

    2016-12-01

    Flooding is one of the most frequent and destructive natural disasters. A timely, accurate and reliable flood forecast can provide vital information for flood preparedness, warning delivery, and emergency response. An operational flood forecasting system typically consists of a hydrologic model, which simulates runoff generation and concentration, and a hydraulic model, which models riverine flood wave routing and floodplain inundation. However, these two types of models suffer from various sources of uncertainties, e.g., forcing data initial conditions, model structure and parameters. To reduce those uncertainties, current forecasting systems are typically calibrated and/or updated using streamflow measurements, and such applications are limited in well-gauged areas. The recent increasing availability of spatially distributed Remote Sensing (RS) data offers new opportunities for flood events investigation and forecast. Based on an Australian case study, this presentation will discuss the use 1) of RS soil moisture data to constrain a hydrologic model, and 2) of RS-derived flood extent and level to constrain a hydraulic model. The hydrological model is based on a semi-distributed system coupled with a two-soil-layer rainfall-runoff model GRKAL and a linear Muskingum routing model. Model calibration was performed using either 1) streamflow data only or 2) both streamflow and RS soil moisture data. The model was then further constrained through the integration of real-time soil moisture data. The hydraulic model is based on LISFLOOD-FP which solves the 2D inertial approximation of the Shallow Water Equations. Streamflow data and RS-derived flood extent and levels were used to apply a multi-objective calibration protocol. The effectiveness with which each data source or combination of data sources constrained the parameter space was quantified and discussed.

  11. The impact of different background errors in the assimilation of satellite radiances and in-situ observational data using WRFDA for three rainfall events over Iran

    NASA Astrophysics Data System (ADS)

    Zakeri, Zeinab; Azadi, Majid; Ghader, Sarmad

    2018-01-01

    Satellite radiances and in-situ observations are assimilated through Weather Research and Forecasting Data Assimilation (WRFDA) system into Advanced Research WRF (ARW) model over Iran and its neighboring area. Domain specific background error based on x and y components of wind speed (UV) control variables is calculated for WRFDA system and some sensitivity experiments are carried out to compare the impact of global background error and the domain specific background errors, both on the precipitation and 2-m temperature forecasts over Iran. Three precipitation events that occurred over the country during January, September and October 2014 are simulated in three different experiments and the results for precipitation and 2-m temperature are verified against the verifying surface observations. Results show that using domain specific background error improves 2-m temperature and 24-h accumulated precipitation forecasts consistently, while global background error may even degrade the forecasts compared to the experiments without data assimilation. The improvement in 2-m temperature is more evident during the first forecast hours and decreases significantly as the forecast length increases.

  12. The flood event of 10-12 November 2013 on the Tiber River basin (central Italy): real-time flood forecasting with uncertainty supporting risk management and decision-making

    NASA Astrophysics Data System (ADS)

    Berni, Nicola; Brocca, Luca; Barbetta, Silvia; Pandolfo, Claudia; Stelluti, Marco; Moramarco, Tommaso

    2014-05-01

    The Italian national hydro-meteorological early warning system is composed by 21 regional offices (Functional Centres, CF). Umbria Region (central Italy) CF provides early warning for floods and landslides, real-time monitoring and decision support systems (DSS) for the Civil Defence Authorities when significant events occur. The alert system is based on hydrometric and rainfall thresholds with detailed procedures for the management of critical events in which different roles of authorities and institutions involved are defined. The real-time flood forecasting system is based also on different hydrological and hydraulic forecasting models. Among these, the MISDc rainfall-runoff model ("Modello Idrologico SemiDistribuito in continuo"; Brocca et al., 2011) and the flood routing model named STAFOM-RCM (STAge Forecasting Model-Rating Curve Model; Barbetta et al., 2014) are continuously operative in real-time providing discharge and stage forecasts, respectively, with lead-times up to 24 hours (when quantitative precipitation forecasts are used) in several gauged river sections in the Upper-Middle Tiber River basin. Models results are published in real-time in the open source CF web platform: www.cfumbria.it. MISDc provides discharge and soil moisture forecasts for different sub-basins while STAFOM-RCM provides stage forecasts at hydrometric sections. Moreover, through STAFOM-RCM the uncertainty of the forecast stage hydrograph is provided in terms of 95% Confidence Interval (CI) assessed by analyzing the statistical properties of model output in terms of lateral. In the period 10th-12th November 2013, a severe flood event occurred in Umbria mainly affecting the north-eastern area and causing significant economic damages, but fortunately no casualties. The territory was interested by intense and persistent rainfall; the hydro-meteorological monitoring network recorded locally rainfall depth over 400 mm in 72 hours. In the most affected area, the recorded rainfall depths correspond approximately to a return period of 200 years. Most rivers in Umbria have been involved, exceeding hydrometric thresholds and causing flooding (e.g. Chiascio river). The flood event was continuously monitored at the Umbria Region CF and the possible evolution predicted and assessed on the basis of the model forecasts. The predictions provided by MISDc and STAFOM-RCM were found useful to support real-time decision-making addressed to flood risk management. Moreover, the quantification of the uncertainty affecting the deterministic forecast stages was found consistent with the level of confidence selected and had practical utility corroborating the need of coupling deterministic forecast and 'uncertainty' when the model output is used to support decisions about flood management. REFERENCES Barbetta, S., Moramarco, T., Brocca, L., Franchini, M., Melone, F. (2014). Confidence interval of real-time forecast stages provided by the STAFOM-RCM model: the case study of the Tiber River (Italy). Hydrological Processes, 28(3), 729-743. Brocca, L., Melone, F., Moramarco, T. (2011). Distributed rainfall-runoff modelling for flood frequency estimation and flood forecasting. Hydrological Processes, 25 (18), 2801-2813

  13. Assessing methods for developing crop forecasting in the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Ines, A. V. M.; Capa Morocho, M. I.; Baethgen, W.; Rodriguez-Fonseca, B.; Han, E.; Ruiz Ramos, M.

