Sample records for forecasting system ifs

  1. Weather assessment and forecasting

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Data management program activities centered around the analyses of selected far-term Office of Applications (OA) objectives, with the intent of determining if significant data-related problems would be encountered and if so what alternative solutions would be possible. Three far-term (1985 and beyond) OA objectives selected for analyses as having potential significant data problems were large-scale weather forecasting, local weather and severe storms forecasting, and global marine weather forecasting. An overview of general weather forecasting activities and their implications upon the ground based data system is provided. Selected topics were specifically oriented to the use of satellites.

  2. How do I know if I’ve improved my continental scale flood early warning system?

    NASA Astrophysics Data System (ADS)

    Cloke, Hannah L.; Pappenberger, Florian; Smith, Paul J.; Wetterhall, Fredrik

    2017-04-01

    Flood early warning systems mitigate damages and loss of life and are an economically efficient way of enhancing disaster resilience. The use of continental scale flood early warning systems is rapidly growing. The European Flood Awareness System (EFAS) is a pan-European flood early warning system forced by a multi-model ensemble of numerical weather predictions. Responses to scientific and technical changes can be complex in these computationally expensive continental scale systems, and improvements need to be tested by evaluating runs of the whole system. It is demonstrated here that forecast skill is not correlated with the value of warnings. In order to tell if the system has been improved an evaluation strategy is required that considers both forecast skill and warning value. The combination of a multi-forcing ensemble of EFAS flood forecasts is evaluated with a new skill-value strategy. The full multi-forcing ensemble is recommended for operational forecasting, but, there are spatial variations in the optimal forecast combination. Results indicate that optimizing forecasts based on value rather than skill alters the optimal forcing combination and the forecast performance. Also indicated is that model diversity and ensemble size are both important in achieving best overall performance. The use of several evaluation measures that consider both skill and value is strongly recommended when considering improvements to early warning systems.

  3. Consistency between the global and regional modeling components of CAMS over Europe.

    NASA Astrophysics Data System (ADS)

    Katragkou, Eleni; Akritidis, Dimitrios; Kontos, Serafim; Zanis, Prodromos; Melas, Dimitrios; Engelen, Richard; Plu, Matthieu; Eskes, Henk

    2017-04-01

    The Copernicus Atmosphere Monitoring Service (CAMS) is a component of the European Earth Observation programme Copernicus. CAMS consists of two major forecast and analysis systems: i) the CAMS global near-real time service, based on the ECMWF Integrated Forecast System (C-IFS), which provides daily analyses and forecasts of reactive trace gases, greenhouse gases and aerosol concentrations ii) a regional ensemble (ENS) for European air quality, compiled and disseminated by Météo-France, which consists of seven ensemble members. The boundaries from the regional ensemble members are extracted from the global CAMS forecast product. This work reports on the consistency between the global and regional modeling components of CAMS, and the impact of global CAMS boundary conditions on regional forecasts. The current analysis includes ozone (O3) carbon monoxide (CO) and aerosol (PM10/PM2.5) forecasts. The comparison indicates an overall good agreement between the global C-IFS and the regional ENS patterns for O3 and CO, especially above 250m altitude, indicating that the global boundary conditions are efficiently included in the regional ensemble simulations. As expected, differences are found within the PBL, with lower/higher C-IFS O3/CO concentrations over continental Europe with respect to ENS.

  4. Evaluation of a new microphysical aerosol module in the ECMWF Integrated Forecasting System

    NASA Astrophysics Data System (ADS)

    Woodhouse, Matthew; Mann, Graham; Carslaw, Ken; Morcrette, Jean-Jacques; Schulz, Michael; Kinne, Stefan; Boucher, Olivier

    2013-04-01

    The Monitoring Atmospheric Composition and Climate II (MACC-II) project will provide a system for monitoring and predicting atmospheric composition. As part of the first phase of MACC, the GLOMAP-mode microphysical aerosol scheme (Mann et al., 2010, GMD) was incorporated within the ECMWF Integrated Forecasting System (IFS). The two-moment modal GLOMAP-mode scheme includes new particle formation, condensation, coagulation, cloud-processing, and wet and dry deposition. GLOMAP-mode is already incorporated as a module within the TOMCAT chemistry transport model and within the UK Met Office HadGEM3 general circulation model. The microphysical, process-based GLOMAP-mode scheme allows an improved representation of aerosol size and composition and can simulate aerosol evolution in the troposphere and stratosphere. The new aerosol forecasting and re-analysis system (known as IFS-GLOMAP) will also provide improved boundary conditions for regional air quality forecasts, and will benefit from assimilation of observed aerosol optical depths in near real time. Presented here is an evaluation of the performance of the IFS-GLOMAP system in comparison to in situ aerosol mass and number measurements, and remotely-sensed aerosol optical depth measurements. Future development will provide a fully-coupled chemistry-aerosol scheme, and the capability to resolve nitrate aerosol.

  5. The Copernicus Atmosphere Monitoring Service: facilitating the prediction of air quality from global to local scales

    NASA Astrophysics Data System (ADS)

    Engelen, R. J.; Peuch, V. H.

    2017-12-01

    The European Copernicus Atmosphere Monitoring Service (CAMS) operationally provides daily forecasts of global atmospheric composition and regional air quality. The global forecasting system is using ECMWF's Integrated Forecasting System (IFS), which is used for numerical weather prediction and which has been extended with modules for atmospheric chemistry, aerosols and greenhouse gases. The regional forecasts are produced by an ensemble of seven operational European air quality models that take their boundary conditions from the global system and provide an ensemble median with ensemble spread as their main output. Both the global and regional forecasting systems are feeding their output into air quality models on a variety of scales in various parts of the world. We will introduce the CAMS service chain and provide illustrations of its use in downstream applications. Both the usage of the daily forecasts and the usage of global and regional reanalyses will be addressed.

  6. The MST radar technique: Requirements for operational weather forecasting

    NASA Technical Reports Server (NTRS)

    Larsen, M. F.

    1983-01-01

    There is a feeling that the accuracy of mesoscale forecasts for spatial scales of less than 1000 km and time scales of less than 12 hours can be improved significantly if resources are applied to the problem in an intensive effort over the next decade. Since the most dangerous and damaging types of weather occur at these scales, there are major advantages to be gained if such a program is successful. The interest in improving short term forecasting is evident. The technology at the present time is sufficiently developed, both in terms of new observing systems and the computing power to handle the observations, to warrant an intensive effort to improve stormscale forecasting. An assessment of the extent to which the so-called MST radar technique fulfills the requirements for an operational mesoscale observing network is reviewed and the extent to which improvements in various types of forecasting could be expected if such a network is put into operation are delineated.

  7. Is the economic value of hydrological forecasts related to their quality? Case study of the hydropower sector.

    NASA Astrophysics Data System (ADS)

    Cassagnole, Manon; Ramos, Maria-Helena; Thirel, Guillaume; Gailhard, Joël; Garçon, Rémy

    2017-04-01

    The improvement of a forecasting system and the evaluation of the quality of its forecasts are recurrent steps in operational practice. However, the evaluation of forecast value or forecast usefulness for better decision-making is, to our knowledge, less frequent, even if it might be essential in many sectors such as hydropower and flood warning. In the hydropower sector, forecast value can be quantified by the economic gain obtained with the optimization of operations or reservoir management rules. Several hydropower operational systems use medium-range forecasts (up to 7-10 days ahead) and energy price predictions to optimize hydropower production. Hence, the operation of hydropower systems, including the management of water in reservoirs, is impacted by weather, climate and hydrologic variability as well as extreme events. In order to assess how the quality of hydrometeorological forecasts impact operations, it is essential to first understand if and how operations and management rules are sensitive to input predictions of different quality. This study investigates how 7-day ahead deterministic and ensemble streamflow forecasts of different quality might impact the economic gains of energy production. It is based on a research model developed by Irstea and EDF to investigate issues relevant to the links between quality and value of forecasts in the optimisation of energy production at the short range. Based on streamflow forecasts and pre-defined management constraints, the model defines the best hours (i.e., the hours with high energy prices) to produce electricity. To highlight the link between forecasts quality and their economic value, we built several synthetic ensemble forecasts based on observed streamflow time series. These inputs are generated in a controlled environment in order to obtain forecasts of different quality in terms of accuracy and reliability. These forecasts are used to assess the sensitivity of the decision model to forecast quality. Relationships between forecast quality and economic value are discussed. This work is part of the IMPREX project, a research project supported by the European Commission under the Horizon 2020 Framework programme, with grant No. 641811 (http://www.imprex.eu)

  8. Climatological Observations for Maritime Prediction and Analysis Support Service (COMPASS)

    NASA Astrophysics Data System (ADS)

    OConnor, A.; Kirtman, B. P.; Harrison, S.; Gorman, J.

    2016-02-01

    Current US Navy forecasting systems cannot easily incorporate extended-range forecasts that can improve mission readiness and effectiveness; ensure safety; and reduce cost, labor, and resource requirements. If Navy operational planners had systems that incorporated these forecasts, they could plan missions using more reliable and longer-term weather and climate predictions. Further, using multi-model forecast ensembles instead of single forecasts would produce higher predictive performance. Extended-range multi-model forecast ensembles, such as those available in the North American Multi-Model Ensemble (NMME), are ideal for system integration because of their high skill predictions; however, even higher skill predictions can be produced if forecast model ensembles are combined correctly. While many methods for weighting models exist, the best method in a given environment requires expert knowledge of the models and combination methods.We present an innovative approach that uses machine learning to combine extended-range predictions from multi-model forecast ensembles and generate a probabilistic forecast for any region of the globe up to 12 months in advance. Our machine-learning approach uses 30 years of hindcast predictions to learn patterns of forecast model successes and failures. Each model is assigned a weight for each environmental condition, 100 km2 region, and day given any expected environmental information. These weights are then applied to the respective predictions for the region and time of interest to effectively stitch together a single, coherent probabilistic forecast. Our experimental results demonstrate the benefits of our approach to produce extended-range probabilistic forecasts for regions and time periods of interest that are superior, in terms of skill, to individual NMME forecast models and commonly weighted models. The probabilistic forecast leverages the strengths of three NMME forecast models to predict environmental conditions for an area spanning from San Diego, CA to Honolulu, HI, seven months in-advance. Key findings include: weighted combinations of models are strictly better than individual models; machine-learned combinations are especially better; and forecasts produced using our approach have the highest rank probability skill score most often.

  9. Influence of Forecast Accuracy of Photovoltaic Power Output on Capacity Optimization of Microgrid Composition under 30 min Power Balancing Control

    NASA Astrophysics Data System (ADS)

    Sone, Akihito; Kato, Takeyoshi; Shimakage, Toyonari; Suzuoki, Yasuo

    A microgrid (MG) is one of the measures for enhancing the high penetration of renewable energy (RE)-based distributed generators (DGs). If a number of MGs are controlled to maintain the predetermined electricity demand including RE-based DGs as negative demand, they would contribute to supply-demand balancing of whole electric power system. For constructing a MG economically, the capacity optimization of controllable DGs against RE-based DGs is essential. By using a numerical simulation model developed based on a demonstrative study on a MG using PAFC and NaS battery as controllable DGs and photovoltaic power generation system (PVS) as a RE-based DG, this study discusses the influence of forecast accuracy of PVS output on the capacity optimization. Three forecast cases with different accuracy are compared. The main results are as follows. Even with no forecast error during every 30 min. as the ideal forecast method, the required capacity of NaS battery reaches about 40% of PVS capacity for mitigating the instantaneous forecast error within 30 min. The required capacity to compensate for the forecast error is doubled with the actual forecast method. The influence of forecast error can be reduced by adjusting the scheduled power output of controllable DGs according to the weather forecast. Besides, the required capacity can be reduced significantly if the error of balancing control in a MG is acceptable for a few percentages of periods, because the total periods of large forecast error is not so often.

  10. Evaluation of ensemble forecast uncertainty using a new proper score: application to medium-range and seasonal forecasts

    NASA Astrophysics Data System (ADS)

    Christensen, Hannah; Moroz, Irene; Palmer, Tim

    2015-04-01

    Forecast verification is important across scientific disciplines as it provides a framework for evaluating the performance of a forecasting system. In the atmospheric sciences, probabilistic skill scores are often used for verification as they provide a way of unambiguously ranking the performance of different probabilistic forecasts. In order to be useful, a skill score must be proper -- it must encourage honesty in the forecaster, and reward forecasts which are reliable and which have good resolution. A new score, the Error-spread Score (ES), is proposed which is particularly suitable for evaluation of ensemble forecasts. It is formulated with respect to the moments of the forecast. The ES is confirmed to be a proper score, and is therefore sensitive to both resolution and reliability. The ES is tested on forecasts made using the Lorenz '96 system, and found to be useful for summarising the skill of the forecasts. The European Centre for Medium-Range Weather Forecasts (ECMWF) ensemble prediction system (EPS) is evaluated using the ES. Its performance is compared to a perfect statistical probabilistic forecast -- the ECMWF high resolution deterministic forecast dressed with the observed error distribution. This generates a forecast that is perfectly reliable if considered over all time, but which does not vary from day to day with the predictability of the atmospheric flow. The ES distinguishes between the dynamically reliable EPS forecasts and the statically reliable dressed deterministic forecasts. Other skill scores are tested and found to be comparatively insensitive to this desirable forecast quality. The ES is used to evaluate seasonal range ensemble forecasts made with the ECMWF System 4. The ensemble forecasts are found to be skilful when compared with climatological or persistence forecasts, though this skill is dependent on region and time of year.

  11. A framework for improving a seasonal hydrological forecasting system using sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Arnal, Louise; Pappenberger, Florian; Smith, Paul; Cloke, Hannah

    2017-04-01

    Seasonal streamflow forecasts are of great value for the socio-economic sector, for applications such as navigation, flood and drought mitigation and reservoir management for hydropower generation and water allocation to agriculture and drinking water. However, as we speak, the performance of dynamical seasonal hydrological forecasting systems (systems based on running seasonal meteorological forecasts through a hydrological model to produce seasonal hydrological forecasts) is still limited in space and time. In this context, the ESP (Ensemble Streamflow Prediction) remains an attractive forecasting method for seasonal streamflow forecasting as it relies on forcing a hydrological model (starting from the latest observed or simulated initial hydrological conditions) with historical meteorological observations. This makes it cheaper to run than a standard dynamical seasonal hydrological forecasting system, for which the seasonal meteorological forecasts will first have to be produced, while still producing skilful forecasts. There is thus the need to focus resources and time towards improvements in dynamical seasonal hydrological forecasting systems which will eventually lead to significant improvements in the skill of the streamflow forecasts generated. Sensitivity analyses are a powerful tool that can be used to disentangle the relative contributions of the two main sources of errors in seasonal streamflow forecasts, namely the initial hydrological conditions (IHC; e.g., soil moisture, snow cover, initial streamflow, among others) and the meteorological forcing (MF; i.e., seasonal meteorological forecasts of precipitation and temperature, input to the hydrological model). Sensitivity analyses are however most useful if they inform and change current operational practices. To this end, we propose a method to improve the design of a seasonal hydrological forecasting system. This method is based on sensitivity analyses, informing the forecasters as to which element of the forecasting chain (i.e., IHC or MF) could potentially lead to the highest increase in seasonal hydrological forecasting performance, after each forecast update.

  12. Current and future data assimilation development in the Copernicus Atmosphere Monitoring Service

    NASA Astrophysics Data System (ADS)

    Engelen, R. J.; Ades, M.; Agusti-panareda, A.; Flemming, J.; Inness, A.; Kipling, Z.; Parrington, M.; Peuch, V. H.

    2017-12-01

    The European Copernicus Atmosphere Monitoring Service (CAMS) operationally provides daily forecasts of global atmospheric composition and regional air quality. The global forecasting system is using ECMWF's Integrated Forecasting System (IFS), which is used for numerical weather prediction and which has been extended with modules for atmospheric chemistry, aerosols and greenhouse gases. The system assimilates observations from more than 60 satellite sensors to constrain both the meteorology and the atmospheric composition species. While an operational forecasting system needs to be robust and reliable, it also needs to stay state-of-the-art to provide the best possible forecasts. Continuous development is therefore an important component of the CAMS systems. We will present on-going efforts on improving the 4D-Var data assimilation system, such as using ensemble data assimilation to improve the background error covariances and more accurate use of satellite observations. We will also outline plans for including emissions in the daily CAMS analyses, which is an area where research activities have a large potential to feed into operational applications.

  13. Complex relationship between seasonal streamflow forecast skill and value in reservoir operations

    NASA Astrophysics Data System (ADS)

    Turner, Sean W. D.; Bennett, James C.; Robertson, David E.; Galelli, Stefano

    2017-09-01

    Considerable research effort has recently been directed at improving and operationalising ensemble seasonal streamflow forecasts. Whilst this creates new opportunities for improving the performance of water resources systems, there may also be associated risks. Here, we explore these potential risks by examining the sensitivity of forecast value (improvement in system performance brought about by adopting forecasts) to changes in the forecast skill for a range of hypothetical reservoir designs with contrasting operating objectives. Forecast-informed operations are simulated using rolling horizon, adaptive control and then benchmarked against optimised control rules to assess performance improvements. Results show that there exists a strong relationship between forecast skill and value for systems operated to maintain a target water level. But this relationship breaks down when the reservoir is operated to satisfy a target demand for water; good forecast accuracy does not necessarily translate into performance improvement. We show that the primary cause of this behaviour is the buffering role played by storage in water supply reservoirs, which renders the forecast superfluous for long periods of the operation. System performance depends primarily on forecast accuracy when critical decisions are made - namely during severe drought. As it is not possible to know in advance if a forecast will perform well at such moments, we advocate measuring the consistency of forecast performance, through bootstrap resampling, to indicate potential usefulness in storage operations. Our results highlight the need for sensitivity assessment in value-of-forecast studies involving reservoirs with supply objectives.

  14. Complex relationship between seasonal streamflow forecast skill and value in reservoir operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, Sean W. D.; Bennett, James C.; Robertson, David E.

    Considerable research effort has recently been directed at improving and operationalising ensemble seasonal streamflow forecasts. Whilst this creates new opportunities for improving the performance of water resources systems, there may also be associated risks. Here, we explore these potential risks by examining the sensitivity of forecast value (improvement in system performance brought about by adopting forecasts) to changes in the forecast skill for a range of hypothetical reservoir designs with contrasting operating objectives. Forecast-informed operations are simulated using rolling horizon, adaptive control and then benchmarked against optimised control rules to assess performance improvements. Results show that there exists a strongmore » relationship between forecast skill and value for systems operated to maintain a target water level. But this relationship breaks down when the reservoir is operated to satisfy a target demand for water; good forecast accuracy does not necessarily translate into performance improvement. We show that the primary cause of this behaviour is the buffering role played by storage in water supply reservoirs, which renders the forecast superfluous for long periods of the operation. System performance depends primarily on forecast accuracy when critical decisions are made – namely during severe drought. As it is not possible to know in advance if a forecast will perform well at such moments, we advocate measuring the consistency of forecast performance, through bootstrap resampling, to indicate potential usefulness in storage operations. Our results highlight the need for sensitivity assessment in value-of-forecast studies involving reservoirs with supply objectives.« less

  15. Complex relationship between seasonal streamflow forecast skill and value in reservoir operations

    DOE PAGES

    Turner, Sean W. D.; Bennett, James C.; Robertson, David E.; ...

    2017-09-28

    Considerable research effort has recently been directed at improving and operationalising ensemble seasonal streamflow forecasts. Whilst this creates new opportunities for improving the performance of water resources systems, there may also be associated risks. Here, we explore these potential risks by examining the sensitivity of forecast value (improvement in system performance brought about by adopting forecasts) to changes in the forecast skill for a range of hypothetical reservoir designs with contrasting operating objectives. Forecast-informed operations are simulated using rolling horizon, adaptive control and then benchmarked against optimised control rules to assess performance improvements. Results show that there exists a strongmore » relationship between forecast skill and value for systems operated to maintain a target water level. But this relationship breaks down when the reservoir is operated to satisfy a target demand for water; good forecast accuracy does not necessarily translate into performance improvement. We show that the primary cause of this behaviour is the buffering role played by storage in water supply reservoirs, which renders the forecast superfluous for long periods of the operation. System performance depends primarily on forecast accuracy when critical decisions are made – namely during severe drought. As it is not possible to know in advance if a forecast will perform well at such moments, we advocate measuring the consistency of forecast performance, through bootstrap resampling, to indicate potential usefulness in storage operations. Our results highlight the need for sensitivity assessment in value-of-forecast studies involving reservoirs with supply objectives.« less

  16. Operational seasonal forecasting of crop performance.

    PubMed

    Stone, Roger C; Meinke, Holger

    2005-11-29

    Integrated, interdisciplinary crop performance forecasting systems, linked with appropriate decision and discussion support tools, could substantially improve operational decision making in agricultural management. Recent developments in connecting numerical weather prediction models and general circulation models with quantitative crop growth models offer the potential for development of integrated systems that incorporate components of long-term climate change. However, operational seasonal forecasting systems have little or no value unless they are able to change key management decisions. Changed decision making through incorporation of seasonal forecasting ultimately has to demonstrate improved long-term performance of the cropping enterprise. Simulation analyses conducted on specific production scenarios are especially useful in improving decisions, particularly if this is done in conjunction with development of decision-support systems and associated facilitated discussion groups. Improved management of the overall crop production system requires an interdisciplinary approach, where climate scientists, agricultural scientists and extension specialists are intimately linked with crop production managers in the development of targeted seasonal forecast systems. The same principle applies in developing improved operational management systems for commodity trading organizations, milling companies and agricultural marketing organizations. Application of seasonal forecast systems across the whole value chain in agricultural production offers considerable benefits in improving overall operational management of agricultural production.

  17. Operational seasonal forecasting of crop performance

    PubMed Central

    Stone, Roger C; Meinke, Holger

    2005-01-01

    Integrated, interdisciplinary crop performance forecasting systems, linked with appropriate decision and discussion support tools, could substantially improve operational decision making in agricultural management. Recent developments in connecting numerical weather prediction models and general circulation models with quantitative crop growth models offer the potential for development of integrated systems that incorporate components of long-term climate change. However, operational seasonal forecasting systems have little or no value unless they are able to change key management decisions. Changed decision making through incorporation of seasonal forecasting ultimately has to demonstrate improved long-term performance of the cropping enterprise. Simulation analyses conducted on specific production scenarios are especially useful in improving decisions, particularly if this is done in conjunction with development of decision-support systems and associated facilitated discussion groups. Improved management of the overall crop production system requires an interdisciplinary approach, where climate scientists, agricultural scientists and extension specialists are intimately linked with crop production managers in the development of targeted seasonal forecast systems. The same principle applies in developing improved operational management systems for commodity trading organizations, milling companies and agricultural marketing organizations. Application of seasonal forecast systems across the whole value chain in agricultural production offers considerable benefits in improving overall operational management of agricultural production. PMID:16433097

  18. Tropospheric chemistry in the integrated forecasting system of ECMWF

    NASA Astrophysics Data System (ADS)

    Flemming, J.; Huijnen, V.; Arteta, J.; Bechtold, P.; Beljaars, A.; Blechschmidt, A.-M.; Josse, B.; Diamantakis, M.; Engelen, R. J.; Gaudel, A.; Inness, A.; Jones, L.; Katragkou, E.; Marecal, V.; Peuch, V.-H.; Richter, A.; Schultz, M. G.; Stein, O.; Tsikerdekis, A.

    2014-11-01

    A representation of atmospheric chemistry has been included in the Integrated Forecasting System (IFS) of the European Centre for Medium-range Weather Forecasts (ECMWF). The new chemistry modules complement the aerosol modules of the IFS for atmospheric composition, which is named C-IFS. C-IFS for chemistry supersedes a coupled system, in which the Chemical Transport Model (CTM) Model for OZone and Related chemical Tracers 3 was two-way coupled to the IFS (IFS-MOZART). This paper contains a description of the new on-line implementation, an evaluation with observations and a comparison of the performance of C-IFS with MOZART and with a re-analysis of atmospheric composition produced by IFS-MOZART within the Monitoring Atmospheric Composition and Climate (MACC) project. The chemical mechanism of C-IFS is an extended version of the Carbon Bond 2005 (CB05) chemical mechanism as implemented in the CTM Transport Model 5 (TM5). CB05 describes tropospheric chemistry with 54 species and 126 reactions. Wet deposition and lightning nitrogen monoxide (NO) emissions are modelled in C-IFS using the detailed input of the IFS physics package. A one-year simulation by C-IFS, MOZART and the MACC re-analysis is evaluated against ozonesondes, carbon monoxide (CO) aircraft profiles, European surface observations of ozone (O3), CO, sulphur dioxide (SO2) and nitrogen dioxide (NO2) as well as satellite retrievals of CO, tropospheric NO2 and formaldehyde. Anthropogenic emissions from the MACC/CityZen (MACCity) inventory and biomass burning emissions from the Global Fire Assimilation System (GFAS) data set were used in the simulations by both C-IFS and MOZART. C-IFS (CB05) showed an improved performance with respect to MOZART for CO, upper tropospheric O3, winter time SO2 and was of a similar accuracy for other evaluated species. C-IFS (CB05) is about ten times more computationally efficient than IFS-MOZART.

  19. Tropospheric chemistry in the Integrated Forecasting System of ECMWF

    NASA Astrophysics Data System (ADS)

    Flemming, J.; Huijnen, V.; Arteta, J.; Bechtold, P.; Beljaars, A.; Blechschmidt, A.-M.; Diamantakis, M.; Engelen, R. J.; Gaudel, A.; Inness, A.; Jones, L.; Josse, B.; Katragkou, E.; Marecal, V.; Peuch, V.-H.; Richter, A.; Schultz, M. G.; Stein, O.; Tsikerdekis, A.

    2015-04-01

    A representation of atmospheric chemistry has been included in the Integrated Forecasting System (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF). The new chemistry modules complement the aerosol modules of the IFS for atmospheric composition, which is named C-IFS. C-IFS for chemistry supersedes a coupled system in which chemical transport model (CTM) Model for OZone and Related chemical Tracers 3 was two-way coupled to the IFS (IFS-MOZART). This paper contains a description of the new on-line implementation, an evaluation with observations and a comparison of the performance of C-IFS with MOZART and with a re-analysis of atmospheric composition produced by IFS-MOZART within the Monitoring Atmospheric Composition and Climate (MACC) project. The chemical mechanism of C-IFS is an extended version of the Carbon Bond 2005 (CB05) chemical mechanism as implemented in CTM Transport Model 5 (TM5). CB05 describes tropospheric chemistry with 54 species and 126 reactions. Wet deposition and lightning nitrogen monoxide (NO) emissions are modelled in C-IFS using the detailed input of the IFS physics package. A 1 year simulation by C-IFS, MOZART and the MACC re-analysis is evaluated against ozonesondes, carbon monoxide (CO) aircraft profiles, European surface observations of ozone (O3), CO, sulfur dioxide (SO2) and nitrogen dioxide (NO2) as well as satellite retrievals of CO, tropospheric NO2 and formaldehyde. Anthropogenic emissions from the MACC/CityZen (MACCity) inventory and biomass burning emissions from the Global Fire Assimilation System (GFAS) data set were used in the simulations by both C-IFS and MOZART. C-IFS (CB05) showed an improved performance with respect to MOZART for CO, upper tropospheric O3, and wintertime SO2, and was of a similar accuracy for other evaluated species. C-IFS (CB05) is about 10 times more computationally efficient than IFS-MOZART.

  20. A Diagnostics Tool to detect ensemble forecast system anomaly and guide operational decisions

    NASA Astrophysics Data System (ADS)

    Park, G. H.; Srivastava, A.; Shrestha, E.; Thiemann, M.; Day, G. N.; Draijer, S.

    2017-12-01

    The hydrologic community is moving toward using ensemble forecasts to take uncertainty into account during the decision-making process. The New York City Department of Environmental Protection (DEP) implements several types of ensemble forecasts in their decision-making process: ensemble products for a statistical model (Hirsch and enhanced Hirsch); the National Weather Service (NWS) Advanced Hydrologic Prediction Service (AHPS) forecasts based on the classical Ensemble Streamflow Prediction (ESP) technique; and the new NWS Hydrologic Ensemble Forecasting Service (HEFS) forecasts. To remove structural error and apply the forecasts to additional forecast points, the DEP post processes both the AHPS and the HEFS forecasts. These ensemble forecasts provide mass quantities of complex data, and drawing conclusions from these forecasts is time-consuming and difficult. The complexity of these forecasts also makes it difficult to identify system failures resulting from poor data, missing forecasts, and server breakdowns. To address these issues, we developed a diagnostic tool that summarizes ensemble forecasts and provides additional information such as historical forecast statistics, forecast skill, and model forcing statistics. This additional information highlights the key information that enables operators to evaluate the forecast in real-time, dynamically interact with the data, and review additional statistics, if needed, to make better decisions. We used Bokeh, a Python interactive visualization library, and a multi-database management system to create this interactive tool. This tool compiles and stores data into HTML pages that allows operators to readily analyze the data with built-in user interaction features. This paper will present a brief description of the ensemble forecasts, forecast verification results, and the intended applications for the diagnostic tool.

  1. Using Climate Regionalization to Understand Climate Forecast System Version 2 (CFSv2) Precipitation Performance for the Conterminous United States (CONUS)

    NASA Technical Reports Server (NTRS)

    Regonda, Satish K.; Zaitchik, Benjamin F.; Badr, Hamada S.; Rodell, Matthew

    2016-01-01

    Dynamically based seasonal forecasts are prone to systematic spatial biases due to imperfections in the underlying global climate model (GCM). This can result in low-forecast skill when the GCM misplaces teleconnections or fails to resolve geographic barriers, even if the prediction of large-scale dynamics is accurate. To characterize and address this issue, this study applies objective climate regionalization to identify discrepancies between the Climate Forecast SystemVersion 2 (CFSv2) and precipitation observations across the Contiguous United States (CONUS). Regionalization shows that CFSv2 1 month forecasts capture the general spatial character of warm season precipitation variability but that forecast regions systematically differ from observation in some transition zones. CFSv2 predictive skill for these misclassified areas is systematically reduced relative to correctly regionalized areas and CONUS as a whole. In these incorrectly regionalized areas, higher skill can be obtained by using a regional-scale forecast in place of the local grid cell prediction.

  2. The Impact of Implementing a Demand Forecasting System into a Low-Income Country’s Supply Chain

    PubMed Central

    Mueller, Leslie E.; Haidari, Leila A.; Wateska, Angela R.; Phillips, Roslyn J.; Schmitz, Michelle M.; Connor, Diana L.; Norman, Bryan A.; Brown, Shawn T.; Welling, Joel S.; Lee, Bruce Y.

    2016-01-01

    OBJECTIVE To evaluate the potential impact and value of applications (e.g., ordering levels, storage capacity, transportation capacity, distribution frequency) of data from demand forecasting systems implemented in a lower-income country’s vaccine supply chain with different levels of population change to urban areas. MATERIALS AND METHODS Using our software, HERMES, we generated a detailed discrete event simulation model of Niger’s entire vaccine supply chain, including every refrigerator, freezer, transport, personnel, vaccine, cost, and location. We represented the introduction of a demand forecasting system to adjust vaccine ordering that could be implemented with increasing delivery frequencies and/or additions of cold chain equipment (storage and/or transportation) across the supply chain during varying degrees of population movement. RESULTS Implementing demand forecasting system with increased storage and transport frequency increased the number of successfully administered vaccine doses and lowered the logistics cost per dose up to 34%. Implementing demand forecasting system without storage/transport increases actually decreased vaccine availability in certain circumstances. DISCUSSION The potential maximum gains of a demand forecasting system may only be realized if the system is implemented to both augment the supply chain cold storage and transportation. Implementation may have some impact but, in certain circumstances, may hurt delivery. Therefore, implementation of demand forecasting systems with additional storage and transport may be the better approach. Significant decreases in the logistics cost per dose with more administered vaccines support investment in these forecasting systems. CONCLUSION Demand forecasting systems have the potential to greatly improve vaccine demand fulfillment, and decrease logistics cost/dose when implemented with storage and transportation increases direct vaccines. Simulation modeling can demonstrate the potential health and economic benefits of supply chain improvements. PMID:27219341

  3. The impact of implementing a demand forecasting system into a low-income country's supply chain.

    PubMed

    Mueller, Leslie E; Haidari, Leila A; Wateska, Angela R; Phillips, Roslyn J; Schmitz, Michelle M; Connor, Diana L; Norman, Bryan A; Brown, Shawn T; Welling, Joel S; Lee, Bruce Y

    2016-07-12

    To evaluate the potential impact and value of applications (e.g. adjusting ordering levels, storage capacity, transportation capacity, distribution frequency) of data from demand forecasting systems implemented in a lower-income country's vaccine supply chain with different levels of population change to urban areas. Using our software, HERMES, we generated a detailed discrete event simulation model of Niger's entire vaccine supply chain, including every refrigerator, freezer, transport, personnel, vaccine, cost, and location. We represented the introduction of a demand forecasting system to adjust vaccine ordering that could be implemented with increasing delivery frequencies and/or additions of cold chain equipment (storage and/or transportation) across the supply chain during varying degrees of population movement. Implementing demand forecasting system with increased storage and transport frequency increased the number of successfully administered vaccine doses and lowered the logistics cost per dose up to 34%. Implementing demand forecasting system without storage/transport increases actually decreased vaccine availability in certain circumstances. The potential maximum gains of a demand forecasting system may only be realized if the system is implemented to both augment the supply chain cold storage and transportation. Implementation may have some impact but, in certain circumstances, may hurt delivery. Therefore, implementation of demand forecasting systems with additional storage and transport may be the better approach. Significant decreases in the logistics cost per dose with more administered vaccines support investment in these forecasting systems. Demand forecasting systems have the potential to greatly improve vaccine demand fulfilment, and decrease logistics cost/dose when implemented with storage and transportation increases. Simulation modeling can demonstrate the potential health and economic benefits of supply chain improvements. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Application of Satellite Frost Forecast Technology to Other Parts of the United States Phase II: Introduction

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The history and status of University of Michigan and University of Pennsylvania involvement in determining if P-model for front prediction used in Florida is applicable to those geographic locations is reviewed. The possibility of using the S-model to develop a satellite front forecast system that can recall the distribution of temperatures during previous freezes from a particular area and bring that cold climate climatology to bear on present forecasts is discussed as well as a proposed GOES satellite downlink system to sectionalize the data used in Florida.

  5. The ALADIN System and its canonical model configurations AROME CY41T1 and ALARO CY40T1

    NASA Astrophysics Data System (ADS)

    Termonia, Piet; Fischer, Claude; Bazile, Eric; Bouyssel, François; Brožková, Radmila; Bénard, Pierre; Bochenek, Bogdan; Degrauwe, Daan; Derková, Mariá; El Khatib, Ryad; Hamdi, Rafiq; Mašek, Ján; Pottier, Patricia; Pristov, Neva; Seity, Yann; Smolíková, Petra; Španiel, Oldřich; Tudor, Martina; Wang, Yong; Wittmann, Christoph; Joly, Alain

    2018-01-01

    The ALADIN System is a numerical weather prediction (NWP) system developed by the international ALADIN consortium for operational weather forecasting and research purposes. It is based on a code that is shared with the global model IFS of the ECMWF and the ARPEGE model of Météo-France. Today, this system can be used to provide a multitude of high-resolution limited-area model (LAM) configurations. A few configurations are thoroughly validated and prepared to be used for the operational weather forecasting in the 16 partner institutes of this consortium. These configurations are called the ALADIN canonical model configurations (CMCs). There are currently three CMCs: the ALADIN baseline CMC, the AROME CMC and the ALARO CMC. Other configurations are possible for research, such as process studies and climate simulations. The purpose of this paper is (i) to define the ALADIN System in relation to the global counterparts IFS and ARPEGE, (ii) to explain the notion of the CMCs, (iii) to document their most recent versions, and (iv) to illustrate the process of the validation and the porting of these configurations to the operational forecast suites of the partner institutes of the ALADIN consortium. This paper is restricted to the forecast model only; data assimilation techniques and postprocessing techniques are part of the ALADIN System but they are not discussed here.

  6. A Satellite Frost Forecasting System for Florida

    NASA Technical Reports Server (NTRS)

    Martsolf, J. D.

    1981-01-01

    Since the first of two minicomputers that are the main components of the satellite frost forecast system was delivered in 1977, the system has evolved appreciably. A geostationary operational environmental satellite (GOES) system provides the satellite data. The freeze of January 12-14, 1981, was documented with increasing interest in potential of such systems. Satellite data is now acquired digitally rather than by redigitizing the GOES-Tap transmissions. Data acquisition is now automated, i.e., the computers are programmed to operate the system with little, if any, operation intervention.

  7. Sources of Wind Variability at a Single Station in Complex Terrain During Tropical Cyclone Passage

    DTIC Science & Technology

    2013-12-01

    Mesoscale Prediction System CPA Closest point of approach ET Extratropical transition FNMOC Fleet Numerical Meteorology and Oceanography Center...forecasts. However, 2 the TC forecast tracks and warnings they issue necessarily focus on the large-scale structure of the storm , and are not...winds at one station. Also, this technique is a storm - centered forecast and even if the grid spacing is on order of one kilometer, it is unlikely

  8. Assessing the viability of `over-the-loop' real-time short-to-medium range ensemble streamflow forecasts

    NASA Astrophysics Data System (ADS)

    Wood, A. W.; Clark, E.; Mendoza, P. A.; Nijssen, B.; Newman, A. J.; Clark, M. P.; Arnold, J.; Nowak, K. C.

    2016-12-01

    Many if not most national operational short-to-medium range streamflow prediction systems rely on a forecaster-in-the-loop approach in which some parts of the forecast workflow are automated, but others require the hands-on-effort of an experienced human forecaster. This approach evolved out of the need to correct for deficiencies in the models and datasets that were available for forecasting, and often leads to skillful predictions despite the use of relatively simple, conceptual models. On the other hand, the process is not reproducible, which limits opportunities to assess and incorporate process variations, and the effort required to make forecasts in this way is an obstacle to expanding forecast services - e.g., though adding new forecast locations or more frequent forecast updates, running more complex models, or producing forecast ensembles and hindcasts that can support verification. In the last decade, the hydrologic forecasting community has begun to develop more centralized, `over-the-loop' systems. The quality of these new forecast products will depend on their ability to leverage research in areas including earth system modeling, parameter estimation, data assimilation, statistical post-processing, weather and climate prediction, verification, and uncertainty estimation through the use of ensembles. Currently, the operational streamflow forecasting and water management communities have little experience with the strengths and weaknesses of over-the-loop approaches, even as the systems are being rolled out in major operational forecasting centers. There is thus a need both to evaluate these forecasting advances and to demonstrate their potential in a public arena, raising awareness in forecast user communities and development programs alike. To address this need, the National Center for Atmospheric Research is collaborating with the University of Washington, the Bureau of Reclamation and the US Army Corps of Engineers, using the NCAR 'System for Hydromet Analysis, Research, and Prediction' (SHARP) to implement, assess and demonstrate real-time over-the-loop forecasts. We present early hindcast and verification results from SHARP for short to medium range streamflow forecasts in a number of US case study watersheds.

  9. Science in 60 - The Forecast Calls for Flu

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Del Valle, Sara

    What if we could forecast infectious diseases the same way we forecast the weather, and predict how diseases like Dengue, Typhus, or Zika were going to spread? Using real-time data from Wikipedia and social media, Sara Del Valle and her team from Los Alamos National Laboratory have developed a global disease-forecasting system that will improve the way we respond to epidemics. Using this model, individuals and public health officials can monitor disease incidence and implement strategies — such as vaccination campaigns, communicating to the public and allocating resources — to stay one step ahead of infectious disease spread.

  10. Mixed Single/Double Precision in OpenIFS: A Detailed Study of Energy Savings, Scaling Effects, Architectural Effects, and Compilation Effects

    NASA Astrophysics Data System (ADS)

    Fagan, Mike; Dueben, Peter; Palem, Krishna; Carver, Glenn; Chantry, Matthew; Palmer, Tim; Schlacter, Jeremy

    2017-04-01

    It has been shown that a mixed precision approach that judiciously replaces double precision with single precision calculations can speed-up global simulations. In particular, a mixed precision variation of the Integrated Forecast System (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF) showed virtually the same quality model results as the standard double precision version (Vana et al., Single precision in weather forecasting models: An evaluation with the IFS, Monthly Weather Review, in print). In this study, we perform detailed measurements of savings in computing time and energy using a mixed precision variation of the -OpenIFS- model. The mixed precision variation of OpenIFS is analogous to the IFS variation used in Vana et al. We (1) present results for energy measurements for simulations in single and double precision using Intel's RAPL technology, (2) conduct a -scaling- study to quantify the effects that increasing model resolution has on both energy dissipation and computing cycles, (3) analyze the differences between single core and multicore processing, and (4) compare the effects of different compiler technologies on the mixed precision OpenIFS code. In particular, we compare intel icc/ifort with gnu gcc/gfortran.

  11. Impact of scatterometer wind (ASCAT-A/B) data assimilation on semi real-time forecast system at KIAPS

    NASA Astrophysics Data System (ADS)

    Han, H. J.; Kang, J. H.

    2016-12-01

    Since Jul. 2015, KIAPS (Korea Institute of Atmospheric Prediction Systems) has been performing the semi real-time forecast system to assess the performance of their forecast system as a NWP model. KPOP (KIAPS Protocol for Observation Processing) is a part of KIAPS data assimilation system and has been performing well in KIAPS semi real-time forecast system. In this study, due to the fact that KPOP would be able to treat the scatterometer wind data, we analyze the effect of scatterometer wind (ASCAT-A/B) on KIAPS semi real-time forecast system. O-B global distribution and statistics of scatterometer wind give use two information which are the difference between background field and observation is not too large and KPOP processed the scatterometer wind data well. The changes of analysis increment because of O-B global distribution appear remarkably at the bottom of atmospheric field. It also shows that scatterometer wind data cover wide ocean where data would be able to short. Performance of scatterometer wind data can be checked through the vertical error reduction against IFS between background and analysis field and vertical statistics of O-A. By these analysis result, we can notice that scatterometer wind data will influence the positive effect on lower level performance of semi real-time forecast system at KIAPS. After, long-term result based on effect of scatterometer wind data will be analyzed.

  12. Evaluations of Extended-Range tropical Cyclone Forecasts in the Western North Pacific by using the Ensemble Reforecasts: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Tsai, Hsiao-Chung; Chen, Pang-Cheng; Elsberry, Russell L.

    2017-04-01

    The objective of this study is to evaluate the predictability of the extended-range forecasts of tropical cyclone (TC) in the western North Pacific using reforecasts from National Centers for Environmental Prediction (NCEP) Global Ensemble Forecast System (GEFS) during 1996-2015, and from the Climate Forecast System (CFS) during 1999-2010. Tsai and Elsberry have demonstrated that an opportunity exists to support hydrological operations by using the extended-range TC formation and track forecasts in the western North Pacific from the ECMWF 32-day ensemble. To demonstrate this potential for the decision-making processes regarding water resource management and hydrological operation in Taiwan reservoir watershed areas, special attention is given to the skill of the NCEP GEFS and CFS models in predicting the TCs affecting the Taiwan area. The first objective of this study is to analyze the skill of NCEP GEFS and CFS TC forecasts and quantify the forecast uncertainties via verifications of categorical binary forecasts and probabilistic forecasts. The second objective is to investigate the relationships among the large-scale environmental factors [e.g., El Niño Southern Oscillation (ENSO), Madden-Julian Oscillation (MJO), etc.] and the model forecast errors by using the reforecasts. Preliminary results are indicating that the skill of the TC activity forecasts based on the raw forecasts can be further improved if the model biases are minimized by utilizing these reforecasts.

  13. The Value of Humans in the Operational River Forecasting Enterprise

    NASA Astrophysics Data System (ADS)

    Pagano, T. C.

    2012-04-01

    The extent of human control over operational river forecasts, such as by adjusting model inputs and outputs, varies from nearly completely automated systems to those where forecasts are generated after discussion among a group of experts. Historical and realtime data availability, the complexity of hydrologic processes, forecast user needs, and forecasting institution support/resource availability (e.g. computing power, money for model maintenance) influence the character and effectiveness of operational forecasting systems. Automated data quality algorithms, if used at all, are typically very basic (e.g. checks for impossible values); substantial human effort is devoted to cleaning up forcing data using subjective methods. Similarly, although it is an active research topic, nearly all operational forecasting systems struggle to make quantitative use of Numerical Weather Prediction model-based precipitation forecasts, instead relying on the assessment of meteorologists. Conversely, while there is a strong tradition in meteorology of making raw model outputs available to forecast users via the Internet, this is rarely done in hydrology; Operational river forecasters express concerns about exposing users to raw guidance, due to the potential for misinterpretation and misuse. However, this limits the ability of users to build their confidence in operational products through their own value-added analyses. Forecasting agencies also struggle with provenance (i.e. documenting the production process and archiving the pieces that went into creating a forecast) although this is necessary for quantifying the benefits of human involvement in forecasting and diagnosing weak links in the forecasting chain. In hydrology, the space between model outputs and final operational products is nearly unstudied by the academic community, although some studies exist in other fields such as meteorology.

  14. Improved regional water management utilizing climate forecasts: An interbasin transfer model with a risk management framework

    NASA Astrophysics Data System (ADS)

    Li, Weihua; Sankarasubramanian, A.; Ranjithan, R. S.; Brill, E. D.

    2014-08-01

    Regional water supply systems undergo surplus and deficit conditions due to differences in inflow characteristics as well as due to their seasonal demand patterns. This study proposes a framework for regional water management by proposing an interbasin transfer (IBT) model that uses climate-information-based inflow forecast for minimizing the deviations from the end-of-season target storage across the participating pools. Using the ensemble streamflow forecast, the IBT water allocation model was applied for two reservoir systems in the North Carolina Triangle Area. Results show that interbasin transfers initiated by the ensemble streamflow forecast could potentially improve the overall water supply reliability as the demand continues to grow in the Triangle Area. To further understand the utility of climate forecasts in facilitating IBT under different spatial correlation structures between inflows and between the initial storages of the two systems, a synthetic experiment was designed to evaluate the framework under inflow forecast having different skills. Findings from the synthetic study can be summarized as follows: (a) inflow forecasts combined with the proposed IBT optimization model provide improved allocation in comparison to the allocations obtained under the no-transfer scenario as well as under transfers obtained with climatology; (b) spatial correlations between inflows and between initial storages among participating reservoirs could also influence the potential benefits that could be achieved through IBT; (c) IBT is particularly beneficial for systems that experience low correlations between inflows or between initial storages or on both attributes of the regional water supply system. Thus, if both infrastructure and permitting structures exist for promoting interbasin transfers, season-ahead inflow forecasts could provide added benefits in forecasting surplus/deficit conditions among the participating pools in the regional water supply system.

  15. Improved Regional Water Management Utilizing Climate Forecasts: An Inter-basin Transfer Model with a Risk Management Framework

    NASA Astrophysics Data System (ADS)

    Li, W.; Arumugam, S.; Ranjithan, R. S.; Brill, E. D., Jr.

    2014-12-01

    Regional water supply systems undergo surplus and deficit conditions due to differences in inflow characteristics as well as due to their seasonal demand patterns. This study presents a framework for regional water management by proposing an Inter-Basin Transfer (IBT) model that uses climate-information-based inflow forecast for minimizing the deviations from the end- of-season target storage across the participating reservoirs. Using the ensemble streamflow forecast, the IBT water allocation model was applied for two reservoir systems in the North Carolina Triangle area. Results show that inter-basin transfers initiated by the ensemble streamflow forecast could potentially improve the overall water supply reliability as the demand continues to grow in the Triangle Area. To further understand the utility of climate forecasts in facilitating IBT under different spatial correlation structures between inflows and between the initial storages of the two systems, a synthetic experiment was designed to evaluate the framework under inflow forecast having different skills. Findings from the synthetic study can be summarized as follows: (a) Inflow forecasts combined with the proposed IBT optimization model provide improved allocation in comparison to the allocations obtained under the no- transfer scenario as well as under transfers obtained with climatology; (b) Spatial correlations between inflows and between initial storages among participating reservoirs could also influence the potential benefits that could be achieved through IBT; (c) IBT is particularly beneficial for systems that experience low correlations between inflows or between initial storages or on both attributes of the regional water supply system. Thus, if both infrastructure and permitting structures exist for promoting inter-basin transfers, season-ahead inflow forecasts could provide added benefits in forecasting surplus/deficit conditions among the participating reservoirs in the regional water supply system.

  16. Projections of global health outcomes from 2005 to 2060 using the International Futures integrated forecasting model

    PubMed Central

    Hughes, Barry B; Peterson, Cecilia M; Rothman, Dale S; Solórzano, José R; Mathers, Colin D; Dickson, Janet R

    2011-01-01

    Abstract Objective To develop an integrated health forecasting model as part of the International Futures (IFs) modelling system. Methods The IFs model begins with the historical relationships between economic and social development and cause-specific mortality used by the Global Burden of Disease project but builds forecasts from endogenous projections of these drivers by incorporating forward linkages from health outcomes back to inputs like population and economic growth. The hybrid IFs system adds alternative structural formulations for causes not well served by regression models and accounts for changes in proximate health risk factors. Forecasts are made to 2100 but findings are reported to 2060. Findings The base model projects that deaths from communicable diseases (CDs) will decline by 50%, whereas deaths from both non-communicable diseases (NCDs) and injuries will more than double. Considerable cross-national convergence in life expectancy will occur. Climate-induced fluctuations in agricultural yield will cause little excess childhood mortality from CDs, although other climate−health pathways were not explored. An optimistic scenario will produce 39 million fewer deaths in 2060 than a pessimistic one. Our forward linkage model suggests that an optimistic scenario would result in a 20% per cent increase in gross domestic product (GDP) per capita, despite one billion additional people. Southern Asia would experience the greatest relative mortality reduction and the largest resulting benefit in per capita GDP. Conclusion Long-term, integrated health forecasting helps us understand the links between health and other markers of human progress and offers powerful insight into key points of leverage for future improvements. PMID:21734761

  17. Projections of global health outcomes from 2005 to 2060 using the International Futures integrated forecasting model.

    PubMed

    Hughes, Barry B; Kuhn, Randall; Peterson, Cecilia M; Rothman, Dale S; Solórzano, José R; Mathers, Colin D; Dickson, Janet R

    2011-07-01

    To develop an integrated health forecasting model as part of the International Futures (IFs) modelling system. The IFs model begins with the historical relationships between economic and social development and cause-specific mortality used by the Global Burden of Disease project but builds forecasts from endogenous projections of these drivers by incorporating forward linkages from health outcomes back to inputs like population and economic growth. The hybrid IFs system adds alternative structural formulations for causes not well served by regression models and accounts for changes in proximate health risk factors. Forecasts are made to 2100 but findings are reported to 2060. The base model projects that deaths from communicable diseases (CDs) will decline by 50%, whereas deaths from both non-communicable diseases (NCDs) and injuries will more than double. Considerable cross-national convergence in life expectancy will occur. Climate-induced fluctuations in agricultural yield will cause little excess childhood mortality from CDs, although other climate-health pathways were not explored. An optimistic scenario will produce 39 million fewer deaths in 2060 than a pessimistic one. Our forward linkage model suggests that an optimistic scenario would result in a 20% per cent increase in gross domestic product (GDP) per capita, despite one billion additional people. Southern Asia would experience the greatest relative mortality reduction and the largest resulting benefit in per capita GDP. Long-term, integrated health forecasting helps us understand the links between health and other markers of human progress and offers powerful insight into key points of leverage for future improvements.

  18. Ensemble-sensitivity Analysis Based Observation Targeting for Mesoscale Convection Forecasts and Factors Influencing Observation-Impact Prediction

    NASA Astrophysics Data System (ADS)

    Hill, A.; Weiss, C.; Ancell, B. C.

    2017-12-01

    The basic premise of observation targeting is that additional observations, when gathered and assimilated with a numerical weather prediction (NWP) model, will produce a more accurate forecast related to a specific phenomenon. Ensemble-sensitivity analysis (ESA; Ancell and Hakim 2007; Torn and Hakim 2008) is a tool capable of accurately estimating the proper location of targeted observations in areas that have initial model uncertainty and large error growth, as well as predicting the reduction of forecast variance due to the assimilated observation. ESA relates an ensemble of NWP model forecasts, specifically an ensemble of scalar forecast metrics, linearly to earlier model states. A thorough investigation is presented to determine how different factors of the forecast process are impacting our ability to successfully target new observations for mesoscale convection forecasts. Our primary goals for this work are to determine: (1) If targeted observations hold more positive impact over non-targeted (i.e. randomly chosen) observations; (2) If there are lead-time constraints to targeting for convection; (3) How inflation, localization, and the assimilation filter influence impact prediction and realized results; (4) If there exist differences between targeted observations at the surface versus aloft; and (5) how physics errors and nonlinearity may augment observation impacts.Ten cases of dryline-initiated convection between 2011 to 2013 are simulated within a simplified OSSE framework and presented here. Ensemble simulations are produced from a cycling system that utilizes the Weather Research and Forecasting (WRF) model v3.8.1 within the Data Assimilation Research Testbed (DART). A "truth" (nature) simulation is produced by supplying a 3-km WRF run with GFS analyses and integrating the model forward 90 hours, from the beginning of ensemble initialization through the end of the forecast. Target locations for surface and radiosonde observations are computed 6, 12, and 18 hours into the forecast based on a chosen scalar forecast response metric (e.g., maximum reflectivity at convection initiation). A variety of experiments are designed to achieve the aforementioned goals and will be presented, along with their results, detailing the feasibility of targeting for mesoscale convection forecasts.

  19. Real-time prediction of atmospheric Lagrangian coherent structures based on forecast data: An application and error analysis

    NASA Astrophysics Data System (ADS)

    BozorgMagham, Amir E.; Ross, Shane D.; Schmale, David G.

    2013-09-01

    The language of Lagrangian coherent structures (LCSs) provides a new means for studying transport and mixing of passive particles advected by an atmospheric flow field. Recent observations suggest that LCSs govern the large-scale atmospheric motion of airborne microorganisms, paving the way for more efficient models and management strategies for the spread of infectious diseases affecting plants, domestic animals, and humans. In addition, having reliable predictions of the timing of hyperbolic LCSs may contribute to improved aerobiological sampling of microorganisms with unmanned aerial vehicles and LCS-based early warning systems. Chaotic atmospheric dynamics lead to unavoidable forecasting errors in the wind velocity field, which compounds errors in LCS forecasting. In this study, we reveal the cumulative effects of errors of (short-term) wind field forecasts on the finite-time Lyapunov exponent (FTLE) fields and the associated LCSs when realistic forecast plans impose certain limits on the forecasting parameters. Objectives of this paper are to (a) quantify the accuracy of prediction of FTLE-LCS features and (b) determine the sensitivity of such predictions to forecasting parameters. Results indicate that forecasts of attracting LCSs exhibit less divergence from the archive-based LCSs than the repelling features. This result is important since attracting LCSs are the backbone of long-lived features in moving fluids. We also show under what circumstances one can trust the forecast results if one merely wants to know if an LCS passed over a region and does not need to precisely know the passage time.

  20. Science in 60 - The Forecast Calls for Flu

    ScienceCinema

    Del Valle, Sara

    2018-05-21

    What if we could forecast infectious diseases the same way we forecast the weather, and predict how diseases like Dengue, Typhus, or Zika were going to spread? Using real-time data from Wikipedia and social media, Sara Del Valle and her team from Los Alamos National Laboratory have developed a global disease-forecasting system that will improve the way we respond to epidemics. Using this model, individuals and public health officials can monitor disease incidence and implement strategies — such as vaccination campaigns, communicating to the public and allocating resources — to stay one step ahead of infectious disease spread.

  1. Statistical evaluation of forecasts

    NASA Astrophysics Data System (ADS)

    Mader, Malenka; Mader, Wolfgang; Gluckman, Bruce J.; Timmer, Jens; Schelter, Björn

    2014-08-01

    Reliable forecasts of extreme but rare events, such as earthquakes, financial crashes, and epileptic seizures, would render interventions and precautions possible. Therefore, forecasting methods have been developed which intend to raise an alarm if an extreme event is about to occur. In order to statistically validate the performance of a prediction system, it must be compared to the performance of a random predictor, which raises alarms independent of the events. Such a random predictor can be obtained by bootstrapping or analytically. We propose an analytic statistical framework which, in contrast to conventional methods, allows for validating independently the sensitivity and specificity of a forecasting method. Moreover, our method accounts for the periods during which an event has to remain absent or occur after a respective forecast.

  2. Predictability of short-range forecasting: a multimodel approach

    NASA Astrophysics Data System (ADS)

    García-Moya, Jose-Antonio; Callado, Alfons; Escribà, Pau; Santos, Carlos; Santos-Muñoz, Daniel; Simarro, Juan

    2011-05-01

    Numerical weather prediction (NWP) models (including mesoscale) have limitations when it comes to dealing with severe weather events because extreme weather is highly unpredictable, even in the short range. A probabilistic forecast based on an ensemble of slightly different model runs may help to address this issue. Among other ensemble techniques, Multimodel ensemble prediction systems (EPSs) are proving to be useful for adding probabilistic value to mesoscale deterministic models. A Multimodel Short Range Ensemble Prediction System (SREPS) focused on forecasting the weather up to 72 h has been developed at the Spanish Meteorological Service (AEMET). The system uses five different limited area models (LAMs), namely HIRLAM (HIRLAM Consortium), HRM (DWD), the UM (UKMO), MM5 (PSU/NCAR) and COSMO (COSMO Consortium). These models run with initial and boundary conditions provided by five different global deterministic models, namely IFS (ECMWF), UM (UKMO), GME (DWD), GFS (NCEP) and CMC (MSC). AEMET-SREPS (AE) validation on the large-scale flow, using ECMWF analysis, shows a consistent and slightly underdispersive system. For surface parameters, the system shows high skill forecasting binary events. 24-h precipitation probabilistic forecasts are verified using an up-scaling grid of observations from European high-resolution precipitation networks, and compared with ECMWF-EPS (EC).

  3. Short-term forecasting of turbidity in trunk main networks.

    PubMed

    Meyers, Gregory; Kapelan, Zoran; Keedwell, Edward

    2017-11-01

    Water discolouration is an increasingly important and expensive issue due to rising customer expectations, tighter regulatory demands and ageing Water Distribution Systems (WDSs) in the UK and abroad. This paper presents a new turbidity forecasting methodology capable of aiding operational staff and enabling proactive management strategies. The turbidity forecasting methodology developed here is completely data-driven and does not require hydraulic or water quality network model that is expensive to build and maintain. The methodology is tested and verified on a real trunk main network with observed turbidity measurement data. Results obtained show that the methodology can detect if discolouration material is mobilised, estimate if sufficient turbidity will be generated to exceed a preselected threshold and approximate how long the material will take to reach the downstream meter. Classification based forecasts of turbidity can be reliably made up to 5 h ahead although at the expense of increased false alarm rates. The methodology presented here could be used as an early warning system that can enable a multitude of cost beneficial proactive management strategies to be implemented as an alternative to expensive trunk mains cleaning programs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Three-model ensemble wind prediction in southern Italy

    NASA Astrophysics Data System (ADS)

    Torcasio, Rosa Claudia; Federico, Stefano; Calidonna, Claudia Roberta; Avolio, Elenio; Drofa, Oxana; Landi, Tony Christian; Malguzzi, Piero; Buzzi, Andrea; Bonasoni, Paolo

    2016-03-01

    Quality of wind prediction is of great importance since a good wind forecast allows the prediction of available wind power, improving the penetration of renewable energies into the energy market. Here, a 1-year (1 December 2012 to 30 November 2013) three-model ensemble (TME) experiment for wind prediction is considered. The models employed, run operationally at National Research Council - Institute of Atmospheric Sciences and Climate (CNR-ISAC), are RAMS (Regional Atmospheric Modelling System), BOLAM (BOlogna Limited Area Model), and MOLOCH (MOdello LOCale in H coordinates). The area considered for the study is southern Italy and the measurements used for the forecast verification are those of the GTS (Global Telecommunication System). Comparison with observations is made every 3 h up to 48 h of forecast lead time. Results show that the three-model ensemble outperforms the forecast of each individual model. The RMSE improvement compared to the best model is between 22 and 30 %, depending on the season. It is also shown that the three-model ensemble outperforms the IFS (Integrated Forecasting System) of the ECMWF (European Centre for Medium-Range Weather Forecast) for the surface wind forecasts. Notably, the three-model ensemble forecast performs better than each unbiased model, showing the added value of the ensemble technique. Finally, the sensitivity of the three-model ensemble RMSE to the length of the training period is analysed.

  5. A real-time evaluation and demonstration of strategies for 'Over-The-Loop' ensemble streamflow forecasting in US watersheds

    NASA Astrophysics Data System (ADS)

    Wood, Andy; Clark, Elizabeth; Mendoza, Pablo; Nijssen, Bart; Newman, Andy; Clark, Martyn; Nowak, Kenneth; Arnold, Jeffrey

    2017-04-01

    Many if not most national operational streamflow prediction systems rely on a forecaster-in-the-loop approach that require the hands-on-effort of an experienced human forecaster. This approach evolved from the need to correct for long-standing deficiencies in the models and datasets used in forecasting, and the practice often leads to skillful flow predictions despite the use of relatively simple, conceptual models. Yet the 'in-the-loop' forecast process is not reproducible, which limits opportunities to assess and incorporate new techniques systematically, and the effort required to make forecasts in this way is an obstacle to expanding forecast services - e.g., though adding new forecast locations or more frequent forecast updates, running more complex models, or producing forecast and hindcasts that can support verification. In the last decade, the hydrologic forecasting community has begun develop more centralized, 'over-the-loop' systems. The quality of these new forecast products will depend on their ability to leverage research in areas including earth system modeling, parameter estimation, data assimilation, statistical post-processing, weather and climate prediction, verification, and uncertainty estimation through the use of ensembles. Currently, many national operational streamflow forecasting and water management communities have little experience with the strengths and weaknesses of over-the-loop approaches, even as such systems are beginning to be deployed operationally in centers such as ECMWF. There is thus a need both to evaluate these forecasting advances and to demonstrate their potential in a public arena, raising awareness in forecast user communities and development programs alike. To address this need, the US National Center for Atmospheric Research is collaborating with the University of Washington, the Bureau of Reclamation and the US Army Corps of Engineers, using the NCAR 'System for Hydromet Analysis Research and Prediction Applications' (SHARP) to implement, assess and demonstrate real-time over-the-loop ensemble flow forecasts in a range of US watersheds. The system relies on fully ensemble techniques, including: an 100-member ensemble of meteorological model forcings and an ensemble particle filter data assimilation for initializing watershed states; analog/regression-based downscaling of ensemble weather forecasts from GEFS; and statistical post-processing of ensemble forecast outputs, all of which run in real-time within a workflow managed by ECWMF's ecFlow libraries over large US regional domains. We describe SHARP and present early hindcast and verification results for short to seasonal range streamflow forecasts in a number of US case study watersheds.

  6. Verification of ECMWF System 4 for seasonal hydrological forecasting in a northern climate

    NASA Astrophysics Data System (ADS)

    Bazile, Rachel; Boucher, Marie-Amélie; Perreault, Luc; Leconte, Robert

    2017-11-01

    Hydropower production requires optimal dam and reservoir management to prevent flooding damage and avoid operation losses. In a northern climate, where spring freshet constitutes the main inflow volume, seasonal forecasts can help to establish a yearly strategy. Long-term hydrological forecasts often rely on past observations of streamflow or meteorological data. Another alternative is to use ensemble meteorological forecasts produced by climate models. In this paper, those produced by the ECMWF (European Centre for Medium-Range Forecast) System 4 are examined and bias is characterized. Bias correction, through the linear scaling method, improves the performance of the raw ensemble meteorological forecasts in terms of continuous ranked probability score (CRPS). Then, three seasonal ensemble hydrological forecasting systems are compared: (1) the climatology of simulated streamflow, (2) the ensemble hydrological forecasts based on climatology (ESP) and (3) the hydrological forecasts based on bias-corrected ensemble meteorological forecasts from System 4 (corr-DSP). Simulated streamflow computed using observed meteorological data is used as benchmark. Accounting for initial conditions is valuable even for long-term forecasts. ESP and corr-DSP both outperform the climatology of simulated streamflow for lead times from 1 to 5 months depending on the season and watershed. Integrating information about future meteorological conditions also improves monthly volume forecasts. For the 1-month lead time, a gain exists for almost all watersheds during winter, summer and fall. However, volume forecasts performance for spring varies from one watershed to another. For most of them, the performance is close to the performance of ESP. For longer lead times, the CRPS skill score is mostly in favour of ESP, even if for many watersheds, ESP and corr-DSP have comparable skill. Corr-DSP appears quite reliable but, in some cases, under-dispersion or bias is observed. A more complex bias-correction method should be further investigated to remedy this weakness and take more advantage of the ensemble forecasts produced by the climate model. Overall, in this study, bias-corrected ensemble meteorological forecasts appear to be an interesting source of information for hydrological forecasting for lead times up to 1 month. They could also complement ESP for longer lead times.

  7. Against all odds -- Probabilistic forecasts and decision making

    NASA Astrophysics Data System (ADS)

    Liechti, Katharina; Zappa, Massimiliano

    2015-04-01

    In the city of Zurich (Switzerland) the setting is such that the damage potential due to flooding of the river Sihl is estimated to about 5 billion US dollars. The flood forecasting system that is used by the administration for decision making runs continuously since 2007. It has a time horizon of max. five days and operates at hourly time steps. The flood forecasting system includes three different model chains. Two of those are run by the deterministic NWP models COSMO-2 and COSMO-7 and one is driven by the probabilistic NWP COSMO-Leps. The model chains are consistent since February 2010, so five full years are available for the evaluation for the system. The system was evaluated continuously and is a very nice example to present the added value that lies in probabilistic forecasts. The forecasts are available on an online-platform to the decision makers. Several graphical representations of the forecasts and forecast-history are available to support decision making and to rate the current situation. The communication between forecasters and decision-makers is quite close. To put it short, an ideal situation. However, an event or better put a non-event in summer 2014 showed that the knowledge about the general superiority of probabilistic forecasts doesn't necessarily mean that the decisions taken in a specific situation will be based on that probabilistic forecast. Some years of experience allow gaining confidence in the system, both for the forecasters and for the decision-makers. Even if from the theoretical point of view the handling during crisis situation is well designed, a first event demonstrated that the dialog with the decision-makers still lacks of exercise during such situations. We argue, that a false alarm is a needed experience to consolidate real-time emergency procedures relying on ensemble predictions. A missed event would probably also fit, but, in our case, we are very happy not to report about this option.

  8. Optimising seasonal streamflow forecast lead time for operational decision making in Australia

    NASA Astrophysics Data System (ADS)

    Schepen, Andrew; Zhao, Tongtiegang; Wang, Q. J.; Zhou, Senlin; Feikema, Paul

    2016-10-01

    Statistical seasonal forecasts of 3-month streamflow totals are released in Australia by the Bureau of Meteorology and updated on a monthly basis. The forecasts are often released in the second week of the forecast period, due to the onerous forecast production process. The current service relies on models built using data for complete calendar months, meaning the forecast production process cannot begin until the first day of the forecast period. Somehow, the bureau needs to transition to a service that provides forecasts before the beginning of the forecast period; timelier forecast release will become critical as sub-seasonal (monthly) forecasts are developed. Increasing the forecast lead time to one month ahead is not considered a viable option for Australian catchments that typically lack any predictability associated with snowmelt. The bureau's forecasts are built around Bayesian joint probability models that have antecedent streamflow, rainfall and climate indices as predictors. In this study, we adapt the modelling approach so that forecasts have any number of days of lead time. Daily streamflow and sea surface temperatures are used to develop predictors based on 28-day sliding windows. Forecasts are produced for 23 forecast locations with 0-14- and 21-day lead time. The forecasts are assessed in terms of continuous ranked probability score (CRPS) skill score and reliability metrics. CRPS skill scores, on average, reduce monotonically with increase in days of lead time, although both positive and negative differences are observed. Considering only skilful forecast locations, CRPS skill scores at 7-day lead time are reduced on average by 4 percentage points, with differences largely contained within +5 to -15 percentage points. A flexible forecasting system that allows for any number of days of lead time could benefit Australian seasonal streamflow forecast users by allowing more time for forecasts to be disseminated, comprehended and made use of prior to the commencement of a forecast season. The system would allow for forecasts to be updated if necessary.

  9. Minimum Energy Routing through Interactive Techniques (MERIT) modeling

    NASA Technical Reports Server (NTRS)

    Wylie, Donald P.

    1988-01-01

    The MERIT program is designed to demonstrate the feasibility of fuel savings by airlines through improved route selection using wind observations from their own fleet. After a discussion of weather and aircraft data, manually correcting wind fields, automatic corrections to wind fields, and short-range prediction models, it is concluded that improvements in wind information are possible if a system is developed for analyzing wind observations and correcting the forecasts made by the major models. One data handling system, McIDAS, can easily collect and display wind observations and model forecasts. Changing the wind forecasts beyond the time of the most recent observations is more difficult; an Australian Mesoscale Model was tested with promising but not definitive results.

  10. An Evaluation of Northern Hemisphere Merged Cloud Analyses from the United States Air Force Cloud Depiction Forecasting System II

    DTIC Science & Technology

    2013-03-01

    layering and typing to provide a vertical stratification of the cloud-filled pixels detected in Level 2. Level 3 output is remapped to the standard AFWA...analyses are compared to one another to see if the most recent analysis also has the lowest estimated error. Optimum interpolation (OI) occurs when...NORTHERN HEMISPHERE MERGED CLOUD ANALYSES FROM THE UNITED STATES AIR FORCE CLOUD DEPICTION FORECASTING SYSTEM II by Chandra M. Pasillas March

  11. Preliminary Cost Benefit Assessment of Systems for Detection of Hazardous Weather. Volume I,

    DTIC Science & Technology

    1981-07-01

    not be sufficient for adequate stream flow forecasting , it has important potential for real - time flash flood warning. This was illustrated by the 1977...provide a finer spatial resolution of the gridded data. See Table 9. 42 The results of a demonstration of the real - time capabilities of a radar-man system ...detailed real time measurement capabilities and scope for quantitative forecasting is most likely to provide the degree of lead time required if maximum

  12. Sustainable Odds

    NASA Astrophysics Data System (ADS)

    Smith, L. A.

    2016-12-01

    While probability forecasting has many philosophical and mathematical attractions, it is something of a dishonest nonsense if acting on such forecasts is expected to lead to rapid ruin. Model-based probabilities, when interpreted as actionable, are shown to lead to the rapid ruin of a cooperative entity offering odds interpreting the probability forecasts at face value. Arguably, these odds would not be considered "fair", but inasmuch as some definitions of "fair odds" include this case, this presentation will focus on "sustainable odds": Odds which are not expected to lead to the rapid ruin of the cooperative under the assumption that those placing bets have no information beyond that available to the forecast system. It is argued that sustainable odds will not correspond to probabilities outside the Perfect Model Scenario, that the "implied probabilities" determined from sustainable odds will always sum to more than one, and that the excess of this sum over one reflects the skill of the forecast system, being a quantitative measure of structural model error.

  13. Assessing skill of a global bimonthly streamflow ensemble prediction system

    NASA Astrophysics Data System (ADS)

    van Dijk, A. I.; Peña-Arancibia, J.; Sheffield, J.; Wood, E. F.

    2011-12-01

    Ideally, a seasonal streamflow forecasting system might be conceived of as a system that ingests skillful climate forecasts from general circulation models and propagates these through thoroughly calibrated hydrological models that are initialised using hydrometric observations. In practice, there are practical problems with each of these aspects. Instead, we analysed whether a comparatively simple hydrological model-based Ensemble Prediction System (EPS) can provide global bimonthly streamflow forecasts with some skill and if so, under what circumstances the greatest skill may be expected. The system tested produces ensemble forecasts for each of six annual bimonthly periods based on the previous 30 years of global daily gridded 1° resolution climate variables and an initialised global hydrological model. To incorporate some of the skill derived from ocean conditions, a post-EPS analog method was used to sample from the ensemble based on El Niño Southern Oscillation (ENSO), Indian Ocean Dipole (IOD), North Atlantic Oscillation (NAO) and Pacific Decadal Oscillation (PDO) index values observed prior to the forecast. Forecasts skill was assessed through a hind-casting experiment for the period 1979-2008. Potential skill was calculated with reference to a model run with the actual forcing for the forecast period (the 'perfect' model) and was compared to actual forecast skill calculated for each of the six forecast times for an average 411 Australian and 51 pan-tropical catchments. Significant potential skill in bimonthly forecasts was largely limited to northern regions during the snow melt period, seasonally wet tropical regions at the transition of wet to dry season, and the Indonesian region where rainfall is well correlated to ENSO. The actual skill was approximately 34-50% of the potential skill. We attribute this primarily to limitations in the model structure, parameterisation and global forcing data. Use of better climate forecasts and remote sensing observations of initial catchment conditions should help to increase actual skill in future. Future work also could address the potential skill gain from using weather and climate forecasts and from a calibrated and/or alternative hydrological model or model ensemble. The approach and data might be useful as a benchmark for joint seasonal forecasting experiments planned under GEWEX.

  14. A computerized system to measure and predict air quality for emission control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crooks, G.; Ciccone, A.; Frattolillo, P.

    1997-12-31

    A Supplementary Emission Control (SEC) system has been developed on behalf of the Association Industrielle de l`Est de Montreal (AIEM). The objective of the SEC is to avoid exceedences of the Montreal Urban Community (MUC) 24 hour ambient Air Quality Standard (AQS) for sulphur dioxide in the industrial East Montreal area. The SEC system is comprised of: 3 continuous SO{sub 2} monitoring stations with data loggers and remote communications; a meteorological tower with data logger and modem for acquiring local meteorology; communications with Environment Canada to download meteorological forecast data; a polling PC for data retrieval; and Windows NT basedmore » software running on the AIEM computer server. The SEC software utilizes relational databases to store and maintain measured SO{sub 2} concentration data, emission data, as well as observed and forecast meteorological data. The SEC system automatically executes a numerical dispersion model to forecast SO{sub 2} concentrations up to six hours in the future. Based on measured SO{sub 2} concentrations at the monitoring stations and the six hour forecast concentrations, the system determines if local sources should reduce their emission levels to avoid potential exceedences of the AQS. The SEC system also includes a Graphical User Interface (GUI) for user access to the system. The SEC system and software are described, and the accuracy of the system at forecasting SO{sub 2} concentrations is examined.« less

  15. Test operation of a real-time tsunami inundation forecast system using actual data observed by S-net

    NASA Astrophysics Data System (ADS)

    Suzuki, W.; Yamamoto, N.; Miyoshi, T.; Aoi, S.

    2017-12-01

    If the tsunami inundation information can be rapidly and stably forecast before the large tsunami attacks, the information would have effectively people realize the impeding danger and necessity of evacuation. Toward that goal, we have developed a prototype system to perform the real-time tsunami inundation forecast for Chiba prefecture, eastern Japan, using off-shore ocean bottom pressure data observed by the seafloor observation network for earthquakes and tsunamis along the Japan Trench (S-net) (Aoi et al., 2015, AGU). Because tsunami inundation simulation requires a large computation cost, we employ a database approach searching the pre-calculated tsunami scenarios that reasonably explain the observed S-net pressure data based on the multi-index method (Yamamoto et al., 2016, EPS). The scenario search is regularly repeated, not triggered by the occurrence of the tsunami event, and the forecast information is generated from the selected scenarios that meet the criterion. Test operation of the prototype system using the actual observation data started in April, 2017 and the performance and behavior of the system during non-tsunami event periods have been examined. It is found that the treatment of the noises affecting the observed data is the main issue to be solved toward the improvement of the system. Even if the observed pressure data are filtered to extract the tsunami signals, the noises in ordinary times or unusually large noises like high ocean waves due to storm affect the comparison between the observed and scenario data. Due to the noises, the tsunami scenarios are selected and the tsunami is forecast although any tsunami event does not actually occur. In most cases, the selected scenarios due to the noises have the fault models in the region along the Kurile or Izu-Bonin Trenches, far from the S-net region, or the fault models below the land. Based on the parallel operation of the forecast system with a different scenario search condition and examination of the fault models, we improve the stability and performance of the forecast system.This work was supported by Council for Science, Technology and Innovation(CSTI), Cross-ministerial Strategic Innovation Promotion Program (SIP), "Enhancement of societal resiliency against natural disasters"(Funding agency: JST).

  16. Validation of Seasonal Forecast of Indian Summer Monsoon Rainfall

    NASA Astrophysics Data System (ADS)

    Das, Sukanta Kumar; Deb, Sanjib Kumar; Kishtawal, C. M.; Pal, Pradip Kumar

    2015-06-01

    The experimental seasonal forecast of Indian summer monsoon (ISM) rainfall during June through September using Community Atmosphere Model (CAM) version 3 has been carried out at the Space Applications Centre Ahmedabad since 2009. The forecasts, based on a number of ensemble members (ten minimum) of CAM, are generated in several phases and updated on regular basis. On completion of 5 years of experimental seasonal forecasts in operational mode, it is required that the overall validation or correctness of the forecast system is quantified and that the scope is assessed for further improvements of the forecast over time, if any. The ensemble model climatology generated by a set of 20 identical CAM simulations is considered as the model control simulation. The performance of the forecast has been evaluated by assuming the control simulation as the model reference. The forecast improvement factor shows positive improvements, with higher values for the recent forecasted years as compared to the control experiment over the Indian landmass. The Taylor diagram representation of the Pearson correlation coefficient (PCC), standard deviation and centered root mean square difference has been used to demonstrate the best PCC, in the order of 0.74-0.79, recorded for the seasonal forecast made during 2013. Further, the bias score of different phases of experiment revealed the fact that the ISM rainfall forecast is affected by overestimation in predicting the low rain-rate (less than 7 mm/day), but by underestimation in the medium and high rain-rate (higher than 11 mm/day). Overall, the analysis shows significant improvement of the ISM forecast over the last 5 years, viz. 2009-2013, due to several important modifications that have been implemented in the forecast system. The validation exercise has also pointed out a number of shortcomings in the forecast system; these will be addressed in the upcoming years of experiments to improve the quality of the ISM prediction.

  17. Predictability of Solar Radiation for Photovoltaics systems over Europe: from short-term to seasonal time-scales

    NASA Astrophysics Data System (ADS)

    De Felice, Matteo; Petitta, Marcello; Ruti, Paolo

    2014-05-01

    Photovoltaic diffusion is steadily growing on Europe, passing from a capacity of almost 14 GWp in 2011 to 21.5 GWp in 2012 [1]. Having accurate forecast is needed for planning and operational purposes, with the possibility to model and predict solar variability at different time-scales. This study examines the predictability of daily surface solar radiation comparing ECMWF operational forecasts with CM-SAF satellite measurements on the Meteosat (MSG) full disk domain. Operational forecasts used are the IFS system up to 10 days and the System4 seasonal forecast up to three months. Forecast are analysed considering average and variance of errors, showing error maps and average on specific domains with respect to prediction lead times. In all the cases, forecasts are compared with predictions obtained using persistence and state-of-art time-series models. We can observe a wide range of errors, with the performance of forecasts dramatically affected by orography and season. Lower errors are on southern Italy and Spain, with errors on some areas consistently under 10% up to ten days during summer (JJA). Finally, we conclude the study with some insight on how to "translate" the error on solar radiation to error on solar power production using available production data from solar power plants. [1] EurObserver, "Baromètre Photovoltaïque, Le journal des énergies renouvables, April 2012."

  18. Bayesian flood forecasting methods: A review

    NASA Astrophysics Data System (ADS)

    Han, Shasha; Coulibaly, Paulin

    2017-08-01

    Over the past few decades, floods have been seen as one of the most common and largely distributed natural disasters in the world. If floods could be accurately forecasted in advance, then their negative impacts could be greatly minimized. It is widely recognized that quantification and reduction of uncertainty associated with the hydrologic forecast is of great importance for flood estimation and rational decision making. Bayesian forecasting system (BFS) offers an ideal theoretic framework for uncertainty quantification that can be developed for probabilistic flood forecasting via any deterministic hydrologic model. It provides suitable theoretical structure, empirically validated models and reasonable analytic-numerical computation method, and can be developed into various Bayesian forecasting approaches. This paper presents a comprehensive review on Bayesian forecasting approaches applied in flood forecasting from 1999 till now. The review starts with an overview of fundamentals of BFS and recent advances in BFS, followed with BFS application in river stage forecasting and real-time flood forecasting, then move to a critical analysis by evaluating advantages and limitations of Bayesian forecasting methods and other predictive uncertainty assessment approaches in flood forecasting, and finally discusses the future research direction in Bayesian flood forecasting. Results show that the Bayesian flood forecasting approach is an effective and advanced way for flood estimation, it considers all sources of uncertainties and produces a predictive distribution of the river stage, river discharge or runoff, thus gives more accurate and reliable flood forecasts. Some emerging Bayesian forecasting methods (e.g. ensemble Bayesian forecasting system, Bayesian multi-model combination) were shown to overcome limitations of single model or fixed model weight and effectively reduce predictive uncertainty. In recent years, various Bayesian flood forecasting approaches have been developed and widely applied, but there is still room for improvements. Future research in the context of Bayesian flood forecasting should be on assimilation of various sources of newly available information and improvement of predictive performance assessment methods.

  19. The Value of Seasonal Climate Forecasts in Managing Energy Resources.

    NASA Astrophysics Data System (ADS)

    Brown Weiss, Edith

    1982-04-01

    Research and interviews with officials of the United States energy industry and a systems analysis of decision making in a natural gas utility lead to the conclusion that seasonal climate forecasts would only have limited value in fine tuning the management of energy supply, even if the forecasts were more reliable and detailed than at present.On the other hand, reliable forecasts could be useful to state and local governments both as a signal to adopt long-term measures to increase the efficiency of energy use and to initiate short-term measures to reduce energy demand in anticipation of a weather-induced energy crisis.To be useful for these purposes, state governments would need better data on energy demand patterns and available energy supplies, staff competent to interpret climate forecasts, and greater incentive to conserve. The use of seasonal climate forecasts is not likely to be constrained by fear of legal action by those claiming to be injured by a possible incorrect forecast.

  20. Training the next generation of scientists in Weather Forecasting: new approaches with real models

    NASA Astrophysics Data System (ADS)

    Carver, Glenn; Váňa, Filip; Siemen, Stephan; Kertesz, Sandor; Keeley, Sarah

    2014-05-01

    The European Centre for Medium Range Weather Forecasts operationally produce medium range forecasts using what is internationally acknowledged as the world leading global weather forecast model. Future development of this scientifically advanced model relies on a continued availability of experts in the field of meteorological science and with high-level software skills. ECMWF therefore has a vested interest in young scientists and University graduates developing the necessary skills in numerical weather prediction including both scientific and technical aspects. The OpenIFS project at ECMWF maintains a portable version of the ECMWF forecast model (known as IFS) for use in education and research at Universities, National Meteorological Services and other research and education organisations. OpenIFS models can be run on desktop or high performance computers to produce weather forecasts in a similar way to the operational forecasts at ECMWF. ECMWF also provide the Metview desktop application, a modern, graphical, and easy to use tool for analysing and visualising forecasts that is routinely used by scientists and forecasters at ECMWF and other institutions. The combination of Metview with the OpenIFS models has the potential to deliver classroom-friendly tools allowing students to apply their theoretical knowledge to real-world examples using a world-leading weather forecasting model. In this paper we will describe how the OpenIFS model has been used for teaching. We describe the use of Linux based 'virtual machines' pre-packaged on USB sticks that support a technically easy and safe way of providing 'classroom-on-a-stick' learning environments for advanced training in numerical weather prediction. We welcome discussions with interested parties.

  1. The predictability of Iowa's hydroclimate through analog forecasts

    NASA Astrophysics Data System (ADS)

    Rowe, Scott Thomas

    Iowa has long been affected by periods characterized by extreme drought and flood. In 2008, Cedar Rapids, Iowa was devastated by a record flood with damages around 3 billion. Several years later, Iowa was affected by severe drought in 2012, causing upwards of 30 billion in damages and losses across the United States. These climatic regimes can quickly transition from one regime to another, as was observed in the June 2013 major floods to the late summer 2013 severe drought across eastern Iowa. Though it is not possible to prevent a natural disaster from occurring, we explore how predictable these events are by using forecast models and analogs. Iowa's climate records are analyzed from 1950 to 2012 to determine if there are specific surface and upper-air pressure patterns linked to climate regimes (i.e., cold/hot and dry/wet conditions for a given month). We found that opposing climate regimes in Iowa have reversed anomalies in certain geographical regions of the northern hemisphere. These defined patterns and waves suggested to us that it could be possible to forecast extreme temperature and precipitation periods over Iowa if given a skillful forecast system. We examined the CMC, COLA, and GFDL models within the National Multi-Model Ensemble suite to create analog forecasts based on either surface or upper-air pressure forecasts. The verification results show that some analogs have predictability skill at the 0.5-month lead time exceeding random chance, but our overall confidence in the analog forecasts is not high enough to allow us to issue statewide categorical temperature and precipitation climate forecasts.

  2. A clustering-based fuzzy wavelet neural network model for short-term load forecasting.

    PubMed

    Kodogiannis, Vassilis S; Amina, Mahdi; Petrounias, Ilias

    2013-10-01

    Load forecasting is a critical element of power system operation, involving prediction of the future level of demand to serve as the basis for supply and demand planning. This paper presents the development of a novel clustering-based fuzzy wavelet neural network (CB-FWNN) model and validates its prediction on the short-term electric load forecasting of the Power System of the Greek Island of Crete. The proposed model is obtained from the traditional Takagi-Sugeno-Kang fuzzy system by replacing the THEN part of fuzzy rules with a "multiplication" wavelet neural network (MWNN). Multidimensional Gaussian type of activation functions have been used in the IF part of the fuzzyrules. A Fuzzy Subtractive Clustering scheme is employed as a pre-processing technique to find out the initial set and adequate number of clusters and ultimately the number of multiplication nodes in MWNN, while Gaussian Mixture Models with the Expectation Maximization algorithm are utilized for the definition of the multidimensional Gaussians. The results corresponding to the minimum and maximum power load indicate that the proposed load forecasting model provides significantly accurate forecasts, compared to conventional neural networks models.

  3. Impact of Representing Model Error in a Hybrid Ensemble-Variational Data Assimilation System for Track Forecast of Tropical Cyclones over the Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Kutty, Govindan; Muraleedharan, Rohit; Kesarkar, Amit P.

    2018-03-01

    Uncertainties in the numerical weather prediction models are generally not well-represented in ensemble-based data assimilation (DA) systems. The performance of an ensemble-based DA system becomes suboptimal, if the sources of error are undersampled in the forecast system. The present study examines the effect of accounting for model error treatments in the hybrid ensemble transform Kalman filter—three-dimensional variational (3DVAR) DA system (hybrid) in the track forecast of two tropical cyclones viz. Hudhud and Thane, formed over the Bay of Bengal, using Advanced Research Weather Research and Forecasting (ARW-WRF) model. We investigated the effect of two types of model error treatment schemes and their combination on the hybrid DA system; (i) multiphysics approach, which uses different combination of cumulus, microphysics and planetary boundary layer schemes, (ii) stochastic kinetic energy backscatter (SKEB) scheme, which perturbs the horizontal wind and potential temperature tendencies, (iii) a combination of both multiphysics and SKEB scheme. Substantial improvements are noticed in the track positions of both the cyclones, when flow-dependent ensemble covariance is used in 3DVAR framework. Explicit model error representation is found to be beneficial in treating the underdispersive ensembles. Among the model error schemes used in this study, a combination of multiphysics and SKEB schemes has outperformed the other two schemes with improved track forecast for both the tropical cyclones.

  4. Signature-forecasting and early outbreak detection system

    PubMed Central

    Naumova, Elena N.; MacNeill, Ian B.