    2015-12-01

    Seasonal climate prediction may allow predicting crop yield to reduce the vulnerability of agricultural production to climate variability and its extremes. It has been already demonstrated that seasonal climate predictions at European (or Iberian) scale from ensembles of global coupled climate models have some skill (Palmer et al., 2004). The limited predictability that exhibits the atmosphere in mid-latitudes, and therefore de Iberian Peninsula (PI), can be managed by a probabilistic approach based in terciles. This study presents an application for the IP of two methods for linking tercile-based seasonal climate forecasts with crop models to improve crop predictability. Two methods were evaluated and applied for disaggregating seasonal rainfall forecasts into daily weather realizations: 1) a stochastic weather generator and 2) a forecast tercile resampler. Both methods were evaluated in a case study where the impacts of two seasonal rainfall forecasts (wet and dry forecast for 1998 and 2015 respectively) on rainfed wheat yield and irrigation requirements of maize in IP were analyzed. Simulated wheat yield and irrigation requirements of maize were computed with the crop models CERES-wheat and CERES-maize which are included in Decision Support System for Agrotechnology Transfer (DSSAT v.4.5, Hoogenboom et al., 2010). Simulations were run at several locations in Spain where the crop model was calibrated and validated with independent field data. These methodologies would allow quantifying the benefits and risks of a seasonal climate forecast to potential users as farmers, agroindustry and insurance companies in the IP. Therefore, we would be able to establish early warning systems and to design crop management adaptation strategies that take advantage of favorable conditions or reduce the effect of adverse ones. ReferencesPalmer, T. et al., 2004. Development of a European multimodel ensemble system for seasonal-to-interannual prediction (DEMETER). Bulletin of the American Meteorological Society, 85(6): 853-872.

  14. Application of the CloudSat and NEXRAD Radars Toward Improvements in High Resolution Operational Forecasts

    NASA Technical Reports Server (NTRS)

    Molthan, A. L.; Haynes, J. A.; Case, J. L.; Jedlovec, G. L.; Lapenta, W. M.

    2008-01-01

    As computational power increases, operational forecast models are performing simulations with higher spatial resolution allowing for the transition from sub-grid scale cloud parameterizations to an explicit forecast of cloud characteristics and precipitation through the use of single- or multi-moment bulk water microphysics schemes. investments in space-borne and terrestrial remote sensing have developed the NASA CloudSat Cloud Profiling Radar and the NOAA National Weather Service NEXRAD system, each providing observations related to the bulk properties of clouds and precipitation through measurements of reflectivity. CloudSat and NEXRAD system radars observed light to moderate snowfall in association with a cold-season, midlatitude cyclone traversing the Central United States in February 2007. These systems are responsible for widespread cloud cover and various types of precipitation, are of economic consequence, and pose a challenge to operational forecasters. This event is simulated with the Weather Research and Forecast (WRF) Model, utilizing the NASA Goddard Cumulus Ensemble microphysics scheme. Comparisons are made between WRF-simulated and observed reflectivity available from the CloudSat and NEXRAD systems. The application of CloudSat reflectivity is made possible through the QuickBeam radiative transfer model, with cautious application applied in light of single scattering characteristics and spherical target assumptions. Significant differences are noted within modeled and observed cloud profiles, based upon simulated reflectivity, and modifications to the single-moment scheme are tested through a supplemental WRF forecast that incorporates a temperature dependent snow crystal size distribution.

  15. A hybrid spatiotemporal drought forecasting model for operational use

    NASA Astrophysics Data System (ADS)

    Vasiliades, L.; Loukas, A.

    2010-09-01

    Drought forecasting plays an important role in the planning and management of natural resources and water resource systems in a river basin. Early and timelines forecasting of a drought event can help to take proactive measures and set out drought mitigation strategies to alleviate the impacts of drought. Spatiotemporal data mining is the extraction of unknown and implicit knowledge, structures, spatiotemporal relationships, or patterns not explicitly stored in spatiotemporal databases. As one of data mining techniques, forecasting is widely used to predict the unknown future based upon the patterns hidden in the current and past data. This study develops a hybrid spatiotemporal scheme for integrated spatial and temporal forecasting. Temporal forecasting is achieved using feed-forward neural networks and the temporal forecasts are extended to the spatial dimension using a spatial recurrent neural network model. The methodology is demonstrated for an operational meteorological drought index the Standardized Precipitation Index (SPI) calculated at multiple timescales. 48 precipitation stations and 18 independent precipitation stations, located at Pinios river basin in Thessaly region, Greece, were used for the development and spatiotemporal validation of the hybrid spatiotemporal scheme. Several quantitative temporal and spatial statistical indices were considered for the performance evaluation of the models. Furthermore, qualitative statistical criteria based on contingency tables between observed and forecasted drought episodes were calculated. The results show that the lead time of forecasting for operational use depends on the SPI timescale. The hybrid spatiotemporal drought forecasting model could be operationally used for forecasting up to three months ahead for SPI short timescales (e.g. 3-6 months) up to six months ahead for large SPI timescales (e.g. 24 months). The above findings could be useful in developing a drought preparedness plan in the region.

  16. Medication sales and syndromic surveillance, France.

    PubMed

    Vergu, Elisabeta; Grais, Rebecca F; Sarter, Hélène; Fagot, Jean-Paul; Lambert, Bruno; Valleron, Alain-Jaques; Flahault, Antoine

    2006-03-01

    Although syndromic surveillance systems using nonclinical data have been implemented in the United States, the approach has yet to be tested in France. We present the results of the first model based on drug sales that detects the onset of influenza season and forecasts its trend. Using weekly lagged sales of a selected set of medications, we forecast influenzalike illness (ILI) incidence at the national and regional level for 3 epidemic seasons (2000-01, 2001-02, and 2002-03) and validate the model with real-time updating on the fourth (2003-04). For national forecasts 1-3 weeks ahead, the correlation between observed ILI incidence and forecast was 0.85-0.96, an improvement over the current surveillance method in France. Our findings indicate that drug sales are a useful additional tool to syndromic surveillance, a complementary and independent source of information, and a potential improvement for early warning systems for both epidemic and pandemic planning.

  17. A Bayesian modelling method for post-processing daily sub-seasonal to seasonal rainfall forecasts from global climate models and evaluation for 12 Australian catchments

    NASA Astrophysics Data System (ADS)

    Schepen, Andrew; Zhao, Tongtiegang; Wang, Quan J.; Robertson, David E.

    2018-03-01

    Rainfall forecasts are an integral part of hydrological forecasting systems at sub-seasonal to seasonal timescales. In seasonal forecasting, global climate models (GCMs) are now the go-to source for rainfall forecasts. For hydrological applications however, GCM forecasts are often biased and unreliable in uncertainty spread, and calibration is therefore required before use. There are sophisticated statistical techniques for calibrating monthly and seasonal aggregations of the forecasts. However, calibration of seasonal forecasts at the daily time step typically uses very simple statistical methods or climate analogue methods. These methods generally lack the sophistication to achieve unbiased, reliable and coherent forecasts of daily amounts and seasonal accumulated totals. In this study, we propose and evaluate a Rainfall Post-Processing method for Seasonal forecasts (RPP-S), which is based on the Bayesian joint probability modelling approach for calibrating daily forecasts and the Schaake Shuffle for connecting the daily ensemble members of different lead times. We apply the method to post-process ACCESS-S forecasts for 12 perennial and ephemeral catchments across Australia and for 12 initialisation dates. RPP-S significantly reduces bias in raw forecasts and improves both skill and reliability. RPP-S forecasts are also more skilful and reliable than forecasts derived from ACCESS-S forecasts that have been post-processed using quantile mapping, especially for monthly and seasonal accumulations. Several opportunities to improve the robustness and skill of RPP-S are identified. The new RPP-S post-processed forecasts will be used in ensemble sub-seasonal to seasonal streamflow applications.

  18. Towards Operational Meteotsunami Early Warning System: the Adriatic Project MESSI

    NASA Astrophysics Data System (ADS)

    Vilibic, I.; Sepic, J.; Denamiel, C. L.; Mihanovic, H.; Muslim, S.; Tudor, M.; Ivankovic, D.; Jelavic, D.; Kovacevic, V.; Masce, T.; Dadic, V.; Gacic, M.; Horvath, K.; Monserrat, S.; Rabinovich, A.; Telisman-Prtenjak, M.

    2017-12-01

    A number of destructive meteotsunamis - atmospherically-driven long ocean waves in a tsunami frequency band - occurred during the last decade through the world oceans. Owing to significant damage caused by these meteotsunamis, several scientific groups (occasionally in collaboration with public offices) have started developing meteotsunami warning systems. Creation of one such system has been initialized in the late 2015 within the MESSI (Meteotsunamis, destructive long ocean waves in the tsunami frequency band: from observations and simulations towards a warning system) project. Main goal of this project is to build a prototype of a meteotsunami warning system for the eastern Adriatic coast. The system will be based on real-time measurements, operational atmosphere and ocean modeling and real time decision-making process. Envisioned MESSI meteotsunami warning system consists of three modules: (1) synoptic warning module, which will use established correlation between forecasted synoptic fields and high-frequency sea level oscillations to provide qualitative meteotsunami forecasts for up to a week in advance, (2) probabilistic premodeling prediction module, which will use operational WRF-ROMS-ADCIRC modeling system and compare the forecast with an atlas of presimulations to get the probabilistic meteotsunami forecast for up to three days in advance, and (3) real-time module, which is based on real time tracking of properties of air pressure disturbance (amplitude, speed, direction, period, ...) and their real-time comparison with the atlas of meteotsunami simulations. System will be tested on recent meteotsunami events which were recorded in the MESSI area shortly after the operational meteotsunami network installation. Albeit complex, such a multilevel warning system has a potential to be adapted to most meteotsunami hot spots, simply by tuning the system parameters to the available atmospheric and ocean data.

  19. Earthquake Forecasting System in Italy

    NASA Astrophysics Data System (ADS)

    Falcone, G.; Marzocchi, W.; Murru, M.; Taroni, M.; Faenza, L.

    2017-12-01

    In Italy, after the 2009 L'Aquila earthquake, a procedure was developed for gathering and disseminating authoritative information about the time dependence of seismic hazard to help communities prepare for a potentially destructive earthquake. The most striking time dependency of the earthquake occurrence process is the time clustering, which is particularly pronounced in time windows of days and weeks. The Operational Earthquake Forecasting (OEF) system that is developed at the Seismic Hazard Center (Centro di Pericolosità Sismica, CPS) of the Istituto Nazionale di Geofisica e Vulcanologia (INGV) is the authoritative source of seismic hazard information for Italian Civil Protection. The philosophy of the system rests on a few basic concepts: transparency, reproducibility, and testability. In particular, the transparent, reproducible, and testable earthquake forecasting system developed at CPS is based on ensemble modeling and on a rigorous testing phase. Such phase is carried out according to the guidance proposed by the Collaboratory for the Study of Earthquake Predictability (CSEP, international infrastructure aimed at evaluating quantitatively earthquake prediction and forecast models through purely prospective and reproducible experiments). In the OEF system, the two most popular short-term models were used: the Epidemic-Type Aftershock Sequences (ETAS) and the Short-Term Earthquake Probabilities (STEP). Here, we report the results from OEF's 24hour earthquake forecasting during the main phases of the 2016-2017 sequence occurred in Central Apennines (Italy).

  20. FPGA-Based Stochastic Echo State Networks for Time-Series Forecasting.

    PubMed

    Alomar, Miquel L; Canals, Vincent; Perez-Mora, Nicolas; Martínez-Moll, Víctor; Rosselló, Josep L

    2016-01-01

    Hardware implementation of artificial neural networks (ANNs) allows exploiting the inherent parallelism of these systems. Nevertheless, they require a large amount of resources in terms of area and power dissipation. Recently, Reservoir Computing (RC) has arisen as a strategic technique to design recurrent neural networks (RNNs) with simple learning capabilities. In this work, we show a new approach to implement RC systems with digital gates. The proposed method is based on the use of probabilistic computing concepts to reduce the hardware required to implement different arithmetic operations. The result is the development of a highly functional system with low hardware resources. The presented methodology is applied to chaotic time-series forecasting.