    2008-01-01

    SUMMARY Daily disease monitoring via a public health surveillance system provides valuable information on population risks. Efficient statistical tools for early detection of rapid changes in the disease incidence are a must for modern surveillance. The need for statistical tools for early detection of outbreaks that are not based on historical information is apparent. A system is discussed for monitoring cases of infections with a view to early detection of outbreaks and to forecasting the extent of detected outbreaks. We propose a set of adaptive algorithms for early outbreak detection that does not rely on extensive historical recording. We also include knowledge of infection disease epidemiology into forecasts. To demonstrate this system we use data from the largest water-borne outbreak of cryptosporidiosis, which occurred in Milwaukee in 1993. Historical data are smoothed using a loess-type smoother. Upon receipt of a new datum, the smoothing is updated and estimates are made of the first two derivatives of the smooth curve, and these are used for near-term forecasting. Recent data and the near-term forecasts are used to compute a color-coded warning index, which quantify the level of concern. The algorithms for computing the warning index have been designed to balance Type I errors (false prediction of an epidemic) and Type II errors (failure to correctly predict an epidemic). If the warning index signals a sufficiently high probability of an epidemic, then a forecast of the possible size of the outbreak is made. This longer term forecast is made by fitting a ‘signature’ curve to the available data. The effectiveness of the forecast depends upon the extent to which the signature curve captures the shape of outbreaks of the infection under consideration. PMID:18716671

  5. The System of Inventory Forecasting in PT. XYZ by using the Method of Holt Winter Multiplicative

    NASA Astrophysics Data System (ADS)

    Shaleh, W.; Rasim; Wahyudin

    2018-01-01

    Problems at PT. XYZ currently only rely on manual bookkeeping, then the cost of production will swell and all investments invested to be less to predict sales and inventory of goods. If the inventory prediction of goods is to large, then the cost of production will swell and all investments invested to be less efficient. Vice versa, if the inventory prediction is too small it will impact on consumers, so that consumers are forced to wait for the desired product. Therefore, in this era of globalization, the development of computer technology has become a very important part in every business plan. Almost of all companies, both large and small, use computer technology. By utilizing computer technology, people can make time in solving complex business problems. Computer technology for companies has become an indispensable activity to provide enhancements to the business services they manage but systems and technologies are not limited to the distribution model and data processing but the existing system must be able to analyze the possibilities of future company capabilities. Therefore, the company must be able to forecast conditions and circumstances, either from inventory of goods, force, or profits to be obtained. To forecast it, the data of total sales from December 2014 to December 2016 will be calculated by using the method of Holt Winters, which is the method of time series prediction (Multiplicative Seasonal Method) it is seasonal data that has increased and decreased, also has 4 equations i.e. Single Smoothing, Trending Smoothing, Seasonal Smoothing and Forecasting. From the results of research conducted, error value in the form of MAPE is below 1%, so it can be concluded that forecasting with the method of Holt Winter Multiplicative.

  6. The Role of Model and Initial Condition Error in Numerical Weather Forecasting Investigated with an Observing System Simulation Experiment

    NASA Technical Reports Server (NTRS)

    Prive, Nikki C.; Errico, Ronald M.

    2013-01-01

    A series of experiments that explore the roles of model and initial condition error in numerical weather prediction are performed using an observing system simulation experiment (OSSE) framework developed at the National Aeronautics and Space Administration Global Modeling and Assimilation Office (NASA/GMAO). The use of an OSSE allows the analysis and forecast errors to be explicitly calculated, and different hypothetical observing networks can be tested with ease. In these experiments, both a full global OSSE framework and an 'identical twin' OSSE setup are utilized to compare the behavior of the data assimilation system and evolution of forecast skill with and without model error. The initial condition error is manipulated by varying the distribution and quality of the observing network and the magnitude of observation errors. The results show that model error has a strong impact on both the quality of the analysis field and the evolution of forecast skill, including both systematic and unsystematic model error components. With a realistic observing network, the analysis state retains a significant quantity of error due to systematic model error. If errors of the analysis state are minimized, model error acts to rapidly degrade forecast skill during the first 24-48 hours of forward integration. In the presence of model error, the impact of observation errors on forecast skill is small, but in the absence of model error, observation errors cause a substantial degradation of the skill of medium range forecasts.

  7. A parsimonious land data assimilation system for the SMAP/GPM satellite era

    USDA-ARS?s Scientific Manuscript database

    Land data assimilation systems typically require complex parameterizations in order to: define required observation operators, quantify observing/forecasting errors and calibrate a land surface assimilation model. These parameters are commonly defined in an arbitrary manner and, if poorly specified,...

  8. How do I know if my forecasts are better? Using benchmarks in hydrological ensemble prediction

    NASA Astrophysics Data System (ADS)

    Pappenberger, F.; Ramos, M. H.; Cloke, H. L.; Wetterhall, F.; Alfieri, L.; Bogner, K.; Mueller, A.; Salamon, P.

    2015-03-01

    The skill of a forecast can be assessed by comparing the relative proximity of both the forecast and a benchmark to the observations. Example benchmarks include climatology or a naïve forecast. Hydrological ensemble prediction systems (HEPS) are currently transforming the hydrological forecasting environment but in this new field there is little information to guide researchers and operational forecasters on how benchmarks can be best used to evaluate their probabilistic forecasts. In this study, it is identified that the forecast skill calculated can vary depending on the benchmark selected and that the selection of a benchmark for determining forecasting system skill is sensitive to a number of hydrological and system factors. A benchmark intercomparison experiment is then undertaken using the continuous ranked probability score (CRPS), a reference forecasting system and a suite of 23 different methods to derive benchmarks. The benchmarks are assessed within the operational set-up of the European Flood Awareness System (EFAS) to determine those that are 'toughest to beat' and so give the most robust discrimination of forecast skill, particularly for the spatial average fields that EFAS relies upon. Evaluating against an observed discharge proxy the benchmark that has most utility for EFAS and avoids the most naïve skill across different hydrological situations is found to be meteorological persistency. This benchmark uses the latest meteorological observations of precipitation and temperature to drive the hydrological model. Hydrological long term average benchmarks, which are currently used in EFAS, are very easily beaten by the forecasting system and the use of these produces much naïve skill. When decomposed into seasons, the advanced meteorological benchmarks, which make use of meteorological observations from the past 20 years at the same calendar date, have the most skill discrimination. They are also good at discriminating skill in low flows and for all catchment sizes. Simpler meteorological benchmarks are particularly useful for high flows. Recommendations for EFAS are to move to routine use of meteorological persistency, an advanced meteorological benchmark and a simple meteorological benchmark in order to provide a robust evaluation of forecast skill. This work provides the first comprehensive evidence on how benchmarks can be used in evaluation of skill in probabilistic hydrological forecasts and which benchmarks are most useful for skill discrimination and avoidance of naïve skill in a large scale HEPS. It is recommended that all HEPS use the evidence and methodology provided here to evaluate which benchmarks to employ; so forecasters can have trust in their skill evaluation and will have confidence that their forecasts are indeed better.

  9. Timetable of an operational flood forecasting system

    NASA Astrophysics Data System (ADS)

    Liechti, Katharina; Jaun, Simon; Zappa, Massimiliano

    2010-05-01

    At present a new underground part of Zurich main station is under construction. For this purpose the runoff capacity of river Sihl, which is passing beneath the main station, is reduced by 40%. If a flood is to occur the construction site is evacuated and gates can be opened for full runoff capacity to prevent bigger damages. However, flooding the construction site, even if it is controlled, is coupled with costs and retardation. The evacuation of the construction site at Zurich main station takes about 2 to 4 hours and opening the gates takes another 1 to 2 hours each. In the upper part of the 336 km2 Sihl catchment the Sihl lake, a reservoir lake, is situated. It belongs and is used by the Swiss Railway Company for hydropower production. This lake can act as a retention basin for about 46% of the Sihl catchment. Lowering the lake level to gain retention capacity, and therewith safety, is coupled with direct loss for the Railway Company. To calculate the needed retention volume and the water to be released facing unfavourable weather conditions, forecasts with a minimum lead time of 2 to 3 days are needed. Since the catchment is rather small, this can only be realised by the use of meteorological forecast data. Thus the management of the construction site depends on accurate forecasts to base their decisions on. Therefore an operational hydrological ensemble prediction system (HEPS) was introduced in September 2008 by the Swiss Federal Institute for Forest, Snow and Landscape Research (WSL). It delivers daily discharge forecasts with a time horizon of 5 days. The meteorological forecasts are provided by MeteoSwiss and stem from the operational limited-area COSMO-LEPS which downscales the ECMWF ensemble prediction system to a spatial resolution of 7 km. Additional meteorological data for model calibration and initialisation (air temperature, precipitation, water vapour pressure, global radiation, wind speed and sunshine duration) and radar data are also provided by MeteoSwiss. Additional meteorological and hydrological observations are provided by a hydropower company, the Canton of Zurich and the Federal Office for the Environment (FOEN). The hydrological forecasting is calculated by the semi-distributed hydrological model PREVAH (Precipitation-Runoff-EVapotranspiration-HRU-related Model) and is further processed by the hydraulic model FLORIS. Finally the forecasts and alerts along with additional meteorological and hydrological observations and forecasts from collaborating institution are sent to a webserver accessible for decision makers. We will document the setup of our operational flood forecasting system, evaluate its performance and show how the collaboration and communication between science and practice, including all the different interests, works for this particular example.

  10. Forecasting system predicts presence of sea nettles in Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Brown, Christopher W.; Hood, Raleigh R.; Li, Zhen; Decker, Mary Beth; Gross, Thomas F.; Purcell, Jennifer E.; Wang, Harry V.

    Outbreaks of noxious biota, which occur in both aquatic and terrestrial systems, can have considerable negative economic impacts. For example, an increasing frequency of harmful algal blooms worldwide has negatively affected the tourism industry in many regions. Such impacts could be mitigated if the conditions that give rise to these outbreaks were known and could be monitored. Recent advances in technology and communications allow us to continuously measure and model many environmental factors that are responsible for outbreaks of certain noxious organisms. A new prototype ecological forecasting system predicts the likelihood of occurrence of the sea nettle (Chrysaora quinquecirrha), a stinging jellyfish, in the Chesapeake Bay.

  11. Routine High-Resolution Forecasts/Analyses for the Pacific Disaster Center: User Manual

    NASA Technical Reports Server (NTRS)

    Roads, John; Han, J.; Chen, S.; Burgan, R.; Fujioka, F.; Stevens, D.; Funayama, D.; Chambers, C.; Bingaman, B.; McCord, C.; hide

    2001-01-01

    Enclosed herein is our HWCMO user manual. This manual constitutes the final report for our NASA/PDC grant, NASA NAG5-8730, "Routine High Resolution Forecasts/Analysis for the Pacific Disaster Center". Since the beginning of the grant, we have routinely provided experimental high resolution forecasts from the RSM/MSM for the Hawaii Islands, while working to upgrade the system to include: (1) a more robust input of NCEP analyses directly from NCEP; (2) higher vertical resolution, with increased forecast accuracy; (3) faster delivery of forecast products and extension of initial 1-day forecasts to 2 days; (4) augmentation of our basic meteorological and simplified fireweather forecasts to firedanger and drought forecasts; (5) additional meteorological forecasts with an alternate mesoscale model (MM5); and (6) the feasibility of using our modeling system to work in higher-resolution domains and other regions. In this user manual, we provide a general overview of the operational system and the mesoscale models as well as more detailed descriptions of the models. A detailed description of daily operations and a cost analysis is also provided. Evaluations of the models are included although it should be noted that model evaluation is a continuing process and as potential problems are identified, these can be used as the basis for making model improvements. Finally, we include our previously submitted answers to particular PDC questions (Appendix V). All of our initially proposed objectives have basically been met. In fact, a number of useful applications (VOG, air pollution transport) are already utilizing our experimental output and we believe there are a number of other applications that could make use of our routine forecast/analysis products. Still, work still remains to be done to further develop this experimental weather, climate, fire danger and drought prediction system. In short, we would like to be a part of a future PDC team, if at all possible, to further develop and apply the system for the Hawaiian and other Pacific Islands as well as the entire Pacific Basin.

  12. A Real-time Irrigation Forecasting System in Jiefangzha Irrigation District, China

    NASA Astrophysics Data System (ADS)

    Cong, Z.

    2015-12-01

    In order to improve the irrigation efficiency, we need to know when and how much to irrigate in real time. If we know the soil moisture content at this time, we can forecast the soil moisture content in the next days based on the rainfall forecasting and the crop evapotranspiration forecasting. Then the irrigation should be considered when the forecasting soil moisture content reaches to a threshold. Jiefangzha Irrigation District, a part of Hetao Irrigation District, is located in Inner Mongolia, China. The irrigated area of this irrigation district is about 140,000 ha mainly planting wheat, maize and sunflower. The annual precipitation is below 200mm, so the irrigation is necessary and the irrigation water comes from the Yellow river. We set up 10 sites with 4 TDR sensors at each site (20cm, 40cm, 60cm and 80cm depth) to monitor the soil moisture content. The weather forecasting data are downloaded from the website of European Centre for Medium-Range Weather Forecasts (ECMWF). The reference evapotranspiration is estimated based on FAO-Blaney-Criddle equation with only the air temperature from ECMWF. Then the crop water requirement is forecasted by the crop coefficient multiplying the reference evapotranspiration. Finally, the soil moisture content is forecasted based on soil water balance with the initial condition is set as the monitoring soil moisture content. When the soil moisture content reaches to a threshold, the irrigation warning will be announced. The irrigation mount can be estimated through three ways: (1) making the soil moisture content be equal to the field capacity; (2) making the soil moisture saturated; or (3) according to the irrigation quota. The forecasting period is 10 days. The system is developed according to B2C model with Java language. All the databases and the data analysis are carried out in the server. The customers can log in the website with their own username and password then get the information about the irrigation forecasting and other information about the irrigation. This system can be expanded in other irrigation districts. In future, it is even possible to upgrade the system for the mobile user.

  13. Addressing model error through atmospheric stochastic physical parametrizations: impact on the coupled ECMWF seasonal forecasting system.

    PubMed

    Weisheimer, Antje; Corti, Susanna; Palmer, Tim; Vitart, Frederic

    2014-06-28

    The finite resolution of general circulation models of the coupled atmosphere-ocean system and the effects of sub-grid-scale variability present a major source of uncertainty in model simulations on all time scales. The European Centre for Medium-Range Weather Forecasts has been at the forefront of developing new approaches to account for these uncertainties. In particular, the stochastically perturbed physical tendency scheme and the stochastically perturbed backscatter algorithm for the atmosphere are now used routinely for global numerical weather prediction. The European Centre also performs long-range predictions of the coupled atmosphere-ocean climate system in operational forecast mode, and the latest seasonal forecasting system--System 4--has the stochastically perturbed tendency and backscatter schemes implemented in a similar way to that for the medium-range weather forecasts. Here, we present results of the impact of these schemes in System 4 by contrasting the operational performance on seasonal time scales during the retrospective forecast period 1981-2010 with comparable simulations that do not account for the representation of model uncertainty. We find that the stochastic tendency perturbation schemes helped to reduce excessively strong convective activity especially over the Maritime Continent and the tropical Western Pacific, leading to reduced biases of the outgoing longwave radiation (OLR), cloud cover, precipitation and near-surface winds. Positive impact was also found for the statistics of the Madden-Julian oscillation (MJO), showing an increase in the frequencies and amplitudes of MJO events. Further, the errors of El Niño southern oscillation forecasts become smaller, whereas increases in ensemble spread lead to a better calibrated system if the stochastic tendency is activated. The backscatter scheme has overall neutral impact. Finally, evidence for noise-activated regime transitions has been found in a cluster analysis of mid-latitude circulation regimes over the Pacific-North America region.

  14. A new method for determining the optimal lagged ensemble

    PubMed Central

    DelSole, T.; Tippett, M. K.; Pegion, K.

    2017-01-01

    Abstract We propose a general methodology for determining the lagged ensemble that minimizes the mean square forecast error. The MSE of a lagged ensemble is shown to depend only on a quantity called the cross‐lead error covariance matrix, which can be estimated from a short hindcast data set and parameterized in terms of analytic functions of time. The resulting parameterization allows the skill of forecasts to be evaluated for an arbitrary ensemble size and initialization frequency. Remarkably, the parameterization also can estimate the MSE of a burst ensemble simply by taking the limit of an infinitely small interval between initialization times. This methodology is applied to forecasts of the Madden Julian Oscillation (MJO) from version 2 of the Climate Forecast System version 2 (CFSv2). For leads greater than a week, little improvement is found in the MJO forecast skill when ensembles larger than 5 days are used or initializations greater than 4 times per day. We find that if the initialization frequency is too infrequent, important structures of the lagged error covariance matrix are lost. Lastly, we demonstrate that the forecast error at leads ≥10 days can be reduced by optimally weighting the lagged ensemble members. The weights are shown to depend only on the cross‐lead error covariance matrix. While the methodology developed here is applied to CFSv2, the technique can be easily adapted to other forecast systems. PMID:28580050

  15. Comparison of multiple atmospheric chemistry schemes in C-IFS

    NASA Astrophysics Data System (ADS)

    Flemming, Johannes; Huijnen, Vincent; Arteta, Joaquim; Stein, Olaf; Inness, Antje; Josse, Beatrice; Schultz, Martin; Peuch, Vincent-Henri

    2013-04-01

    As part of the MACCII -project (EU-FP7) ECMWF's integrated forecast system (IFS) is being extended by modules for chemistry, deposition and emission of reactive gases. This integration of the chemistry complements the integration of aerosol processes in IFS (Composition-IFS). C-IFS provides global forecasts and analysis of atmospheric composition. Its main motivation is to utilize the IFS for the assimilation of satellite observation of atmospheric composition. Furthermore, the integration of chemistry packages directly into IFS will achieve better consistency in terms of the treatment of physical processes and has the potential for simulating interactions between atmospheric composition and meteorology. Atmospheric chemistry in C-IFS can be represented by the modified CB05 scheme as implemented in the TM5 model and the RACMOBUS scheme as implemented in the MOCAGE model. An implementation of the scheme of the MOZART 3.5 model is ongoing. We will present the latest progress in the development and application of C-IFS. We will focus on the comparison of the different chemistry schemes in an otherwise identical C-IFS model setup (emissions, meteorology) as well as in their original Chemistry and Transport Model setup.

  16. Moving beyond the cost-loss ratio: economic assessment of streamflow forecasts for a risk-averse decision maker

    NASA Astrophysics Data System (ADS)

    Matte, Simon; Boucher, Marie-Amélie; Boucher, Vincent; Fortier Filion, Thomas-Charles

    2017-06-01

    A large effort has been made over the past 10 years to promote the operational use of probabilistic or ensemble streamflow forecasts. Numerous studies have shown that ensemble forecasts are of higher quality than deterministic ones. Many studies also conclude that decisions based on ensemble rather than deterministic forecasts lead to better decisions in the context of flood mitigation. Hence, it is believed that ensemble forecasts possess a greater economic and social value for both decision makers and the general population. However, the vast majority of, if not all, existing hydro-economic studies rely on a cost-loss ratio framework that assumes a risk-neutral decision maker. To overcome this important flaw, this study borrows from economics and evaluates the economic value of early warning flood systems using the well-known Constant Absolute Risk Aversion (CARA) utility function, which explicitly accounts for the level of risk aversion of the decision maker. This new framework allows for the full exploitation of the information related to a forecasts' uncertainty, making it especially suited for the economic assessment of ensemble or probabilistic forecasts. Rather than comparing deterministic and ensemble forecasts, this study focuses on comparing different types of ensemble forecasts. There are multiple ways of assessing and representing forecast uncertainty. Consequently, there exist many different means of building an ensemble forecasting system for future streamflow. One such possibility is to dress deterministic forecasts using the statistics of past error forecasts. Such dressing methods are popular among operational agencies because of their simplicity and intuitiveness. Another approach is the use of ensemble meteorological forecasts for precipitation and temperature, which are then provided as inputs to one or many hydrological model(s). In this study, three concurrent ensemble streamflow forecasting systems are compared: simple statistically dressed deterministic forecasts, forecasts based on meteorological ensembles, and a variant of the latter that also includes an estimation of state variable uncertainty. This comparison takes place for the Montmorency River, a small flood-prone watershed in southern central Quebec, Canada. The assessment of forecasts is performed for lead times of 1 to 5 days, both in terms of forecasts' quality (relative to the corresponding record of observations) and in terms of economic value, using the new proposed framework based on the CARA utility function. It is found that the economic value of a forecast for a risk-averse decision maker is closely linked to the forecast reliability in predicting the upper tail of the streamflow distribution. Hence, post-processing forecasts to avoid over-forecasting could help improve both the quality and the value of forecasts.

  17. Obesity and severe obesity forecasts through 2030.

    PubMed

    Finkelstein, Eric A; Khavjou, Olga A; Thompson, Hope; Trogdon, Justin G; Pan, Liping; Sherry, Bettylou; Dietz, William

    2012-06-01

    Previous efforts to forecast future trends in obesity applied linear forecasts assuming that the rise in obesity would continue unabated. However, evidence suggests that obesity prevalence may be leveling off. This study presents estimates of adult obesity and severe obesity prevalence through 2030 based on nonlinear regression models. The forecasted results are then used to simulate the savings that could be achieved through modestly successful obesity prevention efforts. The study was conducted in 2009-2010 and used data from the 1990 through 2008 Behavioral Risk Factor Surveillance System (BRFSS). The analysis sample included nonpregnant adults aged ≥ 18 years. The individual-level BRFSS variables were supplemented with state-level variables from the U.S. Bureau of Labor Statistics, the American Chamber of Commerce Research Association, and the Census of Retail Trade. Future obesity and severe obesity prevalence were estimated through regression modeling by projecting trends in explanatory variables expected to influence obesity prevalence. Linear time trend forecasts suggest that by 2030, 51% of the population will be obese. The model estimates a much lower obesity prevalence of 42% and severe obesity prevalence of 11%. If obesity were to remain at 2010 levels, the combined savings in medical expenditures over the next 2 decades would be $549.5 billion. The study estimates a 33% increase in obesity prevalence and a 130% increase in severe obesity prevalence over the next 2 decades. If these forecasts prove accurate, this will further hinder efforts for healthcare cost containment. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. How is the weather? Forecasting inpatient glycemic control

    PubMed Central

    Saulnier, George E; Castro, Janna C; Cook, Curtiss B; Thompson, Bithika M

    2017-01-01

    Aim: Apply methods of damped trend analysis to forecast inpatient glycemic control. Method: Observed and calculated point-of-care blood glucose data trends were determined over 62 weeks. Mean absolute percent error was used to calculate differences between observed and forecasted values. Comparisons were drawn between model results and linear regression forecasting. Results: The forecasted mean glucose trends observed during the first 24 and 48 weeks of projections compared favorably to the results provided by linear regression forecasting. However, in some scenarios, the damped trend method changed inferences compared with linear regression. In all scenarios, mean absolute percent error values remained below the 10% accepted by demand industries. Conclusion: Results indicate that forecasting methods historically applied within demand industries can project future inpatient glycemic control. Additional study is needed to determine if forecasting is useful in the analyses of other glucometric parameters and, if so, how to apply the techniques to quality improvement. PMID:29134125

  19. Quantitative precipitation forecasts in the Alps - an assessment from the Forecast Demonstration Project MAP D-PHASE

    NASA Astrophysics Data System (ADS)

    Ament, F.; Weusthoff, T.; Arpagaus, M.; Rotach, M.

    2009-04-01

    The main aim of the WWRP Forecast Demonstration Project MAP D-PHASE is to demonstrate the performance of today's models to forecast heavy precipitation and flood events in the Alpine region. Therefore an end-to-end, real-time forecasting system was installed and operated during the D PHASE Operations Period from June to November 2007. Part of this system are 30 numerical weather prediction models (deterministic as well as ensemble systems) operated by weather services and research institutes, which issue alerts if predicted precipitation accumulations exceed critical thresholds. Additionally to the real-time alerts, all relevant model fields of these simulations are stored in a central data archive. This comprehensive data set allows a detailed assessment of today's quantitative precipitation forecast (QPF) performance in the Alpine region. We will present results of QPF verifications against Swiss radar and rain gauge data both from a qualitative point of view, in terms of alerts, as well as from a quantitative perspective, in terms of precipitation rate. Various influencing factors like lead time, accumulation time, selection of warning thresholds, or bias corrections will be discussed. Additional to traditional verifications of area average precipitation amounts, the performance of the models to predict the correct precipitation statistics without requiring a point-to-point match will be described by using modern Fuzzy verification techniques. Both analyses reveal significant advantages of deep convection resolving models compared to coarser models with parameterized convection. An intercomparison of the model forecasts themselves reveals a remarkably high variability between different models, and makes it worthwhile to evaluate the potential of a multi-model ensemble. Various multi-model ensemble strategies will be tested by combining D-PHASE models to virtual ensemble systems.

  20. 7 CFR 1710.302 - Financial forecasts-power supply borrowers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... facilities; (3) Provide an in-depth analysis of the regional markets for power if loan feasibility depends to any degree on a borrower's ability to sell surplus power while its system loads grow to meet the... sensitivity analysis if required by RUS pursuant to § 1710.300(d)(5). (e) The projections shall be coordinated...

  1. Post-processing Seasonal Precipitation Forecasts via Integrating Climate Indices and the Analog Approach

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Zhang, Y.; Wood, A.; Lee, H. S.; Wu, L.; Schaake, J. C.

    2016-12-01

    Seasonal precipitation forecasts are a primary driver for seasonal streamflow prediction that is critical for a range of water resources applications, such as reservoir operations and drought management. However, it is well known that seasonal precipitation forecasts from climate models are often biased and also too coarse in spatial resolution for hydrologic applications. Therefore, post-processing procedures such as downscaling and bias correction are often needed. In this presentation, we discuss results from a recent study that applies a two-step methodology to downscale and correct the ensemble mean precipitation forecasts from the Climate Forecast System (CFS). First, CFS forecasts are downscaled and bias corrected using monthly reforecast analogs: we identify past precipitation forecasts that are similar to the current forecast, and then use the finer-scale observational analysis fields from the corresponding dates to represent the post-processed ensemble forecasts. Second, we construct the posterior distribution of forecast precipitation from the post-processed ensemble by integrating climate indices: a correlation analysis is performed to identify dominant climate indices for the study region, which are then used to weight the analysis analogs selected in the first step using a Bayesian approach. The methodology is applied to the California Nevada River Forecast Center (CNRFC) and the Middle Atlantic River Forecast Center (MARFC) regions for 1982-2015, using the North American Land Data Assimilation System (NLDAS-2) precipitation as the analysis. The results from cross validation show that the post-processed CFS precipitation forecast are considerably more skillful than the raw CFS with the analog approach only. Integrating climate indices can further improve the skill if the number of ensemble members considered is large enough; however, the improvement is generally limited to the first couple of months when compared against climatology. Impacts of various factors such as ensemble size, lead time, and choice of climate indices will also be discussed.

  2. Monthly forecasting of agricultural pests in Switzerland

    NASA Astrophysics Data System (ADS)

    Hirschi, M.; Dubrovsky, M.; Spirig, C.; Samietz, J.; Calanca, P.; Weigel, A. P.; Fischer, A. M.; Rotach, M. W.

    2012-04-01

    Given the repercussions of pests and diseases on agricultural production, detailed forecasting tools have been developed to simulate the degree of infestation depending on actual weather conditions. The life cycle of pests is most successfully predicted if the micro-climate of the immediate environment (habitat) of the causative organisms can be simulated. Sub-seasonal pest forecasts therefore require weather information for the relevant habitats and the appropriate time scale. The pest forecasting system SOPRA (www.sopra.info) currently in operation in Switzerland relies on such detailed weather information, using hourly weather observations up to the day the forecast is issued, but only a climatology for the forecasting period. Here, we aim at improving the skill of SOPRA forecasts by transforming the weekly information provided by ECMWF monthly forecasts (MOFCs) into hourly weather series as required for the prediction of upcoming life phases of the codling moth, the major insect pest in apple orchards worldwide. Due to the probabilistic nature of operational monthly forecasts and the limited spatial and temporal resolution, their information needs to be post-processed for use in a pest model. In this study, we developed a statistical downscaling approach for MOFCs that includes the following steps: (i) application of a stochastic weather generator to generate a large pool of daily weather series consistent with the climate at a specific location, (ii) a subsequent re-sampling of weather series from this pool to optimally represent the evolution of the weekly MOFC anomalies, and (iii) a final extension to hourly weather series suitable for the pest forecasting model. Results show a clear improvement in the forecast skill of occurrences of upcoming codling moth life phases when incorporating MOFCs as compared to the operational pest forecasting system. This is true both in terms of root mean squared errors and of the continuous rank probability scores of the probabilistic forecasts vs. the mean absolute errors of the deterministic system. Also, the application of the climate conserving recalibration (CCR, Weigel et al. 2009) technique allows for successful correction of the under-confidence in the forecasted occurrences of codling moth life phases. Reference: Weigel, A. P.; Liniger, M. A. & Appenzeller, C. (2009). Seasonal Ensemble Forecasts: Are Recalibrated Single Models Better than Multimodels? Mon. Wea. Rev., 137, 1460-1479.

  3. Addressing model error through atmospheric stochastic physical parametrizations: impact on the coupled ECMWF seasonal forecasting system

    PubMed Central

    Weisheimer, Antje; Corti, Susanna; Palmer, Tim; Vitart, Frederic

    2014-01-01

    The finite resolution of general circulation models of the coupled atmosphere–ocean system and the effects of sub-grid-scale variability present a major source of uncertainty in model simulations on all time scales. The European Centre for Medium-Range Weather Forecasts has been at the forefront of developing new approaches to account for these uncertainties. In particular, the stochastically perturbed physical tendency scheme and the stochastically perturbed backscatter algorithm for the atmosphere are now used routinely for global numerical weather prediction. The European Centre also performs long-range predictions of the coupled atmosphere–ocean climate system in operational forecast mode, and the latest seasonal forecasting system—System 4—has the stochastically perturbed tendency and backscatter schemes implemented in a similar way to that for the medium-range weather forecasts. Here, we present results of the impact of these schemes in System 4 by contrasting the operational performance on seasonal time scales during the retrospective forecast period 1981–2010 with comparable simulations that do not account for the representation of model uncertainty. We find that the stochastic tendency perturbation schemes helped to reduce excessively strong convective activity especially over the Maritime Continent and the tropical Western Pacific, leading to reduced biases of the outgoing longwave radiation (OLR), cloud cover, precipitation and near-surface winds. Positive impact was also found for the statistics of the Madden–Julian oscillation (MJO), showing an increase in the frequencies and amplitudes of MJO events. Further, the errors of El Niño southern oscillation forecasts become smaller, whereas increases in ensemble spread lead to a better calibrated system if the stochastic tendency is activated. The backscatter scheme has overall neutral impact. Finally, evidence for noise-activated regime transitions has been found in a cluster analysis of mid-latitude circulation regimes over the Pacific–North America region. PMID:24842026

  4. EnrollForecast for Excel: K-12 Enrollment Forecasting Program. Software & User's Guide. [Computer Diskette].

    ERIC Educational Resources Information Center

    Smith, Curtis A.

    "EnrollForecast for Excel" will generate a 5-year forecast of K-12 student enrollment. It will also work for any combination of grades between kindergarten and twelth. The forecasts can be printed as either a table or a graph. The user must provide birth history (only if forecasting kindergarten) and enrollment history information. The user also…

  5. Ensemble forecasting for renewable energy applications - status and current challenges for their generation and verification

    NASA Astrophysics Data System (ADS)

    Pinson, Pierre

    2016-04-01

    The operational management of renewable energy generation in power systems and electricity markets requires forecasts in various forms, e.g., deterministic or probabilistic, continuous or categorical, depending upon the decision process at hand. Besides, such forecasts may also be necessary at various spatial and temporal scales, from high temporal resolutions (in the order of minutes) and very localized for an offshore wind farm, to coarser temporal resolutions (hours) and covering a whole country for day-ahead power scheduling problems. As of today, weather predictions are a common input to forecasting methodologies for renewable energy generation. Since for most decision processes, optimal decisions can only be made if accounting for forecast uncertainties, ensemble predictions and density forecasts are increasingly seen as the product of choice. After discussing some of the basic approaches to obtaining ensemble forecasts of renewable power generation, it will be argued that space-time trajectories of renewable power production may or may not be necessitate post-processing ensemble forecasts for relevant weather variables. Example approaches and test case applications will be covered, e.g., looking at the Horns Rev offshore wind farm in Denmark, or gridded forecasts for the whole continental Europe. Eventually, we will illustrate some of the limitations of current frameworks to forecast verification, which actually make it difficult to fully assess the quality of post-processing approaches to obtain renewable energy predictions.

  6. A new scoring method for evaluating the performance of earthquake forecasts and predictions

    NASA Astrophysics Data System (ADS)

    Zhuang, J.

    2009-12-01

    This study presents a new method, namely the gambling score, for scoring the performance of earthquake forecasts or predictions. Unlike most other scoring procedures that require a regular scheme of forecast and treat each earthquake equally, regardless their magnitude, this new scoring method compensates the risk that the forecaster has taken. A fair scoring scheme should reward the success in a way that is compatible with the risk taken. Suppose that we have the reference model, usually the Poisson model for usual cases or Omori-Utsu formula for the case of forecasting aftershocks, which gives probability p0 that at least 1 event occurs in a given space-time-magnitude window. The forecaster, similar to a gambler, who starts with a certain number of reputation points, bets 1 reputation point on ``Yes'' or ``No'' according to his forecast, or bets nothing if he performs a NA-prediction. If the forecaster bets 1 reputation point of his reputations on ``Yes" and loses, the number of his reputation points is reduced by 1; if his forecasts is successful, he should be rewarded (1-p0)/p0 reputation points. The quantity (1-p0)/p0 is the return (reward/bet) ratio for bets on ``Yes''. In this way, if the reference model is correct, the expected return that he gains from this bet is 0. This rule also applies to probability forecasts. Suppose that p is the occurrence probability of an earthquake given by the forecaster. We can regard the forecaster as splitting 1 reputation point by betting p on ``Yes'' and 1-p on ``No''. In this way, the forecaster's expected pay-off based on the reference model is still 0. From the viewpoints of both the reference model and the forecaster, the rule for rewarding and punishment is fair. This method is also extended to the continuous case of point process models, where the reputation points bet by the forecaster become a continuous mass on the space-time-magnitude range of interest. We also calculate the upper bound of the gambling score when the true model is a renewal process, the stress release model or the ETAS model and when the reference model is the Poisson model.

  7. The forecaster's added value in QPF

    NASA Astrophysics Data System (ADS)

    Turco, M.; Milelli, M.

    2010-03-01

    To the authors' knowledge there are relatively few studies that try to answer this question: "Are humans able to add value to computer-generated forecasts and warnings?". Moreover, the answers are not always positive. In particular some postprocessing method is competitive or superior to human forecast. Within the alert system of ARPA Piemonte it is possible to study in an objective manner if the human forecaster is able to add value with respect to computer-generated forecasts. Every day the meteorology group of the Centro Funzionale of Regione Piemonte produces the HQPF (Human Quantitative Precipitation Forecast) in terms of an areal average and maximum value for each of the 13 warning areas, which have been created according to meteo-hydrological criteria. This allows the decision makers to produce an evaluation of the expected effects by comparing these HQPFs with predefined rainfall thresholds. Another important ingredient in this study is the very dense non-GTS (Global Telecommunication System) network of rain gauges available that makes possible a high resolution verification. In this work we compare the performances of the latest three years of QPF derived from the meteorological models COSMO-I7 (the Italian version of the COSMO Model, a mesoscale model developed in the framework of the COSMO Consortium) and IFS (the ECMWF global model) with the HQPF. In this analysis it is possible to introduce the hypothesis test developed by Hamill (1999), in which a confidence interval is calculated with the bootstrap method in order to establish the real difference between the skill scores of two competitive forecasts. It is important to underline that the conclusions refer to the analysis of the Piemonte operational alert system, so they cannot be directly taken as universally true. But we think that some of the main lessons that can be derived from this study could be useful for the meteorological community. In details, the main conclusions are the following: - despite the overall improvement in global scale and the fact that the resolution of the limited area models has increased considerably over recent years, the QPF produced by the meteorological models involved in this study has not improved enough to allow its direct use: the subjective HQPF continues to offer the best performance for the period +24 h/+48 h (i.e. the warning period in the Piemonte system); - in the forecast process, the step where humans have the largest added value with respect to mathematical models, is the communication. In fact the human characterization and communication of the forecast uncertainty to end users cannot be replaced by any computer code; - eventually, although there is no novelty in this study, we would like to show that the correct application of appropriated statistical techniques permits a better definition and quantification of the errors and, mostly important, allows a correct (unbiased) communication between forecasters and decision makers.

  8. Future Weather Forecasting in the Year 2020-Investing in Technology Today: Improving Weather and Environmental Predictions

    NASA Technical Reports Server (NTRS)

    Anthes, Richard; Schoeberl, Mark

    2000-01-01

    Fast-forward twenty years to the nightly simultaneous TV/webcast. Accurate 8-14 day regional forecasts will be available as will be a whole host of linked products including economic impact, travel, energy usage, etc. On-demand, personalized street-level forecasts will be downloaded into your PDA. Your home system will automatically update the products of interest to you (e.g. severe storm forecasts, hurricane predictions, etc). Short and long range climate forecasts will be used by your "Quicken 2020" to make suggest changes in your "futures" investment portfolio. Through a lively and informative multi-media presentation, leading Space-Earth Science Researchers and Technologists will share their vision for the year 2020, offering a possible futuristic forecast enabled through the application of new technologies under development today. Copies of the 'broadcast' will be available on Beta Tape for your own future use. If sufficient interest exists, the program may also be made available for broadcasters wishing to do stand-ups with roll-ins from the San Francisco meeting for their viewers back home.

  9. Short-term forecasts gain in accuracy. [Regression technique using ''Box-Jenkins'' analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Box-Jenkins time-series models offer accuracy for short-term forecasts that compare with large-scale macroeconomic forecasts. Utilities need to be able to forecast peak demand in order to plan their generating, transmitting, and distribution systems. This new method differs from conventional models by not assuming specific data patterns, but by fitting available data into a tentative pattern on the basis of auto-correlations. Three types of models (autoregressive, moving average, or mixed autoregressive/moving average) can be used according to which provides the most appropriate combination of autocorrelations and related derivatives. Major steps in choosing a model are identifying potential models, estimating the parametersmore » of the problem, and running a diagnostic check to see if the model fits the parameters. The Box-Jenkins technique is well suited for seasonal patterns, which makes it possible to have as short as hourly forecasts of load demand. With accuracy up to two years, the method will allow electricity price-elasticity forecasting that can be applied to facility planning and rate design. (DCK)« less

  10. Recent updates in the aerosol component of the C-IFS model run by ECMWF

    NASA Astrophysics Data System (ADS)

    Remy, Samuel; Boucher, Olivier; Hauglustaine, Didier; Kipling, Zak; Flemming, Johannes

    2017-04-01

    The Composition-Integrated Forecast System (C-IFS) is a global atmospheric composition forecasting tool, run by ECMWF within the framework of the Copernicus Atmospheric Monitoring Service (CAMS). The aerosol model of C-IFS is a simple bulk scheme that forecasts 5 species: dust, sea-salt, black carbon, organic matter and sulfate. Three bins represent the dust and sea-salt, for the super-coarse, coarse and fine mode of these species (Morcrette et al., 2009). This talk will present recent updates of the aerosol model, and also introduce forthcoming developments. It will also present the impact of these changes as measured scores against AERONET Aerosol Optical Depth (AOD) and Airbase PM10 observations. The next cycle of C-IFS will include a mass fixer, because the semi-Lagrangian advection scheme used in C-IFS is not mass-conservative. C-IFS now offers the possibility to emit biomass-burning aerosols at an injection height that is provided by a new version of the Global Fire Assimilation System (GFAS). Secondary Organic Aerosols (SOA) production will be scaled on non-biomass burning CO fluxes. This approach allows to represent the anthropogenic contribution to SOA production; it brought a notable improvement in the skill of the model, especially over Europe. Lastly, the emissions of SO2 are now provided by the MACCity inventory instead of and older version of the EDGAR dataset. The seasonal and yearly variability of SO2 emissions are better captured by the MACCity dataset. Upcoming developments of the aerosol model of C-IFS consist mainly in the implementation of a nitrate and ammonium module, with 2 bins (fine and coarse) for nitrate. Nitrate and ammonium sulfate particle formation from gaseous precursors is represented following Hauglustaine et al. (2014); formation of coarse nitrate over pre-existing sea-salt or dust particles is also represented. This extension of the forward model improved scores over heavily populated areas such as Europe, China and Eastern United States. A new sea-salt scheme following Grythe et al (2014) has been adapted into C-IFS, which brings optical depths closer to MODIS values over oceans, and also has a beneficial impact on PM10 forecasts over Europe. The model also offers the possibility to use dynamically computed dry deposition velocities following Zhang et al (2001). These new developments come as options in C-IFS; the decision of use these options in the operational configuration will be taken by ECMWF after considering input from various parties.

  11. Using forecast modelling to evaluate treatment effects in single-group interrupted time series analysis.

    PubMed

    Linden, Ariel

    2018-05-11

    Interrupted time series analysis (ITSA) is an evaluation methodology in which a single treatment unit's outcome is studied serially over time and the intervention is expected to "interrupt" the level and/or trend of that outcome. ITSA is commonly evaluated using methods which may produce biased results if model assumptions are violated. In this paper, treatment effects are alternatively assessed by using forecasting methods to closely fit the preintervention observations and then forecast the post-intervention trend. A treatment effect may be inferred if the actual post-intervention observations diverge from the forecasts by some specified amount. The forecasting approach is demonstrated using the effect of California's Proposition 99 for reducing cigarette sales. Three forecast models are fit to the preintervention series-linear regression (REG), Holt-Winters (HW) non-seasonal smoothing, and autoregressive moving average (ARIMA)-and forecasts are generated into the post-intervention period. The actual observations are then compared with the forecasts to assess intervention effects. The preintervention data were fit best by HW, followed closely by ARIMA. REG fit the data poorly. The actual post-intervention observations were above the forecasts in HW and ARIMA, suggesting no intervention effect, but below the forecasts in the REG (suggesting a treatment effect), thereby raising doubts about any definitive conclusion of a treatment effect. In a single-group ITSA, treatment effects are likely to be biased if the model is misspecified. Therefore, evaluators should consider using forecast models to accurately fit the preintervention data and generate plausible counterfactual forecasts, thereby improving causal inference of treatment effects in single-group ITSA studies. © 2018 John Wiley & Sons, Ltd.

  12. Attributing Predictable Signals at Subseasonal Timescales

    NASA Astrophysics Data System (ADS)

    Shelly, A.; Norton, W.; Rowlands, D.; Beech-Brandt, J.

    2016-12-01

    Subseasonal forecasts offer significant economic value in the management of energy infrastructure and through the associated financial markets. Models are now accurate enough to provide, for some occasions, good forecasts in the subseasonal range. However, it is often not clear what the drivers of these subseasonal signals are and if the forecasts could be more accurate with better representation of physical processes. Also what are the limits of predictability in the subseasonal range? To address these questions, we have run the ECMWF monthly forecast system over the 2015/16 winter with a set of 6 week ensemble integrations initialised every week over the period. In these experiments, we have relaxed the band 15N to 15S to reanalysis fields. Hence, we have a set of forecasts where the tropics is constrained to actual events and we can analyse the changes in predictability in middle latitudes - in particular in regions of high energy consumption like North America and Europe. Not surprisingly, the forecast of some periods are significantly improved while others show no improvement. We discuss events/patterns that have extended range predictability and also the tropical forecast errors which prevent the potential predictability in middle latitudes from being realised.

  13. Forecasting the value of credit scoring

    NASA Astrophysics Data System (ADS)

    Saad, Shakila; Ahmad, Noryati; Jaffar, Maheran Mohd

    2017-08-01

    Nowadays, credit scoring system plays an important role in banking sector. This process is important in assessing the creditworthiness of customers requesting credit from banks or other financial institutions. Usually, the credit scoring is used when customers send the application for credit facilities. Based on the score from credit scoring, bank will be able to segregate the "good" clients from "bad" clients. However, in most cases the score is useful at that specific time only and cannot be used to forecast the credit worthiness of the same applicant after that. Hence, bank will not know if "good" clients will always be good all the time or "bad" clients may become "good" clients after certain time. To fill up the gap, this study proposes an equation to forecast the credit scoring of the potential borrowers at a certain time by using the historical score related to the assumption. The Mean Absolute Percentage Error (MAPE) is used to measure the accuracy of the forecast scoring. Result shows the forecast scoring is highly accurate as compared to actual credit scoring.

  14. Assessment of GNSS-based height data of multiple ships for measuring and forecasting great tsunamis

    NASA Astrophysics Data System (ADS)

    Inazu, Daisuke; Waseda, Takuji; Hibiya, Toshiyuki; Ohta, Yusaku

    2016-12-01

    Ship height positioning by the Global Navigation Satellite System (GNSS) was investigated for measuring and forecasting great tsunamis. We first examined GNSS height-positioning data of a navigating vessel. If we use the kinematic precise point positioning (PPP) method, tsunamis greater than 10-1 m will be detected by ship height positioning. Based on Automatic Identification System (AIS) data, we found that tens of cargo ships and tankers are usually identified to navigate over the Nankai Trough, southwest Japan. We assumed that a future Nankai Trough great earthquake tsunami will be observed by the kinematic PPP height positioning of an AIS-derived ship distribution, and examined the tsunami forecast capability of the offshore tsunami measurements based on the PPP-based ship height. A method to estimate the initial tsunami height distribution using offshore tsunami observations was used for forecasting. Tsunami forecast tests were carried out using simulated tsunami data by the PPP-based ship height of 92 cargo ships/tankers, and by currently operating deep-sea pressure and Global Positioning System (GPS) buoy observations at 71 stations over the Nankai Trough. The forecast capability using the PPP-based height of the 92 ships was shown to be comparable to or better than that using the operating offshore observatories at the 71 stations. We suppose that, immediately after the occurrence of a great earthquake, stations receiving successive ship information (AIS data) along certain areas of the coast would fail to acquire ship data due to strong ground shaking, especially near the epicenter. Such a situation would significantly deteriorate the tsunami-forecast capability using ship data. On the other hand, operational real-time analysis of seismic/geodetic data would be carried out for estimating a tsunamigenic fault model. Incorporating the seismic/geodetic fault model estimation into the tsunami forecast above possibly compensates for the deteriorated forecast capability.

  15. Spatial nonlinearities: Cascading effects in the earth system

    USGS Publications Warehouse

    Peters, Debra P.C.; Pielke, R.A.; Bestelmeyer, B.T.; Allen, Craig D.; Munson-McGee, Stuart; Havstad, K. M.; Canadell, Josep G.; Pataki, Diane E.; Pitelka, Louis F.

    2006-01-01

    Nonlinear behavior is prevalent in all aspects of the Earth System, including ecological responses to global change (Gallagher and Appenzeller 1999; Steffen et al. 2004). Nonlinear behavior refers to a large, discontinuous change in response to a small change in a driving variable (Rial et al. 2004). In contrast to linear systems where responses are smooth, well-behaved, continuous functions, nonlinear systems often undergo sharp or discontinuous transitions resulting from the crossing of thresholds. These nonlinear responses can result in surprising behavior that makes forecasting difficult (Kaplan and Glass 1995). Given that many system dynamics are nonlinear, it is imperative that conceptual and quantitative tools be developed to increase our understanding of the processes leading to nonlinear behavior in order to determine if forecasting can be improved under future environmental changes (Clark et al. 2001).

  16. Evaluation of regression and neural network models for solar forecasting over different short-term horizons

    DOE PAGES

    Inanlouganji, Alireza; Reddy, T. Agami; Katipamula, Srinivas

    2018-04-13

    Forecasting solar irradiation has acquired immense importance in view of the exponential increase in the number of solar photovoltaic (PV) system installations. In this article, analyses results involving statistical and machine-learning techniques to predict solar irradiation for different forecasting horizons are reported. Yearlong typical meteorological year 3 (TMY3) datasets from three cities in the United States with different climatic conditions have been used in this analysis. A simple forecast approach that assumes consecutive days to be identical serves as a baseline model to compare forecasting alternatives. To account for seasonal variability and to capture short-term fluctuations, different variants of themore » lagged moving average (LMX) model with cloud cover as the input variable are evaluated. Finally, the proposed LMX model is evaluated against an artificial neural network (ANN) model. How the one-hour and 24-hour models can be used in conjunction to predict different short-term rolling horizons is discussed, and this joint application is illustrated for a four-hour rolling horizon forecast scheme. Lastly, the effect of using predicted cloud cover values, instead of measured ones, on the accuracy of the models is assessed. Results show that LMX models do not degrade in forecast accuracy if models are trained with the forecast cloud cover data.« less

  17. Evaluation of regression and neural network models for solar forecasting over different short-term horizons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inanlouganji, Alireza; Reddy, T. Agami; Katipamula, Srinivas

    Forecasting solar irradiation has acquired immense importance in view of the exponential increase in the number of solar photovoltaic (PV) system installations. In this article, analyses results involving statistical and machine-learning techniques to predict solar irradiation for different forecasting horizons are reported. Yearlong typical meteorological year 3 (TMY3) datasets from three cities in the United States with different climatic conditions have been used in this analysis. A simple forecast approach that assumes consecutive days to be identical serves as a baseline model to compare forecasting alternatives. To account for seasonal variability and to capture short-term fluctuations, different variants of themore » lagged moving average (LMX) model with cloud cover as the input variable are evaluated. Finally, the proposed LMX model is evaluated against an artificial neural network (ANN) model. How the one-hour and 24-hour models can be used in conjunction to predict different short-term rolling horizons is discussed, and this joint application is illustrated for a four-hour rolling horizon forecast scheme. Lastly, the effect of using predicted cloud cover values, instead of measured ones, on the accuracy of the models is assessed. Results show that LMX models do not degrade in forecast accuracy if models are trained with the forecast cloud cover data.« less

  18. A Pro-active Real-time Forecasting and Decision Support System for Daily Management of Marine Works

    NASA Astrophysics Data System (ADS)

    Bollen, Mark; Leyssen, Gert; Smets, Steven; De Wachter, Tom

    2016-04-01

    Marine Works involving turbidity generating activities (eg. dredging, dredge spoil placement) can generate environmental stress in and around a project area in the form of sediment plumes causing light reduction and sedimentation. If these works are situated near sensitive habitats like sea-grass beds, coral reefs or sensitive human activities eg. aquaculture farms or water intakes, or if contaminants are present in the water soil environmental scrutiny is advised. Environmental Regulations can impose limitations to these activities in the form of turbidity thresholds, spill budgets, contaminant levels. Breaching environmental regulations can result in increased monitoring, adaptation of the works planning and production rates and ultimately in a (temporary) stop of activities all of which entail time and cost impacts for a contractor and/or client. Sediment plume behaviour is governed by the dredging process, soil properties and ambient conditions (currents, water depth) and can be modelled. Usually this is done during the preparatory EIA phase of a project, for estimation of environmental impact based on climatic scenarios. An operational forecasting tool is developed to adapt marine work schedules to the real-time circumstances and thus evade exceedance of critical threshold levels at sensitive areas. The forecasting system is based on a Python-based workflow manager with a MySQL database and a Django frontend web tool for user interaction and visualisation of the model results. The core consists of a numerical hydrodynamic model with sediment transport module (Mike21 from DHI). This model is driven by space and time varying wind fields and wave boundary conditions, and turbidity inputs (suspended sediment source terms) based on marine works production rates and soil properties. The resulting threshold analysis allows the operator to indicate potential impact at the sensitive areas and instigate an adaption of the marine work schedule if needed. In order to use this toolbox in real-time situations and facilitate forecasting of impacts of planned dredge works, the following operational online functionalities are implemented: • Automated fetch and preparation of the input data, including 7 day forecast wind and wave fields and real-time measurements, and user defined the turbidity inputs based on scheduled marine works. • Generate automated forecasts and running user configurable scenarios at the same time in parallel. • Export and convert the model results, time series and maps, into a standardized format (netcdf). • Automatic analysis and processing of model results, including the calculation of indicator turbidity values and the exceedance analysis of threshold levels at the different sensitive areas. Data assimilation with the real time on site turbidity measurements is implemented in this threshold analysis. • Pre-programmed generation of animated sediment plumes, specific charts and pdf reports to allow a rapid interpretation of the model results by the operators and facilitating decision making in the operational planning. The performed marine works, resulting from the marine work schedule proposed by the forecasting system, are evaluated by a threshold analysis on the validated turbidity measurements on the sensitive sites. This machine learning loop allows a check of the system in order to evaluate forecast and model uncertainties.

  19. How can monthly to seasonal forecasts help to better manage power systems? (Invited)

    NASA Astrophysics Data System (ADS)

    Dubus, L.; Troccoli, A.

    2013-12-01

    The energy industry increasingly depends on weather and climate, at all space and time scales. This is especially true in countries with volunteer renewable energies development policies. There is no doubt that Energy and Meteorology is a burgeoning inter-sectoral discipline. It is also clear that the catalyst for the stronger interaction between these two sectors is the renewed and fervent interest in renewable energies, especially wind and solar power. Recent progress in meteorology has led to a marked increase in the knowledge of the climate system and in the ability to forecast climate on monthly to seasonal time scales. Several studies have already demonstrated the effectiveness of using these forecasts for energy operations, for instance for hydro-power applications. However, it is also obvious that scientific progress on its own is not sufficient to increase the value of weather forecasts. The process of integration of new meteorological products into operational tools and decision making processes is not straightforward but it is at least as important as the scientific discovery. In turn, such integration requires effective communication between users and providers of these products. We will present some important aspects of energy systems in which monthly to seasonal forecasts can bring useful, if not vital, information, and we will give some examples of encouraging energy/meteorology collaborations. We will also provide some suggestions for a strengthened collaboration into the future.

  20. Multi-model assessment of the impact of soil moisture initialization on mid-latitude summer predictability

    NASA Astrophysics Data System (ADS)

    Ardilouze, Constantin; Batté, L.; Bunzel, F.; Decremer, D.; Déqué, M.; Doblas-Reyes, F. J.; Douville, H.; Fereday, D.; Guemas, V.; MacLachlan, C.; Müller, W.; Prodhomme, C.

    2017-12-01

    Land surface initial conditions have been recognized as a potential source of predictability in sub-seasonal to seasonal forecast systems, at least for near-surface air temperature prediction over the mid-latitude continents. Yet, few studies have systematically explored such an influence over a sufficient hindcast period and in a multi-model framework to produce a robust quantitative assessment. Here, a dedicated set of twin experiments has been carried out with boreal summer retrospective forecasts over the 1992-2010 period performed by five different global coupled ocean-atmosphere models. The impact of a realistic versus climatological soil moisture initialization is assessed in two regions with high potential previously identified as hotspots of land-atmosphere coupling, namely the North American Great Plains and South-Eastern Europe. Over the latter region, temperature predictions show a significant improvement, especially over the Balkans. Forecast systems better simulate the warmest summers if they follow pronounced dry initial anomalies. It is hypothesized that models manage to capture a positive feedback between high temperature and low soil moisture content prone to dominate over other processes during the warmest summers in this region. Over the Great Plains, however, improving the soil moisture initialization does not lead to any robust gain of forecast quality for near-surface temperature. It is suggested that models biases prevent the forecast systems from making the most of the improved initial conditions.

  1. Gambling scores for earthquake predictions and forecasts

    NASA Astrophysics Data System (ADS)

    Zhuang, Jiancang

    2010-04-01

    This paper presents a new method, namely the gambling score, for scoring the performance earthquake forecasts or predictions. Unlike most other scoring procedures that require a regular scheme of forecast and treat each earthquake equally, regardless their magnitude, this new scoring method compensates the risk that the forecaster has taken. Starting with a certain number of reputation points, once a forecaster makes a prediction or forecast, he is assumed to have betted some points of his reputation. The reference model, which plays the role of the house, determines how many reputation points the forecaster can gain if he succeeds, according to a fair rule, and also takes away the reputation points betted by the forecaster if he loses. This method is also extended to the continuous case of point process models, where the reputation points betted by the forecaster become a continuous mass on the space-time-magnitude range of interest. We also calculate the upper bound of the gambling score when the true model is a renewal process, the stress release model or the ETAS model and when the reference model is the Poisson model.

  2. Applications of remote sensing to water resources

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Analyses were made of selected long-term (1985 and beyond) objectives, with the intent of determining if significant data-related problems would be encountered and to develop alternative solutions to any potential problems. One long-term objective selected for analysis was Water Availability Forecasting. A brief overview was scheduled in FY-77 of the objective -- primarily a fact-finding study to allow Data Management personnel to gain adequate background information to perform subsequent data system analyses. This report, includes discussions on some of the larger problems currently encountered in water measurement, the potential users of water availability forecasts, projected demands of users, current sensing accuracies, required parameter monitoring, status of forecasting modeling, and some measurement accuracies likely to be achievable by 1980 and 1990.

  3. Net-zero Building Cluster Simulations and On-line Energy Forecasting for Adaptive and Real-Time Control and Decisions

    NASA Astrophysics Data System (ADS)

    Li, Xiwang

    Buildings consume about 41.1% of primary energy and 74% of the electricity in the U.S. Moreover, it is estimated by the National Energy Technology Laboratory that more than 1/4 of the 713 GW of U.S. electricity demand in 2010 could be dispatchable if only buildings could respond to that dispatch through advanced building energy control and operation strategies and smart grid infrastructure. In this study, it is envisioned that neighboring buildings will have the tendency to form a cluster, an open cyber-physical system to exploit the economic opportunities provided by a smart grid, distributed power generation, and storage devices. Through optimized demand management, these building clusters will then reduce overall primary energy consumption and peak time electricity consumption, and be more resilient to power disruptions. Therefore, this project seeks to develop a Net-zero building cluster simulation testbed and high fidelity energy forecasting models for adaptive and real-time control and decision making strategy development that can be used in a Net-zero building cluster. The following research activities are summarized in this thesis: 1) Development of a building cluster emulator for building cluster control and operation strategy assessment. 2) Development of a novel building energy forecasting methodology using active system identification and data fusion techniques. In this methodology, a systematic approach for building energy system characteristic evaluation, system excitation and model adaptation is included. The developed methodology is compared with other literature-reported building energy forecasting methods; 3) Development of the high fidelity on-line building cluster energy forecasting models, which includes energy forecasting models for buildings, PV panels, batteries and ice tank thermal storage systems 4) Small scale real building validation study to verify the performance of the developed building energy forecasting methodology. The outcomes of this thesis can be used for building cluster energy forecasting model development and model based control and operation optimization. The thesis concludes with a summary of the key outcomes of this research, as well as a list of recommendations for future work.

  4. Regional Precipitation Forecast with Atmospheric InfraRed Sounder (AIRS) Profile Assimilation

    NASA Technical Reports Server (NTRS)

    Chou, S.-H.; Zavodsky, B. T.; Jedloved, G. J.

    2010-01-01

    Advanced technology in hyperspectral sensors such as the Atmospheric InfraRed Sounder (AIRS; Aumann et al. 2003) on NASA's polar orbiting Aqua satellite retrieve higher vertical resolution thermodynamic profiles than their predecessors due to increased spectral resolution. Although these capabilities do not replace the robust vertical resolution provided by radiosondes, they can serve as a complement to radiosondes in both space and time. These retrieved soundings can have a significant impact on weather forecasts if properly assimilated into prediction models. Several recent studies have evaluated the performance of specific operational weather forecast models when AIRS data are included in the assimilation process. LeMarshall et al. (2006) concluded that AIRS radiances significantly improved 500 hPa anomaly correlations in medium-range forecasts of the Global Forecast System (GFS) model. McCarty et al. (2009) demonstrated similar forecast improvement in 0-48 hour forecasts in an offline version of the operational North American Mesoscale (NAM) model when AIRS radiances were assimilated at the regional scale. Reale et al. (2008) showed improvements to Northern Hemisphere 500 hPa height anomaly correlations in NASA's Goddard Earth Observing System Model, Version 5 (GEOS-5) global system with the inclusion of partly cloudy AIRS temperature profiles. Singh et al. (2008) assimilated AIRS temperature and moisture profiles into a regional modeling system for a study of a heavy rainfall event during the summer monsoon season in Mumbai, India. This paper describes an approach to assimilate AIRS temperature and moisture profiles into a regional configuration of the Advanced Research Weather Research and Forecasting (WRF-ARW) model using its three-dimensional variational (3DVAR) assimilation system (WRF-Var; Barker et al. 2004). Section 2 describes the AIRS instrument and how the quality indicators are used to intelligently select the highest-quality data for assimilation. Section 3 presents an overall precipitation improvement with AIRS assimilation during a 37-day case study period, and Section 4 focuses on a single case study to further investigate the meteorological impact of AIRS profiles on synoptic scale models. Finally, Section 5 provides a summary of the paper.

  5. Development of a mobile app for flash flood alerting and data cataloging

    NASA Astrophysics Data System (ADS)

    Gourley, J. J.; Flamig, Z.; Nguyen, M.

    2016-12-01

    No matter how accurate and specific a forecast of flash flooding is made, there are local nuances with the communities related to the built environment that often dictate the locations and magnitudes of impacts. These are difficult, if not impossible, to identify, classify, and measure using remote sensing methods. This presentation presents a Thriving Earth Exchange project that is developing a mobile app that serves two purposes. First, it will provide detailed forecasts of flash flooding down to the 1-km pixel scale with 10-min updates using the state-of-the-science hydrologic forecasting system called FLASH. The display of model outputs on an app will greatly facilitate their use and can potentially increase first responders' reactions to the specific locations of impending disasters. Then, the first responders will have the capability of reporting the geotagged impacts they are witnessing, including those local "trouble spots". Over time, we will catalog the trouble spots for the community so that they can be flagged in future events. If proven effective, the app will then be advertised in other flood-prone communities and the database will be expanded accordingly. In summary, we are engaging local communities to provide information that can inform and improve future forecasts of flash flood, ultimately reducing their impacts and saving lives.

  6. Trends in the predictive performance of raw ensemble weather forecasts

    NASA Astrophysics Data System (ADS)

    Hemri, Stephan; Scheuerer, Michael; Pappenberger, Florian; Bogner, Konrad; Haiden, Thomas

    2015-04-01

    Over the last two decades the paradigm in weather forecasting has shifted from being deterministic to probabilistic. Accordingly, numerical weather prediction (NWP) models have been run increasingly as ensemble forecasting systems. The goal of such ensemble forecasts is to approximate the forecast probability distribution by a finite sample of scenarios. Global ensemble forecast systems, like the European Centre for Medium-Range Weather Forecasts (ECMWF) ensemble, are prone to probabilistic biases, and are therefore not reliable. They particularly tend to be underdispersive for surface weather parameters. Hence, statistical post-processing is required in order to obtain reliable and sharp forecasts. In this study we apply statistical post-processing to ensemble forecasts of near-surface temperature, 24-hour precipitation totals, and near-surface wind speed from the global ECMWF model. Our main objective is to evaluate the evolution of the difference in skill between the raw ensemble and the post-processed forecasts. The ECMWF ensemble is under continuous development, and hence its forecast skill improves over time. Parts of these improvements may be due to a reduction of probabilistic bias. Thus, we first hypothesize that the gain by post-processing decreases over time. Based on ECMWF forecasts from January 2002 to March 2014 and corresponding observations from globally distributed stations we generate post-processed forecasts by ensemble model output statistics (EMOS) for each station and variable. Parameter estimates are obtained by minimizing the Continuous Ranked Probability Score (CRPS) over rolling training periods that consist of the n days preceding the initialization dates. Given the higher average skill in terms of CRPS of the post-processed forecasts for all three variables, we analyze the evolution of the difference in skill between raw ensemble and EMOS forecasts. The fact that the gap in skill remains almost constant over time, especially for near-surface wind speed, suggests that improvements to the atmospheric model have an effect quite different from what calibration by statistical post-processing is doing. That is, they are increasing potential skill. Thus this study indicates that (a) further model development is important even if one is just interested in point forecasts, and (b) statistical post-processing is important because it will keep adding skill in the foreseeable future.

  7. Two-step forecast of geomagnetic storm using coronal mass ejection and solar wind condition

    PubMed Central

    Kim, R-S; Moon, Y-J; Gopalswamy, N; Park, Y-D; Kim, Y-H

    2014-01-01

    To forecast geomagnetic storms, we had examined initially observed parameters of coronal mass ejections (CMEs) and introduced an empirical storm forecast model in a previous study. Now we suggest a two-step forecast considering not only CME parameters observed in the solar vicinity but also solar wind conditions near Earth to improve the forecast capability. We consider the empirical solar wind criteria derived in this study (Bz ≤ −5 nT or Ey ≥ 3 mV/m for t≥ 2 h for moderate storms with minimum Dst less than −50 nT) and a Dst model developed by Temerin and Li (2002, 2006) (TL model). Using 55 CME-Dst pairs during 1997 to 2003, our solar wind criteria produce slightly better forecasts for 31 storm events (90%) than the forecasts based on the TL model (87%). However, the latter produces better forecasts for 24 nonstorm events (88%), while the former correctly forecasts only 71% of them. We then performed the two-step forecast. The results are as follows: (i) for 15 events that are incorrectly forecasted using CME parameters, 12 cases (80%) can be properly predicted based on solar wind conditions; (ii) if we forecast a storm when both CME and solar wind conditions are satisfied (∩), the critical success index becomes higher than that from the forecast using CME parameters alone, however, only 25 storm events (81%) are correctly forecasted; and (iii) if we forecast a storm when either set of these conditions is satisfied (∪), all geomagnetic storms are correctly forecasted. PMID:26213515

  8. Two-step forecast of geomagnetic storm using coronal mass ejection and solar wind condition.

    PubMed

    Kim, R-S; Moon, Y-J; Gopalswamy, N; Park, Y-D; Kim, Y-H

    2014-04-01

    To forecast geomagnetic storms, we had examined initially observed parameters of coronal mass ejections (CMEs) and introduced an empirical storm forecast model in a previous study. Now we suggest a two-step forecast considering not only CME parameters observed in the solar vicinity but also solar wind conditions near Earth to improve the forecast capability. We consider the empirical solar wind criteria derived in this study ( B z  ≤ -5 nT or E y  ≥ 3 mV/m for t ≥ 2 h for moderate storms with minimum Dst less than -50 nT) and a Dst model developed by Temerin and Li (2002, 2006) (TL model). Using 55 CME- Dst pairs during 1997 to 2003, our solar wind criteria produce slightly better forecasts for 31 storm events (90%) than the forecasts based on the TL model (87%). However, the latter produces better forecasts for 24 nonstorm events (88%), while the former correctly forecasts only 71% of them. We then performed the two-step forecast. The results are as follows: (i) for 15 events that are incorrectly forecasted using CME parameters, 12 cases (80%) can be properly predicted based on solar wind conditions; (ii) if we forecast a storm when both CME and solar wind conditions are satisfied (∩), the critical success index becomes higher than that from the forecast using CME parameters alone, however, only 25 storm events (81%) are correctly forecasted; and (iii) if we forecast a storm when either set of these conditions is satisfied (∪), all geomagnetic storms are correctly forecasted.

  9. A Maple package for improved global mapping forecast

    NASA Astrophysics Data System (ADS)

    Carli, H.; Duarte, L. G. S.; da Mota, L. A. C. P.

    2014-03-01

    We present a Maple implementation of the well known global approach to time series analysis and some further developments designed to improve the computational efficiency of the forecasting capabilities of the approach. This global approach can be summarized as being a reconstruction of the phase space, based on a time ordered series of data obtained from the system. After that, using the reconstructed vectors, a portion of this space is used to produce a mapping, a polynomial fitting, through a minimization procedure, that represents the system and can be employed to forecast further entries for the series. In the present implementation, we introduce a set of commands, tools, in order to perform all these tasks. For example, the command VecTS deals mainly with the reconstruction of the vector in the phase space. The command GfiTS deals with producing the minimization and the fitting. ForecasTS uses all these and produces the prediction of the next entries. For the non-standard algorithms, we here present two commands: IforecasTS and NiforecasTS that, respectively deal with the one-step and the N-step forecasting. Finally, we introduce two further tools to aid the forecasting. The commands GfiTS and AnalysTS, basically, perform an analysis of the behavior of each portion of a series regarding the settings used on the commands just mentioned above. Catalogue identifier: AERW_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AERW_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 3001 No. of bytes in distributed program, including test data, etc.: 95018 Distribution format: tar.gz Programming language: Maple 14. Computer: Any capable of running Maple Operating system: Any capable of running Maple. Tested on Windows ME, Windows XP, Windows 7. RAM: 128 MB Classification: 4.3, 4.9, 5 Nature of problem: Time series analysis and improving forecast capability. Solution method: The method of solution is partially based on a result published in [1]. Restrictions: If the time series that is being analyzed presents a great amount of noise or if the dynamical system behind the time series is of high dimensionality (Dim≫3), then the method may not work well. Unusual features: Our implementation can, in the cases where the dynamics behind the time series is given by a system of low dimensionality, greatly improve the forecast. Running time: This depends strongly on the command that is being used. References: [1] Barbosa, L.M.C.R., Duarte, L.G.S., Linhares, C.A. and da Mota, L.A.C.P., Improving the global fitting method on nonlinear time series analysis, Phys. Rev. E 74, 026702 (2006).

  10. Two Topics in Seasonal Streamflow Forecasting: Soil Moisture Initialization Error and Precipitation Downscaling

    NASA Technical Reports Server (NTRS)

    Koster, Randal; Walker, Greg; Mahanama, Sarith; Reichle, Rolf

    2012-01-01

    Continental-scale offline simulations with a land surface model are used to address two important issues in the forecasting of large-scale seasonal streamflow: (i) the extent to which errors in soil moisture initialization degrade streamflow forecasts, and (ii) the extent to which the downscaling of seasonal precipitation forecasts, if it could be done accurately, would improve streamflow forecasts. The reduction in streamflow forecast skill (with forecasted streamflow measured against observations) associated with adding noise to a soil moisture field is found to be, to first order, proportional to the average reduction in the accuracy of the soil moisture field itself. This result has implications for streamflow forecast improvement under satellite-based soil moisture measurement programs. In the second and more idealized ("perfect model") analysis, precipitation downscaling is found to have an impact on large-scale streamflow forecasts only if two conditions are met: (i) evaporation variance is significant relative to the precipitation variance, and (ii) the subgrid spatial variance of precipitation is adequately large. In the large-scale continental region studied (the conterminous United States), these two conditions are met in only a somewhat limited area.

  11. Quality Assessment of the Cobel-Isba Numerical Forecast System of Fog and Low Clouds

    NASA Astrophysics Data System (ADS)

    Bergot, Thierry

    2007-06-01

    Short-term forecasting of fog is a difficult issue which can have a large societal impact. Fog appears in the surface boundary layer and is driven by the interactions between land surface and the lower layers of the atmosphere. These interactions are still not well parameterized in current operational NWP models, and a new methodology based on local observations, an adaptive assimilation scheme and a local numerical model is tested. The proposed numerical forecast method of foggy conditions has been run during three years at Paris-CdG international airport. This test over a long-time period allows an in-depth evaluation of the forecast quality. This study demonstrates that detailed 1-D models, including detailed physical parameterizations and high vertical resolution, can reasonably represent the major features of the life cycle of fog (onset, development and dissipation) up to +6 h. The error on the forecast onset and burn-off time is typically 1 h. The major weakness of the methodology is related to the evolution of low clouds (stratus lowering). Even if the occurrence of fog is well forecasted, the value of the horizontal visibility is only crudely forecasted. Improvements in the microphysical parameterization and in the translation algorithm converting NWP prognostic variables into a corresponding horizontal visibility seems necessary to accurately forecast the value of the visibility.

  12. High-Resolution Hydrological Sub-Seasonal Forecasting for Water Resources Management Over Europe

    NASA Astrophysics Data System (ADS)

    Wood, E. F.; Wanders, N.; Pan, M.; Sheffield, J.; Samaniego, L. E.; Thober, S.; Kumar, R.; Prudhomme, C.; Houghton-Carr, H.

    2017-12-01

    For decision-making at the sub-seasonal and seasonal time scale, hydrological forecasts with a high temporal and spatial resolution are required by water managers. So far such forecasts have been unavailable due to 1) lack of availability of meteorological seasonal forecasts, 2) coarse temporal resolution of meteorological seasonal forecasts, requiring temporal downscaling, 3) lack of consistency between observations and seasonal forecasts, requiring bias-correction. The EDgE (End-to-end Demonstrator for improved decision making in the water sector in Europe) project commissioned by the ECMWF (C3S) created a unique dataset of hydrological seasonal forecasts derived from four global climate models (CanCM4, FLOR-B01, ECMF, LFPW) in combination with four global hydrological models (PCR-GLOBWB, VIC, mHM, Noah-MP), resulting in 208 forecasts for any given day. The forecasts provide a daily temporal and 5-km spatial resolution, and are bias corrected against E-OBS meteorological observations. The forecasts are communicated to stakeholders via Sectoral Climate Impact Indicators (SCIIs), created in collaboration with the end-user community of the EDgE project (e.g. the percentage of ensemble realizations above the 10th percentile of monthly river flow, or below the 90th). Results show skillful forecasts for discharge from 3 months to 6 months (latter for N Europe due to snow); for soil moisture up to three months due precipitation forecast skill and short initial condition memory; and for groundwater greater than 6 months (lowest skill in western Europe.) The SCIIs are effective in communicating both forecast skill and uncertainty. Overall the new system provides an unprecedented ensemble for seasonal forecasts with significant skill over Europe to support water management. The consistency in both the GCM forecasts and the LSM parameterization ensures a stable and reliable forecast framework and methodology, even if additional GCMs or LSMs are added in the future.

  13. Calculating Toxic Corridors.

    DTIC Science & Technology

    1980-11-01

    59 programmable calculator . Method 1 will most likely be used if there is a toxic corridor length table for the chemical; Method 2 if there is no table...experience of the forecaster in making this forecast, availability of a toxic corridor length table for the released chemical, and availability of a TI

  14. Pilot project for a hybrid road-flooding forecasting system on Squaw Creek.

    DOT National Transportation Integrated Search

    2014-09-01

    A network of 25 sonic stage sensors were deployed in the Squaw Creek basin upstream from Ames Iowa to determine : if the state-of-the-art distributed hydrological model CUENCAS can produce reliable information for all road crossings : including those...

  15. Performance and Quality Assessment of the Forthcoming Copernicus Marine Service Global Ocean Monitoring and Forecasting Real-Time System

    NASA Astrophysics Data System (ADS)

    Lellouche, J. M.; Le Galloudec, O.; Greiner, E.; Garric, G.; Regnier, C.; Drillet, Y.

    2016-02-01

    Mercator Ocean currently delivers in real-time daily services (weekly analyses and daily forecast) with a global 1/12° high resolution system. The model component is the NEMO platform driven at the surface by the IFS ECMWF atmospheric analyses and forecasts. Observations are assimilated by means of a reduced-order Kalman filter with a 3D multivariate modal decomposition of the forecast error. It includes an adaptive-error estimate and a localization algorithm. Along track altimeter data, satellite Sea Surface Temperature and in situ temperature and salinity vertical profiles are jointly assimilated to estimate the initial conditions for numerical ocean forecasting. A 3D-Var scheme provides a correction for the slowly-evolving large-scale biases in temperature and salinity.Since May 2015, Mercator Ocean opened the Copernicus Marine Service (CMS) and is in charge of the global ocean analyses and forecast, at eddy resolving resolution. In this context, R&D activities have been conducted at Mercator Ocean these last years in order to improve the real-time 1/12° global system for the next CMS version in 2016. The ocean/sea-ice model and the assimilation scheme benefit among others from the following improvements: large-scale and objective correction of atmospheric quantities with satellite data, new Mean Dynamic Topography taking into account the last version of GOCE geoid, new adaptive tuning of some observational errors, new Quality Control on the assimilated temperature and salinity vertical profiles based on dynamic height criteria, assimilation of satellite sea-ice concentration, new freshwater runoff from ice sheets melting …This presentation doesn't focus on the impact of each update, but rather on the overall behavior of the system integrating all updates. This assessment reports on the products quality improvements, highlighting the level of performance and the reliability of the new system.

  16. Forecast Verification: Identification of small changes in weather forecasting skill

    NASA Astrophysics Data System (ADS)

    Weatherhead, E. C.; Jensen, T. L.

    2017-12-01

    Global and regonal weather forecasts have improved over the past seven decades most often because of small, incrmental improvements. The identificaiton and verification of forecast improvement due to proposed small changes in forecasting can be expensive and, if not carried out efficiently, can slow progress in forecasting development. This presentation will look at the skill of commonly used verification techniques and show how the ability to detect improvements can depend on the magnitude of the improvement, the number of runs used to test the improvement, the location on the Earth and the statistical techniques used. For continuous variables, such as temperture, wind and humidity, the skill of a forecast can be directly compared using a pair-wise statistical test that accommodates the natural autocorrelation and magnitude of variability. For discrete variables, such as tornado outbreaks, or icing events, the challenges is to reduce the false alarm rate while improving the rate of correctly identifying th discrete event. For both continuus and discrete verification results, proper statistical approaches can reduce the number of runs needed to identify a small improvement in forecasting skill. Verification within the Next Generation Global Prediction System is an important component to the many small decisions needed to make stat-of-the-art improvements to weather forecasting capabilities. The comparison of multiple skill scores with often conflicting results requires not only appropriate testing, but also scientific judgment to assure that the choices are appropriate not only for improvements in today's forecasting capabilities, but allow improvements that will come in the future.

  17. Balancing Flood Risk and Water Supply in California: Policy Search Combining Short-Term Forecast Ensembles and Groundwater Recharge

    NASA Astrophysics Data System (ADS)

    Herman, J. D.; Steinschneider, S.; Nayak, M. A.

    2017-12-01

    Short-term weather forecasts are not codified into the operating policies of federal, multi-purpose reservoirs, despite their potential to improve service provision. This is particularly true for facilities that provide flood protection and water supply, since the potential flood damages are often too severe to accept the risk of inaccurate forecasts. Instead, operators must maintain empty storage capacity to mitigate flood risk, even if the system is currently in drought, as occurred in California from 2012-2016. This study investigates the potential for forecast-informed operating rules to improve water supply efficiency while maintaining flood protection, combining state-of-the-art weather hindcasts with a novel tree-based policy optimization framework. We hypothesize that forecasts need only accurately predict the occurrence of a storm, rather than its intensity, to be effective in regions like California where wintertime, synoptic-scale storms dominate the flood regime. We also investigate the potential for downstream groundwater injection to improve the utility of forecasts. These hypotheses are tested in a case study of Folsom Reservoir on the American River. Because available weather hindcasts are relatively short (10-20 years), we propose a new statistical framework to develop synthetic forecasts to assess the risk associated with inaccurate forecasts. The efficiency of operating policies is tested across a range of scenarios that include varying forecast skill and additional groundwater pumping capacity. Results suggest that the combined use of groundwater storage and short-term weather forecasts can substantially improve the tradeoff between water supply and flood control objectives in large, multi-purpose reservoirs in California.

  18. Accounting for fuel price risk: Using forward natural gas prices instead of gas price forecasts to compare renewable to natural gas-fired generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolinger, Mark; Wiser, Ryan; Golove, William

    2003-08-13

    Against the backdrop of increasingly volatile natural gas prices, renewable energy resources, which by their nature are immune to natural gas fuel price risk, provide a real economic benefit. Unlike many contracts for natural gas-fired generation, renewable generation is typically sold under fixed-price contracts. Assuming that electricity consumers value long-term price stability, a utility or other retail electricity supplier that is looking to expand its resource portfolio (or a policymaker interested in evaluating different resource options) should therefore compare the cost of fixed-price renewable generation to the hedged or guaranteed cost of new natural gas-fired generation, rather than to projectedmore » costs based on uncertain gas price forecasts. To do otherwise would be to compare apples to oranges: by their nature, renewable resources carry no natural gas fuel price risk, and if the market values that attribute, then the most appropriate comparison is to the hedged cost of natural gas-fired generation. Nonetheless, utilities and others often compare the costs of renewable to gas-fired generation using as their fuel price input long-term gas price forecasts that are inherently uncertain, rather than long-term natural gas forward prices that can actually be locked in. This practice raises the critical question of how these two price streams compare. If they are similar, then one might conclude that forecast-based modeling and planning exercises are in fact approximating an apples-to-apples comparison, and no further consideration is necessary. If, however, natural gas forward prices systematically differ from price forecasts, then the use of such forecasts in planning and modeling exercises will yield results that are biased in favor of either renewable (if forwards < forecasts) or natural gas-fired generation (if forwards > forecasts). In this report we compare the cost of hedging natural gas price risk through traditional gas-based hedging instruments (e.g., futures, swaps, and fixed-price physical supply contracts) to contemporaneous forecasts of spot natural gas prices, with the purpose of identifying any systematic differences between the two. Although our data set is quite limited, we find that over the past three years, forward gas prices for durations of 2-10 years have been considerably higher than most natural gas spot price forecasts, including the reference case forecasts developed by the Energy Information Administration (EIA). This difference is striking, and implies that resource planning and modeling exercises based on these forecasts over the past three years have yielded results that are biased in favor of gas-fired generation (again, presuming that long-term stability is desirable). As discussed later, these findings have important ramifications for resource planners, energy modelers, and policy-makers.« less

  19. An intelligent sales forecasting system through integration of artificial neural networks and fuzzy neural networks with fuzzy weight elimination.

    PubMed

    Kuo, R J; Wu, P; Wang, C P

    2002-09-01

    Sales forecasting plays a very prominent role in business strategy. Numerous investigations addressing this problem have generally employed statistical methods, such as regression or autoregressive and moving average (ARMA). However, sales forecasting is very complicated owing to influence by internal and external environments. Recently, artificial neural networks (ANNs) have also been applied in sales forecasting since their promising performances in the areas of control and pattern recognition. However, further improvement is still necessary since unique circumstances, e.g. promotion, cause a sudden change in the sales pattern. Thus, this study utilizes a proposed fuzzy neural network (FNN), which is able to eliminate the unimportant weights, for the sake of learning fuzzy IF-THEN rules obtained from the marketing experts with respect to promotion. The result from FNN is further integrated with the time series data through an ANN. Both the simulated and real-world problem results show that FNN with weight elimination can have lower training error compared with the regular FNN. Besides, real-world problem results also indicate that the proposed estimation system outperforms the conventional statistical method and single ANN in accuracy.

  20. Data-Driven Disease Forecasting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Generous, Nicholas

    If disease outbreaks could be forecasted like the weather, communities could set up protective measures to mitigate their impact. At Los Alamos National Laboratory, scientists are improving disease-forecasting mathematical models by using clinical data--as well as internet data sources such as Wikipedia, Twitter, and Google--and coupling it with satellite imagery. The goal is to better understanding how diseases spread and, eventually, forecast disease outbreaks.

  1. Using Heliospheric Imaging for Storm Forecasting - SMEI CME Observations as a Tool for Operational Forecasting at AFWA

    NASA Astrophysics Data System (ADS)

    Webb, D. F.; Johnston, J. C.; Fry, C. D.; Kuchar, T. A.

    2008-12-01

    Observations of coronal mass ejections (CMEs) from heliospheric imagers such as the Solar Mass Ejection Imager (SMEI) can lead to significant improvements in operational space weather forecasting. We are working with the Air Force Weather Agency (AFWA) to ingest SMEI all-sky imagery with appropriate tools to help forecasters improve their operational space weather forecasts. We describe two approaches: 1) Near- real time analysis of propagating CMEs from SMEI images alone combined with near-Sun observations of CME onsets and, 2) Using these calculations of speed as a mid-course correction to the HAFv2 solar wind model forecasts. HAFv2 became operational at AFWA in late 2006. The objective is to determine a set of practical procedures that the duty forecaster can use to update or correct a solar wind forecast using heliospheric imager data. SMEI observations can be used inclusively to make storm forecasts, as recently discussed in Webb et al. (Space Weather, in press, 2008). We have developed a point-and-click analysis tool for use with SMEI images and are working with AFWA to ensure that timely SMEI images are available for analyses. When a frontside solar eruption occurs, especially if within about 45 deg. of Sun center, a forecaster checks for an associated CME observed by a coronagraph within an appropriate time window. If found, especially if the CME is a halo type, the forecaster checks SMEI observations about a day later, depending on the apparent initial CME speed, for possibly associated CMEs. If one is found, then the leading edge is measured over several successive frames and an elongation-time plot constructed. A minimum of three data points, i.e., over 3-4 orbits or about 6 hours, are necessary for such a plot. Using the solar source location and onset time of the CME from, e.g., SOHO observations, and assuming radial propagation, a distance-time relation is calculated and extrapolated to the 1 AU distance. As shown by Webb et al., the storm onset time is then expected to be about 3 hours after this 1 AU arrival time (AT). The prediction program is updated as more SMEI data become available. Currently when an appropriate solar event occurs, AFWA routinely runs the HAFv2 model to make a forecast of the shock and ejecta arrival times at Earth. SMEI data can be used to improve this prediction. The HAFv2 model can produce synthetic sky maps of predicted CME brightness for comparison with SMEI images. The forecaster uses SMEI imagery to observe and track the CME. The forecaster then measures the CME location and speed using the SMEI imagery and the HAFv2 synthetic sky maps. After comparing the SMEI and HAFv2 results, the forecaster can adjust a key input to HAFv2, such as the initial speed of the disturbance at the Sun or the mid-course speed. The forecaster then iteratively runs HAFv2 until the observed and forecast sky maps match. The final HAFv2 solution becomes the new forecast. When the CME/shock arrives at (or does not reach) Earth, the forecaster verifies the forecast and updates the forecast skill statistics. Eventually, we plan to develop a more automated version of this procedure.

  2. Applications of the gambling score in evaluating earthquake predictions and forecasts

    NASA Astrophysics Data System (ADS)

    Zhuang, Jiancang; Zechar, Jeremy D.; Jiang, Changsheng; Console, Rodolfo; Murru, Maura; Falcone, Giuseppe

    2010-05-01

    This study presents a new method, namely the gambling score, for scoring the performance earthquake forecasts or predictions. Unlike most other scoring procedures that require a regular scheme of forecast and treat each earthquake equally, regardless their magnitude, this new scoring method compensates the risk that the forecaster has taken. Starting with a certain number of reputation points, once a forecaster makes a prediction or forecast, he is assumed to have betted some points of his reputation. The reference model, which plays the role of the house, determines how many reputation points the forecaster can gain if he succeeds, according to a fair rule, and also takes away the reputation points bet by the forecaster if he loses. This method is also extended to the continuous case of point process models, where the reputation points betted by the forecaster become a continuous mass on the space-time-magnitude range of interest. For discrete predictions, we apply this method to evaluate performance of Shebalin's predictions made by using the Reverse Tracing of Precursors (RTP) algorithm and of the outputs of the predictions from the Annual Consultation Meeting on Earthquake Tendency held by China Earthquake Administration. For the continuous case, we use it to compare the probability forecasts of seismicity in the Abruzzo region before and after the L'aquila earthquake based on the ETAS model and the PPE model.

  3. Tracking Expected Improvements of Decadal Prediction in Climate Services

    NASA Astrophysics Data System (ADS)

    Suckling, E.; Thompson, E.; Smith, L. A.

    2013-12-01

    Physics-based simulation models are ultimately expected to provide the best available (decision-relevant) probabilistic climate predictions, as they can capture the dynamics of the Earth System across a range of situations, situations for which observations for the construction of empirical models are scant if not nonexistent. This fact in itself provides neither evidence that predictions from today's Earth Systems Models will outperform today's empirical models, nor a guide to the space and time scales on which today's model predictions are adequate for a given purpose. Empirical (data-based) models are employed to make probability forecasts on decadal timescales. The skill of these forecasts is contrasted with that of state-of-the-art climate models, and the challenges faced by each approach are discussed. The focus is on providing decision-relevant probability forecasts for decision support. An empirical model, known as Dynamic Climatology is shown to be competitive with CMIP5 climate models on decadal scale probability forecasts. Contrasting the skill of simulation models not only with each other but also with empirical models can reveal the space and time scales on which a generation of simulation models exploits their physical basis effectively. It can also quantify their ability to add information in the formation of operational forecasts. Difficulties (i) of information contamination (ii) of the interpretation of probabilistic skill and (iii) of artificial skill complicate each modelling approach, and are discussed. "Physics free" empirical models provide fixed, quantitative benchmarks for the evaluation of ever more complex climate models, that is not available from (inter)comparisons restricted to only complex models. At present, empirical models can also provide a background term for blending in the formation of probability forecasts from ensembles of simulation models. In weather forecasting this role is filled by the climatological distribution, and can significantly enhance the value of longer lead-time weather forecasts to those who use them. It is suggested that the direct comparison of simulation models with empirical models become a regular component of large model forecast intercomparison and evaluation. This would clarify the extent to which a given generation of state-of-the-art simulation models provide information beyond that available from simpler empirical models. It would also clarify current limitations in using simulation forecasting for decision support. No model-based probability forecast is complete without a quantitative estimate if its own irrelevance; this estimate is likely to increase as a function of lead time. A lack of decision-relevant quantitative skill would not bring the science-based foundation of anthropogenic warming into doubt. Similar levels of skill with empirical models does suggest a clear quantification of limits, as a function of lead time, for spatial and temporal scales on which decisions based on such model output are expected to prove maladaptive. Failing to clearly state such weaknesses of a given generation of simulation models, while clearly stating their strength and their foundation, risks the credibility of science in support of policy in the long term.