  1. FPGA-Based Stochastic Echo State Networks for Time-Series Forecasting

    PubMed Central

    Alomar, Miquel L.; Canals, Vincent; Perez-Mora, Nicolas; Martínez-Moll, Víctor; Rosselló, Josep L.

    2016-01-01

    Hardware implementation of artificial neural networks (ANNs) allows exploiting the inherent parallelism of these systems. Nevertheless, they require a large amount of resources in terms of area and power dissipation. Recently, Reservoir Computing (RC) has arisen as a strategic technique to design recurrent neural networks (RNNs) with simple learning capabilities. In this work, we show a new approach to implement RC systems with digital gates. The proposed method is based on the use of probabilistic computing concepts to reduce the hardware required to implement different arithmetic operations. The result is the development of a highly functional system with low hardware resources. The presented methodology is applied to chaotic time-series forecasting. PMID:26880876

  2. Modeling and Analysis of Geoelectric Fields: Extended Solar Shield

    NASA Astrophysics Data System (ADS)

    Ngwira, C. M.; Pulkkinen, A. A.

    2016-12-01

    In the NASA Applied Sciences Program Solar Shield project, an unprecedented first-principles-based system to forecast geomagnetically induced current (GIC) in high-voltage power transmission systems was developed. Rapid progress in the field of numerical physics-based space environment modeling has led to major developments over the past few years. In this study modeling and analysis of induced geoelectric fields is discussed. Specifically, we focus on the successful incorporation of 3-D EM transfer functions in the modeling of E-fields, and on the analysis of near real-time simulation outputs used in the Solar Shield forecast system. The extended Solar Shield is a collaborative project between DHS, NASA, NOAA, CUA and EPRI.

  3. Post-processing method for wind speed ensemble forecast using wind speed and direction

    NASA Astrophysics Data System (ADS)

    Sofie Eide, Siri; Bjørnar Bremnes, John; Steinsland, Ingelin

    2017-04-01

    Statistical methods are widely applied to enhance the quality of both deterministic and ensemble NWP forecasts. In many situations, like wind speed forecasting, most of the predictive information is contained in one variable in the NWP models. However, in statistical calibration of deterministic forecasts it is often seen that including more variables can further improve forecast skill. For ensembles this is rarely taken advantage of, mainly due to that it is generally not straightforward how to include multiple variables. In this study, it is demonstrated how multiple variables can be included in Bayesian model averaging (BMA) by using a flexible regression method for estimating the conditional means. The method is applied to wind speed forecasting at 204 Norwegian stations based on wind speed and direction forecasts from the ECMWF ensemble system. At about 85 % of the sites the ensemble forecasts were improved in terms of CRPS by adding wind direction as predictor compared to only using wind speed. On average the improvements were about 5 %, but mainly for moderate to strong wind situations. For weak wind speeds adding wind direction had more or less neutral impact.

  4. Technical note: Combining quantile forecasts and predictive distributions of streamflows

    NASA Astrophysics Data System (ADS)

    Bogner, Konrad; Liechti, Katharina; Zappa, Massimiliano

    2017-11-01

    The enhanced availability of many different hydro-meteorological modelling and forecasting systems raises the issue of how to optimally combine this great deal of information. Especially the usage of deterministic and probabilistic forecasts with sometimes widely divergent predicted future streamflow values makes it even more complicated for decision makers to sift out the relevant information. In this study multiple streamflow forecast information will be aggregated based on several different predictive distributions, and quantile forecasts. For this combination the Bayesian model averaging (BMA) approach, the non-homogeneous Gaussian regression (NGR), also known as the ensemble model output statistic (EMOS) techniques, and a novel method called Beta-transformed linear pooling (BLP) will be applied. By the help of the quantile score (QS) and the continuous ranked probability score (CRPS), the combination results for the Sihl River in Switzerland with about 5 years of forecast data will be compared and the differences between the raw and optimally combined forecasts will be highlighted. The results demonstrate the importance of applying proper forecast combination methods for decision makers in the field of flood and water resource management.

  5. Soil Moisture Initialization Error and Subgrid Variability of Precipitation in Seasonal Streamflow Forecasting

    NASA Technical Reports Server (NTRS)

    Koster, Randal D.; Walker, Gregory K.; Mahanama, Sarith P.; Reichle, Rolf H.

    2013-01-01

    Offline simulations over the conterminous United States (CONUS) with a land surface model are used to address two issues relevant to the forecasting of large-scale seasonal streamflow: (i) the extent to which errors in soil moisture initialization degrade streamflow forecasts, and (ii) the extent to which a realistic increase in the spatial resolution of forecasted precipitation would improve streamflow forecasts. The addition of error to a soil moisture initialization field is found to lead to a nearly proportional reduction in streamflow forecast skill. The linearity of the response allows the determination of a lower bound for the increase in streamflow forecast skill achievable through improved soil moisture estimation, e.g., through satellite-based soil moisture measurements. An increase in the resolution of precipitation is found to have an impact on large-scale streamflow forecasts only when evaporation variance is significant relative to the precipitation variance. This condition is met only in the western half of the CONUS domain. Taken together, the two studies demonstrate the utility of a continental-scale land surface modeling system as a tool for addressing the science of hydrological prediction.

  6. Near-term Forecasting of Solar Total and Direct Irradiance for Solar Energy Applications

    NASA Astrophysics Data System (ADS)

    Long, C. N.; Riihimaki, L. D.; Berg, L. K.

    2012-12-01

    Integration of solar renewable energy into the power grid, like wind energy, is hindered by the variable nature of the solar resource. One challenge of the integration problem for shorter time periods is the phenomenon of "ramping events" where the electrical output of the solar power system increases or decreases significantly and rapidly over periods of minutes or less. Advance warning, of even just a few minutes, allows power system operators to compensate for the ramping. However, the ability for short-term prediction on such local "point" scales is beyond the abilities of typical model-based weather forecasting. Use of surface-based solar radiation measurements has been recognized as a likely solution for providing input for near-term (5 to 30 minute) forecasts of solar energy availability and variability. However, it must be noted that while fixed-orientation photovoltaic panel systems use the total (global) downwelling solar radiation, tracking photovoltaic and solar concentrator systems use only the direct normal component of the solar radiation. Thus even accurate near-term forecasts of total solar radiation will under many circumstances include inherent inaccuracies with respect to tracking systems due to lack of information of the direct component of the solar radiation. We will present examples and statistical analyses of solar radiation partitioning showing the differences in the behavior of the total/direct radiation with respect to the near-term forecast issue. We will present an overview of the possibility of using a network of unique new commercially available total/diffuse radiometers in conjunction with a near-real-time adaptation of the Shortwave Radiative Flux Analysis methodology (Long and Ackerman, 2000; Long et al., 2006). The results are used, in conjunction with persistence and tendency forecast techniques, to provide more accurate near-term forecasts of cloudiness, and both total and direct normal solar irradiance availability and variability. This new system could be a long term economical solution for solar energy applications.xample of SW Flux Analysis global hemispheric (light blue) and direct (yellow) clear-sky shortwave (SW) along with corresponding actual global hemispheric (blue) and direct (red) SW, and the corresponding fractional sky cover (black, right Y-axis). Note in afternoon about 40-50% of the global SW is available, yet most times there is no direct SW.

  7. Evaluation of flash-flood discharge forecasts in complex terrain using precipitation

    USGS Publications Warehouse

    Yates, D.; Warner, T.T.; Brandes, E.A.; Leavesley, G.H.; Sun, Jielun; Mueller, C.K.

    2001-01-01

    Operational prediction of flash floods produced by thunderstorm (convective) precipitation in mountainous areas requires accurate estimates or predictions of the precipitation distribution in space and time. The details of the spatial distribution are especially critical in complex terrain because the watersheds are generally small in size, and small position errors in the forecast or observed placement of the precipitation can distribute the rain over the wrong watershed. In addition to the need for good precipitation estimates and predictions, accurate flood prediction requires a surface-hydrologic model that is capable of predicting stream or river discharge based on the precipitation-rate input data. Different techniques for the estimation and prediction of convective precipitation will be applied to the Buffalo Creek, Colorado flash flood of July 1996, where over 75 mm of rain from a thunderstorm fell on the watershed in less than 1 h. The hydrologic impact of the precipitation was exacerbated by the fact that a significant fraction of the watershed experienced a wildfire approximately two months prior to the rain event. Precipitation estimates from the National Weather Service's operational Weather Surveillance Radar-Doppler 1988 and the National Center for Atmospheric Research S-band, research, dual-polarization radar, colocated to the east of Denver, are compared. In addition, very short range forecasts from a convection-resolving dynamic model, which is initialized variationally using the radar reflectivity and Doppler winds, are compared with forecasts from an automated-algorithmic forecast system that also employs the radar data. The radar estimates of rain rate, and the two forecasting systems that employ the radar data, have degraded accuracy by virtue of the fact that they are applied in complex terrain. Nevertheless, the radar data and forecasts from the dynamic model and the automated algorithm could be operationally useful for input to surface-hydrologic models employed for flood warning. Precipitation data provided by these various techniques at short time scales and at fine spatial resolutions are employed as detailed input to a distributed-parameter hydrologic model for flash-flood prediction and analysis. With the radar-based precipitation estimates employed as input, the simulated flood discharge was similar to that observed. The dynamic-model precipitation forecast showed the most promise in providing a significant discharge-forecast lead time. The algorithmic system's precipitation forecast did not demonstrate as much skill, but the associated discharge forecast would still have been sufficient to have provided an alert of impending flood danger.

  8. A national framework for flood forecasting model assessment for use in operations and investment planning over England and Wales

    NASA Astrophysics Data System (ADS)

    Moore, Robert J.; Wells, Steven C.; Cole, Steven J.

    2016-04-01

    It has been common for flood forecasting systems to be commissioned at a catchment or regional level in response to local priorities and hydrological conditions, leading to variety in system design and model choice. As systems mature and efficiencies of national management are sought, there can be a drive towards system rationalisation, gaining an overview of model performance and consideration of simplification through model-type convergence. Flood forecasting model assessments, whilst overseen at a national level, may be commissioned and managed at a catchment and regional level, take a variety of forms and be large in number. This presents a challenge when an integrated national assessment is required to guide operational use of flood forecasts and plan future investment in flood forecasting models and supporting hydrometric monitoring. This contribution reports on how a nationally consistent framework for flood forecasting model performance has been developed to embrace many past, ongoing and future assessments for local river systems by engineering consultants across England & Wales. The outcome is a Performance Summary for every site model assessed which, on a single page, contains relevant catchment information for context, a selection of overlain forecast and observed hydrographs and a set of performance statistics with associated displays of novel condensed form. One display provides performance comparison with other models that may exist for the site. The performance statistics include skill scores for forecasting events (flow/level threshold crossings) of differing severity/rarity, indicating their probability and likely timing, which have real value in an operational setting. The local models assessed can be of any type and span rainfall-runoff (conceptual and transfer function) and flow routing (hydrological and hydrodynamic) forms. Also accommodated by the framework is the national G2G (Grid-to-Grid) distributed hydrological model, providing area-wide coverage across the fluvial rivers of England and Wales, which can be assessed at gauged sites. Thus the performance of the national G2G model forecasts can be directly compared with that from the local models. The Performance Summary for each site model is complemented by a national spatial analysis of model performance stratified by model-type, geographical region and forecast lead-time. The map displays provide an extensive evidence-base that can be interrogated, through a Flood Forecasting Model Performance web portal, to reveal fresh insights into comparative performance across locations, lead-times and models. This work was commissioned by the Environment Agency in partnership with Natural Resources Wales and the Flood Forecasting Centre for England and Wales.