  4. Spring Regimes

    DTIC Science & Technology

    2003-04-15

    of Albuquerque, New Mexico. . Since the system has “bottomed out” one could project a straight line northeastward (with little eastward movement of...in determining if forecast model guidance is “on track.” 14. 14. Subject Terms: CLOUDS, COMMA CLOUD, DRY LINE , GULF STRATUS, HEIGHT FALL CENTERS...4-40 Warm Fronts, Squall Lines and Mesocyclones

  5. Development of a GIS-based integrated framework for coastal seiches monitoring and forecasting: A North Jiangsu shoal case study

    NASA Astrophysics Data System (ADS)

    Qin, Rufu; Lin, Liangzhao

    2017-06-01

    Coastal seiches have become an increasingly important issue in coastal science and present many challenges, particularly when attempting to provide warning services. This paper presents the methodologies, techniques and integrated services adopted for the design and implementation of a Seiches Monitoring and Forecasting Integration Framework (SMAF-IF). The SMAF-IF is an integrated system with different types of sensors and numerical models and incorporates the Geographic Information System (GIS) and web techniques, which focuses on coastal seiche events detection and early warning in the North Jiangsu shoal, China. The in situ sensors perform automatic and continuous monitoring of the marine environment status and the numerical models provide the meteorological and physical oceanographic parameter estimates. A model outputs processing software was developed in C# language using ArcGIS Engine functions, which provides the capabilities of automatically generating visualization maps and warning information. Leveraging the ArcGIS Flex API and ASP.NET web services, a web based GIS framework was designed to facilitate quasi real-time data access, interactive visualization and analysis, and provision of early warning services for end users. The integrated framework proposed in this study enables decision-makers and the publics to quickly response to emergency coastal seiche events and allows an easy adaptation to other regional and scientific domains related to real-time monitoring and forecasting.

  6. Visualising probabilistic flood forecast information: expert preferences and perceptions of best practice in uncertainty communication

    NASA Astrophysics Data System (ADS)

    Pappenberger, F.; Stephens, E. M.; Thielen, J.; Salomon, P.; Demeritt, D.; van Andel, S.; Wetterhall, F.; Alfieri, L.

    2011-12-01

    The aim of this paper is to understand and to contribute to improved communication of the probabilistic flood forecasts generated by Hydrological Ensemble Prediction Systems (HEPS) with particular focus on the inter expert communication. Different users are likely to require different kinds of information from HEPS and thus different visualizations. The perceptions of this expert group are important both because they are the designers and primary users of existing HEPS. Nevertheless, they have sometimes resisted the release of uncertainty information to the general public because of doubts about whether it can be successfully communicated in ways that would be readily understood to non-experts. In this paper we explore the strengths and weaknesses of existing HEPS visualization methods and thereby formulate some wider recommendations about best practice for HEPS visualization and communication. We suggest that specific training on probabilistic forecasting would foster use of probabilistic forecasts with a wider range of applications. The result of a case study exercise showed that there is no overarching agreement between experts on how to display probabilistic forecasts and what they consider essential information that should accompany plots and diagrams. In this paper we propose a list of minimum properties that, if consistently displayed with probabilistic forecasts, would make the products more easily understandable.

  7. Communicating Storm Surge Forecast Uncertainty

    NASA Astrophysics Data System (ADS)

    Troutman, J. A.; Rhome, J.

    2015-12-01

    When it comes to tropical cyclones, storm surge is often the greatest threat to life and property along the coastal United States. The coastal population density has dramatically increased over the past 20 years, putting more people at risk. Informing emergency managers, decision-makers and the public about the potential for wind driven storm surge, however, has been extremely difficult. Recently, the Storm Surge Unit at the National Hurricane Center in Miami, Florida has developed a prototype experimental storm surge watch/warning graphic to help communicate this threat more effectively by identifying areas most at risk for life-threatening storm surge. This prototype is the initial step in the transition toward a NWS storm surge watch/warning system and highlights the inundation levels that have a 10% chance of being exceeded. The guidance for this product is the Probabilistic Hurricane Storm Surge (P-Surge) model, which predicts the probability of various storm surge heights by statistically evaluating numerous SLOSH model simulations. Questions remain, however, if exceedance values in addition to the 10% may be of equal importance to forecasters. P-Surge data from 2014 Hurricane Arthur is used to ascertain the practicality of incorporating other exceedance data into storm surge forecasts. Extracting forecast uncertainty information through analyzing P-surge exceedances overlaid with track and wind intensity forecasts proves to be beneficial for forecasters and decision support.

  8. Initializing numerical weather prediction models with satellite-derived surface soil moisture: Data assimilation experiments with ECMWF's Integrated Forecast System and the TMI soil moisture data set

    NASA Astrophysics Data System (ADS)

    Drusch, M.

    2007-02-01

    Satellite-derived surface soil moisture data sets are readily available and have been used successfully in hydrological applications. In many operational numerical weather prediction systems the initial soil moisture conditions are analyzed from the modeled background and 2 m temperature and relative humidity. This approach has proven its efficiency to improve surface latent and sensible heat fluxes and consequently the forecast on large geographical domains. However, since soil moisture is not always related to screen level variables, model errors and uncertainties in the forcing data can accumulate in root zone soil moisture. Remotely sensed surface soil moisture is directly linked to the model's uppermost soil layer and therefore is a stronger constraint for the soil moisture analysis. For this study, three data assimilation experiments with the Integrated Forecast System (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF) have been performed for the 2-month period of June and July 2002: a control run based on the operational soil moisture analysis, an open loop run with freely evolving soil moisture, and an experimental run incorporating TMI (TRMM Microwave Imager) derived soil moisture over the southern United States. In this experimental run the satellite-derived soil moisture product is introduced through a nudging scheme using 6-hourly increments. Apart from the soil moisture analysis, the system setup reflects the operational forecast configuration including the atmospheric 4D-Var analysis. Soil moisture analyzed in the nudging experiment is the most accurate estimate when compared against in situ observations from the Oklahoma Mesonet. The corresponding forecast for 2 m temperature and relative humidity is almost as accurate as in the control experiment. Furthermore, it is shown that the soil moisture analysis influences local weather parameters including the planetary boundary layer height and cloud coverage.

  9. A coupled human-natural system to assess the operational value of weather and climate services for agriculture

    NASA Astrophysics Data System (ADS)

    Li, Yu; Giuliani, Matteo; Castelletti, Andrea

    2017-09-01

    Recent advances in weather and climate (W&C) services are showing increasing forecast skills over seasonal and longer timescales, potentially providing valuable support in informing decisions in a variety of economic sectors. Quantifying this value, however, might not be straightforward as better forecast quality does not necessarily imply better decisions by the end users, especially when forecasts do not reach their final users, when providers are not trusted, or when forecasts are not appropriately understood. In this study, we contribute an assessment framework to evaluate the operational value of W&C services for informing agricultural practices by complementing traditional forecast quality assessments with a coupled human-natural system behavioural model which reproduces farmers' decisions. This allows a more critical assessment of the forecast value mediated by the end users' perspective, including farmers' risk attitudes and behavioural factors. The application to an agricultural area in northern Italy shows that the quality of state-of-the-art W&C services is still limited in predicting the weather and the crop yield of the incoming agricultural season, with ECMWF annual products simulated by the IFS/HOPE model resulting in the most skillful product in the study area. However, we also show that the accuracy of estimating crop yield and the probability of making optimal decisions are not necessarily linearly correlated, with the overall assessment procedure being strongly impacted by the behavioural attitudes of farmers, which can produce rank reversals in the quantification of the W&C services operational value depending on the different perceptions of risk and uncertainty.

  10. Operational value of ensemble streamflow forecasts for hydropower production: A Canadian case study

    NASA Astrophysics Data System (ADS)

    Boucher, Marie-Amélie; Tremblay, Denis; Luc, Perreault; François, Anctil

    2010-05-01

    Ensemble and probabilistic forecasts have many advantages over deterministic ones, both in meteorology and hydrology (e.g. Krzysztofowicz, 2001). Mainly, they inform the user on the uncertainty linked to the forecast. It has been brought to attention that such additional information could lead to improved decision making (e.g. Wilks and Hamill, 1995; Mylne, 2002; Roulin, 2007), but very few studies concentrate on operational situations involving the use of such forecasts. In addition, many authors have demonstrated that ensemble forecasts outperform deterministic forecasts in terms of performance (e.g. Jaun et al., 2005; Velazquez et al., 2009; Laio and Tamea, 2007). However, such performance is mostly assessed on the basis of numerical scoring rules, which compare the forecasts to the observations, and seldom in terms of management gains. The proposed case study adopts an operational point of view, on the basis that a novel forecasting system has value only if it leads to increase monetary and societal gains (e.g. Murphy, 1994; Laio and Tamea, 2007). More specifically, Environment Canada operational ensemble precipitation forecasts are used to drive the HYDROTEL distributed hydrological model (Fortin et al., 1995), calibrated on the Gatineau watershed located in Québec, Canada. The resulting hydrological ensemble forecasts are then incorporated into Hydro-Québec SOHO stochastic management optimization tool that automatically search for optimal operation decisions for the all reservoirs and hydropower plants located on the basin. The timeline of the study is the fall season of year 2003. This period is especially relevant because of high precipitations that nearly caused a major spill, and forced the preventive evacuation of a portion of the population located near one of the dams. We show that the use of the ensemble forecasts would have reduced the occurrence of spills and flooding, which is of particular importance for dams located in populous area, and increased hydropower production. The ensemble precipitation forecasts extend from March 1st of 2002 to December 31st of 2003. They were obtained using two atmospheric models, SEF (8 members plus the control deterministic forecast) and GEM (8 members). The corresponding deterministic precipitation forecast issued by SEF model is also used within HYDROTEL in order to compare ensemble streamflow forecasts with their deterministic counterparts. Although this study does not incorporate all the sources of uncertainty, precipitation is certainly the most important input for hydrological modeling and conveys a great portion of the total uncertainty. References: Fortin, J.P., Moussa, R., Bocquillon, C. and Villeneuve, J.P. 1995: HYDROTEL, un modèle hydrologique distribué pouvant bénéficier des données fournies par la télédétection et les systèmes d'information géographique, Revue des Sciences de l'Eau, 8(1), 94-124. Jaun, S., Ahrens, B., Walser, A., Ewen, T. and Schaer, C. 2008: A probabilistic view on the August 2005 floods in the upper Rhine catchment, Natural Hazards and Earth System Sciences, 8 (2), 281-291. Krzysztofowicz, R. 2001: The case for probabilistic forecasting in hydrology, Journal of Hydrology, 249, 2-9. Murphy, A.H. 1994: Assessing the economic value of weather forecasts: An overview of methods, results and issues, Meteorological Applications, 1, 69-73. Mylne, K.R. 2002: Decision-Making from probability forecasts based on forecast value, Meteorological Applications, 9, 307-315. Laio, F. and Tamea, S. 2007: Verification tools for probabilistic forecasts of continuous hydrological variables, Hydrology and Earth System Sciences, 11, 1267-1277. Roulin, E. 2007: Skill and relative economic value of medium-range hydrological ensemble predictions, Hydrology and Earth System Sciences, 11, 725-737. Velazquez, J.-A., Petit, T., Lavoie, A., Boucher, M.-A., Turcotte, R., Fortin, V. and Anctil, F. 2009: An evaluation of the Canadian global meteorological ensemble prediction system for short-term hydrological forecasting, Hydrology and Earth System Sciences, 13(11), 2221-2231. Wilks, D.S. and Hamill, T.M. 1995: Potential economic value of ensemble-based surface weather forecasts, Monthly Weather Review, 123(12), 3565-3575.

  11. Utilizing Climate Forecasts for Improving Water and Power Systems Coordination

    NASA Astrophysics Data System (ADS)

    Arumugam, S.; Queiroz, A.; Patskoski, J.; Mahinthakumar, K.; DeCarolis, J.

    2016-12-01

    Climate forecasts, typically monthly-to-seasonal precipitation forecasts, are commonly used to develop streamflow forecasts for improving reservoir management. Irrespective of their high skill in forecasting, temperature forecasts in developing power demand forecasts are not often considered along with streamflow forecasts for improving water and power systems coordination. In this study, we consider a prototype system to analyze the utility of climate forecasts, both precipitation and temperature, for improving water and power systems coordination. The prototype system, a unit-commitment model that schedules power generation from various sources, is considered and its performance is compared with an energy system model having an equivalent reservoir representation. Different skill sets of streamflow forecasts and power demand forecasts are forced on both water and power systems representations for understanding the level of model complexity required for utilizing monthly-to-seasonal climate forecasts to improve coordination between these two systems. The analyses also identify various decision-making strategies - forward purchasing of fuel stocks, scheduled maintenance of various power systems and tradeoff on water appropriation between hydropower and other uses - in the context of various water and power systems configurations. Potential application of such analyses for integrating large power systems with multiple river basins is also discussed.

  12. Evaluation Of Statistical Models For Forecast Errors From The HBV-Model

    NASA Astrophysics Data System (ADS)

    Engeland, K.; Kolberg, S.; Renard, B.; Stensland, I.

    2009-04-01

    Three statistical models for the forecast errors for inflow to the Langvatn reservoir in Northern Norway have been constructed and tested according to how well the distribution and median values of the forecasts errors fit to the observations. For the first model observed and forecasted inflows were transformed by the Box-Cox transformation before a first order autoregressive model was constructed for the forecast errors. The parameters were conditioned on climatic conditions. In the second model the Normal Quantile Transformation (NQT) was applied on observed and forecasted inflows before a similar first order autoregressive model was constructed for the forecast errors. For the last model positive and negative errors were modeled separately. The errors were first NQT-transformed before a model where the mean values were conditioned on climate, forecasted inflow and yesterday's error. To test the three models we applied three criterions: We wanted a) the median values to be close to the observed values; b) the forecast intervals to be narrow; c) the distribution to be correct. The results showed that it is difficult to obtain a correct model for the forecast errors, and that the main challenge is to account for the auto-correlation in the errors. Model 1 and 2 gave similar results, and the main drawback is that the distributions are not correct. The 95% forecast intervals were well identified, but smaller forecast intervals were over-estimated, and larger intervals were under-estimated. Model 3 gave a distribution that fits better, but the median values do not fit well since the auto-correlation is not properly accounted for. If the 95% forecast interval is of interest, Model 2 is recommended. If the whole distribution is of interest, Model 3 is recommended.

  13. Flood Risk Assessment and Forecasting for the Ganges-Brahmaputra-Meghna River Basins

    NASA Astrophysics Data System (ADS)

    Hopson, T. M.; Priya, S.; Young, W.; Avasthi, A.; Clayton, T. D.; Brakenridge, G. R.; Birkett, C. M.; Riddle, E. E.; Broman, D.; Boehnert, J.; Sampson, K. M.; Kettner, A.; Singh, D.

    2017-12-01

    During the 2017 South Asia monsoon, torrential rains and catastrophic floods affected more than 45 million people, including 16 million children, across the Ganges-Brahmaputra-Meghna (GBM) basins. The basin is recognized as one of the world's most disaster-prone regions, with severe floods occurring almost annually causing extreme loss of life and property. In light of this vulnerability, the World Bank and collaborators have contributed toward reducing future flood impacts through recent developments to improve operational preparedness for such events, as well as efforts in more general preparedness and resilience building through planning based on detailed risk assessments. With respect to improved event-specific flood preparedness through operational warnings, we discuss a new forecasting system that provides probability-based flood forecasts developed for more than 85 GBM locations. Forecasts are available online, along with near-real-time data maps of rainfall (predicted and actual) and river levels. The new system uses multiple data sets and multiple models to enhance forecasting skill, and provides improved forecasts up to 16 days in advance of the arrival of high waters. These longer lead times provide the opportunity to save both lives and livelihoods. With sufficient advance notice, for example, farmers can harvest a threatened rice crop or move vulnerable livestock to higher ground. Importantly, the forecasts not only predict future water levels but indicate the level of confidence in each forecast. Knowing whether the probability of a danger-level flood is 10 percent or 90 percent helps people to decide what, if any, action to take. With respect to efforts in general preparedness and resilience building, we also present a recent flood risk assessment, and how it provides, for the first time, a numbers-based view of the impacts of different size floods across the Ganges basin. The findings help identify priority areas for tackling flood risks (for example, relocating levees, improving flood warning systems, or boosting overall economic resilience). The assessment includes the locations and numbers of people at risk, as well as the locations and value of buildings, roads and railways, and crops at risk. An accompanying atlas includes easy-to-use risk maps and tables for the Ganges basins.

  14. High-resolution visibility and air quality forecasting using multi-layer urban canopy model for highly urbanized Hong Kong and the Pearl River Delta

    NASA Astrophysics Data System (ADS)

    Piu NG, Chak; HAO, Song; Fat LAM, Yun

    2015-04-01

    Visibility is a universally critical element which affects the public in many aspects, including economic activities, health of local citizens and safety of marine transportation and aviation. The Interagency Monitoring of Protected Visual Environments (IMPROVE) visibility equation, an empirical equation developed by USEPA, has been modified by various studies to fit into the application upon the Asian continent including Hong Kong and China. Often these studies focused on the improvement of the existing IMPROVE equation by modifying its particulate speciation using local observation data. In this study, we developed an Integrated Forecast System (IFS) to predict the next-day air quality and visibility using Weather Research and Forecasting model with Building Energy Parameterization and Building Energy Model (WRF-BEP+BEM) and Community Multi-scale Air Quality Model (CMAQ). Unlike the other studies, the core of this study is to include detailed urbanization impacts with calibrated "IMPROVE equation for PRD" into the modeling system for Hong Kong's environs. The ultra-high resolution land cover information (~1km x 1km) from Google images, was digitized into the Geographic Information System (GIS) for preparing the model-ready input for IFS. The NCEP FNL (Final) Operation Global Analysis (FNL) and the Global Forecasting System (GFS) datasets were tested for both hind-cast and forecast cases, in order to calibrate the input of urban parameters in the WRF-BEP+BEM model. The evaluation of model performance with sensitivity cases was performed on sea surface temperature (SST), surface temperature (T), wind speed/direction with the major pollutants (i.e., PM10, PM2.5, NOx, SO2 and O3) using local observation and will be presented/discussed in this paper. References: 1. Y. L. Lee, R. Sequeira, Visibility degradation across Hong Kong its components and their relative contribution. Atmospheric Environment 2001, 35, 5861-5872. doi:10.1016/S1352-2310(01)00395-8 2. R. Zhang, Q. Bian, J. C. H. Fung, A. K. H. Lau, Mathematical modeling of seasonal variations in visibility in Hong Kong and the Pearl River Delta region. Atmospheric Environment 2013, 77, 803-816. http://dx.doi.org/10.1016/j.atmosenv.2013.05.048

  15. On Winning the Race for Predicting the Indian Summer Monsoon Rainfall

    NASA Astrophysics Data System (ADS)

    Goswami, Bhupendra

    2013-03-01

    Skillful prediction of Indian summer monsoon rainfall (ISMR) one season in advance remains a ``grand challenge'' for the climate science community even though such forecasts have tremendous socio-economic implications over the region. Continued poor skill of the ocean-atmosphere coupled models in predicting ISMR is an enigma in the backdrop when these models have high skill in predicting seasonal mean rainfall over the rest of the Tropics. Here, I provide an overview of the fundamental processes responsible for limited skill of climate models and outline a framework for achieving the limit on potential predictability within a reasonable time frame. I also show that monsoon intra-seasonal oscillations (MISO) act as building blocks of the Asian monsoon and provide a bridge between the two problems, the potential predictability limit and the simulation of seasonal mean climate. The correlation between observed ISMR and ensemble mean of predicted ISMR (R) can still be used as a metric for forecast verification. Estimate of potential limit of predictability of Asian monsoon indicates that the highest achievable R is about 0.75. Improvements in climate models and data assimilation over the past one decade has slowly improved R from near zero a decade ago to about 0.4 currently. The race for achieving useful prediction can be won, if we can push this skill up to about 0.7. It requires focused research in improving simulations of MISO, monsoon seasonal cycle and ENSO-monsoon relationship by the climate models. In order to achieve this goal by 2015-16 timeframe, IITM is leading a Program called Monsoon Mission supported by the Ministry of Earth Sciences, Govt. of India (MoES). As improvement in skill of forecasts can come only if R & D is carried out on an operational modeling system, the Climate Forecast System of National Centre for Environmental Prediction (NCEP) of NOAA, U.S.A has been selected as our base system. The Mission envisages building partnership between operational forecasting agency and National and International R & D Organizations to work on improving modeling system. MoES has provided substantial funding to the Mission to fund proposals from International R & D Organizations to work with Indian Organizations in this Mission to achieve this goal. The conceptual framework and the roadmap for the Mission will be highlighted. Indian Institute of Tropical Meteorology is funded by Ministry of Earth Sciences, Govt. of India.

  16. Forecasting sustainability: growth to removals ratio dynamics

    Treesearch

    Natasha A. James; Robert C. Abt; Karen L. Abt; Raymond M. Sheffield; Fredrick W. Cubbage

    2012-01-01

    The growth to removals ratio (G/R) is often used as a measure of forest resource sustainability and as a reference point to forecast future resource sustainability. However, little work has been done to determine if any relationship exists between G/R over time. Forest Inventory and Analysis data for 12 southern states were used to determine if any relationship exists...

  17. Space weather forecasting with a Multimodel Ensemble Prediction System (MEPS)

    NASA Astrophysics Data System (ADS)

    Schunk, R. W.; Scherliess, L.; Eccles, V.; Gardner, L. C.; Sojka, J. J.; Zhu, L.; Pi, X.; Mannucci, A. J.; Butala, M.; Wilson, B. D.; Komjathy, A.; Wang, C.; Rosen, G.

    2016-07-01

    The goal of the Multimodel Ensemble Prediction System (MEPS) program is to improve space weather specification and forecasting with ensemble modeling. Space weather can have detrimental effects on a variety of civilian and military systems and operations, and many of the applications pertain to the ionosphere and upper atmosphere. Space weather can affect over-the-horizon radars, HF communications, surveying and navigation systems, surveillance, spacecraft charging, power grids, pipelines, and the Federal Aviation Administration (FAA's) Wide Area Augmentation System (WAAS). Because of its importance, numerous space weather forecasting approaches are being pursued, including those involving empirical, physics-based, and data assimilation models. Clearly, if there are sufficient data, the data assimilation modeling approach is expected to be the most reliable, but different data assimilation models can produce different results. Therefore, like the meteorology community, we created a Multimodel Ensemble Prediction System (MEPS) for the Ionosphere-Thermosphere-Electrodynamics (ITE) system that is based on different data assimilation models. The MEPS ensemble is composed of seven physics-based data assimilation models for the ionosphere, ionosphere-plasmasphere, thermosphere, high-latitude ionosphere-electrodynamics, and middle to low latitude ionosphere-electrodynamics. Hence, multiple data assimilation models can be used to describe each region. A selected storm event that was reconstructed with four different data assimilation models covering the middle and low latitude ionosphere is presented and discussed. In addition, the effect of different data types on the reconstructions is shown.

  18. Integrating Wind Profiling Radars and Radiosonde Observations with Model Point Data to Develop a Decision Support Tool to Assess Upper-Level Winds for Space Launch

    NASA Technical Reports Server (NTRS)

    Bauman, William H., III; Flinn, Clay

    2013-01-01

    On the day of launch, the 45th Weather Squadron (45 WS) Launch Weather Officers (LWOs) monitor the upper-level winds for their launch customers. During launch operations, the payload/launch team sometimes asks the LWOs if they expect the upper-level winds to change during the countdown. The LWOs used numerical weather prediction model point forecasts to provide the information, but did not have the capability to quickly retrieve or adequately display the upper-level observations and compare them directly in the same display to the model point forecasts to help them determine which model performed the best. The LWOs requested the Applied Meteorology Unit (AMU) develop a graphical user interface (GUI) that will plot upper-level wind speed and direction observations from the Cape Canaveral Air Force Station (CCAFS) Automated Meteorological Profiling System (AMPS) rawinsondes with point forecast wind profiles from the National Centers for Environmental Prediction (NCEP) North American Mesoscale (NAM), Rapid Refresh (RAP) and Global Forecast System (GFS) models to assess the performance of these models. The AMU suggested adding observations from the NASA 50 MHz wind profiler and one of the US Air Force 915 MHz wind profilers, both located near the Kennedy Space Center (KSC) Shuttle Landing Facility, to supplement the AMPS observations with more frequent upper-level profiles. Figure 1 shows a map of KSC/CCAFS with the locations of the observation sites and the model point forecasts.

  19. Post Alpbach-summerschool project: CARRINGTON MISSION FOR CME DETECTION TO IMPROVE SPACE WEATHER FORECAST

    NASA Astrophysics Data System (ADS)

    Scheucher, Markus; Urbar, Jaroslav; Musset, Sophie; Andersson, Viktor; Gini, Francesco; Gorski, Jedrzej; Jüstel, Peter; Kiefer, René; Lee, Arrow; Meskers, Arjan; Miles, Oscar; Perakis, Nikolas; Rußwurm, Michael; Scully, Stephen; Seifert, Bernhard; Sorba, Arianna

    2014-05-01

    The effects of solar activity, especially Coronal Mass Ejections (CMEs), on Earth- and satellite-based systems are well-known and can cause major damage to space-dependent infrastructure. The main problem in current space weather forecasting is the inability to determine necessary forecast parameters of CMEs and Corotating Interaction Regions (CIRs) early enough to react. We present the design for a novel space mission consisting of two spacecraft that is aimed to perform stereoscopic measurements on Earth-directed CMEs and in-situ measurements of CIRs. The magnetic field orientation and structure of CMEs will be measured close to the Sun, using spectro-polarimetry. Geoeffectiveness will be derived by remote sensing the CMEs magnetic field at 0.64AU from the Sun, determining the full magnetic field vector of a CME. This will be achieved by the novel concept of measuring its polarising effects on spacecraft to spacecraft laser beams based upon heterodyne interferometry. Overall structure and trajectory of CMEs will also be monitored by heliospheric imagers and in-situ plasma instruments. To achieve the mission objectives, the orbit is heliocentric at 1AU with a separation angle from the Earth of ±50°. The operational mission lifetime is 6 years with a proposed 6 year extension. If implemented, Carrington will serve as a forecast system which will significantly improve the minimum forecast time for the fastest CMEs with 2000 km/s, from 13 minutes based on current L1 satellites, to around 3 hours.

  20. Superensemble forecasts of dengue outbreaks

    PubMed Central

    Kandula, Sasikiran; Shaman, Jeffrey

    2016-01-01

    In recent years, a number of systems capable of predicting future infectious disease incidence have been developed. As more of these systems are operationalized, it is important that the forecasts generated by these different approaches be formally reconciled so that individual forecast error and bias are reduced. Here we present a first example of such multi-system, or superensemble, forecast. We develop three distinct systems for predicting dengue, which are applied retrospectively to forecast outbreak characteristics in San Juan, Puerto Rico. We then use Bayesian averaging methods to combine the predictions from these systems and create superensemble forecasts. We demonstrate that on average, the superensemble approach produces more accurate forecasts than those made from any of the individual forecasting systems. PMID:27733698

  1. Probabilistic flood warning using grand ensemble weather forecasts

    NASA Astrophysics Data System (ADS)

    He, Y.; Wetterhall, F.; Cloke, H.; Pappenberger, F.; Wilson, M.; Freer, J.; McGregor, G.

    2009-04-01

    As the severity of floods increases, possibly due to climate and landuse change, there is urgent need for more effective and reliable warning systems. The incorporation of numerical weather predictions (NWP) into a flood warning system can increase forecast lead times from a few hours to a few days. A single NWP forecast from a single forecast centre, however, is insufficient as it involves considerable non-predictable uncertainties and can lead to a high number of false or missed warnings. An ensemble of weather forecasts from one Ensemble Prediction System (EPS), when used on catchment hydrology, can provide improved early flood warning as some of the uncertainties can be quantified. EPS forecasts from a single weather centre only account for part of the uncertainties originating from initial conditions and stochastic physics. Other sources of uncertainties, including numerical implementations and/or data assimilation, can only be assessed if a grand ensemble of EPSs from different weather centres is used. When various models that produce EPS from different weather centres are aggregated, the probabilistic nature of the ensemble precipitation forecasts can be better retained and accounted for. The availability of twelve global EPSs through the 'THORPEX Interactive Grand Global Ensemble' (TIGGE) offers a new opportunity for the design of an improved probabilistic flood forecasting framework. This work presents a case study using the TIGGE database for flood warning on a meso-scale catchment. The upper reach of the River Severn catchment located in the Midlands Region of England is selected due to its abundant data for investigation and its relatively small size (4062 km2) (compared to the resolution of the NWPs). This choice was deliberate as we hypothesize that the uncertainty in the forcing of smaller catchments cannot be represented by a single EPS with a very limited number of ensemble members, but only through the variance given by a large number ensembles and ensemble system. A coupled atmospheric-hydrologic-hydraulic cascade system driven by the TIGGE ensemble forecasts is set up to study the potential benefits of using the TIGGE database in early flood warning. Physically based and fully distributed LISFLOOD suite of models is selected to simulate discharge and flood inundation consecutively. The results show the TIGGE database is a promising tool to produce forecasts of discharge and flood inundation comparable with the observed discharge and simulated inundation driven by the observed discharge. The spread of discharge forecasts varies from centre to centre, but it is generally large, implying a significant level of uncertainties. Precipitation input uncertainties dominate and propagate through the cascade chain. The current NWPs fall short of representing the spatial variability of precipitation on a comparatively small catchment. This perhaps indicates the need to improve NWPs resolution and/or disaggregation techniques to narrow down the spatial gap between meteorology and hydrology. It is not necessarily true that early flood warning becomes more reliable when more ensemble forecasts are employed. It is difficult to identify the best forecast centre(s), but in general the chance of detecting floods is increased by using the TIGGE database. Only one flood event was studied because most of the TIGGE data became available after October 2007. It is necessary to test the TIGGE ensemble forecasts with other flood events in other catchments with different hydrological and climatic regimes before general conclusions can be made on its robustness and applicability.

  2. Improved Anvil Forecasting

    NASA Technical Reports Server (NTRS)

    Lambert, Winifred C.

    2000-01-01

    This report describes the outcome of Phase 1 of the AMU's Improved Anvil Forecasting task. Forecasters in the 45th Weather Squadron and the Spaceflight Meteorology Group have found that anvil forecasting is a difficult task when predicting LCC and FR violations. The purpose of this task is to determine the technical feasibility of creating an anvil-forecasting tool. Work on this study was separated into three steps: literature search, forecaster discussions, and determination of technical feasibility. The literature search revealed no existing anvil-forecasting techniques. However, there appears to be growing interest in anvils in recent years. If this interest continues to grow, more information will be available to aid in developing a reliable anvil-forecasting tool. The forecaster discussion step revealed an array of methods on how better forecasting techniques could be developed. The forecasters have ideas based on sound meteorological principles and personal experience in forecasting and analyzing anvils. Based on the information gathered in the discussions with the forecasters, the conclusion of this report is that it is technically feasible at this time to develop an anvil forecasting technique that will significantly contribute to the confidence in anvil forecasts.

  3. Seasonal-to-Interannual Variability and Land Surface Processes

    NASA Technical Reports Server (NTRS)

    Koster, Randal

    2004-01-01

    Atmospheric chaos severely limits the predictability of precipitation on subseasonal to interannual timescales. Hope for accurate long-term precipitation forecasts lies with simulating atmospheric response to components of the Earth system, such as the ocean, that can be predicted beyond a couple of weeks. Indeed, seasonal forecasts centers now rely heavily on forecasts of ocean circulation. Soil moisture, another slow component of the Earth system, is relatively ignored by the operational seasonal forecasting community. It is starting, however, to garner more attention. Soil moisture anomalies can persist for months. Because these anomalies can have a strong impact on evaporation and other surface energy fluxes, and because the atmosphere may respond consistently to anomalies in the surface fluxes, an accurate soil moisture initialization in a forecast system has the potential to provide additional forecast skill. This potential has motivated a number of atmospheric general circulation model (AGCM) studies of soil moisture and its contribution to variability in the climate system. Some of these studies even suggest that in continental midlatitudes during summer, oceanic impacts on precipitation are quite small relative to soil moisture impacts. The model results, though, are strongly model-dependent, with some models showing large impacts and others showing almost none at all. A validation of the model results with observations thus naturally suggests itself, but this is exceedingly difficult. The necessary contemporaneous soil moisture, evaporation, and precipitation measurements at the large scale are virtually non-existent, and even if they did exist, showing statistically that soil moisture affects rainfall would be difficult because the other direction of causality - wherein rainfall affects soil moisture - is unquestionably active and is almost certainly dominant. Nevertheless, joint analyses of observations and AGCM results do reveal some suggestions of land-atmosphere feedback in the observational record, suggestions that soil moisture can affect precipitation over seasonal timescales and across certain large continental areas. The strength of this observed feedback in nature is not large but is still significant enough to be potentially useful, e.g., for forecasts. This talk will address all of these issues. It will begin with a brief overview of land surface modeling in atmospheric models but will then focus on recent research - using both observations and models - into the impact of land surface processes on variability in the climate system.

  4. Incorporating Medium-Range Weather Forecasts in Seasonal Crop Scenarios over the Greater Horn of Africa to Support National/Regional/Local Decision Makers

    NASA Astrophysics Data System (ADS)

    Shukla, S.; Husak, G. J.; Funk, C. C.; Verdin, J. P.

    2015-12-01

    The USAID's Famine Early Warning Systems Network (FEWS NET) provides seasonal assessments of crop conditions over the Greater Horn of Africa (GHA) and other food insecure regions. These assessments and current livelihood, nutrition, market conditions and conflicts are used to generate food security scenarios that help national, regional and local decision makers target their resources and mitigate socio-economic losses. Among the various tools that FEWS NET uses is the FAO's Water Requirement Satisfaction Index (WRSI). The WRSI is a simple yet powerful crop assessment model that incorporates current moisture conditions (at the time of the issuance of forecast), precipitation scenarios, potential evapotranspiration and crop parameters to categorize crop conditions into different classes ranging from "failure" to "very good". The WRSI tool has been shown to have a good agreement with local crop yields in the GHA region. At present, the precipitation scenarios used to drive the WRSI are based on either a climatological forecast (that assigns equal chances of occurrence to all possible scenarios and has no skill over the forecast period) or a sea-surface temperature anomaly based scenario (which at best have skill at the seasonal scale). In both cases, the scenarios fail to capture the skill that can be attained by initial atmospheric conditions (i.e., medium-range weather forecasts). During the middle of a cropping season, when a week or two of poor rains can have a devastating effect, two weeks worth of skillful precipitation forecasts could improve the skill of the crop scenarios. With this working hypothesis, we examine the value of incorporating medium-range weather forecasts in improving the skill of crop scenarios in the GHA region. We use the NCEP's Global Ensemble Forecast system (GEFS) weather forecasts and examine the skill of crop scenarios generated using the GEFS weather forecasts with respect to the scenarios based solely on the climatological forecast. The period of analysis is from 1985-2010 (over which the reforecasts of GEFS is available) and the focus season is October-November-December. We examine the improvement (if any) in long-term skill, and present results for several recent drought events in the region.

  5. A Humidity-Driven Prediction System for Influenza Outbreaks

    NASA Astrophysics Data System (ADS)

    Thrastarson, H. T.; Teixeira, J.

    2015-12-01

    Recent studies have highlighted the role of absolute (or specific) humidity conditions as a leading explanation for the seasonal behavior of influenza outbreaks in temperate regions. If the timing and intensity of seasonal influenza outbreaks can be forecast, this would be of great value for public health response efforts. We have developed and implemented a SIRS (Susceptible-Infectious-Recovered-Susceptible) type numerical prediction system that is driven by specific humidity to predict influenza outbreaks. For the humidity, we have explored using both satellite data from the AIRS (Atmospheric Infrared Sounder) instrument as well as ERA-Interim re-analysis data. We discuss the development, testing, sensitivities and limitations of the prediction system and show results for influenza outbreaks in the United States during the years 2010-2014 (modeled in retrospect). Comparisons are made with other existing prediction systems and available data for influenza outbreaks from Google Flu Trends and the CDC (Center for Disease Control), and the incorporation of these datasets into the forecasting system is discussed.

  6. On the assimilation of satellite derived soil moisture in numerical weather prediction models

    NASA Astrophysics Data System (ADS)

    Drusch, M.

    2006-12-01

    Satellite derived surface soil moisture data sets are readily available and have been used successfully in hydrological applications. In many operational numerical weather prediction systems the initial soil moisture conditions are analysed from the modelled background and 2 m temperature and relative humidity. This approach has proven its efficiency to improve surface latent and sensible heat fluxes and consequently the forecast on large geographical domains. However, since soil moisture is not always related to screen level variables, model errors and uncertainties in the forcing data can accumulate in root zone soil moisture. Remotely sensed surface soil moisture is directly linked to the model's uppermost soil layer and therefore is a stronger constraint for the soil moisture analysis. Three data assimilation experiments with the Integrated Forecast System (IFS) of the European Centre for Medium-range Weather Forecasts (ECMWF) have been performed for the two months period of June and July 2002: A control run based on the operational soil moisture analysis, an open loop run with freely evolving soil moisture, and an experimental run incorporating bias corrected TMI (TRMM Microwave Imager) derived soil moisture over the southern United States through a nudging scheme using 6-hourly departures. Apart from the soil moisture analysis, the system setup reflects the operational forecast configuration including the atmospheric 4D-Var analysis. Soil moisture analysed in the nudging experiment is the most accurate estimate when compared against in-situ observations from the Oklahoma Mesonet. The corresponding forecast for 2 m temperature and relative humidity is almost as accurate as in the control experiment. Furthermore, it is shown that the soil moisture analysis influences local weather parameters including the planetary boundary layer height and cloud coverage. The transferability of the results to other satellite derived soil moisture data sets will be discussed.

  7. Assessment of reservoir system variable forecasts

    NASA Astrophysics Data System (ADS)

    Kistenmacher, Martin; Georgakakos, Aris P.

    2015-05-01

    Forecast ensembles are a convenient means to model water resources uncertainties and to inform planning and management processes. For multipurpose reservoir systems, forecast types include (i) forecasts of upcoming inflows and (ii) forecasts of system variables and outputs such as reservoir levels, releases, flood damage risks, hydropower production, water supply withdrawals, water quality conditions, navigation opportunities, and environmental flows, among others. Forecasts of system variables and outputs are conditional on forecasted inflows as well as on specific management policies and can provide useful information for decision-making processes. Unlike inflow forecasts (in ensemble or other forms), which have been the subject of many previous studies, reservoir system variable and output forecasts are not formally assessed in water resources management theory or practice. This article addresses this gap and develops methods to rectify potential reservoir system forecast inconsistencies and improve the quality of management-relevant information provided to stakeholders and managers. The overarching conclusion is that system variable and output forecast consistency is critical for robust reservoir management and needs to be routinely assessed for any management model used to inform planning and management processes. The above are demonstrated through an application from the Sacramento-American-San Joaquin reservoir system in northern California.

  8. Present and future hydropower scheduling in Statkraft

    NASA Astrophysics Data System (ADS)

    Bruland, O.

    2012-12-01

    Statkraft produces close to 40 TWH in an average year and is one of the largest hydropower producers in Europe. For hydropower producers the scheduling of electricity generation is the key to success and this depend on optimal use of the water resources. The hydrologist and his forecasts both on short and on long terms are crucial to this success. The hydrological forecasts in Statkraft and most hydropower companies in Scandinavia are based on lumped models and the HBV concept. But before the hydrological model there is a complex system for collecting, controlling and correcting data applied in the models and the production scheduling and, equally important, routines for surveillance of the processes and manual intervention. Prior to the forecasting the states in the hydrological models are updated based on observations. When snow is present in the catchments snow surveys are an important source for model updating. The meteorological forecast is another premise provider to the hydrological forecast and to get as precise meteorological forecast as possible Statkraft hires resources from the governmental forecasting center. Their task is to interpret the meteorological situation, describe the uncertainties and if necessary use their knowledge and experience to manually correct the forecast in the hydropower production regions. This is one of several forecast applied further in the scheduling process. Both to be able to compare and evaluate different forecast providers and to ensure that we get the best available forecast, forecasts from different sources are applied. Some of these forecasts have undergone statistical corrections to reduce biases. The uncertainties related to the meteorological forecast have for a long time been approached and described by ensemble forecasts. But also the observations used for updating the model have a related uncertainty. Both to the observations itself and to how well they represent the catchment. Though well known, these uncertainties have thus far been handled superficially. Statkraft has initiated a program called ENKI to approach these issues. A part of this program is to apply distributed models for hydrological forecasting. Developing methodologies to handle uncertainties in the observations, the meteorological forecasts, the model itself and how to update the model with this information are other parts of the program. Together with energy price expectations and information about the state of the energy production system the hydrological forecast is input to the next step in the production scheduling both on short and long term. The long term schedule for reservoir filling is premise provider to the short term optimizing of water. The long term schedule is based on the actual reservoir levels, snow storages and a long history of meteorological observations and gives an overall schedule at a regional level. Within the regions a more detailed tool is used for short term optimizing of the hydropower production Each reservoir is scheduled taking into account restrictions in the water courses and cost of start and stop of aggregates. The value of the water is calculated for each reservoir and reflects the risk of water spillage. This compared to the energy price determines whether an aggregate will run or not. In a gradually more complex energy system with relatively lower regulated capacity this is an increasingly more challenging task.

  9. Solar Particle Radiation Storms Forecasting and Analysis within the Framework of the `HESPERIA' HORIZON 2020 Project

    NASA Astrophysics Data System (ADS)

    Posner, A.; Malandraki, O.; Nunez, M.; Heber, B.; Labrenz, J.; Kühl, P.; Milas, N.; Tsiropoula, G.; Pavlos, E.

    2017-12-01

    Two prediction tools that have been developed in the framework of HESPERIA based upon the proven concepts UMASEP and REleASE. Near-relativistic (NR) electrons traveling faster than ions (30 MeV protons have 0.25c) are used to forecast the arrival of protons of Solar Energetic Particle (SEP) events with real-time measurements of NR electrons. The faster electrons arrive at L1 30 to 90 minutes before the slower protons. REleASE (Relativistic Electron Alert System for Exploration, Posner, 2007) uses this effect to predict the proton flux by utilizing actual electron fluxes and their most recent increases. Through HESPERIA, a clone of REleASE was built in open source programming language. The same forecasting principle was adapted to real-time data from ACE/EPAM. It is shown that HESPERIA REleASE forecasting works with any NR electron flux measurements. >500 MeV solar protons are so energetic that they usually have effects on the ground, producing Ground Level Enhancement (GLE) events. Within HESPERIA, a predictor of >500 SEP proton events near earth (geostationary orbit) has been developed. In order to predict these events, UMASEP (Núñez, 2011, 2015) has been used. UMASEP makes a lag-correlation of solar electromagnetic (EM) flux with the particle flux near earth. If the correlation is high, the model infers that there is a magnetic connection through which particles are arriving. If, additionally, the intensity of the flux of the associated solar event is also high, then UMASEP issues a SEP prediction. In the case of the prediction of >500 MeV SEP events, the implemented system, called HESPERIA UMASEP-500, correlates X-ray flux with differential proton fluxes by GOES, and with fluxes collected by neutron monitor stations around the world. When the correlation estimation and flare surpasses thresholds, a >500 MeV SEP forecast is issued. These findings suggest that a synthesis of the various approaches may improve over the status quo. Both forecasting tools are operational on the HESPERIA server maintained at the National Observatory of Athens (https://www.hesperia.astro.noa.gr/). This project received funding from the EU's Horizon 2020 research and innovation programme under grant No 637324.

  10. Two-Step Forecast of Geomagnetic Storm Using Coronal Mass Ejection and Solar Wind Condition

    NASA Technical Reports Server (NTRS)

    Kim, R.-S.; Moon, Y.-J.; Gopalswamy, N.; Park, Y.-D.; Kim, Y.-H.

    2014-01-01

    To forecast geomagnetic storms, we had examined initially observed parameters of coronal mass ejections (CMEs) and introduced an empirical storm forecast model in a previous study. Now we suggest a two-step forecast considering not only CME parameters observed in the solar vicinity but also solar wind conditions near Earth to improve the forecast capability. We consider the empirical solar wind criteria derived in this study (Bz = -5 nT or Ey = 3 mV/m for t = 2 h for moderate storms with minimum Dst less than -50 nT) (i.e. Magnetic Field Magnitude, B (sub z) less than or equal to -5 nanoTeslas or duskward Electrical Field, E (sub y) greater than or equal to 3 millivolts per meter for time greater than or equal to 2 hours for moderate storms with Minimum Disturbance Storm Time, Dst less than -50 nanoTeslas) and a Dst model developed by Temerin and Li (2002, 2006) (TL [i.e. Temerin Li] model). Using 55 CME-Dst pairs during 1997 to 2003, our solar wind criteria produce slightly better forecasts for 31 storm events (90 percent) than the forecasts based on the TL model (87 percent). However, the latter produces better forecasts for 24 nonstorm events (88 percent), while the former correctly forecasts only 71 percent of them. We then performed the two-step forecast. The results are as follows: (i) for 15 events that are incorrectly forecasted using CME parameters, 12 cases (80 percent) can be properly predicted based on solar wind conditions; (ii) if we forecast a storm when both CME and solar wind conditions are satisfied (n, i.e. cap operator - the intersection set that is comprised of all the elements that are common to both), the critical success index becomes higher than that from the forecast using CME parameters alone, however, only 25 storm events (81 percent) are correctly forecasted; and (iii) if we forecast a storm when either set of these conditions is satisfied (?, i.e. cup operator - the union set that is comprised of all the elements of either or both), all geomagnetic storms are correctly forecasted.

  11. A short-term ensemble wind speed forecasting system for wind power applications

    NASA Astrophysics Data System (ADS)

    Baidya Roy, S.; Traiteur, J. J.; Callicutt, D.; Smith, M.

    2011-12-01

    This study develops an adaptive, blended forecasting system to provide accurate wind speed forecasts 1 hour ahead of time for wind power applications. The system consists of an ensemble of 21 forecasts with different configurations of the Weather Research and Forecasting Single Column Model (WRFSCM) and a persistence model. The ensemble is calibrated against observations for a 2 month period (June-July, 2008) at a potential wind farm site in Illinois using the Bayesian Model Averaging (BMA) technique. The forecasting system is evaluated against observations for August 2008 at the same site. The calibrated ensemble forecasts significantly outperform the forecasts from the uncalibrated ensemble while significantly reducing forecast uncertainty under all environmental stability conditions. The system also generates significantly better forecasts than persistence, autoregressive (AR) and autoregressive moving average (ARMA) models during the morning transition and the diurnal convective regimes. This forecasting system is computationally more efficient than traditional numerical weather prediction models and can generate a calibrated forecast, including model runs and calibration, in approximately 1 minute. Currently, hour-ahead wind speed forecasts are almost exclusively produced using statistical models. However, numerical models have several distinct advantages over statistical models including the potential to provide turbulence forecasts. Hence, there is an urgent need to explore the role of numerical models in short-term wind speed forecasting. This work is a step in that direction and is likely to trigger a debate within the wind speed forecasting community.

  12. Discriminant analysis forecasting model of first trimester pregnancy outcomes developed by following 9,963 infertile patients after in vitro fertilization.

    PubMed

    Yi, Yan; Li, Xihong; Ouyang, Yan; Lin, Ge; Lu, Guangxiu; Gong, Fei

    2016-05-01

    To investigate a forecasting method developed to predict first trimester pregnancy outcomes using the first routine ultrasound scan for early pregnancy on days 27-29 after ET and to determine whether to perform a repeated scan several days later based on this forecasting method. Prospective analysis. Infertile patients at an assisted reproductive technology center. A total of 9,963 patients with an early singleton pregnancy after in vitro fertilization (IVF)-ET. None. Ongoing pregnancy >12 weeks of gestation. The classification score of ongoing pregnancy was equal to (1.57 × Maternal age) + (1.01 × Mean sac diameter) + (-0.19 × Crown-rump length) + 25.15 (if cardiac activity is present) + 1.30 (if intrauterine hematomas are present) - 47.35. The classification score of early pregnancy loss was equal to (1.66 × Maternal age) + (0.84 × Mean sac diameter) + (-0.38 × Crown-rump length) + 8.69 (if cardiac activity is present) + 1.60 (if intrauterine hematomas are present) - 34.77. In verification samples, 94.44% of cases were correctly classified using these forecasting models. The discriminant forecasting models are accurate in predicting first trimester pregnancy outcomes based on the first scan for early pregnancy after ET. When the predictive result is ongoing pregnancy, a second scan can be postponed until 11-14 weeks if no symptoms of abdominal pain or vaginal bleeding are present. When the predictive results suggest early pregnancy loss, repeated scans are imperative to avoid a misdiagnosis before evacuating the uterus. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  13. A study for systematic errors of the GLA forecast model in tropical regions

    NASA Technical Reports Server (NTRS)

    Chen, Tsing-Chang; Baker, Wayman E.; Pfaendtner, James; Corrigan, Martin

    1988-01-01

    From the sensitivity studies performed with the Goddard Laboratory for Atmospheres (GLA) analysis/forecast system, it was revealed that the forecast errors in the tropics affect the ability to forecast midlatitude weather in some cases. Apparently, the forecast errors occurring in the tropics can propagate to midlatitudes. Therefore, the systematic error analysis of the GLA forecast system becomes a necessary step in improving the model's forecast performance. The major effort of this study is to examine the possible impact of the hydrological-cycle forecast error on dynamical fields in the GLA forecast system.

  14. GloFAS-Seasonal: Operational Seasonal Ensemble River Flow Forecasts at the Global Scale

    NASA Astrophysics Data System (ADS)

    Emerton, Rebecca; Zsoter, Ervin; Smith, Paul; Salamon, Peter

    2017-04-01

    Seasonal hydrological forecasting has potential benefits for many sectors, including agriculture, water resources management and humanitarian aid. At present, no global scale seasonal hydrological forecasting system exists operationally; although smaller scale systems have begun to emerge around the globe over the past decade, a system providing consistent global scale seasonal forecasts would be of great benefit in regions where no other forecasting system exists, and to organisations operating at the global scale, such as disaster relief. We present here a new operational global ensemble seasonal hydrological forecast, currently under development at ECMWF as part of the Global Flood Awareness System (GloFAS). The proposed system, which builds upon the current version of GloFAS, takes the long-range forecasts from the ECMWF System4 ensemble seasonal forecast system (which incorporates the HTESSEL land surface scheme) and uses this runoff as input to the Lisflood routing model, producing a seasonal river flow forecast out to 4 months lead time, for the global river network. The seasonal forecasts will be evaluated using the global river discharge reanalysis, and observations where available, to determine the potential value of the forecasts across the globe. The seasonal forecasts will be presented as a new layer in the GloFAS interface, which will provide a global map of river catchments, indicating whether the catchment-averaged discharge forecast is showing abnormally high or low flows during the 4-month lead time. Each catchment will display the corresponding forecast as an ensemble hydrograph of the weekly-averaged discharge forecast out to 4 months, with percentile thresholds shown for comparison with the discharge climatology. The forecast visualisation is based on a combination of the current medium-range GloFAS forecasts and the operational EFAS (European Flood Awareness System) seasonal outlook, and aims to effectively communicate the nature of a seasonal outlook while providing useful information to users and partners. We demonstrate the first version of an operational GloFAS seasonal outlook, outlining the model set-up and presenting a first look at the seasonal forecasts that will be displayed in the GloFAS interface, and discuss the initial results of the forecast evaluation.

  15. Improving governance action by an advanced water modelling system applied to the Po river basin in Italy

    NASA Astrophysics Data System (ADS)

    Alessandrini, Cinzia; Del Longo, Mauro; Pecora, Silvano; Puma, Francesco; Vezzani, Claudia

    2013-04-01

    In spite of the historical abundance of water due to rains and to huge storage capacity provided by alpine lakes, Po river basin, the most important Italian water district experienced in the past ten years five drought/water scarcity events respectively in 2003, 2006, 2007 and 2012 summers and in the 2011-2012 winter season. The basic approach to these crises was the observation and the post-event evaluation; from 2007 an advanced numerical modelling system, called Drought Early Warning System for the Po River (DEWS-Po) was developed, providing advanced tools to simulate the hydrological and anthropic processes that affect river flows and allowing to follow events with real-time evaluations. In early 2012 the same system enabled also forecasts. Dews-Po system gives a real-time representation of water distribution across the basin, characterized by high anthropogenic pressure, optimizing with specific tools water allocation in competing situations. The system represents an innovative approach in drought forecast and in water resource management in the Po basin, giving deterministic and probabilistic meteorological forecasts as input to a chain for numerical distributed modelling of hydrological and hydraulic simulations. The system architecture is designed to receive in input hydro-meteorological actually observed and forecasted variables: deterministic meteorological forecasts with a fifteen days lead time, withdrawals data for different uses, natural an artificial reservoirs storage and release data. The model details are very sharp, simulating also the interaction between Adriatic sea and Po river in the delta area in terms of salt intrusion forecasting. Calculation of return period through run-method and of drought stochastic-indicators are enabled to assess the characteristics of the on-going and forecasted event. An Inter-institutional Technical Board is constituted within the Po River Basin Authority since 2008 and meets regularly during water crises to act decisions regarding water management in order to prevent major impacts. The Board is made of experts from public administrations with a strong involvement of stakeholders representative of different uses. The Dews- Po was intensively used by the Technical Board as decision support system during the 2012 summer event, providing tools to understand the on-going situation of water availability and use across the basin, helping to evaluate water management choices in an objective way, through what-if scenarios considering withdrawals reduction and increased releases from regulated Alpine lakes. A description of the use of Dews- Po system within the Technical Board is given, especially focusing on those elements, prone to be considered "good management indicators", which proved to be most useful in ensuring the success of governance action. Strength and improvement needs of the system are then described

  16. Weather forecasting expert system study

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Weather forecasting is critical to both the Space Transportation System (STS) ground operations and the launch/landing activities at NASA Kennedy Space Center (KSC). The current launch frequency places significant demands on the USAF weather forecasters at the Cape Canaveral Forecasting Facility (CCFF), who currently provide the weather forecasting for all STS operations. As launch frequency increases, KSC's weather forecasting problems will be great magnified. The single most important problem is the shortage of highly skilled forecasting personnel. The development of forecasting expertise is difficult and requires several years of experience. Frequent personnel changes within the forecasting staff jeopardize the accumulation and retention of experience-based weather forecasting expertise. The primary purpose of this project was to assess the feasibility of using Artificial Intelligence (AI) techniques to ameliorate this shortage of experts by capturing aria incorporating the forecasting knowledge of current expert forecasters into a Weather Forecasting Expert System (WFES) which would then be made available to less experienced duty forecasters.

  17. National Centers for Environmental Prediction

    Science.gov Websites

    SYSTEM CFS CLIMATE FORECAST SYSTEM NAQFC NAQFC MODEL GEFS GLOBAL ENSEMBLE FORECAST SYSTEM HWRF HURRICANE WEATHER RESEARCH and FORECASTING HMON HMON - OPERATIONAL HURRICANE FORECASTING WAVEWATCH III WAVEWATCH III

  18. Characterisation of flooding in Alexandria in October 2015 and suggested mitigating measures

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Biswa; Zevenbergen, Chris; Wahaab, R. A. Wahaab R. A.; Elbarki, W. A. I. Elbarki W. A. I.; Busker, T. Busker T.; Salinas Rodriguez, C. N. A. Salinas Rodriguez C. N. A.

    2017-04-01

    In October 2015 Alexandria (Egypt) experienced exceptional flooding. The flooding was caused by heavy rainfall in a short period of time in a city which normally does not receive a large amount of rainfall. The heavy rainfall caused a tremendous volume of runoff, which the city's drainage system was unable to drain off to the Mediterranean Sea. Seven people have died due to the flood, and there were huge direct and indirect damages. The city does not have a flood forecasting system. An analysis with rainfall forecast from the European Centre for Medium Range Weather Forecast (ECMWF) showed that the extreme rainfall could have been forecasted about a week back. Naturally, if a flood forecasting model was in place the flooding could have been predicted well in advance. Alexandria, along with several other Arab cities, are not prepared at all for natural hazards. Preparedness actions leading to improved adaptation and resilience are not in place. The situation is being further exacerbated with rapid urbanisation and climate change. The local authorities estimate that about 30000 new buildings have been (illegally) constructed during the last five years at a location near the main pumping station (Max Point). This issue may have a very serious adverse effect on hydrology and requires further study to estimate the additional runoff from the newly urbanised areas. The World Bank has listed Alexandria as one of the five coastal cities, which may have very significant risk of coastal flooding due to the climate change. Setting up of a flood forecasting model along with an evidence-based research on the drainage system's capacity is seen as immediate actions that can significantly improve the preparedness of the city towards flooding. Furthermore, the region has got a number of large lakes, which potentially can be used to store extra water as a flood mitigation measure. Two water bodies, namely the Maryot Lake and the Airport Lake, are identified from which water can be pumped out in advance to keep storage available in case of flooding. Keywords: Alexandria, flood, Egypt, rainfall, forecasting.

  19. Economic assessment of flood forecasts for a risk-averse decision-maker

    NASA Astrophysics Data System (ADS)

    Matte, Simon; Boucher, Marie-Amélie; Boucher, Vincent; Fortier-Filion, Thomas-Charles

    2017-04-01

    A large effort has been made over the past 10 years to promote the operational use of probabilistic or ensemble streamflow forecasts. It has also been suggested in past studies that ensemble forecasts might possess a greater economic value than deterministic forecasts. However, the vast majority of recent hydro-economic literature is based on the cost-loss ratio framework, which might be appealing for its simplicity and intuitiveness. One important drawback of the cost-loss ratio is that it implicitly assumes a risk-neutral decision maker. By definition, a risk-neutral individual is indifferent to forecasts' sharpness: as long as forecasts agree with observations on average, the risk-neutral individual is satisfied. A risk-averse individual, however, is sensitive to the level of precision (sharpness) of forecasts. This person is willing to pay to increase his or her certainty about future events. In fact, this is how insurance companies operate: the probability of seeing one's house burn down is relatively low, so the expected cost related to such event is also low. However, people are willing to buy insurance to avoid the risk, however small, of loosing everything. Similarly, in a context where people's safety and property is at stake, the typical decision maker is more risk-averse than risk-neutral. Consequently, the cost-loss ratio is not the most appropriate tool to assess the economic value of flood forecasts. This presentation describes a more realistic framework for assessing the economic value of such forecasts for flood mitigation purposes. Borrowing from economics, the Constant Absolute Risk Aversion utility function (CARA) is the central tool of this new framework. Utility functions allow explicitly accounting for the level of risk aversion of the decision maker and fully exploiting the information related to ensemble forecasts' uncertainty. Three concurrent ensemble streamflow forecasting systems are compared in terms of quality (comparison with observed values) and in terms of their economic value. This assessment is performed for lead times of one to five days. The three systems are: (1) simple statistically dressed deterministic forecasts, (2) forecasts based on meteorological ensembles and (3) a variant of the latter that also includes an estimation of state variables uncertainty. The comparison takes place on the Montmorency River, a small flood-prone watershed in south central Quebec, Canada. The results show that forecasts quality as assessed by well-known tools such as the Continuous Ranked Probability Score or the reliability diagram do not necessarily translate directly into economic value, especially if the decision maker is not risk-neutral. In addition, results show that the economic value of forecasts for a risk-averse decision maker is very much influenced by the most extreme members of ensemble forecasts (upper tail of the predictive distributions). This study provides a new basis for further improvement of our comprehension of the complex interactions between forecasts uncertainty, risk-aversion and decision-making.

  20. Have Basic Mathematical Skills Grown Obsolete in the Computer Age: Assessing Basic Mathematical Skills and Forecasting Performance in a Business Statistics Course

    ERIC Educational Resources Information Center

    Noser, Thomas C.; Tanner, John R.; Shah, Situl

    2008-01-01

    The purpose of this study was to measure the comprehension of basic mathematical skills of students enrolled in statistics classes at a large regional university, and to determine if the scores earned on a basic math skills test are useful in forecasting student performance in these statistics classes, and to determine if students' basic math…

  1. Towards uncertainty estimates in global operational forecasts of trace gases in the Copernicus Atmosphere Monitoring System

    NASA Astrophysics Data System (ADS)

    Huijnen, V.; Bouarar, I.; Chabrillat, S. H.; Christophe, Y.; Thierno, D.; Karydis, V.; Marecal, V.; Pozzer, A.; Flemming, J.

    2017-12-01

    Operational atmospheric composition analyses and forecasts such as developed in the Copernicus Atmosphere Monitoring Service (CAMS) rely on modules describing emissions, chemical conversion, transport and removal processing, as well as data assimilation methods. The CAMS forecasts can be used to drive regional air quality models across the world. Critical analyses of uncertainties in any of these processes are continuously needed to advance the quality of such systems on a global scale, ranging from the surface up to the stratosphere. With regard to the atmospheric chemistry to describe the fate of trace gases, the operational system currently relies on a modified version of the CB05 chemistry scheme for the troposphere combined with the Cariolle scheme to describe stratospheric ozone, as integrated in ECMWF's Integrated Forecasting System (IFS). It is further constrained by assimilation of satellite observations of CO, O3 and NO2. As part of CAMS we have recently developed three fully independent schemes to describe the chemical conversion throughout the atmosphere. These parameterizations originate from parent model codes in MOZART, MOCAGE and a combination of TM5/BASCOE. In this contribution we evaluate the correspondence and elemental differences in the performance of the three schemes in an otherwise identical model configuration (excluding data-assimilation) against a large range of in-situ and satellite-based observations of ozone, CO, VOC's and chlorine-containing trace gases for both troposphere and stratosphere. This analysis aims to provide a measure of model uncertainty in the operational system for tracers that are not, or poorly, constrained by data assimilation. It aims also to provide guidance on the directions for further model improvement with regard to the chemical conversion module.

  2. Flood and Fire Monitoring and Forecasting Within the Chornobyl Exclusion Zone

    NASA Astrophysics Data System (ADS)

    Los, Victor

    2001-03-01

    Taking into consideration that radioactivity from the contaminating elements of the Chernobyl Exclusion Zone (CEZ) amounts to a huge number, one of the most urgent tasks, at present, is the resolution of problems related to secondary radioactive contamination caused by floods and fires. These factors may lead to critical consequences. For instance, if radioactive contaminants migrate into the water system, namely into the Dnipro River, a threat arises to more than 20 million inhabitants of Ukraine. Additionally, fires in the CEZ potentially could cause contaminants to be dispersed into the air and to migrate in the atmosphere for long distances. The elements of information support system for administrative decision-making to respond to the appearances and consequences of forest fires and floods in contaminated areas of the CEZ have been developed. The system proposes: using Earth Remote Sensing (R/S) data for timely detection of forest fires; integration by Geographic Information System (GIS) of mathematical models for radionuclide migration by air in order to forecast radiological consequences of forest fires; forecasting and assessing flood consequences by means of spatial analysis of GIS and R/S; and development of a system for dissemination of information. This project was performed within the framework of USAID Cooperative Agreement #121-A-00-98-00615-00, dedicated to the establishment of the Ukrainian Land and Resource Management Center.

  3. Biomass burning influences on atmospheric composition: A case study to assess the impact of aerosol data assimilation

    NASA Astrophysics Data System (ADS)

    Keslake, Tim; Chipperfield, Martyn; Mann, Graham; Flemming, Johannes; Remy, Sam; Dhomse, Sandip; Morgan, Will

    2016-04-01

    The C-IFS (Composition Integrated Forecast System) developed under the MACC series of projects and to be continued under the Copernicus Atmospheric Monitoring System, provides global operational forecasts and re-analyses of atmospheric composition at high spatial resolution (T255, ~80km). Currently there are 2 aerosol schemes implemented within C-IFS, a mass-based scheme with externally mixed particle types and an aerosol microphysics scheme (GLOMAP-mode). The simpler mass-based scheme is the current operational system, also used in the existing system to assimilate satellite measurements of aerosol optical depth (AOD) for improved forecast capability. The microphysical GLOMAP scheme has now been implemented and evaluated in the latest C-IFS cycle alongside the mass-based scheme. The upgrade to the microphysical scheme provides for higher fidelity aerosol-radiation and aerosol-cloud interactions, accounting for global variations in size distribution and mixing state, and additional aerosol properties such as cloud condensation nuclei concentrations. The new scheme will also provide increased aerosol information when used as lateral boundary conditions for regional air quality models. Here we present a series of experiments highlighting the influence and accuracy of the two different aerosol schemes and the impact of MODIS AOD assimilation. In particular, we focus on the influence of biomass burning emissions on aerosol properties in the Amazon, comparing to ground-based and aircraft observations from the 2012 SAMBBA campaign. Biomass burning can affect regional air quality, human health, regional weather and the local energy budget. Tropical biomass burning generates particles primarily composed of particulate organic matter (POM) and black carbon (BC), the local ratio of these two different constituents often determining the properties and subsequent impacts of the aerosol particles. Therefore, the model's ability to capture the concentrations of these two carbonaceous aerosol types, during the tropical dry season, is essential for quantifying these wide ranging impacts. Comparisons to SAMBBA aircraft observations show that while both schemes underestimate POM and BC mass concentrations, the GLOMAP scheme provides a more accurate simulation. When satellite AOD is assimilated into the GEMS-AER scheme, the model is successfully adjusted, capturing observed mass concentrations to a good degree of accuracy.

  4. The application of hybrid artificial intelligence systems for forecasting

    NASA Astrophysics Data System (ADS)

    Lees, Brian; Corchado, Juan

    1999-03-01

    The results to date are presented from an ongoing investigation, in which the aim is to combine the strengths of different artificial intelligence methods into a single problem solving system. The premise underlying this research is that a system which embodies several cooperating problem solving methods will be capable of achieving better performance than if only a single method were employed. The work has so far concentrated on the combination of case-based reasoning and artificial neural networks. The relative merits of artificial neural networks and case-based reasoning problem solving paradigms, and their combination are discussed. The integration of these two AI problem solving methods in a hybrid systems architecture, such that the neural network provides support for learning from past experience in the case-based reasoning cycle, is then presented. The approach has been applied to the task of forecasting the variation of physical parameters of the ocean. Results obtained so far from tests carried out in the dynamic oceanic environment are presented.

  5. Satellite freeze forecast system: Executive summary

    NASA Technical Reports Server (NTRS)

    Martsolf, J. D. (Principal Investigator)

    1983-01-01

    A satellite-based temperature monitoring and prediction system consisting of a computer controlled acquisition, processing, and display system and the ten automated weather stations called by that computer was developed and transferred to the national weather service. This satellite freeze forecasting system (SFFS) acquires satellite data from either one of two sources, surface data from 10 sites, displays the observed data in the form of color-coded thermal maps and in tables of automated weather station temperatures, computes predicted thermal maps when requested and displays such maps either automatically or manually, archives the data acquired, and makes comparisons with historical data. Except for the last function, SFFS handles these tasks in a highly automated fashion if the user so directs. The predicted thermal maps are the result of two models, one a physical energy budget of the soil and atmosphere interface and the other a statistical relationship between the sites at which the physical model predicts temperatures and each of the pixels of the satellite thermal map.

  6. Multicomponent ensemble models to forecast induced seismicity

    NASA Astrophysics Data System (ADS)

    Király-Proag, E.; Gischig, V.; Zechar, J. D.; Wiemer, S.

    2018-01-01

    In recent years, human-induced seismicity has become a more and more relevant topic due to its economic and social implications. Several models and approaches have been developed to explain underlying physical processes or forecast induced seismicity. They range from simple statistical models to coupled numerical models incorporating complex physics. We advocate the need for forecast testing as currently the best method for ascertaining if models are capable to reasonably accounting for key physical governing processes—or not. Moreover, operational forecast models are of great interest to help on-site decision-making in projects entailing induced earthquakes. We previously introduced a standardized framework following the guidelines of the Collaboratory for the Study of Earthquake Predictability, the Induced Seismicity Test Bench, to test, validate, and rank induced seismicity models. In this study, we describe how to construct multicomponent ensemble models based on Bayesian weightings that deliver more accurate forecasts than individual models in the case of Basel 2006 and Soultz-sous-Forêts 2004 enhanced geothermal stimulation projects. For this, we examine five calibrated variants of two significantly different model groups: (1) Shapiro and Smoothed Seismicity based on the seismogenic index, simple modified Omori-law-type seismicity decay, and temporally weighted smoothed seismicity; (2) Hydraulics and Seismicity based on numerically modelled pore pressure evolution that triggers seismicity using the Mohr-Coulomb failure criterion. We also demonstrate how the individual and ensemble models would perform as part of an operational Adaptive Traffic Light System. Investigating seismicity forecasts based on a range of potential injection scenarios, we use forecast periods of different durations to compute the occurrence probabilities of seismic events M ≥ 3. We show that in the case of the Basel 2006 geothermal stimulation the models forecast hazardous levels of seismicity days before the occurrence of felt events.

  7. Impact on Hurricane Track and Intensity Forecasts of GPS Dropwindsonde Observations from the First-Season Flights of the NOAA Gulfstream-IV Jet Aircraft.

    NASA Astrophysics Data System (ADS)

    Aberson, Sim D.; Franklin, James L.

    1999-03-01

    In 1997, the Tropical Prediction Center (TPC) began operational Gulfstream-IV jet aircraft missions to improve the numerical guidance for hurricanes threatening the continental United States, Puerto Rico, and the Virgin Islands. During these missions, the new generation of Global Positioning System dropwindsondes were released from the aircraft at 150-200-km intervals along the flight track in the environment of the tropical cyclone to obtain profiles of wind, temperature, and humidity from flight level to the surface. The observations were ingested into the global model at the National Centers for Environmental Prediction, which subsequently serves as initial and boundary conditions to other numerical tropical cyclone models. Because of a lack of tropical cyclone activity in the Atlantic basin, only five such missions were conducted during the inaugural 1997 hurricane season.Due to logistical constraints, sampling in all quadrants of the storm environment was accomplished in only one of the five cases during 1997. Nonetheless, the dropwindsonde observations improved mean track forecasts from the Geophysical Fluid Dynamics Laboratory hurricane model by as much as 32%, and the intensity forecasts by as much as 20% during the hurricane watch period (within 48 h of projected landfall). Forecasts from another dynamical tropical cyclone model (VICBAR) also showed modest improvements with the dropwindsonde observations. These improvements, if confirmed by a larger sample, represent a large step toward the forecast accuracy goals of TPC. The forecast track improvements are as large as those accumulated over the past 20-25 years, and those for forecast intensity provide further evidence that better synoptic-scale data can lead to more skillful dynamical tropical cyclone intensity forecasts.

  8. Presenting Critical Space Weather Information to Customers and Stakeholders (Invited)

    NASA Astrophysics Data System (ADS)

    Viereck, R. A.; Singer, H. J.; Murtagh, W. J.; Rutledge, B.

    2013-12-01

    Space weather involves changes in the near-Earth space environment that impact technological systems such as electric power, radio communication, satellite navigation (GPS), and satellite opeartions. As with terrestrial weather, there are several different kinds of space weather and each presents unique challenges to the impacted technologies and industries. But unlike terrestrial weather, many customers are not fully aware of space weather or how it impacts their systems. This issue is further complicated by the fact that the largest space weather events occur very infrequently with years going by without severe storms. Recent reports have estimated very large potential costs to the economy and to society if a geomagnetic storm were to cause major damage to the electric power transmission system. This issue has come to the attention of emergency managers and federal agencies including the office of the president. However, when considering space weather impacts, it is essential to also consider uncertainties in the frequency of events and the predicted impacts. The unique nature of space weather storms, the specialized technologies that are impacted by them, and the disparate groups and agencies that respond to space weather forecasts and alerts create many challenges to the task of communicating space weather information to the public. Many customers that receive forecasts and alerts are highly technical and knowledgeable about the subtleties of the space environment. Others know very little and require ongoing education and explanation about how a space weather storm will affect their systems. In addition, the current knowledge and understanding of the space environment that goes into forecasting storms is quite immature. It has only been within the last five years that physics-based models of the space environment have played important roles in predictions. Thus, the uncertainties in the forecasts are quite large. There is much that we don't know about space weather and this influences our forecasts. In this presentation, I will discuss the unique challenges that space weather forecasters face when explaining what we know and what we don't know about space weather events to customers and policy makers.

  9. The value of forecasting key-decision variables for rain-fed farming

    NASA Astrophysics Data System (ADS)

    Winsemius, Hessel; Werner, Micha

    2013-04-01

    Rain-fed farmers are highly vulnerable to variability in rainfall. Timely knowledge of the onset of the rainy season, the expected amount of rainfall and the occurrence of dry spells can help rain-fed farmers to plan the cropping season. Seasonal probabilistic weather forecasts may provide such information to farmers, but need to provide reliable forecasts of key variables with which farmers can make decisions. In this contribution, we present a new method to evaluate the value of meteorological forecasts in predicting these key variables. The proposed method measures skill by assessing whether a forecast was useful to this decision. This is done by taking into account the required accuracy of timing of the event to make the decision useful. The method progresses the estimate of forecast skill to forecast value by taking into account the required accuracy that is needed to make the decision valuable, based on the cost/loss ratio of possible decisions. The method is applied over the Limpopo region in Southern Africa. We demonstrate the method using the example of temporary water harvesting techniques. Such techniques require time to construct and must be ready long enough before the occurrence of a dry spell to be effective. The value of the forecasts to the decision used as an example is shown to be highly sensitive to the accuracy in the timing of forecasted dry spells, and the tolerance in the decision to timing error. The skill with which dry spells can be predicted is shown to be higher in some parts of the basin, indicating that these forecasts have higher value for the decision in those parts than in others. Through assessing the skill of forecasting key decision variables to the farmers we show that it is easier to understand if the forecasts have value in reducing risk, or if other adaptation strategies should be implemented.

  10. The Simulations of Wildland Fire Smoke PM25 in the NWS Air Quality Forecasting Systems

    NASA Astrophysics Data System (ADS)

    Huang, H. C.; Pan, L.; McQueen, J.; Lee, P.; ONeill, S. M.; Ruminski, M.; Shafran, P.; Huang, J.; Stajner, I.; Upadhayay, S.; Larkin, N. K.

    2017-12-01

    The increase of wildland fire intensity and frequency in the United States (U.S.) has led to property loss, human fatality, and poor air quality due to elevated particulate matters and surface ozone concentrations. The NOAA/National Weather Service (NWS) built the National Air Quality Forecast Capability (NAQFC) based on the U.S. Environmental Protection Agency (EPA) Community Multi-scale Air Quality (CMAQ) Modeling System driven by the NCEP North American Mesoscale Forecast System meteorology to provide ozone and fine particulate matter (PM2.5) forecast guidance publicly. State and local forecasters use the NWS air quality forecast guidance to issue air quality alerts in their area. The NAQFC PM2.5 predictions include emissions from anthropogenic and biogenic sources, as well as natural sources such as dust storms and wildland fires. The wildland fire emission inputs to the NAQFC is derived from the NOAA National Environmental Satellite, Data, and Information Service Hazard Mapping System fire and smoke detection product and the emission module of the U.S. Forest Service (USFS) BlueSky Smoke Modeling Framework. Wildland fires are unpredictable and can be ignited by natural causes such as lightning or be human-caused. It is extremely difficult to predict future occurrences and behavior of wildland fires, as is the available bio-fuel to be burned for real-time air quality predictions. Assumptions of future day's wildland fire behavior often have to be made from older observed wildland fire information. The comparisons between the NAQFC modeled PM2.5 and the EPA AirNow surface observation show that large errors in PM2.5 prediction can occur if fire smoke emissions are sometimes placed at the wrong location and/or time. A configuration of NAQFC CMAQ-system to re-run previous 24 hours, during which wildland fires were observed from satellites has been included recently. This study focuses on the effort performed to minimize the error in NAQFC PM2.5 predictions resulting from incorporating fire smoke emissions into the NAQFC from a recently updated newer version of USFS BlueSky system. This study will show how new approaches has improved the PM2.5 predictions at both nearby and downstream areas from fire sources. Furthermore, Environment and Climate Change Canada (ECCC) fire emissions data are being tested.

  11. A seasonal hydrologic ensemble prediction system for water resource management

    NASA Astrophysics Data System (ADS)

    Luo, L.; Wood, E. F.

    2006-12-01

    A seasonal hydrologic ensemble prediction system, developed for the Ohio River basin, has been improved and expanded to several other regions including the Eastern U.S., Africa and East Asia. The prediction system adopts the traditional Extended Streamflow Prediction (ESP) approach, utilizing the VIC (Variable Infiltration Capacity) hydrological model as the central tool for producing ensemble prediction of soil moisture, snow and streamflow with lead times up to 6-month. VIC is forced by observed meteorology to estimate the hydrological initial condition prior to the forecast, but during the forecast period the atmospheric forcing comes from statistically downscaled, seasonal forecast from dynamic climate models. The seasonal hydrologic ensemble prediction system is currently producing realtime seasonal hydrologic forecast for these regions on a monthly basis. Using hindcasts from a 19-year period (1981-1999), during which seasonal hindcasts from NCEP Climate Forecast System (CFS) and European Union DEMETER project are available, we evaluate the performance of the forecast system over our forecast regions. The evaluation shows that the prediction system using the current forecast approach is able to produce reliable and accurate precipitation, soil moisture and streamflow predictions. The overall skill is much higher then the traditional ESP. In particular, forecasts based on multiple climate model forecast are more skillful than single model-based forecast. This emphasizes the significant need for producing seasonal climate forecast with multiple climate models for hydrologic applications. Forecast from this system is expected to provide very valuable information about future hydrologic states and associated risks for end users, including water resource management and financial sectors.

  12. The Use of Scale-Dependent Precision to Increase Forecast Accuracy in Earth System Modelling

    NASA Astrophysics Data System (ADS)

    Thornes, Tobias; Duben, Peter; Palmer, Tim

    2016-04-01

    At the current pace of development, it may be decades before the 'exa-scale' computers needed to resolve individual convective clouds in weather and climate models become available to forecasters, and such machines will incur very high power demands. But the resolution could be improved today by switching to more efficient, 'inexact' hardware with which variables can be represented in 'reduced precision'. Currently, all numbers in our models are represented as double-precision floating points - each requiring 64 bits of memory - to minimise rounding errors, regardless of spatial scale. Yet observational and modelling constraints mean that values of atmospheric variables are inevitably known less precisely on smaller scales, suggesting that this may be a waste of computer resources. More accurate forecasts might therefore be obtained by taking a scale-selective approach whereby the precision of variables is gradually decreased at smaller spatial scales to optimise the overall efficiency of the model. To study the effect of reducing precision to different levels on multiple spatial scales, we here introduce a new model atmosphere developed by extending the Lorenz '96 idealised system to encompass three tiers of variables - which represent large-, medium- and small-scale features - for the first time. In this chaotic but computationally tractable system, the 'true' state can be defined by explicitly resolving all three tiers. The abilities of low resolution (single-tier) double-precision models and similar-cost high resolution (two-tier) models in mixed-precision to produce accurate forecasts of this 'truth' are compared. The high resolution models outperform the low resolution ones even when small-scale variables are resolved in half-precision (16 bits). This suggests that using scale-dependent levels of precision in more complicated real-world Earth System models could allow forecasts to be made at higher resolution and with improved accuracy. If adopted, this new paradigm would represent a revolution in numerical modelling that could be of great benefit to the world.

  13. A Prototype Regional GSI-based EnKF-Variational Hybrid Data Assimilation System for the Rapid Refresh Forecasting System: Dual-Resolution Implementation and Testing Results

    NASA Astrophysics Data System (ADS)

    Pan, Yujie; Xue, Ming; Zhu, Kefeng; Wang, Mingjun

    2018-05-01

    A dual-resolution (DR) version of a regional ensemble Kalman filter (EnKF)-3D ensemble variational (3DEnVar) coupled hybrid data assimilation system is implemented as a prototype for the operational Rapid Refresh forecasting system. The DR 3DEnVar system combines a high-resolution (HR) deterministic background forecast with lower-resolution (LR) EnKF ensemble perturbations used for flow-dependent background error covariance to produce a HR analysis. The computational cost is substantially reduced by running the ensemble forecasts and EnKF analyses at LR. The DR 3DEnVar system is tested with 3-h cycles over a 9-day period using a 40/˜13-km grid spacing combination. The HR forecasts from the DR hybrid analyses are compared with forecasts launched from HR Gridpoint Statistical Interpolation (GSI) 3D variational (3DVar) analyses, and single LR hybrid analyses interpolated to the HR grid. With the DR 3DEnVar system, a 90% weight for the ensemble covariance yields the lowest forecast errors and the DR hybrid system clearly outperforms the HR GSI 3DVar. Humidity and wind forecasts are also better than those launched from interpolated LR hybrid analyses, but the temperature forecasts are slightly worse. The humidity forecasts are improved most. For precipitation forecasts, the DR 3DEnVar always outperforms HR GSI 3DVar. It also outperforms the LR 3DEnVar, except for the initial forecast period and lower thresholds.

  14. Analyzing Effect of System Inertia on Grid Frequency Forecasting Usnig Two Stage Neuro-Fuzzy System

    NASA Astrophysics Data System (ADS)

    Chourey, Divyansh R.; Gupta, Himanshu; Kumar, Amit; Kumar, Jitesh; Kumar, Anand; Mishra, Anup

    2018-04-01

    Frequency forecasting is an important aspect of power system operation. The system frequency varies with load-generation imbalance. Frequency variation depends upon various parameters including system inertia. System inertia determines the rate of fall of frequency after the disturbance in the grid. Though, inertia of the system is not considered while forecasting the frequency of power system during planning and operation. This leads to significant errors in forecasting. In this paper, the effect of inertia on frequency forecasting is analysed for a particular grid system. In this paper, a parameter equivalent to system inertia is introduced. This parameter is used to forecast the frequency of a typical power grid for any instant of time. The system gives appreciable result with reduced error.

  15. On the use of Bayesian decision theory for issuing natural hazard warnings

    NASA Astrophysics Data System (ADS)

    Economou, T.; Stephenson, D. B.; Rougier, J. C.; Neal, R. A.; Mylne, K. R.

    2016-10-01

    Warnings for natural hazards improve societal resilience and are a good example of decision-making under uncertainty. A warning system is only useful if well defined and thus understood by stakeholders. However, most operational warning systems are heuristic: not formally or transparently defined. Bayesian decision theory provides a framework for issuing warnings under uncertainty but has not been fully exploited. Here, a decision theoretic framework is proposed for hazard warnings. The framework allows any number of warning levels and future states of nature, and a mathematical model for constructing the necessary loss functions for both generic and specific end-users is described. The approach is illustrated using one-day ahead warnings of daily severe precipitation over the UK, and compared to the current decision tool used by the UK Met Office. A probability model is proposed to predict precipitation, given ensemble forecast information, and loss functions are constructed for two generic stakeholders: an end-user and a forecaster. Results show that the Met Office tool issues fewer high-level warnings compared with our system for the generic end-user, suggesting the former may not be suitable for risk averse end-users. In addition, raw ensemble forecasts are shown to be unreliable and result in higher losses from warnings.

  16. On the use of Bayesian decision theory for issuing natural hazard warnings.

    PubMed

    Economou, T; Stephenson, D B; Rougier, J C; Neal, R A; Mylne, K R

    2016-10-01

    Warnings for natural hazards improve societal resilience and are a good example of decision-making under uncertainty. A warning system is only useful if well defined and thus understood by stakeholders. However, most operational warning systems are heuristic: not formally or transparently defined. Bayesian decision theory provides a framework for issuing warnings under uncertainty but has not been fully exploited. Here, a decision theoretic framework is proposed for hazard warnings. The framework allows any number of warning levels and future states of nature, and a mathematical model for constructing the necessary loss functions for both generic and specific end-users is described. The approach is illustrated using one-day ahead warnings of daily severe precipitation over the UK, and compared to the current decision tool used by the UK Met Office. A probability model is proposed to predict precipitation, given ensemble forecast information, and loss functions are constructed for two generic stakeholders: an end-user and a forecaster. Results show that the Met Office tool issues fewer high-level warnings compared with our system for the generic end-user, suggesting the former may not be suitable for risk averse end-users. In addition, raw ensemble forecasts are shown to be unreliable and result in higher losses from warnings.

  17. On the use of Bayesian decision theory for issuing natural hazard warnings

    PubMed Central

    Stephenson, D. B.; Rougier, J. C.; Neal, R. A.; Mylne, K. R.

    2016-01-01

    Warnings for natural hazards improve societal resilience and are a good example of decision-making under uncertainty. A warning system is only useful if well defined and thus understood by stakeholders. However, most operational warning systems are heuristic: not formally or transparently defined. Bayesian decision theory provides a framework for issuing warnings under uncertainty but has not been fully exploited. Here, a decision theoretic framework is proposed for hazard warnings. The framework allows any number of warning levels and future states of nature, and a mathematical model for constructing the necessary loss functions for both generic and specific end-users is described. The approach is illustrated using one-day ahead warnings of daily severe precipitation over the UK, and compared to the current decision tool used by the UK Met Office. A probability model is proposed to predict precipitation, given ensemble forecast information, and loss functions are constructed for two generic stakeholders: an end-user and a forecaster. Results show that the Met Office tool issues fewer high-level warnings compared with our system for the generic end-user, suggesting the former may not be suitable for risk averse end-users. In addition, raw ensemble forecasts are shown to be unreliable and result in higher losses from warnings. PMID:27843399

  18. The real-time SEP forecasting tools of the 'HESPERIA' HORIZON 2020 project

    NASA Astrophysics Data System (ADS)

    Malandraki, Olga E.; Nunez, Marlon; Heber, Bernd; Labrenz, Johannes; Posner, Arik; Milas, Nick; Tsiropoula, Georgia; Pavlos, Evgenios; Sarlanis, Christos

    2017-04-01

    In this study, we describe the two real-time prediction tools, that have been developed in the framework of the HESPERIA project based upon the proven concepts UMASEP and REleASE. A major impact on human and robotic space exploration activities is the sudden and prompt occurrence of solar energetic ion events. The fact that near-relativistic electrons (1 MeV electrons have 95% of the speed of light) travel faster than ions (30 MeV protons have 25% of the speed of light) and are always present in Solar Energetic Particle (SEP) events can be used to forecast the arrival of protons from SEP events with real-time measurements of near relativistic electrons. The faster electrons arrive at L1 30 to 90 minutes before the slower protons. The Relativistic Electron Alert System for Exploration (REleASE) forecasting scheme (Posner, 2007) uses this effect to predict the proton flux by utilizing the actual electron flux and the increase of the electron flux in the last 60 minutes. In the framework of the HESPERIA project, a clone of the REleASE system was built in the open source programming language PYTHON. The same forecasting principle with use of the same forecasting matrices were in addition adapted to real-time electron flux measurements from the Electron, Proton & Alpha Monitor (EPAM) onboard the Advanced Composition Explorer (ACE). It is shown, that the REleASE forecasting scheme can be adapted to work with any near relativistic electron flux measurements. Solar energetic particles (SEPs) are sometimes energetic enough and the flux is high enough to cause air showers in the stratosphere and in the troposphere, which are an important ionization source in the atmosphere. >500 MeV solar protons are so energetic that they usually have effects on the ground, producing what is called a Ground Level Enhancement (GLE) event. Within the HESPERIA project a predictor of >500 SEP proton events at the near-earth (e.g. at geostationary orbit) has been developed. In order to predict these events, the UMASEP scheme (Núñez, 2011, 2015) has been used. UMASEP makes a lag-correlation of solar electromagnetic (EM) flux with the particle flux at near-earth. If the correlation is high, the model infers that there is a magnetic connection through which particles are arriving. If, additionally, the intensity of the flux of the associated solar event is also high, then the UMASEP scheme issues a SEP prediction. In the case of the prediction of >500 MeV SEP events, the implemented system, called UMASEP-500, correlates X-ray flux with each of the differential proton fluxes measured by the GOES satellites, and with each of the neutron density fluxes collected by neutron monitor stations around the world. When the correlation estimation surpasses a threshold, and the associated flare is greater than a specific X-ray peak flux, a >500 MeV SEP forecast is issued. Both forecasting tools are operational under the HESPERIA server maintained at the National Observatory of Athens. Acknowledgement: This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 637324 (HESPERIA project).