  9. Satellite freeze forecast system

    NASA Technical Reports Server (NTRS)

    Martsolf, J. D. (Principal Investigator)

    1983-01-01

    Provisions for back-up operations for the satellite freeze forecast system are discussed including software and hardware maintenance and DS/1000-1V linkage; troubleshooting; and digitized radar usage. The documentation developed; dissemination of data products via television and the IFAS computer network; data base management; predictive models; the installation of and progress towards the operational status of key stations; and digital data acquisition are also considered. The d addition of dew point temperature into the P-model is outlined.

  10. Development of Real-time Tsunami Inundation Forecast Using Ocean Bottom Tsunami Networks along the Japan Trench

    NASA Astrophysics Data System (ADS)

    Aoi, S.; Yamamoto, N.; Suzuki, W.; Hirata, K.; Nakamura, H.; Kunugi, T.; Kubo, T.; Maeda, T.

    2015-12-01

    In the 2011 Tohoku earthquake, in which huge tsunami claimed a great deal of lives, the initial tsunami forecast based on hypocenter information estimated using seismic data on land were greatly underestimated. From this lesson, NIED is now constructing S-net (Seafloor Observation Network for Earthquakes and Tsunamis along the Japan Trench) which consists of 150 ocean bottom observatories with seismometers and pressure gauges (tsunamimeters) linked by fiber optic cables. To take full advantage of S-net, we develop a new methodology of real-time tsunami inundation forecast using ocean bottom observation data and construct a prototype system that implements the developed forecasting method for the Pacific coast of Chiba prefecture (Sotobo area). We employ a database-based approach because inundation is a strongly non-linear phenomenon and its calculation costs are rather heavy. We prepare tsunami scenario bank in advance, by constructing the possible tsunami sources, and calculating the tsunami waveforms at S-net stations, coastal tsunami heights and tsunami inundation on land. To calculate the inundation for target Sotobo area, we construct the 10-m-mesh precise elevation model with coastal structures. Based on the sensitivities analyses, we construct the tsunami scenario bank that efficiently covers possible tsunami scenarios affecting the Sotobo area. A real-time forecast is carried out by selecting several possible scenarios which can well explain real-time tsunami data observed at S-net from tsunami scenario bank. An advantage of our method is that tsunami inundations are estimated directly from the actual tsunami data without any source information, which may have large estimation errors. In addition to the forecast system, we develop Web services, APIs, and smartphone applications and brush them up through social experiments to provide the real-time tsunami observation and forecast information in easy way to understand toward urging people to evacuate.

  11. Space weather forecasting with a Multimodel Ensemble Prediction System (MEPS)

    NASA Astrophysics Data System (ADS)

    Schunk, R. W.; Scherliess, L.; Eccles, V.; Gardner, L. C.; Sojka, J. J.; Zhu, L.; Pi, X.; Mannucci, A. J.; Butala, M.; Wilson, B. D.; Komjathy, A.; Wang, C.; Rosen, G.

    2016-07-01

    The goal of the Multimodel Ensemble Prediction System (MEPS) program is to improve space weather specification and forecasting with ensemble modeling. Space weather can have detrimental effects on a variety of civilian and military systems and operations, and many of the applications pertain to the ionosphere and upper atmosphere. Space weather can affect over-the-horizon radars, HF communications, surveying and navigation systems, surveillance, spacecraft charging, power grids, pipelines, and the Federal Aviation Administration (FAA's) Wide Area Augmentation System (WAAS). Because of its importance, numerous space weather forecasting approaches are being pursued, including those involving empirical, physics-based, and data assimilation models. Clearly, if there are sufficient data, the data assimilation modeling approach is expected to be the most reliable, but different data assimilation models can produce different results. Therefore, like the meteorology community, we created a Multimodel Ensemble Prediction System (MEPS) for the Ionosphere-Thermosphere-Electrodynamics (ITE) system that is based on different data assimilation models. The MEPS ensemble is composed of seven physics-based data assimilation models for the ionosphere, ionosphere-plasmasphere, thermosphere, high-latitude ionosphere-electrodynamics, and middle to low latitude ionosphere-electrodynamics. Hence, multiple data assimilation models can be used to describe each region. A selected storm event that was reconstructed with four different data assimilation models covering the middle and low latitude ionosphere is presented and discussed. In addition, the effect of different data types on the reconstructions is shown.

  12. Error discrimination of an operational hydrological forecasting system at a national scale

    NASA Astrophysics Data System (ADS)

    Jordan, F.; Brauchli, T.

    2010-09-01

    The use of operational hydrological forecasting systems is recommended for hydropower production as well as flood management. However, the forecast uncertainties can be important and lead to bad decisions such as false alarms and inappropriate reservoir management of hydropower plants. In order to improve the forecasting systems, it is important to discriminate the different sources of uncertainties. To achieve this task, reanalysis of past predictions can be realized and provide information about the structure of the global uncertainty. In order to discriminate between uncertainty due to the weather numerical model and uncertainty due to the rainfall-runoff model, simulations assuming perfect weather forecast must be realized. This contribution presents the spatial analysis of the weather uncertainties and their influence on the river discharge prediction of a few different river basins where an operational forecasting system exists. The forecast is based on the RS 3.0 system [1], [2], which is also running the open Internet platform www.swissrivers.ch [3]. The uncertainty related to the hydrological model is compared to the uncertainty related to the weather prediction. A comparison between numerous weather prediction models [4] at different lead times is also presented. The results highlight an important improving potential of both forecasting components: the hydrological rainfall-runoff model and the numerical weather prediction models. The hydrological processes must be accurately represented during the model calibration procedure, while weather prediction models suffer from a systematic spatial bias. REFERENCES [1] Garcia, J., Jordan, F., Dubois, J. & Boillat, J.-L. 2007. "Routing System II, Modélisation d'écoulements dans des systèmes hydrauliques", Communication LCH n° 32, Ed. Prof. A. Schleiss, Lausanne [2] Jordan, F. 2007. Modèle de prévision et de gestion des crues - optimisation des opérations des aménagements hydroélectriques à accumulation pour la réduction des débits de crue, thèse de doctorat n° 3711, Ecole Polytechnique Fédérale, Lausanne [3] Keller, R. 2009. "Le débit des rivières au peigne fin", Revue Technique Suisse, N°7/8 2009, Swiss engineering RTS, UTS SA, Lausanne, p. 11 [4] Kaufmann, P., Schubiger, F. & Binder, P. 2003. Precipitation forecasting by a mesoscale numerical weather prediction (NWP) model : eight years of experience, Hydrology and Earth System