  19. An Evaluation of Alternatives for Processing of Administrative Pay Vouchers: A Simulation Approach.

    DTIC Science & Technology

    1982-09-01

    Finance Travel Voucher Q-GERT Productivity Personnel Forecasts Simulation Model 20. ABSTRACT (Continue on reverse side if necessary end Jdentfly by...Finance Office (ACF) has devised a Point System for use in determining the productivity of the ACF Travel Section (ACFTT). This Point System sets values...5 to 5+) to be assigned to incoming travel vouchers based on voucher complexity. This research had set objectives of (1) building an ACFTT model that

  20. Weighing costs and losses: A decision making game using probabilistic forecasts

    NASA Astrophysics Data System (ADS)

    Werner, Micha; Ramos, Maria-Helena; Wetterhall, Frederik; Cranston, Michael; van Andel, Schalk-Jan; Pappenberger, Florian; Verkade, Jan

    2017-04-01

    Probabilistic forecasts are increasingly recognised as an effective and reliable tool to communicate uncertainties. The economic value of probabilistic forecasts has been demonstrated by several authors, showing the benefit to using probabilistic forecasts over deterministic forecasts in several sectors, including flood and drought warning, hydropower, and agriculture. Probabilistic forecasting is also central to the emerging concept of risk-based decision making, and underlies emerging paradigms such as impact-based forecasting. Although the economic value of probabilistic forecasts is easily demonstrated in academic works, its evaluation in practice is more complex. The practical use of probabilistic forecasts requires decision makers to weigh the cost of an appropriate response to a probabilistic warning against the projected loss that would occur if the event forecast becomes reality. In this paper, we present the results of a simple game that aims to explore how decision makers are influenced by the costs required for taking a response and the potential losses they face in case the forecast flood event occurs. Participants play the role of one of three possible different shop owners. Each type of shop has losses of quite different magnitude, should a flood event occur. The shop owners are presented with several forecasts, each with a probability of a flood event occurring, which would inundate their shop and lead to those losses. In response, they have to decide if they want to do nothing, raise temporary defences, or relocate their inventory. Each action comes at a cost; and the different shop owners therefore have quite different cost/loss ratios. The game was played on four occasions. Players were attendees of the ensemble hydro-meteorological forecasting session of the 2016 EGU Assembly, professionals participating at two other conferences related to hydrometeorology, and a group of students. All audiences were familiar with the principles of forecasting and water-related risks, and one of the audiences comprised a group of experts in probabilistic forecasting. Results show that the different shop owners do take the costs of taking action and the potential losses into account in their decisions. Shop owners with a low cost/loss ratio were found to be more inclined to take actions based on the forecasts, though the absolute value of the losses also increased the willingness to take action. Little differentiation was found between the different groups of players.

  1. Interactive Forecasting with the National Weather Service River Forecast System

    NASA Technical Reports Server (NTRS)

    Smith, George F.; Page, Donna

    1993-01-01

    The National Weather Service River Forecast System (NWSRFS) consists of several major hydrometeorologic subcomponents to model the physics of the flow of water through the hydrologic cycle. The entire NWSRFS currently runs in both mainframe and minicomputer environments, using command oriented text input to control the system computations. As computationally powerful and graphically sophisticated scientific workstations became available, the National Weather Service (NWS) recognized that a graphically based, interactive environment would enhance the accuracy and timeliness of NWS river and flood forecasts. Consequently, the operational forecasting portion of the NWSRFS has been ported to run under a UNIX operating system, with X windows as the display environment on a system of networked scientific workstations. In addition, the NWSRFS Interactive Forecast Program was developed to provide a graphical user interface to allow the forecaster to control NWSRFS program flow and to make adjustments to forecasts as necessary. The potential market for water resources forecasting is immense and largely untapped. Any private company able to market the river forecasting technologies currently developed by the NWS Office of Hydrology could provide benefits to many information users and profit from providing these services.

  2. Exploring coupled 4D-Var data assimilation using an idealised atmosphere-ocean model

    NASA Astrophysics Data System (ADS)

    Smith, Polly; Fowler, Alison; Lawless, Amos; Haines, Keith

    2014-05-01

    The successful application of data assimilation techniques to operational numerical weather prediction and ocean forecasting systems has led to an increased interest in their use for the initialisation of coupled atmosphere-ocean models in prediction on seasonal to decadal timescales. Coupled data assimilation presents a significant challenge but offers a long list of potential benefits including improved use of near-surface observations, reduction of initialisation shocks in coupled forecasts, and generation of a consistent system state for the initialisation of coupled forecasts across all timescales. In this work we explore some of the fundamental questions in the design of coupled data assimilation systems within the context of an idealised one-dimensional coupled atmosphere-ocean model. The system is based on the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecast System (IFS) atmosphere model and a K-Profile Parameterisation (KKP) mixed layer ocean model developed by the National Centre for Atmospheric Science (NCAS) climate group at the University of Reading. It employs a strong constraint incremental 4D-Var scheme and is designed to enable the effective exploration of various approaches to performing coupled model data assimilation whilst avoiding many of the issues associated with more complex models. Working with this simple framework enables a greater range and quantity of experiments to be performed. Here, we will describe the development of our simplified single-column coupled atmosphere-ocean 4D-Var assimilation system and present preliminary results from a series of identical twin experiments devised to investigate and compare the behaviour and sensitivities of different coupled data assimilation methodologies. This includes comparing fully and weakly coupled assimilations with uncoupled assimilation, investigating whether coupled assimilation can eliminate or lessen initialisation shock in coupled model forecasts, and exploring the effect of the assimilation window length in coupled assimilations. These experiments will facilitate a greater theoretical understanding of the coupled atmosphere-ocean data assimilation problem and thus help guide the design and implementation of different coupling strategies within operational systems. This research is funded by the European Space Agency (ESA) and the UK Natural Environment Research Council (NERC). The ESA funded component is part of the Data Assimilation Projects - Coupled Model Data Assimilation initiative whose goal is to advance data assimilation techniques in fully coupled atmosphere-ocean models (see http://www.esa-da.org/). It is being conducted in parallel to the development of prototype weakly coupled data assimilation systems at both the UK Met Office and ECMWF.

  3. Impact of Targeted Ocean Observations for Improving Ocean Model Initialization for Coupled Hurricane Forecasting

    NASA Astrophysics Data System (ADS)

    Halliwell, G. R.; Srinivasan, A.; Kourafalou, V. H.; Yang, H.; Le Henaff, M.; Atlas, R. M.

    2012-12-01

    The accuracy of hurricane intensity forecasts produced by coupled forecast models is influenced by errors and biases in SST forecasts produced by the ocean model component and the resulting impact on the enthalpy flux from ocean to atmosphere that powers the storm. Errors and biases in fields used to initialize the ocean model seriously degrade SST forecast accuracy. One strategy for improving ocean model initialization is to design a targeted observing program using airplanes and in-situ devices such as floats and drifters so that assimilation of the additional data substantially reduces errors in the ocean analysis system that provides the initial fields. Given the complexity and expense of obtaining these additional observations, observing system design methods such as OSSEs are attractive for designing efficient observing strategies. A new fraternal-twin ocean OSSE system based on the HYbrid Coordinate Ocean Model (HYCOM) is used to assess the impact of targeted ocean profiles observed by hurricane research aircraft, and also by in-situ float and drifter deployments, on reducing errors in initial ocean fields. A 0.04-degree HYCOM simulation of the Gulf of Mexico is evaluated as the nature run by determining that important ocean circulation features such as the Loop Current and synoptic cyclones and anticyclones are realistically simulated. The data-assimilation system is run on a 0.08-degree HYCOM mesh with substantially different model configuration than the nature run, and it uses a new ENsemble Kalman Filter (ENKF) algorithm optimized for the ocean model's hybrid vertical coordinates. The OSSE system is evaluated and calibrated by first running Observing System Experiments (OSEs) to evaluate existing observing systems, specifically quantifying the impact of assimilating more than one satellite altimeter, and also the impact of assimilating targeted ocean profiles taken by the NOAA WP-3D hurricane research aircraft in the Gulf of Mexico during the Deepwater Horizon oil spill. OSSE evaluation and calibration is then performed by repeating these two OSEs with synthetic observations and comparing the resulting observing system impact to determine if it differs from the OSE results. OSSEs are first run to evaluate different airborne sampling strategies with respect to temporal frequency of flights and the horizontal separation of upper-ocean profiles during each flight. They are then run to assess the impact of releasing multiple floats and gliders. Evaluation strategy focuses on error reduction in fields important for hurricane forecasting such as the structure of ocean currents and eddies, upper ocean heat content distribution, and upper-ocean stratification.

  4. Gaussian process regression for forecasting battery state of health

    NASA Astrophysics Data System (ADS)

    Richardson, Robert R.; Osborne, Michael A.; Howey, David A.

    2017-07-01

    Accurately predicting the future capacity and remaining useful life of batteries is necessary to ensure reliable system operation and to minimise maintenance costs. The complex nature of battery degradation has meant that mechanistic modelling of capacity fade has thus far remained intractable; however, with the advent of cloud-connected devices, data from cells in various applications is becoming increasingly available, and the feasibility of data-driven methods for battery prognostics is increasing. Here we propose Gaussian process (GP) regression for forecasting battery state of health, and highlight various advantages of GPs over other data-driven and mechanistic approaches. GPs are a type of Bayesian non-parametric method, and hence can model complex systems whilst handling uncertainty in a principled manner. Prior information can be exploited by GPs in a variety of ways: explicit mean functions can be used if the functional form of the underlying degradation model is available, and multiple-output GPs can effectively exploit correlations between data from different cells. We demonstrate the predictive capability of GPs for short-term and long-term (remaining useful life) forecasting on a selection of capacity vs. cycle datasets from lithium-ion cells.

  5. On the incidence of meteorological and hydrological processors: Effect of resolution, sharpness and reliability of hydrological ensemble forecasts

    NASA Astrophysics Data System (ADS)

    Abaza, Mabrouk; Anctil, François; Fortin, Vincent; Perreault, Luc

    2017-12-01

    Meteorological and hydrological ensemble prediction systems are imperfect. Their outputs could often be improved through the use of a statistical processor, opening up the question of the necessity of using both processors (meteorological and hydrological), only one of them, or none. This experiment compares the predictive distributions from four hydrological ensemble prediction systems (H-EPS) utilising the Ensemble Kalman filter (EnKF) probabilistic sequential data assimilation scheme. They differ in the inclusion or not of the Distribution Based Scaling (DBS) method for post-processing meteorological forecasts and the ensemble Bayesian Model Averaging (ensemble BMA) method for hydrological forecast post-processing. The experiment is implemented on three large watersheds and relies on the combination of two meteorological reforecast products: the 4-member Canadian reforecasts from the Canadian Centre for Meteorological and Environmental Prediction (CCMEP) and the 10-member American reforecasts from the National Oceanic and Atmospheric Administration (NOAA), leading to 14 members at each time step. Results show that all four tested H-EPS lead to resolution and sharpness values that are quite similar, with an advantage to DBS + EnKF. The ensemble BMA is unable to compensate for any bias left in the precipitation ensemble forecasts. On the other hand, it succeeds in calibrating ensemble members that are otherwise under-dispersed. If reliability is preferred over resolution and sharpness, DBS + EnKF + ensemble BMA performs best, making use of both processors in the H-EPS system. Conversely, for enhanced resolution and sharpness, DBS is the preferred method.

  6. The Fixed-bias Langmuir Probe on the Communication-navigation Outage Forecast System Satellite: Calibration and Validation

    NASA Technical Reports Server (NTRS)

    Klenzing, Jeffrey H.; Rowland, Douglas E.

    2012-01-01

    A fixed-bias spherical Langmuir probe is included as part of the Vector Electric Field Instrument (VEFI) suite on the Communication Navigation Outage Forecast System (CNOFS) satellite.CNOFS gathers data in the equatorial ionosphere between 400 and 860 km, where the primary constituent ions are H+ and O+. The ion current collected by the probe surface per unit plasmadensity is found to be a strong function of ion composition. The calibration of the collected current to an absolute density is discussed, and the performance of the spherical probe is compared to other in situ instruments on board the CNOFS satellite. The application of the calibration is discussed with respect to future xed-bias probes; in particular, it is demonstrated that some density fluctuations will be suppressed in the collected current if the plasma composition rapidly changes along with density. This is illustrated in the observation of plasma density enhancements on CNOFS.

  7. The behaviour of PM10 and ozone in Malaysia through non-linear dynamical systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sapini, Muhamad Luqman; Rahim, Nurul Zahirah binti Abd; Noorani, Mohd Salmi Md.

    Prediction of ozone (O3) and PM10 is very important as both these air pollutants affect human health, human activities and more. Short-term forecasting of air quality is needed as preventive measures and effective action can be taken. Therefore, if it is detected that the ozone data is of a chaotic dynamical systems, a model using the nonlinear dynamic from chaos theory data can be made and thus forecasts for the short term would be more accurate. This study uses two methods, namely the 0-1 Test and Lyapunov Exponent. In addition, the effect of noise reduction on the analysis of timemore » series data will be seen by using two smoothing methods: Rectangular methods and Triangle methods. At the end of the study, recommendations were made to get better results in the future.« less

  8. An application of a multi model approach for solar energy prediction in Southern Italy

    NASA Astrophysics Data System (ADS)

    Avolio, Elenio; Lo Feudo, Teresa; Calidonna, Claudia Roberta; Contini, Daniele; Torcasio, Rosa Claudia; Tiriolo, Luca; Montesanti, Stefania; Transerici, Claudio; Federico, Stefano

    2015-04-01

    The accuracy of the short and medium range forecast of solar irradiance is very important for solar energy integration into the grid. This issue is particularly important for Southern Italy where a significant availability of solar energy is associated with a poor development of the grid. In this work we analyse the performance of two deterministic models for the prediction of surface temperature and short-wavelength radiance for two sites in southern Italy. Both parameters are needed to forecast the power production from solar power plants, so the performance of the forecast for these meteorological parameters is of paramount importance. The models considered in this work are the RAMS (Regional Atmospheric Modeling System) and the WRF (Weather Research and Forecasting Model) and they were run for the summer 2013 at 4 km horizontal resolution over Italy. The forecast lasts three days. Initial and dynamic boundary conditions are given by the 12 UTC deterministic forecast of the ECMWF-IFS (European Centre for Medium Weather Range Forecast - Integrated Forecasting System) model, and were available every 6 hours. Verification is given against two surface stations located in Southern Italy, Lamezia Terme and Lecce, and are based on hourly output of models forecast. Results for the whole period for temperature show a positive bias for the RAMS model and a negative bias for the WRF model. RMSE is between 1 and 2 °C for both models. Results for the whole period for the short-wavelength radiance show a positive bias for both models (about 30 W/m2 for both models) and a RMSE of 100 W/m2. To reduce the model errors, a statistical post-processing technique, i.e the multi-model, is adopted. In this approach the two model's outputs are weighted with an adequate set of weights computed for a training period. In general, the performance is improved by the application of the technique, and the RMSE is reduced by a sizeable fraction (i.e. larger than 10% of the initial RMSE) depending on the forecasting time and parameter. The performance of the multi model is discussed as a function of the length of the training period and is compared with the performance of the MOS (Model Output Statistics) approach. ACKNOWLEDGMENTS This work is partially supported by projects PON04a2E Sinergreen-ResNovae - "Smart Energy Master for the energetic government of the territory" and PONa3_00363 "High Technology Infrastructure for Climate and Environment Monitoring" (I-AMICA) founded by Italian Ministry of University and Research (MIUR) PON 2007-2013. The ECMWF and CNMCA (Centro Nazionale di Meteorologia e Climatologia Aeronautica) are acknowledged for the use of the MARS (Meteorological Archive and Retrieval System).

  9. Performance of an Advanced MOS System in the 1996-97 National Collegiate Weather Forecasting Contest.

    NASA Astrophysics Data System (ADS)

    Vislocky, Robert L.; Fritsch, J. Michael

    1997-12-01

    A prototype advanced model output statistics (MOS) forecast system that was entered in the 1996-97 National Collegiate Weather Forecast Contest is described and its performance compared to that of widely available objective guidance and to contest participants. The prototype system uses an optimal blend of aviation (AVN) and nested grid model (NGM) MOS forecasts, explicit output from the NGM and Eta guidance, and the latest surface weather observations from the forecast site. The forecasts are totally objective and can be generated quickly on a personal computer. Other "objective" forms of guidance tracked in the contest are 1) the consensus forecast (i.e., the average of the forecasts from all of the human participants), 2) the combination of NGM raw output (for precipitation forecasts) and NGM MOS guidance (for temperature forecasts), and 3) the combination of Eta Model raw output (for precipitation forecasts) and AVN MOS guidance (for temperature forecasts).Results show that the advanced MOS system finished in 20th place out of 737 original entrants, or better than approximately 97% of the human forecasters who entered the contest. Moreover, the advanced MOS system was slightly better than consensus (23d place). The fact that an objective forecast system finished ahead of consensus is a significant accomplishment since consensus is traditionally a very formidable "opponent" in forecast competitions. Equally significant is that the advanced MOS system was superior to the traditional guidance products available from the National Centers for Environmental Prediction (NCEP). Specifically, the combination of NGM raw output and NGM MOS guidance finished in 175th place, and the combination of Eta Model raw output and AVN MOS guidance finished in 266th place. The latter result is most intriguing since the proposed elimination of all NGM products would likely result in a serious degradation of objective products disseminated by NCEP, unless they are replaced with equal or better substitutes. On the other hand, the positive performance of the prototype advanced MOS system shows that it is possible to create a single objective product that is not only superior to currently available objective guidance products, but is also on par with some of the better human forecasters.

  10. Application of the LEPS technique for Quantitative Precipitation Forecasting (QPF) in Southern Italy: a preliminary study

    NASA Astrophysics Data System (ADS)

    Federico, S.; Avolio, E.; Bellecci, C.; Colacino, M.; Walko, R. L.

    2006-03-01

    This paper reports preliminary results for a Limited area model Ensemble Prediction System (LEPS), based on RAMS (Regional Atmospheric Modelling System), for eight case studies of moderate-intense precipitation over Calabria, the southernmost tip of the Italian peninsula. LEPS aims to transfer the benefits of a probabilistic forecast from global to regional scales in countries where local orographic forcing is a key factor to force convection. To accomplish this task and to limit computational time in an operational implementation of LEPS, we perform a cluster analysis of ECMWF-EPS runs. Starting from the 51 members that form the ECMWF-EPS we generate five clusters. For each cluster a representative member is selected and used to provide initial and dynamic boundary conditions to RAMS, whose integrations generate LEPS. RAMS runs have 12-km horizontal resolution. To analyze the impact of enhanced horizontal resolution on quantitative precipitation forecasts, LEPS forecasts are compared to a full Brute Force (BF) ensemble. This ensemble is based on RAMS, has 36 km horizontal resolution and is generated by 51 members, nested in each ECMWF-EPS member. LEPS and BF results are compared subjectively and by objective scores. Subjective analysis is based on precipitation and probability maps of case studies whereas objective analysis is made by deterministic and probabilistic scores. Scores and maps are calculated by comparing ensemble precipitation forecasts against reports from the Calabria regional raingauge network. Results show that LEPS provided better rainfall predictions than BF for all case studies selected. This strongly suggests the importance of the enhanced horizontal resolution, compared to ensemble population, for Calabria for these cases. To further explore the impact of local physiographic features on QPF (Quantitative Precipitation Forecasting), LEPS results are also compared with a 6-km horizontal resolution deterministic forecast. Due to local and mesoscale forcing, the high resolution forecast (Hi-Res) has better performance compared to the ensemble mean for rainfall thresholds larger than 10mm but it tends to overestimate precipitation for lower amounts. This yields larger false alarms that have a detrimental effect on objective scores for lower thresholds. To exploit the advantages of a probabilistic forecast compared to a deterministic one, the relation between the ECMWF-EPS 700 hPa geopotential height spread and LEPS performance is analyzed. Results are promising even if additional studies are required.

  11. Advanced Cloud Forecasting for Solar Energy Production

    NASA Astrophysics Data System (ADS)

    Werth, D. W.; Parker, M. J.

    2017-12-01

    A power utility must decide days in advance how it will allocate projected loads among its various generating sources. If the latter includes solar plants, the utility must predict how much energy the plants will produce - any shortfall will have to be compensated for by purchasing power as it is needed, when it is more expensive. To avoid this, utilities often err on the side of caution and assume that a relatively small amount of solar energy will be available, and allocate correspondingly more load to coal-fired plants. If solar irradiance can be predicted more accurately, utilities can be more confident that the predicted solar energy will indeed be available when needed, and assign solar plants a larger share of the future load. Solar power production is increasing in the Southeast, but is often hampered by irregular cloud fields, especially during high-pressure periods when rapid afternoon thunderstorm development can occur during what was predicted to be a clear day. We are currently developing an analog forecasting system to predict solar irradiance at the surface at the Savannah River Site in South Carolina, with the goal of improving predictions of available solar energy. Analog forecasting is based on the assumption that similar initial conditions will lead to similar outcomes, and involves the use of an algorithm to look through the weather patterns of the past to identify previous conditions (the analogs) similar to those of today. For our application, we select three predictor variables - sea-level pressure, 700mb geopotential, and 700mb humidity. These fields for the current day are compared to those from past days, and a weighted combination of the differences (defined by a cost function) is used to select the five best analog days. The observed solar irradiance values subsequent to the dates of those analogs are then combined to represent the forecast for the next day. We will explain how we apply the analog process, and compare it to existing solar forecasts.

  12. The Wind Forecast Improvement Project (WFIP). A Public/Private Partnership for Improving Short Term Wind Energy Forecasts and Quantifying the Benefits of Utility Operations -- the Northern Study Area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finley, Cathy

    2014-04-30

    This report contains the results from research aimed at improving short-range (0-6 hour) hub-height wind forecasts in the NOAA weather forecast models through additional data assimilation and model physics improvements for use in wind energy forecasting. Additional meteorological observing platforms including wind profilers, sodars, and surface stations were deployed for this study by NOAA and DOE, and additional meteorological data at or near wind turbine hub height were provided by South Dakota State University and WindLogics/NextEra Energy Resources over a large geographical area in the U.S. Northern Plains for assimilation into NOAA research weather forecast models. The resulting improvements inmore » wind energy forecasts based on the research weather forecast models (with the additional data assimilation and model physics improvements) were examined in many different ways and compared with wind energy forecasts based on the current operational weather forecast models to quantify the forecast improvements important to power grid system operators and wind plant owners/operators participating in energy markets. Two operational weather forecast models (OP_RUC, OP_RAP) and two research weather forecast models (ESRL_RAP, HRRR) were used as the base wind forecasts for generating several different wind power forecasts for the NextEra Energy wind plants in the study area. Power forecasts were generated from the wind forecasts in a variety of ways, from very simple to quite sophisticated, as they might be used by a wide range of both general users and commercial wind energy forecast vendors. The error characteristics of each of these types of forecasts were examined and quantified using bulk error statistics for both the local wind plant and the system aggregate forecasts. The wind power forecast accuracy was also evaluated separately for high-impact wind energy ramp events. The overall bulk error statistics calculated over the first six hours of the forecasts at both the individual wind plant and at the system-wide aggregate level over the one year study period showed that the research weather model-based power forecasts (all types) had lower overall error rates than the current operational weather model-based power forecasts, both at the individual wind plant level and at the system aggregate level. The bulk error statistics of the various model-based power forecasts were also calculated by season and model runtime/forecast hour as power system operations are more sensitive to wind energy forecast errors during certain times of year and certain times of day. The results showed that there were significant differences in seasonal forecast errors between the various model-based power forecasts. The results from the analysis of the various wind power forecast errors by model runtime and forecast hour showed that the forecast errors were largest during the times of day that have increased significance to power system operators (the overnight hours and the morning/evening boundary layer transition periods), but the research weather model-based power forecasts showed improvement over the operational weather model-based power forecasts at these times.« less

  13. Forecasting Global Rainfall for Points Using ECMWF's Global Ensemble and Its Applications in Flood Forecasting

    NASA Astrophysics Data System (ADS)

    Pillosu, F. M.; Hewson, T.; Mazzetti, C.

    2017-12-01

    Prediction of local extreme rainfall has historically been the remit of nowcasting and high resolution limited area modelling, which represent only limited areas, may not be spatially accurate, give reasonable results only for limited lead times (<2 days) and become prohibitively expensive at global scale. ECMWF/EFAS/GLOFAS have developed a novel, cost-effective and physically-based statistical post-processing software ("ecPoint-Rainfall, ecPR", operational in 2017) that uses ECMWF Ensemble (ENS) output to deliver global probabilistic rainfall forecasts for points up to day 10. Firstly, ecPR applies a new notion of "remote calibration", which 1) allows us to replicate a multi-centennial training period using only one year of data, and 2) provides forecasts for anywhere in the world. Secondly, the software applies an understanding of how different rainfall generation mechanisms lead to different degrees of sub-grid variability in rainfall totals, and of where biases in the model can be improved upon. A long-term verification has shown that the post-processed rainfall has better reliability and resolution at every lead time if compared with ENS, and for large totals, ecPR outputs have the same skill at day 5 that the raw ENS has at day 1 (ROC area metric). ecPR could be used as input for hydrological models if its probabilistic output is modified accordingly to the inputs requirements for hydrological models. Indeed, ecPR does not provide information on where the highest total is likely to occur inside the gridbox, nor on the spatial distribution of rainfall values nearby. "Scenario forecasts" could be a solution. They are derived from locating the rainfall peak in sensitive positions (e.g. urban areas), and then redistributing the remaining quantities in the gridbox modifying traditional spatial correlation characterization methodologies (e.g. variogram analysis) in order to take account, for instance, of the type of rainfall forecast (stratiform, convective). Such an approach could be a turning point in the field of medium-range global real-time riverine flood forecasts. This presentation will illustrate for ecPR 1) system calibration, 2) operational implementation, 3) long-term verification, 4) future developments, and 5) early ideas for the application of ecPR outputs in hydrological models.

  14. Should we use seasonnal meteorological ensemble forecasts for hydrological forecasting? A case study for nordic watersheds in Canada.

    NASA Astrophysics Data System (ADS)

    Bazile, Rachel; Boucher, Marie-Amélie; Perreault, Luc; Leconte, Robert; Guay, Catherine

    2017-04-01

    Hydro-electricity is a major source of energy for many countries throughout the world, including Canada. Long lead-time streamflow forecasts are all the more valuable as they help decision making and dam management. Different techniques exist for long-term hydrological forecasting. Perhaps the most well-known is 'Extended Streamflow Prediction' (ESP), which considers past meteorological scenarios as possible, often equiprobable, future scenarios. In the ESP framework, those past-observed meteorological scenarios (climatology) are used in turn as the inputs of a chosen hydrological model to produce ensemble forecasts (one member corresponding to each year in the available database). Many hydropower companies, including Hydro-Québec (province of Quebec, Canada) use variants of the above described ESP system operationally for long-term operation planning. The ESP system accounts for the hydrological initial conditions and for the natural variability of the meteorological variables. However, it cannot consider the current initial state of the atmosphere. Climate models can help remedy this drawback. In the context of a changing climate, dynamical forecasts issued from climate models seem to be an interesting avenue to improve upon the ESP method and could help hydropower companies to adapt their management practices to an evolving climate. Long-range forecasts from climate models can also be helpful for water management at locations where records of past meteorological conditions are short or nonexistent. In this study, we compare 7-month hydrological forecasts obtained from climate model outputs to an ESP system. The ESP system mimics the one used operationally at Hydro-Québec. The dynamical climate forecasts are produced by the European Center for Medium range Weather Forecasts (ECMWF) System4. Forecasts quality is assessed using numerical scores such as the Continuous Ranked Probability Score (CRPS) and the Ignorance score and also graphical tools such as the reliability diagram. This study covers 10 nordic watersheds. We show that forecast performance according to the CRPS varies with lead-time but also with the period of the year. The raw forecasts from the ECMWF System4 display important biases for both temperature and precipitation, which need to be corrected. The linear scaling method is used for this purpose and is found effective. Bias correction improves forecasts performance, especially during the summer when the precipitations are over-estimated. According to the CRPS, bias corrected forecasts from System4 show performances comparable to those of the ESP system. However, the Ignorance score, which penalizes the lack of calibration (under-dispersive forecasts in this case) more severely than the CRPS, provides a different outlook for the comparison of the two systems. In fact, according to the Ignorance score, the ESP system outperforms forecasts based on System4 in most cases. This illustrates that the joint use of several metrics is crucial to assess the quality of a forecasts system thoroughly. Globally, ESP provide reliable forecasts which can be over-dispersed whereas bias corrected ECMWF System4 forecasts are sharper but at the risk of missing events.

  15. Drought Monitoring and Forecasting Using the Princeton/U Washington National Hydrologic Forecasting System

    NASA Astrophysics Data System (ADS)

    Wood, E. F.; Yuan, X.; Roundy, J. K.; Lettenmaier, D. P.; Mo, K. C.; Xia, Y.; Ek, M. B.

    2011-12-01

    Extreme hydrologic events in the form of droughts or floods are a significant source of social and economic damage in many parts of the world. Having sufficient warning of extreme events allows managers to prepare for and reduce the severity of their impacts. A hydrologic forecast system can give seasonal predictions that can be used by mangers to make better decisions; however there is still much uncertainty associated with such a system. Therefore it is important to understand the forecast skill of the system before transitioning to operational usage. Seasonal reforecasts (1982 - 2010) from the NCEP Climate Forecast System (both version 1 (CFS) and version 2 (CFSv2), Climate Prediction Center (CPC) outlooks and the European Seasonal Interannual Prediction (EUROSIP) system, are assessed for forecasting skill in drought prediction across the U.S., both singularly and as a multi-model system The Princeton/U Washington national hydrologic monitoring and forecast system is being implemented at NCEP/EMC via their Climate Test Bed as the experimental hydrological forecast system to support U.S. operational drought prediction. Using our system, the seasonal forecasts are biased corrected, downscaled and used to drive the Variable Infiltration Capacity (VIC) land surface model to give seasonal forecasts of hydrologic variables with lead times of up to six months. Results are presented for a number of events, with particular focus on the Apalachicola-Chattahoochee-Flint (ACF) River Basin in the South Eastern United States, which has experienced a number of severe droughts in recent years and is a pilot study basin for the National Integrated Drought Information System (NIDIS). The performance of the VIC land surface model is evaluated using observational forcing when compared to observed streamflow. The effectiveness of the forecast system to predict streamflow and soil moisture is evaluated when compared with observed streamflow and modeled soil moisture driven by observed atmospheric forcing. The forecast skills from the dynamical seasonal models (CFSv1, CFSv2, EUROSIP) and CPC are also compared with forecasts based on the Ensemble Streamflow Prediction (ESP) method, which uses initial conditions and historical forcings to generate seasonal forecasts. The skill of the system to predict drought, drought recovery and related hydrological conditions such as low-flows is assessed, along with quantified uncertainty.

  16. Short Term Load Forecasting with Fuzzy Logic Systems for power system planning and reliability-A Review

    NASA Astrophysics Data System (ADS)

    Holmukhe, R. M.; Dhumale, Mrs. Sunita; Chaudhari, Mr. P. S.; Kulkarni, Mr. P. P.

    2010-10-01

    Load forecasting is very essential to the operation of Electricity companies. It enhances the energy efficient and reliable operation of power system. Forecasting of load demand data forms an important component in planning generation schedules in a power system. The purpose of this paper is to identify issues and better method for load foecasting. In this paper we focus on fuzzy logic system based short term load forecasting. It serves as overview of the state of the art in the intelligent techniques employed for load forecasting in power system planning and reliability. Literature review has been conducted and fuzzy logic method has been summarized to highlight advantages and disadvantages of this technique. The proposed technique for implementing fuzzy logic based forecasting is by Identification of the specific day and by using maximum and minimum temperature for that day and finally listing the maximum temperature and peak load for that day. The results show that Load forecasting where there are considerable changes in temperature parameter is better dealt with Fuzzy Logic system method as compared to other short term forecasting techniques.

  17. Verification of Ensemble Forecasts for the New York City Operations Support Tool

    NASA Astrophysics Data System (ADS)

    Day, G.; Schaake, J. C.; Thiemann, M.; Draijer, S.; Wang, L.

    2012-12-01

    The New York City water supply system operated by the Department of Environmental Protection (DEP) serves nine million people. It covers 2,000 square miles of portions of the Catskill, Delaware, and Croton watersheds, and it includes nineteen reservoirs and three controlled lakes. DEP is developing an Operations Support Tool (OST) to support its water supply operations and planning activities. OST includes historical and real-time data, a model of the water supply system complete with operating rules, and lake water quality models developed to evaluate alternatives for managing turbidity in the New York City Catskill reservoirs. OST will enable DEP to manage turbidity in its unfiltered system while satisfying its primary objective of meeting the City's water supply needs, in addition to considering secondary objectives of maintaining ecological flows, supporting fishery and recreation releases, and mitigating downstream flood peaks. The current version of OST relies on statistical forecasts of flows in the system based on recent observed flows. To improve short-term decision making, plans are being made to transition to National Weather Service (NWS) ensemble forecasts based on hydrologic models that account for short-term weather forecast skill, longer-term climate information, as well as the hydrologic state of the watersheds and recent observed flows. To ensure that the ensemble forecasts are unbiased and that the ensemble spread reflects the actual uncertainty of the forecasts, a statistical model has been developed to post-process the NWS ensemble forecasts to account for hydrologic model error as well as any inherent bias and uncertainty in initial model states, meteorological data and forecasts. The post-processor is designed to produce adjusted ensemble forecasts that are consistent with the DEP historical flow sequences that were used to develop the system operating rules. A set of historical hindcasts that is representative of the real-time ensemble forecasts is needed to verify that the post-processed forecasts are unbiased, statistically reliable, and preserve the skill inherent in the "raw" NWS ensemble forecasts. A verification procedure and set of metrics will be presented that provide an objective assessment of ensemble forecasts. The procedure will be applied to both raw ensemble hindcasts and to post-processed ensemble hindcasts. The verification metrics will be used to validate proper functioning of the post-processor and to provide a benchmark for comparison of different types of forecasts. For example, current NWS ensemble forecasts are based on climatology, using each historical year to generate a forecast trace. The NWS Hydrologic Ensemble Forecast System (HEFS) under development will utilize output from both the National Oceanic Atmospheric Administration (NOAA) Global Ensemble Forecast System (GEFS) and the Climate Forecast System (CFS). Incorporating short-term meteorological forecasts and longer-term climate forecast information should provide sharper, more accurate forecasts. Hindcasts from HEFS will enable New York City to generate verification results to validate the new forecasts and further fine-tune system operating rules. Project verification results will be presented for different watersheds across a range of seasons, lead times, and flow levels to assess the quality of the current ensemble forecasts.

  18. Improving tsunami warning systems with remote sensing and geographical information system input.

    PubMed

    Wang, Jin-Feng; Li, Lian-Fa

    2008-12-01

    An optimal and integrative tsunami warning system is introduced that takes full advantage of remote sensing and geographical information systems (GIS) in monitoring, forecasting, detection, loss evaluation, and relief management for tsunamis. Using the primary impact zone in Banda Aceh, Indonesia as the pilot area, we conducted three simulations that showed that while the December 26, 2004 Indian Ocean tsunami claimed about 300,000 lives because there was no tsunami warning system at all, it is possible that only about 15,000 lives could have been lost if the area had used a tsunami warning system like that currently in use in the Pacific Ocean. The simulations further calculated that the death toll could have been about 3,000 deaths if there had been a disaster system further optimized with full use of remote sensing and GIS, although the number of badly damaged or destroyed houses (29,545) could have likely remained unchanged.

  19. The forecaster's added value

    NASA Astrophysics Data System (ADS)

    Turco, M.; Milelli, M.

    2009-09-01

    To the authors' knowledge there are relatively few studies that try to answer this topic: "Are humans able to add value to computer-generated forecasts and warnings ?". Moreover, the answers are not always positive. In particular some postprocessing method is competitive or superior to human forecast (see for instance Baars et al., 2005, Charba et al., 2002, Doswell C., 2003, Roebber et al., 1996, Sanders F., 1986). Within the alert system of ARPA Piemonte it is possible to study in an objective manner if the human forecaster is able to add value with respect to computer-generated forecasts. Every day the meteorology group of the Centro Funzionale of Regione Piemonte produces the HQPF (Human QPF) in terms of an areal average for each of the 13 regional warning areas, which have been created according to meteo-hydrological criteria. This allows the decision makers to produce an evaluation of the expected effects by comparing these HQPFs with predefined rainfall thresholds. Another important ingredient in this study is the very dense non-GTS network of rain gauges available that makes possible a high resolution verification. In this context the most useful verification approach is the measure of the QPF and HQPF skills by first converting precipitation expressed as continuous amounts into ‘‘exceedance'' categories (yes-no statements indicating whether precipitation equals or exceeds selected thresholds) and then computing the performances for each threshold. In particular in this work we compare the performances of the latest three years of QPF derived from two meteorological models COSMO-I7 (the Italian version of the COSMO Model, a mesoscale model developed in the framework of the COSMO Consortium) and IFS (the ECMWF global model) with the HQPF. In this analysis it is possible to introduce the hypothesis test developed by Hamill (1999), in which a confidence interval is calculated with the bootstrap method in order to establish the real difference between the skill scores of two competitive forecast. It is important to underline that the conclusions refer to the analysis of the Piemonte operational alert system, so they cannot be directly taken as universally true. But we think that some of the main lessons that can be derived from this study could be useful for the meteorological community. In details, the main conclusions are the following: - despite the overall improvement in global scale and the fact that the resolution of the limited area models has increased considerably over recent years, the QPF produced by the meteorological models involved in this study has not improved enough to allow its direct use, that is, the subjective HQPF continues to offer the best performance; - in the forecast process, the step where humans have the largest added value with respect to mathematical models, is the communication. In fact the human characterisation and communication of the forecast uncertainty to end users cannot be replaced by any computer code; - eventually, although there is no novelty in this study, we would like to show that the correct application of appropriated statistical techniques permits a better definition and quantification of the errors and, mostly important, allows a correct (unbiased) communication between forecasters and decision makers.

  20. Understanding and forecasting phreatic eruptions driven by magmatic degassing

    NASA Astrophysics Data System (ADS)

    Stix, John; de Moor, J. Maarten

    2018-05-01

    This paper examines phreatic eruptions which are driven by inputs of magma and magmatic gas. We synthesize data from several significant phreatic systems, including two in Costa Rica (Turrialba and Poás) which are currently highly active and hazardous. We define two endmember types of phreatic eruptions, the first (type 1) in which a deeper hydrothermal system fed by magmatic gases is sealed and produces overpressure sufficient to drive explosive eruptions, and the second (type 2) where magmatic gases are supplied via open-vent degassing to a near-surface hydrothermal system, vaporizing liquid water which drives the phreatic eruptions. The surficial source of type 2 eruptions is characteristic, while the source depth of type 1 eruptions is commonly greater. Hence, type 1 eruptions tend to be more energetic than type 2 eruptions. The first type of eruption we term "phreato-vulcanian", and the second we term "phreato-surtseyan". Some systems (e.g., Ruapehu, Poás) can produce both type 1 and type 2 eruptions, and all systems can undergo sealing at various timescales. We examine a number of precursory signals which appear to be important in understanding and forecasting phreatic eruptions; these include very long period events, banded tremor, and gas ratios, in particular H2S/SO2 and CO2/SO2. We propose that if these datasets are carefully integrated during a monitoring program, it may be possible to accurately forecast phreatic eruptions.[Figure not available: see fulltext.

  1. Recent Trends in Variable Generation Forecasting and Its Value to the Power System

    DOE PAGES

    Orwig, Kirsten D.; Ahlstrom, Mark L.; Banunarayanan, Venkat; ...

    2014-12-23

    We report that the rapid deployment of wind and solar energy generation systems has resulted in a need to better understand, predict, and manage variable generation. The uncertainty around wind and solar power forecasts is still viewed by the power industry as being quite high, and many barriers to forecast adoption by power system operators still remain. In response, the U.S. Department of Energy has sponsored, in partnership with the National Oceanic and Atmospheric Administration, public, private, and academic organizations, two projects to advance wind and solar power forecasts. Additionally, several utilities and grid operators have recognized the value ofmore » adopting variable generation forecasting and have taken great strides to enhance their usage of forecasting. In parallel, power system markets and operations are evolving to integrate greater amounts of variable generation. This paper will discuss the recent trends in wind and solar power forecasting technologies in the U.S., the role of forecasting in an evolving power system framework, and the benefits to intended forecast users.« less

  2. Seasonal Water Balance Forecasts for Drought Early Warning in Ethiopia

    NASA Astrophysics Data System (ADS)

    Spirig, Christoph; Bhend, Jonas; Liniger, Mark

    2016-04-01

    Droughts severely impact Ethiopian agricultural production. Successful early warning for drought conditions in the upcoming harvest season therefore contributes to better managing food shortages arising from adverse climatic conditions. So far, however, meteorological seasonal forecasts have not been used in Ethiopia's national food security early warning system (i.e. the LEAP platform). Here we analyse the forecast quality of seasonal forecasts of total rainfall and of the meteorological water balance as a proxy for plant available water. We analyse forecast skill of June to September rainfall and water balance from dynamical seasonal forecast systems, the ECMWF System4 and EC-EARTH global forecasting systems. Rainfall forecasts outperform forecasts assuming a stationary climate mainly in north-eastern Ethiopia - an area that is particularly vulnerable to droughts. Forecasts of the water balance index seem to be even more skilful and thus more useful than pure rainfall forecasts. The results vary though for different lead times and skill measures employed. We further explore the potential added value of dynamically downscaling the forecasts through several dynamical regional climate models made available through the EU FP7 project EUPORIAS. Preliminary results suggest that dynamically downscaled seasonal forecasts are not significantly better compared with seasonal forecasts from the global models. We conclude that seasonal forecasts of a simple climate index such as the water balance have the potential to benefit drought early warning in Ethiopia, both due to its positive predictive skill and higher usefulness than seasonal mean quantities.

  3. A new precipitation and meteorological drought climatology based on weather patterns

    NASA Astrophysics Data System (ADS)

    Richardson, D.; Fowler, H. J.; Kilsby, C. G.; Neal, R.

    2017-12-01

    Weather-pattern, or weather-type, classifications are a valuable tool in many applications as they characterise the broad-scale atmospheric circulation over a given region. An analysis of regional UK precipitation and meteorological drought climatology with respect to a set of objectively defined weather patterns is presented. This classification system, introduced last year, is currently being used by the Met Office in several probabilistic forecasting applications driven by ensemble forecasting systems. The classification consists of 30 daily patterns derived from North Atlantic Ocean and European mean sea level pressure data. Clustering these 30 patterns yields another set of eight patterns that are intended for use in longer-range applications. Weather pattern definitions and daily occurrences are mapped to the commonly-used Lamb Weather Types (LWTs), and parallels between the two classifications are drawn. Daily precipitation distributions are associated with each weather pattern and LWT. Drought index series are calculated for a range of aggregation periods and seasons. Monthly weather-pattern frequency anomalies are calculated for different drought index thresholds, representing dry, wet and drought conditions. The set of 30 weather patterns is shown to be adequate for precipitation-based analyses in the UK, although the smaller set of clustered patterns is not. Furthermore, intra-pattern precipitation variability is lower in the new classification compared to the LWTs, which is an advantage in the context of precipitation studies. Weather patterns associated with drought over the different UK regions are identified. This has potential forecasting application - if a model (e.g. a global seasonal forecast model) can predict weather pattern occurrences then regional drought outlooks may be derived from the forecasted weather patterns.

  4. Short-Term Forecasting of Loads and Wind Power for Latvian Power System: Accuracy and Capacity of the Developed Tools

    NASA Astrophysics Data System (ADS)

    Radziukynas, V.; Klementavičius, A.

    2016-04-01

    The paper analyses the performance results of the recently developed short-term forecasting suit for the Latvian power system. The system load and wind power are forecasted using ANN and ARIMA models, respectively, and the forecasting accuracy is evaluated in terms of errors, mean absolute errors and mean absolute percentage errors. The investigation of influence of additional input variables on load forecasting errors is performed. The interplay of hourly loads and wind power forecasting errors is also evaluated for the Latvian power system with historical loads (the year 2011) and planned wind power capacities (the year 2023).

  5. Building the Sun4Cast System: Improvements in Solar Power Forecasting

    DOE PAGES

    Haupt, Sue Ellen; Kosovic, Branko; Jensen, Tara; ...

    2017-06-16

    The Sun4Cast System results from a research-to-operations project built on a value chain approach, and benefiting electric utilities’ customers, society, and the environment by improving state-of-the-science solar power forecasting capabilities. As integration of solar power into the national electric grid rapidly increases, it becomes imperative to improve forecasting of this highly variable renewable resource. Thus, a team of researchers from public, private, and academic sectors partnered to develop and assess a new solar power forecasting system, Sun4Cast. The partnership focused on improving decision-making for utilities and independent system operators, ultimately resulting in improved grid stability and cost savings for consumers.more » The project followed a value chain approach to determine key research and technology needs to reach desired results. Sun4Cast integrates various forecasting technologies across a spectrum of temporal and spatial scales to predict surface solar irradiance. Anchoring the system is WRF-Solar, a version of the Weather Research and Forecasting (WRF) numerical weather prediction (NWP) model optimized for solar irradiance prediction. Forecasts from multiple NWP models are blended via the Dynamic Integrated Forecast (DICast) System, the basis of the system beyond about 6 h. For short-range (0-6 h) forecasts, Sun4Cast leverages several observation-based nowcasting technologies. These technologies are blended via the Nowcasting Expert System Integrator (NESI). The NESI and DICast systems are subsequently blended to produce short to mid-term irradiance forecasts for solar array locations. The irradiance forecasts are translated into power with uncertainties quantified using an analog ensemble approach, and are provided to the industry partners for real-time decision-making. The Sun4Cast system ran operationally throughout 2015 and results were assessed. As a result, this paper analyzes the collaborative design process, discusses the project results, and provides recommendations for best-practice solar forecasting.« less

  6. Building the Sun4Cast System: Improvements in Solar Power Forecasting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haupt, Sue Ellen; Kosovic, Branko; Jensen, Tara

    The Sun4Cast System results from a research-to-operations project built on a value chain approach, and benefiting electric utilities’ customers, society, and the environment by improving state-of-the-science solar power forecasting capabilities. As integration of solar power into the national electric grid rapidly increases, it becomes imperative to improve forecasting of this highly variable renewable resource. Thus, a team of researchers from public, private, and academic sectors partnered to develop and assess a new solar power forecasting system, Sun4Cast. The partnership focused on improving decision-making for utilities and independent system operators, ultimately resulting in improved grid stability and cost savings for consumers.more » The project followed a value chain approach to determine key research and technology needs to reach desired results. Sun4Cast integrates various forecasting technologies across a spectrum of temporal and spatial scales to predict surface solar irradiance. Anchoring the system is WRF-Solar, a version of the Weather Research and Forecasting (WRF) numerical weather prediction (NWP) model optimized for solar irradiance prediction. Forecasts from multiple NWP models are blended via the Dynamic Integrated Forecast (DICast) System, the basis of the system beyond about 6 h. For short-range (0-6 h) forecasts, Sun4Cast leverages several observation-based nowcasting technologies. These technologies are blended via the Nowcasting Expert System Integrator (NESI). The NESI and DICast systems are subsequently blended to produce short to mid-term irradiance forecasts for solar array locations. The irradiance forecasts are translated into power with uncertainties quantified using an analog ensemble approach, and are provided to the industry partners for real-time decision-making. The Sun4Cast system ran operationally throughout 2015 and results were assessed. As a result, this paper analyzes the collaborative design process, discusses the project results, and provides recommendations for best-practice solar forecasting.« less

  7. Resolution of Probabilistic Weather Forecasts with Application in Disease Management.

    PubMed

    Hughes, G; McRoberts, N; Burnett, F J

    2017-02-01

    Predictive systems in disease management often incorporate weather data among the disease risk factors, and sometimes this comes in the form of forecast weather data rather than observed weather data. In such cases, it is useful to have an evaluation of the operational weather forecast, in addition to the evaluation of the disease forecasts provided by the predictive system. Typically, weather forecasts and disease forecasts are evaluated using different methodologies. However, the information theoretic quantity expected mutual information provides a basis for evaluating both kinds of forecast. Expected mutual information is an appropriate metric for the average performance of a predictive system over a set of forecasts. Both relative entropy (a divergence, measuring information gain) and specific information (an entropy difference, measuring change in uncertainty) provide a basis for the assessment of individual forecasts.

  8. The Texas Children's Hospital immunization forecaster: conceptualization to implementation.

    PubMed

    Cunningham, Rachel M; Sahni, Leila C; Kerr, G Brady; King, Laura L; Bunker, Nathan A; Boom, Julie A

    2014-12-01

    Immunization forecasting systems evaluate patient vaccination histories and recommend the dates and vaccines that should be administered. We described the conceptualization, development, implementation, and distribution of a novel immunization forecaster, the Texas Children's Hospital (TCH) Forecaster. In 2007, TCH convened an internal expert team that included a pediatrician, immunization nurse, software engineer, and immunization subject matter experts to develop the TCH Forecaster. Our team developed the design of the model, wrote the software, populated the Excel tables, integrated the software, and tested the Forecaster. We created a table of rules that contained each vaccine's recommendations, minimum ages and intervals, and contraindications, which served as the basis for the TCH Forecaster. We created 15 vaccine tables that incorporated 79 unique dose states and 84 vaccine types to operationalize the entire United States recommended immunization schedule. The TCH Forecaster was implemented throughout the TCH system, the Indian Health Service, and the Virginia Department of Health. The TCH Forecast Tester is currently being used nationally. Immunization forecasting systems might positively affect adherence to vaccine recommendations. Efforts to support health care provider utilization of immunization forecasting systems and to evaluate their impact on patient care are needed.

  9. Probabilistic empirical prediction of seasonal climate: evaluation and potential applications

    NASA Astrophysics Data System (ADS)

    Dieppois, B.; Eden, J.; van Oldenborgh, G. J.

    2017-12-01

    Preparing for episodes with risks of anomalous weather a month to a year ahead is an important challenge for governments, non-governmental organisations, and private companies and is dependent on the availability of reliable forecasts. The majority of operational seasonal forecasts are made using process-based dynamical models, which are complex, computationally challenging and prone to biases. Empirical forecast approaches built on statistical models to represent physical processes offer an alternative to dynamical systems and can provide either a benchmark for comparison or independent supplementary forecasts. Here, we present a new evaluation of an established empirical system used to predict seasonal climate across the globe. Forecasts for surface air temperature, precipitation and sea level pressure are produced by the KNMI Probabilistic Empirical Prediction (K-PREP) system every month and disseminated via the KNMI Climate Explorer (climexp.knmi.nl). K-PREP is based on multiple linear regression and built on physical principles to the fullest extent with predictive information taken from the global CO2-equivalent concentration, large-scale modes of variability in the climate system and regional-scale information. K-PREP seasonal forecasts for the period 1981-2016 will be compared with corresponding dynamically generated forecasts produced by operational forecast systems. While there are many regions of the world where empirical forecast skill is extremely limited, several areas are identified where K-PREP offers comparable skill to dynamical systems. We discuss two key points in the future development and application of the K-PREP system: (a) the potential for K-PREP to provide a more useful basis for reference forecasts than those based on persistence or climatology, and (b) the added value of including K-PREP forecast information in multi-model forecast products, at least for known regions of good skill. We also discuss the potential development of stakeholder-driven applications of the K-PREP system, including empirical forecasts for circumboreal fire activity.

  10. Some Advances in Downscaling Probabilistic Climate Forecasts for Agricultural Decision Support

    NASA Astrophysics Data System (ADS)

    Han, E.; Ines, A.

    2015-12-01

    Seasonal climate forecasts, commonly provided in tercile-probabilities format (below-, near- and above-normal), need to be translated into more meaningful information for decision support of practitioners in agriculture. In this paper, we will present two new novel approaches to temporally downscale probabilistic seasonal climate forecasts: one non-parametric and another parametric method. First, the non-parametric downscaling approach called FResampler1 uses the concept of 'conditional block sampling' of weather data to create daily weather realizations of a tercile-based seasonal climate forecasts. FResampler1 randomly draws time series of daily weather parameters (e.g., rainfall, maximum and minimum temperature and solar radiation) from historical records, for the season of interest from years that belong to a certain rainfall tercile category (e.g., being below-, near- and above-normal). In this way, FResampler1 preserves the covariance between rainfall and other weather parameters as if conditionally sampling maximum and minimum temperature and solar radiation if that day is wet or dry. The second approach called predictWTD is a parametric method based on a conditional stochastic weather generator. The tercile-based seasonal climate forecast is converted into a theoretical forecast cumulative probability curve. Then the deviates for each percentile is converted into rainfall amount or frequency or intensity to downscale the 'full' distribution of probabilistic seasonal climate forecasts. Those seasonal deviates are then disaggregated on a monthly basis and used to constrain the downscaling of forecast realizations at different percentile values of the theoretical forecast curve. As well as the theoretical basis of the approaches we will discuss sensitivity analysis (length of data and size of samples) of them. In addition their potential applications for managing climate-related risks in agriculture will be shown through a couple of case studies based on actual seasonal climate forecasts for: rice cropping in the Philippines and maize cropping in India and Kenya.

  11. Hybrid Intrusion Forecasting Framework for Early Warning System

    NASA Astrophysics Data System (ADS)

    Kim, Sehun; Shin, Seong-Jun; Kim, Hyunwoo; Kwon, Ki Hoon; Han, Younggoo

    Recently, cyber attacks have become a serious hindrance to the stability of Internet. These attacks exploit interconnectivity of networks, propagate in an instant, and have become more sophisticated and evolutionary. Traditional Internet security systems such as firewalls, IDS and IPS are limited in terms of detecting recent cyber attacks in advance as these systems respond to Internet attacks only after the attacks inflict serious damage. In this paper, we propose a hybrid intrusion forecasting system framework for an early warning system. The proposed system utilizes three types of forecasting methods: time-series analysis, probabilistic modeling, and data mining method. By combining these methods, it is possible to take advantage of the forecasting technique of each while overcoming their drawbacks. Experimental results show that the hybrid intrusion forecasting method outperforms each of three forecasting methods.

  12. Multimodel hydrological ensemble forecasts for the Baskatong catchment in Canada using the TIGGE database.

    NASA Astrophysics Data System (ADS)

    Tito Arandia Martinez, Fabian

    2014-05-01

    Adequate uncertainty assessment is an important issue in hydrological modelling. An important issue for hydropower producers is to obtain ensemble forecasts which truly grasp the uncertainty linked to upcoming streamflows. If properly assessed, this uncertainty can lead to optimal reservoir management and energy production (ex. [1]). The meteorological inputs to the hydrological model accounts for an important part of the total uncertainty in streamflow forecasting. Since the creation of the THORPEX initiative and the TIGGE database, access to meteorological ensemble forecasts from nine agencies throughout the world have been made available. This allows for hydrological ensemble forecasts based on multiple meteorological ensemble forecasts. Consequently, both the uncertainty linked to the architecture of the meteorological model and the uncertainty linked to the initial condition of the atmosphere can be accounted for. The main objective of this work is to show that a weighted combination of meteorological ensemble forecasts based on different atmospheric models can lead to improved hydrological ensemble forecasts, for horizons from one to ten days. This experiment is performed for the Baskatong watershed, a head subcatchment of the Gatineau watershed in the province of Quebec, in Canada. Baskatong watershed is of great importance for hydro-power production, as it comprises the main reservoir for the Gatineau watershed, on which there are six hydropower plants managed by Hydro-Québec. Since the 70's, they have been using pseudo ensemble forecast based on deterministic meteorological forecasts to which variability derived from past forecasting errors is added. We use a combination of meteorological ensemble forecasts from different models (precipitation and temperature) as the main inputs for hydrological model HSAMI ([2]). The meteorological ensembles from eight of the nine agencies available through TIGGE are weighted according to their individual performance and combined to form a grand ensemble. Results show that the hydrological forecasts derived from the grand ensemble perform better than the pseudo ensemble forecasts actually used operationally at Hydro-Québec. References: [1] M. Verbunt, A. Walser, J. Gurtz et al., "Probabilistic flood forecasting with a limited-area ensemble prediction system: Selected case studies," Journal of Hydrometeorology, vol. 8, no. 4, pp. 897-909, Aug, 2007. [2] N. Evora, Valorisation des prévisions météorologiques d'ensemble, Institu de recherceh d'Hydro-Québec 2005. [3] V. Fortin, Le modèle météo-apport HSAMI: historique, théorie et application, Institut de recherche d'Hydro-Québec, 2000.

  13. The NRL relocatable ocean/acoustic ensemble forecast system

    NASA Astrophysics Data System (ADS)

    Rowley, C.; Martin, P.; Cummings, J.; Jacobs, G.; Coelho, E.; Bishop, C.; Hong, X.; Peggion, G.; Fabre, J.

    2009-04-01

    A globally relocatable regional ocean nowcast/forecast system has been developed to support rapid implementation of new regional forecast domains. The system is in operational use at the Naval Oceanographic Office for a growing number of regional and coastal implementations. The new system is the basis for an ocean acoustic ensemble forecast and adaptive sampling capability. We present an overview of the forecast system and the ocean ensemble and adaptive sampling methods. The forecast system consists of core ocean data analysis and forecast modules, software for domain configuration, surface and boundary condition forcing processing, and job control, and global databases for ocean climatology, bathymetry, tides, and river locations and transports. The analysis component is the Navy Coupled Ocean Data Assimilation (NCODA) system, a 3D multivariate optimum interpolation system that produces simultaneous analyses of temperature, salinity, geopotential, and vector velocity using remotely-sensed SST, SSH, and sea ice concentration, plus in situ observations of temperature, salinity, and currents from ships, buoys, XBTs, CTDs, profiling floats, and autonomous gliders. The forecast component is the Navy Coastal Ocean Model (NCOM). The system supports one-way nesting and multiple assimilation methods. The ensemble system uses the ensemble transform technique with error variance estimates from the NCODA analysis to represent initial condition error. Perturbed surface forcing or an atmospheric ensemble is used to represent errors in surface forcing. The ensemble transform Kalman filter is used to assess the impact of adaptive observations on future analysis and forecast uncertainty for both ocean and acoustic properties.

  14. Value of long-term streamflow forecast to reservoir operations for water supply in snow-dominated catchments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anghileri, Daniela; Voisin, Nathalie; Castelletti, Andrea F.

    In this study, we develop a forecast-based adaptive control framework for Oroville reservoir, California, to assess the value of seasonal and inter-annual forecasts for reservoir operation.We use an Ensemble Streamflow Prediction (ESP) approach to generate retrospective, one-year-long streamflow forecasts based on the Variable Infiltration Capacity hydrology model. The optimal sequence of daily release decisions from the reservoir is then determined by Model Predictive Control, a flexible and adaptive optimization scheme.We assess the forecast value by comparing system performance based on the ESP forecasts with that based on climatology and a perfect forecast. In addition, we evaluate system performance based onmore » a synthetic forecast, which is designed to isolate the contribution of seasonal and inter-annual forecast skill to the overall value of the ESP forecasts.Using the same ESP forecasts, we generalize our results by evaluating forecast value as a function of forecast skill, reservoir features, and demand. Our results show that perfect forecasts are valuable when the water demand is high and the reservoir is sufficiently large to allow for annual carry-over. Conversely, ESP forecast value is highest when the reservoir can shift water on a seasonal basis.On average, for the system evaluated here, the overall ESP value is 35% less than the perfect forecast value. The inter-annual component of the ESP forecast contributes 20-60% of the total forecast value. Improvements in the seasonal component of the ESP forecast would increase the overall ESP forecast value between 15 and 20%.« less

  15. Wind Power Forecasting Error Distributions: An International Comparison; Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodge, B. M.; Lew, D.; Milligan, M.

    2012-09-01

    Wind power forecasting is expected to be an important enabler for greater penetration of wind power into electricity systems. Because no wind forecasting system is perfect, a thorough understanding of the errors that do occur can be critical to system operation functions, such as the setting of operating reserve levels. This paper provides an international comparison of the distribution of wind power forecasting errors from operational systems, based on real forecast data. The paper concludes with an assessment of similarities and differences between the errors observed in different locations.

  16. The impact of Sun-weather research on forecasting

    NASA Technical Reports Server (NTRS)

    Larsen, M. F.

    1979-01-01

    The possible impact of Sun-weather research on forecasting is examined. The type of knowledge of the effect is evaluated to determine if it is in a form that can be used for forecasting purposes. It is concluded that the present understanding of the effect does not lend itself readily to applications for forecast purposes. The limits of present predictive skill are examined and it is found that skill is most lacking for prediction of the smallest scales of atmospheric motion. However, it is not expected that Sun-weather research will have any significant impact on forecasting the smaller scales since predictability at these scales is limited by the finite grid size resolution and the time scales of turbulent diffusion. The predictability limits for the largest scales are on the order of several weeks although presently only a one week forecast is achievable.

  17. Long-range forecasts for the energy market - a case study

    NASA Astrophysics Data System (ADS)

    Hyvärinen, Otto; Mäkelä, Antti; Kämäräinen, Matti; Gregow, Hilppa

    2017-04-01

    We examined the feasibility of long-range forecasts of temperature for needs of the energy sector in Helsinki, Finland. The work was done jointly by Finnish Meteorological Institute (FMI) and Helen Ltd, the main Helsinki metropolitan area energy provider, and especially provider of district heating and cooling. Because temperatures govern the need of heating and cooling and, therefore, the energy demand, better long-range forecasts of temperature would be highly useful for Helen Ltd. Heating degree day (HDD) is a parameter that indicates the demand of energy to heat a building. We examined the forecasted monthly HDD values for Helsinki using UK Met Office seasonal forecasts with the lead time up to two months. The long-range forecasts of monthly HDD showed some skill in Helsinki in winter 2015-2016, especially if the very cold January is excluded.

  18. Real-time emergency forecasting technique for situation management systems

    NASA Astrophysics Data System (ADS)

    Kopytov, V. V.; Kharechkin, P. V.; Naumenko, V. V.; Tretyak, R. S.; Tebueva, F. B.

    2018-05-01

    The article describes the real-time emergency forecasting technique that allows increasing accuracy and reliability of forecasting results of any emergency computational model applied for decision making in situation management systems. Computational models are improved by the Improved Brown’s method applying fractal dimension to forecast short time series data being received from sensors and control systems. Reliability of emergency forecasting results is ensured by the invalid sensed data filtering according to the methods of correlation analysis.

  19. Optimization of Evaporative Demand Models for Seasonal Drought Forecasting

    NASA Astrophysics Data System (ADS)

    McEvoy, D.; Huntington, J. L.; Hobbins, M.

    2015-12-01

    Providing reliable seasonal drought forecasts continues to pose a major challenge for scientists, end-users, and the water resources and agricultural communities. Precipitation (Prcp) forecasts beyond weather time scales are largely unreliable, so exploring new avenues to improve seasonal drought prediction is necessary to move towards applications and decision-making based on seasonal forecasts. A recent study has shown that evaporative demand (E0) anomaly forecasts from the Climate Forecast System Version 2 (CFSv2) are consistently more skillful than Prcp anomaly forecasts during drought events over CONUS, and E0 drought forecasts may be particularly useful during the growing season in the farming belts of the central and Midwestern CONUS. For this recent study, we used CFSv2 reforecasts to assess the skill of E0 and of its individual drivers (temperature, humidity, wind speed, and solar radiation), using the American Society for Civil Engineers Standardized Reference Evapotranspiration (ET0) Equation. Moderate skill was found in ET0, temperature, and humidity, with lesser skill in solar radiation, and no skill in wind. Therefore, forecasts of E0 based on models with no wind or solar radiation inputs may prove to be more skillful than the ASCE ET0. For this presentation we evaluate CFSv2 E0 reforecasts (1982-2009) from three different E0 models: (1) ASCE ET0; (2) Hargreaves and Samani (ET-HS), which is estimated from maximum and minimum temperature alone; and (3) Valiantzas (ET-V), which is a modified version of the Penman method for use when wind speed data are not available (or of poor quality) and is driven only by temperature, humidity, and solar radiation. The University of Idaho's gridded meteorological data (METDATA) were used as observations to evaluate CFSv2 and also to determine if ET0, ET-HS, and ET-V identify similar historical drought periods. We focus specifically on CFSv2 lead times of one, two, and three months, and season one forecasts; which are time scales with moderate skill and are more likely to be used in hydro-climatic applications and decision-making.

  20. Louisiana Airport System Plan aviation activity forecasts 1990-2010.

    DOT National Transportation Integrated Search

    1991-07-01

    This report documents the methodology used to develop the aviation activity forecasts prepared as a part of the update to the Louisiana Airport System Plan and provides Louisiana aviation forecasts for the years 1990 to 2010. In general, the forecast...

  1. Performance and quality assessment of the recent updated CMEMS global ocean monitoring and forecasting real-time system

    NASA Astrophysics Data System (ADS)

    Le Galloudec, Olivier; Lellouche, Jean-Michel; Greiner, Eric; Garric, Gilles; Régnier, Charly; Drévillon, Marie; Drillet, Yann

    2017-04-01

    Since May 2015, Mercator Ocean opened the Copernicus Marine Environment and Monitoring Service (CMEMS) and is in charge of the global eddy resolving ocean analyses and forecast. In this context, Mercator Ocean currently delivers in real-time daily services (weekly analyses and daily forecast) with a global 1/12° high resolution system. The model component is the NEMO platform driven at the surface by the IFS ECMWF atmospheric analyses and forecasts. Observations are assimilated by means of a reduced-order Kalman filter with a 3D multivariate modal decomposition of the forecast error. It includes an adaptive-error estimate and a localization algorithm. Along track altimeter data, satellite Sea Surface Temperature and in situ temperature and salinity vertical profiles are jointly assimilated to estimate the initial conditions for numerical ocean forecasting. A 3D-Var scheme provides a correction for the slowly-evolving large-scale biases in temperature and salinity. R&D activities have been conducted at Mercator Ocean these last years to improve the real-time 1/12° global system for recent updated CMEMS version in 2016. The ocean/sea-ice model and the assimilation scheme benefited of the following improvements: large-scale and objective correction of atmospheric quantities with satellite data, new Mean Dynamic Topography taking into account the last version of GOCE geoid, new adaptive tuning of some observational errors, new Quality Control on the assimilated temperature and salinity vertical profiles based on dynamic height criteria, assimilation of satellite sea-ice concentration, new freshwater runoff from ice sheets melting, … This presentation will show the impact of some updates separately, with a particular focus on adaptive tuning experiments of satellite Sea Level Anomaly (SLA) and Sea Surface Temperature (SST) observations errors. For the SLA, the a priori prescribed observation error is globally greatly reduced. The median value of the error changed from 5cm to 2.5cm in a few assimilation cycles. For the SST, we chose to maintain the median value of the error to 0.4°C. The spatial distribution of the SST error follows the model physics and atmospheric variability. Either for SLA or SST, we improve the performances of the system using this adaptive tuning. The overall behavior of the system integrating all updates reporting on the products quality improvements will be also discussed, highlighting the level of performance and the reliability of the new system.

  2. Real-time forecasting at weekly timescales of the SST and SLA of the Ligurian Sea with a satellite-based ocean forecasting (SOFT) system

    NASA Astrophysics Data System (ADS)

    ÁLvarez, A.; Orfila, A.; Tintoré, J.

    2004-03-01

    Satellites are the only systems able to provide continuous information on the spatiotemporal variability of vast areas of the ocean. Relatively long-term time series of satellite data are nowadays available. These spatiotemporal time series of satellite observations can be employed to build empirical models, called satellite-based ocean forecasting (SOFT) systems, to forecast certain aspects of future ocean states. SOFT systems can predict satellite-observed fields at different timescales. The forecast skill of SOFT systems forecasting the sea surface temperature (SST) at monthly timescales has been extensively explored in previous works. In this work we study the performance of two SOFT systems forecasting, respectively, the SST and sea level anomaly (SLA) at weekly timescales, that is, providing forecasts of the weekly averaged SST and SLA fields with 1 week in advance. The SOFT systems were implemented in the Ligurian Sea (Western Mediterranean Sea). Predictions from the SOFT systems are compared with observations and with the predictions obtained from persistence models. Results indicate that the SOFT system forecasting the SST field is always superior in terms of predictability to persistence. Minimum prediction errors in the SST are obtained during winter and spring seasons. On the other hand, the biggest differences between the performance of SOFT and persistence models are found during summer and autumn. These changes in the predictability are explained on the basis of the particular variability of the SST field in the Ligurian Sea. Concerning the SLA field, no improvements with respect to persistence have been found for the SOFT system forecasting the SLA field.

  3. An Interactive Life Cycle Cost Forecasting Tool

    DTIC Science & Technology

    1991-03-01

    0131 print* 0132 IF (yorn .EQ. 1) THEN 0133 print 721,NYEARS 0134 721 FORMAT(’ The life cycle of this system is’,14,1 years.’) 0135 print*,’Do you wish...464 481 521 535 556 613= 626= 627 631= 633 642= 643 658= 669 = 672= 673(2) 683= 689= 692= 693(2) 705= 706(4) 715 723= 727= 728 732= 737= 738 740= 747...REGION 0129 C OF THE TRAPEZOID. 0130 0131 50 IF (Cl .EQ. 0.0) GO TO 100 0132 0133 C DISTRIBUTE COST OVER TW’ RECTANGULAR REGION. 0134 0135 X = (Z2/Cl

  4. Intercomparison of Operational Ocean Forecasting Systems in the framework of GODAE

    NASA Astrophysics Data System (ADS)

    Hernandez, F.

    2009-04-01

    One of the main benefits of the GODAE 10-year activity is the implementation of ocean forecasting systems in several countries. In 2008, several systems are operated routinely, at global or basin scale. Among them, the BLUElink (Australia), HYCOM (USA), MOVE/MRI.COM (Japan), Mercator (France), FOAM (United Kingdom), TOPAZ (Norway) and C-NOOFS (Canada) systems offered to demonstrate their operational feasibility by performing an intercomparison exercise during a three months period (February to April 2008). The objectives were: a) to show that operational ocean forecasting systems are operated routinely in different countries, and that they can interact; b) to perform in a similar way a scientific validation aimed to assess the quality of the ocean estimates, the performance, and forecasting capabilities of each system; and c) to learn from this intercomparison exercise to increase inter-operability and collaboration in real time. The intercomparison relies on the assessment strategy developed for the EU MERSEA project, where diagnostics over the global ocean have been revisited by the GODAE contributors. This approach, based on metrics, allow for each system: a) to verify if ocean estimates are consistent with the current general knowledge of the dynamics; and b) to evaluate the accuracy of delivered products, compared to space and in-situ observations. Using the same diagnostics also allows one to intercompare the results from each system consistently. Water masses and general circulation description by the different systems are consistent with WOA05 Levitus climatology. The large scale dynamics (tropical, subtropical and subpolar gyres ) are also correctly reproduced. At short scales, benefit of high resolution systems can be evidenced on the turbulent eddy field, in particular when compared to eddy kinetic energy deduced from satellite altimetry of drifter observations. Comparisons to high resolution SST products show some discrepancies on ocean surface representation, either due to model and forcing fields errors, or assimilation scheme efficiency. Comparisons to sea-ice satellite products also evidence discrepancies linked to model, forcing and assimilation strategies of each forecasting system. Key words: Intercomparison, ocean analysis, operational oceanography, system assessment, metrics, validation GODAE Intercomparison Team: L. Bertino (NERSC/Norway), G. Brassington (BMRC/Australia), E. Chassignet (FSU/USA), J. Cummings (NRL/USA), F. Davidson (DFO/Canda), M. Drévillon (CERFACS/France), P. Hacker (IPRC/USA), M. Kamachi (MRI/Japan), J.-M. Lellouche (CERFACS/France), K. A. Lisæter (NERSC/Norway), R. Mahdon (UKMO/UK), M. Martin (UKMO/UK), A. Ratsimandresy (DFO/Canada), and C. Regnier (Mercator Ocean/France)

  5. Estimating the snowfall limit in alpine and pre-alpine valleys: A local evaluation of operational approaches

    NASA Astrophysics Data System (ADS)

    Fehlmann, Michael; Gascón, Estíbaliz; Rohrer, Mario; Schwarb, Manfred; Stoffel, Markus

    2018-05-01

    The snowfall limit has important implications for different hazardous processes associated with prolonged or heavy precipitation such as flash floods, rain-on-snow events and freezing precipitation. To increase preparedness and to reduce risk in such situations, early warning systems are frequently used to monitor and predict precipitation events at different temporal and spatial scales. However, in alpine and pre-alpine valleys, the estimation of the snowfall limit remains rather challenging. In this study, we characterize uncertainties related to snowfall limit for different lead times based on local measurements of a vertically pointing micro rain radar (MRR) and a disdrometer in the Zulg valley, Switzerland. Regarding the monitoring, we show that the interpolation of surface temperatures tends to overestimate the altitude of the snowfall limit and can thus lead to highly uncertain estimates of liquid precipitation in the catchment. This bias is much smaller in the Integrated Nowcasting through Comprehensive Analysis (INCA) system, which integrates surface station and remotely sensed data as well as outputs of a numerical weather prediction model. To reduce systematic error, we perform a bias correction based on local MRR measurements and thereby demonstrate the added value of such measurements for the estimation of liquid precipitation in the catchment. Regarding the nowcasting, we show that the INCA system provides good estimates up to 6 h ahead and is thus considered promising for operational hydrological applications. Finally, we explore the medium-range forecasting of precipitation type, especially with respect to rain-on-snow events. We show for a selected case study that the probability for a certain precipitation type in an ensemble-based forecast is more persistent than the respective type in the high-resolution forecast (HRES) of the European Centre for Medium Range Weather Forecasts Integrated Forecasting System (ECMWF IFS). In this case study, the ensemble-based forecast could be used to anticipate such an event up to 7-8 days ahead, whereas the use of the HRES is limited to a lead time of 4-5 days. For the different lead times investigated, we point out possibilities of considering uncertainties in snowfall limit and precipitation type estimates so as to increase preparedness to risk situations.

  6. Great Lakes Maps - NOAA's National Weather Service

    Science.gov Websites

    Coastal Forecast System) Waves (GLERL Great Lakes Coastal Forecast System) Ice Cover (GLERL Great Lakes Coastal Forecast System) NOAA's National Weather Service Central Region Headquarters Regional Office 7220

  7. Winter wheat quality monitoring and forecasting system based on remote sensing and environmental factors

    NASA Astrophysics Data System (ADS)

    Haiyang, Yu; Yanmei, Liu; Guijun, Yang; Xiaodong, Yang; Dong, Ren; Chenwei, Nie

    2014-03-01

    To achieve dynamic winter wheat quality monitoring and forecasting in larger scale regions, the objective of this study was to design and develop a winter wheat quality monitoring and forecasting system by using a remote sensing index and environmental factors. The winter wheat quality trend was forecasted before the harvest and quality was monitored after the harvest, respectively. The traditional quality-vegetation index from remote sensing monitoring and forecasting models were improved. Combining with latitude information, the vegetation index was used to estimate agronomy parameters which were related with winter wheat quality in the early stages for forecasting the quality trend. A combination of rainfall in May, temperature in May, illumination at later May, the soil available nitrogen content and other environmental factors established the quality monitoring model. Compared with a simple quality-vegetation index, the remote sensing monitoring and forecasting model used in this system get greatly improved accuracy. Winter wheat quality was monitored and forecasted based on the above models, and this system was completed based on WebGIS technology. Finally, in 2010 the operation process of winter wheat quality monitoring system was presented in Beijing, the monitoring and forecasting results was outputted as thematic maps.

  8. Is 30-second update fast enough for convection-resolving data assimilation?

    NASA Astrophysics Data System (ADS)

    Miyoshi, Takemasa; Ruiz, Juan; Lien, Guo-Yuan; Teramura, Toshiki; Kondo, Keiichi; Maejima, Yasumitsu; Honda, Takumi; Otsuka, Shigenori

    2017-04-01

    For local severe weather forecasting at 100-m resolution with 30-minute lead time, we have been working on the "Big Data Assimilation" (BDA) effort for super-rapid 30-second cycle of an ensemble Kalman filter. We have presented two papers with the concept and case studies (Miyoshi et al. 2016, BAMS; Proceedings of the IEEE). We focus on the non-Gaussian PDF in this study. We were hoping that we could assume the Gaussian error distribution in 30-second forecasts before strong nonlinear dynamics distort the error distribution for rapidly-changing convective storms. However, using 1000 ensemble members, the reduced-resolution version of the BDA system at 1-km grid spacing with 30-second updates showed ubiquity of highly non-Gaussian PDF. Although our results so far with multiple case studies were quite successful, this gives us a doubt about our Gaussian assumption even if the data assimilation interval is short enough compared with the system's chaotic time scale. We therefore pose a question if the 30-second update is fast enough for convection-resolving data assimilation under the Gaussian assumption. To answer this question, we aim to gain combined knowledge from BDA case studies, 1000-member experiments, 30-second breeding experiments, and toy-model experiments with dense and frequent observations. In this presentation, we will show the most up-to-date results of the BDA research, and will discuss about the question if the 30-second update is fast enough for convective-scale data assimilation.

  9. 3D cloud detection and tracking system for solar forecast using multiple sky imagers

    DOE PAGES

    Peng, Zhenzhou; Yu, Dantong; Huang, Dong; ...

    2015-06-23

    We propose a system for forecasting short-term solar irradiance based on multiple total sky imagers (TSIs). The system utilizes a novel method of identifying and tracking clouds in three-dimensional space and an innovative pipeline for forecasting surface solar irradiance based on the image features of clouds. First, we develop a supervised classifier to detect clouds at the pixel level and output cloud mask. In the next step, we design intelligent algorithms to estimate the block-wise base height and motion of each cloud layer based on images from multiple TSIs. Thus, this information is then applied to stitch images together intomore » larger views, which are then used for solar forecasting. We examine the system’s ability to track clouds under various cloud conditions and investigate different irradiance forecast models at various sites. We confirm that this system can 1) robustly detect clouds and track layers, and 2) extract the significant global and local features for obtaining stable irradiance forecasts with short forecast horizons from the obtained images. Finally, we vet our forecasting system at the 32-megawatt Long Island Solar Farm (LISF). Compared with the persistent model, our system achieves at least a 26% improvement for all irradiance forecasts between one and fifteen minutes.« less

  10. Forecasting Wind and Solar Generation: Improving System Operations, Greening the Grid (Spanish Version)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Tian; Chernyakhovskiy, Ilya; Brancucci Martinez-Anido, Carlo

    This document is the Spanish version of 'Greening the Grid- Forecasting Wind and Solar Generation Improving System Operations'. It discusses improving system operations with forecasting with and solar generation. By integrating variable renewable energy (VRE) forecasts into system operations, power system operators can anticipate up- and down-ramps in VRE generation in order to cost-effectively balance load and generation in intra-day and day-ahead scheduling. This leads to reduced fuel costs, improved system reliability, and maximum use of renewable resources.

  11. Development of WRF-ROI system by incorporating eigen-decomposition

    NASA Astrophysics Data System (ADS)

    Kim, S.; Noh, N.; Song, H.; Lim, G.

    2011-12-01

    This study presents the development of WRF-ROI system, which is the implementation of Retrospective Optimal Interpolation (ROI) to the Weather Research and Forecasting model (WRF). ROI is a new data assimilation algorithm introduced by Song et al. (2009) and Song and Lim (2009). The formulation of ROI is similar with that of Optimal Interpolation (OI), but ROI iteratively assimilates an observation set at a post analysis time into a prior analysis, possibly providing the high quality reanalysis data. ROI method assimilates the data at post analysis time using perturbation method (Errico and Raeder, 1999) without adjoint model. In previous study, ROI method is applied to Lorenz 40-variable model (Lorenz, 1996) to validate the algorithm and to investigate the capability. It is therefore required to apply this ROI method into a more realistic and complicated model framework such as WRF. In this research, the reduced-rank formulation of ROI is used instead of a reduced-resolution method. The computational costs can be reduced due to the eigen-decomposition of background error covariance in the reduced-rank method. When single profile of observations is assimilated in the WRF-ROI system by incorporating eigen-decomposition, the analysis error tends to be reduced if compared with the background error. The difference between forecast errors with assimilation and without assimilation is obviously increased as time passed, which means the improvement of forecast error by assimilation.

  12. Added value of non-calibrated and BMA calibrated AEMET-SREPS probabilistic forecasts: the 24 January 2009 extreme wind event over Catalonia

    NASA Astrophysics Data System (ADS)

    Escriba, P. A.; Callado, A.; Santos, D.; Santos, C.; Simarro, J.; García-Moya, J. A.

    2009-09-01

    At 00 UTC 24 January 2009 an explosive ciclogenesis originated over the Atlantic Ocean reached its maximum intensity with observed surface pressures lower than 970 hPa on its center and placed at Gulf of Vizcaya. During its path through southern France this low caused strong westerly and north-westerly winds over the Iberian Peninsula higher than 150 km/h at some places. These extreme winds leaved 10 casualties in Spain, 8 of them in Catalonia. The aim of this work is to show whether exists an added value in the short range prediction of the 24 January 2009 strong winds when using the Short Range Ensemble Prediction System (SREPS) of the Spanish Meteorological Agency (AEMET), with respect to the operational forecasting tools. This study emphasizes two aspects of probabilistic forecasting: the ability of a 3-day forecast of warn an extreme windy event and the ability of quantifying the predictability of the event so that giving value to deterministic forecast. Two type of probabilistic forecasts of wind are carried out, a non-calibrated and a calibrated one using Bayesian Model Averaging (BMA). AEMET runs daily experimentally SREPS twice a day (00 and 12 UTC). This system consists of 20 members that are constructed by integrating 5 local area models, COSMO (COSMO), HIRLAM (HIRLAM Consortium), HRM (DWD), MM5 (NOAA) and UM (UKMO), at 25 km of horizontal resolution. Each model uses 4 different initial and boundary conditions, the global models GFS (NCEP), GME (DWD), IFS (ECMWF) and UM. By this way it is obtained a probabilistic forecast that takes into account the initial, the contour and the model errors. BMA is a statistical tool for combining predictive probability functions from different sources. The BMA predictive probability density function (PDF) is a weighted average of PDFs centered on the individual bias-corrected forecasts. The weights are equal to posterior probabilities of the models generating the forecasts and reflect the skill of the ensemble members. Here BMA is applied to provide probabilistic forecasts of wind speed. In this work several forecasts for different time ranges (H+72, H+48 and H+24) of 10 meters wind speed over Catalonia are verified subjectively at one of the instants of maximum intensity, 12 UTC 24 January 2009. On one hand, three probabilistic forecasts are compared, ECMWF EPS, non-calibrated SREPS and calibrated SREPS. On the other hand, the relationship between predictability and skill of deterministic forecast is studied by looking at HIRLAM 0.16 deterministic forecasts of the event. Verification is focused on location and intensity of 10 meters wind speed and 10-minutal measures from AEMET automatic ground stations are used as observations. The results indicate that SREPS is able to forecast three days ahead mean winds higher than 36 km/h and that correctly localizes them with a significant probability of ocurrence in the affected area. The probability is higher after BMA calibration of the ensemble. The fact that probability of strong winds is high allows us to state that the predictability of the event is also high and, as a consequence, deterministic forecasts are more reliable. This is confirmed when verifying HIRLAM deterministic forecasts against observed values.

  13. A comparative analysis of errors in long-term econometric forecasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tepel, R.

    1986-04-01

    The growing body of literature that documents forecast accuracy falls generally into two parts. The first is prescriptive and is carried out by modelers who use simulation analysis as a tool for model improvement. These studies are ex post, that is, they make use of known values for exogenous variables and generate an error measure wholly attributable to the model. The second type of analysis is descriptive and seeks to measure errors, identify patterns among errors and variables and compare forecasts from different sources. Most descriptive studies use an ex ante approach, that is, they evaluate model outputs based onmore » estimated (or forecasted) exogenous variables. In this case, it is the forecasting process, rather than the model, that is under scrutiny. This paper uses an ex ante approach to measure errors in forecast series prepared by Data Resources Incorporated (DRI), Wharton Econometric Forecasting Associates (Wharton), and Chase Econometrics (Chase) and to determine if systematic patterns of errors can be discerned between services, types of variables (by degree of aggregation), length of forecast and time at which the forecast is made. Errors are measured as the percent difference between actual and forecasted values for the historical period of 1971 to 1983.« less

  14. Financial Risk Reduction and Management of Water Reservoirs Using Forecasts: A Case for Pernambuco, Brazil

    NASA Astrophysics Data System (ADS)

    Kumar, I.; Josset, L.; e Silva, E. C.; Possas, J. M. C.; Asfora, M. C.; Lall, U.

    2017-12-01

    The financial health and sustainability, ensuring adequate supply, and adapting to climate are fundamental challenges faced by water managers. These challenges are worsened in semi-arid regions with socio-economic pressures, seasonal supply of water, and projected increase in intensity and frequency of droughts. Over time, probabilistic rainfall forecasts are improving and for water managers, it could be key in addressing the above challenges. Using forecasts can also help make informed decisions about future infrastructure. The study proposes a model to minimize cost of water supply (including cost of deficit) given ensemble forecasts. The model can be applied to seasonal to annual ensemble forecasts, to determine the least cost solution. The objective of the model is to evaluate the resiliency and cost associated to supplying water. A case study is conducted in one of the largest reservoirs (Jucazinho) in Pernambuco state, Brazil, and four other reservoirs, which provide water to nineteen municipalities in the Jucazinho system. The state has been in drought since 2011, and the Jucazinho reservoir, has been empty since January 2017. The importance of climate adaptation along with risk management and financial sustainability are important to the state as it is extremely vulnerable to droughts, and has seasonal streamflow. The objectives of the case study are first, to check if streamflow forecasts help reduce future supply costs by comparing k-nearest neighbor ensemble forecasts with a fixed release policy. Second, to determine the value of future infrastructure, a new source of supply from Rio São Francisco, considered to mitigate drought conditions. The study concludes that using forecasts improve the supply and financial sustainability of water, by reducing cost of failure. It also concludes that additional infrastructure can help reduce the risks of failure significantly, but does not guarantee supply during prolonged droughts like the one experienced currently.

  15. Prediction of ENSO episodes using canonical correlation analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnston, A.G.; Ropelewski, C.F.

    Canonical correlation analysis (CCA) is explored as a multivariate linear statistical methodology with which to forecast fluctuations of the El Nino/Southern Oscillation (ENSO) in real time. CCA is capable of identifying critical sequences of predictor patterns that tend to evolve into subsequent pattern that can be used to form a forecast. The CCA model is used to forecast the 3-month mean sea surface temperature (SST) in several regions of the tropical Pacific and Indian oceans for projection times of 0 to 4 seasons beyond the immediately forthcoming season. The predictor variables, representing the climate situation in the four consecutive 3-monthmore » periods ending at the time of the forecast, are (1) quasi-global seasonal mean sea level pressure (SLP) and (2) SST in the predicted regions themselves. Forecast skill is estimated using cross-validation, and persistence is used as the primary skill control measure. Results indicate that a large region in the eastern equatorial Pacific (120[degrees]-170[degrees] W longitude) has the highest overall predictability, with excellent skill realized for winter forecasts made at the end of summer. CCA outperforms persistence in this region under most conditions, and does noticeably better with the SST included as a predictor in addition to the SLP. It is demonstrated that better forecast performance at the longer lead times would be obtained if some significantly earlier (i.e., up to 4 years) predictor data were included, because the ability to predict the lower-frequency ENSO phase changes would increase. The good performance of the current system at shorter lead times appears to be based largely on the ability to predict ENSO evolution for events already in progress. The forecasting of the eastern tropical Pacific SST using CCA is now done routinely on a monthly basis for a O-, 1-, and 2-season lead at the Climate Analysis Center.« less

  16. Climate forecasting services: coming down from the ivory tower

    NASA Astrophysics Data System (ADS)

    Doblas-Reyes, F. J.; Caron, L. P.; Cortesi, N.; Soret, A.; Torralba, V.; Turco, M.; González Reviriego, N.; Jiménez, I.; Terrado, M.

    2016-12-01

    Subseasonal-to-seasonal (S2S) climate forecasts are increasingly used across a range of application areas (energy, water management, agriculture, health, insurance) through tailored services using the climate services paradigm. In this contribution we show the value of climate forecasting services through several examples of their application in the energy, reinsurance and agriculture sectors. Climate services aim at making climate information action oriented. In a climate forecasting context the task starts with the identification of climate variables, thresholds and events relevant to the users. These elements are then analysed to determine whether they can be both reliably and skilfully predicted at appropriate time scales. In this contribution we assess climate predictions of precipitation, temperature and wind indices from state-of-the-art operational multi-model forecast systems and if they respond to the expectations and requests from a range of users. This requires going beyond the more traditional assessment of monthly mean values to include assessments of global forecast quality of the frequency of warm, cold, windy and wet extremes (e.g. [1], [2]), as well as of using tools like the Euro-Atlantic weather regimes [3]. The forecast quality of extremes is generally similar to or slightly lower than that of monthly or seasonal averages, but offers a kind of information closer to what some users require. In addition to considering local climate variables, we also explore the use of large-scale climate indices, such as ENSO and NAO, that are associated with large regional synchronous variations of wind or tropical storm frequency. These indices help illustrating the relative merits of climate forecast information to users and are the cornerstone of climate stories that engage them in the co-production of climate information. [1] Doblas-Reyes et al, WIREs, 2013 [2] Pepler et al, Weather and Climate Extremes, 2015 [3] Pavan and Doblas-Reyes, Clim Dyn, 2013

  17. Using volcanic tremor for eruption forecasting at White Island volcano (Whakaari), New Zealand

    NASA Astrophysics Data System (ADS)

    Chardot, Lauriane; Jolly, Arthur D.; Kennedy, Ben M.; Fournier, Nicolas; Sherburn, Steven

    2015-09-01

    Eruption forecasting is a challenging task because of the inherent complexity of volcanic systems. Despite remarkable efforts to develop complex models in order to explain volcanic processes prior to eruptions, the material Failure Forecast Method (FFM) is one of the very few techniques that can provide a forecast time for an eruption. However, the method requires testing and automation before being used as a real-time eruption forecasting tool at a volcano. We developed an automatic algorithm to issue forecasts from volcanic tremor increase episodes recorded by Real-time Seismic Amplitude Measurement (RSAM) at one station and optimised this algorithm for the period August 2011-January 2014 which comprises the recent unrest period at White Island volcano (Whakaari), New Zealand. A detailed residual analysis was paramount to select the most appropriate model explaining the RSAM time evolutions. In a hindsight simulation, four out of the five small eruptions reported during this period occurred within a failure window forecast by our optimised algorithm and the probability of an eruption on a day within a failure window was 0.21, which is 37 times higher than the probability of having an eruption on any day during the same period (0.0057). Moreover, the forecasts were issued prior to the eruptions by a few hours which is important from an emergency management point of view. Whereas the RSAM time evolutions preceding these four eruptions have a similar goodness-of-fit with the FFM, their spectral characteristics are different. The duration-amplitude distributions of the precursory tremor episodes support the hypothesis that several processes were likely occurring prior to these eruptions. We propose that slow rock failure and fluid flow processes are plausible candidates for the tremor source of these episodes. This hindsight exercise can be useful for future real-time implementation of the FFM at White Island. A similar methodology could also be tested at other volcanoes even if only a limited network is available.

  18. PM2.5 forecasting using SVR with PSOGSA algorithm based on CEEMD, GRNN and GCA considering meteorological factors

    NASA Astrophysics Data System (ADS)

    Zhu, Suling; Lian, Xiuyuan; Wei, Lin; Che, Jinxing; Shen, Xiping; Yang, Ling; Qiu, Xuanlin; Liu, Xiaoning; Gao, Wenlong; Ren, Xiaowei; Li, Juansheng

    2018-06-01

    The PM2.5 is the culprit of air pollution, and it leads to respiratory system disease when the fine particles are inhaled. Therefore, it is increasingly significant to develop an effective model for PM2.5 forecasting and warnings that informs people to foresee the air quality. People can reduce outdoor activities and take preventive measures if they know the air quality is bad ahead of time. In addition, reliable forecasting results can remind the relevant departments to control and reduce pollutants discharge. According to our knowledge, the current hybrid forecasting techniques of PM2.5 do not take the meteorological factors into consideration. Actually, meteorological factors affect the concentrations of air pollution, but it is unclear whether meteorological factors are helpful for improving the PM2.5 forecasting results or not. This paper proposes a hybrid model called CEEMD-PSOGSA-SVR-GRNN, based on complementary ensemble empirical mode decomposition (CEEMD), particle swarm optimization and gravitational search algorithm (PSOGSA), support vector regression (SVR), generalized regression neural network (GRNN) and grey correlation analysis (GCA), for the daily PM2.5 concentrations forecasting. The main steps of proposed model are described as follows: the original PM2.5 data decomposition with CEEMD, optimal SVR selection with PSOGCA, meteorological factors selection with GCA, residual revision by GRNN and forecasting results analysis. Three cities (Chongqing, Harbin and Jinan) in China with different characteristics of climate, terrain and pollution sources are selected to verify the effectiveness of proposed model, and CEEMD-PSOGSA-SVR*, EEMD-PSOGSA-SVR, PSOGSA-SVR, CEEMD-PSO-SVR, CEEMD-GSA-SVR, CEEMD-GWO-SVR are considered to be compared models. The experimental results show that the hybrid CEEMD-PSOGSA-SVR-GRNN model outperforms other six compared models. Therefore, the proposed CEEMD-PSOGSA-SVR-GRNN model can be used to develop air quality forecasting and warnings.

  19. First Assessment of Itaipu Dam Ensemble Inflow Forecasting System

    NASA Astrophysics Data System (ADS)

    Mainardi Fan, Fernando; Machado Vieira Lisboa, Auder; Gomes Villa Trinidad, Giovanni; Rógenes Monteiro Pontes, Paulo; Collischonn, Walter; Tucci, Carlos; Costa Buarque, Diogo

    2017-04-01

    Inflow forecasting for Hydropower Plants (HPP) Dams is one of the prominent uses for hydrological forecasts. A very important HPP in terms of energy generation for South America is the Itaipu Dam, located in the Paraná River, between Brazil and Paraguay countries, with a drainage area of 820.000km2. In this work, we present the development of an ensemble forecasting system for Itaipu, operational since November 2015. The system is based in the MGB-IPH hydrological model, includes hydrodynamics simulations of the main river, and is run every day morning forced by seven different rainfall forecasts: (i) CPTEC-ETA 15km; (ii) CPTEC-BRAMS 5km; (iii) SIMEPAR WRF Ferrier; (iv) SIMEPAR WRF Lin; (v) SIMEPAR WRF Morrison; (vi) SIMEPAR WRF WDM6; (vii) SIMEPAR MEDIAN. The last one (vii) corresponds to the median value of SIMEPAR WRF model versions (iii to vi) rainfall forecasts. Besides the developed system, the "traditional" method for inflow forecasting generation for the Itaipu Dam is also run every day. This traditional method consists in the approximation of the future inflow based on the discharge tendency of upstream telemetric gauges. Nowadays, after all the forecasts are run, the hydrology team of Itaipu develop a consensus forecast, based on all obtained results, which is the one used for the Itaipu HPP Dam operation. After one year of operation a first evaluation of the Ensemble Forecasting System was conducted. Results show that the system performs satisfactory for rising flows up to five days lead time. However, some false alarms were also issued by most ensemble members in some cases. And not in all cases the system performed better than the traditional method, especially during hydrograph recessions. In terms of meteorological forecasts, some members usage are being discontinued. In terms of the hydrodynamics representation, it seems that a better information of rivers cross section could improve hydrographs recession curves forecasts. Those opportunities for improvements are currently being addressed in the system next update.

  20. Design of a Forecasting Service System for Monitoring of Vulnerabilities of Sensor Networks

    NASA Astrophysics Data System (ADS)

    Song, Jae-Gu; Kim, Jong Hyun; Seo, Dong Il; Kim, Seoksoo

    This study aims to reduce security vulnerabilities of sensor networks which transmit data in an open environment by developing a forecasting service system. The system is to remove or monitor causes of breach incidents in advance. To that end, this research first examines general security vulnerabilities of sensor networks and analyzes characteristics of existing forecasting systems. Then, 5 steps of a forecasting service system are proposed in order to improve security responses.

  1. Impacts of the Midwestern Drought Forecasts of 2000.

    NASA Astrophysics Data System (ADS)

    Changnon, Stanley A.

    2002-10-01

    In March of 2000 (and again in April and May) NOAA issued long-range forecasts indicating that an existing Midwestern drought would continue and intensify through the upcoming summer. These forecasts received extensive media coverage and wide public attention. If the drought persisted and intensified during the summer of 2000, significant agricultural and water supply problems would occur. However, in late May, June, and July heavy rains fell throughout most of the Midwest, ending the drought in most areas and revealing that the forecast was incorrect for most of the Midwest. Significant media coverage was devoted to the `failed' forecast, with considerable speculation that major economic hardship had resulted from the forecast. This study assesses the effects of the failed drought forecast on agricultural and water agency actions in the Midwest. Assessment of the agricultural and water management sectors revealed notable commonalities. Most people surveyed were aware of the drought forecasts, and the information sources were diverse. One-third of those surveyed indicated they did nothing as a result of the forecasts. The decisions and actions taken by others as a result of the forecasts provided mixed impacts. The water resource actions such as conserving water, seeking new sources, and convening state drought groups resulted in little cost and were considered to be beneficial. However, in the three areas of agricultural impacts (crop production shifts, crop insurance purchases, and grain market choices), mainly negative outcomes occurred. The 13 March issuance of the forecast was too late for producers to make sizable changes in production practices or to alter insurance coverage greatly, and most forecast-based actions taken in these two areas were considered to be negative but financially minor losses. However, 48% of the 1017 producers sampled altered their normal crop marketing practices, which in 84% of the cases led to sizable losses in revenue. This loss can be extrapolated as $1.1 billion for the entire Midwest if the sample statistics are representative of the region. A common result of the failed drought forecast among its users was a loss of credibility in climate predictions and a reluctance to use them in the future. Credibility is a fragile commodity that is difficult to obtain and is easy to lose.

  2. Practical Application of Modern Forecasting and Decision Tools at an Operational River Management Agency

    NASA Astrophysics Data System (ADS)

    Jawdy, C. M.; Carney, S.; Barber, N. M.; Balk, B. C.; Miller, G. A.

    2017-12-01

    The Tennessee Valley Authority (TVA) recently completed a complete overhaul of our River Forecast System (RFS). This modernization effort encompassed: uplift or addition of 89 data feeds calibration of a 140 subbasin rainfall-runoff model calibration of over 650 miles of hydraulic routings implementation of a decision optimization routine for 29 reservoirs implementation of hydrothermal forecast models for five river-cooled thermal plants creation of decision-friendly displays creation of a user-friendly wiki creation of a robust reporting system This talk will walk attendees through how a 24x7 river and grid management agency made decisions around how to operationalize the latest technologies in hydrology, hydraulics, decision science and information technology. The tradeoffs inherent in such an endeavor will be discussed so that research-oriented attendees can understand how best to align their research if they desire adoption within industry. More industry-oriented attendees can learn about the mechanics of how to succeed at such a large and complex project. Following the description of the modernization project, I can discuss TVA's plans for future growth of the system. We plan to add the following capabilities in the coming years: forecast verification tools to communicate floodplain risk tools to choose the best possible model forcings ensemble inflow modelling a river policy that allows for more reasonable tradeoff of benefits river decisions based on ensembles The iterative staging of such improvements is highly fraught with technical, political and operational risks. I will discuss how TVA's is using what we learned in the RFS modernization effort to grow further into delivering on the promise of these additional technologies.

  3. On the usage of divergence nudging in the DMI nowcasting system

    NASA Astrophysics Data System (ADS)

    Korsholm, Ulrik; Petersen, Claus; Hansen Sass, Bent; Woetmann Nielsen, Niels; Getreuer Jensen, David; Olsen, Bjarke Tobias; Vedel, Henrik

    2014-05-01

    DMI has recently proposed a new method for nudging radar reflectivity CAPPI products into their operational nowcasting system. The system is based on rapid update cycles (with hourly frequency) with the High Resolution Limited Area Model combined with surface and upper air analysis at each initial time. During the first 1.5 hours of a simulation the model dynamical state is nudged in accordance with the CAPPI product after which a free forecast is produced with a forecast length of 12 hours. The nudging method is based on the assumption that precipitation is forced by low level moisture convergence and an enhanced moisture source will lead to convective triggering of the model cloud scheme. If the model under-predicts precipitation before cut-off horizontal low level divergence is nudged towards an estimated value. These pseudo observations are calculated from the CAPPI product by assuming a specific vertical profile of the change in divergence field. The strength of the nudging is proportional to the difference between observed and modelled precipitation. When over-predicting, the low level moisture source is reduced, and in-cloud moisture is nudged towards environmental values. Results have been analysed in terms of the fractions skill score and the ability of the nudging method to position the precipitation cells correctly is discussed. The ability of the model to retain memory of the precipitation systems in the free forecast has also been investigated and examples of combining the nudging method with extrapolated reflectivity fields are also shown.

  4. Progress and challenges with Warn-on-Forecast

    NASA Astrophysics Data System (ADS)

    Stensrud, David J.; Wicker, Louis J.; Xue, Ming; Dawson, Daniel T.; Yussouf, Nusrat; Wheatley, Dustan M.; Thompson, Therese E.; Snook, Nathan A.; Smith, Travis M.; Schenkman, Alexander D.; Potvin, Corey K.; Mansell, Edward R.; Lei, Ting; Kuhlman, Kristin M.; Jung, Youngsun; Jones, Thomas A.; Gao, Jidong; Coniglio, Michael C.; Brooks, Harold E.; Brewster, Keith A.

    2013-04-01

    The current status and challenges associated with two aspects of Warn-on-Forecast-a National Oceanic and Atmospheric Administration research project exploring the use of a convective-scale ensemble analysis and forecast system to support hazardous weather warning operations-are outlined. These two project aspects are the production of a rapidly-updating assimilation system to incorporate data from multiple radars into a single analysis, and the ability of short-range ensemble forecasts of hazardous convective weather events to provide guidance that could be used to extend warning lead times for tornadoes, hailstorms, damaging windstorms and flash floods. Results indicate that a three-dimensional variational assimilation system, that blends observations from multiple radars into a single analysis, shows utility when evaluated by forecasters in the Hazardous Weather Testbed and may help increase confidence in a warning decision. The ability of short-range convective-scale ensemble forecasts to provide guidance that could be used in warning operations is explored for five events: two tornadic supercell thunderstorms, a macroburst, a damaging windstorm and a flash flood. Results show that the ensemble forecasts of the three individual severe thunderstorm events are very good, while the forecasts from the damaging windstorm and flash flood events, associated with mesoscale convective systems, are mixed. Important interactions between mesoscale and convective-scale features occur for the mesoscale convective system events that strongly influence the quality of the convective-scale forecasts. The development of a successful Warn-on-Forecast system will take many years and require the collaborative efforts of researchers and operational forecasters to succeed.

  5. Challenges for operational forecasting and early warning of rainfall induced landslides

    NASA Astrophysics Data System (ADS)

    Guzzetti, Fausto

    2017-04-01

    In many areas of the world, landslides occur every year, claiming lives and producing severe economic and environmental damage. Many of the landslides with human or economic consequences are the result of intense or prolonged rainfall. For this reason, in many areas the timely forecast of rainfall-induced landslides is of both scientific interest and social relevance. In the recent years, there has been a mounting interest and an increasing demand for operational landslide forecasting, and for associated landslide early warning systems. Despite the relevance of the problem, and the increasing interest and demand, only a few systems have been designed, and are currently operated. Inspection of the - limited - literature on operational landslide forecasting, and on the associated early warning systems, reveals that common criteria and standards for the design, the implementation, the operation, and the evaluation of the performances of the systems, are lacking. This limits the possibility to compare and to evaluate the systems critically, to identify their inherent strengths and weaknesses, and to improve the performance of the systems. Lack of common criteria and of established standards can also limit the credibility of the systems, and consequently their usefulness and potential practical impact. Landslides are very diversified phenomena, and the information and the modelling tools used to attempt landslide forecasting vary largely, depending on the type and size of the landslides, the extent of the geographical area considered, the timeframe of the forecasts, and the scope of the predictions. Consequently, systems for landslide forecasting and early warning can be designed and implemented at several different geographical scales, from the local (site or slope specific) to the regional, or even national scale. The talk focuses on regional to national scale landslide forecasting systems, and specifically on operational systems based on empirical rainfall threshold models. Building on the experience gained in designing, implementing, and operating national and regional landslide forecasting systems in Italy, and on a preliminary review of the existing literature on regional landslide early warning systems, the talk discusses concepts, limitations and challenges inherent to the design of reliable forecasting and early warning systems for rainfall-triggered landslides, the evaluation of the performances of the systems, and on problems related to the use of the forecasts and the issuing of landslide warnings. Several of the typical elements of an operational landslide forecasting system are considered, including: (i) the rainfall and landslide information used to establish the threshold models, (ii) the methods and tools used to define the empirical rainfall thresholds, and their associated uncertainty, (iii) the quality (e.g., the temporal and spatial resolution) of the rainfall information used for operational forecasting, including rain gauge and radar measurements, satellite estimates, and quantitative weather forecasts, (iv) the ancillary information used to prepare the forecasts, including e.g., the terrain subdivisions and the landslide susceptibility zonations, (v) the criteria used to transform the forecasts into landslide warnings and the methods used to communicate the warnings, and (vi) the criteria and strategies adopted to evaluate the performances of the systems, and to define minimum or optimal performance levels.

  6. Distributed HUC-based modeling with SUMMA for ensemble streamflow forecasting over large regional domains.

    NASA Astrophysics Data System (ADS)

    Saharia, M.; Wood, A.; Clark, M. P.; Bennett, A.; Nijssen, B.; Clark, E.; Newman, A. J.

    2017-12-01

    Most operational streamflow forecasting systems rely on a forecaster-in-the-loop approach in which some parts of the forecast workflow require an experienced human forecaster. But this approach faces challenges surrounding process reproducibility, hindcasting capability, and extension to large domains. The operational hydrologic community is increasingly moving towards `over-the-loop' (completely automated) large-domain simulations yet recent developments indicate a widespread lack of community knowledge about the strengths and weaknesses of such systems for forecasting. A realistic representation of land surface hydrologic processes is a critical element for improving forecasts, but often comes at the substantial cost of forecast system agility and efficiency. While popular grid-based models support the distributed representation of land surface processes, intermediate-scale Hydrologic Unit Code (HUC)-based modeling could provide a more efficient and process-aligned spatial discretization, reducing the need for tradeoffs between model complexity and critical forecasting requirements such as ensemble methods and comprehensive model calibration. The National Center for Atmospheric Research is collaborating with the University of Washington, the Bureau of Reclamation and the USACE to implement, assess, and demonstrate real-time, over-the-loop distributed streamflow forecasting for several large western US river basins and regions. In this presentation, we present early results from short to medium range hydrologic and streamflow forecasts for the Pacific Northwest (PNW). We employ a real-time 1/16th degree daily ensemble model forcings as well as downscaled Global Ensemble Forecasting System (GEFS) meteorological forecasts. These datasets drive an intermediate-scale configuration of the Structure for Unifying Multiple Modeling Alternatives (SUMMA) model, which represents the PNW using over 11,700 HUCs. The system produces not only streamflow forecasts (using the MizuRoute channel routing tool) but also distributed model states such as soil moisture and snow water equivalent. We also describe challenges in distributed model-based forecasting, including the application and early results of real-time hydrologic data assimilation.

  7. Validation and Inter-comparison Against Observations of GODAE Ocean View Ocean Prediction Systems

    NASA Astrophysics Data System (ADS)

    Xu, J.; Davidson, F. J. M.; Smith, G. C.; Lu, Y.; Hernandez, F.; Regnier, C.; Drevillon, M.; Ryan, A.; Martin, M.; Spindler, T. D.; Brassington, G. B.; Oke, P. R.

    2016-02-01

    For weather forecasts, validation of forecast performance is done at the end user level as well as by the meteorological forecast centers. In the development of Ocean Prediction Capacity, the same level of care for ocean forecast performance and validation is needed. Herein we present results from a validation against observations of 6 Global Ocean Forecast Systems under the GODAE OceanView International Collaboration Network. These systems include the Global Ocean Ice Forecast System (GIOPS) developed by the Government of Canada, two systems PSY3 and PSY4 from the French Mercator-Ocean Ocean Forecasting Group, the FOAM system from UK met office, HYCOM-RTOFS from NOAA/NCEP/NWA of USA, and the Australian Bluelink-OceanMAPS system from the CSIRO, the Australian Meteorological Bureau and the Australian Navy.The observation data used in the comparison are sea surface temperature, sub-surface temperature, sub-surface salinity, sea level anomaly, and sea ice total concentration data. Results of the inter-comparison demonstrate forecast performance limits, strengths and weaknesses of each of the six systems. This work establishes validation protocols and routines by which all new prediction systems developed under the CONCEPTS Collaborative Network will be benchmarked prior to approval for operations. This includes anticipated delivery of CONCEPTS regional prediction systems over the next two years including a pan Canadian 1/12th degree resolution ice ocean prediction system and limited area 1/36th degree resolution prediction systems. The validation approach of comparing forecasts to observations at the time and location of the observation is called Class 4 metrics. It has been adopted by major international ocean prediction centers, and will be recommended to JCOMM-WMO as routine validation approach for operational oceanography worldwide.

  8. Consensus Seasonal Flood Forecasts and Warning Response System (FFWRS): an alternate for nonstructural flood management in Bangladesh.

    PubMed

    Chowdhury, Rashed

    2005-06-01

    Despite advances in short-range flood forecasting and information dissemination systems in Bangladesh, the present system is less than satisfactory. This is because of short lead-time products, outdated dissemination networks, and lack of direct feedback from the end-user. One viable solution is to produce long-lead seasonal forecasts--the demand for which is significantly increasing in Bangladesh--and disseminate these products through the appropriate channels. As observed in other regions, the success of seasonal forecasts, in contrast to short-term forecast, depends on consensus among the participating institutions. The Flood Forecasting and Warning Response System (henceforth, FFWRS) has been found to be an important component in a comprehensive and participatory approach to seasonal flood management. A general consensus in producing seasonal forecasts can thus be achieved by enhancing the existing FFWRS. Therefore, the primary objective of this paper is to revisit and modify the framework of an ideal warning response system for issuance of consensus seasonal flood forecasts in Bangladesh. The five-stage FFWRS-i) Flood forecasting, ii) Forecast interpretation and message formulation, iii) Warning preparation and dissemination, iv) Responses, and v) Review and analysis-has been modified. To apply the concept of consensus forecast, a framework similar to that of the Southern African Regional Climate Outlook Forum (SARCOF) has been discussed. Finally, the need for a climate Outlook Fora has been emphasized for a comprehensive and participatory approach to seasonal flood hazard management in Bangladesh.

  9. Identifying and Assessing Gaps in Subseasonal to Seasonal Prediction Skill using the North American Multi-model Ensemble

    NASA Astrophysics Data System (ADS)

    Pegion, K.; DelSole, T. M.; Becker, E.; Cicerone, T.

    2016-12-01

    Predictability represents the upper limit of prediction skill if we had an infinite member ensemble and a perfect model. It is an intrinsic limit of the climate system associated with the chaotic nature of the atmosphere. Producing a forecast system that can make predictions very near to this limit is the ultimate goal of forecast system development. Estimates of predictability together with calculations of current prediction skill are often used to define the gaps in our prediction capabilities on subseasonal to seasonal timescales and to inform the scientific issues that must be addressed to build the next forecast system. Quantification of the predictability is also important for providing a scientific basis for relaying to stakeholders what kind of climate information can be provided to inform decision-making and what kind of information is not possible given the intrinsic predictability of the climate system. One challenge with predictability estimates is that different prediction systems can give different estimates of the upper limit of skill. How do we know which estimate of predictability is most representative of the true predictability of the climate system? Previous studies have used the spread-error relationship and the autocorrelation to evaluate the fidelity of the signal and noise estimates. Using a multi-model ensemble prediction system, we can quantify whether these metrics accurately indicate an individual model's ability to properly estimate the signal, noise, and predictability. We use this information to identify the best estimates of predictability for 2-meter temperature, precipitation, and sea surface temperature from the North American Multi-model Ensemble and compare with current skill to indicate the regions with potential for improving skill.

  10. Forecasting, Forecasting

    Treesearch

    Michael A. Fosberg

    1987-01-01

    Future improvements in the meteorological forecasts used in fire management will come from improvements in three areas: observational systems, forecast techniques, and postprocessing of forecasts and better integration of this information into the fire management process.

  11. Operational planning using Climatological Observations for Maritime Prediction and Analysis Support Service (COMPASS)

    NASA Astrophysics Data System (ADS)

    O'Connor, Alison; Kirtman, Benjamin; Harrison, Scott; Gorman, Joe

    2016-05-01

    The US Navy faces several limitations when planning operations in regard to forecasting environmental conditions. Currently, mission analysis and planning tools rely heavily on short-term (less than a week) forecasts or long-term statistical climate products. However, newly available data in the form of weather forecast ensembles provides dynamical and statistical extended-range predictions that can produce more accurate predictions if ensemble members can be combined correctly. Charles River Analytics is designing the Climatological Observations for Maritime Prediction and Analysis Support Service (COMPASS), which performs data fusion over extended-range multi-model ensembles, such as the North American Multi-Model Ensemble (NMME), to produce a unified forecast for several weeks to several seasons in the future. We evaluated thirty years of forecasts using machine learning to select predictions for an all-encompassing and superior forecast that can be used to inform the Navy's decision planning process.

  12. Do probabilistic forecasts lead to better decisions?

    NASA Astrophysics Data System (ADS)

    Ramos, M. H.; van Andel, S. J.; Pappenberger, F.

    2012-12-01

    The last decade has seen growing research in producing probabilistic hydro-meteorological forecasts and increasing their reliability. This followed the promise that, supplied with information about uncertainty, people would take better risk-based decisions. In recent years, therefore, research and operational developments have also start putting attention to ways of communicating the probabilistic forecasts to decision makers. Communicating probabilistic forecasts includes preparing tools and products for visualization, but also requires understanding how decision makers perceive and use uncertainty information in real-time. At the EGU General Assembly 2012, we conducted a laboratory-style experiment in which several cases of flood forecasts and a choice of actions to take were presented as part of a game to participants, who acted as decision makers. Answers were collected and analyzed. In this paper, we present the results of this exercise and discuss if indeed we make better decisions on the basis of probabilistic forecasts.

  13. Do probabilistic forecasts lead to better decisions?

    NASA Astrophysics Data System (ADS)

    Ramos, M. H.; van Andel, S. J.; Pappenberger, F.

    2013-06-01

    The last decade has seen growing research in producing probabilistic hydro-meteorological forecasts and increasing their reliability. This followed the promise that, supplied with information about uncertainty, people would take better risk-based decisions. In recent years, therefore, research and operational developments have also started focusing attention on ways of communicating the probabilistic forecasts to decision-makers. Communicating probabilistic forecasts includes preparing tools and products for visualisation, but also requires understanding how decision-makers perceive and use uncertainty information in real time. At the EGU General Assembly 2012, we conducted a laboratory-style experiment in which several cases of flood forecasts and a choice of actions to take were presented as part of a game to participants, who acted as decision-makers. Answers were collected and analysed. In this paper, we present the results of this exercise and discuss if we indeed make better decisions on the basis of probabilistic forecasts.

  14. Skill of a global seasonal ensemble streamflow forecasting system

    NASA Astrophysics Data System (ADS)

    Candogan Yossef, Naze; Winsemius, Hessel; Weerts, Albrecht; van Beek, Rens; Bierkens, Marc

    2013-04-01

    Forecasting of water availability and scarcity is a prerequisite for managing the risks and opportunities caused by the inter-annual variability of streamflow. Reliable seasonal streamflow forecasts are necessary to prepare for an appropriate response in disaster relief, management of hydropower reservoirs, water supply, agriculture and navigation. Seasonal hydrological forecasting on a global scale could be valuable especially for developing regions of the world, where effective hydrological forecasting systems are scarce. In this study, we investigate the forecasting skill of the global seasonal streamflow forecasting system FEWS-World, using the global hydrological model PCR-GLOBWB. FEWS-World has been setup within the European Commission 7th Framework Programme project Global Water Scarcity Information Service (GLOWASIS). Skill is assessed in historical simulation mode as well as retroactive forecasting mode. The assessment in historical simulation mode used a meteorological forcing based on observations from the Climate Research Unit of the University of East Anglia and the ERA-40 reanalysis of the European Center for Medium-Range Weather Forecasts (ECMWF). We assessed the skill of the global hydrological model PCR-GLOBWB in reproducing past discharge extremes in 20 large rivers of the world. This preliminary assessment concluded that the prospects for seasonal forecasting with PCR-GLOBWB or comparable models are positive. However this assessment did not include actual meteorological forecasts. Thus the meteorological forcing errors were not assessed. Yet, in a forecasting setup, the predictive skill of a hydrological forecasting system is affected by errors due to uncertainty from numerical weather prediction models. For the assessment in retroactive forecasting mode, the model is forced with actual ensemble forecasts from the seasonal forecast archives of ECMWF. Skill is assessed at 78 stations on large river basins across the globe, for all the months of the year and for lead times up to 6 months. The forecasted discharges are compared with observed monthly streamflow records using the ensemble verification measures Brier Skill Score (BSS) and Continuous Ranked Probability Score (CRPS). The eventual goal is to transfer FEWS-World to operational forecasting mode, where the system will use operational seasonal forecasts from ECMWF. The results will be disseminated on the internet, and hopefully provide information that is valuable for users in data and model-poor regions of the world.

  15. Risky Business: Development, Communication and Use of Hydroclimatic Forecasts

    NASA Astrophysics Data System (ADS)

    Lall, U.

    2012-12-01

    Inter-seasonal and longer hydroclimatic forecasts have been made increasingly in the last two decades following the increase in ENSO activity since the early 1980s and the success in seasonal ENSO forecasting. Yet, the number of examples of systematic use of these forecasts and their incorporation into water systems operation continue to be few. This may be due in part to the limited skill in such forecasts over much of the world, but is also likely due to the limited evolution of methods and opportunities to "safely" use uncertain forecasts. There has been a trend to rely more on "physically based" rather than "physically informed" empirical forecasts, and this may in part explain the limited success in developing usable products in more locations. Given the limited skill, forecasters have tended to "dumb" down their forecasts - either formally or subjectively shrinking the forecasts towards climatology, or reducing them to tercile forecasts that serve to obscure the potential information in the forecast. Consequently, the potential utility of such forecasts for decision making is compromised. Water system operating rules are often designed to be robust in the face of historical climate variability, and consequently are adapted to the potential conditions that a forecast seeks to inform. In such situations, there is understandable reluctance by managers to use the forecasts as presented, except in special cases where an alternate course of action is pragmatically appealing in any case. In this talk, I review opportunities to present targeted forecasts for use with decision systems that directly address climate risk and the risk induced by unbiased yet uncertain forecasts, focusing especially on extreme events and water allocation in a competitive environment. Examples from Brazil and India covering surface and ground water conjunctive use strategies that could potentially be insured and lead to improvements over the traditional system operation and resource allocation are provided.

  16. Enhancing the Quantitative Representation of Socioeconomic Conditions in the Shared Socio-economic Pathways (SSPs) using the International Futures Model

    NASA Astrophysics Data System (ADS)

    Rothman, D. S.; Siraj, A.; Hughes, B.

    2013-12-01

    The international research community is currently in the process of developing new scenarios for climate change research. One component of these scenarios are the Shared Socio-economic Pathways (SSPs), which describe a set of possible future socioeconomic conditions. These are presented in narrative storylines with associated quantitative drivers. The core quantitative drivers include total population, average GDP per capita, educational attainment, and urbanization at the global, regional, and national levels. At the same time there have been calls, particularly by the IAV community, for the SSPs to include additional quantitative information on other key social factors, such as income inequality, governance, health, and access to key infrastructures, which are discussed in the narratives. The International Futures system (IFs), based at the Pardee Center at the University of Denver, is able to provide forecasts of many of these indicators. IFs cannot use the SSP drivers as exogenous inputs, but we are able to create development pathways that closely reproduce the core quantitative drivers defined by the different SSPs, as well as incorporating assumptions on other key driving factors described in the qualitative narratives. In this paper, we present forecasts for additional quantitative indicators based upon the implementation of the SSP development pathways in IFs. These results will be of value to many researchers.

  17. A global flash flood forecasting system

    NASA Astrophysics Data System (ADS)

    Baugh, Calum; Pappenberger, Florian; Wetterhall, Fredrik; Hewson, Tim; Zsoter, Ervin

    2016-04-01

    The sudden and devastating nature of flash flood events means it is imperative to provide early warnings such as those derived from Numerical Weather Prediction (NWP) forecasts. Currently such systems exist on basin, national and continental scales in Europe, North America and Australia but rely on high resolution NWP forecasts or rainfall-radar nowcasting, neither of which have global coverage. To produce global flash flood forecasts this work investigates the possibility of using forecasts from a global NWP system. In particular we: (i) discuss how global NWP can be used for flash flood forecasting and discuss strengths and weaknesses; (ii) demonstrate how a robust evaluation can be performed given the rarity of the event; (iii) highlight the challenges and opportunities in communicating flash flood uncertainty to decision makers; and (iv) explore future developments which would significantly improve global flash flood forecasting. The proposed forecast system uses ensemble surface runoff forecasts from the ECMWF H-TESSEL land surface scheme. A flash flood index is generated using the ERIC (Enhanced Runoff Index based on Climatology) methodology [Raynaud et al., 2014]. This global methodology is applied to a series of flash floods across southern Europe. Results from the system are compared against warnings produced using the higher resolution COSMO-LEPS limited area model. The global system is evaluated by comparing forecasted warning locations against a flash flood database of media reports created in partnership with floodlist.com. To deal with the lack of objectivity in media reports we carefully assess the suitability of different skill scores and apply spatial uncertainty thresholds to the observations. To communicate the uncertainties of the flash flood system output we experiment with a dynamic region-growing algorithm. This automatically clusters regions of similar return period exceedence probabilities, thus presenting the at-risk areas at a spatial resolution appropriate to the NWP system. We then demonstrate how these warning areas could eventually complement existing global systems such as the Global Flood Awareness System (GloFAS), to give warnings of flash floods. This work demonstrates the possibility of creating a global flash flood forecasting system based on forecasts from existing global NWP systems. Future developments, in post-processing for example, will need to address an under-prediction bias, for extreme point rainfall, that is innate to current-generation global models.

  18. Short-Term Distribution System State Forecast Based on Optimal Synchrophasor Sensor Placement and Extreme Learning Machine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Huaiguang; Zhang, Yingchen

    This paper proposes an approach for distribution system state forecasting, which aims to provide an accurate and high speed state forecasting with an optimal synchrophasor sensor placement (OSSP) based state estimator and an extreme learning machine (ELM) based forecaster. Specifically, considering the sensor installation cost and measurement error, an OSSP algorithm is proposed to reduce the number of synchrophasor sensor and keep the whole distribution system numerically and topologically observable. Then, the weighted least square (WLS) based system state estimator is used to produce the training data for the proposed forecaster. Traditionally, the artificial neural network (ANN) and support vectormore » regression (SVR) are widely used in forecasting due to their nonlinear modeling capabilities. However, the ANN contains heavy computation load and the best parameters for SVR are difficult to obtain. In this paper, the ELM, which overcomes these drawbacks, is used to forecast the future system states with the historical system states. The proposed approach is effective and accurate based on the testing results.« less

  19. A probabilistic drought forecasting framework: A combined dynamical and statistical approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Hongxiang; Moradkhani, Hamid; Zarekarizi, Mahkameh

    In order to improve drought forecasting skill, this study develops a probabilistic drought forecasting framework comprised of dynamical and statistical modeling components. The novelty of this study is to seek the use of data assimilation to quantify initial condition uncertainty with the Monte Carlo ensemble members, rather than relying entirely on the hydrologic model or land surface model to generate a single deterministic initial condition, as currently implemented in the operational drought forecasting systems. Next, the initial condition uncertainty is quantified through data assimilation and coupled with a newly developed probabilistic drought forecasting model using a copula function. The initialmore » condition at each forecast start date are sampled from the data assimilation ensembles for forecast initialization. Finally, seasonal drought forecasting products are generated with the updated initial conditions. This study introduces the theory behind the proposed drought forecasting system, with an application in Columbia River Basin, Pacific Northwest, United States. Results from both synthetic and real case studies suggest that the proposed drought forecasting system significantly improves the seasonal drought forecasting skills and can facilitate the state drought preparation and declaration, at least three months before the official state drought declaration.« less

  20. Development, Implementation, and Skill Assessment of the NOAA/NOS Great Lakes Operational Forecast System

    DTIC Science & Technology

    2011-01-01

    USA) 2011 Abstract The NOAA Great Lakes Operational Forecast System ( GLOFS ) uses near-real-time atmospheric observa- tions and numerical weather...Operational Oceanographic Products and Services (CO-OPS) in Silver Spring, MD. GLOFS has been making operational nowcasts and forecasts at CO-OPS... GLOFS ) uses near-real-time atmospheric observations and numerical weather prediction forecast guidance to produce three-dimensional forecasts of water

  1. Verification of Meteorological and Oceanographic Ensemble Forecasts in the U.S. Navy

    NASA Astrophysics Data System (ADS)

    Klotz, S.; Hansen, J.; Pauley, P.; Sestak, M.; Wittmann, P.; Skupniewicz, C.; Nelson, G.

    2013-12-01

    The Navy Ensemble Forecast Verification System (NEFVS) has been promoted recently to operational status at the U.S. Navy's Fleet Numerical Meteorology and Oceanography Center (FNMOC). NEFVS processes FNMOC and National Centers for Environmental Prediction (NCEP) meteorological and ocean wave ensemble forecasts, gridded forecast analyses, and innovation (observational) data output by FNMOC's data assimilation system. The NEFVS framework consists of statistical analysis routines, a variety of pre- and post-processing scripts to manage data and plot verification metrics, and a master script to control application workflow. NEFVS computes metrics that include forecast bias, mean-squared error, conditional error, conditional rank probability score, and Brier score. The system also generates reliability and Receiver Operating Characteristic diagrams. In this presentation we describe the operational framework of NEFVS and show examples of verification products computed from ensemble forecasts, meteorological observations, and forecast analyses. The construction and deployment of NEFVS addresses important operational and scientific requirements within Navy Meteorology and Oceanography. These include computational capabilities for assessing the reliability and accuracy of meteorological and ocean wave forecasts in an operational environment, for quantifying effects of changes and potential improvements to the Navy's forecast models, and for comparing the skill of forecasts from different forecast systems. NEFVS also supports the Navy's collaboration with the U.S. Air Force, NCEP, and Environment Canada in the North American Ensemble Forecast System (NAEFS) project and with the Air Force and the National Oceanic and Atmospheric Administration (NOAA) in the National Unified Operational Prediction Capability (NUOPC) program. This program is tasked with eliminating unnecessary duplication within the three agencies, accelerating the transition of new technology, such as multi-model ensemble forecasting, to U.S. Department of Defense use, and creating a superior U.S. global meteorological and oceanographic prediction capability. Forecast verification is an important component of NAEFS and NUOPC. Distribution Statement A: Approved for Public Release; distribution is unlimited

  2. Verification of Meteorological and Oceanographic Ensemble Forecasts in the U.S. Navy

    NASA Astrophysics Data System (ADS)

    Klotz, S. P.; Hansen, J.; Pauley, P.; Sestak, M.; Wittmann, P.; Skupniewicz, C.; Nelson, G.

    2012-12-01

    The Navy Ensemble Forecast Verification System (NEFVS) has been promoted recently to operational status at the U.S. Navy's Fleet Numerical Meteorology and Oceanography Center (FNMOC). NEFVS processes FNMOC and National Centers for Environmental Prediction (NCEP) meteorological and ocean wave ensemble forecasts, gridded forecast analyses, and innovation (observational) data output by FNMOC's data assimilation system. The NEFVS framework consists of statistical analysis routines, a variety of pre- and post-processing scripts to manage data and plot verification metrics, and a master script to control application workflow. NEFVS computes metrics that include forecast bias, mean-squared error, conditional error, conditional rank probability score, and Brier score. The system also generates reliability and Receiver Operating Characteristic diagrams. In this presentation we describe the operational framework of NEFVS and show examples of verification products computed from ensemble forecasts, meteorological observations, and forecast analyses. The construction and deployment of NEFVS addresses important operational and scientific requirements within Navy Meteorology and Oceanography (METOC). These include computational capabilities for assessing the reliability and accuracy of meteorological and ocean wave forecasts in an operational environment, for quantifying effects of changes and potential improvements to the Navy's forecast models, and for comparing the skill of forecasts from different forecast systems. NEFVS also supports the Navy's collaboration with the U.S. Air Force, NCEP, and Environment Canada in the North American Ensemble Forecast System (NAEFS) project and with the Air Force and the National Oceanic and Atmospheric Administration (NOAA) in the National Unified Operational Prediction Capability (NUOPC) program. This program is tasked with eliminating unnecessary duplication within the three agencies, accelerating the transition of new technology, such as multi-model ensemble forecasting, to U.S. Department of Defense use, and creating a superior U.S. global meteorological and oceanographic prediction capability. Forecast verification is an important component of NAEFS and NUOPC.

  3. The Evolvement of Automobile Steering System Based on TRIZ

    NASA Astrophysics Data System (ADS)

    Zhao, Xinjun; Zhang, Shuang

    Products and techniques pass through a process of birth, growth, maturity, death and quit the stage like biological evolution process. The developments of products and techniques conform to some evolvement rules. If people know and hold these rules, they can design new kind of products and forecast the develop trends of the products. Thereby, enterprises can grasp the future technique directions of products, and make product and technique innovation. Below, based on TRIZ theory, the mechanism evolvement, the function evolvement and the appearance evolvement of automobile steering system had been analyzed and put forward some new ideas about future automobile steering system.

  4. Jet Stream Analysis and Forecast Errors Using GADS Aircraft Observations in the DAO, ECMWF, and NCEP Models

    NASA Technical Reports Server (NTRS)

    Cardinali, Carla; Rukhovets, Leonid; Tenenbaum, Joel

    2003-01-01

    We have utilized an extensive set of independent British Airways flight data recording wind vector and temperature observations (the Global Aircraft Data Set [GADS] archive) in three ways: (a) as an independent check of operational analyses; (b) as an analysis observing system experiment (OSE) as if the GADS observations were available in real time; and (c) as the corresponding forecast simulation experiment applicable to future operational forecasts. Using a 31 day sample (0000 UTC 20 December 2000 through 0000 UTC 20 January 2000) from Winter 2000, we conclude that over the data-dense continental U. S. analyzed jet streaks are too weak by -2% to -5%. Over nearby data-sparse regions of Canada, analyzed jet streaks are too weak by -5% to -9%. The second range provides a limit on the accuracy of current jet streak analyses over the portions of the -85% of the earth's surface that are poorly covered by non-satellite observations. The -5% to -9% range is relevant for the pre-third generation satellite (AIRS, IASI, GIFTS) era.

  5. Draft Forecasts from Real-Time Runs of Physics-Based Models - A Road to the Future

    NASA Technical Reports Server (NTRS)

    Hesse, Michael; Rastatter, Lutz; MacNeice, Peter; Kuznetsova, Masha

    2008-01-01

    The Community Coordinated Modeling Center (CCMC) is a US inter-agency activity aiming at research in support of the generation of advanced space weather models. As one of its main functions, the CCMC provides to researchers the use of space science models, even if they are not model owners themselves. The second focus of CCMC activities is on validation and verification of space weather models, and on the transition of appropriate models to space weather forecast centers. As part of the latter activity, the CCMC develops real-time simulation systems that stress models through routine execution. A by-product of these real-time calculations is the ability to derive model products, which may be useful for space weather operators. After consultations with NOAA/SEC and with AFWA, CCMC has developed a set of tools as a first step to make real-time model output useful to forecast centers. In this presentation, we will discuss the motivation for this activity, the actions taken so far, and options for future tools from model output.

  6. The forecaster's added value in QPF

    NASA Astrophysics Data System (ADS)

    Turco, M.; Milelli, M.

    2009-04-01

    To the authors' knowledge there are relatively few studies that try to answer this topic: "Are humans able to add value to computer-generated forecasts and warnings ?". Moreover, the answers are not always positive. In particular some postprocessing method is competitive or superior to human forecast (see for instance Baars et al., 2005, Charba et al., 2002, Doswell C., 2003, Roebber et al., 1996, Sanders F., 1986). Within the alert system of ARPA Piemonte it is possible to study in an objective manner if the human forecaster is able to add value with respect to computer-generated forecasts. Every day the meteorology group of the Centro Funzionale of Regione Piemonte produces the HQPF (Human QPF) in terms of an areal average for each of the 13 regional warning areas, which have been created according to meteo-hydrological criteria. This allows the decision makers to produce an evaluation of the expected effects by comparing these HQPFs with predefined rainfall thresholds. Another important ingredient in this study is the very dense non-GTS network of rain gauges available that makes possible a high resolution verification. In this context the most useful verification approach is the measure of the QPF and HQPF skills by first converting precipitation expressed as continuous amounts into ‘‘exceedance'' categories (yes-no statements indicating whether precipitation equals or exceeds selected thresholds) and then computing the performances for each threshold. In particular in this work we compare the performances of the latest three years of QPF derived from two meteorological models COSMO-I7 (the Italian version of the COSMO Model, a mesoscale model developed in the framework of the COSMO Consortium) and IFS (the ECMWF global model) with the HQPF. In this analysis it is possible to introduce the hypothesis test developed by Hamill (1999), in which a confidence interval is calculated with the bootstrap method in order to establish the real difference between the skill scores of two competitive forecast. It is important to underline that the conclusions refer to the analysis of the Piemonte operational alert system, so they cannot be directly taken as universally true. But we think that some of the main lessons that can be derived from this study could be useful for the meteorological community. In details, the main conclusions are the following: · despite the overall improvement in global scale and the fact that the resolution of the limited area models has increased considerably over recent years, the QPF produced by the meteorological models involved in this study has not improved enough to allow its direct use: the subjective HQPF continues to offer the best performance; · in the forecast process, the step where humans have the largest added value with respect to mathematical models, is the communication. In fact the human characterisation and communication of the forecast uncertainty to end users cannot be replaced by any computer code; · the QPFs verification is one of the most important activities of a Centro Funzionale because it allows a better understanding of the model behaviour in the different meteorological configurations, highlights the systematic characteristics, and helps in evaluating the reliability, in average or extreme values, over long term or in current situations; · eventually, although there is no novelty in this study, we would like to show that the correct application of appropriated statistical tecniques permits a better definition and quantification of the errors and, mostly important, allows a correct (unbiased) communication between forecasters and decision makers.

  7. Experimental Forecasts of Wildfire Pollution at the Canadian Meteorological Centre

    NASA Astrophysics Data System (ADS)

    Pavlovic, Radenko; Beaulieu, Paul-Andre; Chen, Jack; Landry, Hugo; Cousineau, Sophie; Moran, Michael

    2016-04-01

    Environment and Climate Change Canada's Canadian Meteorological Centre Operations division (CMCO) has been running an experimental North American air quality forecast system with near-real-time wildfire emissions since 2014. This system, named FireWork, also takes anthropogenic and other natural emission sources into account. FireWork 48-hour forecasts are provided to CMCO forecasters and external partners in Canada and the U.S. twice daily during the wildfire season. This system has proven to be very useful in capturing short- and long-range smoke transport from wildfires over North America. Several upgrades to the FireWork system have been made since 2014 to accommodate the needs of operational AQ forecasters and to improve system performance. In this talk we will present performance statistics and some case studies for the 2014 and 2015 wildfire seasons. We will also describe current limitations of the FireWork system and ongoing and future work planned for this air quality forecast system.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jie; Cui, Mingjian; Hodge, Bri-Mathias

    The large variability and uncertainty in wind power generation present a concern to power system operators, especially given the increasing amounts of wind power being integrated into the electric power system. Large ramps, one of the biggest concerns, can significantly influence system economics and reliability. The Wind Forecast Improvement Project (WFIP) was to improve the accuracy of forecasts and to evaluate the economic benefits of these improvements to grid operators. This paper evaluates the ramp forecasting accuracy gained by improving the performance of short-term wind power forecasting. This study focuses on the WFIP southern study region, which encompasses most ofmore » the Electric Reliability Council of Texas (ERCOT) territory, to compare the experimental WFIP forecasts to the existing short-term wind power forecasts (used at ERCOT) at multiple spatial and temporal scales. The study employs four significant wind power ramping definitions according to the power change magnitude, direction, and duration. The optimized swinging door algorithm is adopted to extract ramp events from actual and forecasted wind power time series. The results show that the experimental WFIP forecasts improve the accuracy of the wind power ramp forecasting. This improvement can result in substantial costs savings and power system reliability enhancements.« less

  9. 76 FR 9696 - Equipment Price Forecasting in Energy Conservation Standards Analysis

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-22

    ... for particular efficiency design options, an empirical experience curve fit to the available data may be used to forecast future costs of such design option technologies. If a statistical evaluation indicates a low level of confidence in estimates of the design option cost trend, this method should not be...

  10. The Use of Factorial Forecasting to Predict Public Response

    ERIC Educational Resources Information Center

    Weiss, David J.

    2012-01-01

    Policies that call for members of the public to change their behavior fail if people don't change; predictions of whether the requisite changes will take place are needed prior to implementation. I propose to solve the prediction problem with Factorial Forecasting, a version of functional measurement methodology that employs group designs. Aspects…

  11. FVS out of the box - assembly required

    Treesearch

    Don Vandendriesche

    2010-01-01

    The Forest Vegetation Simulator (FVS) is a prominent growth and yield model used for forecasting stand dynamics. However, users need to be aware of model behavior regarding stocking density, tree senescence, and understory recruitment; otherwise over long projections, FVS tends to concentrate substantial growth on few survivor trees. If the intent is to forecast...

  12. Operating Hours Based Inventory Management.

    DTIC Science & Technology

    1986-12-01

    forecasting can be based on the expert opinion. The Delphi technique is one such method of forecasting which uses a group of decision makers with a...errors occ.ur. If larce a’nounts of’ material are procured and warehoused, there could be a greater chance that the material will no longer be needed

  13. Relationship of physiography and snow area to stream discharge. [Kings River Watershed, California

    NASA Technical Reports Server (NTRS)

    Mccuen, R. H. (Principal Investigator)

    1979-01-01

    The author has identified the following significant results. A comparison of snowmelt runoff models shows that the accuracy of the Tangborn model and regression models is greater if the test data falls within the range of calibration than if the test data lies outside the range of calibration data. The regression models are significantly more accurate for forecasts of 60 days or more than for shorter prediction periods. The Tangborn model is more accurate for forecasts of 90 days or more than for shorter prediction periods. The Martinec model is more accurate for forecasts of one or two days than for periods of 3,5,10, or 15 days. Accuracy of the long-term models seems to be independent of forecast data. The sufficiency of the calibration data base is a function not only of the number of years of record but also of the accuracy with which the calibration years represent the total population of data years. Twelve years appears to be a sufficient length of record for each of the models considered, as long as the twelve years are representative of the population.

  14. Evaluation of weather forecast systems for storm surge modeling in the Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Garzon, Juan L.; Ferreira, Celso M.; Padilla-Hernandez, Roberto

    2018-01-01

    Accurate forecast of sea-level heights in coastal areas depends, among other factors, upon a reliable coupling of a meteorological forecast system to a hydrodynamic and wave system. This study evaluates the predictive skills of the coupled circulation and wind-wave model system (ADCIRC+SWAN) for simulating storm tides in the Chesapeake Bay, forced by six different products: (1) Global Forecast System (GFS), (2) Climate Forecast System (CFS) version 2, (3) North American Mesoscale Forecast System (NAM), (4) Rapid Refresh (RAP), (5) European Center for Medium-Range Weather Forecasts (ECMWF), and (6) the Atlantic hurricane database (HURDAT2). This evaluation is based on the hindcasting of four events: Irene (2011), Sandy (2012), Joaquin (2015), and Jonas (2016). By comparing the simulated water levels to observations at 13 monitoring stations, we have found that the ADCIR+SWAN System forced by the following: (1) the HURDAT2-based system exhibited the weakest statistical skills owing to a noteworthy overprediction of the simulated wind speed; (2) the ECMWF, RAP, and NAM products captured the moment of the peak and moderately its magnitude during all storms, with a correlation coefficient ranging between 0.98 and 0.77; (3) the CFS system exhibited the worst averaged root-mean-square difference (excepting HURDAT2); (4) the GFS system (the lowest horizontal resolution product tested) resulted in a clear underprediction of the maximum water elevation. Overall, the simulations forced by NAM and ECMWF systems induced the most accurate results best accuracy to support water level forecasting in the Chesapeake Bay during both tropical and extra-tropical storms.

  15. A physics-based probabilistic forecasting model for rainfall-induced shallow landslides at regional scale

    NASA Astrophysics Data System (ADS)

    Zhang, Shaojie; Zhao, Luqiang; Delgado-Tellez, Ricardo; Bao, Hongjun

    2018-03-01

    Conventional outputs of physics-based landslide forecasting models are presented as deterministic warnings by calculating the safety factor (Fs) of potentially dangerous slopes. However, these models are highly dependent on variables such as cohesion force and internal friction angle which are affected by a high degree of uncertainty especially at a regional scale, resulting in unacceptable uncertainties of Fs. Under such circumstances, the outputs of physical models are more suitable if presented in the form of landslide probability values. In order to develop such models, a method to link the uncertainty of soil parameter values with landslide probability is devised. This paper proposes the use of Monte Carlo methods to quantitatively express uncertainty by assigning random values to physical variables inside a defined interval. The inequality Fs < 1 is tested for each pixel in n simulations which are integrated in a unique parameter. This parameter links the landslide probability to the uncertainties of soil mechanical parameters and is used to create a physics-based probabilistic forecasting model for rainfall-induced shallow landslides. The prediction ability of this model was tested in a case study, in which simulated forecasting of landslide disasters associated with heavy rainfalls on 9 July 2013 in the Wenchuan earthquake region of Sichuan province, China, was performed. The proposed model successfully forecasted landslides in 159 of the 176 disaster points registered by the geo-environmental monitoring station of Sichuan province. Such testing results indicate that the new model can be operated in a highly efficient way and show more reliable results, attributable to its high prediction accuracy. Accordingly, the new model can be potentially packaged into a forecasting system for shallow landslides providing technological support for the mitigation of these disasters at regional scale.

  16. Seasonal Forecasting of Reservoir Inflow for the Segura River Basin, Spain

    NASA Astrophysics Data System (ADS)

    de Tomas, Alberto; Hunink, Johannes

    2017-04-01

    A major threat to the agricultural sector in Europe is an increasing occurrence of low water availability for irrigation, affecting the local and regional food security and economies. Especially in the Mediterranean region, such as in the Segura river basin (Spain), drought epidodes are relatively frequent. Part of the irrigation water demand in this basin is met by a water transfer from the Tagus basin (central Spain), but also in this basin an increasing pressure on the water resources has reduced the water available to be transferred. Currently, Drought Management Plans in these Spanish basins are in place and mitigate the impact of drought periods to some extent. Drought indicators that are derived from the available water in the storage reservoirs impose a set of drought mitigation measures. Decisions on water transfers are dependent on a regression-based time series forecast from the reservoir inflows of the preceding months. This user-forecast has its limitations and can potentially be improved using more advanced techniques. Nowadays, seasonal climate forecasts have shown to have increasing skill for certain areas and for certain applications. So far, such forecasts have not been evaluated in a seasonal hydrologic forecasting system in the Spanish context. The objective of this work is to develop a prototype of a Seasonal Hydrologic Forecasting System and compare this with a reference forecast. The reference forecast in this case is the locally used regression-based forecast. Additionally, hydrological simulations derived from climatological reanalysis (ERA-Interim) are taken as a reference forecast. The Spatial Processes in Hydrology model (SPHY - http://www.sphy.nl/) forced with the ECMWF- SFS4 (15 ensembles) Seasonal Forecast Systems is used to predict reservoir inflows of the upper basins of the Segura and Tagus rivers. The system is evaluated for 4 seasons with a forecasting lead time of 3 months. First results show that only for certain initialization months and lead times, the developed system outperforms the reference forecast. This research is carried out within the European research project IMPREX (www.imprex.eu) that aims at investigating the value of improving predictions of hydro-meteorological extremes in a number of water sectors, including agriculture . The next step is to integrate improved seasonal forecasts into the system and evaluate these. This should finally lead to a more robust forecasting system that allows water managers and irrigators to better anticipate to drought episodes and putting into practice more effective water allocation and mitigation practices.

  17. Examples of data assimilation in mesoscale models

    NASA Technical Reports Server (NTRS)

    Carr, Fred; Zack, John; Schmidt, Jerry; Snook, John; Benjamin, Stan; Stauffer, David

    1993-01-01

    The keynote address was the problem of physical initialization of mesoscale models. The classic purpose of physical or diabatic initialization is to reduce or eliminate the spin-up error caused by the lack, at the initial time, of the fully developed vertical circulations required to support regions of large rainfall rates. However, even if a model has no spin-up problem, imposition of observed moisture and heating rate information during assimilation can improve quantitative precipitation forecasts, especially early in the forecast. The two key issues in physical initialization are the choice of assimilating technique and sources of hydrologic/hydrometeor data. Another example of data assimilation in mesoscale models was presented in a series of meso-beta scale model experiments with and 11 km version of the MASS model designed to investigate the sensitivity of convective initiation forced by thermally direct circulations resulting from differential surface heating to four dimensional assimilation of surface and radar data. The results of these simulations underscore the need to accurately initialize and simulate grid and sub-grid scale clouds in meso- beta scale models. The status of the application of the CSU-RAMS mesoscale model by the NOAA Forecast Systems Lab for producing real-time forecasts with 10-60 km mesh resolutions over (4000 km)(exp 2) domains for use by the aviation community was reported. Either MAPS or LAPS model data are used to initialize the RAMS model on a 12-h cycle. The use of MAPS (Mesoscale Analysis and Prediction System) model was discussed. Also discussed was the mesobeta-scale data assimilation using a triply-nested nonhydrostatic version of the MM5 model.

  18. The Fixed-Bias Langmuir Probe on the Communication-Navigation Outage Forecast System Satellite: Calibration and Validation

    NASA Technical Reports Server (NTRS)

    Klenzing, J.; Rowland, D.

    2012-01-01

    A fixed-bias spherical Langmuir probe is included as part of the Vector Electric Field Instrument (VEFI) suite on the Communication Navigation Outage Forecast System (CNOFS) satellite.CNOFS gathers data in the equatorial ionosphere between 400 and 860 km, where the primary constituent ions are H+ and O+. The ion current collected by the probe surface per unit plasma density is found to be a strong function of ion composition. The calibration of the collected current to an absolute density is discussed, and the performance of the spherical probe is compared to other in situ instruments on board the CNOFS satellite. The application of the calibration is discussed with respect to future fixed-bias probes; in particular, it is demonstrated that some density fluctuations will be suppressed in the collected current if the plasma composition rapidly changes along with density. This is illustrated in the observation of plasma density enhancements on CNOFS.

  19. The potential of radar-based ensemble forecasts for flash-flood early warning in the southern Swiss Alps

    NASA Astrophysics Data System (ADS)

    Liechti, K.; Panziera, L.; Germann, U.; Zappa, M.

    2013-10-01

    This study explores the limits of radar-based forecasting for hydrological runoff prediction. Two novel radar-based ensemble forecasting chains for flash-flood early warning are investigated in three catchments in the southern Swiss Alps and set in relation to deterministic discharge forecasts for the same catchments. The first radar-based ensemble forecasting chain is driven by NORA (Nowcasting of Orographic Rainfall by means of Analogues), an analogue-based heuristic nowcasting system to predict orographic rainfall for the following eight hours. The second ensemble forecasting system evaluated is REAL-C2, where the numerical weather prediction COSMO-2 is initialised with 25 different initial conditions derived from a four-day nowcast with the radar ensemble REAL. Additionally, three deterministic forecasting chains were analysed. The performance of these five flash-flood forecasting systems was analysed for 1389 h between June 2007 and December 2010 for which NORA forecasts were issued, due to the presence of orographic forcing. A clear preference was found for the ensemble approach. Discharge forecasts perform better when forced by NORA and REAL-C2 rather then by deterministic weather radar data. Moreover, it was observed that using an ensemble of initial conditions at the forecast initialisation, as in REAL-C2, significantly improved the forecast skill. These forecasts also perform better then forecasts forced by ensemble rainfall forecasts (NORA) initialised form a single initial condition of the hydrological model. Thus the best results were obtained with the REAL-C2 forecasting chain. However, for regions where REAL cannot be produced, NORA might be an option for forecasting events triggered by orographic precipitation.

  20. Centralized Storm Information System (CSIS)

    NASA Technical Reports Server (NTRS)

    Norton, C. C.

    1985-01-01

    A final progress report is presented on the Centralized Storm Information System (CSIS). The primary purpose of the CSIS is to demonstrate and evaluate real time interactive computerized data collection, interpretation and display techniques as applied to severe weather forecasting. CSIS objectives pertaining to improved severe storm forecasting and warning systems are outlined. The positive impact that CSIS has had on the National Severe Storms Forecast Center (NSSFC) is discussed. The benefits of interactive processing systems on the forecasting ability of the NSSFC are described.

  1. Seasonal scale water deficit forecasting in Africa and the Middle East using NASA's Land Information System (LIS)

    NASA Astrophysics Data System (ADS)

    Peters-Lidard, C. D.; Arsenault, K. R.; Shukla, S.; Getirana, A.; McNally, A.; Koster, R. D.; Zaitchik, B. F.; Badr, H. S.; Roningen, J. M.; Kumar, S.; Funk, C. C.

    2017-12-01

    A seamless and effective water deficit monitoring and early warning system is critical for assessing food security in Africa and the Middle East. In this presentation, we report on the ongoing development and validation of a seasonal scale water deficit forecasting system based on NASA's Land Information System (LIS) and seasonal climate forecasts. First, our presentation will focus on the implementation and validation of drought and water availability monitoring products in the region. Next, it will focus on evaluating drought and water availability forecasts. Finally, details will be provided of our ongoing collaboration with end-user partners in the region (e.g., USAID's Famine Early Warning Systems Network, FEWS NET), on formulating meaningful early warning indicators, effective communication and seamless dissemination of the products through NASA's web-services. The water deficit forecasting system thus far incorporates NASA GMAO's Catchment and the Noah Multi-Physics (MP) LSMs. In addition, the LSMs' surface and subsurface runoff are routed through the Hydrological Modeling and Analysis Platform (HyMAP) to simulate surface water dynamics. To establish a climatology from 1981-2015, the two LSMs are driven by NASA/GMAO's Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2), and the USGS and UCSB Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) daily rainfall dataset. Comparison of the models' energy and hydrological budgets with independent observations suggests that major droughts are well-reflected in the climatology. The system uses seasonal climate forecasts from NASA's GEOS-5 (the Goddard Earth Observing System Model-5) and NCEP's Climate Forecast System-2, and it produces forecasts of soil moisture, ET and streamflow out to 6 months in the future. Forecasts of those variables are formulated in terms of indicators to provide forecasts of drought and water availability in the region. Current work suggests that for the Blue Nile basin, (1) the combination of GEOS-5 and CFSv2 is equivalent in skill to the full North American Multimodel Ensemble (NMME); and (2) the seasonal water deficit forecasting system skill for both soil moisture and streamflow anomalies is greater than the standard Ensemble Streamflow Prediction (ESP) approach.

  2. Harbin 2020 R&D Personnel Demand Forecast Based on Manufacturing Green Innovation System

    NASA Astrophysics Data System (ADS)

    Jiang, Xin; Duan, Yu Ting; Shen, Jun Yi; Zhang, Dong Ying

    2018-06-01

    Because of the constraints of energy conservation and the impact on the environment, the manufacturing industry has adopted sustainable development as the goal, and a green manufacturing innovation system based on environmental protection has emerged. In order to provide R&D personnel support to manufacturing enterprises in Harbin, and in order to promote the construction of a green innovation system for manufacturing and the realization of the 13th Five-Year Plan, this article used the grey forecasting model and the univariate linear regression prediction to predict the number of R&D personnel in Harbin in 2020 based on the number of R&D personnel in 2010-2016, and the predicted values were 24,952 and 31,172 respectively. The results show that if Harbin continues to use its original development model, it will not be able to achieve the established development goals by 2020 because of the shortage of R&D personnel. Therefore, it is necessary to increase investment in R&D personnel so as to achieve the 13th Five-Year Plan of Harbin City and protect the ecological green development goals.

  3. AWE: Aviation Weather Data Visualization Environment

    NASA Technical Reports Server (NTRS)

    Spirkovska, Lilly; Lodha, Suresh K.; Norvig, Peter (Technical Monitor)

    2000-01-01

    Weather is one of the major causes of aviation accidents. General aviation (GA) flights account for 92% of all the aviation accidents, In spite of all the official and unofficial sources of weather visualization tools available to pilots, there is an urgent need for visualizing several weather related data tailored for general aviation pilots. Our system, Aviation Weather Data Visualization Environment AWE), presents graphical displays of meteorological observations, terminal area forecasts, and winds aloft forecasts onto a cartographic grid specific to the pilot's area of interest. Decisions regarding the graphical display and design are made based on careful consideration of user needs. Integral visual display of these elements of weather reports is designed for the use of GA pilots as a weather briefing and route selection tool. AWE provides linking of the weather information to the flight's path and schedule. The pilot can interact with the system to obtain aviation-specific weather for the entire area or for his specific route to explore what-if scenarios and make "go/no-go" decisions. The system, as evaluated by some pilots at NASA Ames Research Center, was found to be useful.

  4. Famines in Africa: is early warning early enough?

    PubMed Central

    Kim, Jeeyon Janet; Guha-Sapir, Debarati

    2012-01-01

    Following the second Sahelian famine in 1984–1985, major investments were made to establish Early Warning Systems. These systems help to ensure that timely warnings and vulnerability information are available to decision makers to anticipate and avert food crises. In the recent crisis in the Horn of Africa, alarming levels of acute malnutrition were documented from March 2010, and by August 2010, an impending food crisis was forecast. Despite these measures, the situation remained unrecognised, and further deteriorated causing malnutrition levels to grow in severity and scope. By the time the United Nations officially declared famine on 20 July 2011, and the humanitarian community sluggishly went into response mode, levels of malnutrition and mortality exceeded catastrophic levels. At this time, an estimated 11 million people were in desperate and immediate need for food. With warnings of food crises in the Sahel, South Sudan, and forecast of the drought returning to the Horn, there is an immediate need to institutionalize change in the health response during humanitarian emergencies. Early warning systems are only effective if they trigger an early response. PMID:22745628

  5. Famines in Africa: is early warning early enough?

    PubMed

    Kim, Jeeyon Janet; Guha-Sapir, Debarati

    2012-01-01

    Following the second Sahelian famine in 1984-1985, major investments were made to establish Early Warning Systems. These systems help to ensure that timely warnings and vulnerability information are available to decision makers to anticipate and avert food crises. In the recent crisis in the Horn of Africa, alarming levels of acute malnutrition were documented from March 2010, and by August 2010, an impending food crisis was forecast. Despite these measures, the situation remained unrecognised, and further deteriorated causing malnutrition levels to grow in severity and scope. By the time the United Nations officially declared famine on 20 July 2011, and the humanitarian community sluggishly went into response mode, levels of malnutrition and mortality exceeded catastrophic levels. At this time, an estimated 11 million people were in desperate and immediate need for food. With warnings of food crises in the Sahel, South Sudan, and forecast of the drought returning to the Horn, there is an immediate need to institutionalize change in the health response during humanitarian emergencies. Early warning systems are only effective if they trigger an early response.

  6. Potential for malaria seasonal forecasting in Africa

    NASA Astrophysics Data System (ADS)

    Tompkins, Adrian; Di Giuseppe, Francesca; Colon-Gonzalez, Felipe; Namanya, Didas; Friday, Agabe

    2014-05-01

    As monthly and seasonal dynamical prediction systems have improved their skill in the tropics over recent years, there is now the potential to use these forecasts to drive dynamical malaria modelling systems to provide early warnings in epidemic and meso-endemic regions. We outline a new pilot operational system that has been developed at ECMWF and ICTP. It uses a precipitation bias correction methodology to seamlessly join the monthly ensemble prediction system (EPS) and seasonal (system 4) forecast systems of ECMWF together. The resulting temperature and rainfall forecasts for Africa are then used to drive the recently developed ICTP malaria model known as VECTRI. The resulting coupled system of ECMWF climate forecasts and VECTRI thus produces predictions of malaria prevalence rates and transmission intensity across Africa. The forecasts are filtered to highlight the regions and months in which the system has particular value due to high year to year variability. In addition to epidemic areas, these also include meso and hyper-endemic regions which undergo considerable variability in the onset months. We demonstrate the limits of the forecast skill as a function of lead-time, showing that for many areas the dynamical system can add one to two months additional warning time to a system based on environmental monitoring. We then evaluate the past forecasts against district level case data in Uganda and show that when interventions can be discounted, the system can show significant skill at predicting interannual variability in transmission intensity up to 3 or 4 months ahead at the district scale. The prospects for a operational implementation will be briefly discussed.

  7. The value of information as applied to the Landsat Follow-on benefit-cost analysis

    NASA Technical Reports Server (NTRS)

    Wood, D. B.

    1978-01-01

    An econometric model was run to compare the current forecasting system with a hypothetical (Landsat Follow-on) space-based system. The baseline current system was a hybrid of USDA SRS domestic forecasts and the best known foreign data. The space-based system improved upon the present Landsat by the higher spatial resolution capability of the thematic mapper. This satellite system is a major improvement for foreign forecasts but no better than SRS for domestic forecasts. The benefit analysis was concentrated on the use of Landsat Follow-on to forecast world wheat production. Results showed that it was possible to quantify the value of satellite information and that there are significant benefits in more timely and accurate crop condition information.

  8. An assessment of a North American Multi-Model Ensemble (NMME) based global drought early warning forecast system

    NASA Astrophysics Data System (ADS)

    Wood, E. F.; Yuan, X.; Sheffield, J.; Pan, M.; Roundy, J.

    2013-12-01

    One of the key recommendations of the WCRP Global Drought Information System (GDIS) workshop is to develop an experimental real-time global monitoring and prediction system. While great advances has been made in global drought monitoring based on satellite observations and model reanalysis data, global drought forecasting has been stranded in part due to the limited skill both in climate forecast models and global hydrologic predictions. Having been working on drought monitoring and forecasting over USA for more than a decade, the Princeton land surface hydrology group is now developing an experimental global drought early warning system that is based on multiple climate forecast models and a calibrated global hydrologic model. In this presentation, we will test its capability in seasonal forecasting of meteorological, agricultural and hydrologic droughts over global major river basins, using precipitation, soil moisture and streamflow forecasts respectively. Based on the joint probability distribution between observations using Princeton's global drought monitoring system and model hindcasts and real-time forecasts from North American Multi-Model Ensemble (NMME) project, we (i) bias correct the monthly precipitation and temperature forecasts from multiple climate forecast models, (ii) downscale them to a daily time scale, and (iii) use them to drive the calibrated VIC model to produce global drought forecasts at a 1-degree resolution. A parallel run using the ESP forecast method, which is based on resampling historical forcings, is also carried out for comparison. Analysis is being conducted over global major river basins, with multiple drought indices that have different time scales and characteristics. The meteorological drought forecast does not have uncertainty from hydrologic models and can be validated directly against observations - making the validation an 'apples-to-apples' comparison. Preliminary results for the evaluation of meteorological drought onset hindcasts indicate that climate models increase drought detectability over ESP by 31%-81%. However, less than 30% of the global drought onsets can be detected by climate models. The missed drought events are associated with weak ENSO signals and lower potential predictability. Due to the high false alarms from climate models, the reliability is more important than sharpness for a skillful probabilistic drought onset forecast. Validations and skill assessments for agricultural and hydrologic drought forecasts are carried out using soil moisture and streamflow output from the VIC land surface model (LSM) forced by a global forcing data set. Given our previous drought forecasting experiences over USA and Africa, validating the hydrologic drought forecasting is a significant challenge for a global drought early warning system.

  9. Development and validation of a regional coupled forecasting system for S2S forecasts

    NASA Astrophysics Data System (ADS)

    Sun, R.; Subramanian, A. C.; Hoteit, I.; Miller, A. J.; Ralph, M.; Cornuelle, B. D.

    2017-12-01

    Accurate and efficient forecasting of oceanic and atmospheric circulation is essential for a wide variety of high-impact societal needs, including: weather extremes; environmental protection and coastal management; management of fisheries, marine conservation; water resources; and renewable energy. Effective forecasting relies on high model fidelity and accurate initialization of the models with observed state of the ocean-atmosphere-land coupled system. A regional coupled ocean-atmosphere model with the Weather Research and Forecasting (WRF) model and the MITGCM ocean model coupled using the ESMF (Earth System Modeling Framework) coupling framework is developed to resolve mesoscale air-sea feedbacks. The regional coupled model allows oceanic mixed layer heat and momentum to interact with the atmospheric boundary layer dynamics at the mesoscale and submesoscale spatiotemporal regimes, thus leading to feedbacks which are otherwise not resolved in coarse resolution global coupled forecasting systems or regional uncoupled forecasting systems. The model is tested in two scenarios in the mesoscale eddy rich Red Sea and Western Indian Ocean region as well as mesoscale eddies and fronts of the California Current System. Recent studies show evidence for air-sea interactions involving the oceanic mesoscale in these two regions which can enhance predictability on sub seasonal timescale. We will present results from this newly developed regional coupled ocean-atmosphere model for forecasts over the Red Sea region as well as the California Current region. The forecasts will be validated against insitu observations in the region as well as reanalysis fields.

  10. Using subseasonal-to-seasonal (S2S) extreme rainfall forecasts for extended-range flood prediction in Australia

    NASA Astrophysics Data System (ADS)

    White, C. J.; Franks, S. W.; McEvoy, D.

    2015-06-01

    Meteorological and hydrological centres around the world are looking at ways to improve their capacity to be able to produce and deliver skilful and reliable forecasts of high-impact extreme rainfall and flooding events on a range of prediction timescales (e.g. sub-daily, daily, multi-week, seasonal). Making improvements to extended-range rainfall and flood forecast models, assessing forecast skill and uncertainty, and exploring how to apply flood forecasts and communicate their benefits to decision-makers are significant challenges facing the forecasting and water resources management communities. This paper presents some of the latest science and initiatives from Australia on the development, application and communication of extreme rainfall and flood forecasts on the extended-range "subseasonal-to-seasonal" (S2S) forecasting timescale, with a focus on risk-based decision-making, increasing flood risk awareness and preparedness, capturing uncertainty, understanding human responses to flood forecasts and warnings, and the growing adoption of "climate services". The paper also demonstrates how forecasts of flood events across a range of prediction timescales could be beneficial to a range of sectors and society, most notably for disaster risk reduction (DRR) activities, emergency management and response, and strengthening community resilience. Extended-range S2S extreme flood forecasts, if presented as easily accessible, timely and relevant information are a valuable resource to help society better prepare for, and subsequently cope with, extreme flood events.

  11. Forecasting Influenza Epidemics in Hong Kong.

    PubMed

    Yang, Wan; Cowling, Benjamin J; Lau, Eric H Y; Shaman, Jeffrey

    2015-07-01

    Recent advances in mathematical modeling and inference methodologies have enabled development of systems capable of forecasting seasonal influenza epidemics in temperate regions in real-time. However, in subtropical and tropical regions, influenza epidemics can occur throughout the year, making routine forecast of influenza more challenging. Here we develop and report forecast systems that are able to predict irregular non-seasonal influenza epidemics, using either the ensemble adjustment Kalman filter or a modified particle filter in conjunction with a susceptible-infected-recovered (SIR) model. We applied these model-filter systems to retrospectively forecast influenza epidemics in Hong Kong from January 1998 to December 2013, including the 2009 pandemic. The forecast systems were able to forecast both the peak timing and peak magnitude for 44 epidemics in 16 years caused by individual influenza strains (i.e., seasonal influenza A(H1N1), pandemic A(H1N1), A(H3N2), and B), as well as 19 aggregate epidemics caused by one or more of these influenza strains. Average forecast accuracies were 37% (for both peak timing and magnitude) at 1-3 week leads, and 51% (peak timing) and 50% (peak magnitude) at 0 lead. Forecast accuracy increased as the spread of a given forecast ensemble decreased; the forecast accuracy for peak timing (peak magnitude) increased up to 43% (45%) for H1N1, 93% (89%) for H3N2, and 53% (68%) for influenza B at 1-3 week leads. These findings suggest that accurate forecasts can be made at least 3 weeks in advance for subtropical and tropical regions.

  12. Forecasting Influenza Epidemics in Hong Kong

    PubMed Central

    Yang, Wan; Cowling, Benjamin J.; Lau, Eric H. Y.; Shaman, Jeffrey

    2015-01-01

    Recent advances in mathematical modeling and inference methodologies have enabled development of systems capable of forecasting seasonal influenza epidemics in temperate regions in real-time. However, in subtropical and tropical regions, influenza epidemics can occur throughout the year, making routine forecast of influenza more challenging. Here we develop and report forecast systems that are able to predict irregular non-seasonal influenza epidemics, using either the ensemble adjustment Kalman filter or a modified particle filter in conjunction with a susceptible-infected-recovered (SIR) model. We applied these model-filter systems to retrospectively forecast influenza epidemics in Hong Kong from January 1998 to December 2013, including the 2009 pandemic. The forecast systems were able to forecast both the peak timing and peak magnitude for 44 epidemics in 16 years caused by individual influenza strains (i.e., seasonal influenza A(H1N1), pandemic A(H1N1), A(H3N2), and B), as well as 19 aggregate epidemics caused by one or more of these influenza strains. Average forecast accuracies were 37% (for both peak timing and magnitude) at 1-3 week leads, and 51% (peak timing) and 50% (peak magnitude) at 0 lead. Forecast accuracy increased as the spread of a given forecast ensemble decreased; the forecast accuracy for peak timing (peak magnitude) increased up to 43% (45%) for H1N1, 93% (89%) for H3N2, and 53% (68%) for influenza B at 1-3 week leads. These findings suggest that accurate forecasts can be made at least 3 weeks in advance for subtropical and tropical regions. PMID:26226185

  13. Aerosol analysis and forecast in the European Centre for Medium-Range Weather Forecasts Integrated Forecast System: 3. Evaluation by means of case studies

    NASA Astrophysics Data System (ADS)

    Mangold, A.; de Backer, H.; de Paepe, B.; Dewitte, S.; Chiapello, I.; Derimian, Y.; Kacenelenbogen, M.; LéOn, J.-F.; Huneeus, N.; Schulz, M.; Ceburnis, D.; O'Dowd, C.; Flentje, H.; Kinne, S.; Benedetti, A.; Morcrette, J.-J.; Boucher, O.

    2011-02-01

    A near real-time system for assimilation and forecasts of aerosols, greenhouse and trace gases, extending the ECMWF Integrated Forecasting System (IFS), has been developed in the framework of the Global and regional Earth-system Monitoring using Satellite and in-situ data (GEMS) project. The GEMS aerosol modeling system is novel as it is the first aerosol model fully coupled to a numerical weather prediction model with data assimilation. A reanalysis of the period 2003-2009 has been carried out with the same system. During its development phase, the aerosol system was first run for the time period January 2003 to December 2004 and included sea salt, desert dust, organic matter, black carbon, and sulfate aerosols. In the analysis, Moderate Resolution Imaging Spectroradiometer (MODIS) total aerosol optical depth (AOD) at 550 nm over ocean and land (except over bright surfaces) was assimilated. This work evaluates the performance of the aerosol system by means of case studies. The case studies include (1) the summer heat wave in Europe in August 2003, characterized by forest fire aerosol and conditions of high temperatures and stagnation, favoring photochemistry and secondary aerosol formation, (2) a large Saharan dust event in March 2004, and (3) periods of high and low sea salt aerosol production. During the heat wave period in 2003, the linear correlation coefficients between modeled and observed AOD (550 nm) and between modeled and observed PM2.5 mass concentrations are 0.82 and 0.71, respectively, for all investigated sites together. The AOD is slightly and the PM2.5 mass concentration is clearly overestimated by the aerosol model during this period. The simulated sulfate mass concentration is significantly correlated with observations but is distinctly overestimated. The horizontal and vertical locations of the main features of the aerosol distribution during the Saharan dust outbreak are generally well captured, as well as the timing of the AOD peaks. The aerosol model simulates winter sea salt AOD reasonably well, however, showing a general overestimation. Summer sea salt events show a better agreement. Overall, the assimilation of MODIS AOD data improves the subsequent aerosol predictions when compared with observations, in particular concerning the correlation and AOD peak values. The assimilation is less effective in correcting a positive (PM2.5, sulfate mass concentration, Angström exponent) or negative (desert dust plume AOD) model bias.

  14. Self-Organizing Maps-based ocean currents forecasting system.

    PubMed

    Vilibić, Ivica; Šepić, Jadranka; Mihanović, Hrvoje; Kalinić, Hrvoje; Cosoli, Simone; Janeković, Ivica; Žagar, Nedjeljka; Jesenko, Blaž; Tudor, Martina; Dadić, Vlado; Ivanković, Damir

    2016-03-16

    An ocean surface currents forecasting system, based on a Self-Organizing Maps (SOM) neural network algorithm, high-frequency (HF) ocean radar measurements and numerical weather prediction (NWP) products, has been developed for a coastal area of the northern Adriatic and compared with operational ROMS-derived surface currents. The two systems differ significantly in architecture and algorithms, being based on either unsupervised learning techniques or ocean physics. To compare performance of the two methods, their forecasting skills were tested on independent datasets. The SOM-based forecasting system has a slightly better forecasting skill, especially during strong wind conditions, with potential for further improvement when data sets of higher quality and longer duration are used for training.

  15. Self-Organizing Maps-based ocean currents forecasting system

    PubMed Central

    Vilibić, Ivica; Šepić, Jadranka; Mihanović, Hrvoje; Kalinić, Hrvoje; Cosoli, Simone; Janeković, Ivica; Žagar, Nedjeljka; Jesenko, Blaž; Tudor, Martina; Dadić, Vlado; Ivanković, Damir

    2016-01-01

    An ocean surface currents forecasting system, based on a Self-Organizing Maps (SOM) neural network algorithm, high-frequency (HF) ocean radar measurements and numerical weather prediction (NWP) products, has been developed for a coastal area of the northern Adriatic and compared with operational ROMS-derived surface currents. The two systems differ significantly in architecture and algorithms, being based on either unsupervised learning techniques or ocean physics. To compare performance of the two methods, their forecasting skills were tested on independent datasets. The SOM-based forecasting system has a slightly better forecasting skill, especially during strong wind conditions, with potential for further improvement when data sets of higher quality and longer duration are used for training. PMID:26979129

  16. Utilization of satellite data and regional scale numerical models in short range weather forecasting

    NASA Technical Reports Server (NTRS)

    Kreitzberg, C. W.

    1985-01-01

    Overwhelming evidence was developed in a number of studies of satellite data impact on numerical weather prediction that it is unrealistic to expect satellite temperature soundings to improve detailed regional numerical weather prediction. It is likely that satellite data over the United States would substantially impact mesoscale dynamical predictions if the effort were made to develop a composite moisture analysis system. The horizontal variability of moisture, most clearly depicited in images from satellite water vapor channels, would not be determined from conventional rawinsondes even if that network were increased by a doubling of both the number of sites and the time frequency.

  17. Action-based flood forecasting for triggering humanitarian action

    NASA Astrophysics Data System (ADS)

    Coughlan de Perez, Erin; van den Hurk, Bart; van Aalst, Maarten K.; Amuron, Irene; Bamanya, Deus; Hauser, Tristan; Jongma, Brenden; Lopez, Ana; Mason, Simon; Mendler de Suarez, Janot; Pappenberger, Florian; Rueth, Alexandra; Stephens, Elisabeth; Suarez, Pablo; Wagemaker, Jurjen; Zsoter, Ervin

    2016-09-01

    Too often, credible scientific early warning information of increased disaster risk does not result in humanitarian action. With financial resources tilted heavily towards response after a disaster, disaster managers have limited incentive and ability to process complex scientific data, including uncertainties. These incentives are beginning to change, with the advent of several new forecast-based financing systems that provide funding based on a forecast of an extreme event. Given the changing landscape, here we demonstrate a method to select and use appropriate forecasts for specific humanitarian disaster prevention actions, even in a data-scarce location. This action-based forecasting methodology takes into account the parameters of each action, such as action lifetime, when verifying a forecast. Forecasts are linked with action based on an understanding of (1) the magnitude of previous flooding events and (2) the willingness to act "in vain" for specific actions. This is applied in the context of the Uganda Red Cross Society forecast-based financing pilot project, with forecasts from the Global Flood Awareness System (GloFAS). Using this method, we define the "danger level" of flooding, and we select the probabilistic forecast triggers that are appropriate for specific actions. Results from this methodology can be applied globally across hazards and fed into a financing system that ensures that automatic, pre-funded early action will be triggered by forecasts.

  18. Seasonal drought ensemble predictions based on multiple climate models in the upper Han River Basin, China

    NASA Astrophysics Data System (ADS)

    Ma, Feng; Ye, Aizhong; Duan, Qingyun

    2017-03-01

    An experimental seasonal drought forecasting system is developed based on 29-year (1982-2010) seasonal meteorological hindcasts generated by the climate models from the North American Multi-Model Ensemble (NMME) project. This system made use of a bias correction and spatial downscaling method, and a distributed time-variant gain model (DTVGM) hydrologic model. DTVGM was calibrated using observed daily hydrological data and its streamflow simulations achieved Nash-Sutcliffe efficiency values of 0.727 and 0.724 during calibration (1978-1995) and validation (1996-2005) periods, respectively, at the Danjiangkou reservoir station. The experimental seasonal drought forecasting system (known as NMME-DTVGM) is used to generate seasonal drought forecasts. The forecasts were evaluated against the reference forecasts (i.e., persistence forecast and climatological forecast). The NMME-DTVGM drought forecasts have higher detectability and accuracy and lower false alarm rate than the reference forecasts at different lead times (from 1 to 4 months) during the cold-dry season. No apparent advantage is shown in drought predictions during spring and summer seasons because of a long memory of the initial conditions in spring and a lower predictive skill for precipitation in summer. Overall, the NMME-based seasonal drought forecasting system has meaningful skill in predicting drought several months in advance, which can provide critical information for drought preparedness and response planning as well as the sustainable practice of water resource conservation over the basin.

  19. Visualization of ocean forecast in BYTHOS

    NASA Astrophysics Data System (ADS)

    Zhuk, E.; Zodiatis, G.; Nikolaidis, A.; Stylianou, S.; Karaolia, A.

    2016-08-01

    The Cyprus Oceanography Center has been constantly searching for new ideas for developing and implementing innovative methods and new developments concerning the use of Information Systems in Oceanography, to suit both the Center's monitoring and forecasting products. Within the frame of this scope two major online managing and visualizing data systems have been developed and utilized, those of CYCOFOS and BYTHOS. The Cyprus Coastal Ocean Forecasting and Observing System - CYCOFOS provides a variety of operational predictions such as ultra high, high and medium resolution ocean forecasts in the Levantine Basin, offshore and coastal sea state forecasts in the Mediterranean and Black Sea, tide forecasting in the Mediterranean, ocean remote sensing in the Eastern Mediterranean and coastal and offshore monitoring. As a rich internet application, BYTHOS enables scientists to search, visualize and download oceanographic data online and in real time. The recent improving of BYTHOS system is the extension with access and visualization of CYCOFOS data and overlay forecast fields and observing data. The CYCOFOS data are stored at OPENDAP Server in netCDF format. To search, process and visualize it the php and python scripts were developed. Data visualization is achieved through Mapserver. The BYTHOS forecast access interface allows to search necessary forecasting field by recognizing type, parameter, region, level and time. Also it provides opportunity to overlay different forecast and observing data that can be used for complex analyze of sea basin aspects.