  13. A temporal-spatial postprocessing model for probabilistic run-off forecast. With a case study from Ulla-Førre with five catchments and ten lead times

    NASA Astrophysics Data System (ADS)

    Engeland, K.; Steinsland, I.

    2012-04-01

    This work is driven by the needs of next generation short term optimization methodology for hydro power production. Stochastic optimization are about to be introduced; i.e. optimizing when available resources (water) and utility (prices) are uncertain. In this paper we focus on the available resources, i.e. water, where uncertainty mainly comes from uncertainty in future runoff. When optimizing a water system all catchments and several lead times have to be considered simultaneously. Depending on the system of hydropower reservoirs, it might be a set of headwater catchments, a system of upstream /downstream reservoirs where water used from one catchment /dam arrives in a lower catchment maybe days later, or a combination of both. The aim of this paper is therefore to construct a simultaneous probabilistic forecast for several catchments and lead times, i.e. to provide a predictive distribution for the forecasts. Stochastic optimization methods need samples/ensembles of run-off forecasts as input. Hence, it should also be possible to sample from our probabilistic forecast. A post-processing approach is taken, and an error model based on Box- Cox transformation, power transform and a temporal-spatial copula model is used. It accounts for both between catchment and between lead time dependencies. In operational use it is strait forward to sample run-off ensembles from this models that inherits the catchment and lead time dependencies. The methodology is tested and demonstrated in the Ulla-Førre river system, and simultaneous probabilistic forecasts for five catchments and ten lead times are constructed. The methodology has enough flexibility to model operationally important features in this case study such as hetroscadasety, lead-time varying temporal dependency and lead-time varying inter-catchment dependency. Our model is evaluated using CRPS for marginal predictive distributions and energy score for joint predictive distribution. It is tested against deterministic run-off forecast, climatology forecast and a persistent forecast, and is found to be the better probabilistic forecast for lead time grater then two. From an operational point of view the results are interesting as the between catchment dependency gets stronger with longer lead-times.

  14. Analyzing Effect of System Inertia on Grid Frequency Forecasting Usnig Two Stage Neuro-Fuzzy System

    NASA Astrophysics Data System (ADS)

    Chourey, Divyansh R.; Gupta, Himanshu; Kumar, Amit; Kumar, Jitesh; Kumar, Anand; Mishra, Anup

    2018-04-01

    Frequency forecasting is an important aspect of power system operation. The system frequency varies with load-generation imbalance. Frequency variation depends upon various parameters including system inertia. System inertia determines the rate of fall of frequency after the disturbance in the grid. Though, inertia of the system is not considered while forecasting the frequency of power system during planning and operation. This leads to significant errors in forecasting. In this paper, the effect of inertia on frequency forecasting is analysed for a particular grid system. In this paper, a parameter equivalent to system inertia is introduced. This parameter is used to forecast the frequency of a typical power grid for any instant of time. The system gives appreciable result with reduced error.

  15. Enhancing Learning Environments through Solution-based Knowledge Discovery Tools: Forecasting for Self-Perpetuating Systemic Reform.

    ERIC Educational Resources Information Center

    Tsantis, Linda; Castellani, John

    2001-01-01

    This article explores how knowledge-discovery applications can empower educators with the information they need to provide anticipatory guidance for teaching and learning, forecast school and district needs, and find critical markers for making the best program decisions for children and youth with disabilities. Data mining for schools is…

  16. Excessive Heat Events and National Security: Building Resilience based on Early Warning Systems

    NASA Astrophysics Data System (ADS)

    Vintzileos, A.

    2017-12-01

    Excessive heat events (EHE) affect security of Nations in multiple direct and indirect ways. EHE are the top cause for morbidity/mortality associated to any atmospheric extremes. Higher energy consumption used for cooling can lead to black-outs and social disorder. EHE affect the food supply chain reducing crop yield and increasing the probability of food contamination during delivery and storage. Distribution of goods during EHE can be severely disrupted due to mechanical failure of transportation equipment. EHE during athletic events e.g., marathons, may result to a high number of casualties. Finally, EHE may also affect military planning by e.g. reducing hours of exercise and by altering combat gear. Early warning systems for EHE allow for building resilience. In this paper we first define EHE as at least two consecutive heat days; a heat day is defined as a day with a maximum heat index with probability of occurrence that exceeds a certain threshold. We then use retrospective forecasts performed with a multitude of operational models and show that it is feasible to forecast EHE at forecast lead of week-2 and week-3 over the contiguous United States. We finally introduce an improved definition of EHE based on an intensity index and investigate forecast skill of the predictive system in the tropics and subtropics.

  17. RBF neural network prediction on weak electrical signals in Aloe vera var. chinensis

    NASA Astrophysics Data System (ADS)

    Wang, Lanzhou; Zhao, Jiayin; Wang, Miao

    2008-10-01

    A Gaussian radial base function (RBF) neural network forecast on signals in the Aloe vera var. chinensis by the wavelet soft-threshold denoised as the time series and using the delayed input window chosen at 50, is set up to forecast backward. There was the maximum amplitude at 310.45μV, minimum -75.15μV, average value -2.69μV and <1.5Hz at frequency in Aloe vera var. chinensis respectively. The electrical signal in Aloe vera var. chinensis is a sort of weak, unstable and low frequency signals. A result showed that it is feasible to forecast plant electrical signals for the timing by the RBF. The forecast data can be used as the preferences for the intelligent autocontrol system based on the adaptive characteristic of plants to achieve the energy saving on the agricultural production in the plastic lookum or greenhouse.