  20. Between the Rock and a Hard Place: The CCMC as a Transit Station Between Modelers and Forecasters

    NASA Technical Reports Server (NTRS)

    Hesse, Michael

    2009-01-01

    The Community Coordinated Modeling Center (CCMC) is a US inter-agency activity aiming at research in support of the generation of advanced space weather models. As one of its main functions, the CCMC provides to researchers the use of space science models, even if they are not model owners themselves. The second CCMC activity is to support Space Weather forecasting at national Space Weather Forecasting Centers. This second activity involved model evaluations, model transitions to operations, and the development of draft Space Weather forecasting tools. This presentation will focus on the latter element. Specifically, we will discuss the process of transition research models, or information generated by research models, to Space Weather Forecasting organizations. We will analyze successes as well as obstacles to further progress, and we will suggest avenues for increased transitioning success.

  1. Development of an Adaptable Display and Diagnostic System for the Evaluation of Tropical Cyclone Forecasts

    NASA Astrophysics Data System (ADS)

    Kucera, P. A.; Burek, T.; Halley-Gotway, J.

    2015-12-01

    NCAR's Joint Numerical Testbed Program (JNTP) focuses on the evaluation of experimental forecasts of tropical cyclones (TCs) with the goal of developing new research tools and diagnostic evaluation methods that can be transitioned to operations. Recent activities include the development of new TC forecast verification methods and the development of an adaptable TC display and diagnostic system. The next generation display and diagnostic system is being developed to support evaluation needs of the U.S. National Hurricane Center (NHC) and broader TC research community. The new hurricane display and diagnostic capabilities allow forecasters and research scientists to more deeply examine the performance of operational and experimental models. The system is built upon modern and flexible technology that includes OpenLayers Mapping tools that are platform independent. The forecast track and intensity along with associated observed track information are stored in an efficient MySQL database. The system provides easy-to-use interactive display system, and provides diagnostic tools to examine forecast track stratified by intensity. Consensus forecasts can be computed and displayed interactively. The system is designed to display information for both real-time and for historical TC cyclones. The display configurations are easily adaptable to meet the needs of the end-user preferences. Ongoing enhancements include improving capabilities for stratification and evaluation of historical best tracks, development and implementation of additional methods to stratify and compute consensus hurricane track and intensity forecasts, and improved graphical display tools. The display is also being enhanced to incorporate gridded forecast, satellite, and sea surface temperature fields. The presentation will provide an overview of the display and diagnostic system development and demonstration of the current capabilities.

  2. The state of the art of flood forecasting - Hydrological Ensemble Prediction Systems

    NASA Astrophysics Data System (ADS)

    Thielen-Del Pozo, J.; Pappenberger, F.; Salamon, P.; Bogner, K.; Burek, P.; de Roo, A.

    2010-09-01

    Flood forecasting systems form a key part of ‘preparedness' strategies for disastrous floods and provide hydrological services, civil protection authorities and the public with information of upcoming events. Provided the warning leadtime is sufficiently long, adequate preparatory actions can be taken to efficiently reduce the impacts of the flooding. Because of the specific characteristics of each catchment, varying data availability and end-user demands, the design of the best flood forecasting system may differ from catchment to catchment. However, despite the differences in concept and data needs, there is one underlying issue that spans across all systems. There has been an growing awareness and acceptance that uncertainty is a fundamental issue of flood forecasting and needs to be dealt with at the different spatial and temporal scales as well as the different stages of the flood generating processes. Today, operational flood forecasting centres change increasingly from single deterministic forecasts to probabilistic forecasts with various representations of the different contributions of uncertainty. The move towards these so-called Hydrological Ensemble Prediction Systems (HEPS) in flood forecasting represents the state of the art in forecasting science, following on the success of the use of ensembles for weather forecasting (Buizza et al., 2005) and paralleling the move towards ensemble forecasting in other related disciplines such as climate change predictions. The use of HEPS has been internationally fostered by initiatives such as "The Hydrologic Ensemble Prediction Experiment" (HEPEX), created with the aim to investigate how best to produce, communicate and use hydrologic ensemble forecasts in hydrological short-, medium- und long term prediction of hydrological processes. The advantages of quantifying the different contributions of uncertainty as well as the overall uncertainty to obtain reliable and useful flood forecasts also for extreme events, has become evident. However, despite the demonstrated advantages, worldwide the incorporation of HEPS in operational flood forecasting is still limited. The applicability of HEPS for smaller river basins was tested in MAP D-Phase, an acronym for "Demonstration of Probabilistic Hydrological and Atmospheric Simulation of flood Events in the Alpine region" which was launched in 2005 as a Forecast Demonstration Project of World Weather Research Programme of WMO, and entered a pre-operational and still active testing phase in 2007. In Europe, a comparatively high number of EPS driven systems for medium-large rivers exist. National flood forecasting centres of Sweden, Finland and the Netherlands, have already implemented HEPS in their operational forecasting chain, while in other countries including France, Germany, Czech Republic and Hungary, hybrids or experimental chains have been installed. As an example of HEPS, the European Flood Alert System (EFAS) is being presented. EFAS provides medium-range probabilistic flood forecasting information for large trans-national river basins. It incorporates multiple sets of weather forecast including different types of EPS and deterministic forecasts from different providers. EFAS products are evaluated and visualised as exceedance of critical levels only - both in forms of maps and time series. Different sources of uncertainty and its impact on the flood forecasting performance for every grid cell has been tested offline but not yet incorporated operationally into the forecasting chain for computational reasons. However, at stations where real-time discharges are available, a hydrological uncertainty processor is being applied to estimate the total predictive uncertainty from the hydrological and input uncertainties. Research on long-term EFAS results has shown the need for complementing statistical analysis with case studies for which examples will be shown.

  3. Traffic flow forecasting for intelligent transportation systems.

    DOT National Transportation Integrated Search

    1995-01-01

    The capability to forecast traffic volume in an operational setting has been identified as a critical need for intelligent transportation systems (ITS). In particular, traffic volume forecasts will directly support proactive traffic control and accur...

  4. Corps Water Management System (CWMS) Decision Support Modeling and Integration Use in the June 2007 Texas Floods

    NASA Astrophysics Data System (ADS)

    Charley, W. J.; Luna, M.

    2007-12-01

    The U.S. Army Corps of Engineers Corps Water Management System (CWMS) is a comprehensive data acquisition and hydrologic modeling system for short-term decision support of water control operations in real time. It encompasses data collection, validation and transformation, data storage, visualization, real time model simulation for decision-making support, and data dissemination. CWMS uses an Oracle database and Sun Solaris workstations for data processes, storage and the execution of models, with a client application (the Control and Visualization Interface, or CAVI) that can run on a Windows PC. CWMS was used by the Lower Colorado River Authority (LCRA) to make hydrologic forecasts of flows on the Lower Colorado River and operate reservoirs during the June 2007 event in Texas. The LCRA receives real-time observed gridded spatial rainfall data from OneRain, Inc. that which is a result of adjusting NexRad rainfall data with precipitation gages. This data is used, along with future precipitation estimates, for hydrologic forecasting by the rainfall-runoff modeling program HEC-HMS. Forecasted flows from HEC-HMS and combined with observed flows and reservoir information to simulate LCRA's reservoir operations and help engineers make release decisions based on the results. The river hydraulics program, HEC-RAS, computes river stages and water surface profiles for the computed flow. An inundation boundary and depth map of water in the flood plain can be calculated from the HEC-RAS results using ArcInfo. By varying future precipitation and releases, engineers can evaluate different "What if?" scenarios. What was described as an "extraordinary cluster of thunderstorms" that stalled over Burnet and Llano counties in Texas on June 27, 2007, dropped 17 to 19 inches of rainfall over a 6-hour period. The storm was classified over a 500-year event and the resulting flow over some of the smaller tributaries as a 100-year or better. CWMS was used by LCRA for flood forecasting and reservoir operations. The models accurately forecasting the flows and allowed engineers to determine that only four floodgates needed to be opened for Mansfield dam, in the Chain of Highland lakes. CWMS also forecasted the peak of the flood well before it happened. Smaller rain storms continued for a period of weeks and CWMS was used throughout the event calculating lake levels, closing of gates along with a hydro-generation schedule.

  5. Evaluation of precipitation forecasts from 3D-Var and hybrid GSI-based system during Indian summer monsoon 2015

    NASA Astrophysics Data System (ADS)

    Singh, Sanjeev Kumar; Prasad, V. S.

    2018-02-01

    This paper presents a systematic investigation of medium-range rainfall forecasts from two versions of the National Centre for Medium Range Weather Forecasting (NCMRWF)-Global Forecast System based on three-dimensional variational (3D-Var) and hybrid analysis system namely, NGFS and HNGFS, respectively, during Indian summer monsoon (June-September) 2015. The NGFS uses gridpoint statistical interpolation (GSI) 3D-Var data assimilation system, whereas HNGFS uses hybrid 3D ensemble-variational scheme. The analysis includes the evaluation of rainfall fields and comparisons of rainfall using statistical score such as mean precipitation, bias, correlation coefficient, root mean square error and forecast improvement factor. In addition to these, categorical scores like Peirce skill score and bias score are also computed to describe particular aspects of forecasts performance. The comparison results of mean precipitation reveal that both the versions of model produced similar large-scale feature of Indian summer monsoon rainfall for day-1 through day-5 forecasts. The inclusion of fully flow-dependent background error covariance significantly improved the wet biases in HNGFS over the Indian Ocean. The forecast improvement factor and Peirce skill score in the HNGFS have also found better than NGFS for day-1 through day-5 forecasts.

  6. Assessment of Forecast Sensitivity to Observation and Its Application to Satellite Radiances

    NASA Astrophysics Data System (ADS)

    Ide, K.

    2017-12-01

    The Forecast sensitivity to observation provides practical and useful metric for the assessment of observation impact without conducting computationally intensive data denial experiments. Quite often complex data assimilation systems use a simplified version of the forecast sensitivity formulation based on ensembles. In this talk, we first present the comparison of forecast sensitivity for 4DVar, Hybrid-4DEnVar, and 4DEnKF with or without such simplifications using a highly nonlinear model. We then present the results of ensemble forecast sensitivity to satellite radiance observations for Hybrid-4DEnVart using NOAA's Global Forecast System.

  7. The meta-Gaussian Bayesian Processor of forecasts and associated preliminary experiments

    NASA Astrophysics Data System (ADS)

    Chen, Fajing; Jiao, Meiyan; Chen, Jing

    2013-04-01

    Public weather services are trending toward providing users with probabilistic weather forecasts, in place of traditional deterministic forecasts. Probabilistic forecasting techniques are continually being improved to optimize available forecasting information. The Bayesian Processor of Forecast (BPF), a new statistical method for probabilistic forecast, can transform a deterministic forecast into a probabilistic forecast according to the historical statistical relationship between observations and forecasts generated by that forecasting system. This technique accounts for the typical forecasting performance of a deterministic forecasting system in quantifying the forecast uncertainty. The meta-Gaussian likelihood model is suitable for a variety of stochastic dependence structures with monotone likelihood ratios. The meta-Gaussian BPF adopting this kind of likelihood model can therefore be applied across many fields, including meteorology and hydrology. The Bayes theorem with two continuous random variables and the normal-linear BPF are briefly introduced. The meta-Gaussian BPF for a continuous predictand using a single predictor is then presented and discussed. The performance of the meta-Gaussian BPF is tested in a preliminary experiment. Control forecasts of daily surface temperature at 0000 UTC at Changsha and Wuhan stations are used as the deterministic forecast data. These control forecasts are taken from ensemble predictions with a 96-h lead time generated by the National Meteorological Center of the China Meteorological Administration, the European Centre for Medium-Range Weather Forecasts, and the US National Centers for Environmental Prediction during January 2008. The results of the experiment show that the meta-Gaussian BPF can transform a deterministic control forecast of surface temperature from any one of the three ensemble predictions into a useful probabilistic forecast of surface temperature. These probabilistic forecasts quantify the uncertainty of the control forecast; accordingly, the performance of the probabilistic forecasts differs based on the source of the underlying deterministic control forecasts.

  8. Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoff, Thomas Hoff; Kankiewicz, Adam

    Four major research objectives were completed over the course of this study. Three of the objectives were to evaluate three, new, state-of-the-art solar irradiance forecasting models. The fourth objective was to improve the California Independent System Operator’s (ISO) load forecasts by integrating behind-the-meter (BTM) PV forecasts. The three, new, state-of-the-art solar irradiance forecasting models included: the infrared (IR) satellite-based cloud motion vector (CMV) model; the WRF-SolarCA model and variants; and the Optimized Deep Machine Learning (ODML)-training model. The first two forecasting models targeted known weaknesses in current operational solar forecasts. They were benchmarked against existing operational numerical weather prediction (NWP)more » forecasts, visible satellite CMV forecasts, and measured PV plant power production. IR CMV, WRF-SolarCA, and ODML-training forecasting models all improved the forecast to a significant degree. Improvements varied depending on time of day, cloudiness index, and geographic location. The fourth objective was to demonstrate that the California ISO’s load forecasts could be improved by integrating BTM PV forecasts. This objective represented the project’s most exciting and applicable gains. Operational BTM forecasts consisting of 200,000+ individual rooftop PV forecasts were delivered into the California ISO’s real-time automated load forecasting (ALFS) environment. They were then evaluated side-by-side with operational load forecasts with no BTM-treatment. Overall, ALFS-BTM day-ahead (DA) forecasts performed better than baseline ALFS forecasts when compared to actual load data. Specifically, ALFS-BTM DA forecasts were observed to have the largest reduction of error during the afternoon on cloudy days. Shorter term 30 minute-ahead ALFS-BTM forecasts were shown to have less error under all sky conditions, especially during the morning time periods when traditional load forecasts often experience their largest uncertainties. This work culminated in a GO decision being made by the California ISO to include zonal BTM forecasts into its operational load forecasting system. The California ISO’s Manager of Short Term Forecasting, Jim Blatchford, summarized the research performed in this project with the following quote: “The behind-the-meter (BTM) California ISO region forecasting research performed by Clean Power Research and sponsored by the Department of Energy’s SUNRISE program was an opportunity to verify value and demonstrate improved load forecast capability. In 2016, the California ISO will be incorporating the BTM forecast into the Hour Ahead and Day Ahead load models to look for improvements in the overall load forecast accuracy as BTM PV capacity continues to grow.”« less

  9. NCEP Data Products

    Science.gov Websites

    Image of NCEP Logo WHERE AMERICA'S CLIMATE AND WEATHER SERVICES BEGIN Inventory of Data Products on Generated Products Image of horizontal rule Global Forecast System (GFS) GFS Ensemble Forecast System (GEFS of horizontal rule External Products Image of horizontal rule Canadian Ensemble Forecast System

  10. Development and Use of the Hydrologic Ensemble Forecast System by the National Weather Service to Support the New York City Water Supply

    NASA Astrophysics Data System (ADS)

    Shedd, R.; Reed, S. M.; Porter, J. H.

    2015-12-01

    The National Weather Service (NWS) has been working for several years on the development of the Hydrologic Ensemble Forecast System (HEFS). The objective of HEFS is to provide ensemble river forecasts incorporating the best precipitation and temperature forcings at any specific time horizon. For the current implementation, this includes the Global Ensemble Forecast System (GEFS) and the Climate Forecast System (CFSv2). One of the core partners that has been working with the NWS since the beginning of the development phase of HEFS is the New York City Department of Environmental Protection (NYCDEP) which is responsible for the complex water supply system for New York City. The water supply system involves a network of reservoirs in both the Delaware and Hudson River basins. At the same time that the NWS was developing HEFS, NYCDEP was working on enhancing the operations of their water supply reservoirs through the development of a new Operations Support Tool (OST). OST is designed to guide reservoir system operations to ensure an adequate supply of high-quality drinking water for the city, as well as to meet secondary objectives for reaches downstream of the reservoirs assuming the primary water supply goals can be met. These secondary objectives include fisheries and ecosystem support, enhanced peak flow attenuation beyond that provided natively by the reservoirs, salt front management, and water supply for other cities. Since January 2014, the NWS Northeast and Middle Atlantic River Forecast Centers have provided daily one year forecasts from HEFS to NYCDEP. OST ingests these forecasts, couples them with near-real-time environmental and reservoir system data, and drives models of the water supply system. The input of ensemble forecasts results in an ensemble of model output, from which information on the range and likelihood of possible future system states can be extracted. This type of probabilistic information provides system managers with additional information not available from deterministic forecasts and allows managers to better assess risk, and provides greater context for decision-making than has been available in the past. HEFS has allowed NYCDEP water supply managers to make better decisions on reservoir operations than they likely would have in the past, using only deterministic forecasts.

  11. An Evaluation of QuikSCAT data over Tropical Cyclones as Determined in an Operational Environment

    NASA Astrophysics Data System (ADS)

    Hawkins, J. D.; Edson, R. T.

    2001-12-01

    QuikSCAT data over all global tropical cyclones were examined during the past 3 1/2 years in conjunction with the development of a user¡_s guide to the forecasters at the Joint Typhoon Warning Center, Pearl Harbor, Hawaii. The active microwave scatterometer has greatly enhanced the forecaster's ability to evaluate surface winds over the data poor regions of the tropical oceans. The QuikSCAT scatterometer¡_s unique ability to provide both wind speed and direction on a nearly bi-daily basis has greatly increased the forecaster¡_s near real-time knowledge of tropical cyclone genesis, intensification potential, outer wind structure, and a ¡rminimum estimate¡_ for a tropical cyclone¡_s maximum sustained winds. Scatterometer data were compared with data available to the forecasters in a near real-time environment including ship, land and buoy reports. In addition, comparisons were also made with aircraft measurements (for Atlantic and East Pacific systems), numerical weather model wind fields, and various remote sensing techniques. Wind speeds were found to be extremely useful, especially for the radius of gale force winds. However, in rain-contaminated areas, light winds were often greatly overestimated while in heavy winds, wind speeds were often quite reasonable if not slightly underestimated. The largest issues are still focused on the correct wind direction selection. In these cases, rain-flagged wind vector cells greatly affected the results from the direction ambiguity selection procedure. The ambiguity selection algorithm often had difficulties resolving a circulation center when large areas of the tropical cyclone¡_s center were flagged. Often a block of winds would occur perpendicular to the swath irregardless of the circulation¡_s position. These winds caused considerable confusion for the operational forecasters. However, it was determined that in many cases, an accurate center position could still be obtained by using methods to incorporate the more accurate wind speeds and the outer wind field vectors that were not as seriously affected. Quantitative results and comparisons will be shown in this presentation. In addition, guides to the operational forecasters to determine system centers inspite of the ambiguity selection problems will also be discussed.

  12. Estimating the state of a geophysical system with sparse observations: time delay methods to achieve accurate initial states for prediction

    NASA Astrophysics Data System (ADS)

    An, Zhe; Rey, Daniel; Ye, Jingxin; Abarbanel, Henry D. I.

    2017-01-01

    The problem of forecasting the behavior of a complex dynamical system through analysis of observational time-series data becomes difficult when the system expresses chaotic behavior and the measurements are sparse, in both space and/or time. Despite the fact that this situation is quite typical across many fields, including numerical weather prediction, the issue of whether the available observations are "sufficient" for generating successful forecasts is still not well understood. An analysis by Whartenby et al. (2013) found that in the context of the nonlinear shallow water equations on a β plane, standard nudging techniques require observing approximately 70 % of the full set of state variables. Here we examine the same system using a method introduced by Rey et al. (2014a), which generalizes standard nudging methods to utilize time delayed measurements. We show that in certain circumstances, it provides a sizable reduction in the number of observations required to construct accurate estimates and high-quality predictions. In particular, we find that this estimate of 70 % can be reduced to about 33 % using time delays, and even further if Lagrangian drifter locations are also used as measurements.

  13. Impact of Lidar Wind Sounding on Mesoscale Forecast

    NASA Technical Reports Server (NTRS)

    Miller, Timothy L.; Chou, Shih-Hung; Goodman, H. Michael (Technical Monitor)

    2001-01-01

    An Observing System Simulation Experiment (OSSE) was conducted to study the impact of airborne lidar wind sounding on mesoscale weather forecast. A wind retrieval scheme, which interpolates wind data from a grid data system, simulates the retrieval of wind profile from a satellite lidar system. A mesoscale forecast system based on the PSU/NCAR MM5 model is developed and incorporated the assimilation of the retrieved line-of-sight wind. To avoid the "identical twin" problem, the NCEP reanalysis data is used as our reference "nature" atmosphere. The simulated space-based lidar wind observations were retrieved by interpolating the NCEP values to the observation locations. A modified dataset obtained by smoothing the NCEP dataset was used as the initial state whose forecast was sought to be improved by assimilating the retrieved lidar observations. Forecasts using wind profiles with various lidar instrument parameters has been conducted. The results show that to significantly improve the mesoscale forecast the satellite should fly near the storm center with large scanning radius. Increasing lidar firing rate also improves the forecast. Cloud cover and lack of aerosol degrade the quality of the lidar wind data and, subsequently, the forecast.

  14. A Load-Based Temperature Prediction Model for Anomaly Detection

    NASA Astrophysics Data System (ADS)

    Sobhani, Masoud

    Electric load forecasting, as a basic requirement for the decision-making in power utilities, has been improved in various aspects in the past decades. Many factors may affect the accuracy of the load forecasts, such as data quality, goodness of the underlying model and load composition. Due to the strong correlation between the input variables (e.g., weather and calendar variables) and the load, the quality of input data plays a vital role in forecasting practices. Even if the forecasting model were able to capture most of the salient features of the load, a low quality input data may result in inaccurate forecasts. Most of the data cleansing efforts in the load forecasting literature have been devoted to the load data. Few studies focused on weather data cleansing for load forecasting. This research proposes an anomaly detection method for the temperature data. The method consists of two components: a load-based temperature prediction model and a detection technique. The effectiveness of the proposed method is demonstrated through two case studies: one based on the data from the Global Energy Forecasting Competition 2014, and the other based on the data published by ISO New England. The results show that by removing the detected observations from the original input data, the final load forecast accuracy is enhanced.

  15. Integrating observation and statistical forecasts over sub-Saharan Africa to support Famine Early Warning

    USGS Publications Warehouse

    Funk, Chris; Verdin, James P.; Husak, Gregory

    2007-01-01

    Famine early warning in Africa presents unique challenges and rewards. Hydrologic extremes must be tracked and anticipated over complex and changing climate regimes. The successful anticipation and interpretation of hydrologic shocks can initiate effective government response, saving lives and softening the impacts of droughts and floods. While both monitoring and forecast technologies continue to advance, discontinuities between monitoring and forecast systems inhibit effective decision making. Monitoring systems typically rely on high resolution satellite remote-sensed normalized difference vegetation index (NDVI) and rainfall imagery. Forecast systems provide information on a variety of scales and formats. Non-meteorologists are often unable or unwilling to connect the dots between these disparate sources of information. To mitigate these problem researchers at UCSB's Climate Hazard Group, NASA GIMMS and USGS/EROS are implementing a NASA-funded integrated decision support system that combines the monitoring of precipitation and NDVI with statistical one-to-three month forecasts. We present the monitoring/forecast system, assess its accuracy, and demonstrate its application in food insecure sub-Saharan Africa.

  16. Time to death and the forecasting of macro-level health care expenditures: some further considerations.

    PubMed

    van Baal, Pieter H; Wong, Albert

    2012-12-01

    Although the effect of time to death (TTD) on health care expenditures (HCE) has been investigated using individual level data, the most profound implications of TTD have been for the forecasting of macro-level HCE. Here we estimate the TTD model using macro-level data from the Netherlands consisting of mortality rates and age- and gender-specific per capita health expenditures for the years 1981-2007. Forecasts for the years 2008-2020 of this macro-level TTD model were compared to forecasts that excluded TTD. Results revealed that the effect of TTD on HCE in our macro model was similar to those found in micro-econometric studies. As the inclusion of TTD pushed growth rate estimates from unidentified causes upwards, however, the two models' forecasts of HCE for the 2008-2020 were similar. We argue that including TTD, if modeled correctly, does not lower forecasts of HCE. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. An Approach to Assess Observation Impact Based on Observation-Minus-Forecast Residuals

    NASA Technical Reports Server (NTRS)

    Todling, Ricardo

    2009-01-01

    Langland and Baker (2004) introduced an approach to assess the impact of observations on the forecasts. In that, a state-space aspect of the forecast is defined and a procedure is derived that relates changes in the aspect with changes in the initial conditions associated with the assimilation of observations) ultimately providing information about the impact of individual observations on the forecast. Some features of the approach are to be noted. The typical choice of forecast aspect employed in related works is rather arbitrary and leads to an incomplete assessment of the observing system. Furthermore, the state-space forecast aspect requires availability of a verification state that should ideally be uncorrelated with the forecast but in practice is not. Lastly, the approach involves the adjoint operator of the entire data assimilation system and as such it is constrained by the validity of this operator. In this presentation, an observation-space metric is used that, for a relatively time-homogeneous observing system, allows inferring observation impact on the forecast without some of the limitations above. Specifically, using observation-minus-forecast residuals leads to an approach with the following features: (i) it suggests a rather natural choice of forecast aspect, directly linked to the analysis system and providing full assessment of the observations; (ii) it naturally avoids introducing undesirable correlations in the forecast aspect by verifying against the observations; and (iii) it does not involve linearization and use of adjoints; therefore being applicable to any length of forecast. The state and observation-space approaches might be complementary to some degree, and involve different limitations and complexities. Illustrations are given using the NASA GEOS-5 data.

  18. Short-term sea ice forecasting: An assessment of ice concentration and ice drift forecasts using the U.S. Navy's Arctic Cap Nowcast/Forecast System

    NASA Astrophysics Data System (ADS)

    Hebert, David A.; Allard, Richard A.; Metzger, E. Joseph; Posey, Pamela G.; Preller, Ruth H.; Wallcraft, Alan J.; Phelps, Michael W.; Smedstad, Ole Martin

    2015-12-01

    In this study the forecast skill of the U.S. Navy operational Arctic sea ice forecast system, the Arctic Cap Nowcast/Forecast System (ACNFS), is presented for the period February 2014 to June 2015. ACNFS is designed to provide short term, 1-7 day forecasts of Arctic sea ice and ocean conditions. Many quantities are forecast by ACNFS; the most commonly used include ice concentration, ice thickness, ice velocity, sea surface temperature, sea surface salinity, and sea surface velocities. Ice concentration forecast skill is compared to a persistent ice state and historical sea ice climatology. Skill scores are focused on areas where ice concentration changes by ±5% or more, and are therefore limited to primarily the marginal ice zone. We demonstrate that ACNFS forecasts are skilful compared to assuming a persistent ice state, especially beyond 24 h. ACNFS is also shown to be particularly skilful compared to a climatologic state for forecasts up to 102 h. Modeled ice drift velocity is compared to observed buoy data from the International Arctic Buoy Programme. A seasonal bias is shown where ACNFS is slower than IABP velocity in the summer months and faster in the winter months. In February 2015, ACNFS began to assimilate a blended ice concentration derived from Advanced Microwave Scanning Radiometer 2 (AMSR2) and the Interactive Multisensor Snow and Ice Mapping System (IMS). Preliminary results show that assimilating AMSR2 blended with IMS improves the short-term forecast skill and ice edge location compared to the independently derived National Ice Center Ice Edge product.

  19. The Rise of Complexity in Flood Forecasting: Opportunities, Challenges and Tradeoffs

    NASA Astrophysics Data System (ADS)

    Wood, A. W.; Clark, M. P.; Nijssen, B.

    2017-12-01

    Operational flood forecasting is currently undergoing a major transformation. Most national flood forecasting services have relied for decades on lumped, highly calibrated conceptual hydrological models running on local office computing resources, providing deterministic streamflow predictions at gauged river locations that are important to stakeholders and emergency managers. A variety of recent technological advances now make it possible to run complex, high-to-hyper-resolution models for operational hydrologic prediction over large domains, and the US National Weather Service is now attempting to use hyper-resolution models to create new forecast services and products. Yet other `increased-complexity' forecasting strategies also exist that pursue different tradeoffs between model complexity (i.e., spatial resolution, physics) and streamflow forecast system objectives. There is currently a pressing need for a greater understanding in the hydrology community of the opportunities, challenges and tradeoffs associated with these different forecasting approaches, and for a greater participation by the hydrology community in evaluating, guiding and implementing these approaches. Intermediate-resolution forecast systems, for instance, use distributed land surface model (LSM) physics but retain the agility to deploy ensemble methods (including hydrologic data assimilation and hindcast-based post-processing). Fully coupled numerical weather prediction (NWP) systems, another example, use still coarser LSMs to produce ensemble streamflow predictions either at the model scale or after sub-grid scale runoff routing. Based on the direct experience of the authors and colleagues in research and operational forecasting, this presentation describes examples of different streamflow forecast paradigms, from the traditional to the recent hyper-resolution, to illustrate the range of choices facing forecast system developers. We also discuss the degree to which the strengths and weaknesses of each strategy map onto the requirements for different types of forecasting services (e.g., flash flooding, river flooding, seasonal water supply prediction).

  20. Results from Evaluations of Gridded CrIS/ATMS Visualization for Operational Forecasting

    NASA Astrophysics Data System (ADS)

    Stevens, E.; Zavodsky, B.; Dostalek, J.; Berndt, E.; Hoese, D.; White, K.; Bowlan, M.; Gambacorta, A.; Wheeler, A.; Haisley, C.; Smith, N.

    2017-12-01

    For forecast challenges which require diagnosis of the three-dimensional atmosphere, current observations, such as radiosondes, may not offer enough information. Satellite data can help fill the spatial and temporal gaps between soundings. In particular, temperature and moisture retrievals from the NOAA-Unique Combined Atmospheric Processing System (NUCAPS), which combines infrared soundings from the Cross-track Infrared Sounder (CrIS) with the Advanced Technology Microwave Sounder (ATMS) to retrieve profiles of temperature and moisture. NUCAPS retrievals are available in a wide swath with approximately 45-km spatial resolution at nadir and a local Equator crossing time of 1:30 A.M./P.M. enabling three-dimensional observations at asynoptic times. This abstract focuses on evaluation of a new visualization for NUCAPS within the operational National Weather Service Advanced Weather Interactive Processing System (AWIPS) decision support system that allows these data to be viewed in gridded horizontal maps or vertical cross sections. Two testbed evaluations have occurred in 2017: a Cold Air Aloft (CAA) evaluation at the Alaska Center Weather Service Unit and a Convective Potential evaluation at the NOAA Hazardous Weather Testbed. For CAA, at high latitudes during the winter months, the air at altitudes used by passenger and cargo aircraft can reach temperatures cold enough (-65°C) to begin to freeze jet fuel, and Gridded NUCAPS visualization was shown to help fill in the spatial and temporal gaps in data-sparse areas across the Alaskan airspace by identifying the 3D spatial extent of cold air features. For convective potential, understanding the vertical distribution of temperature and moisture is also very important for forecasting the potential for convection related to severe weather such as lightning, large hail, and tornadoes. The Gridded NUCAPS visualization was shown to aid forecasters in understanding temperature and moisture characteristics at critical levels for determining cap strength and instability. In both cases, when the products are used in conjunction with numerical output to reinforce confidence in model products or provide an alternative observation if forecasters are not sure the model is properly representing the atmosphere.

  1. Evaluation of Wind Power Forecasts from the Vermont Weather Analytics Center and Identification of Improvements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Optis, Michael; Scott, George N.; Draxl, Caroline

    The goal of this analysis was to assess the wind power forecast accuracy of the Vermont Weather Analytics Center (VTWAC) forecast system and to identify potential improvements to the forecasts. Based on the analysis at Georgia Mountain, the following recommendations for improving forecast performance were made: 1. Resolve the significant negative forecast bias in February-March 2017 (50% underprediction on average) 2. Improve the ability of the forecast model to capture the strong diurnal cycle of wind power 3. Add ability for forecast model to assess internal wake loss, particularly at sites where strong diurnal shifts in wind direction are present.more » Data availability and quality limited the robustness of this forecast assessment. A more thorough analysis would be possible given a longer period of record for the data (at least one full year), detailed supervisory control and data acquisition data for each wind plant, and more detailed information on the forecast system input data and methodologies.« less

  2. Will the NP workforce grow in the future? New forecasts and implications for healthcare delivery.

    PubMed

    Auerbach, David I

    2012-07-01

    The nurse practitioner (NP) workforce has been a focus of considerable policy interest recently, particularly as the Patient Protection and Affordable Care Act may place additional demands on the healthcare professional workforce. The NP workforce has been growing rapidly in recent years, but fluctuation in enrollments in the past decades has resulted in a wide range of forecasts. To forecast the future NP workforce using a novel method that has been applied to the registered nurse and physician workforces and is robust to fluctuating enrollment trends. An age-cohort regression-based model was applied to the current and historical workforce, which was then forecasted to future years assuming stable age effects and a continuation of recent cohort trends. A total of 6798 NPs who were identified as having completed NP training in the National Sample Survey of Registered Nurses between 1992 and 2008. The future workforce is projected to grow to 244,000 in 2025, an increase of 94% from 128,000 in 2008. If NPs are defined more restrictively as those who self-identify their position title as "NP," supply is projected to grow from 86,000 to 198,000 (130%) over this period. The large projected increase in NP supply is higher and more grounded than other forecasts and has several implications: NPs will likely fulfill a substantial amount of future demand for care. Furthermore, as the ratio of NPs to Nurse Practitioners to physicians will surely grow, there could be implications for quality of care and for the configuration of future care delivery systems.

  3. Estimating the Value of Improved Distributed Photovoltaic Adoption Forecasts for Utility Resource Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gagnon, Pieter; Barbose, Galen L.; Stoll, Brady

    Misforecasting the adoption of customer-owned distributed photovoltaics (DPV) can have operational and financial implications for utilities; forecasting capabilities can be improved, but generally at a cost. This paper informs this decision-space by using a suite of models to explore the capacity expansion and operation of the Western Interconnection over a 15-year period across a wide range of DPV growth rates and misforecast severities. The system costs under a misforecast are compared against the costs under a perfect forecast, to quantify the costs of misforecasting. Using a simplified probabilistic method applied to these modeling results, an analyst can make a first-ordermore » estimate of the financial benefit of improving a utility’s forecasting capabilities, and thus be better informed about whether to make such an investment. For example, under our base assumptions, a utility with 10 TWh per year of retail electric sales who initially estimates that DPV growth could range from 2% to 7.5% of total generation over the next 15 years could expect total present-value savings of approximately $4 million if they could reduce the severity of misforecasting to within ±25%. Utility resource planners can compare those savings against the costs needed to achieve that level of precision, to guide their decision on whether to make an investment in tools or resources.« less

  4. The Utilization of the Behavioral Sciences in Long Range Forecasting and Policy Planning Volume I. Appendices

    DTIC Science & Technology

    1976-08-01

    foreign policy dynamics, the structure of a theory cannot in {.eneral be derived from statistical analysis of time series data ( Brunner (1071), Thorson...and where such scientific knowledge la applicable. Recent attention in theory and research on the bureaucratic, handling of foreign policy...process. Some of ^.z element» of thase concerns can be made explicit if we introduce modern systems theories which seek to treat organizations as

  5. Affective Forecasting and Medication Decision Making in Breast Cancer Prevention

    PubMed Central

    Hoerger, Michael; Scherer, Laura D.; Fagerlin, Angela

    2016-01-01

    Objectives Over two million American women at elevated risk of breast cancer are eligible to take chemoprevention medications such as Tamoxifen and Raloxifene, which can cut in half the risk of developing breast cancer but also have a number of side effects. Historically, very few at-risk women have opted to use chemoprevention medications. Affective forecasting theory suggests that people may avoid these medications if they expect taking them to increase their health-related stress. Methods After receiving an individually tailored decision aid that provided personalized information about the risks and benefits of these medications, 661 women at elevated risk of breast cancer were asked to make three affective forecasts, predicting what their level of health-related stress would be if taking Tamoxifen, Raloxifene, or neither medication. They also completed measures of decisional preferences and intentions, and at a three-month follow-up reported on whether or not they had decided to use either medication. Results On the affective forecasting items, very few women (< 10%) expected the medications to reduce their health-related stress, relative to no medication at all. Participants with more negative affective forecasts about taking a chemoprevention medication expressed lower preferences and intentions for using the medications (Cohen’s ds from 0.74 to 0.79) and were more likely to have opted against using medication at follow-up (odds ratios from 1.34 to 2.66). Conclusions These findings suggest that affective forecasting may explain avoidance of breast cancer chemoprevention medications. They also highlight the need for more research aimed at integrating emotional content into decision aids. PMID:26867042

  6. VERIFICATION OF SURFACE LAYER OZONE FORECASTS IN THE NOAA/EPA AIR QUALITY FORECAST SYSTEM IN DIFFERENT REGIONS UNDER DIFFERENT SYNOPTIC SCENARIOS

    EPA Science Inventory

    An air quality forecast (AQF) system has been established at NOAA/NCEP since 2003 as a collaborative effort of NOAA and EPA. The system is based on NCEP's Eta mesoscale meteorological model and EPA's CMAQ air quality model (Davidson et al, 2004). The vision behind this system is ...

  7. Satellite based Ocean Forecasting, the SOFT project

    NASA Astrophysics Data System (ADS)

    Stemmann, L.; Tintoré, J.; Moneris, S.

    2003-04-01

    The knowledge of future oceanic conditions would have enormous impact on human marine related areas. For such reasons, a number of international efforts are being carried out to obtain reliable and manageable ocean forecasting systems. Among the possible techniques that can be used to estimate the near future states of the ocean, an ocean forecasting system based on satellite imagery is developped through the Satelitte based Ocean ForecasTing project (SOFT). SOFT, established by the European Commission, considers the development of a forecasting system of the ocean space-time variability based on satellite data by using Artificial Intelligence techniques. This system will be merged with numerical simulation approaches, via assimilation techniques, to get a hybrid SOFT-numerical forecasting system of improved performance. The results of the project will provide efficient forecasting of sea-surface temperature structures, currents, dynamic height, and biological activity associated to chlorophyll fields. All these quantities could give valuable information on the planning and management of human activities in marine environments such as navigation, fisheries, pollution control, or coastal management. A detailed identification of present or new needs and potential end-users concerned by such an operational tool is being performed. The project would study solutions adapted to these specific needs.

  8. Developing Environmental Scanning/Forecasting Systems To Augment Community College Planning.

    ERIC Educational Resources Information Center

    Morrison, James L.; Held, William G.

    A description is provided of a conference session that was conducted to explore the structure and function of an environmental scanning/forecasting system that could be used in a community college to facilitate planning. Introductory comments argue that a college that establishes an environmental scanning and forecasting system is able to identify…

  9. Flash-flood early warning using weather radar data: from nowcasting to forecasting

    NASA Astrophysics Data System (ADS)

    Liechti, Katharina; Panziera, Luca; Germann, Urs; Zappa, Massimiliano

    2013-04-01

    In our study we explore the limits of radar-based forecasting for hydrological runoff prediction. Two novel probabilistic radar-based forecasting chains for flash-flood early warning are investigated in three catchments in the Southern Swiss Alps and set in relation to deterministic discharge forecast for the same catchments. The first probabilistic radar-based forecasting chain is driven by NORA (Nowcasting of Orographic Rainfall by means of Analogues), an analogue-based heuristic nowcasting system to predict orographic rainfall for the following eight hours. The second probabilistic forecasting system evaluated is REAL-C2, where the numerical weather prediction COSMO-2 is initialized with 25 different initial conditions derived from a four-day nowcast with the radar ensemble REAL. Additionally, three deterministic forecasting chains were analysed. The performance of these five flash-flood forecasting systems was analysed for 1389 hours between June 2007 and December 2010 for which NORA forecasts were issued, due to the presence of orographic forcing. We found a clear preference for the probabilistic approach. Discharge forecasts perform better when forced by NORA rather than by a persistent radar QPE for lead times up to eight hours and for all discharge thresholds analysed. The best results were, however, obtained with the REAL-C2 forecasting chain, which was also remarkably skilful even with the highest thresholds. However, for regions where REAL cannot be produced, NORA might be an option for forecasting events triggered by orographic forcing.

  10. Flash-flood early warning using weather radar data: from nowcasting to forecasting

    NASA Astrophysics Data System (ADS)

    Liechti, K.; Panziera, L.; Germann, U.; Zappa, M.

    2013-01-01

    This study explores the limits of radar-based forecasting for hydrological runoff prediction. Two novel probabilistic radar-based forecasting chains for flash-flood early warning are investigated in three catchments in the Southern Swiss Alps and set in relation to deterministic discharge forecast for the same catchments. The first probabilistic radar-based forecasting chain is driven by NORA (Nowcasting of Orographic Rainfall by means of Analogues), an analogue-based heuristic nowcasting system to predict orographic rainfall for the following eight hours. The second probabilistic forecasting system evaluated is REAL-C2, where the numerical weather prediction COSMO-2 is initialized with 25 different initial conditions derived from a four-day nowcast with the radar ensemble REAL. Additionally, three deterministic forecasting chains were analysed. The performance of these five flash-flood forecasting systems was analysed for 1389 h between June 2007 and December 2010 for which NORA forecasts were issued, due to the presence of orographic forcing. We found a clear preference for the probabilistic approach. Discharge forecasts perform better when forced by NORA rather than by a persistent radar QPE for lead times up to eight hours and for all discharge thresholds analysed. The best results were, however, obtained with the REAL-C2 forecasting chain, which was also remarkably skilful even with the highest thresholds. However, for regions where REAL cannot be produced, NORA might be an option for forecasting events triggered by orographic precipitation.

  11. Short-Term State Forecasting-Based Optimal Voltage Regulation in Distribution Systems: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Rui; Jiang, Huaiguang; Zhang, Yingchen

    2017-05-17

    A novel short-term state forecasting-based optimal power flow (OPF) approach for distribution system voltage regulation is proposed in this paper. An extreme learning machine (ELM) based state forecaster is developed to accurately predict system states (voltage magnitudes and angles) in the near future. Based on the forecast system states, a dynamically weighted three-phase AC OPF problem is formulated to minimize the voltage violations with higher penalization on buses which are forecast to have higher voltage violations in the near future. By solving the proposed OPF problem, the controllable resources in the system are optimally coordinated to alleviate the potential severemore » voltage violations and improve the overall voltage profile. The proposed approach has been tested in a 12-bus distribution system and simulation results are presented to demonstrate the performance of the proposed approach.« less

  12. Exploiting Domain Knowledge to Forecast Heating Oil Consumption

    NASA Astrophysics Data System (ADS)

    Corliss, George F.; Sakauchi, Tsuginosuke; Vitullo, Steven R.; Brown, Ronald H.

    2011-11-01

    The GasDay laboratory at Marquette University provides forecasts of energy consumption. One such service is the Heating Oil Forecaster, a service for a heating oil or propane delivery company. Accurate forecasts can help reduce the number of trucks and drivers while providing efficient inventory management by stretching the time between deliveries. Accurate forecasts help retain valuable customers. If a customer runs out of fuel, the delivery service incurs costs for an emergency delivery and often a service call. Further, the customer probably changes providers. The basic modeling is simple: Fit delivery amounts sk to cumulative Heating Degree Days (HDDk = Σmax(0,60 °F—daily average temperature)), with wind adjustment, for each delivery period: sk≈ŝk = β0+β1HDDk. For the first few deliveries, there is not enough data to provide a reliable estimate K = 1/β1 so we use Bayesian techniques with priors constructed from historical data. A fresh model is trained for each customer with each delivery, producing daily consumption forecasts using actual and forecast weather until the next delivery. In practice, a delivery may not fill the oil tank if the delivery truck runs out of oil or the automatic shut-off activates prematurely. Special outlier detection and recovery based on domain knowledge addresses this and other special cases. The error at each delivery is the difference between that delivery and the aggregate of daily forecasts using actual weather since the preceding delivery. Out-of-sample testing yields MAPE = 21.2% and an average error of 6.0% of tank capacity for Company A. The MAPE and an average error as a percentage of tank capacity for Company B are 31.5 % and 6.6 %, respectively. One heating oil delivery company who uses this forecasting service [1] reported instances of a customer running out of oil reduced from about 250 in 50,000 deliveries per year before contracting for our service to about 10 with our service. They delivered slightly more oil with 20 % fewer trucks and drivers, citing 250,000 annual savings in operational costs.

  13. Purposes and methods of scoring earthquake forecasts

    NASA Astrophysics Data System (ADS)

    Zhuang, J.

    2010-12-01

    There are two kinds of purposes in the studies on earthquake prediction or forecasts: one is to give a systematic estimation of earthquake risks in some particular region and period in order to give advice to governments and enterprises for the use of reducing disasters, the other one is to search for reliable precursors that can be used to improve earthquake prediction or forecasts. For the first case, a complete score is necessary, while for the latter case, a partial score, which can be used to evaluate whether the forecasts or predictions have some advantages than a well know model, is necessary. This study reviews different scoring methods for evaluating the performance of earthquake prediction and forecasts. Especially, the gambling scoring method, which is developed recently, shows its capacity in finding good points in an earthquake prediction algorithm or model that are not in a reference model, even if its overall performance is no better than the reference model.

  14. Regional early flood warning system: design and implementation

    NASA Astrophysics Data System (ADS)

    Chang, L. C.; Yang, S. N.; Kuo, C. L.; Wang, Y. F.

    2017-12-01

    This study proposes a prototype of the regional early flood inundation warning system in Tainan City, Taiwan. The AI technology is used to forecast multi-step-ahead regional flood inundation maps during storm events. The computing time is only few seconds that leads to real-time regional flood inundation forecasting. A database is built to organize data and information for building real-time forecasting models, maintaining the relations of forecasted points, and displaying forecasted results, while real-time data acquisition is another key task where the model requires immediately accessing rain gauge information to provide forecast services. All programs related database are constructed in Microsoft SQL Server by using Visual C# to extracting real-time hydrological data, managing data, storing the forecasted data and providing the information to the visual map-based display. The regional early flood inundation warning system use the up-to-date Web technologies driven by the database and real-time data acquisition to display the on-line forecasting flood inundation depths in the study area. The friendly interface includes on-line sequentially showing inundation area by Google Map, maximum inundation depth and its location, and providing KMZ file download of the results which can be watched on Google Earth. The developed system can provide all the relevant information and on-line forecast results that helps city authorities to make decisions during typhoon events and make actions to mitigate the losses.

  15. Evaluation of CMAQ and CAMx Ensemble Air Quality Forecasts during the 2015 MAPS-Seoul Field Campaign

    NASA Astrophysics Data System (ADS)

    Kim, E.; Kim, S.; Bae, C.; Kim, H. C.; Kim, B. U.

    2015-12-01

    The performance of Air quality forecasts during the 2015 MAPS-Seoul Field Campaign was evaluated. An forecast system has been operated to support the campaign's daily aircraft route decisions for airborne measurements to observe long-range transporting plume. We utilized two real-time ensemble systems based on the Weather Research and Forecasting (WRF)-Sparse Matrix Operator Kernel Emissions (SMOKE)-Comprehensive Air quality Model with extensions (CAMx) modeling framework and WRF-SMOKE- Community Multi_scale Air Quality (CMAQ) framework over northeastern Asia to simulate PM10 concentrations. Global Forecast System (GFS) from National Centers for Environmental Prediction (NCEP) was used to provide meteorological inputs for the forecasts. For an additional set of retrospective simulations, ERA Interim Reanalysis from European Centre for Medium-Range Weather Forecasts (ECMWF) was also utilized to access forecast uncertainties from the meteorological data used. Model Inter-Comparison Study for Asia (MICS-Asia) and National Institute of Environment Research (NIER) Clean Air Policy Support System (CAPSS) emission inventories are used for foreign and domestic emissions, respectively. In the study, we evaluate the CMAQ and CAMx model performance during the campaign by comparing the results to the airborne and surface measurements. Contributions of foreign and domestic emissions are estimated using a brute force method. Analyses on model performance and emissions will be utilized to improve air quality forecasts for the upcoming KORUS-AQ field campaign planned in 2016.

  16. On the reliability of seasonal climate forecasts.

    PubMed

    Weisheimer, A; Palmer, T N

    2014-07-06

    Seasonal climate forecasts are being used increasingly across a range of application sectors. A recent UK governmental report asked: how good are seasonal forecasts on a scale of 1-5 (where 5 is very good), and how good can we expect them to be in 30 years time? Seasonal forecasts are made from ensembles of integrations of numerical models of climate. We argue that 'goodness' should be assessed first and foremost in terms of the probabilistic reliability of these ensemble-based forecasts; reliable inputs are essential for any forecast-based decision-making. We propose that a '5' should be reserved for systems that are not only reliable overall, but where, in particular, small ensemble spread is a reliable indicator of low ensemble forecast error. We study the reliability of regional temperature and precipitation forecasts of the current operational seasonal forecast system of the European Centre for Medium-Range Weather Forecasts, universally regarded as one of the world-leading operational institutes producing seasonal climate forecasts. A wide range of 'goodness' rankings, depending on region and variable (with summer forecasts of rainfall over Northern Europe performing exceptionally poorly) is found. Finally, we discuss the prospects of reaching '5' across all regions and variables in 30 years time.

  17. A national-scale seasonal hydrological forecast system: development and evaluation over Britain

    NASA Astrophysics Data System (ADS)

    Bell, Victoria A.; Davies, Helen N.; Kay, Alison L.; Brookshaw, Anca; Scaife, Adam A.

    2017-09-01

    Skilful winter seasonal predictions for the North Atlantic circulation and northern Europe have now been demonstrated and the potential for seasonal hydrological forecasting in the UK is now being explored. One of the techniques being used combines seasonal rainfall forecasts provided by operational weather forecast systems with hydrological modelling tools to provide estimates of seasonal mean river flows up to a few months ahead. The work presented here shows how spatial information contained in a distributed hydrological model typically requiring high-resolution (daily or better) rainfall data can be used to provide an initial condition for a much simpler forecast model tailored to use low-resolution monthly rainfall forecasts. Rainfall forecasts (hindcasts) from the GloSea5 model (1996 to 2009) are used to provide the first assessment of skill in these national-scale flow forecasts. The skill in the combined modelling system is assessed for different seasons and regions of Britain, and compared to what might be achieved using other approaches such as use of an ensemble of historical rainfall in a hydrological model, or a simple flow persistence forecast. The analysis indicates that only limited forecast skill is achievable for Spring and Summer seasonal hydrological forecasts; however, Autumn and Winter flows can be reasonably well forecast using (ensemble mean) rainfall forecasts based on either GloSea5 forecasts or historical rainfall (the preferred type of forecast depends on the region). Flow forecasts using ensemble mean GloSea5 rainfall perform most consistently well across Britain, and provide the most skilful forecasts overall at the 3-month lead time. Much of the skill (64 %) in the 1-month ahead seasonal flow forecasts can be attributed to the hydrological initial condition (particularly in regions with a significant groundwater contribution to flows), whereas for the 3-month ahead lead time, GloSea5 forecasts account for ˜ 70 % of the forecast skill (mostly in areas of high rainfall to the north and west) and only 30 % of the skill arises from hydrological memory (typically groundwater-dominated areas). Given the high spatial heterogeneity in typical patterns of UK rainfall and evaporation, future development of skilful spatially distributed seasonal forecasts could lead to substantial improvements in seasonal flow forecast capability, potentially benefitting practitioners interested in predicting hydrological extremes, not only in the UK but also across Europe.

  18. Improving medium-range and seasonal hydroclimate forecasts in the southeast USA

    NASA Astrophysics Data System (ADS)

    Tian, Di

    Accurate hydro-climate forecasts are important for decision making by water managers, agricultural producers, and other stake holders. Numerical weather prediction models and general circulation models may have potential for improving hydro-climate forecasts at different scales. In this study, forecast analogs of the Global Forecast System (GFS) and Global Ensemble Forecast System (GEFS) based on different approaches were evaluated for medium-range reference evapotranspiration (ETo), irrigation scheduling, and urban water demand forecasts in the southeast United States; the Climate Forecast System version 2 (CFSv2) and the North American national multi-model ensemble (NMME) were statistically downscaled for seasonal forecasts of ETo, precipitation (P) and 2-m temperature (T2M) at the regional level. The GFS mean temperature (Tmean), relative humidity, and wind speed (Wind) reforecasts combined with the climatology of Reanalysis 2 solar radiation (Rs) produced higher skill than using the direct GFS output only. Constructed analogs showed slightly higher skill than natural analogs for deterministic forecasts. Both irrigation scheduling driven by the GEFS-based ETo forecasts and GEFS-based ETo forecast skill were generally positive up to one week throughout the year. The GEFS improved ETo forecast skill compared to the GFS. The GEFS-based analog forecasts for the input variables of an operational urban water demand model were skillful when applied in the Tampa Bay area. The modified operational models driven by GEFS analog forecasts showed higher forecast skill than the operational model based on persistence. The results for CFSv2 seasonal forecasts showed maximum temperature (Tmax) and Rs had the greatest influence on ETo. The downscaled Tmax showed the highest predictability, followed by Tmean, Tmin, Rs, and Wind. The CFSv2 model could better predict ETo in cold seasons during El Nino Southern Oscillation (ENSO) events only when the forecast initial condition was in ENSO. Downscaled P and T2M forecasts were produced by directly downscaling the NMME P and T2M output or indirectly using the NMME forecasts of Nino3.4 sea surface temperatures to predict local-scale P and T2M. The indirect method generally showed the highest forecast skill which occurs in cold seasons. The bias-corrected NMME ensemble forecast skill did not outperform the best single model.

  19. Long-range forecast of all India summer monsoon rainfall using adaptive neuro-fuzzy inference system: skill comparison with CFSv2 model simulation and real-time forecast for the year 2015

    NASA Astrophysics Data System (ADS)

    Chaudhuri, S.; Das, D.; Goswami, S.; Das, S. K.

    2016-11-01

    All India summer monsoon rainfall (AISMR) characteristics play a vital role for the policy planning and national economy of the country. In view of the significant impact of monsoon system on regional as well as global climate systems, accurate prediction of summer monsoon rainfall has become a challenge. The objective of this study is to develop an adaptive neuro-fuzzy inference system (ANFIS) for long range forecast of AISMR. The NCEP/NCAR reanalysis data of temperature, zonal and meridional wind at different pressure levels have been taken to construct the input matrix of ANFIS. The membership of the input parameters for AISMR as high, medium or low is estimated with trapezoidal membership function. The fuzzified standardized input parameters and the de-fuzzified target output are trained with artificial neural network models. The forecast of AISMR with ANFIS is compared with non-hybrid multi-layer perceptron model (MLP), radial basis functions network (RBFN) and multiple linear regression (MLR) models. The forecast error analyses of the models reveal that ANFIS provides the best forecast of AISMR with minimum prediction error of 0.076, whereas the errors with MLP, RBFN and MLR models are 0.22, 0.18 and 0.73 respectively. During validation with observations, ANFIS shows its potency over the said comparative models. Performance of the ANFIS model is verified through different statistical skill scores, which also confirms the aptitude of ANFIS in forecasting AISMR. The forecast skill of ANFIS is also observed to be better than Climate Forecast System version 2. The real-time forecast with ANFIS shows possibility of deficit (65-75 cm) AISMR in the year 2015.

  20. Verifying and Postprocesing the Ensemble Spread-Error Relationship

    NASA Astrophysics Data System (ADS)

    Hopson, Tom; Knievel, Jason; Liu, Yubao; Roux, Gregory; Wu, Wanli

    2013-04-01

    With the increased utilization of ensemble forecasts in weather and hydrologic applications, there is a need to verify their benefit over less expensive deterministic forecasts. One such potential benefit of ensemble systems is their capacity to forecast their own forecast error through the ensemble spread-error relationship. The paper begins by revisiting the limitations of the Pearson correlation alone in assessing this relationship. Next, we introduce two new metrics to consider in assessing the utility an ensemble's varying dispersion. We argue there are two aspects of an ensemble's dispersion that should be assessed. First, and perhaps more fundamentally: is there enough variability in the ensembles dispersion to justify the maintenance of an expensive ensemble prediction system (EPS), irrespective of whether the EPS is well-calibrated or not? To diagnose this, the factor that controls the theoretical upper limit of the spread-error correlation can be useful. Secondly, does the variable dispersion of an ensemble relate to variable expectation of forecast error? Representing the spread-error correlation in relation to its theoretical limit can provide a simple diagnostic of this attribute. A context for these concepts is provided by assessing two operational ensembles: 30-member Western US temperature forecasts for the U.S. Army Test and Evaluation Command and 51-member Brahmaputra River flow forecasts of the Climate Forecast and Applications Project for Bangladesh. Both of these systems utilize a postprocessing technique based on quantile regression (QR) under a step-wise forward selection framework leading to ensemble forecasts with both good reliability and sharpness. In addition, the methodology utilizes the ensemble's ability to self-diagnose forecast instability to produce calibrated forecasts with informative skill-spread relationships. We will describe both ensemble systems briefly, review the steps used to calibrate the ensemble forecast, and present verification statistics using error-spread metrics, along with figures from operational ensemble forecasts before and after calibration.

  1. Analyses and forecasts of a tornadic supercell outbreak using a 3DVAR system ensemble

    NASA Astrophysics Data System (ADS)

    Zhuang, Zhaorong; Yussouf, Nusrat; Gao, Jidong

    2016-05-01

    As part of NOAA's "Warn-On-Forecast" initiative, a convective-scale data assimilation and prediction system was developed using the WRF-ARW model and ARPS 3DVAR data assimilation technique. The system was then evaluated using retrospective short-range ensemble analyses and probabilistic forecasts of the tornadic supercell outbreak event that occurred on 24 May 2011 in Oklahoma, USA. A 36-member multi-physics ensemble system provided the initial and boundary conditions for a 3-km convective-scale ensemble system. Radial velocity and reflectivity observations from four WSR-88Ds were assimilated into the ensemble using the ARPS 3DVAR technique. Five data assimilation and forecast experiments were conducted to evaluate the sensitivity of the system to data assimilation frequencies, in-cloud temperature adjustment schemes, and fixed- and mixed-microphysics ensembles. The results indicated that the experiment with 5-min assimilation frequency quickly built up the storm and produced a more accurate analysis compared with the 10-min assimilation frequency experiment. The predicted vertical vorticity from the moist-adiabatic in-cloud temperature adjustment scheme was larger in magnitude than that from the latent heat scheme. Cycled data assimilation yielded good forecasts, where the ensemble probability of high vertical vorticity matched reasonably well with the observed tornado damage path. Overall, the results of the study suggest that the 3DVAR analysis and forecast system can provide reasonable forecasts of tornadic supercell storms.

  2. Operational air quality forecasting system for Spain: CALIOPE

    NASA Astrophysics Data System (ADS)

    Baldasano, J. M.; Piot, M.; Jorba, O.; Goncalves, M.; Pay, M.; Pirez, C.; Lopez, E.; Gasso, S.; Martin, F.; García-Vivanco, M.; Palomino, I.; Querol, X.; Pandolfi, M.; Dieguez, J. J.; Padilla, L.

    2009-12-01

    The European Commission (EC) and the United States Environmental Protection Agency (US-EPA) have shown great concerns to understand the transport and dynamics of pollutants in the atmosphere. According to the European directives (1996/62/EC, 2002/3/EC, 2008/50/EC), air quality modeling, if accurately applied, is a useful tool to understand the dynamics of air pollutants, to analyze and forecast the air quality, and to develop programs reducing emissions and alert the population when health-related issues occur. The CALIOPE project, funded by the Spanish Ministry of the Environment, has the main objective to establish an air quality forecasting system for Spain. A partnership of four research institutions composes the CALIOPE project: the Barcelona Supercomputing Center (BSC), the center of investigation CIEMAT, the Earth Sciences Institute ‘Jaume Almera’ (IJA-CSIC) and the CEAM Foundation. CALIOPE will become the official Spanish air quality operational system. This contribution focuses on the recent developments and implementation of the integrated modelling system for the Iberian Peninsula (IP) and Canary Islands (CI) with a high spatial and temporal resolution (4x4 sq. km for IP and 2x2 sq. km for CI, 1 hour), namely WRF-ARW/HERMES04/CMAQ/BSC-DREAM. The HERMES04 emission model has been specifically developed as a high-resolution (1x1 sq. km, 1 hour) emission model for Spain. It includes biogenic and anthropogenic emissions such as on-road and paved-road resuspension production, power plant generation, ship and plane traffic, airports and ports activities, industrial and agricultural sectors as well as domestic and commercial emissions. The qualitative and quantitative evaluation of the model was performed for a reference year (2004) using data from ground-based measurement networks. The products of the CALIOPE system will provide 24h and 48h forecasts for O3, NO2, SO2, CO, PM10 and PM2.5 at surface level. An operational evaluation system has been developed to provide near real-time evaluation products for the Spanish territory. For this purpose, more than 130 surface stations, 2 ozonesondes and the OMI satellite retrieval information are introduced to the system on a daily basis. A web-based visualization system allows a straightforward access to all the evaluation products. The present contribution will describe the main characteristics of the operational system and results of the operational evaluation.

  3. WOD - Weather On Demand forecasting system

    NASA Astrophysics Data System (ADS)

    Rognvaldsson, Olafur; Ragnarsson, Logi; Stanislawska, Karolina

    2017-04-01

    The backbone of the Belgingur forecasting system (called WOD - Weather On Demand) is the WRF-Chem atmospheric model, with a number of in-house customisations. Initial and boundary data are taken from the Global Forecasting System, operated by the National Oceanic and Atmospheric Administration (NOAA). Operational forecasts use cycling of a number of parameters, mainly deep soil and surface fields. This is done to minimise spin-up effects and to ensure proper book-keeping of hydrological fields such as snow accumulation and runoff, as well as the constituents of various chemical parameters. The WOD system can be used to create conventional short- to medium-range weather forecasts for any location on the globe. The WOD system can also be used for air quality purposes (e.g. dispersion forecasts from volcanic eruptions) and as a tool to provide input to other modelling systems, such as hydrological models. A wide variety of post-processing options are also available, making WOD an ideal tool for creating highly customised output that can be tailored to the specific needs of individual end-users. The most recent addition to the WOD system is an integrated verification system where forecasts can be compared to surface observations from chosen locations. Forecast visualisation, such as weather charts, meteograms, weather icons and tables, is done via number of web components that can be configured to serve the varying needs of different end-users. The WOD system itself can be installed in an automatic way on hardware running a range of Linux based OS. System upgrades can also be done in semi-automatic fashion, i.e. upgrades and/or bug-fixes can be pushed to the end-user hardware without system downtime. Importantly, the WOD system requires only rudimentary knowledge of the WRF modelling, and the Linux operating systems on behalf of the end-user, making it an ideal NWP tool in locations with limited IT infrastructure.

  4. Effects of data selection on the assimilation of AIRS data

    NASA Technical Reports Server (NTRS)

    Joiner, Joanna; Brin, E.; Treadon, R.; Derber, J.; VanDelst, P.; DeSilva, A.; Marshall, J. Le; Poli, P.; Atlas, R.; Cruz, C.; hide

    2006-01-01

    The Atmospheric InfraRed Sounder (AIRS), flying aboard NASA's Earth Observing System (EOS) Aqua satellite with the Advanced Microwave Sounding Unit-A (AMSU-A), has been providing data for use in numerical weather prediction (NWP) and data assimilation systems (DAS) for over three years. The full AIRS data set is currently not transmitted in near-real-time (NRT) to the NWP centers. Instead, data sets with reduced spatial and spectral information are produced and made available in NRT. In this paper, we evaluate the use of different channel selections and error specifications. We achieved significant positive impact from the Aqua AIRS/AMSU-A combination in both hemispheres during our experimental time period of January 2003. The best results were obtained using a set of 156 channels that did not include any in the 6.7micron water vapor band. The latter have a large influence on both temperature and humidity analyses. If observation and background errors are not properly specified, the partitioning of temperature and humidity information from these channels will not be correct, and this can lead to a degradation in forecast skill. We found that changing the specified channel errors had a significant effect on the amount of data that entered into the analysis as a result of quality control thresholds that are related to the errors. However, changing the channel errors within a relatively small window did not significantly impact forecast skill with the 155 channel set. We also examined the effects of different types of spatial data reduction on assimilated data sets and NWP forecast skill. Whether we picked the center or the warmest AIRS pixel in a 3x3 array affected the amount of data ingested by the analysis but had a negligible impact on the forecast skill.

  5. Comparison of Observation Impacts in Two Forecast Systems using Adjoint Methods

    NASA Technical Reports Server (NTRS)

    Gelaro, Ronald; Langland, Rolf; Todling, Ricardo

    2009-01-01

    An experiment is being conducted to compare directly the impact of all assimilated observations on short-range forecast errors in different operational forecast systems. We use the adjoint-based method developed by Langland and Baker (2004), which allows these impacts to be efficiently calculated. This presentation describes preliminary results for a "baseline" set of observations, including both satellite radiances and conventional observations, used by the Navy/NOGAPS and NASA/GEOS-5 forecast systems for the month of January 2007. In each system, about 65% of the total reduction in 24-h forecast error is provided by satellite observations, although the impact of rawinsonde, aircraft, land, and ship-based observations remains significant. Only a small majority (50- 55%) of all observations assimilated improves the forecast, while the rest degrade it. It is found that most of the total forecast error reduction comes from observations with moderate-size innovations providing small to moderate impacts, not from outliers with very large positive or negative innovations. In a global context, the relative impacts of the major observation types are fairly similar in each system, although regional differences in observation impact can be significant. Of particular interest is the fact that while satellite radiances have a large positive impact overall, they degrade the forecast in certain locations common to both systems, especially over land and ice surfaces. Ongoing comparisons of this type, with results expected from other operational centers, should lead to more robust conclusions about the impacts of the various components of the observing system as well as about the strengths and weaknesses of the methodologies used to assimilate them.

  6. Wave ensemble forecast in the Western Mediterranean Sea, application to an early warning system.

    NASA Astrophysics Data System (ADS)

    Pallares, Elena; Hernandez, Hector; Moré, Jordi; Espino, Manuel; Sairouni, Abdel

    2015-04-01

    The Western Mediterranean Sea is a highly heterogeneous and variable area, as is reflected on the wind field, the current field, and the waves, mainly in the first kilometers offshore. As a result of this variability, the wave forecast in these regions is quite complicated to perform, usually with some accuracy problems during energetic storm events. Moreover, is in these areas where most of the economic activities take part, including fisheries, sailing, tourism, coastal management and offshore renewal energy platforms. In order to introduce an indicator of the probability of occurrence of the different sea states and give more detailed information of the forecast to the end users, an ensemble wave forecast system is considered. The ensemble prediction systems have already been used in the last decades for the meteorological forecast; to deal with the uncertainties of the initial conditions and the different parametrizations used in the models, which may introduce some errors in the forecast, a bunch of different perturbed meteorological simulations are considered as possible future scenarios and compared with the deterministic forecast. In the present work, the SWAN wave model (v41.01) has been implemented for the Western Mediterranean sea, forced with wind fields produced by the deterministic Global Forecast System (GFS) and Global Ensemble Forecast System (GEFS). The wind fields includes a deterministic forecast (also named control), between 11 and 21 ensemble members, and some intelligent member obtained from the ensemble, as the mean of all the members. Four buoys located in the study area, moored in coastal waters, have been used to validate the results. The outputs include all the time series, with a forecast horizon of 8 days and represented in spaghetti diagrams, the spread of the system and the probability at different thresholds. The main goal of this exercise is to be able to determine the degree of the uncertainty of the wave forecast, meaningful between the 5th and the 8th day of the prediction. The information obtained is then included in an early warning system, designed in the framework of the European project iCoast (ECHO/SUB/2013/661009) with the aim of set alarms in coastal areas depending on the wave conditions, the sea level, the flooding and the run up in the coast.

  7. Validation of the CME Geomagnetic Forecast Alerts Under the COMESEP Alert System

    NASA Astrophysics Data System (ADS)

    Dumbović, Mateja; Srivastava, Nandita; Rao, Yamini K.; Vršnak, Bojan; Devos, Andy; Rodriguez, Luciano

    2017-08-01

    Under the European Union 7th Framework Programme (EU FP7) project Coronal Mass Ejections and Solar Energetic Particles (COMESEP, http://comesep.aeronomy.be), an automated space weather alert system has been developed to forecast solar energetic particles (SEP) and coronal mass ejection (CME) risk levels at Earth. The COMESEP alert system uses the automated detection tool called Computer Aided CME Tracking (CACTus) to detect potentially threatening CMEs, a drag-based model (DBM) to predict their arrival, and a CME geoeffectiveness tool (CGFT) to predict their geomagnetic impact. Whenever CACTus detects a halo or partial halo CME and issues an alert, the DBM calculates its arrival time at Earth and the CGFT calculates its geomagnetic risk level. The geomagnetic risk level is calculated based on an estimation of the CME arrival probability and its likely geoeffectiveness, as well as an estimate of the geomagnetic storm duration. We present the evaluation of the CME risk level forecast with the COMESEP alert system based on a study of geoeffective CMEs observed during 2014. The validation of the forecast tool is made by comparing the forecasts with observations. In addition, we test the success rate of the automatic forecasts (without human intervention) against the forecasts with human intervention using advanced versions of the DBM and CGFT (independent tools available at the Hvar Observatory website, http://oh.geof.unizg.hr). The results indicate that the success rate of the forecast in its current form is unacceptably low for a realistic operation system. Human intervention improves the forecast, but the false-alarm rate remains unacceptably high. We discuss these results and their implications for possible improvement of the COMESEP alert system.

  8. An Integrated Urban Flood Analysis System in South Korea

    NASA Astrophysics Data System (ADS)

    Moon, Young-Il; Kim, Min-Seok; Yoon, Tae-Hyung; Choi, Ji-Hyeok

    2017-04-01

    Due to climate change and the rapid growth of urbanization, the frequency of concentrated heavy rainfall has caused urban floods. As a result, we studied climate change in Korea and developed an integrated flood analysis system that systematized technology to quantify flood risk and flood forecasting in urban areas. This system supports synthetic decision-making through real-time monitoring and prediction on flash rain or short-term rainfall by using radar and satellite information. As part of the measures to deal with the increase of inland flood damage, we have found it necessary to build a systematic city flood prevention system that systematizes technology to quantify flood risk as well as flood forecast, taking into consideration both inland and river water. This combined inland-river flood analysis system conducts prediction on flash rain or short-term rainfall by using radar and satellite information and performs prompt and accurate prediction on the inland flooded area. In addition, flood forecasts should be accurate and immediate. Accurate flood forecasts signify that the prediction of the watch, warning time and water level is precise. Immediate flood forecasts represent the forecasts lead time which is the time needed to evacuate. Therefore, in this study, in order to apply rainfall-runoff method to medium and small urban stream for flood forecasts, short-term rainfall forecasting using radar is applied to improve immediacy. Finally, it supports synthetic decision-making for prevention of flood disaster through real-time monitoring. Keywords: Urban Flood, Integrated flood analysis system, Rainfall forecasting, Korea Acknowledgments This research was supported by a grant (16AWMP-B066744-04) from Advanced Water Management Research Program (AWMP) funded by Ministry of Land, Infrastructure and Transport of Korean government.

  9. Forecasting the short-term passenger flow on high-speed railway with neural networks.

    PubMed

    Xie, Mei-Quan; Li, Xia-Miao; Zhou, Wen-Liang; Fu, Yan-Bing

    2014-01-01

    Short-term passenger flow forecasting is an important component of transportation systems. The forecasting result can be applied to support transportation system operation and management such as operation planning and revenue management. In this paper, a divide-and-conquer method based on neural network and origin-destination (OD) matrix estimation is developed to forecast the short-term passenger flow in high-speed railway system. There are three steps in the forecasting method. Firstly, the numbers of passengers who arrive at each station or depart from each station are obtained from historical passenger flow data, which are OD matrices in this paper. Secondly, short-term passenger flow forecasting of the numbers of passengers who arrive at each station or depart from each station based on neural network is realized. At last, the OD matrices in short-term time are obtained with an OD matrix estimation method. The experimental results indicate that the proposed divide-and-conquer method performs well in forecasting the short-term passenger flow on high-speed railway.

  10. NCAR's Experimental Real-time Convection-allowing Ensemble Prediction System

    NASA Astrophysics Data System (ADS)

    Schwartz, C. S.; Romine, G. S.; Sobash, R.; Fossell, K.

    2016-12-01

    Since April 2015, the National Center for Atmospheric Research's (NCAR's) Mesoscale and Microscale Meteorology (MMM) Laboratory, in collaboration with NCAR's Computational Information Systems Laboratory (CISL), has been producing daily, real-time, 10-member, 48-hr ensemble forecasts with 3-km horizontal grid spacing over the conterminous United States (http://ensemble.ucar.edu). These computationally-intensive, next-generation forecasts are produced on the Yellowstone supercomputer, have been embraced by both amateur and professional weather forecasters, are widely used by NCAR and university researchers, and receive considerable attention on social media. Initial conditions are supplied by NCAR's Data Assimilation Research Testbed (DART) software and the forecast model is NCAR's Weather Research and Forecasting (WRF) model; both WRF and DART are community tools. This presentation will focus on cutting-edge research results leveraging the ensemble dataset, including winter weather predictability, severe weather forecasting, and power outage modeling. Additionally, the unique design of the real-time analysis and forecast system and computational challenges and solutions will be described.

  11. Forecasting the spatial transmission of influenza in the United States.

    PubMed

    Pei, Sen; Kandula, Sasikiran; Yang, Wan; Shaman, Jeffrey

    2018-03-13

    Recurrent outbreaks of seasonal and pandemic influenza create a need for forecasts of the geographic spread of this pathogen. Although it is well established that the spatial progression of infection is largely attributable to human mobility, difficulty obtaining real-time information on human movement has limited its incorporation into existing infectious disease forecasting techniques. In this study, we develop and validate an ensemble forecast system for predicting the spatiotemporal spread of influenza that uses readily accessible human mobility data and a metapopulation model. In retrospective state-level forecasts for 35 US states, the system accurately predicts local influenza outbreak onset,-i.e., spatial spread, defined as the week that local incidence increases above a baseline threshold-up to 6 wk in advance of this event. In addition, the metapopulation prediction system forecasts influenza outbreak onset, peak timing, and peak intensity more accurately than isolated location-specific forecasts. The proposed framework could be applied to emergent respiratory viruses and, with appropriate modifications, other infectious diseases.

  12. Statistical Analysis of Atmospheric Forecast Model Accuracy - A Focus on Multiple Atmospheric Variables and Location-Based Analysis

    DTIC Science & Technology

    2014-04-01

    WRF ) model is a numerical weather prediction system designed for operational forecasting and atmospheric research. This report examined WRF model... WRF , weather research and forecasting, atmospheric effects 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18. NUMBER OF...and Forecasting ( WRF ) model. The authors would also like to thank Ms. Sherry Larson, STS Systems Integration, LLC, ARL Technical Publishing Branch

  13. An experimental system for flood risk forecasting and monitoring at global scale

    NASA Astrophysics Data System (ADS)

    Dottori, Francesco; Alfieri, Lorenzo; Kalas, Milan; Lorini, Valerio; Salamon, Peter

    2017-04-01

    Global flood forecasting and monitoring systems are nowadays a reality and are being applied by a wide range of users and practitioners in disaster risk management. Furthermore, there is an increasing demand from users to integrate flood early warning systems with risk based forecasting, combining streamflow estimations with expected inundated areas and flood impacts. Finally, emerging technologies such as crowdsourcing and social media monitoring can play a crucial role in flood disaster management and preparedness. Here, we present some recent advances of an experimental procedure for near-real time flood mapping and impact assessment. The procedure translates in near real-time the daily streamflow forecasts issued by the Global Flood Awareness System (GloFAS) into event-based flood hazard maps, which are then combined with exposure and vulnerability information at global scale to derive risk forecast. Impacts of the forecasted flood events are evaluated in terms of flood prone areas, potential economic damage, and affected population, infrastructures and cities. To increase the reliability of our forecasts we propose the integration of model-based estimations with an innovative methodology for social media monitoring, which allows for real-time verification and correction of impact forecasts. Finally, we present the results of preliminary tests which show the potential of the proposed procedure in supporting emergency response and management.

  14. Skilful seasonal forecasts of streamflow over Europe?

    NASA Astrophysics Data System (ADS)

    Arnal, Louise; Cloke, Hannah L.; Stephens, Elisabeth; Wetterhall, Fredrik; Prudhomme, Christel; Neumann, Jessica; Krzeminski, Blazej; Pappenberger, Florian

    2018-04-01

    This paper considers whether there is any added value in using seasonal climate forecasts instead of historical meteorological observations for forecasting streamflow on seasonal timescales over Europe. A Europe-wide analysis of the skill of the newly operational EFAS (European Flood Awareness System) seasonal streamflow forecasts (produced by forcing the Lisflood model with the ECMWF System 4 seasonal climate forecasts), benchmarked against the ensemble streamflow prediction (ESP) forecasting approach (produced by forcing the Lisflood model with historical meteorological observations), is undertaken. The results suggest that, on average, the System 4 seasonal climate forecasts improve the streamflow predictability over historical meteorological observations for the first month of lead time only (in terms of hindcast accuracy, sharpness and overall performance). However, the predictability varies in space and time and is greater in winter and autumn. Parts of Europe additionally exhibit a longer predictability, up to 7 months of lead time, for certain months within a season. In terms of hindcast reliability, the EFAS seasonal streamflow hindcasts are on average less skilful than the ESP for all lead times. The results also highlight the potential usefulness of the EFAS seasonal streamflow forecasts for decision-making (measured in terms of the hindcast discrimination for the lower and upper terciles of the simulated streamflow). Although the ESP is the most potentially useful forecasting approach in Europe, the EFAS seasonal streamflow forecasts appear more potentially useful than the ESP in some regions and for certain seasons, especially in winter for almost 40 % of Europe. Patterns in the EFAS seasonal streamflow hindcast skill are however not mirrored in the System 4 seasonal climate hindcasts, hinting at the need for a better understanding of the link between hydrological and meteorological variables on seasonal timescales, with the aim of improving climate-model-based seasonal streamflow forecasting.

  15. The FireWork air quality forecast system with near-real-time biomass burning emissions: Recent developments and evaluation of performance for the 2015 North American wildfire season.

    PubMed

    Pavlovic, Radenko; Chen, Jack; Anderson, Kerry; Moran, Michael D; Beaulieu, Paul-André; Davignon, Didier; Cousineau, Sophie

    2016-09-01

    Environment and Climate Change Canada's FireWork air quality (AQ) forecast system for North America with near-real-time biomass burning emissions has been running experimentally during the Canadian wildfire season since 2013. The system runs twice per day with model initializations at 00 UTC and 12 UTC, and produces numerical AQ forecast guidance with 48-hr lead time. In this work we describe the FireWork system, which incorporates near-real-time biomass burning emissions based on the Canadian Wildland Fire Information System (CWFIS) as an input to the operational Regional Air Quality Deterministic Prediction System (RAQDPS). To demonstrate the capability of the system we analyzed two forecast periods in 2015 (June 2-July 15, and August 15-31) when fire activity was high, and observed fire-smoke-impacted areas in western Canada and the western United States. Modeled PM2.5 surface concentrations were compared with surface measurements and benchmarked with results from the operational RAQDPS, which did not consider near-real-time biomass burning emissions. Model performance statistics showed that FireWork outperformed RAQDPS with improvements in forecast hourly PM2.5 across the region; the results were especially significant for stations near the path of fire plume trajectories. Although the hourly PM2.5 concentrations predicted by FireWork still displayed bias for areas with active fires for these two periods (mean bias [MB] of -7.3 µg m(-3) and 3.1 µg m(-3)), it showed better forecast skill than the RAQDPS (MB of -11.7 µg m(-3) and -5.8 µg m(-3)) and demonstrated a greater ability to capture temporal variability of episodic PM2.5 events (correlation coefficient values of 0.50 and 0.69 for FireWork compared to 0.03 and 0.11 for RAQDPS). A categorical forecast comparison based on an hourly PM2.5 threshold of 30 µg m(-3) also showed improved scores for probability of detection (POD), critical success index (CSI), and false alarm rate (FAR). Smoke from wildfires can have a large impact on regional air quality (AQ) and can expose populations to elevated pollution levels. Environment and Climate Change Canada has been producing operational air quality forecasts for all of Canada since 2009 and is now working to include near-real-time wildfire emissions (NRTWE) in its operational AQ forecasting system. An experimental forecast system named FireWork, which includes NRTWE, has been undergoing testing and evaluation since 2013. A performance analysis of FireWork forecasts for the 2015 wildfire season shows that FireWork provides significant improvements to surface PM2.5 forecasts and valuable guidance to regional forecasters and first responders.

  16. An investigation into incident duration forecasting for FleetForward

    DOT National Transportation Integrated Search

    2000-08-01

    Traffic condition forecasting is the process of estimating future traffic conditions based on current and archived data. Real-time forecasting is becoming an important tool in Intelligent Transportation Systems (ITS). This type of forecasting allows ...

  17. Satellite provided fixed communications services: A forecast of potential domestic demand through the year 2000: Volume 2: Main text

    NASA Technical Reports Server (NTRS)

    Kratochvil, D.; Bowyer, J.; Bhushan, C.; Steinnagel, K.; Kaushal, D.; Al-Kinani, G.

    1983-01-01

    Potential satellite-provided fixed communications services, baseline forecasts, net long haul forecasts, cost analysis, net addressable forecasts, capacity requirements, and satellite system market development are considered.

  18. Scientific assessment of accuracy, skill and reliability of ocean probabilistic forecast products.

    NASA Astrophysics Data System (ADS)

    Wei, M.; Rowley, C. D.; Barron, C. N.; Hogan, P. J.

    2016-02-01

    As ocean operational centers are increasingly adopting and generating probabilistic forecast products for their customers with valuable forecast uncertainties, how to assess and measure these complicated probabilistic forecast products objectively is challenging. The first challenge is how to deal with the huge amount of the data from the ensemble forecasts. The second one is how to describe the scientific quality of probabilistic products. In fact, probabilistic forecast accuracy, skills, reliability, resolutions are different attributes of a forecast system. We briefly introduce some of the fundamental metrics such as the Reliability Diagram, Reliability, Resolution, Brier Score (BS), Brier Skill Score (BSS), Ranked Probability Score (RPS), Ranked Probability Skill Score (RPSS), Continuous Ranked Probability Score (CRPS), and Continuous Ranked Probability Skill Score (CRPSS). The values and significance of these metrics are demonstrated for the forecasts from the US Navy's regional ensemble system with different ensemble members. The advantages and differences of these metrics are studied and clarified.

  19. Metrics for Evaluating the Accuracy of Solar Power Forecasting: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, J.; Hodge, B. M.; Florita, A.

    2013-10-01

    Forecasting solar energy generation is a challenging task due to the variety of solar power systems and weather regimes encountered. Forecast inaccuracies can result in substantial economic losses and power system reliability issues. This paper presents a suite of generally applicable and value-based metrics for solar forecasting for a comprehensive set of scenarios (i.e., different time horizons, geographic locations, applications, etc.). In addition, a comprehensive framework is developed to analyze the sensitivity of the proposed metrics to three types of solar forecasting improvements using a design of experiments methodology, in conjunction with response surface and sensitivity analysis methods. The resultsmore » show that the developed metrics can efficiently evaluate the quality of solar forecasts, and assess the economic and reliability impact of improved solar forecasting.« less

  20. Deep Learning Based Solar Flare Forecasting Model. I. Results for Line-of-sight Magnetograms

    NASA Astrophysics Data System (ADS)

    Huang, Xin; Wang, Huaning; Xu, Long; Liu, Jinfu; Li, Rong; Dai, Xinghua

    2018-03-01

    Solar flares originate from the release of the energy stored in the magnetic field of solar active regions, the triggering mechanism for these flares, however, remains unknown. For this reason, the conventional solar flare forecast is essentially based on the statistic relationship between solar flares and measures extracted from observational data. In the current work, the deep learning method is applied to set up the solar flare forecasting model, in which forecasting patterns can be learned from line-of-sight magnetograms of solar active regions. In order to obtain a large amount of observational data to train the forecasting model and test its performance, a data set is created from line-of-sight magnetogarms of active regions observed by SOHO/MDI and SDO/HMI from 1996 April to 2015 October and corresponding soft X-ray solar flares observed by GOES. The testing results of the forecasting model indicate that (1) the forecasting patterns can be automatically reached with the MDI data and they can also be applied to the HMI data; furthermore, these forecasting patterns are robust to the noise in the observational data; (2) the performance of the deep learning forecasting model is not sensitive to the given forecasting periods (6, 12, 24, or 48 hr); (3) the performance of the proposed forecasting model is comparable to that of the state-of-the-art flare forecasting models, even if the duration of the total magnetograms continuously spans 19.5 years. Case analyses demonstrate that the deep learning based solar flare forecasting model pays attention to areas with the magnetic polarity-inversion line or the strong magnetic field in magnetograms of active regions.

  1. A Solar Time-Based Analog Ensemble Method for Regional Solar Power Forecasting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodge, Brian S; Zhang, Xinmin; Li, Yuan

    This paper presents a new analog ensemble method for day-ahead regional photovoltaic (PV) power forecasting with hourly resolution. By utilizing open weather forecast and power measurement data, this prediction method is processed within a set of historical data with similar meteorological data (temperature and irradiance), and astronomical date (solar time and earth declination angle). Further, clustering and blending strategies are applied to improve its accuracy in regional PV forecasting. The robustness of the proposed method is demonstrated with three different numerical weather prediction models, the North American Mesoscale Forecast System, the Global Forecast System, and the Short-Range Ensemble Forecast, formore » both region level and single site level PV forecasts. Using real measured data, the new forecasting approach is applied to the load zone in Southeastern Massachusetts as a case study. The normalized root mean square error (NRMSE) has been reduced by 13.80%-61.21% when compared with three tested baselines.« less

  2. The development and evaluation of a hydrological seasonal forecast system prototype for predicting spring flood volumes in Swedish rivers

    NASA Astrophysics Data System (ADS)

    Foster, Kean; Bertacchi Uvo, Cintia; Olsson, Jonas

    2018-05-01

    Hydropower makes up nearly half of Sweden's electrical energy production. However, the distribution of the water resources is not aligned with demand, as most of the inflows to the reservoirs occur during the spring flood period. This means that carefully planned reservoir management is required to help redistribute water resources to ensure optimal production and accurate forecasts of the spring flood volume (SFV) is essential for this. The current operational SFV forecasts use a historical ensemble approach where the HBV model is forced with historical observations of precipitation and temperature. In this work we develop and test a multi-model prototype, building on previous work, and evaluate its ability to forecast the SFV in 84 sub-basins in northern Sweden. The hypothesis explored in this work is that a multi-model seasonal forecast system incorporating different modelling approaches is generally more skilful at forecasting the SFV in snow dominated regions than a forecast system that utilises only one approach. The testing is done using cross-validated hindcasts for the period 1981-2015 and the results are evaluated against both climatology and the current system to determine skill. Both the multi-model methods considered showed skill over the reference forecasts. The version that combined the historical modelling chain, dynamical modelling chain, and statistical modelling chain performed better than the other and was chosen for the prototype. The prototype was able to outperform the current operational system 57 % of the time on average and reduce the error in the SFV by ˜ 6 % across all sub-basins and forecast dates.

  3. Seasonal forecasting of groundwater levels in natural aquifers in the United Kingdom

    NASA Astrophysics Data System (ADS)

    Mackay, Jonathan; Jackson, Christopher; Pachocka, Magdalena; Brookshaw, Anca; Scaife, Adam

    2014-05-01

    Groundwater aquifers comprise the world's largest freshwater resource and provide resilience to climate extremes which could become more frequent under future climate changes. Prolonged dry conditions can induce groundwater drought, often characterised by significantly low groundwater levels which may persist for months to years. In contrast, lasting wet conditions can result in anomalously high groundwater levels which result in flooding, potentially at large economic cost. Using computational models to produce groundwater level forecasts allows appropriate management strategies to be considered in advance of extreme events. The majority of groundwater level forecasting studies to date use data-based models, which exploit the long response time of groundwater levels to meteorological drivers and make forecasts based only on the current state of the system. Instead, seasonal meteorological forecasts can be used to drive hydrological models and simulate groundwater levels months into the future. Such approaches have not been used in the past due to a lack of skill in these long-range forecast products. However systems such as the latest version of the Met Office Global Seasonal Forecast System (GloSea5) are now showing increased skill up to a 3-month lead time. We demonstrate the first groundwater level ensemble forecasting system using a multi-member ensemble of hindcasts from GloSea5 between 1996 and 2009 to force 21 simple lumped conceptual groundwater models covering most of the UK's major aquifers. We present the results from this hindcasting study and demonstrate that the system can be used to forecast groundwater levels with some skill up to three months into the future.

  4. Operational water management of Rijnland water system and pilot of ensemble forecasting system for flood control

    NASA Astrophysics Data System (ADS)

    van der Zwan, Rene

    2013-04-01

    The Rijnland water system is situated in the western part of the Netherlands, and is a low-lying area of which 90% is below sea-level. The area covers 1,100 square kilometres, where 1.3 million people live, work, travel and enjoy leisure. The District Water Control Board of Rijnland is responsible for flood defence, water quantity and quality management. This includes design and maintenance of flood defence structures, control of regulating structures for an adequate water level management, and waste water treatment. For water quantity management Rijnland uses, besides an online monitoring network for collecting water level and precipitation data, a real time control decision support system. This decision support system consists of deterministic hydro-meteorological forecasts with a 24-hr forecast horizon, coupled with a control module that provides optimal operation schedules for the storage basin pumping stations. The uncertainty of the rainfall forecast is not forwarded in the hydrological prediction. At this moment 65% of the pumping capacity of the storage basin pumping stations can be automatically controlled by the decision control system. Within 5 years, after renovation of two other pumping stations, the total capacity of 200 m3/s will be automatically controlled. In critical conditions there is a need of both a longer forecast horizon and a probabilistic forecast. Therefore ensemble precipitation forecasts of the ECMWF are already consulted off-line during dry-spells, and Rijnland is running a pilot operational system providing 10-day water level ensemble forecasts. The use of EPS during dry-spells and the findings of the pilot will be presented. Challenges and next steps towards on-line implementation of ensemble forecasts for risk-based operational management of the Rijnland water system will be discussed. An important element in that discussion is the question: will policy and decision makers, operator and citizens adapt this Anticipatory Water management, including temporary lower storage basin levels and a reduction in extra investments for infrastructural measures.

  5. Assessment of an ensemble seasonal streamflow forecasting system for Australia

    NASA Astrophysics Data System (ADS)

    Bennett, James C.; Wang, Quan J.; Robertson, David E.; Schepen, Andrew; Li, Ming; Michael, Kelvin

    2017-11-01

    Despite an increasing availability of skilful long-range streamflow forecasts, many water agencies still rely on simple resampled historical inflow sequences (stochastic scenarios) to plan operations over the coming year. We assess a recently developed forecasting system called forecast guided stochastic scenarios (FoGSS) as a skilful alternative to standard stochastic scenarios for the Australian continent. FoGSS uses climate forecasts from a coupled ocean-land-atmosphere prediction system, post-processed with the method of calibration, bridging and merging. Ensemble rainfall forecasts force a monthly rainfall-runoff model, while a staged hydrological error model quantifies and propagates hydrological forecast uncertainty through forecast lead times. FoGSS is able to generate ensemble streamflow forecasts in the form of monthly time series to a 12-month forecast horizon. FoGSS is tested on 63 Australian catchments that cover a wide range of climates, including 21 ephemeral rivers. In all perennial and many ephemeral catchments, FoGSS provides an effective alternative to resampled historical inflow sequences. FoGSS generally produces skilful forecasts at shorter lead times ( < 4 months), and transits to climatology-like forecasts at longer lead times. Forecasts are generally reliable and unbiased. However, FoGSS does not perform well in very dry catchments (catchments that experience zero flows more than half the time in some months), sometimes producing strongly negative forecast skill and poor reliability. We attempt to improve forecasts through the use of (i) ESP rainfall forcings, (ii) different rainfall-runoff models, and (iii) a Bayesian prior to encourage the error model to return climatology forecasts in months when the rainfall-runoff model performs poorly. Of these, the use of the prior offers the clearest benefit in very dry catchments, where it moderates strongly negative forecast skill and reduces bias in some instances. However, the prior does not remedy poor reliability in very dry catchments. Overall, FoGSS is an attractive alternative to historical inflow sequences in all but the driest catchments. We discuss ways in which forecast reliability in very dry catchments could be improved in future work.

  6. Vandenberg Air Force Base Pressure Gradient Wind Study

    NASA Technical Reports Server (NTRS)

    Shafer, Jaclyn A.

    2013-01-01

    Warning category winds can adversely impact day-to-day space lift operations at Vandenberg Air Force Base (VAFB) in California. NASA's Launch Services Program and other programs at VAFB use wind forecasts issued by the 30 Operational Support Squadron Weather Flight (30 OSSWF) to determine if they need to limit activities or protect property such as a launch vehicle. The 30 OSSWF tasked the AMU to develop an automated Excel graphical user interface that includes pressure gradient thresholds between specific observing stations under different synoptic regimes to aid forecasters when issuing wind warnings. This required the AMU to determine if relationships between the variables existed.

  7. ENSO Prediction in the NASA GMAO GEOS-5 Seasonal Forecasting System

    NASA Astrophysics Data System (ADS)

    Kovach, R. M.; Borovikov, A.; Marshak, J.; Pawson, S.; Vernieres, G.

    2016-12-01

    Seasonal-to-Interannual coupled forecasts are conducted in near-real time with the Goddard Earth Observing System (GEOS) Atmosphere-Ocean General Circulation Model (AOGCM). A 30-year suite of 9-month hindcasts is available, initialized with the MERRA-Ocean, MERRA-Land, and MERRA atmospheric fields. These forecasts are used to predict the timing and magnitude of ENSO and other short-term climate variability. The 2015 El Niño peaked in November 2015 and was considered a "very strong" event with the Equatorial Pacific Ocean sea-surface-temperature (SST) anomalies higher than 2.0 °C. These very strong temperature anomalies began in Sep/Oct/Nov (SON) of 2015 and persisted through Dec/Jan/Feb (DJF) of 2016. The other two very strong El Niño events recently recorded occurred in 1981/82 and 1997/98. The GEOS-5 system began predicting a very strong El Niño for SON starting with the March 2015 forecast. At this time, the GMAO forecast was an outlier in both the NMME and IRI multi-model ensemble prediction plumes. The GMAO May 2015 forecast for the November 2015 peak in temperature anomaly in the Niño3.4 region was in excellent agreement with the real event, but in May this forecast was still one of the outliers in the multi-model forecasts. The GEOS-5 May 2015 forecast also correctly predicted the weakening of the Eastern Pacific (Niño1+2) anomalies for SON. We will present a summary of the NASA GMAO GEOS-5 Seasonal Forecast System skills based on historic hindcasts. Initial conditions, prediction of ocean surface and subsurface evolution for the 2015/16 El Niño will be compared to the 1998/97 event. GEOS-5 capability to predict the precipitation, i.e. to model the teleconnection patterns associated with El Niño will also be shown. To conclude, we will highlight some new developments in the GEOS forecasting system.

  8. Evaluation of Clear-Air Turbulence Diagnostics: GTG in Korea

    NASA Astrophysics Data System (ADS)

    Kim, J.-H.; Chun, H.-Y.; Jang, W.; Sharman, R. D.

    2009-04-01

    Turbulence forecasting algorithm, the Graphical Turbulence Guidance (GTG) system developed at NCAR (Sharman et al., 2006), is evaluated with available turbulence observations (e.g. pilot reports; PIREPs) reported in South Korea during the recent 4 years (2003-2007). Clear-air turbulence (CAT) is extracted from PIREPs by using cloud-to-ground lightning flash data from Korean Meteorological Administration (KMA). The GTG system includes several steps. First, 45 turbulence indices are calculated in the East Asian region near Korean peninsula using the Regional Data Assimilation and Prediction System (RDAPS) analysis data with 30 km horizontal grid spacing provided by KMA. Second, 10 CAT indices that performed ten best forecasting score are selected. The scoring method is based on the probability of detection, which is calculated using PIREPs exclusively of moderate-or-greater intensity. Various statistical examinations and sensitivity tests of the GTG system are performed by yearly and seasonally classified PIREPs in South Korea. Performance of GTG is more consistent and stable than that of any individual diagnostic in each year and season. In addition, current-year forecasting based on yearly PIREPs is better than adjacent-year forecasting and year-after-year forecasting. Seasonal forecasting is generally better than yearly forecasting, because selected CAT indices in each season represent meteorological condition much more properly than applying the selected CAT indices to all seasons. Wintertime forecasting is the best among the four seasonal forecastings. This is likely due to that the GTG system consists of many CAT indices related to jet stream, and turbulence associated with the jet can be most activated in wintertime under strong jet magnitude. On the other hand, summertime forecasting skill is much less than in wintertime. To acquire better performance for summertime forecasting, it is likely to develop more turbulence indices related to, for example, convections. By sensitivity test to the number of combined indices, it is found that yearly and seasonal GTG is the best when about 7 CAT indices are combined.

  9. Some economic benefits of a synchronous earth observatory satellite

    NASA Technical Reports Server (NTRS)

    Battacharyya, R. K.; Greenberg, J. S.; Lowe, D. S.; Sattinger, I. J.

    1974-01-01

    An analysis was made of the economic benefits which might be derived from reduced forecasting errors made possible by data obtained from a synchronous satellite system which can collect earth observation and meteorological data continuously and on demand. User costs directly associated with achieving benefits are included. In the analysis, benefits were evaluated which might be obtained as a result of improved thunderstorm forecasting, frost warning, and grain harvest forecasting capabilities. The anticipated system capabilities were used to arrive at realistic estimates of system performance on which to base the benefit analysis. Emphasis was placed on the benefits which result from system forecasting accuracies. Benefits from improved thunderstorm forecasts are indicated for the construction, air transportation, and agricultural industries. The effects of improved frost warning capability on the citrus crop are determined. The benefits from improved grain forecasting capability are evaluated in terms of both U.S. benefits resulting from domestic grain distribution and U.S. benefits from international grain distribution.

  10. Turbulence measurements in the vicinity of a strong polar jet during POLSTRACC/GWLCYCLE II/SALSA, 2016

    NASA Astrophysics Data System (ADS)

    Bramberger, Martina; Dörnbrack, Andreas; Rapp, Markus; Gemsa, Steffen; Raynor, Kevin

    2017-04-01

    In January 2016, the combined POLar STRAtosphere in a Changing Climate (POLSTRACC), Investigation of the life cycle of gravity waves (GW-LCYCLE) II and Seasonality of Air mass transport and origin in the Lowermost Stratosphere (SALSA) campaign, shortly abbreviated as PGS, took place in Kiruna, Sweden. During this campaign, on 31 January 2016, a strong polar jet with horizontal wind speeds up to 100 m/s was located above northern Great Britain. The research flight PGS12 lead the High Altitude LOng range (HALO) aircraft right above the jet streak of this polar jet, a region which is known from theoretical studies for prevalent turbulence. Here, we present a case study in which high-resolution in-situ aircraft measurements are employed to analyse and quantify turbulence in the described region with parameters such as e.g. turbulent kinetic energy and the eddy dissipation rate. This analysis is supported by idealized numerical simulations to determine involved processes for the generation of turbulence. Complementing, forecasts and operational analyses of the integrated forecast system (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF) are used to thoroughly analyze the meteorological situation.

  11. The epistemological status of general circulation models

    NASA Astrophysics Data System (ADS)

    Loehle, Craig

    2018-03-01

    Forecasts of both likely anthropogenic effects on climate and consequent effects on nature and society are based on large, complex software tools called general circulation models (GCMs). Forecasts generated by GCMs have been used extensively in policy decisions related to climate change. However, the relation between underlying physical theories and results produced by GCMs is unclear. In the case of GCMs, many discretizations and approximations are made, and simulating Earth system processes is far from simple and currently leads to some results with unknown energy balance implications. Statistical testing of GCM forecasts for degree of agreement with data would facilitate assessment of fitness for use. If model results need to be put on an anomaly basis due to model bias, then both visual and quantitative measures of model fit depend strongly on the reference period used for normalization, making testing problematic. Epistemology is here applied to problems of statistical inference during testing, the relationship between the underlying physics and the models, the epistemic meaning of ensemble statistics, problems of spatial and temporal scale, the existence or not of an unforced null for climate fluctuations, the meaning of existing uncertainty estimates, and other issues. Rigorous reasoning entails carefully quantifying levels of uncertainty.

  12. Parametric decadal climate forecast recalibration (DeFoReSt 1.0)

    NASA Astrophysics Data System (ADS)

    Pasternack, Alexander; Bhend, Jonas; Liniger, Mark A.; Rust, Henning W.; Müller, Wolfgang A.; Ulbrich, Uwe

    2018-01-01

    Near-term climate predictions such as decadal climate forecasts are increasingly being used to guide adaptation measures. For near-term probabilistic predictions to be useful, systematic errors of the forecasting systems have to be corrected. While methods for the calibration of probabilistic forecasts are readily available, these have to be adapted to the specifics of decadal climate forecasts including the long time horizon of decadal climate forecasts, lead-time-dependent systematic errors (drift) and the errors in the representation of long-term changes and variability. These features are compounded by small ensemble sizes to describe forecast uncertainty and a relatively short period for which typically pairs of reforecasts and observations are available to estimate calibration parameters. We introduce the Decadal Climate Forecast Recalibration Strategy (DeFoReSt), a parametric approach to recalibrate decadal ensemble forecasts that takes the above specifics into account. DeFoReSt optimizes forecast quality as measured by the continuous ranked probability score (CRPS). Using a toy model to generate synthetic forecast observation pairs, we demonstrate the positive effect on forecast quality in situations with pronounced and limited predictability. Finally, we apply DeFoReSt to decadal surface temperature forecasts from the MiKlip prototype system and find consistent, and sometimes considerable, improvements in forecast quality compared with a simple calibration of the lead-time-dependent systematic errors.

  13. Human-model hybrid Korean air quality forecasting system.

    PubMed

    Chang, Lim-Seok; Cho, Ara; Park, Hyunju; Nam, Kipyo; Kim, Deokrae; Hong, Ji-Hyoung; Song, Chang-Keun

    2016-09-01

    The Korean national air quality forecasting system, consisting of the Weather Research and Forecasting, the Sparse Matrix Operator Kernel Emissions, and the Community Modeling and Analysis (CMAQ), commenced from August 31, 2013 with target pollutants of particulate matters (PM) and ozone. Factors contributing to PM forecasting accuracy include CMAQ inputs of meteorological field and emissions, forecasters' capacity, and inherent CMAQ limit. Four numerical experiments were conducted including two global meteorological inputs from the Global Forecast System (GFS) and the Unified Model (UM), two emissions from the Model Intercomparison Study Asia (MICS-Asia) and the Intercontinental Chemical Transport Experiment (INTEX-B) for the Northeast Asia with Clear Air Policy Support System (CAPSS) for South Korea, and data assimilation of the Monitoring Atmospheric Composition and Climate (MACC). Significant PM underpredictions by using both emissions were found for PM mass and major components (sulfate and organic carbon). CMAQ predicts PM2.5 much better than PM10 (NMB of PM2.5: -20~-25%, PM10: -43~-47%). Forecasters' error usually occurred at the next day of high PM event. Once CMAQ fails to predict high PM event the day before, forecasters are likely to dismiss the model predictions on the next day which turns out to be true. The best combination of CMAQ inputs is the set of UM global meteorological field, MICS-Asia and CAPSS 2010 emissions with the NMB of -12.3%, the RMSE of 16.6μ/m(3) and the R(2) of 0.68. By using MACC data as an initial and boundary condition, the performance skill of CMAQ would be improved, especially in the case of undefined coarse emission. A variety of methods such as ensemble and data assimilation are considered to improve further the accuracy of air quality forecasting, especially for high PM events to be comparable to for all cases. The growing utilization of the air quality forecast induced the public strongly to demand that the accuracy of the national forecasting be improved. In this study, we investigated the problems in the current forecasting as well as various alternatives to solve the problems. Such efforts to improve the accuracy of the forecast are expected to contribute to the protection of public health by increasing the availability of the forecast system.

  14. Real-time Social Internet Data to Guide Forecasting Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Del Valle, Sara Y.

    Our goal is to improve decision support by monitoring and forecasting events using social media, mathematical models, and quantifying model uncertainty. Our approach is real-time, data-driven forecasts with quantified uncertainty: Not just for weather anymore. Information flow from human observations of events through an Internet system and classification algorithms is used to produce quantitatively uncertain forecast. In summary, we want to develop new tools to extract useful information from Internet data streams, develop new approaches to assimilate real-time information into predictive models, validate approaches by forecasting events, and our ultimate goal is to develop an event forecasting system using mathematicalmore » approaches and heterogeneous data streams.« less

  15. Evaluation of ensemble precipitation forecasts generated through post-processing in a Canadian catchment

    NASA Astrophysics Data System (ADS)

    Jha, Sanjeev K.; Shrestha, Durga L.; Stadnyk, Tricia A.; Coulibaly, Paulin

    2018-03-01

    Flooding in Canada is often caused by heavy rainfall during the snowmelt period. Hydrologic forecast centers rely on precipitation forecasts obtained from numerical weather prediction (NWP) models to enforce hydrological models for streamflow forecasting. The uncertainties in raw quantitative precipitation forecasts (QPFs) are enhanced by physiography and orography effects over a diverse landscape, particularly in the western catchments of Canada. A Bayesian post-processing approach called rainfall post-processing (RPP), developed in Australia (Robertson et al., 2013; Shrestha et al., 2015), has been applied to assess its forecast performance in a Canadian catchment. Raw QPFs obtained from two sources, Global Ensemble Forecasting System (GEFS) Reforecast 2 project, from the National Centers for Environmental Prediction, and Global Deterministic Forecast System (GDPS), from Environment and Climate Change Canada, are used in this study. The study period from January 2013 to December 2015 covered a major flood event in Calgary, Alberta, Canada. Post-processed results show that the RPP is able to remove the bias and reduce the errors of both GEFS and GDPS forecasts. Ensembles generated from the RPP reliably quantify the forecast uncertainty.

  16. Flood Forecast Accuracy and Decision Support System Approach: the Venice Case

    NASA Astrophysics Data System (ADS)

    Canestrelli, A.; Di Donato, M.

    2016-02-01

    In the recent years numerical models for weather predictions have experienced continuous advances in technology. As a result, all the disciplines making use of weather forecasts have made significant steps forward. In the case of the Safeguard of Venice, a large effort has been put in order to improve the forecast of tidal levels. In this context, the Istituzione Centro Previsioni e Segnalazioni Maree (ICPSM) of the Venice Municipality has developed and tested many different forecast models, both of the statistical and deterministic type, and has shown to produce very accurate forecasts. For Venice, the maximum admissible forecast error should be (ideally) of the order of ten centimeters at 24 hours. The entity of the forecast error clearly affects the decisional process, which mainly consists of alerting the population, activating the movable barriers installed at the three tidal inlets and contacting the port authority. This process becomes more challenging whenever the weather predictions, and therefore the water level forecasts, suddenly change. These new forecasts have to be quickly transformed into operational tasks. Therefore, it is of the utter importance to set up scheduled alerts and emergency plans by means of easy-to-follow procedures. On this direction, Technital has set up a Decision Support System based on expert procedures that minimizes the human mistakes and, as a consequence, reduces the risk of flooding of the historical center. Moreover, the Decision Support System can communicate predefined alerts to all the interested subjects. The System uses the water levels forecasts produced by the ICPSM by taking into account the accuracy at different leading times. The Decision Support System has been successfully tested with 8 years of data, 6 of them in real time. Venice experience shows that the Decision Support System is an essential tool which assesses the risks associated with a particular event, provides clear operational procedures and minimizes the impact of natural floods on human lives, private properties and historical monuments.

  17. Multi-RCM ensemble downscaling of global seasonal forecasts (MRED)

    NASA Astrophysics Data System (ADS)

    Arritt, R. W.

    2008-12-01

    The Multi-RCM Ensemble Downscaling (MRED) project was recently initiated to address the question, Can regional climate models provide additional useful information from global seasonal forecasts? MRED will use a suite of regional climate models to downscale seasonal forecasts produced by the new National Centers for Environmental Prediction (NCEP) Climate Forecast System (CFS) seasonal forecast system and the NASA GEOS5 system. The initial focus will be on wintertime forecasts in order to evaluate topographic forcing, snowmelt, and the potential usefulness of higher resolution, especially for near-surface fields influenced by high resolution orography. Each regional model will cover the conterminous US (CONUS) at approximately 32 km resolution, and will perform an ensemble of 15 runs for each year 1982-2003 for the forecast period 1 December - 30 April. MRED will compare individual regional and global forecasts as well as ensemble mean precipitation and temperature forecasts, which are currently being used to drive macroscale land surface models (LSMs), as well as wind, humidity, radiation, turbulent heat fluxes, which are important for more advanced coupled macro-scale hydrologic models. Metrics of ensemble spread will also be evaluated. Extensive analysis will be performed to link improvements in downscaled forecast skill to regional forcings and physical mechanisms. Our overarching goal is to determine what additional skill can be provided by a community ensemble of high resolution regional models, which we believe will eventually define a strategy for more skillful and useful regional seasonal climate forecasts.

  18. Regional Model Nesting Within GFS Daily Forecasts Over West Africa

    NASA Technical Reports Server (NTRS)

    Druyan, Leonard M.; Fulakeza, Matthew; Lonergan, Patrick; Worrell, Ruben

    2010-01-01

    The study uses the RM3, the regional climate model at the Center for Climate Systems Research of Columbia University and the NASA/Goddard Institute for Space Studies (CCSR/GISS). The paper evaluates 30 48-hour RM3 weather forecasts over West Africa during September 2006 made on a 0.5 grid nested within 1 Global Forecast System (GFS) global forecasts. September 2006 was the Special Observing Period #3 of the African Monsoon Multidisciplinary Analysis (AMMA). Archived GFS initial conditions and lateral boundary conditions for the simulations from the US National Weather Service, National Oceanographic and Atmospheric Administration were interpolated four times daily. Results for precipitation forecasts are validated against Tropical Rainfall Measurement Mission (TRMM) satellite estimates and data from the Famine Early Warning System (FEWS), which includes rain gauge measurements, and forecasts of circulation are compared to reanalysis 2. Performance statistics for the precipitation forecasts include bias, root-mean-square errors and spatial correlation coefficients. The nested regional model forecasts are compared to GFS forecasts to gauge whether nesting provides additional realistic information. They are also compared to RM3 simulations driven by reanalysis 2, representing high potential skill forecasts, to gauge the sensitivity of results to lateral boundary conditions. Nested RM3/GFS forecasts generate excessive moisture advection toward West Africa, which in turn causes prodigious amounts of model precipitation. This problem is corrected by empirical adjustments in the preparation of lateral boundary conditions and initial conditions. The resulting modified simulations improve on the GFS precipitation forecasts, achieving time-space correlations with TRMM of 0.77 on the first day and 0.63 on the second day. One realtime RM3/GFS precipitation forecast made at and posted by the African Centre of Meteorological Application for Development (ACMAD) in Niamey, Niger is shown.

  19. A seasonal agricultural drought forecast system for food-insecure regions of East Africa

    USGS Publications Warehouse

    Shukla, Shraddhanand; McNally, Amy; Husak, Gregory; Funk, Christopher C.

    2014-01-01

     The increasing food and water demands of East Africa's growing population are stressing the region's inconsistent water resources and rain-fed agriculture. More accurate seasonal agricultural drought forecasts for this region can inform better water and agricultural management decisions, support optimal allocation of the region's water resources, and mitigate socio-economic losses incurred by droughts and floods. Here we describe the development and implementation of a seasonal agricultural drought forecast system for East Africa (EA) that provides decision support for the Famine Early Warning Systems Network's science team. We evaluate this forecast system for a region of equatorial EA (2° S to 8° N, and 36° to 46° E) for the March-April-May growing season. This domain encompasses one of the most food insecure, climatically variable and socio-economically vulnerable regions in EA, and potentially the world: this region has experienced famine as recently as 2011. To assess the agricultural outlook for the upcoming season our forecast system simulates soil moisture (SM) scenarios using the Variable Infiltration Capacity (VIC) hydrologic model forced with climate scenarios for the upcoming season. First, to show that the VIC model is appropriate for this application we forced the model with high quality atmospheric observations and found that the resulting SM values were consistent with the Food and Agriculture Organization's (FAO's) Water Requirement Satisfaction Index (WRSI), an index used by FEWS NET to estimate crop yields. Next we tested our forecasting system with hindcast runs (1993–2012). We found that initializing SM forecasts with start-of-season (5 March) SM conditions resulted in useful SM forecast skill (> 0.5 correlation) at 1-month, and in some cases at 3 month lead times. Similarly, when the forecast was initialized with mid-season (i.e. 5 April) SM conditions the skill until the end-of-season improved. This shows that early-season rainfall is critical for end-of-season outcomes. Finally we show that, in terms of forecasting spatial patterns of SM anomalies, the skill of this agricultural drought forecast system is generally greater (> 0.8 correlation) during drought years. This means that this system might be particularity useful for identifying the events that present the greatest risk to the region.

  20. Remote Sensing and River Discharge Forecasting for Major Rivers in South Asia (Invited)

    NASA Astrophysics Data System (ADS)

    Webster, P. J.; Hopson, T. M.; Hirpa, F. A.; Brakenridge, G. R.; De-Groeve, T.; Shrestha, K.; Gebremichael, M.; Restrepo, P. J.

    2013-12-01

    The South Asia is a flashpoint for natural disasters particularly flooding of the Indus, Ganges, and Brahmaputra has profound societal impacts for the region and globally. The 2007 Brahmaputra floods affecting India and Bangladesh, the 2008 avulsion of the Kosi River in India, the 2010 flooding of the Indus River in Pakistan and the 2013 Uttarakhand exemplify disasters on scales almost inconceivable elsewhere. Their frequent occurrence of floods combined with large and rapidly growing populations, high levels of poverty and low resilience, exacerbate the impact of the hazards. Mitigation of these devastating hazards are compounded by limited flood forecast capability, lack of rain/gauge measuring stations and forecast use within and outside the country, and transboundary data sharing on natural hazards. Here, we demonstrate the utility of remotely-derived hydrologic and weather products in producing skillful flood forecasting information without reliance on vulnerable in situ data sources. Over the last decade a forecast system has been providing operational probabilistic forecasts of severe flooding of the Brahmaputra and Ganges Rivers in Bangldesh was developed (Hopson and Webster 2010). The system utilizes ECMWF weather forecast uncertainty information and ensemble weather forecasts, rain gauge and satellite-derived precipitation estimates, together with the limited near-real-time river stage observations from Bangladesh. This system has been expanded to Pakistan and has successfully forecast the 2010-2012 flooding (Shrestha and Webster 2013). To overcome the in situ hydrological data problem, recent efforts in parallel with the numerical modeling have utilized microwave satellite remote sensing of river widths to generate operational discharge advective-based forecasts for the Ganges and Brahmaputra. More than twenty remotely locations upstream of Bangldesh were used to produce stand-alone river flow nowcasts and forecasts at 1-15 days lead time. showing that satellite-based flow estimates are a useful source of dynamical surface water information in data-scarce regions and that they could be used for model calibration and data assimilation purposes in near-time hydrologic forecast applications (Hirpa et al. 2013). More recent efforts during this year's monsoon season are optimally combining these different independent sources of river forecast information along with archived flood inundation imagery of the Dartmouth Flood Observatory to improve the visualization and overall skill of the ongoing CFAB ensemble weather forecast-based flood forecasting system within the unique context of the ongoing flood forecasting efforts for Bangladesh.

  1. Two global data sets of daily fire emission injection heights since 2003

    NASA Astrophysics Data System (ADS)

    Rémy, Samuel; Veira, Andreas; Paugam, Ronan; Sofiev, Mikhail; Kaiser, Johannes W.; Marenco, Franco; Burton, Sharon P.; Benedetti, Angela; Engelen, Richard J.; Ferrare, Richard; Hair, Jonathan W.

    2017-02-01

    The Global Fire Assimilation System (GFAS) assimilates fire radiative power (FRP) observations from satellite-based sensors to produce daily estimates of biomass burning emissions. It has been extended to include information about injection heights derived from fire observations and meteorological information from the operational weather forecasts of ECMWF. Injection heights are provided by two distinct methods: the Integrated Monitoring and Modelling System for wildland fires (IS4FIRES) parameterisation and the one-dimensional plume rise model (PRM). A global database of daily biomass burning emissions and injection heights at 0.1° resolution has been produced for 2003-2015 and is continuously extended in near-real time with the operational GFAS service of the Copernicus Atmospheric Monitoring Service (CAMS). In this study, the two injection height data sets were compared with the new MPHP2 (MISR Plume Height Project 2) satellite-based plume height retrievals. The IS4FIRES parameterisation showed a better overall agreement than the observations, while the PRM was better at capturing the variability of injection heights. The performance of both parameterisations is also dependent on the type of vegetation. Furthermore, the use of biomass burning emission heights from GFAS in atmospheric composition forecasts was assessed in two case studies: the South AMerican Biomass Burning Analysis (SAMBBA) campaign which took place in September 2012 in Brazil, and a series of large fire events in the western USA in August 2013. For these case studies, forecasts of biomass burning aerosol species by the Composition Integrated Forecasting System (C-IFS) of CAMS were found to better reproduce the observed vertical distribution when using PRM injection heights from GFAS compared to aerosols emissions being prescribed at the surface. The globally available GFAS injection heights introduced and evaluated in this study provide a comprehensive data set for future fire and atmospheric composition modelling studies.

  2. Enhanced seasonal forecast skill following stratospheric sudden warmings

    NASA Astrophysics Data System (ADS)

    Sigmond, M.; Scinocca, J. F.; Kharin, V. V.; Shepherd, T. G.

    2013-02-01

    Advances in seasonal forecasting have brought widespread socio-economic benefits. However, seasonal forecast skill in the extratropics is relatively modest, prompting the seasonal forecasting community to search for additional sources of predictability. For over a decade it has been suggested that knowledge of the state of the stratosphere can act as a source of enhanced seasonal predictability; long-lived circulation anomalies in the lower stratosphere that follow stratospheric sudden warmings are associated with circulation anomalies in the troposphere that can last up to two months. Here, we show by performing retrospective ensemble model forecasts that such enhanced predictability can be realized in a dynamical seasonal forecast system with a good representation of the stratosphere. When initialized at the onset date of stratospheric sudden warmings, the model forecasts faithfully reproduce the observed mean tropospheric conditions in the months following the stratospheric sudden warmings. Compared with an equivalent set of forecasts that are not initialized during stratospheric sudden warmings, we document enhanced forecast skill for atmospheric circulation patterns, surface temperatures over northern Russia and eastern Canada and North Atlantic precipitation. We suggest that seasonal forecast systems initialized during stratospheric sudden warmings are likely to yield significantly greater forecast skill in some regions.

  3. Integrated Forecast-Decision Systems For River Basin Planning and Management

    NASA Astrophysics Data System (ADS)

    Georgakakos, A. P.

    2005-12-01

    A central application of climatology, meteorology, and hydrology is the generation of reliable forecasts for water resources management. In principle, effective use of forecasts could improve water resources management by providing extra protection against floods, mitigating the adverse effects of droughts, generating more hydropower, facilitating recreational activities, and minimizing the impacts of extreme events on the environment and the ecosystems. In practice, however, realization of these benefits depends on three requisite elements. First is the skill and reliability of forecasts. Second is the existence of decision support methods/systems with the ability to properly utilize forecast information. And third is the capacity of the institutional infrastructure to incorporate the information provided by the decision support systems into the decision making processes. This presentation discusses several decision support systems (DSS) using ensemble forecasting that have been developed by the Georgia Water Resources Institute for river basin management. These DSS are currently operational in Africa, Europe, and the US and address integrated water resources and energy planning and management in river basins with multiple water uses, multiple relevant temporal and spatial scales, and multiple decision makers. The article discusses the methods used and advocates that the design, development, and implementation of effective forecast-decision support systems must bring together disciplines, people, and institutions necessary to address today's complex water resources challenges.

  4. A PERFORMANCE EVALUATION OF THE ETA- CMAQ AIR QUALITY FORECAST SYSTEM FOR THE SUMMER OF 2005

    EPA Science Inventory

    This poster presents an evaluation of the Eta-CMAQ Air Quality Forecast System's experimental domain using O3 observations obtained from EPA's AIRNOW program and a suite of statistical metrics examining both discrete and categorical forecasts.

  5. System load forecasts for an electric utility. [Hourly loads using Box-Jenkins method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uri, N.D.

    This paper discusses forecasting hourly system load for an electric utility using Box-Jenkins time-series analysis. The results indicate that a model based on the method of Box and Jenkins, given its simplicity, gives excellent results over the forecast horizon.

  6. A Decision Support System for effective use of probability forecasts

    NASA Astrophysics Data System (ADS)

    De Kleermaeker, Simone; Verkade, Jan

    2013-04-01

    Often, water management decisions are based on hydrological forecasts. These forecasts, however, are affected by inherent uncertainties. It is increasingly common for forecasting agencies to make explicit estimates of these uncertainties and thus produce probabilistic forecasts. Associated benefits include the decision makers' increased awareness of forecasting uncertainties and the potential for risk-based decision-making. Also, a stricter separation of responsibilities between forecasters and decision maker can be made. However, simply having probabilistic forecasts available is not sufficient to realise the associated benefits. Additional effort is required in areas such as forecast visualisation and communication, decision making in uncertainty and forecast verification. Also, revised separation of responsibilities requires a shift in institutional arrangements and responsibilities. A recent study identified a number of additional issues related to the effective use of probability forecasts. When moving from deterministic to probability forecasting, a dimension is added to an already multi-dimensional problem; this makes it increasingly difficult for forecast users to extract relevant information from a forecast. A second issue is that while probability forecasts provide a necessary ingredient for risk-based decision making, other ingredients may not be present. For example, in many cases no estimates of flood damage, of costs of management measures and of damage reduction are available. This paper presents the results of the study, including some suggestions for resolving these issues and the integration of those solutions in a prototype decision support system (DSS). A pathway for further development of the DSS is outlined.

  7. Updates on CCMC Activities and GSFC Space Weather Services

    NASA Technical Reports Server (NTRS)

    Zhengm Y.; Hesse, M.; Kuznetsova, M.; Pulkkinen, A.; Rastaetter, L.; Maddox, M.; Taktakishvili, A.; Berrios, D.; Chulaki, A.; Lee, H.; hide

    2011-01-01

    In this presentation, we provide updates on CCMC modeling activities, CCMC metrics and validation studies, and other CCMC efforts. In addition, an overview of GSFC Space Weather Services (a sibling organization to the Community Coordinated Modeling Center) and its products/capabilities will be given. We show how some of the research grade models, if running in an operational mode, can help address NASA's space weather needs by providing forecasting/now casting capabilities of significant space weather events throughout the solar system.

  8. Uncertainty quantification and reliability assessment in operational oil spill forecast modeling system.

    PubMed

    Hou, Xianlong; Hodges, Ben R; Feng, Dongyu; Liu, Qixiao

    2017-03-15

    As oil transport increasing in the Texas bays, greater risks of ship collisions will become a challenge, yielding oil spill accidents as a consequence. To minimize the ecological damage and optimize rapid response, emergency managers need to be informed with how fast and where oil will spread as soon as possible after a spill. The state-of-the-art operational oil spill forecast modeling system improves the oil spill response into a new stage. However uncertainty due to predicted data inputs often elicits compromise on the reliability of the forecast result, leading to misdirection in contingency planning. Thus understanding the forecast uncertainty and reliability become significant. In this paper, Monte Carlo simulation is implemented to provide parameters to generate forecast probability maps. The oil spill forecast uncertainty is thus quantified by comparing the forecast probability map and the associated hindcast simulation. A HyosPy-based simple statistic model is developed to assess the reliability of an oil spill forecast in term of belief degree. The technologies developed in this study create a prototype for uncertainty and reliability analysis in numerical oil spill forecast modeling system, providing emergency managers to improve the capability of real time operational oil spill response and impact assessment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Baseline and target values for regional and point PV power forecasts: Toward improved solar forecasting

    DOE PAGES

    Zhang, Jie; Hodge, Bri -Mathias; Lu, Siyuan; ...

    2015-11-10

    Accurate solar photovoltaic (PV) power forecasting allows utilities to reliably utilize solar resources on their systems. However, to truly measure the improvements that any new solar forecasting methods provide, it is important to develop a methodology for determining baseline and target values for the accuracy of solar forecasting at different spatial and temporal scales. This paper aims at developing a framework to derive baseline and target values for a suite of generally applicable, value-based, and custom-designed solar forecasting metrics. The work was informed by close collaboration with utility and independent system operator partners. The baseline values are established based onmore » state-of-the-art numerical weather prediction models and persistence models in combination with a radiative transfer model. The target values are determined based on the reduction in the amount of reserves that must be held to accommodate the uncertainty of PV power output. The proposed reserve-based methodology is a reasonable and practical approach that can be used to assess the economic benefits gained from improvements in accuracy of solar forecasting. Lastly, the financial baseline and targets can be translated back to forecasting accuracy metrics and requirements, which will guide research on solar forecasting improvements toward the areas that are most beneficial to power systems operations.« less

  10. Nationwide validation of ensemble streamflow forecasts from the Hydrologic Ensemble Forecast Service (HEFS) of the U.S. National Weather Service

    NASA Astrophysics Data System (ADS)

    Lee, H. S.; Liu, Y.; Ward, J.; Brown, J.; Maestre, A.; Herr, H.; Fresch, M. A.; Wells, E.; Reed, S. M.; Jones, E.

    2017-12-01

    The National Weather Service's (NWS) Office of Water Prediction (OWP) recently launched a nationwide effort to verify streamflow forecasts from the Hydrologic Ensemble Forecast Service (HEFS) for a majority of forecast locations across the 13 River Forecast Centers (RFCs). Known as the HEFS Baseline Validation (BV), the project involves a joint effort between the OWP and the RFCs. It aims to provide a geographically consistent, statistically robust validation, and a benchmark to guide the operational implementation of the HEFS, inform practical applications, such as impact-based decision support services, and to provide an objective framework for evaluating strategic investments in the HEFS. For the BV, HEFS hindcasts are issued once per day on a 12Z cycle for the period of 1985-2015 with a forecast horizon of 30 days. For the first two weeks, the hindcasts are forced with precipitation and temperature ensemble forecasts from the Global Ensemble Forecast System of the National Centers for Environmental Prediction, and by resampled climatology for the remaining period. The HEFS-generated ensemble streamflow hindcasts are verified using the Ensemble Verification System. Skill is assessed relative to streamflow hindcasts generated from NWS' current operational system, namely climatology-based Ensemble Streamflow Prediction. In this presentation, we summarize the results and findings to date.

  11. Theoretical Models for Aircraft Availability: Classical Approach to Identification of Trends, Seasonality, and System Constraints in the Development of Realized Models

    DTIC Science & Technology

    2004-03-01

    predicting future events ( Heizer and Render , 1999). Forecasting techniques fall into two major categories, qualitative and quantitative methods...Globemaster III.” Excerpt from website. www.globalsecurity.org/military /systems/ aircraft/c-17-history.htm. 2003. Heizer , Jay, and Barry Render ...of the past data used to make the forecast ( Heizer , et. al., 1999). Explanatory forecasting models assume that the variable being forecasted

  12. A report from the Space Science and Engineering Center, the University of Wisconsin-Madison, Madison, Wisconsin

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Operational forecasters have habitually been plagued with the problems associated with acquisition, display, and dissemination of data used in preparing forecasts. The centralized storm information system (CSIS) experiment provided an operational forecaster with an interactive computer system which could perform these preliminary tasks more quickly and accurately than any human could. CSIS objectives pertaining to improved severe storms forecasting and warning procedures are addressed.

  13. The Implementation of NEMS GFS Aerosol Component (NGAC) Version 1.0 for Global Dust Forecasting at NOAA NCEP

    NASA Technical Reports Server (NTRS)

    Lu, Cheng-Hsuan; Da Silva, Arlindo M.; Wang, Jun; Moorthi, Shrinivas; Chin, Mian; Colarco, Peter; Tang, Youhua; Bhattacharjee, Partha S.; Chen, Shen-Po; Chuang, Hui-Ya; hide

    2016-01-01

    The NOAA National Centers for Environmental Prediction (NCEP) implemented the NOAA Environmental Modeling System (NEMS) Global Forecast System (GFS) Aerosol Component (NGAC) for global dust forecasting in collaboration with NASA Goddard Space Flight Center (GSFC). NGAC Version 1.0 has been providing 5-day dust forecasts at 1deg x 1deg resolution on a global scale, once per day at 00:00 Coordinated Universal Time (UTC), since September 2012. This is the first global system capable of interactive atmosphere aerosol forecasting at NCEP. The implementation of NGAC V1.0 reflects an effective and efficient transitioning of NASA research advances to NCEP operations, paving the way for NCEP to provide global aerosol products serving a wide range of stakeholders, as well as to allow the effects of aerosols on weather forecasts and climate prediction to be considered.

  14. Comparison of Wind Power and Load Forecasting Error Distributions: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodge, B. M.; Florita, A.; Orwig, K.

    2012-07-01

    The introduction of large amounts of variable and uncertain power sources, such as wind power, into the electricity grid presents a number of challenges for system operations. One issue involves the uncertainty associated with scheduling power that wind will supply in future timeframes. However, this is not an entirely new challenge; load is also variable and uncertain, and is strongly influenced by weather patterns. In this work we make a comparison between the day-ahead forecasting errors encountered in wind power forecasting and load forecasting. The study examines the distribution of errors from operational forecasting systems in two different Independent Systemmore » Operator (ISO) regions for both wind power and load forecasts at the day-ahead timeframe. The day-ahead timescale is critical in power system operations because it serves the unit commitment function for slow-starting conventional generators.« less

  15. Evaluating the spatio-temporal performance of sky imager based solar irradiance analysis and forecasts

    NASA Astrophysics Data System (ADS)

    Schmidt, T.; Kalisch, J.; Lorenz, E.; Heinemann, D.

    2015-10-01

    Clouds are the dominant source of variability in surface solar radiation and uncertainty in its prediction. However, the increasing share of solar energy in the world-wide electric power supply increases the need for accurate solar radiation forecasts. In this work, we present results of a shortest-term global horizontal irradiance (GHI) forecast experiment based on hemispheric sky images. A two month dataset with images from one sky imager and high resolutive GHI measurements from 99 pyranometers distributed over 10 km by 12 km is used for validation. We developed a multi-step model and processed GHI forecasts up to 25 min with an update interval of 15 s. A cloud type classification is used to separate the time series in different cloud scenarios. Overall, the sky imager based forecasts do not outperform the reference persistence forecasts. Nevertheless, we find that analysis and forecast performance depend strongly on the predominant cloud conditions. Especially convective type clouds lead to high temporal and spatial GHI variability. For cumulus cloud conditions, the analysis error is found to be lower than that introduced by a single pyranometer if it is used representatively for the whole area in distances from the camera larger than 1-2 km. Moreover, forecast skill is much higher for these conditions compared to overcast or clear sky situations causing low GHI variability which is easier to predict by persistence. In order to generalize the cloud-induced forecast error, we identify a variability threshold indicating conditions with positive forecast skill.

  16. A stochastic HMM-based forecasting model for fuzzy time series.

    PubMed

    Li, Sheng-Tun; Cheng, Yi-Chung

    2010-10-01

    Recently, fuzzy time series have attracted more academic attention than traditional time series due to their capability of dealing with the uncertainty and vagueness inherent in the data collected. The formulation of fuzzy relations is one of the key issues affecting forecasting results. Most of the present works adopt IF-THEN rules for relationship representation, which leads to higher computational overhead and rule redundancy. Sullivan and Woodall proposed a Markov-based formulation and a forecasting model to reduce computational overhead; however, its applicability is limited to handling one-factor problems. In this paper, we propose a novel forecasting model based on the hidden Markov model by enhancing Sullivan and Woodall's work to allow handling of two-factor forecasting problems. Moreover, in order to make the nature of conjecture and randomness of forecasting more realistic, the Monte Carlo method is adopted to estimate the outcome. To test the effectiveness of the resulting stochastic model, we conduct two experiments and compare the results with those from other models. The first experiment consists of forecasting the daily average temperature and cloud density in Taipei, Taiwan, and the second experiment is based on the Taiwan Weighted Stock Index by forecasting the exchange rate of the New Taiwan dollar against the U.S. dollar. In addition to improving forecasting accuracy, the proposed model adheres to the central limit theorem, and thus, the result statistically approximates to the real mean of the target value being forecast.

  17. NOMADS-NOAA Operational Model Archive and Distribution System

    Science.gov Websites

    Forecast Maps Climate Climate Prediction Climate Archives Weather Safety Storm Ready NOAA Central Library (16km) 6 hours grib filter http OpenDAP-alt URMA hourly - http - Climate Models Climate Forecast System Flux Products 6 hours grib filter http - Climate Forecast System 3D Pressure Products 6 hours grib

  18. The propagation of wind errors through ocean wave hindcasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holthuijsen, L.H.; Booij, N.; Bertotti, L.

    1996-08-01

    To estimate uncertainties in wave forecast and hindcasts, computations have been carried out for a location in the Mediterranean Sea using three different analyses of one historic wind field. These computations involve a systematic sensitivity analysis and estimated wind field errors. This technique enables a wave modeler to estimate such uncertainties in other forecasts and hindcasts if only one wind analysis is available.

  19. Impacts of Short-Term Solar Power Forecasts in System Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibanez, Eduardo; Krad, Ibrahim; Hodge, Bri-Mathias

    2016-05-05

    Solar generation is experiencing an exponential growth in power systems worldwide and, along with wind power, is posing new challenges to power system operations. Those challenges are characterized by an increase of system variability and uncertainty across many time scales: from days, down to hours, minutes, and seconds. Much of the research in the area has focused on the effect of solar forecasting across hours or days. This paper presents a methodology to capture the effect of short-term forecasting strategies and analyzes the economic and reliability implications of utilizing a simple, yet effective forecasting method for solar PV in intra-daymore » operations.« less

  20. The Experimental Regional Ensemble Forecast System (ExREF): Its Use in NWS Forecast Operations and Preliminary Verification

    NASA Technical Reports Server (NTRS)

    Reynolds, David; Rasch, William; Kozlowski, Daniel; Burks, Jason; Zavodsky, Bradley; Bernardet, Ligia; Jankov, Isidora; Albers, Steve

    2014-01-01

    The Experimental Regional Ensemble Forecast (ExREF) system is a tool for the development and testing of new Numerical Weather Prediction (NWP) methodologies. ExREF is run in near-realtime by the Global Systems Division (GSD) of the NOAA Earth System Research Laboratory (ESRL) and its products are made available through a website, an ftp site, and via the Unidata Local Data Manager (LDM). The ExREF domain covers most of North America and has 9-km horizontal grid spacing. The ensemble has eight members, all employing WRF-ARW. The ensemble uses a variety of initial conditions from LAPS and the Global Forecasting System (GFS) and multiple boundary conditions from the GFS ensemble. Additionally, a diversity of physical parameterizations is used to increase ensemble spread and to account for the uncertainty in forecasting extreme precipitation events. ExREF has been a component of the Hydrometeorology Testbed (HMT) NWP suite in the 2012-2013 and 2013-2014 winters. A smaller domain covering just the West Coast was created to minimize band-width consumption for the NWS. This smaller domain has and is being distributed to the National Weather Service (NWS) Weather Forecast Office and California Nevada River Forecast Center in Sacramento, California, where it is ingested into the Advanced Weather Interactive Processing System (AWIPS I and II) to provide guidance on the forecasting of extreme precipitation events. This paper will review the cooperative effort employed by NOAA ESRL, NASA SPoRT (Short-term Prediction Research and Transition Center), and the NWS to facilitate the ingest and display of ExREF data utilizing the AWIPS I and II D2D and GFE (Graphical Software Editor) software. Within GFE is a very useful verification software package called BoiVer that allows the NWS to utilize the River Forecast Center's 4 km gridded QPE to compare with all operational NWP models 6-hr QPF along with the ExREF mean 6-hr QPF so the forecasters can build confidence in the use of the ExREF in preparing their rainfall forecasts. Preliminary results will be presented.

  1. Evaluation of radar and automatic weather station data assimilation for a heavy rainfall event in southern China

    NASA Astrophysics Data System (ADS)

    Hou, Tuanjie; Kong, Fanyou; Chen, Xunlai; Lei, Hengchi; Hu, Zhaoxia

    2015-07-01

    To improve the accuracy of short-term (0-12 h) forecasts of severe weather in southern China, a real-time storm-scale forecasting system, the Hourly Assimilation and Prediction System (HAPS), has been implemented in Shenzhen, China. The forecasting system is characterized by combining the Advanced Research Weather Research and Forecasting (WRF-ARW) model and the Advanced Regional Prediction System (ARPS) three-dimensional variational data assimilation (3DVAR) package. It is capable of assimilating radar reflectivity and radial velocity data from multiple Doppler radars as well as surface automatic weather station (AWS) data. Experiments are designed to evaluate the impacts of data assimilation on quantitative precipitation forecasting (QPF) by studying a heavy rainfall event in southern China. The forecasts from these experiments are verified against radar, surface, and precipitation observations. Comparison of echo structure and accumulated precipitation suggests that radar data assimilation is useful in improving the short-term forecast by capturing the location and orientation of the band of accumulated rainfall. The assimilation of radar data improves the short-term precipitation forecast skill by up to 9 hours by producing more convection. The slight but generally positive impact that surface AWS data has on the forecast of near-surface variables can last up to 6-9 hours. The assimilation of AWS observations alone has some benefit for improving the Fractions Skill Score (FSS) and bias scores; when radar data are assimilated, the additional AWS data may increase the degree of rainfall overprediction.

  2. Oregon Washington Coastal Ocean Forecast System: Real-time Modeling and Data Assimilation

    NASA Astrophysics Data System (ADS)

    Erofeeva, S.; Kurapov, A. L.; Pasmans, I.

    2016-02-01

    Three-day forecasts of ocean currents, temperature and salinity along the Oregon and Washington coasts are produced daily by a numerical ROMS-based ocean circulation model. NAM is used to derive atmospheric forcing for the model. Fresh water discharge from Columbia River, Fraser River, and small rivers in Puget Sound are included. The forecast is constrained by open boundary conditions derived from the global Navy HYCOM model and once in 3 days assimilation of recent data, including HF radar surface currents, sea surface temperature from the GOES satellite, and SSH from several satellite altimetry missions. 4-dimensional variational data assimilation is implemented in 3-day time windows using the tangent linear and adjoint codes developed at OSU. The system is semi-autonomous - all the data, including NAM and HYCOM fields are automatically updated, and daily operational forecast is automatically initiated. The pre-assimilation data quality control and post-assimilation forecast quality control require the operator's involvement. The daily forecast and 60 days of hindcast fields are available for public on opendap. As part of the system model validation plots to various satellites and SEAGLIDER are also automatically updated and available on the web (http://ingria.coas.oregonstate.edu/rtdavow/). Lessons learned in this pilot real-time coastal ocean forecasting project help develop and test metrics for forecast skill assessment for the West Coast Operational Forecast System (WCOFS), currently at testing and development phase at the National Oceanic and Atmospheric Administration (NOAA).

  3. An expert system-based approach to prediction of year-to-year climatic variations in the North Atlantic region

    NASA Astrophysics Data System (ADS)

    Rodionov, S. N.; Martin, J. H.

    1999-07-01

    A novel approach to climate forecasting on an interannual time scale is described. The approach is based on concepts and techniques from artificial intelligence and expert systems. The suitability of this approach to climate diagnostics and forecasting problems and its advantages compared with conventional forecasting techniques are discussed. The article highlights some practical aspects of the development of climatic expert systems (CESs) and describes an implementation of such a system for the North Atlantic (CESNA). Particular attention is paid to the content of CESNA's knowledge base and those conditions that make climatic forecasts one to several years in advance possible. A detailed evaluation of the quality of the experimental real-time forecasts made by CESNA for the winters of 1995-1996, 1996-1997 and 1997-1998 are presented.

  4. Stochastic Forcing for High-Resolution Regional and Global Ocean and Atmosphere-Ocean Coupled Ensemble Forecast System

    NASA Astrophysics Data System (ADS)

    Rowley, C. D.; Hogan, P. J.; Martin, P.; Thoppil, P.; Wei, M.

    2017-12-01

    An extended range ensemble forecast system is being developed in the US Navy Earth System Prediction Capability (ESPC), and a global ocean ensemble generation capability to represent uncertainty in the ocean initial conditions has been developed. At extended forecast times, the uncertainty due to the model error overtakes the initial condition as the primary source of forecast uncertainty. Recently, stochastic parameterization or stochastic forcing techniques have been applied to represent the model error in research and operational atmospheric, ocean, and coupled ensemble forecasts. A simple stochastic forcing technique has been developed for application to US Navy high resolution regional and global ocean models, for use in ocean-only and coupled atmosphere-ocean-ice-wave ensemble forecast systems. Perturbation forcing is added to the tendency equations for state variables, with the forcing defined by random 3- or 4-dimensional fields with horizontal, vertical, and temporal correlations specified to characterize different possible kinds of error. Here, we demonstrate the stochastic forcing in regional and global ensemble forecasts with varying perturbation amplitudes and length and time scales, and assess the change in ensemble skill measured by a range of deterministic and probabilistic metrics.

  5. Short-Term Load Forecasting Based Automatic Distribution Network Reconfiguration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Huaiguang; Ding, Fei; Zhang, Yingchen

    In a traditional dynamic network reconfiguration study, the optimal topology is determined at every scheduled time point by using the real load data measured at that time. The development of the load forecasting technique can provide an accurate prediction of the load power that will happen in a future time and provide more information about load changes. With the inclusion of load forecasting, the optimal topology can be determined based on the predicted load conditions during a longer time period instead of using a snapshot of the load at the time when the reconfiguration happens; thus, the distribution system operatormore » can use this information to better operate the system reconfiguration and achieve optimal solutions. This paper proposes a short-term load forecasting approach to automatically reconfigure distribution systems in a dynamic and pre-event manner. Specifically, a short-term and high-resolution distribution system load forecasting approach is proposed with a forecaster based on support vector regression and parallel parameters optimization. The network reconfiguration problem is solved by using the forecasted load continuously to determine the optimal network topology with the minimum amount of loss at the future time. The simulation results validate and evaluate the proposed approach.« less

  6. Short-Term Load Forecasting-Based Automatic Distribution Network Reconfiguration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Huaiguang; Ding, Fei; Zhang, Yingchen

    In a traditional dynamic network reconfiguration study, the optimal topology is determined at every scheduled time point by using the real load data measured at that time. The development of the load forecasting technique can provide an accurate prediction of the load power that will happen in a future time and provide more information about load changes. With the inclusion of load forecasting, the optimal topology can be determined based on the predicted load conditions during a longer time period instead of using a snapshot of the load at the time when the reconfiguration happens; thus, the distribution system operatormore » can use this information to better operate the system reconfiguration and achieve optimal solutions. This paper proposes a short-term load forecasting approach to automatically reconfigure distribution systems in a dynamic and pre-event manner. Specifically, a short-term and high-resolution distribution system load forecasting approach is proposed with a forecaster based on support vector regression and parallel parameters optimization. The network reconfiguration problem is solved by using the forecasted load continuously to determine the optimal network topology with the minimum amount of loss at the future time. The simulation results validate and evaluate the proposed approach.« less

  7. Alternative Approaches to Land Initialization for Seasonal Precipitation and Temperature Forecasts

    NASA Technical Reports Server (NTRS)

    Koster, Randal; Suarez, Max; Liu, Ping; Jambor, Urszula

    2004-01-01

    The seasonal prediction system of the NASA Global Modeling and Assimilation Office is used to generate ensembles of summer forecasts utilizing realistic soil moisture initialization. To derive the realistic land states, we drive offline the system's land model with realistic meteorological forcing over the period 1979-1993 (in cooperation with the Global Land Data Assimilation System project at GSFC) and then extract the state variables' values on the chosen forecast start dates. A parallel series of forecast ensembles is performed with a random (though climatologically consistent) set of land initial conditions; by comparing the two sets of ensembles, we can isolate the impact of land initialization on forecast skill from that of the imposed SSTs. The base initialization experiment is supplemented with several forecast ensembles that use alternative initialization techniques. One ensemble addresses the impact of minimizing climate drift in the system through the scaling of the initial conditions, and another is designed to isolate the importance of the precipitation signal from that of all other signals in the antecedent offline forcing. A third ensemble includes a more realistic initialization of the atmosphere along with the land initialization. The impact of each variation on forecast skill is quantified.

  8. On the reliability of seasonal climate forecasts

    PubMed Central

    Weisheimer, A.; Palmer, T. N.

    2014-01-01

    Seasonal climate forecasts are being used increasingly across a range of application sectors. A recent UK governmental report asked: how good are seasonal forecasts on a scale of 1–5 (where 5 is very good), and how good can we expect them to be in 30 years time? Seasonal forecasts are made from ensembles of integrations of numerical models of climate. We argue that ‘goodness’ should be assessed first and foremost in terms of the probabilistic reliability of these ensemble-based forecasts; reliable inputs are essential for any forecast-based decision-making. We propose that a ‘5’ should be reserved for systems that are not only reliable overall, but where, in particular, small ensemble spread is a reliable indicator of low ensemble forecast error. We study the reliability of regional temperature and precipitation forecasts of the current operational seasonal forecast system of the European Centre for Medium-Range Weather Forecasts, universally regarded as one of the world-leading operational institutes producing seasonal climate forecasts. A wide range of ‘goodness’ rankings, depending on region and variable (with summer forecasts of rainfall over Northern Europe performing exceptionally poorly) is found. Finally, we discuss the prospects of reaching ‘5’ across all regions and variables in 30 years time. PMID:24789559

  9. Development and application of an atmospheric-hydrologic-hydraulic flood forecasting model driven by TIGGE ensemble forecasts

    NASA Astrophysics Data System (ADS)

    Bao, Hongjun; Zhao, Linna

    2012-02-01

    A coupled atmospheric-hydrologic-hydraulic ensemble flood forecasting model, driven by The Observing System Research and Predictability Experiment (THORPEX) Interactive Grand Global Ensemble (TIGGE) data, has been developed for flood forecasting over the Huaihe River. The incorporation of numerical weather prediction (NWP) information into flood forecasting systems may increase forecast lead time from a few hours to a few days. A single NWP model forecast from a single forecast center, however, is insufficient as it involves considerable non-predictable uncertainties and leads to a high number of false alarms. The availability of global ensemble NWP systems through TIGGE offers a new opportunity for flood forecast. The Xinanjiang model used for hydrological rainfall-runoff modeling and the one-dimensional unsteady flow model applied to channel flood routing are coupled with ensemble weather predictions based on the TIGGE data from the Canadian Meteorological Centre (CMC), the European Centre for Medium-Range Weather Forecasts (ECMWF), the UK Met Office (UKMO), and the US National Centers for Environmental Prediction (NCEP). The developed ensemble flood forecasting model is applied to flood forecasting of the 2007 flood season as a test case. The test case is chosen over the upper reaches of the Huaihe River above Lutaizi station with flood diversion and retarding areas. The input flood discharge hydrograph from the main channel to the flood diversion area is estimated with the fixed split ratio of the main channel discharge. The flood flow inside the flood retarding area is calculated as a reservoir with the water balance method. The Muskingum method is used for flood routing in the flood diversion area. A probabilistic discharge and flood inundation forecast is provided as the end product to study the potential benefits of using the TIGGE ensemble forecasts. The results demonstrate satisfactory flood forecasting with clear signals of probability of floods up to a few days in advance, and show that TIGGE ensemble forecast data are a promising tool for forecasting of flood inundation, comparable with that driven by raingauge observations.

  10. Wave ensemble forecast system for tropical cyclones in the Australian region

    NASA Astrophysics Data System (ADS)

    Zieger, Stefan; Greenslade, Diana; Kepert, Jeffrey D.

    2018-05-01

    Forecasting of waves under extreme conditions such as tropical cyclones is vitally important for many offshore industries, but there remain many challenges. For Northwest Western Australia (NW WA), wave forecasts issued by the Australian Bureau of Meteorology have previously been limited to products from deterministic operational wave models forced by deterministic atmospheric models. The wave models are run over global (resolution 1/4∘) and regional (resolution 1/10∘) domains with forecast ranges of + 7 and + 3 day respectively. Because of this relatively coarse resolution (both in the wave models and in the forcing fields), the accuracy of these products is limited under tropical cyclone conditions. Given this limited accuracy, a new ensemble-based wave forecasting system for the NW WA region has been developed. To achieve this, a new dedicated 8-km resolution grid was nested in the global wave model. Over this grid, the wave model is forced with winds from a bias-corrected European Centre for Medium Range Weather Forecast atmospheric ensemble that comprises 51 ensemble members to take into account the uncertainties in location, intensity and structure of a tropical cyclone system. A unique technique is used to select restart files for each wave ensemble member. The system is designed to operate in real time during the cyclone season providing + 10-day forecasts. This paper will describe the wave forecast components of this system and present the verification metrics and skill for specific events.

  11. Recommendations for a wind profiling network to support Space Shuttle launches

    NASA Technical Reports Server (NTRS)

    Zamora, R. J.

    1992-01-01

    The feasibility is examined of a network of clear air radar wind profilers to forecast wind conditions before Space Shuttle launches during winter. Currently, winds are measured only in the vicinity of the shuttle launch site and wind loads on the launch vehicle are estimated using these measurements. Wind conditions upstream of the Cape are not monitored. Since large changes in the wind shear profile can be associated with weather systems moving over the Cape, it may be possible to improve wind forecasts over the launch site if wind measurements are made upstream. A radar wind profiling system is in use at the Space Shuttle launch site. This system can monitor the wind profile continuously. The existing profiler could be combined with a number of radars located upstream of the launch site. Thus, continuous wind measurements would be available upstream and at the Cape. NASA-Marshall representatives have set the requirements for radar wind profiling network. The minimum vertical resolution of the network must be set so that the wind shears over the depths greater than or = 1 km will be detected. The network should allow scientists and engineers to predict the wind profile over the Cape 6 hours before a Space Shuttle launch.

  12. Worldwide satellite market demand forecast

    NASA Technical Reports Server (NTRS)

    Bowyer, J. M.; Frankfort, M.; Steinnagel, K. M.

    1981-01-01

    The forecast is for the years 1981 - 2000 with benchmark years at 1985, 1990 and 2000. Two typs of markets are considered for this study: Hardware (worldwide total) - satellites, earth stations and control facilities (includes replacements and spares); and non-hardware (addressable by U.S. industry) - planning, launch, turnkey systems and operations. These markets were examined for the INTELSAT System (international systems and domestic and regional systems using leased transponders) and domestic and regional systems. Forecasts were determined for six worldwide regions encompassing 185 countries using actual costs for existing equipment and engineering estimates of costs for advanced systems. Most likely (conservative growth rate estimates) and optimistic (mid range growth rate estimates) scenarios were employed for arriving at the forecasts which are presented in constant 1980 U.S. dollars. The worldwide satellite market demand forecast predicts that the market between 181 and 2000 will range from $35 to $50 billion. Approximately one-half of the world market, $16 to $20 billion, will be generated in the United States.

  13. Worldwide satellite market demand forecast

    NASA Astrophysics Data System (ADS)

    Bowyer, J. M.; Frankfort, M.; Steinnagel, K. M.

    1981-06-01

    The forecast is for the years 1981 - 2000 with benchmark years at 1985, 1990 and 2000. Two typs of markets are considered for this study: Hardware (worldwide total) - satellites, earth stations and control facilities (includes replacements and spares); and non-hardware (addressable by U.S. industry) - planning, launch, turnkey systems and operations. These markets were examined for the INTELSAT System (international systems and domestic and regional systems using leased transponders) and domestic and regional systems. Forecasts were determined for six worldwide regions encompassing 185 countries using actual costs for existing equipment and engineering estimates of costs for advanced systems. Most likely (conservative growth rate estimates) and optimistic (mid range growth rate estimates) scenarios were employed for arriving at the forecasts which are presented in constant 1980 U.S. dollars. The worldwide satellite market demand forecast predicts that the market between 181 and 2000 will range from $35 to $50 billion. Approximately one-half of the world market, $16 to $20 billion, will be generated in the United States.

  14. A forecast of typhoid conjugate vaccine introduction and demand in typhoid endemic low- and middle-income countries to support vaccine introduction policy and decisions.

    PubMed

    Mogasale, Vittal; Ramani, Enusa; Park, Il Yeon; Lee, Jung Seok

    2017-09-02

    A Typhoid Conjugate Vaccine (TCV) is expected to acquire WHO prequalification soon, which will pave the way for its use in many low- and middle-income countries where typhoid fever is endemic. Thus it is critical to forecast future vaccine demand to ensure supply meets demand, and to facilitate vaccine policy and introduction planning. We forecasted introduction dates for countries based on specific criteria and estimated vaccine demand by year for defined vaccination strategies in 2 scenarios: rapid vaccine introduction and slow vaccine introduction. In the rapid introduction scenario, we forecasted 17 countries and India introducing TCV in the first 5 y of the vaccine's availability while in the slow introduction scenario we forecasted 4 countries and India introducing TCV in the same time period. If the vaccine is targeting infants in high-risk populations as a routine single dose, the vaccine demand peaks around 40 million doses per year under the rapid introduction scenario. Similarly, if the vaccine is targeting infants in the general population as a routine single dose, the vaccine demand increases to 160 million doses per year under the rapid introduction scenario. The demand forecast projected here is an upper bound estimate of vaccine demand, where actual demand depends on various factors such as country priorities, actual vaccine introduction, vaccination strategies, Gavi financing, costs, and overall product profile. Considering the potential role of TCV in typhoid control globally; manufacturers, policymakers, donors and financing bodies should work together to ensure vaccine access through sufficient production capacity, early WHO prequalification of the vaccine, continued Gavi financing and supportive policy.

  15. A forecast of typhoid conjugate vaccine introduction and demand in typhoid endemic low- and middle-income countries to support vaccine introduction policy and decisions

    PubMed Central

    Ramani, Enusa; Park, Il Yeon; Lee, Jung Seok

    2017-01-01

    ABSTRACT A Typhoid Conjugate Vaccine (TCV) is expected to acquire WHO prequalification soon, which will pave the way for its use in many low- and middle-income countries where typhoid fever is endemic. Thus it is critical to forecast future vaccine demand to ensure supply meets demand, and to facilitate vaccine policy and introduction planning. We forecasted introduction dates for countries based on specific criteria and estimated vaccine demand by year for defined vaccination strategies in 2 scenarios: rapid vaccine introduction and slow vaccine introduction. In the rapid introduction scenario, we forecasted 17 countries and India introducing TCV in the first 5 y of the vaccine's availability while in the slow introduction scenario we forecasted 4 countries and India introducing TCV in the same time period. If the vaccine is targeting infants in high-risk populations as a routine single dose, the vaccine demand peaks around 40 million doses per year under the rapid introduction scenario. Similarly, if the vaccine is targeting infants in the general population as a routine single dose, the vaccine demand increases to 160 million doses per year under the rapid introduction scenario. The demand forecast projected here is an upper bound estimate of vaccine demand, where actual demand depends on various factors such as country priorities, actual vaccine introduction, vaccination strategies, Gavi financing, costs, and overall product profile. Considering the potential role of TCV in typhoid control globally; manufacturers, policymakers, donors and financing bodies should work together to ensure vaccine access through sufficient production capacity, early WHO prequalification of the vaccine, continued Gavi financing and supportive policy. PMID:28604164

  16. Decision Support on the Sediments Flushing of Aimorés Dam Using Medium-Range Ensemble Forecasts

    NASA Astrophysics Data System (ADS)

    Mainardi Fan, Fernando; Schwanenberg, Dirk; Collischonn, Walter; Assis dos Reis, Alberto; Alvarado Montero, Rodolfo; Alencar Siqueira, Vinicius

    2015-04-01

    In the present study we investigate the use of medium-range streamflow forecasts in the Doce River basin (Brazil), at the reservoir of Aimorés Hydro Power Plant (HPP). During daily operations this reservoir acts as a "trap" to the sediments that originate from the upstream basin of the Doce River. This motivates a cleaning process called "pass through" to periodically remove the sediments from the reservoir. The "pass through" or "sediments flushing" process consists of a decrease of the reservoir's water level to a certain flushing level when a determined reservoir inflow threshold is forecasted. Then, the water in the approaching inflow is used to flush the sediments from the reservoir through the spillway and to recover the original reservoir storage. To be triggered, the sediments flushing operation requires an inflow larger than 3000m³/s in a forecast horizon of 7 days. This lead-time of 7 days is far beyond the basin's concentration time (around 2 days), meaning that the forecasts for the pass through procedure highly depends on Numerical Weather Predictions (NWP) models that generate Quantitative Precipitation Forecasts (QPF). This dependency creates an environment with a high amount of uncertainty to the operator. To support the decision making at Aimorés HPP we developed a fully operational hydrological forecasting system to the basin. The system is capable of generating ensemble streamflow forecasts scenarios when driven by QPF data from meteorological Ensemble Prediction Systems (EPS). This approach allows accounting for uncertainties in the NWP at a decision making level. This system is starting to be used operationally by CEMIG and is the one shown in the present study, including a hindcasting analysis to assess the performance of the system for the specific flushing problem. The QPF data used in the hindcasting study was derived from the TIGGE (THORPEX Interactive Grand Global Ensemble) database. Among all EPS available on TIGGE, three were selected: ECMWF, GEFS, and CPTEC. As a deterministic reference forecast, we adopt the high resolution ECMWF forecast for comparison. The experiment consisted on running retrospective forecasts for a full five-year period. To verify the proposed objectives of the study, we use different metrics to evaluate the forecast: ROC Curves, Exceedance Diagrams, Forecast Convergence Score (FCS). Metrics results enabled to understand the benefits of the hydrological ensemble prediction system as a decision making tool for the HPP operation. The ROC scores indicate that the use of the lower percentiles of the ensemble scenarios issues for a true alarm rate around 0,5 to 0,8 (depending on the model and on the percentile), for the lead time of seven days. While the false alarm rate is between 0 and 0,3. Those rates were better than the ones resulting from the deterministic reference forecast. Exceedance diagrams and forecast convergence scores indicate that the ensemble scenarios provide an early signal about the threshold crossing. Furthermore, the ensemble forecasts are more consistent between two subsequent forecasts in comparison to the deterministic forecast. The assessments results also give more credibility to CEMIG in the realization and communication of flushing operation with the stakeholders involved.

  17. Accuracy of short‐term sea ice drift forecasts using a coupled ice‐ocean model

    PubMed Central

    Zhang, Jinlun

    2015-01-01

    Abstract Arctic sea ice drift forecasts of 6 h–9 days for the summer of 2014 are generated using the Marginal Ice Zone Modeling and Assimilation System (MIZMAS); the model is driven by 6 h atmospheric forecasts from the Climate Forecast System (CFSv2). Forecast ice drift speed is compared to drifting buoys and other observational platforms. Forecast positions are compared with actual positions 24 h–8 days since forecast. Forecast results are further compared to those from the forecasts generated using an ice velocity climatology driven by multiyear integrations of the same model. The results are presented in the context of scheduling the acquisition of high‐resolution images that need to follow buoys or scientific research platforms. RMS errors for ice speed are on the order of 5 km/d for 24–48 h since forecast using the sea ice model compared with 9 km/d using climatology. Predicted buoy position RMS errors are 6.3 km for 24 h and 14 km for 72 h since forecast. Model biases in ice speed and direction can be reduced by adjusting the air drag coefficient and water turning angle, but the adjustments do not affect verification statistics. This suggests that improved atmospheric forecast forcing may further reduce the forecast errors. The model remains skillful for 8 days. Using the forecast model increases the probability of tracking a target drifting in sea ice with a 10 km × 10 km image from 60 to 95% for a 24 h forecast and from 27 to 73% for a 48 h forecast. PMID:27818852

  18. A system for forecasting and monitoring cash flow : phase I : forecasting payments on construction contracts.

    DOT National Transportation Integrated Search

    1983-01-01

    The research on which this paper is based was performed as part of a study to develop a system for generating a one-to-two year forecast of monthly cash flows for the Virginia Department of Highways and Transportation. It revealed that presently used...

  19. A Public-Private-Acadmic Partnership to Advance Solar Power Forecasting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haupt, Sue Ellen

    The National Center for Atmospheric Research (NCAR) is pleased to have led a partnership to advance the state-of-the-science of solar power forecasting by designing, developing, building, deploying, testing, and assessing the SunCast™ Solar Power Forecasting System. The project has included cutting edge research, testing in several geographically- and climatologically-diverse high penetration solar utilities and Independent System Operators (ISOs), and wide dissemination of the research results to raise the bar on solar power forecasting technology. The partners include three other national laboratories, six universities, and industry partners. This public-private-academic team has worked in concert to perform use-inspired research to advance solarmore » power forecasting through cutting-edge research to advance both the necessary forecasting technologies and the metrics for evaluating them. The project has culminated in a year-long, full-scale demonstration of provide irradiance and power forecasts to utilities and ISOs to use in their operations. The project focused on providing elements of a value chain, beginning with the weather that causes a deviation from clear sky irradiance and progresses through monitoring and observations, modeling, forecasting, dissemination and communication of the forecasts, interpretation of the forecast, and through decision-making, which produces outcomes that have an economic value. The system has been evaluated using metrics developed specifically for this project, which has provided rich information on model and system performance. Research was accomplished on the very short range (0-6 hours) Nowcasting system as well as on the longer term (6-72 hour) forecasting system. The shortest range forecasts are based on observations in the field. The shortest range system, built by Brookhaven National Laboratory (BNL) and based on Total Sky Imagers (TSIs) is TSICast, which operates on the shortest time scale with a latency of only a few minutes and forecasts that currently go out to about 15 min. This project has facilitated research in improving the hardware and software so that the new high definition cameras deployed at multiple nearby locations allow discernment of the clouds at varying levels and advection according to the winds observed at those levels. Improvements over “smart persistence” are about 29% for even these very short forecasts. StatCast is based on pyranometer data measured at the site as well as concurrent meteorological observations and forecasts. StatCast is based on regime-dependent artificial intelligence forecasting techniques and has been shown to improve on “smart persistence” forecasts by 15-50%. A second category of short-range forecasting systems employ satellite imagery and use that information to discern clouds and their motion, allowing them to project the clouds, and the resulting blockage of irradiance, in time. CIRACast (the system produced by the Cooperative Institute for Atmospheric Research [CIRA] at Colorado State University) was already one of the more advanced cloud motion systems, which is the reason that team was brought to this project. During the project timeframe, the CIRA team was able to advance cloud shadowing, parallax removal, and implementation of better advecting winds at different altitudes. CIRACast shows generally a 25-40% improvement over Smart Persistence between sunrise and approximately 1600 UTC (Coordinated Universal Time) . A second satellite-based system, MADCast (Multi-sensor Advective Diffusive foreCast system), assimilates data from multiple satellite imagers and profilers to assimilate a fully three-dimensional picture of the cloud into the dynamic core of WRF. During 2015, MADCast (provided at least 70% improvement over Smart Persistence, with most of that skill being derived during partly cloudy conditions. That allows advection of the clouds via the Weather Research and Forecasting (WRF) model dynamics directly. After WRF-Solar™ showed initial success, it was also deployed in nowcasting mode with coarser runs out to 6 hours made hourly. It provided improvements on the order of 50-60% over Smart Persistence for forecasts up to 1600 UTC. The advantages of WRF-Solar-Nowcasting and MADCast were then blended to develop the new MAD-WRF model that incorporates the most important features of each of those models, both assimilating satellite cloud fields and using WRF-So far physics to develop and dissipate clouds. MAE improvements for MAD-WRF for forecasts from 3-6 hours are improved over WRF-Solar-Now by 20%. While all the Nowcasting system components by themselves provide improvement over Smart Persistence, the largest benefit is derived when they are smartly blended together by the Nowcasting Integrator to produce an integrated forecast. The development of WRF-Solar™ under this project has provided the first numerical weather prediction (NWP) model specifically designed to meet the needs of irradiance forecasting. The first augmentation improved the solar tracking algorithm to account for deviations associated with the eccentricity of the Earth’s orbit and the obliquity of the Earth. Second, WRF-Solar™ added the direct normal irradiance (DNI) and diffuse (DIF) components from the radiation parameterization to the model output. Third, efficient parameterizations were implemented to either interpolate the irradiance in between calls to the expensive radiative transfer parameterization, or to use a fast radiative transfer code that avoids computing three-dimensional heating rates but provides the surface irradiance. Fourth, a new parameterization was developed to improve the representation of absorption and scattering of radiation by aerosols (aerosol direct effect). A fifth advance is that the aerosols now interact with the cloud microphysics, altering the cloud evolution and radiative properties, an effect that has been traditionally only implemented in atmospheric computationally costly chemistry models. A sixth development accounts for the feedbacks that sub-grid scale clouds produce in shortwave irradiance as implemented in a shallow cumulus parameterization Finally, WRF-Solar™ also allows assimilation of infrared irradiances from satellites to determine the three dimensional cloud field, allowing for an improved initialization of the cloud field that increases the performance of short-range forecasts. We find that WRF-Solar™ can improve clear sky irradiance prediction by 15-80% over a standard version of WRF, depending on location and cloud conditions. In a formal comparison to the NAM baseline, WRF-Solar™ showed improvements in the Day-Ahead forecast of 22-42%. The SunCast™ system requires substantial software engineering to blend all of the new model components as well as existing publically available NWP model runs. To do this we use an expert system for the Nowcasting blender and the Dynamic Integrated foreCast (DICast®) system for the NWP models. These two systems are then blended, we use an empirical power conversion method to convert the irradiance predictions to power, then apply an analog ensemble (AnEn) approach to further tune the forecast as well as to estimate its uncertainty. The AnEn module decreased RMSE (root mean squared error) by 17% over the blended SunCast™ power forecasts and provided skill in the probabilistic forecast with a Brier Skill Score of 0.55. In addition, we have also developed a Gridded Atmospheric Forecast System (GRAFS) in parallel, leveraging cost share funds. An economic evaluation based on Production Cost Modeling in the Public Service Company of Colorado showed that the observed 50% improvement in forecast accuracy will save their customers $819,200 with the projected MW deployment for 2024. Using econometrics, NCAR has scaled this savings to a national level and shown that an annual expected savings for this 50% forecast error reduction ranges from $11M in 2015 to $43M expected in 2040 with increased solar deployment. This amounts to a $455M discounted savings over the 26 year period of analysis.« less

  20. Coastal and Riverine Flood Forecast Model powered by ADCIRC

    NASA Astrophysics Data System (ADS)

    Khalid, A.; Ferreira, C.

    2017-12-01

    Coastal flooding is becoming a major threat to increased population in the coastal areas. To protect coastal communities from tropical storms & hurricane damages, early warning systems are being developed. These systems have the capability of real time flood forecasting to identify hazardous coastal areas and aid coastal communities in rescue operations. State of the art hydrodynamic models forced by atmospheric forcing have given modelers the ability to forecast storm surge, water levels and currents. This helps to identify the areas threatened by intense storms. Study on Chesapeake Bay area has gained national importance because of its combined riverine and coastal phenomenon, which leads to greater uncertainty in flood predictions. This study presents an automated flood forecast system developed by following Advanced Circulation (ADCIRC) Surge Guidance System (ASGS) guidelines and tailored to take in riverine and coastal boundary forcing, thus includes all the hydrodynamic processes to forecast total water in the Potomac River. As studies on tidal and riverine flow interaction are very scarce in number, our forecast system would be a scientific tool to examine such area and fill the gaps with precise prediction for Potomac River. Real-time observations from National Oceanic and Atmospheric Administration (NOAA) and field measurements have been used as model boundary feeding. The model performance has been validated by using major historical riverine and coastal flooding events. Hydrodynamic model ADCIRC produced promising predictions for flood inundation areas. As better forecasts can be achieved by using coupled models, this system is developed to take boundary conditions from Global WaveWatchIII for the research purposes. Wave and swell propagation will be fed through Global WavewatchIII model to take into account the effects of swells and currents. This automated forecast system is currently undergoing rigorous testing to include any missing parameters which might provide better and more reliable forecast for the flood affected communities.

  1. Evaluation of streamflow forecast for the National Water Model of U.S. National Weather Service

    NASA Astrophysics Data System (ADS)

    Rafieeinasab, A.; McCreight, J. L.; Dugger, A. L.; Gochis, D.; Karsten, L. R.; Zhang, Y.; Cosgrove, B.; Liu, Y.

    2016-12-01

    The National Water Model (NWM), an implementation of the community WRF-Hydro modeling system, is an operational hydrologic forecasting model for the contiguous United States. The model forecasts distributed hydrologic states and fluxes, including soil moisture, snowpack, ET, and ponded water. In particular, the NWM provides streamflow forecasts at more than 2.7 million river reaches for three forecast ranges: short (15 hr), medium (10 days), and long (30 days). In this study, we verify short and medium range streamflow forecasts in the context of the verification of their respective quantitative precipitation forecasts/forcing (QPF), the High Resolution Rapid Refresh (HRRR) and the Global Forecast System (GFS). The streamflow evaluation is performed for summer of 2016 at more than 6,000 USGS gauges. Both individual forecasts and forecast lead times are examined. Selected case studies of extreme events aim to provide insight into the quality of the NWM streamflow forecasts. A goal of this comparison is to address how much streamflow bias originates from precipitation forcing bias. To this end, precipitation verification is performed over the contributing areas above (and between assimilated) USGS gauge locations. Precipitation verification is based on the aggregated, blended StageIV/StageII data as the "reference truth". We summarize the skill of the streamflow forecasts, their skill relative to the QPF, and make recommendations for improving NWM forecast skill.

  2. Temperature sensitivity of a numerical pollen forecast model

    NASA Astrophysics Data System (ADS)

    Scheifinger, Helfried; Meran, Ingrid; Szabo, Barbara; Gallaun, Heinz; Natali, Stefano; Mantovani, Simone

    2016-04-01

    Allergic rhinitis has become a global health problem especially affecting children and adolescence. Timely and reliable warning before an increase of the atmospheric pollen concentration means a substantial support for physicians and allergy suffers. Recently developed numerical pollen forecast models have become means to support the pollen forecast service, which however still require refinement. One of the problem areas concerns the correct timing of the beginning and end of the flowering period of the species under consideration, which is identical with the period of possible pollen emission. Both are governed essentially by the temperature accumulated before the entry of flowering and during flowering. Phenological models are sensitive to a bias of the temperature. A mean bias of -1°C of the input temperature can shift the entry date of a phenological phase for about a week into the future. A bias of such an order of magnitude is still possible in case of numerical weather forecast models. If the assimilation of additional temperature information (e.g. ground measurements as well as satellite-retrieved air / surface temperature fields) is able to reduce such systematic temperature deviations, the precision of the timing of phenological entry dates might be enhanced. With a number of sensitivity experiments the effect of a possible temperature bias on the modelled phenology and the pollen concentration in the atmosphere is determined. The actual bias of the ECMWF IFS 2 m temperature will also be calculated and its effect on the numerical pollen forecast procedure presented.

  3. Rainfall threshold definition using an entropy decision approach and radar data

    NASA Astrophysics Data System (ADS)

    Montesarchio, V.; Ridolfi, E.; Russo, F.; Napolitano, F.

    2011-07-01

    Flash flood events are floods characterised by a very rapid response of basins to storms, often resulting in loss of life and property damage. Due to the specific space-time scale of this type of flood, the lead time available for triggering civil protection measures is typically short. Rainfall threshold values specify the amount of precipitation for a given duration that generates a critical discharge in a given river cross section. If the threshold values are exceeded, it can produce a critical situation in river sites exposed to alluvial risk. It is therefore possible to directly compare the observed or forecasted precipitation with critical reference values, without running online real-time forecasting systems. The focus of this study is the Mignone River basin, located in Central Italy. The critical rainfall threshold values are evaluated by minimising a utility function based on the informative entropy concept and by using a simulation approach based on radar data. The study concludes with a system performance analysis, in terms of correctly issued warnings, false alarms and missed alarms.

  4. Applied Meteorology Unit (AMU)

    NASA Technical Reports Server (NTRS)

    Bauman, William; Crawford, Winifred; Watson, Leela; Wheeler, Mark

    2011-01-01

    The AMU Team began four new tasks in this quarter: (1) began work to improve the AMU-developed tool that provides the launch weather officers information on peak wind speeds that helps them assess their launch commit criteria; (2) began updating lightning climatologies for airfields around central Florida. These climatologies help National Weather Service and Air Force forecasters determine the probability of lightning occurrence at these sites; (3) began a study for the 30th Weather Squadron at Vandenberg Air Force Base in California to determine if precursors can be found in weather observations to help the forecasters determine when they will get strong wind gusts in their northern towers; and (4) began work to update the AMU-developed severe weather tool with more data and possibly improve its performance using a new statistical technique. Include is a section of summaries and detail reporting on the quarterly tasks: (1) Peak Wind Tool for user Meteorological Interactive Data Display System (LCC), Phase IV, (2) Situational Lightning climatologies for Central Florida, Phase V, (3) Vandenberg AFB North Base Wind Study and (4) Upgrade Summer Severe Weather Tool Meteorological Interactive Data Display System (MIDDS).

  5. Diabatic Initialization of Mesoscale Models in the Southeastern United States: Can 0 to 12h Warm Season QPF be Improved?

    NASA Technical Reports Server (NTRS)

    Lapenta, William M.; Bradshaw, Tom; Burks, Jason; Darden, Chris; Dembek, Scott

    2003-01-01

    It is well known that numerical warm season quantitative precipitation forecasts lack significant skill for numerous reasons. Some are related to the model--it may lack physical processes required to realistically simulate convection or the numerical algorithms and dynamics employed may not be adequate. Others are related to initialization-mesoscale features play an important role in convective initialization and atmospheric observation systems are incapable of properly depicting the three-dimensional stability structure at the mesoscale. The purpose of this study is to determine if a mesoscale model initialized with a diabatic initialization scheme can improve short-term (0 to 12h) warm season quantitative precipitation forecasts in the Southeastern United States. The Local Analysis and Prediction System (LAPS) developed at the Forecast System Laboratory is used to diabatically initialize the Pennsylvania State University/National center for Atmospheric Research (PSUNCAR) Mesoscale Model version 5 (MM5). The SPORT Center runs LAPS operationally on an hourly cycle to produce analyses on a 15 km covering the eastern 2/3 of the United States. The 20 km National Centers for Environmental Prediction (NCEP) Rapid Update Cycle analyses are used for the background fields. Standard observational data are acquired from MADIS with GOES/CRAFT Nexrad data acquired from in-house feeds. The MM5 is configured on a 140 x 140 12 km grid centered on Huntsville Alabama. Preliminary results indicate that MM5 runs initialized with LAPS produce improved 6 and 12h QPF threat scores compared with those initialized with the NCEP RUC.

  6. Hybrid forecasting of chaotic processes: Using machine learning in conjunction with a knowledge-based model

    NASA Astrophysics Data System (ADS)

    Pathak, Jaideep; Wikner, Alexander; Fussell, Rebeckah; Chandra, Sarthak; Hunt, Brian R.; Girvan, Michelle; Ott, Edward

    2018-04-01

    A model-based approach to forecasting chaotic dynamical systems utilizes knowledge of the mechanistic processes governing the dynamics to build an approximate mathematical model of the system. In contrast, machine learning techniques have demonstrated promising results for forecasting chaotic systems purely from past time series measurements of system state variables (training data), without prior knowledge of the system dynamics. The motivation for this paper is the potential of machine learning for filling in the gaps in our underlying mechanistic knowledge that cause widely-used knowledge-based models to be inaccurate. Thus, we here propose a general method that leverages the advantages of these two approaches by combining a knowledge-based model and a machine learning technique to build a hybrid forecasting scheme. Potential applications for such an approach are numerous (e.g., improving weather forecasting). We demonstrate and test the utility of this approach using a particular illustrative version of a machine learning known as reservoir computing, and we apply the resulting hybrid forecaster to a low-dimensional chaotic system, as well as to a high-dimensional spatiotemporal chaotic system. These tests yield extremely promising results in that our hybrid technique is able to accurately predict for a much longer period of time than either its machine-learning component or its model-based component alone.