  18. Ensemble Downscaling of Winter Seasonal Forecasts: The MRED Project

    NASA Astrophysics Data System (ADS)

    Arritt, R. W.; Mred Team

    2010-12-01

    The Multi-Regional climate model Ensemble Downscaling (MRED) project is a multi-institutional project that is producing large ensembles of downscaled winter seasonal forecasts from coupled atmosphere-ocean seasonal prediction models. Eight regional climate models each are downscaling 15-member ensembles from the National Centers for Environmental Prediction (NCEP) Climate Forecast System (CFS) and the new NASA seasonal forecast system based on the GEOS5 atmospheric model coupled with the MOM4 ocean model. This produces 240-member ensembles, i.e., 8 regional models x 15 global ensemble members x 2 global models, for each winter season (December-April) of 1982-2003. Results to date show that combined global-regional downscaled forecasts have greatest skill for seasonal precipitation anomalies during strong El Niño events such as 1982-83 and 1997-98. Ensemble means of area-averaged seasonal precipitation for the regional models generally track the corresponding results for the global model, though there is considerable inter-model variability amongst the regional models. For seasons and regions where area mean precipitation is accurately simulated the regional models bring added value by extracting greater spatial detail from the global forecasts, mainly due to better resolution of terrain in the regional models. Our results also emphasize that an ensemble approach is essential to realizing the added value from the combined global-regional modeling system.

  19. Three-Month Real-Time Dengue Forecast Models: An Early Warning System for Outbreak Alerts and Policy Decision Support in Singapore

    PubMed Central

    Shi, Yuan; Liu, Xu; Kok, Suet-Yheng; Rajarethinam, Jayanthi; Liang, Shaohong; Yap, Grace; Chong, Chee-Seng; Lee, Kim-Sung; Tan, Sharon S.Y.; Chin, Christopher Kuan Yew; Lo, Andrew; Kong, Waiming; Ng, Lee Ching; Cook, Alex R.

    2015-01-01

    Background: With its tropical rainforest climate, rapid urbanization, and changing demography and ecology, Singapore experiences endemic dengue; the last large outbreak in 2013 culminated in 22,170 cases. In the absence of a vaccine on the market, vector control is the key approach for prevention. Objectives: We sought to forecast the evolution of dengue epidemics in Singapore to provide early warning of outbreaks and to facilitate the public health response to moderate an impending outbreak. Methods: We developed a set of statistical models using least absolute shrinkage and selection operator (LASSO) methods to forecast the weekly incidence of dengue notifications over a 3-month time horizon. This forecasting tool used a variety of data streams and was updated weekly, including recent case data, meteorological data, vector surveillance data, and population-based national statistics. The forecasting methodology was compared with alternative approaches that have been proposed to model dengue case data (seasonal autoregressive integrated moving average and step-down linear regression) by fielding them on the 2013 dengue epidemic, the largest on record in Singapore. Results: Operationally useful forecasts were obtained at a 3-month lag using the LASSO-derived models. Based on the mean average percentage error, the LASSO approach provided more accurate forecasts than the other methods we assessed. We demonstrate its utility in Singapore’s dengue control program by providing a forecast of the 2013 outbreak for advance preparation of outbreak response. Conclusions: Statistical models built using machine learning methods such as LASSO have the potential to markedly improve forecasting techniques for recurrent infectious disease outbreaks such as dengue. Citation: Shi Y, Liu X, Kok SY, Rajarethinam J, Liang S, Yap G, Chong CS, Lee KS, Tan SS, Chin CK, Lo A, Kong W, Ng LC, Cook AR. 2016. Three-month real-time dengue forecast models: an early warning system for outbreak alerts and policy decision support in Singapore. Environ Health Perspect 124:1369–1375; http://dx.doi.org/10.1289/ehp.1509981 PMID:26662617

  20. An operational hydrological ensemble prediction system for the city of Zurich (Switzerland): skill, case studies and scenarios

    NASA Astrophysics Data System (ADS)

    Addor, N.; Jaun, S.; Zappa, M.

    2011-01-01

    The Sihl River flows through Zurich, Switzerland's most populated city, for which it represents the largest flood threat. To anticipate extreme discharge events and provide decision support in case of flood risk, a hydrometeorological ensemble prediction system (HEPS) was launched operationally in 2008. This models chain relies on limited-area atmospheric forecasts provided by the deterministic model COSMO-7 and the probabilistic model COSMO-LEPS. These atmospheric forecasts are used to force a semi-distributed hydrological model (PREVAH), coupled to a hydraulic model (FLORIS). The resulting hydrological forecasts are eventually communicated to the stakeholders involved in the Sihl discharge management. This fully operational setting provides a real framework to compare the potential of deterministic and probabilistic discharge forecasts for flood mitigation. To study the suitability of HEPS for small-scale basins and to quantify the added-value conveyed by the probability information, a reforecast was made for the period June 2007 to December 2009 for the Sihl catchment (336 km2). Several metrics support the conclusion that the performance gain can be of up to 2 days lead time for the catchment considered. Brier skill scores show that COSMO-LEPS-based hydrological forecasts overall outperform their COSMO-7 based counterparts for all the lead times and event intensities considered. The small size of the Sihl catchment does not prevent skillful discharge forecasts, but makes them particularly dependent on correct precipitation forecasts, as shown by comparisons with a reference run driven by observed meteorological parameters. Our evaluation stresses that the capacity of the model to provide confident and reliable mid-term probability forecasts for high discharges is limited. The two most intense events of the study period are investigated utilising a novel graphical representation of probability forecasts and used to generate high discharge scenarios. They highlight challenges for making decisions on the basis of hydrological predictions, and indicate the need for a tool to be used in addition to forecasts to compare the different mitigation actions possible in the Sihl catchment.

Top