  7. Regional Air Quality forecAST (RAQAST) Over the U.S

    NASA Astrophysics Data System (ADS)

    Yoshida, Y.; Choi, Y.; Zeng, T.; Wang, Y.

    2005-12-01

    A regional chemistry and transport modeling system is used to provide 48-hour forecast of the concentrations of ozone and its precursors over the United States. Meteorological forecast is conducted using the NCAR/Penn State MM5 model. The regional chemistry and transport model simulates the sources, transport, chemistry, and deposition of 24 chemical tracers. The lateral and upper boundary conditions of trace gas concentrations are specified using the monthly mean output from the global GEOS-CHEM model. The initial and boundary conditions for meteorological fields are taken from the NOAA AVN forecast. The forecast has been operational since August, 2003. Model simulations are evaluated using surface, aircraft, and satellite measurements in the A'hindcast' mode. The next step is an automated forecast evaluation system.

  8. A Scheme for Short-Term Prediction of Hydrometeors Using Advection and Physical Forcing.

    DTIC Science & Technology

    1984-07-01

    D.A. Lowry, 1978: Use of a real - time computer graphics system for diagnosis and forecasting . Preprints, Conf. on Wes. Forecasting and Analysis and...28 Figure 4.2.1. Graph for forecasting the night minimum temperature from observations at 1800-2000 local time . From Zverev (1972...3u 1. 2 much weather is produced by organized systems that translate, and forecast gains were made through use of the concepts of steering

  9. Simulations of Tropospheric NO2 by the Global Modeling Initiative (GMI) Model Utilizing Assimilated and Forecast Meteorological Fields: Comparison to Ozone Monitoring Instrument (OMI) Measurements

    NASA Technical Reports Server (NTRS)

    Rodriquez, J. M.; Yoshida, Y.; Duncan, B. N.; Bucsela, E. J.; Gleason, J. F.; Allen, D.; Pickering, K. E.

    2007-01-01

    We present simulations of the tropospheric composition for the years 2004 and 2005, carried out by the GMI Combined Stratosphere-Troposphere (Combo) model, at a resolution of 2degx2.5deg. The model includes a new parameterization of lightning sources of NO(x) which is coupled to the cloud mass fluxes in the adopted meteorological fields. These simulations use two different sets of input meteorological fields: a)late-look assimilated fields from the Global Modeling and Assimilation Office (GMAO), GEOS-4 system and b) 12-hour forecast fields initialized with the assimilated data. Comparison of the forecast to the assimilated fields indicates that the forecast fields exhibit less vigorous convection, and yield tropical precipitation fields in better agreement with observations. Since these simulations include a complete representation of the stratosphere, they provide realistic stratosphere-tropospheric fluxes of O3 and NO(y). Furthermore, the stratospheric contribution to total columns of different troposheric species can be subtracted in a consistent fashion, and the lightning production of NO(y) will depend on the adopted meteorological field. We concentrate here on the simulated tropospheric columns of NO2, and compare them to observations by the OM1 instrument for the years 2004 and 2005. The comparison is used to address these questions: a) is there a significant difference in the agreement/disagreement between simulations for these two different meteorological fields, and if so, what causes these differences?; b) how do the simulations compare to OMI observations, and does this comparison indicate an improvement in simulations with the forecast fields? c) what are the implications of these simulations for our understanding of the NO2 emissions over continental polluted regions?

  10. Assessing the Utility of Seasonal SST Forecasts to the Fisheries Management Process: a Pacific Sardine Case Study

    NASA Astrophysics Data System (ADS)

    Tommasi, D.; Stock, C. A.

    2016-02-01

    It is well established that environmental fluctuations affect the productivity of numerous fish stocks. Recent advances in prediction capability of dynamical global forecast systems, such as the state of the art NOAA Geophysical Fluid dynamics Laboratory (GFDL) 2.5-FLOR model, allow for climate predictions of fisheries-relevant variables at temporal scales relevant to the fishery management decision making process. We demonstrate that the GFDL FLOR model produces skillful seasonal SST anomaly predictions over the continental shelf , where most of the global fish yield is generated. The availability of skillful SST projections at this "fishery relevant" scale raises the potential for better constrained estimates of future fish biomass and improved harvest decisions. We assessed the utility of seasonal SST coastal shelf predictions for fisheries management using the case study of Pacific sardine. This fishery was selected because it is one of the few to already incorporate SST into its harvest guideline, and show a robust recruitment-SST relationship. We quantified the effectiveness of management under the status quo harvest guideline (HG) and under alternative HGs including future information at different levels of uncertainty. Usefulness of forecast SST to management was dependent on forecast uncertainty. If the standard deviation of the SST anomaly forecast residuals was less than 0.65, the alternative HG produced higher long-term yield and stock biomass, and reduced the probability of either catch or stock biomass falling below management-set threshold values as compared to the status quo. By contrast, probability of biomass falling to extremely low values increased as compared to the status quo for all alternative HGs except for a perfectly known future SST case. To safeguard against occurrence of such low probability but costly events, a harvest cutoff biomass also has to be implemented into the HG.

  11. The Role of Secondary Frontal Waves in Causing Missed or False Alarm Flood Forecasts During Landfalling Atmospheric Rivers

    NASA Astrophysics Data System (ADS)

    Martin, A.; Ralph, F. M.; Lavers, D. A.; Kalansky, J.; Kawzenuk, B.

    2015-12-01

    The previous ten years has seen an explosion in research devoted to the Atmospheric River (AR) phenomena, features of the midlatitude circulation responsible for large horizontal water vapor transport. Upon landfall, ARs can be associated with 30-50% of annual precipitation in some regions, while also causing the largest flooding events in places such as coastal California. Little discussed is the role secondary frontal waves play in modulating precipitation during a landfalling AR. Secondary frontal waves develop along an existing cold front in response to baroclinic frontogenesis, often coinciding with a strong upper-tropospheric jet. If the secondary wave develops along a front associated with a landfalling AR, the resulting precipitation may be much greater or much less than originally forecasted - especially in regions where orographic uplift of horizontally transported water vapor is responsible for a large portion of precipitation. In this study, we present several cases of secondary frontal waves that have occurred in conjunction with a landfalling AR on the US West Coast. We put the impact of these cases in historical perspective using quantitative precipitation forecasts, satellite data, reanalyses, and estimates of damage related to flooding. We also discuss the dynamical mechanisms behind secondary frontal wave development and relate these mechanisms to the high spatiotemporal variability in precipitation observed during ARs with secondary frontal waves. Finally, we demonstrate that even at lead times less than 24 hours, current quantitative precipitation forecasting methods have difficulty accurately predicting the rainfall in the area near the secondary wave landfall, in some cases leading to missed or false alarm flood warnings, and suggest methods which may improve quantitative precipitation forecasts for this type of system in the future.

  12. Temporal patterns and forecast of dengue infection in Northeastern Thailand.

    PubMed

    Silawan, Tassanee; Singhasivanon, Pratap; Kaewkungwal, Jaranit; Nimmanitya, Suchitra; Suwonkerd, Wanapa

    2008-01-01

    This study aimed to determine temporal patterns and develop a forecasting model for dengue incidence in northeastern Thailand. Reported cases were obtained from the Thailand national surveillance system. The temporal patterns were displayed by plotting monthly rates, the seasonal-trend decomposition procedure based on loess (STL) was performed using R 2.2.1 software, and the trend was assessed using Poisson regression. The forecasting model for dengue incidence was performed in R 2.2.1 and Intercooled Stata 9.2 using the seasonal Autoregressive Integrated Moving Average (ARIMA) model. The model was evaluated by comparing predicted versus actual rates of dengue for 1996 to 2005 and used to forecast monthly rates during January to December 2006. The results reveal that epidemics occurred every two years, with approximately three years per epidemic, and that the next epidemic will take place in 2006 to 2008. It was found that if a month increased, the rate ratio for dengue infection decreased by a factor 0.9919 for overall region and 0.9776 to 0.9984 for individual provinces. The amplitude of the peak, which was evident in June or July, was 11.32 to 88.08 times greater than the rest of the year. The seasonal ARIMA (2, 1, 0) (0, 1, 1)12 model was model with the best fit for regionwide data of total dengue incidence whereas the models with the best fit varied by province. The forecasted regional monthly rates during January to December 2006 should range from 0.27 to 17.89 per 100,000 population. The peak for 2006 should be much higher than the peak for 2005. The highest peaks in 2006 should be in Loei, Buri Ram, Surin, Nakhon Phanom, and Ubon Ratchathani Provinces.

  13. An experimental system for flood risk forecasting at global scale

    NASA Astrophysics Data System (ADS)

    Alfieri, L.; Dottori, F.; Kalas, M.; Lorini, V.; Bianchi, A.; Hirpa, F. A.; Feyen, L.; Salamon, P.

    2016-12-01

    Global flood forecasting and monitoring systems are nowadays a reality and are being applied by an increasing range of users and practitioners in disaster risk management. Furthermore, there is an increasing demand from users to integrate flood early warning systems with risk based forecasts, combining streamflow estimations with expected inundated areas and flood impacts. To this end, we have developed an experimental procedure for near-real time flood mapping and impact assessment based on the daily forecasts issued by the Global Flood Awareness System (GloFAS). The methodology translates GloFAS streamflow forecasts into event-based flood hazard maps based on the predicted flow magnitude and the forecast lead time and a database of flood hazard maps with global coverage. Flood hazard maps are then combined with exposure and vulnerability information to derive flood risk. Impacts of the forecasted flood events are evaluated in terms of flood prone areas, potential economic damage, and affected population, infrastructures and cities. To further increase the reliability of the proposed methodology we integrated model-based estimations with an innovative methodology for social media monitoring, which allows for real-time verification of impact forecasts. The preliminary tests provided good results and showed the potential of the developed real-time operational procedure in helping emergency response and management. In particular, the link with social media is crucial for improving the accuracy of impact predictions.

  14. iFLOOD: A Real Time Flood Forecast System for Total Water Modeling in the National Capital Region

    NASA Astrophysics Data System (ADS)

    Sumi, S. J.; Ferreira, C.

    2017-12-01

    Extreme flood events are the costliest natural hazards impacting the US and frequently cause extensive damages to infrastructure, disruption to economy and loss of lives. In 2016, Hurricane Matthew brought severe damage to South Carolina and demonstrated the importance of accurate flood hazard predictions that requires the integration of riverine and coastal model forecasts for total water prediction in coastal and tidal areas. The National Weather Service (NWS) and the National Ocean Service (NOS) provide flood forecasts for almost the entire US, still there are service-gap areas in tidal regions where no official flood forecast is available. The National capital region is vulnerable to multi-flood hazards including high flows from annual inland precipitation events and surge driven coastal inundation along the tidal Potomac River. Predicting flood levels on such tidal areas in river-estuarine zone is extremely challenging. The main objective of this study is to develop the next generation of flood forecast systems capable of providing accurate and timely information to support emergency management and response in areas impacted by multi-flood hazards. This forecast system is capable of simulating flood levels in the Potomac and Anacostia River incorporating the effects of riverine flooding from the upstream basins, urban storm water and tidal oscillations from the Chesapeake Bay. Flood forecast models developed so far have been using riverine data to simulate water levels for Potomac River. Therefore, the idea is to use forecasted storm surge data from a coastal model as boundary condition of this system. Final output of this validated model will capture the water behavior in river-estuary transition zone far better than the one with riverine data only. The challenge for this iFLOOD forecast system is to understand the complex dynamics of multi-flood hazards caused by storm surges, riverine flow, tidal oscillation and urban storm water. Automated system simulations will help to develop a seamless integration with the boundary systems in the service-gap area with new insights into our scientific understanding of such complex systems. A visualization system is being developed to allow stake holders and the community to have access to the flood forecasting for their region with sufficient lead time.

  15. Operational Earthquake Forecasting of Aftershocks for New England

    NASA Astrophysics Data System (ADS)

    Ebel, J.; Fadugba, O. I.

    2015-12-01

    Although the forecasting of mainshocks is not possible, recent research demonstrates that probabilistic forecasts of expected aftershock activity following moderate and strong earthquakes is possible. Previous work has shown that aftershock sequences in intraplate regions behave similarly to those in California, and thus the operational aftershocks forecasting methods that are currently employed in California can be adopted for use in areas of the eastern U.S. such as New England. In our application, immediately after a felt earthquake in New England, a forecast of expected aftershock activity for the next 7 days will be generated based on a generic aftershock activity model. Approximately 24 hours after the mainshock, the parameters of the aftershock model will be updated using the observed aftershock activity observed to that point in time, and a new forecast of expected aftershock activity for the next 7 days will be issued. The forecast will estimate the average number of weak, felt aftershocks and the average expected number of aftershocks based on the aftershock statistics of past New England earthquakes. The forecast also will estimate the probability that an earthquake that is stronger than the mainshock will take place during the next 7 days. The aftershock forecast will specify the expected aftershocks locations as well as the areas over which aftershocks of different magnitudes could be felt. The system will use web pages, email and text messages to distribute the aftershock forecasts. For protracted aftershock sequences, new forecasts will be issued on a regular basis, such as weekly. Initially, the distribution system of the aftershock forecasts will be limited, but later it will be expanded as experience with and confidence in the system grows.

  16. The Wind Forecast Improvement Project (WFIP): A Public/Private Partnership for Improving Short Term Wind Energy Forecasts and Quantifying the Benefits of Utility Operations. The Southern Study Area, Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freedman, Jeffrey M.; Manobianco, John; Schroeder, John

    This Final Report presents a comprehensive description, findings, and conclusions for the Wind Forecast Improvement Project (WFIP) -- Southern Study Area (SSA) work led by AWS Truepower (AWST). This multi-year effort, sponsored by the Department of Energy (DOE) and National Oceanographic and Atmospheric Administration (NOAA), focused on improving short-term (15-minute - 6 hour) wind power production forecasts through the deployment of an enhanced observation network of surface and remote sensing instrumentation and the use of a state-of-the-art forecast modeling system. Key findings from the SSA modeling and forecast effort include: 1. The AWST WFIP modeling system produced an overall 10more » - 20% improvement in wind power production forecasts over the existing Baseline system, especially during the first three forecast hours; 2. Improvements in ramp forecast skill, particularly for larger up and down ramps; 3. The AWST WFIP data denial experiments showed mixed results in the forecasts incorporating the experimental network instrumentation; however, ramp forecasts showed significant benefit from the additional observations, indicating that the enhanced observations were key to the model systems’ ability to capture phenomena responsible for producing large short-term excursions in power production; 4. The OU CAPS ARPS simulations showed that the additional WFIP instrument data had a small impact on their 3-km forecasts that lasted for the first 5-6 hours, and increasing the vertical model resolution in the boundary layer had a greater impact, also in the first 5 hours; and 5. The TTU simulations were inconclusive as to which assimilation scheme (3DVAR versus EnKF) provided better forecasts, and the additional observations resulted in some improvement to the forecasts in the first 1 - 3 hours.« less

  17. Constraints on Rational Model Weighting, Blending and Selecting when Constructing Probability Forecasts given Multiple Models

    NASA Astrophysics Data System (ADS)

    Higgins, S. M. W.; Du, H. L.; Smith, L. A.

    2012-04-01

    Ensemble forecasting on a lead time of seconds over several years generates a large forecast-outcome archive, which can be used to evaluate and weight "models". Challenges which arise as the archive becomes smaller are investigated: in weather forecasting one typically has only thousands of forecasts however those launched 6 hours apart are not independent of each other, nor is it justified to mix seasons with different dynamics. Seasonal forecasts, as from ENSEMBLES and DEMETER, typically have less than 64 unique launch dates; decadal forecasts less than eight, and long range climate forecasts arguably none. It is argued that one does not weight "models" so much as entire ensemble prediction systems (EPSs), and that the marginal value of an EPS will depend on the other members in the mix. The impact of using different skill scores is examined in the limits of both very large forecast-outcome archives (thereby evaluating the efficiency of the skill score) and in very small forecast-outcome archives (illustrating fundamental limitations due to sampling fluctuations and memory in the physical system being forecast). It is shown that blending with climatology (J. Bröcker and L.A. Smith, Tellus A, 60(4), 663-678, (2008)) tends to increase the robustness of the results; also a new kernel dressing methodology (simply insuring that the expected probability mass tends to lie outside the range of the ensemble) is illustrated. Fair comparisons using seasonal forecasts from the ENSEMBLES project are used to illustrate the importance of these results with fairly small archives. The robustness of these results across the range of small, moderate and huge archives is demonstrated using imperfect models of perfectly known nonlinear (chaotic) dynamical systems. The implications these results hold for distinguishing the skill of a forecast from its value to a user of the forecast are discussed.

  18. Magnetogram Forecast: An All-Clear Space Weather Forecasting System

    NASA Technical Reports Server (NTRS)

    Barghouty, Nasser; Falconer, David

    2015-01-01

    Solar flares and coronal mass ejections (CMEs) are the drivers of severe space weather. Forecasting the probability of their occurrence is critical in improving space weather forecasts. The National Oceanic and Atmospheric Administration (NOAA) currently uses the McIntosh active region category system, in which each active region on the disk is assigned to one of 60 categories, and uses the historical flare rates of that category to make an initial forecast that can then be adjusted by the NOAA forecaster. Flares and CMEs are caused by the sudden release of energy from the coronal magnetic field by magnetic reconnection. It is believed that the rate of flare and CME occurrence in an active region is correlated with the free energy of an active region. While the free energy cannot be measured directly with present observations, proxies of the free energy can instead be used to characterize the relative free energy of an active region. The Magnetogram Forecast (MAG4) (output is available at the Community Coordinated Modeling Center) was conceived and designed to be a databased, all-clear forecasting system to support the operational goals of NASA's Space Radiation Analysis Group. The MAG4 system automatically downloads nearreal- time line-of-sight Helioseismic and Magnetic Imager (HMI) magnetograms on the Solar Dynamics Observatory (SDO) satellite, identifies active regions on the solar disk, measures a free-energy proxy, and then applies forecasting curves to convert the free-energy proxy into predicted event rates for X-class flares, M- and X-class flares, CMEs, fast CMEs, and solar energetic particle events (SPEs). The forecast curves themselves are derived from a sample of 40,000 magnetograms from 1,300 active region samples, observed by the Solar and Heliospheric Observatory Michelson Doppler Imager. Figure 1 is an example of MAG4 visual output

  19. The FireWork air quality forecast system with near-real-time biomass burning emissions: Recent developments and evaluation of performance for the 2015 North American wildfire season

    PubMed Central

    Pavlovic, Radenko; Chen, Jack; Anderson, Kerry; Moran, Michael D.; Beaulieu, Paul-André; Davignon, Didier; Cousineau, Sophie

    2016-01-01

    ABSTRACT Environment and Climate Change Canada’s FireWork air quality (AQ) forecast system for North America with near-real-time biomass burning emissions has been running experimentally during the Canadian wildfire season since 2013. The system runs twice per day with model initializations at 00 UTC and 12 UTC, and produces numerical AQ forecast guidance with 48-hr lead time. In this work we describe the FireWork system, which incorporates near-real-time biomass burning emissions based on the Canadian Wildland Fire Information System (CWFIS) as an input to the operational Regional Air Quality Deterministic Prediction System (RAQDPS). To demonstrate the capability of the system we analyzed two forecast periods in 2015 (June 2–July 15, and August 15–31) when fire activity was high, and observed fire-smoke-impacted areas in western Canada and the western United States. Modeled PM2.5 surface concentrations were compared with surface measurements and benchmarked with results from the operational RAQDPS, which did not consider near-real-time biomass burning emissions. Model performance statistics showed that FireWork outperformed RAQDPS with improvements in forecast hourly PM2.5 across the region; the results were especially significant for stations near the path of fire plume trajectories. Although the hourly PM2.5 concentrations predicted by FireWork still displayed bias for areas with active fires for these two periods (mean bias [MB] of –7.3 µg m−3 and 3.1 µg m−3), it showed better forecast skill than the RAQDPS (MB of –11.7 µg m−3 and –5.8 µg m−3) and demonstrated a greater ability to capture temporal variability of episodic PM2.5 events (correlation coefficient values of 0.50 and 0.69 for FireWork compared to 0.03 and 0.11 for RAQDPS). A categorical forecast comparison based on an hourly PM2.5 threshold of 30 µg m−3 also showed improved scores for probability of detection (POD), critical success index (CSI), and false alarm rate (FAR). Implications: Smoke from wildfires can have a large impact on regional air quality (AQ) and can expose populations to elevated pollution levels. Environment and Climate Change Canada has been producing operational air quality forecasts for all of Canada since 2009 and is now working to include near-real-time wildfire emissions (NRTWE) in its operational AQ forecasting system. An experimental forecast system named FireWork, which includes NRTWE, has been undergoing testing and evaluation since 2013. A performance analysis of FireWork forecasts for the 2015 wildfire season shows that FireWork provides significant improvements to surface PM2.5 forecasts and valuable guidance to regional forecasters and first responders. PMID:26934496

  20. Using High Resolution Model Data to Improve Lightning Forecasts across Southern California

    NASA Astrophysics Data System (ADS)

    Capps, S. B.; Rolinski, T.

    2014-12-01

    Dry lightning often results in a significant amount of fire starts in areas where the vegetation is dry and continuous. Meteorologists from the USDA Forest Service Predictive Services' program in Riverside, California are tasked to provide southern and central California's fire agencies with fire potential outlooks. Logistic regression equations were developed by these meteorologists several years ago, which forecast probabilities of lightning as well as lightning amounts, out to seven days across southern California. These regression equations were developed using ten years of historical gridded data from the Global Forecast System (GFS) model on a coarse scale (0.5 degree resolution), correlated with historical lightning strike data. These equations do a reasonably good job of capturing a lightning episode (3-5 consecutive days or greater of lightning), but perform poorly regarding more detailed information such as exact location and amounts. It is postulated that the inadequacies in resolving the finer details of episodic lightning events is due to the coarse resolution of the GFS data, along with limited predictors. Stability parameters, such as the Lifted Index (LI), the Total Totals index (TT), Convective Available Potential Energy (CAPE), along with Precipitable Water (PW) are the only parameters being considered as predictors. It is hypothesized that the statistical forecasts will benefit from higher resolution data both in training and implementing the statistical model. We have dynamically downscaled NCEP FNL (Final) reanalysis data using the Weather Research and Forecasting model (WRF) to 3km spatial and hourly temporal resolution across a decade. This dataset will be used to evaluate the contribution to the success of the statistical model of additional predictors in higher vertical, spatial and temporal resolution. If successful, we will implement an operational dynamically downscaled GFS forecast product to generate predictors for the resulting statistical lightning model. This data will help fire agencies be better prepared to pre-deploy resources in advance of these events. Specific information regarding duration, amount, and location will be especially valuable.

  1. Forecasting the Short-Term Passenger Flow on High-Speed Railway with Neural Networks

    PubMed Central

    Xie, Mei-Quan; Li, Xia-Miao; Zhou, Wen-Liang; Fu, Yan-Bing

    2014-01-01

    Short-term passenger flow forecasting is an important component of transportation systems. The forecasting result can be applied to support transportation system operation and management such as operation planning and revenue management. In this paper, a divide-and-conquer method based on neural network and origin-destination (OD) matrix estimation is developed to forecast the short-term passenger flow in high-speed railway system. There are three steps in the forecasting method. Firstly, the numbers of passengers who arrive at each station or depart from each station are obtained from historical passenger flow data, which are OD matrices in this paper. Secondly, short-term passenger flow forecasting of the numbers of passengers who arrive at each station or depart from each station based on neural network is realized. At last, the OD matrices in short-term time are obtained with an OD matrix estimation method. The experimental results indicate that the proposed divide-and-conquer method performs well in forecasting the short-term passenger flow on high-speed railway. PMID:25544838

  2. Benchmark analysis of forecasted seasonal temperature over different climatic areas

    NASA Astrophysics Data System (ADS)

    Giunta, G.; Salerno, R.; Ceppi, A.; Ercolani, G.; Mancini, M.

    2015-12-01

    From a long-term perspective, an improvement of seasonal forecasting, which is often exclusively based on climatology, could provide a new capability for the management of energy resources in a time scale of just a few months. This paper regards a benchmark analysis in relation to long-term temperature forecasts over Italy in the year 2010, comparing the eni-kassandra meteo forecast (e-kmf®) model, the Climate Forecast System-National Centers for Environmental Prediction (CFS-NCEP) model, and the climatological reference (based on 25-year data) with observations. Statistical indexes are used to understand the reliability of the prediction of 2-m monthly air temperatures with a perspective of 12 weeks ahead. The results show how the best performance is achieved by the e-kmf® system which improves the reliability for long-term forecasts compared to climatology and the CFS-NCEP model. By using the reliable high-performance forecast system, it is possible to optimize the natural gas portfolio and management operations, thereby obtaining a competitive advantage in the European energy market.

  3. Environmental noise forecasting based on support vector machine

    NASA Astrophysics Data System (ADS)

    Fu, Yumei; Zan, Xinwu; Chen, Tianyi; Xiang, Shihan

    2018-01-01

    As an important pollution source, the noise pollution is always the researcher's focus. Especially in recent years, the noise pollution is seriously harmful to the human beings' environment, so the research about the noise pollution is a very hot spot. Some noise monitoring technologies and monitoring systems are applied in the environmental noise test, measurement and evaluation. But, the research about the environmental noise forecasting is weak. In this paper, a real-time environmental noise monitoring system is introduced briefly. This monitoring system is working in Mianyang City, Sichuan Province. It is monitoring and collecting the environmental noise about more than 20 enterprises in this district. Based on the large amount of noise data, the noise forecasting by the Support Vector Machine (SVM) is studied in detail. Compared with the time series forecasting model and the artificial neural network forecasting model, the SVM forecasting model has some advantages such as the smaller data size, the higher precision and stability. The noise forecasting results based on the SVM can provide the important and accuracy reference to the prevention and control of the environmental noise.

  4. Baseline and Target Values for PV Forecasts: Toward Improved Solar Power Forecasting: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jie; Hodge, Bri-Mathias; Lu, Siyuan

    2015-08-05

    Accurate solar power forecasting allows utilities to get the most out of the solar resources on their systems. To truly measure the improvements that any new solar forecasting methods can provide, it is important to first develop (or determine) baseline and target solar forecasting at different spatial and temporal scales. This paper aims to develop baseline and target values for solar forecasting metrics. These were informed by close collaboration with utility and independent system operator partners. The baseline values are established based on state-of-the-art numerical weather prediction models and persistence models. The target values are determined based on the reductionmore » in the amount of reserves that must be held to accommodate the uncertainty of solar power output. forecasting metrics. These were informed by close collaboration with utility and independent system operator partners. The baseline values are established based on state-of-the-art numerical weather prediction models and persistence models. The target values are determined based on the reduction in the amount of reserves that must be held to accommodate the uncertainty of solar power output.« less

  5. Utility of flood warning systems for emergency management

    NASA Astrophysics Data System (ADS)

    Molinari, Daniela; Ballio, Francesco; Menoni, Scira

    2010-05-01

    The presentation is focused on a simple and crucial question for warning systems: are flood and hydrological modelling and forecasting helpful to manage flood events? Indeed, it is well known that a warning process can be invalidated by inadequate forecasts so that the accuracy and robustness of the previsional model is a key issue for any flood warning procedure. However, one problem still arises at this perspective: when forecasts can be considered to be adequate? According to Murphy (1993, Wea. Forecasting 8, 281-293), forecasts hold no intrinsic value but they acquire it through their ability to influence the decisions made by their users. Moreover, we can add that forecasts value depends on the particular problem at stake showing, this way, a multifaceted nature. As a result, forecasts verification should not be seen as a universal process, instead it should be tailored to the particular context in which forecasts are implemented. This presentation focuses on warning problems in mountain regions, whereas the short time which is distinctive of flood events makes the provision of adequate forecasts particularly significant. In this context, the quality of a forecast is linked to its capability to reduce the impact of a flood by improving the correctness of the decision about issuing (or not) a warning as well as of the implementation of a proper set of actions aimed at lowering potential flood damages. The present study evaluates the performance of a real flood forecasting system from this perspective. In detail, a back analysis of past flood events and available verification tools have been implemented. The final objective was to evaluate the system ability to support appropriate decisions with respect not only to the flood characteristics but also to the peculiarities of the area at risk as well as to the uncertainty of forecasts. This meant to consider also flood damages and forecasting uncertainty among the decision variables. Last but not least, the presentation explains how the procedure implemented in the case study could support the definition of a proper warning rule.

  6. Interactive Vegetation Phenology, Soil Moisture, and Monthly Temperature Forecasts

    NASA Technical Reports Server (NTRS)

    Koster, R. D.; Walker, G. K.

    2015-01-01

    The time scales that characterize the variations of vegetation phenology are generally much longer than those that characterize atmospheric processes. The explicit modeling of phenological processes in an atmospheric forecast system thus has the potential to provide skill to subseasonal or seasonal forecasts. We examine this possibility here using a forecast system fitted with a dynamic vegetation phenology model. We perform three experiments, each consisting of 128 independent warm-season monthly forecasts: 1) an experiment in which both soil moisture states and carbon states (e.g., those determining leaf area index) are initialized realistically, 2) an experiment in which the carbon states are prescribed to climatology throughout the forecasts, and 3) an experiment in which both the carbon and soil moisture states are prescribed to climatology throughout the forecasts. Evaluating the monthly forecasts of air temperature in each ensemble against observations, as well as quantifying the inherent predictability of temperature within each ensemble, shows that dynamic phenology can indeed contribute positively to subseasonal forecasts, though only to a small extent, with an impact dwarfed by that of soil moisture.

  7. Data-driven forecasting of high-dimensional chaotic systems with long short-term memory networks.

    PubMed

    Vlachas, Pantelis R; Byeon, Wonmin; Wan, Zhong Y; Sapsis, Themistoklis P; Koumoutsakos, Petros

    2018-05-01

    We introduce a data-driven forecasting method for high-dimensional chaotic systems using long short-term memory (LSTM) recurrent neural networks. The proposed LSTM neural networks perform inference of high-dimensional dynamical systems in their reduced order space and are shown to be an effective set of nonlinear approximators of their attractor. We demonstrate the forecasting performance of the LSTM and compare it with Gaussian processes (GPs) in time series obtained from the Lorenz 96 system, the Kuramoto-Sivashinsky equation and a prototype climate model. The LSTM networks outperform the GPs in short-term forecasting accuracy in all applications considered. A hybrid architecture, extending the LSTM with a mean stochastic model (MSM-LSTM), is proposed to ensure convergence to the invariant measure. This novel hybrid method is fully data-driven and extends the forecasting capabilities of LSTM networks.

  8. Valuing year-to-go hydrologic forecast improvements for a peaking hydropower system in the Sierra Nevada

    NASA Astrophysics Data System (ADS)

    Rheinheimer, David E.; Bales, Roger C.; Oroza, Carlos A.; Lund, Jay R.; Viers, Joshua H.

    2016-05-01

    We assessed the potential value of hydrologic forecasting improvements for a snow-dominated high-elevation hydropower system in the Sierra Nevada of California, using a hydropower optimization model. To mimic different forecasting skill levels for inflow time series, rest-of-year inflows from regression-based forecasts were blended in different proportions with representative inflows from a spatially distributed hydrologic model. The statistical approach mimics the simpler, historical forecasting approach that is still widely used. Revenue was calculated using historical electricity prices, with perfect price foresight assumed. With current infrastructure and operations, perfect hydrologic forecasts increased annual hydropower revenue by 0.14 to 1.6 million, with lower values in dry years and higher values in wet years, or about $0.8 million (1.2%) on average, representing overall willingness-to-pay for perfect information. A second sensitivity analysis found a wider range of annual revenue gain or loss using different skill levels in snow measurement in the regression-based forecast, mimicking expected declines in skill as the climate warms and historical snow measurements no longer represent current conditions. The value of perfect forecasts was insensitive to storage capacity for small and large reservoirs, relative to average inflow, and modestly sensitive to storage capacity with medium (current) reservoir storage. The value of forecasts was highly sensitive to powerhouse capacity, particularly for the range of capacities in the northern Sierra Nevada. The approach can be extended to multireservoir, multipurpose systems to help guide investments in forecasting.

  9. Prediction of seasonal climate-induced variations in global food production

    NASA Astrophysics Data System (ADS)

    Iizumi, Toshichika; Sakuma, Hirofumi; Yokozawa, Masayuki; Luo, Jing-Jia; Challinor, Andrew J.; Brown, Molly E.; Sakurai, Gen; Yamagata, Toshio

    2013-10-01

    Consumers, including the poor in many countries, are increasingly dependent on food imports and are thus exposed to variations in yields, production and export prices in the major food-producing regions of the world. National governments and commercial entities are therefore paying increased attention to the cropping forecasts of important food-exporting countries as well as to their own domestic food production. Given the increased volatility of food markets and the rising incidence of climatic extremes affecting food production, food price spikes may increase in prevalence in future years. Here we present a global assessment of the reliability of crop failure hindcasts for major crops at two lead times derived by linking ensemble seasonal climatic forecasts with statistical crop models. We found that moderate-to-marked yield loss over a substantial percentage (26-33%) of the harvested area of these crops is reliably predictable if climatic forecasts are near perfect. However, only rice and wheat production are reliably predictable at three months before the harvest using within-season hindcasts. The reliabilities of estimates varied substantially by crop--rice and wheat yields were the most predictable, followed by soybean and maize. The reasons for variation in the reliability of the estimates included the differences in crop sensitivity to the climate and the technology used by the crop-producing regions. Our findings reveal that the use of seasonal climatic forecasts to predict crop failures will be useful for monitoring global food production and will encourage the adaptation of food systems toclimatic extremes.

  10. Moisture Forecast Bias Correction in GEOS DAS

    NASA Technical Reports Server (NTRS)

    Dee, D.

    1999-01-01

    Data assimilation methods rely on numerous assumptions about the errors involved in measuring and forecasting atmospheric fields. One of the more disturbing of these is that short-term model forecasts are assumed to be unbiased. In case of atmospheric moisture, for example, observational evidence shows that the systematic component of errors in forecasts and analyses is often of the same order of magnitude as the random component. we have implemented a sequential algorithm for estimating forecast moisture bias from rawinsonde data in the Goddard Earth Observing System Data Assimilation System (GEOS DAS). The algorithm is designed to remove the systematic component of analysis errors and can be easily incorporated in an existing statistical data assimilation system. We will present results of initial experiments that show a significant reduction of bias in the GEOS DAS moisture analyses.

  11. Econometric Models for Forecasting of Macroeconomic Indices

    ERIC Educational Resources Information Center

    Sukhanova, Elena I.; Shirnaeva, Svetlana Y.; Mokronosov, Aleksandr G.

    2016-01-01

    The urgency of the research topic was stipulated by the necessity to carry out an effective controlled process by the economic system which can hardly be imagined without indices forecasting characteristic of this system. An econometric model is a safe tool of forecasting which makes it possible to take into consideration the trend of indices…

  12. Load Modeling and Forecasting | Grid Modernization | NREL

    Science.gov Websites

    Load Modeling and Forecasting Load Modeling and Forecasting NREL's work in load modeling is focused resources (such as rooftop photovoltaic systems) and changing customer energy use profiles, new load models distribution system. In addition, NREL researchers are developing load models for individual appliances and

  13. Global Ocean Forecast System (GOFS) Version 2.6. User’s Manual

    DTIC Science & Technology

    2010-03-31

    odimens.D, which takes the rivers.dat flow levels, inputs an SST and sea surface salinity (SSS) climatology from GDEM , and outputs the orivs_1.D...Center for Medium-range Weather Forecast GB GigaByte GDEM Global Digital Elevation Map GOFS Global Ocean Forecast System HPCMP High Performance

  14. Aerosol analysis and forecast in the European Centre for Medium-Range Weather Forecasts Integrated Forecast System: 2. Data assimilation

    NASA Astrophysics Data System (ADS)

    Benedetti, A.; Morcrette, J.-J.; Boucher, O.; Dethof, A.; Engelen, R. J.; Fisher, M.; Flentje, H.; Huneeus, N.; Jones, L.; Kaiser, J. W.; Kinne, S.; Mangold, A.; Razinger, M.; Simmons, A. J.; Suttie, M.

    2009-07-01

    This study presents the new aerosol assimilation system, developed at the European Centre for Medium-Range Weather Forecasts, for the Global and regional Earth-system Monitoring using Satellite and in-situ data (GEMS) project. The aerosol modeling and analysis system is fully integrated in the operational four-dimensional assimilation apparatus. Its purpose is to produce aerosol forecasts and reanalyses of aerosol fields using optical depth data from satellite sensors. This paper is the second of a series which describes the GEMS aerosol effort. It focuses on the theoretical architecture and practical implementation of the aerosol assimilation system. It also provides a discussion of the background errors and observations errors for the aerosol fields, and presents a subset of results from the 2-year reanalysis which has been run for 2003 and 2004 using data from the Moderate Resolution Imaging Spectroradiometer on the Aqua and Terra satellites. Independent data sets are used to show that despite some compromises that have been made for feasibility reasons in regards to the choice of control variable and error characteristics, the analysis is very skillful in drawing to the observations and in improving the forecasts of aerosol optical depth.

  15. A Short-Term and High-Resolution System Load Forecasting Approach Using Support Vector Regression with Hybrid Parameters Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Huaiguang

    This work proposes an approach for distribution system load forecasting, which aims to provide highly accurate short-term load forecasting with high resolution utilizing a support vector regression (SVR) based forecaster and a two-step hybrid parameters optimization method. Specifically, because the load profiles in distribution systems contain abrupt deviations, a data normalization is designed as the pretreatment for the collected historical load data. Then an SVR model is trained by the load data to forecast the future load. For better performance of SVR, a two-step hybrid optimization algorithm is proposed to determine the best parameters. In the first step of themore » hybrid optimization algorithm, a designed grid traverse algorithm (GTA) is used to narrow the parameters searching area from a global to local space. In the second step, based on the result of the GTA, particle swarm optimization (PSO) is used to determine the best parameters in the local parameter space. After the best parameters are determined, the SVR model is used to forecast the short-term load deviation in the distribution system.« less

  16. Research on Nonlinear Time Series Forecasting of Time-Delay NN Embedded with Bayesian Regularization

    NASA Astrophysics Data System (ADS)

    Jiang, Weijin; Xu, Yusheng; Xu, Yuhui; Wang, Jianmin

    Based on the idea of nonlinear prediction of phase space reconstruction, this paper presented a time delay BP neural network model, whose generalization capability was improved by Bayesian regularization. Furthermore, the model is applied to forecast the imp&exp trades in one industry. The results showed that the improved model has excellent generalization capabilities, which not only learned the historical curve, but efficiently predicted the trend of business. Comparing with common evaluation of forecasts, we put on a conclusion that nonlinear forecast can not only focus on data combination and precision improvement, it also can vividly reflect the nonlinear characteristic of the forecasting system. While analyzing the forecasting precision of the model, we give a model judgment by calculating the nonlinear characteristic value of the combined serial and original serial, proved that the forecasting model can reasonably 'catch' the dynamic characteristic of the nonlinear system which produced the origin serial.

  17. Mesoscale Severe Weather Development under Orographic Influences

    DTIC Science & Technology

    1992-06-30

    control procedures will have to operate centrally before data transmission to the field or will have to be enacted in the field by expert meteorologists...can be depicted uniquely and recognizable on the computer screen as " icons ’. (E.g. in the presence of several thunderstorms, each one should be...appropriate Icon at the proper forecast time and coordinate location. From the numerical forecast output (and, If necessary, from climatological or

  18. The FY2014 Government Shutdown: Economic Effects

    DTIC Science & Technology

    2013-11-01

    caused a decline in consumer, business, or investor confidence, it could have led consumers and businesses to postpone or cancel spending decisions...Even if lawmakers come to terms roughly as expected , political vitriol and repeated threats to shut government or not pay its bills have weighed...growth.14 Most forecasts taken before the shutdown expected a moderate pace of growth in the fourth quarter, and forecasters projected a slightly more

  19. Estimating the state of a geophysical system with sparse observations: time delay methods to achieve accurate initial states for prediction

    DOE PAGES

    An, Zhe; Rey, Daniel; Ye, Jingxin; ...

    2017-01-16

    The problem of forecasting the behavior of a complex dynamical system through analysis of observational time-series data becomes difficult when the system expresses chaotic behavior and the measurements are sparse, in both space and/or time. Despite the fact that this situation is quite typical across many fields, including numerical weather prediction, the issue of whether the available observations are "sufficient" for generating successful forecasts is still not well understood. An analysis by Whartenby et al. (2013) found that in the context of the nonlinear shallow water equations on a β plane, standard nudging techniques require observing approximately 70 % of themore » full set of state variables. Here we examine the same system using a method introduced by Rey et al. (2014a), which generalizes standard nudging methods to utilize time delayed measurements. Here, we show that in certain circumstances, it provides a sizable reduction in the number of observations required to construct accurate estimates and high-quality predictions. In particular, we find that this estimate of 70 % can be reduced to about 33 % using time delays, and even further if Lagrangian drifter locations are also used as measurements.« less

  20. Estimating the state of a geophysical system with sparse observations: time delay methods to achieve accurate initial states for prediction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    An, Zhe; Rey, Daniel; Ye, Jingxin

    The problem of forecasting the behavior of a complex dynamical system through analysis of observational time-series data becomes difficult when the system expresses chaotic behavior and the measurements are sparse, in both space and/or time. Despite the fact that this situation is quite typical across many fields, including numerical weather prediction, the issue of whether the available observations are "sufficient" for generating successful forecasts is still not well understood. An analysis by Whartenby et al. (2013) found that in the context of the nonlinear shallow water equations on a β plane, standard nudging techniques require observing approximately 70 % of themore » full set of state variables. Here we examine the same system using a method introduced by Rey et al. (2014a), which generalizes standard nudging methods to utilize time delayed measurements. Here, we show that in certain circumstances, it provides a sizable reduction in the number of observations required to construct accurate estimates and high-quality predictions. In particular, we find that this estimate of 70 % can be reduced to about 33 % using time delays, and even further if Lagrangian drifter locations are also used as measurements.« less

  1. Comparing Two Approaches for Assessing Observation Impact

    NASA Technical Reports Server (NTRS)

    Todling, Ricardo

    2013-01-01

    Langland and Baker introduced an approach to assess the impact of observations on the forecasts. In that approach, a state-space aspect of the forecast is defined and a procedure is derived ultimately relating changes in the aspect with changes in the observing system. Some features of the state-space approach are to be noted: the typical choice of forecast aspect is rather subjective and leads to incomplete assessment of the observing system, it requires availability of a verification state that is in practice correlated with the forecast, and it involves the adjoint operator of the entire data assimilation system and is thus constrained by the validity of this operator. This article revisits the topic of observation impacts from the perspective of estimation theory. An observation-space metric is used to allow inferring observation impact on the forecasts without the limitations just mentioned. Using differences of observation-minus-forecast residuals obtained from consecutive forecasts leads to the following advantages: (i) it suggests a rather natural choice of forecast aspect that directly links to the data assimilation procedure, (ii) it avoids introducing undesirable correlations in the forecast aspect since verification is done against the observations, and (iii) it does not involve linearization and use of adjoints. The observation-space approach has the additional advantage of being nearly cost free and very simple to implement. In its simplest form it reduces to evaluating the statistics of observationminus- background and observation-minus-analysis residuals with traditional methods. Illustrations comparing the approaches are given using the NASA Goddard Earth Observing System.

  2. Why preferring parametric forecasting to nonparametric methods?

    PubMed

    Jabot, Franck

    2015-05-07

    A recent series of papers by Charles T. Perretti and collaborators have shown that nonparametric forecasting methods can outperform parametric methods in noisy nonlinear systems. Such a situation can arise because of two main reasons: the instability of parametric inference procedures in chaotic systems which can lead to biased parameter estimates, and the discrepancy between the real system dynamics and the modeled one, a problem that Perretti and collaborators call "the true model myth". Should ecologists go on using the demanding parametric machinery when trying to forecast the dynamics of complex ecosystems? Or should they rely on the elegant nonparametric approach that appears so promising? It will be here argued that ecological forecasting based on parametric models presents two key comparative advantages over nonparametric approaches. First, the likelihood of parametric forecasting failure can be diagnosed thanks to simple Bayesian model checking procedures. Second, when parametric forecasting is diagnosed to be reliable, forecasting uncertainty can be estimated on virtual data generated with the fitted to data parametric model. In contrast, nonparametric techniques provide forecasts with unknown reliability. This argumentation is illustrated with the simple theta-logistic model that was previously used by Perretti and collaborators to make their point. It should convince ecologists to stick to standard parametric approaches, until methods have been developed to assess the reliability of nonparametric forecasting. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Spectral Analysis of Forecast Error Investigated with an Observing System Simulation Experiment

    NASA Technical Reports Server (NTRS)

    Prive, N. C.; Errico, Ronald M.

    2015-01-01

    The spectra of analysis and forecast error are examined using the observing system simulation experiment (OSSE) framework developed at the National Aeronautics and Space Administration Global Modeling and Assimilation Office (NASAGMAO). A global numerical weather prediction model, the Global Earth Observing System version 5 (GEOS-5) with Gridpoint Statistical Interpolation (GSI) data assimilation, is cycled for two months with once-daily forecasts to 336 hours to generate a control case. Verification of forecast errors using the Nature Run as truth is compared with verification of forecast errors using self-analysis; significant underestimation of forecast errors is seen using self-analysis verification for up to 48 hours. Likewise, self analysis verification significantly overestimates the error growth rates of the early forecast, as well as mischaracterizing the spatial scales at which the strongest growth occurs. The Nature Run-verified error variances exhibit a complicated progression of growth, particularly for low wave number errors. In a second experiment, cycling of the model and data assimilation over the same period is repeated, but using synthetic observations with different explicitly added observation errors having the same error variances as the control experiment, thus creating a different realization of the control. The forecast errors of the two experiments become more correlated during the early forecast period, with correlations increasing for up to 72 hours before beginning to decrease.

  4. Science and Engineering of an Operational Tsunami Forecasting System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonzalez, Frank

    2009-04-06

    After a review of tsunami statistics and the destruction caused by tsunamis, a means of forecasting tsunamis is discussed as part of an overall program of reducing fatalities through hazard assessment, education, training, mitigation, and a tsunami warning system. The forecast is accomplished via a concept called Deep Ocean Assessment and Reporting of Tsunamis (DART). Small changes of pressure at the sea floor are measured and relayed to warning centers. Under development is an international modeling network to transfer, maintain, and improve tsunami forecast models.

  5. Science and Engineering of an Operational Tsunami Forecasting System

    ScienceCinema

    Gonzalez, Frank

    2017-12-09

    After a review of tsunami statistics and the destruction caused by tsunamis, a means of forecasting tsunamis is discussed as part of an overall program of reducing fatalities through hazard assessment, education, training, mitigation, and a tsunami warning system. The forecast is accomplished via a concept called Deep Ocean Assessment and Reporting of Tsunamis (DART). Small changes of pressure at the sea floor are measured and relayed to warning centers. Under development is an international modeling network to transfer, maintain, and improve tsunami forecast models.

  6. A Multi-scale, Multi-Model, Machine-Learning Solar Forecasting Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamann, Hendrik F.

    The goal of the project was the development and demonstration of a significantly improved solar forecasting technology (short: Watt-sun), which leverages new big data processing technologies and machine-learnt blending between different models and forecast systems. The technology aimed demonstrating major advances in accuracy as measured by existing and new metrics which themselves were developed as part of this project. Finally, the team worked with Independent System Operators (ISOs) and utilities to integrate the forecasts into their operations.

  7. Change in Weather Research and Forecasting (WRF) Model Accuracy with Age of Input Data from the Global Forecast System (GFS)

    DTIC Science & Technology

    2016-09-01

    Laboratory Change in Weather Research and Forecasting (WRF) Model Accuracy with Age of Input Data from the Global Forecast System (GFS) by JL Cogan...analysis. As expected, accuracy generally tended to decline as the large-scale data aged , but appeared to improve slightly as the age of the large...19 Table 7 Minimum and maximum mean RMDs for each WRF time (or GFS data age ) category. Minimum and

  8. Integrating predictive information into an agro-economic model to guide agricultural management

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Block, P.

    2016-12-01

    Skillful season-ahead climate predictions linked with responsive agricultural planning and management have the potential to reduce losses, if adopted by farmers, particularly for rainfed-dominated agriculture such as in Ethiopia. Precipitation predictions during the growing season in major agricultural regions of Ethiopia are used to generate predicted climate yield factors, which reflect the influence of precipitation amounts on crop yields and serve as inputs into an agro-economic model. The adapted model, originally developed by the International Food Policy Research Institute, produces outputs of economic indices (GDP, poverty rates, etc.) at zonal and national levels. Forecast-based approaches, in which farmers' actions are in response to forecasted conditions, are compared with no-forecast approaches in which farmers follow business as usual practices, expecting "average" climate conditions. The effects of farmer adoption rates, including the potential for reduced uptake due to poor predictions, and increasing forecast lead-time on economic outputs are also explored. Preliminary results indicate superior gains under forecast-based approaches.

  9. The Importance of Hurricane Research to Life, Property, the Economy, and National Security.

    NASA Astrophysics Data System (ADS)

    Busalacchi, A. J.

    2017-12-01

    The devastating 2017 Atlantic hurricane season has brought into stark relief how much hurricane forecasts have improved - and how important it is to make them even better. Whereas the error in 48-hour track forecasts has been reduced by more than half, according to the National Hurricane Center, intensity forecasts remain challenging, especially with storms such as Harvey that strengthened from a tropical depression to a Category 4 hurricane in less than three days. The unusually active season, with Hurricane Irma sustaining 185-mph winds for a record 36 hours and two Atlantic hurricanes reaching 150-mph winds simultaneously for the first time, also highlighted what we do, and do not, know about how tropical cyclones will change as the climate warms. The extraordinary toll of Hurricanes Harvey, Irma, and Maria - which may ultimately be responsible for hundreds of deaths and an estimated $200 billion or more in damages - underscores why investments into improved forecasting must be a national priority. At NCAR and UCAR, scientists are working with their colleagues at federal agencies, the private sector, and the university community to advance our understanding of these deadly storms. Among their many projects, NCAR researchers are making experimental tropical cyclone forecasts using an innovative Earth system model that allows for variable resolution. We are working with NOAA to issue flooding, inundation, and streamflow forecasts for areas hit by hurricanes, and we have used extremely high-resolution regional models to simulate successfully the rapid hurricane intensification that has proved so difficult to predict. We are assessing ways to better predict the damage potential of tropical cyclones by looking beyond wind speed to consider such important factors as the size and forward motion of the storm. On the important question of climate change, scientists have experimented with running coupled climate models at a high enough resolution to spin up a hurricane, and we have used a convection-permitting regional model to examine how named storms of the past might look if they were to formed in a warmer, wetter future. Finally, research is also being performed to better communicate forecasts to help residents make informed choices when a damaging storm approaches.

  10. Communicating uncertainty in hydrological forecasts: mission impossible?

    NASA Astrophysics Data System (ADS)

    Ramos, Maria-Helena; Mathevet, Thibault; Thielen, Jutta; Pappenberger, Florian

    2010-05-01

    Cascading uncertainty in meteo-hydrological modelling chains for forecasting and integrated flood risk assessment is an essential step to improve the quality of hydrological forecasts. Although the best methodology to quantify the total predictive uncertainty in hydrology is still debated, there is a common agreement that one must avoid uncertainty misrepresentation and miscommunication, as well as misinterpretation of information by users. Several recent studies point out that uncertainty, when properly explained and defined, is no longer unwelcome among emergence response organizations, users of flood risk information and the general public. However, efficient communication of uncertain hydro-meteorological forecasts is far from being a resolved issue. This study focuses on the interpretation and communication of uncertain hydrological forecasts based on (uncertain) meteorological forecasts and (uncertain) rainfall-runoff modelling approaches to decision-makers such as operational hydrologists and water managers in charge of flood warning and scenario-based reservoir operation. An overview of the typical flow of uncertainties and risk-based decisions in hydrological forecasting systems is presented. The challenges related to the extraction of meaningful information from probabilistic forecasts and the test of its usefulness in assisting operational flood forecasting are illustrated with the help of two case-studies: 1) a study on the use and communication of probabilistic flood forecasting within the European Flood Alert System; 2) a case-study on the use of probabilistic forecasts by operational forecasters from the hydroelectricity company EDF in France. These examples show that attention must be paid to initiatives that promote or reinforce the active participation of expert forecasters in the forecasting chain. The practice of face-to-face forecast briefings, focusing on sharing how forecasters interpret, describe and perceive the model output forecasted scenarios, is essential. We believe that the efficient communication of uncertainty in hydro-meteorological forecasts is not a mission impossible. Questions remaining unanswered in probabilistic hydrological forecasting should not neutralize the goal of such a mission, and the suspense kept should instead act as a catalyst for overcoming the remaining challenges.

  11. A non-parametric postprocessor for bias-correcting multi-model ensemble forecasts of hydrometeorological and hydrologic variables

    NASA Astrophysics Data System (ADS)

    Brown, James; Seo, Dong-Jun

    2010-05-01

    Operational forecasts of hydrometeorological and hydrologic variables often contain large uncertainties, for which ensemble techniques are increasingly used. However, the utility of ensemble forecasts depends on the unbiasedness of the forecast probabilities. We describe a technique for quantifying and removing biases from ensemble forecasts of hydrometeorological and hydrologic variables, intended for use in operational forecasting. The technique makes no a priori assumptions about the distributional form of the variables, which is often unknown or difficult to model parametrically. The aim is to estimate the conditional cumulative distribution function (ccdf) of the observed variable given a (possibly biased) real-time ensemble forecast from one or several forecasting systems (multi-model ensembles). The technique is based on Bayesian optimal linear estimation of indicator variables, and is analogous to indicator cokriging (ICK) in geostatistics. By developing linear estimators for the conditional expectation of the observed variable at many thresholds, ICK provides a discrete approximation of the full ccdf. Since ICK minimizes the conditional error variance of the indicator expectation at each threshold, it effectively minimizes the Continuous Ranked Probability Score (CRPS) when infinitely many thresholds are employed. However, the ensemble members used as predictors in ICK, and other bias-correction techniques, are often highly cross-correlated, both within and between models. Thus, we propose an orthogonal transform of the predictors used in ICK, which is analogous to using their principal components in the linear system of equations. This leads to a well-posed problem in which a minimum number of predictors are used to provide maximum information content in terms of the total variance explained. The technique is used to bias-correct precipitation ensemble forecasts from the NCEP Global Ensemble Forecast System (GEFS), for which independent validation results are presented. Extension to multimodel ensembles from the NCEP GFS and Short Range Ensemble Forecast (SREF) systems is also proposed.

  12. An Operational Short-Term Forecasting System for Regional Hydropower Management

    NASA Astrophysics Data System (ADS)

    Gronewold, A.; Labuhn, K. A.; Calappi, T. J.; MacNeil, A.

    2017-12-01

    The Niagara River is the natural outlet of Lake Erie and drains four of the five Great lakes. The river is used to move commerce and is home to both sport fishing and tourism industries. It also provides nearly 5 million kilowatts of hydropower for approximately 3.9 million homes. Due to a complex international treaty and the necessity of balancing water needs for an extensive tourism industry, the power entities operating on the river require detailed and accurate short-term river flow forecasts to maximize power output. A new forecast system is being evaluated that takes advantage of several previously independent components including the NOAA Lake Erie operational Forecast System (LEOFS), a previously developed HEC-RAS model, input from the New York Power Authority(NYPA) and Ontario Power Generation (OPG) and lateral flow forecasts for some of the tributaries provided by the NOAA Northeast River Forecast Center (NERFC). The Corps of Engineers updated the HEC-RAS model of the upper Niagara River to use the output forcing from LEOFS and a planned Grass Island Pool elevation provided by the power entities. The entire system has been integrated at the NERFC; it will be run multiple times per day with results provided to the Niagara River Control Center operators. The new model helps improve discharge forecasts by better accounting for dynamic conditions on Lake Erie. LEOFS captures seiche events on the lake that are often several meters of displacement from still water level. These seiche events translate into flow spikes that HEC-RAS routes downstream. Knowledge of the peak arrival time helps improve operational decisions at the Grass Island Pool. This poster will compare and contrast results from the existing operational flow forecast and the new integrated LEOFS/HEC-RAS forecast. This additional model will supply the Niagara River Control Center operators with multiple forecasts of flow to help improve forecasting under a wider variety of conditions.

  13. Exploring the calibration of a wind forecast ensemble for energy applications

    NASA Astrophysics Data System (ADS)

    Heppelmann, Tobias; Ben Bouallegue, Zied; Theis, Susanne

    2015-04-01

    In the German research project EWeLiNE, Deutscher Wetterdienst (DWD) and Fraunhofer Institute for Wind Energy and Energy System Technology (IWES) are collaborating with three German Transmission System Operators (TSO) in order to provide the TSOs with improved probabilistic power forecasts. Probabilistic power forecasts are derived from probabilistic weather forecasts, themselves derived from ensemble prediction systems (EPS). Since the considered raw ensemble wind forecasts suffer from underdispersiveness and bias, calibration methods are developed for the correction of the model bias and the ensemble spread bias. The overall aim is to improve the ensemble forecasts such that the uncertainty of the possible weather deployment is depicted by the ensemble spread from the first forecast hours. Additionally, the ensemble members after calibration should remain physically consistent scenarios. We focus on probabilistic hourly wind forecasts with horizon of 21 h delivered by the convection permitting high-resolution ensemble system COSMO-DE-EPS which has become operational in 2012 at DWD. The ensemble consists of 20 ensemble members driven by four different global models. The model area includes whole Germany and parts of Central Europe with a horizontal resolution of 2.8 km and a vertical resolution of 50 model levels. For verification we use wind mast measurements around 100 m height that corresponds to the hub height of wind energy plants that belong to wind farms within the model area. Calibration of the ensemble forecasts can be performed by different statistical methods applied to the raw ensemble output. Here, we explore local bivariate Ensemble Model Output Statistics at individual sites and quantile regression with different predictors. Applying different methods, we already show an improvement of ensemble wind forecasts from COSMO-DE-EPS for energy applications. In addition, an ensemble copula coupling approach transfers the time-dependencies of the raw ensemble to the calibrated ensemble. The calibrated wind forecasts are evaluated first with univariate probabilistic scores and additionally with diagnostics of wind ramps in order to assess the time-consistency of the calibrated ensemble members.

  14. Assessment of Folsom Lake Watershed response to historical and potential future climate scenarios

    USGS Publications Warehouse

    Carpenter, Theresa M.; Georgakakos, Konstantine P.

    2000-01-01

    An integrated forecast-control system was designed to allow the profitable use of ensemble forecasts for the operational management of multi-purpose reservoirs. The system ingests large-scale climate model monthly precipitation through the adjustment of the marginal distribution of reservoir-catchment precipitation to reflect occurrence of monthly climate precipitation amounts in the extreme terciles of their distribution. Generation of ensemble reservoir inflow forecasts is then accomplished with due account for atmospheric- forcing and hydrologic- model uncertainties. These ensemble forecasts are ingested by the decision component of the integrated system, which generates non- inferior trade-off surfaces and, given management preferences, estimates of reservoir- management benefits over given periods. In collaboration with the Bureau of Reclamation and the California Nevada River Forecast Center, the integrated system is applied to Folsom Lake in California to evaluate the benefits for flood control, hydroelectric energy production, and low flow augmentation. In addition to retrospective studies involving the historical period 1964-1993, system simulations were performed for the future period 2001-2030, under a control (constant future greenhouse-gas concentrations assumed at the present levels) and a greenhouse-gas- increase (1-% per annum increase assumed) scenario. The present paper presents and validates ensemble 30-day reservoir- inflow forecasts under a variety of situations. Corresponding reservoir management results are presented in Yao and Georgakakos, A., this issue. Principle conclusions of this paper are that the integrated system provides reliable ensemble inflow volume forecasts at the 5-% confidence level for the majority of the deciles of forecast frequency, and that the use of climate model simulations is beneficial mainly during high flow periods. It is also found that, for future periods with potential sharp climatic increases of precipitation amount and to maintain good reliability levels, operational ensemble inflow forecasting should involve atmospheric forcing from appropriate climatic periods.

  15. Improved Weather Forecasting for the Dynamic Scheduling System of the Green Bank Telescope

    NASA Astrophysics Data System (ADS)

    Henry, Kari; Maddalena, Ronald

    2018-01-01

    The Robert C Byrd Green Bank Telescope (GBT) uses a software system that dynamically schedules observations based on models of vertical weather forecasts produced by the National Weather Service (NWS). The NWS provides hourly forecasted values for ~60 layers that extend into the stratosphere over the observatory. We use models, recommended by the Radiocommunication Sector of the International Telecommunications Union, to derive the absorption coefficient in each layer for each hour in the NWS forecasts and for all frequencies over which the GBT has receivers, 0.1 to 115 GHz. We apply radiative transfer models to derive the opacity and the atmospheric contributions to the system temperature, thereby deriving forecasts applicable to scheduling radio observations for up to 10 days into the future. Additionally, the algorithms embedded in the data processing pipeline use historical values of the forecasted opacity to calibrate observations. Until recently, we have concentrated on predictions for high frequency (> 15 GHz) observing, as these need to be scheduled carefully around bad weather. We have been using simple models for the contribution of rain and clouds since we only schedule low-frequency observations under these conditions. In this project, we wanted to improve the scheduling of the GBT and data calibration at low frequencies by deriving better algorithms for clouds and rain. To address the limitation at low frequency, the observatory acquired a Radiometrics Corporation MP-1500A radiometer, which operates in 27 channels between 22 and 30 GHz. By comparing 16 months of measurements from the radiometer against forecasted system temperatures, we have confirmed that forecasted system temperatures are indistinguishable from those measured under good weather conditions. Small miss-calibrations of the radiometer data dominate the comparison. By using recalibrated radiometer measurements, we looked at bad weather days to derive better models for forecasting the contribution of clouds to the opacity and system temperatures. We will show how these revised algorithms should help us improve both data calibration and the accuracy of scheduling low-frequency observations.

  16. Real-time drought forecasting system for irrigation management

    NASA Astrophysics Data System (ADS)

    Ceppi, A.; Ravazzani, G.; Corbari, C.; Salerno, R.; Meucci, S.; Mancini, M.

    2014-09-01

    In recent years frequent periods of water scarcity have enhanced the need to use water more carefully, even in European areas which traditionally have an abundant supply of water, such as the Po Valley in northern Italy. In dry periods, water shortage problems can be enhanced by conflicting uses of water, such as irrigation, industry and power production (hydroelectric and thermoelectric). Furthermore, in the last decade the social perspective in relation to this issue has been increasing due to the possible impact of climate change and global warming scenarios which emerge from the IPCC Fifth Assessment Report (IPCC, 2013). Hence, the increased frequency of drought periods has stimulated the improvement of irrigation and water management. In this study we show the development and implementation of the PREGI real-time drought forecasting system; PREGI is an Italian acronym that means "hydro-meteorological forecast for irrigation management". The system, planned as a tool for irrigation optimization, is based on meteorological ensemble forecasts (20 members) at medium range (30 days) coupled with hydrological simulations of water balance to forecast the soil water content on a maize field in the Muzza Bassa Lodigiana (MBL) consortium in northern Italy. The hydrological model was validated against measurements of latent heat flux acquired by an eddy-covariance station, and soil moisture measured by TDR (time domain reflectivity) probes; the reliability of this forecasting system and its benefits were assessed in the 2012 growing season. The results obtained show how the proposed drought forecasting system is able to have a high reliability of forecast at least for 7-10 days ahead of time.

  17. Real-Time Kennedy Space Center and Cape Canaveral Air Force Station High-Resolution Model Implementation and Verification

    NASA Technical Reports Server (NTRS)

    Shafer, Jaclyn; Watson, Leela R.

    2015-01-01

    NASA's Launch Services Program, Ground Systems Development and Operations, Space Launch System and other programs at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) use the daily and weekly weather forecasts issued by the 45th Weather Squadron (45 WS) as decision tools for their day-to-day and launch operations on the Eastern Range (ER). Examples include determining if they need to limit activities such as vehicle transport to the launch pad, protect people, structures or exposed launch vehicles given a threat of severe weather, or reschedule other critical operations. The 45 WS uses numerical weather prediction models as a guide for these weather forecasts, particularly the Air Force Weather Agency (AFWA) 1.67 km Weather Research and Forecasting (WRF) model. Considering the 45 WS forecasters' and Launch Weather Officers' (LWO) extensive use of the AFWA model, the 45 WS proposed a task at the September 2013 Applied Meteorology Unit (AMU) Tasking Meeting requesting the AMU verify this model. Due to the lack of archived model data available from AFWA, verification is not yet possible. Instead, the AMU proposed to implement and verify the performance of an ER version of the high-resolution WRF Environmental Modeling System (EMS) model configured by the AMU (Watson 2013) in real time. Implementing a real-time version of the ER WRF-EMS would generate a larger database of model output than in the previous AMU task for determining model performance, and allows the AMU more control over and access to the model output archive. The tasking group agreed to this proposal; therefore the AMU implemented the WRF-EMS model on the second of two NASA AMU modeling clusters. The AMU also calculated verification statistics to determine model performance compared to observational data. Finally, the AMU made the model output available on the AMU Advanced Weather Interactive Processing System II (AWIPS II) servers, which allows the 45 WS and AMU staff to customize the model output display on the AMU and Range Weather Operations (RWO) AWIPS II client computers and conduct real-time subjective analyses.

  18. PERFORMANCE AND DIAGNOSTIC EVALUATION OF OZONE PREDICTIONS BY THE ETA-COMMUNITY MULTISCALE AIR QUALITY FORECAST SYSTEM DURING THE 2002 NEW ENGLAND AIR QUALITY STUDY

    EPA Science Inventory

    A real-time air quality forecasting system (Eta-CMAQ model suite) has been developed by linking the NCEP Eta model to the U.S. EPA CMAQ model. This work presents results from the application of the Eta-CMAQ modeling system for forecasting O3 over the northeastern U.S d...

  19. Satellite temperature monitoring and prediction system

    NASA Technical Reports Server (NTRS)

    Barnett, U. R.; Martsolf, J. D.; Crosby, F. L.

    1980-01-01

    The paper describes the Florida Satellite Freeze Forecast System (SFFS) in its current state. All data collection options have been demonstrated, and data collected over a three year period have been stored for future analysis. Presently, specific minimum temperature forecasts are issued routinely from November through March. The procedures for issuing these forecast are discussed. The automated data acquisition and processing system is described, and the physical and statistical models employed are examined.

  20. Verification and intercomparison of mesoscale ensemble prediction systems in the Beijing 2008 Olympics Research and Development Project

    NASA Astrophysics Data System (ADS)

    Kunii, Masaru; Saito, Kazuo; Seko, Hiromu; Hara, Masahiro; Hara, Tabito; Yamaguchi, Munehiko; Gong, Jiandong; Charron, Martin; Du, Jun; Wang, Yong; Chen, Dehui

    2011-05-01

    During the period around the Beijing 2008 Olympic Games, the Beijing 2008 Olympics Research and Development Project (B08RDP) was conducted as part of the World Weather Research Program short-range weather forecasting research project. Mesoscale ensemble prediction (MEP) experiments were carried out by six organizations in near-real time, in order to share their experiences in the development of MEP systems. The purpose of this study is to objectively verify these experiments and to clarify the problems associated with the current MEP systems through the same experiences. Verification was performed using the MEP outputs interpolated into a common verification domain with a horizontal resolution of 15 km. For all systems, the ensemble spreads grew as the forecast time increased, and the ensemble mean improved the forecast errors compared with individual control forecasts in the verification against the analysis fields. However, each system exhibited individual characteristics according to the MEP method. Some participants used physical perturbation methods. The significance of these methods was confirmed by the verification. However, the mean error (ME) of the ensemble forecast in some systems was worse than that of the individual control forecast. This result suggests that it is necessary to pay careful attention to physical perturbations.

  1. An Overview of the National Weather Service National Water Model

    NASA Astrophysics Data System (ADS)

    Cosgrove, B.; Gochis, D.; Clark, E. P.; Cui, Z.; Dugger, A. L.; Feng, X.; Karsten, L. R.; Khan, S.; Kitzmiller, D.; Lee, H. S.; Liu, Y.; McCreight, J. L.; Newman, A. J.; Oubeidillah, A.; Pan, L.; Pham, C.; Salas, F.; Sampson, K. M.; Sood, G.; Wood, A.; Yates, D. N.; Yu, W.

    2016-12-01

    The National Weather Service (NWS) Office of Water Prediction (OWP), in conjunction with the National Center for Atmospheric Research (NCAR) and the NWS National Centers for Environmental Prediction (NCEP) recently implemented version 1.0 of the National Water Model (NWM) into operations. This model is an hourly cycling uncoupled analysis and forecast system that provides streamflow for 2.7 million river reaches and other hydrologic information on 1km and 250m grids. It will provide complementary hydrologic guidance at current NWS river forecast locations and significantly expand guidance coverage and type in underserved locations. The core of this system is the NCAR-supported community Weather Research and Forecasting (WRF)-Hydro hydrologic model. It ingests forcing from a variety of sources including Multi-Sensor Multi-Radar (MRMS) radar-gauge observed precipitation data and High Resolution Rapid Refresh (HRRR), Rapid Refresh (RAP), Global Forecast System (GFS) and Climate Forecast System (CFS) forecast data. WRF-Hydro is configured to use the Noah-Multi Parameterization (Noah-MP) Land Surface Model (LSM) to simulate land surface processes. Separate water routing modules perform diffusive wave surface routing and saturated subsurface flow routing on a 250m grid, and Muskingum-Cunge channel routing down National Hydrogaphy Dataset Plus V2 (NHDPlusV2) stream reaches. River analyses and forecasts are provided across a domain encompassing the Continental United States (CONUS) and hydrologically contributing areas, while land surface output is available on a larger domain that extends beyond the CONUS into Canada and Mexico (roughly from latitude 19N to 58N). The system includes an analysis and assimilation configuration along with three forecast configurations. These include a short-range 15 hour deterministic forecast, a medium-Range 10 day deterministic forecast and a long-range 30 day 16-member ensemble forecast. United Sates Geologic Survey (USGS) streamflow observations are assimilated into the analysis and assimilation configuration, and all four configurations benefit from the inclusion of 1,260 reservoirs. An overview of the National Water Model will be given, along with information on ongoing evaluation activities and plans for future NWM enhancements.

  2. Calibration and combination of monthly near-surface temperature and precipitation predictions over Europe

    NASA Astrophysics Data System (ADS)

    Rodrigues, Luis R. L.; Doblas-Reyes, Francisco J.; Coelho, Caio A. S.

    2018-02-01

    A Bayesian method known as the Forecast Assimilation (FA) was used to calibrate and combine monthly near-surface temperature and precipitation outputs from seasonal dynamical forecast systems. The simple multimodel (SMM), a method that combines predictions with equal weights, was used as a benchmark. This research focuses on Europe and adjacent regions for predictions initialized in May and November, covering the boreal summer and winter months. The forecast quality of the FA and SMM as well as the single seasonal dynamical forecast systems was assessed using deterministic and probabilistic measures. A non-parametric bootstrap method was used to account for the sampling uncertainty of the forecast quality measures. We show that the FA performs as well as or better than the SMM in regions where the dynamical forecast systems were able to represent the main modes of climate covariability. An illustration with the near-surface temperature over North Atlantic, the Mediterranean Sea and Middle-East in summer months associated with the well predicted first mode of climate covariability is offered. However, the main modes of climate covariability are not well represented in most situations discussed in this study as the seasonal dynamical forecast systems have limited skill when predicting the European climate. In these situations, the SMM performs better more often.

  3. Evaluating the spatio-temporal performance of sky-imager-based solar irradiance analysis and forecasts

    NASA Astrophysics Data System (ADS)

    Schmidt, Thomas; Kalisch, John; Lorenz, Elke; Heinemann, Detlev

    2016-03-01

    Clouds are the dominant source of small-scale variability in surface solar radiation and uncertainty in its prediction. However, the increasing share of solar energy in the worldwide electric power supply increases the need for accurate solar radiation forecasts. In this work, we present results of a very short term global horizontal irradiance (GHI) forecast experiment based on hemispheric sky images. A 2-month data set with images from one sky imager and high-resolution GHI measurements from 99 pyranometers distributed over 10 km by 12 km is used for validation. We developed a multi-step model and processed GHI forecasts up to 25 min with an update interval of 15 s. A cloud type classification is used to separate the time series into different cloud scenarios. Overall, the sky-imager-based forecasts do not outperform the reference persistence forecasts. Nevertheless, we find that analysis and forecast performance depends strongly on the predominant cloud conditions. Especially convective type clouds lead to high temporal and spatial GHI variability. For cumulus cloud conditions, the analysis error is found to be lower than that introduced by a single pyranometer if it is used representatively for the whole area in distances from the camera larger than 1-2 km. Moreover, forecast skill is much higher for these conditions compared to overcast or clear sky situations causing low GHI variability, which is easier to predict by persistence. In order to generalize the cloud-induced forecast error, we identify a variability threshold indicating conditions with positive forecast skill.

  4. Satellite Altimetry based River Forecasting of Transboundary Flow

    NASA Astrophysics Data System (ADS)

    Hossain, F.; Siddique-E-Akbor, A.; Lee, H.; Shum, C.; Biancamaria, S.

    2012-12-01

    Forecasting of this transboundary flow in downstream nations however remains notoriously difficult due to the lack of basin-wide in-situ hydrologic measurements or its real-time sharing among nations. In addition, human regulation of upstream flow through diversion projects and dams, make hydrologic models less effective for forecasting on their own. Using the Ganges-Brahmaputra (GB) basin as an example, this study assesses the feasibility of using JASON-2 satellite altimetry for forecasting such transboundary flow at locations further inside the downstream nation of Bangladesh by propagating forecasts derived from upstream (Indian) locations through a hydrodynamic river model. The 5-day forecast of river levels at upstream boundary points inside Bangladesh are used to initialize daily simulation of the hydrodynamic river model and yield the 5-day forecast river level further downstream inside Bangladesh. The forecast river levels are then compared with the 5-day-later "now cast" simulation by the river model based on in-situ river level at the upstream boundary points in Bangladesh. Future directions for satellite-based forecasting of flow are also briefly overviewed.round tracks or virtual stations of JASON-2 (J2) altimeter over the GB basin shown in yellow lines. The locations where the track crosses a river and used for deriving forecasting rating curves is shown with a circle and station number (magenta- Brahmaputra basin; blue - Ganges basin). Circles without a station number represent the broader view of sampling by JASON-2 if all the ground tracks on main stem rivers and neighboring tributaries of Ganges and Brahmaputra are considered.

  5. Accuracy analysis of TDRSS demand forecasts

    NASA Technical Reports Server (NTRS)

    Stern, Daniel C.; Levine, Allen J.; Pitt, Karl J.

    1994-01-01

    This paper reviews Space Network (SN) demand forecasting experience over the past 16 years and describes methods used in the forecasts. The paper focuses on the Single Access (SA) service, the most sought-after resource in the Space Network. Of the ten years of actual demand data available, only the last five years (1989 to 1993) were considered predictive due to the extensive impact of the Challenger accident of 1986. NASA's Space Network provides tracking and communications services to user spacecraft such as the Shuttle and the Hubble Space Telescope. Forecasting the customer requirements is essential to planning network resources and to establishing service commitments to future customers. The lead time to procure Tracking and Data Relay Satellites (TDRS's) requires demand forecasts ten years in the future a planning horizon beyond the funding commitments for missions to be supported. The long range forecasts are shown to have had a bias toward underestimation in the 1991 -1992 period. The trend of underestimation can be expected to be replaced by overestimation for a number of years starting with 1998. At that time demand from new missions slated for launch will be larger than the demand from ongoing missions, making the potential for delay the dominant factor. If the new missions appear as scheduled, the forecasts are likely to be moderately underestimated. The SN commitment to meet the negotiated customer's requirements calls for conservatism in the forecasting. Modification of the forecasting procedure to account for a delay bias is, therefore, not advised. Fine tuning the mission model to more accurately reflect the current actual demand is recommended as it may marginally improve the first year forecasting.

  6. Baseline and Target Values for PV Forecasts: Toward Improved Solar Power Forecasting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jie; Hodge, Bri-Mathias; Lu, Siyuan

    2015-10-05

    Accurate solar power forecasting allows utilities to get the most out of the solar resources on their systems. To truly measure the improvements that any new solar forecasting methods can provide, it is important to first develop (or determine) baseline and target solar forecasting at different spatial and temporal scales. This paper aims to develop baseline and target values for solar forecasting metrics. These were informed by close collaboration with utility and independent system operator partners. The baseline values are established based on state-of-the-art numerical weather prediction models and persistence models. The target values are determined based on the reductionmore » in the amount of reserves that must be held to accommodate the uncertainty of solar power output.« less

  7. Economic Value of Weather and Climate Forecasts

    NASA Astrophysics Data System (ADS)

    Katz, Richard W.; Murphy, Allan H.

    1997-06-01

    Weather and climate extremes can significantly impact the economics of a region. This book examines how weather and climate forecasts can be used to mitigate the impact of the weather on the economy. Interdisciplinary in scope, it explores the meteorological, economic, psychological, and statistical aspects of weather prediction. Chapters by area specialists provide a comprehensive view of this timely topic. They encompass forecasts over a wide range of temporal scales, from weather over the next few hours to the climate months or seasons ahead, and address the impact of these forecasts on human behavior. Economic Value of Weather and Climate Forecasts seeks to determine the economic benefits of existing weather forecasting systems and the incremental benefits of improving these systems, and will be an interesting and essential text for economists, statisticians, and meteorologists.

  8. Seasonal scale water deficit forecasting in Africa and the Middle East using NASA's Land Information System (LIS)

    NASA Astrophysics Data System (ADS)

    Shukla, Shraddhanand; Arsenault, Kristi R.; Getirana, Augusto; Kumar, Sujay V.; Roningen, Jeanne; Zaitchik, Ben; McNally, Amy; Koster, Randal D.; Peters-Lidard, Christa

    2017-04-01

    Drought and water scarcity are among the important issues facing several regions within Africa and the Middle East. A seamless and effective monitoring and early warning system is needed by regional/national stakeholders. Such system should support a proactive drought management approach and mitigate the socio-economic losses up to the extent possible. In this presentation, we report on the ongoing development and validation of a seasonal scale water deficit forecasting system based on NASA's Land Information System (LIS) and seasonal climate forecasts. First, our presentation will focus on the implementation and validation of the LIS models used for drought and water availability monitoring in the region. The second part will focus on evaluating drought and water availability forecasts. Finally, details will be provided of our ongoing collaboration with end-user partners in the region (e.g., USAID's Famine Early Warning Systems Network, FEWS NET), on formulating meaningful early warning indicators, effective communication and seamless dissemination of the monitoring and forecasting products through NASA's web-services. The water deficit forecasting system thus far incorporates NOAA's Noah land surface model (LSM), version 3.3, the Variable Infiltration Capacity (VIC) model, version 4.12, NASA GMAO's Catchment LSM, and the Noah Multi-Physics (MP) LSM (the latter two incorporate prognostic water table schemes). In addition, the LSMs' surface and subsurface runoff are routed through the Hydrological Modeling and Analysis Platform (HyMAP) to simulate surface water dynamics. The LSMs are driven by NASA/GMAO's Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2), and the USGS and UCSB Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) daily rainfall dataset. The LIS software framework integrates these forcing datasets and drives the four LSMs and HyMAP. The Land Verification Toolkit (LVT) is used for the evaluation of the LSMs, as it provides model ensemble metrics and the ability to compare against a variety of remotely sensed measurements, like different evapotranspiration (ET) and soil moisture products, and other reanalysis datasets that are available for this region. Comparison of the models' energy and hydrological budgets will be shown for this region (and sub-basin level, e.g., Blue Nile River) and time period (1981-2015), along with evaluating ET, streamflow, groundwater storage and soil moisture, using evaluation metrics (e.g., anomaly correlation, RMSE, etc.). The system uses seasonal climate forecasts from NASA's GMAO (the Goddard Earth Observing System Model, version 5) and NCEP's Climate Forecast System, version 2, and it produces forecasts of soil moisture, ET and streamflow out to 6 months in the future. Forecasts of those variables are formulated in terms of indicators to provide forecasts of drought and water availability in the region.

  9. Projected Applications of a ``Climate in a Box'' Computing System at the NASA Short-term Prediction Research and Transition (SPoRT) Center

    NASA Astrophysics Data System (ADS)

    Jedlovec, G.; Molthan, A.; Zavodsky, B.; Case, J.; Lafontaine, F.

    2010-12-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center focuses on the transition of unique observations and research capabilities to the operational weather community, with a goal of improving short-term forecasts on a regional scale. Advances in research computing have lead to “Climate in a Box” systems, with hardware configurations capable of producing high resolution, near real-time weather forecasts, but with footprints, power, and cooling requirements that are comparable to desktop systems. The SPoRT Center has developed several capabilities for incorporating unique NASA research capabilities and observations with real-time weather forecasts. Planned utilization includes the development of a fully-cycled data assimilation system used to drive 36-48 hour forecasts produced by the NASA Unified version of the Weather Research and Forecasting (WRF) model (NU-WRF). The horsepower provided by the “Climate in a Box” system is expected to facilitate the assimilation of vertical profiles of temperature and moisture provided by the Atmospheric Infrared Sounder (AIRS) aboard the NASA Aqua satellite. In addition, the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments aboard NASA’s Aqua and Terra satellites provide high-resolution sea surface temperatures and vegetation characteristics. The development of MODIS normalized difference vegetation index (NVDI) composites for use within the NASA Land Information System (LIS) will assist in the characterization of vegetation, and subsequently the surface albedo and processes related to soil moisture. Through application of satellite simulators, NASA satellite instruments can be used to examine forecast model errors in cloud cover and other characteristics. Through the aforementioned application of the “Climate in a Box” system and NU-WRF capabilities, an end goal is the establishment of a real-time forecast system that fully integrates modeling and analysis capabilities developed within the NASA SPoRT Center, with benefits provided to the operational forecasting community.

  10. Water and Power Systems Co-optimization under a High Performance Computing Framework

    NASA Astrophysics Data System (ADS)

    Xuan, Y.; Arumugam, S.; DeCarolis, J.; Mahinthakumar, K.

    2016-12-01

    Water and energy systems optimizations are traditionally being treated as two separate processes, despite their intrinsic interconnections (e.g., water is used for hydropower generation, and thermoelectric cooling requires a large amount of water withdrawal). Given the challenges of urbanization, technology uncertainty and resource constraints, and the imminent threat of climate change, a cyberinfrastructure is needed to facilitate and expedite research into the complex management of these two systems. To address these issues, we developed a High Performance Computing (HPC) framework for stochastic co-optimization of water and energy resources to inform water allocation and electricity demand. The project aims to improve conjunctive management of water and power systems under climate change by incorporating improved ensemble forecast models of streamflow and power demand. First, by downscaling and spatio-temporally disaggregating multimodel climate forecasts from General Circulation Models (GCMs), temperature and precipitation forecasts are obtained and input into multi-reservoir and power systems models. Extended from Optimus (Optimization Methods for Universal Simulators), the framework drives the multi-reservoir model and power system model, Temoa (Tools for Energy Model Optimization and Analysis), and uses Particle Swarm Optimization (PSO) algorithm to solve high dimensional stochastic problems. The utility of climate forecasts on the cost of water and power systems operations is assessed and quantified based on different forecast scenarios (i.e., no-forecast, multimodel forecast and perfect forecast). Analysis of risk management actions and renewable energy deployments will be investigated for the Catawba River basin, an area with adequate hydroclimate predicting skill and a critical basin with 11 reservoirs that supplies water and generates power for both North and South Carolina. Further research using this scalable decision supporting framework will provide understanding and elucidate the intricate and interdependent relationship between water and energy systems and enhance the security of these two critical public infrastructures.

  11. Projected Applications of a "Climate in a Box" Computing System at the NASA Short-Term Prediction Research and Transition (SPoRT) Center

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary J.; Molthan, Andrew L.; Zavodsky, Bradley; Case, Jonathan L.; LaFontaine, Frank J.

    2010-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center focuses on the transition of unique observations and research capabilities to the operational weather community, with a goal of improving short-term forecasts on a regional scale. Advances in research computing have lead to "Climate in a Box" systems, with hardware configurations capable of producing high resolution, near real-time weather forecasts, but with footprints, power, and cooling requirements that are comparable to desktop systems. The SPoRT Center has developed several capabilities for incorporating unique NASA research capabilities and observations with real-time weather forecasts. Planned utilization includes the development of a fully-cycled data assimilation system used to drive 36-48 hour forecasts produced by the NASA Unified version of the Weather Research and Forecasting (WRF) model (NU-WRF). The horsepower provided by the "Climate in a Box" system is expected to facilitate the assimilation of vertical profiles of temperature and moisture provided by the Atmospheric Infrared Sounder (AIRS) aboard the NASA Aqua satellite. In addition, the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments aboard NASA s Aqua and Terra satellites provide high-resolution sea surface temperatures and vegetation characteristics. The development of MODIS normalized difference vegetation index (NVDI) composites for use within the NASA Land Information System (LIS) will assist in the characterization of vegetation, and subsequently the surface albedo and processes related to soil moisture. Through application of satellite simulators, NASA satellite instruments can be used to examine forecast model errors in cloud cover and other characteristics. Through the aforementioned application of the "Climate in a Box" system and NU-WRF capabilities, an end goal is the establishment of a real-time forecast system that fully integrates modeling and analysis capabilities developed within the NASA SPoRT Center, with benefits provided to the operational forecasting community.

  12. An improved Multimodel Approach for Global Sea Surface Temperature Forecasts

    NASA Astrophysics Data System (ADS)

    Khan, M. Z. K.; Mehrotra, R.; Sharma, A.

    2014-12-01

    The concept of ensemble combinations for formulating improved climate forecasts has gained popularity in recent years. However, many climate models share similar physics or modeling processes, which may lead to similar (or strongly correlated) forecasts. Recent approaches for combining forecasts that take into consideration differences in model accuracy over space and time have either ignored the similarity of forecast among the models or followed a pairwise dynamic combination approach. Here we present a basis for combining model predictions, illustrating the improvements that can be achieved if procedures for factoring in inter-model dependence are utilised. The utility of the approach is demonstrated by combining sea surface temperature (SST) forecasts from five climate models over a period of 1960-2005. The variable of interest, the monthly global sea surface temperature anomalies (SSTA) at a 50´50 latitude-longitude grid, is predicted three months in advance to demonstrate the utility of the proposed algorithm. Results indicate that the proposed approach offers consistent and significant improvements for majority of grid points compared to the case where the dependence among the models is ignored. Therefore, the proposed approach of combining multiple models by taking into account the existing interdependence, provides an attractive alternative to obtain improved climate forecast. In addition, an approach to combine seasonal forecasts from multiple climate models with varying periods of availability is also demonstrated.

  13. Evaluation of Flood Forecast and Warning in Elbe river basin - Impact of Forecaster's Strategy

    NASA Astrophysics Data System (ADS)

    Danhelka, Jan; Vlasak, Tomas

    2010-05-01

    Czech Hydrometeorological Institute (CHMI) is responsible for flood forecasting and warning in the Czech Republic. To meet that issue CHMI operates hydrological forecasting systems and publish flow forecast in selected profiles. Flood forecast and warning is an output of system that links observation (flow and atmosphere), data processing, weather forecast (especially NWP's QPF), hydrological modeling and modeled outputs evaluation and interpretation by forecaster. Forecast users are interested in final output without separating uncertainties of separate steps of described process. Therefore an evaluation of final operational forecasts was done for profiles within Elbe river basin produced by AquaLog forecasting system during period 2002 to 2008. Effects of uncertainties of observation, data processing and especially meteorological forecasts were not accounted separately. Forecast of flood levels exceedance (peak over the threshold) during forecasting period was the main criterion as flow increase forecast is of the highest importance. Other evaluation criteria included peak flow and volume difference. In addition Nash-Sutcliffe was computed separately for each time step (1 to 48 h) of forecasting period to identify its change with the lead time. Textual flood warnings are issued for administrative regions to initiate flood protection actions in danger of flood. Flood warning hit rate was evaluated at regions level and national level. Evaluation found significant differences of model forecast skill between forecasting profiles, particularly less skill was evaluated at small headwater basins due to domination of QPF uncertainty in these basins. The average hit rate was 0.34 (miss rate = 0.33, false alarm rate = 0.32). However its explored spatial difference is likely to be influenced also by different fit of parameters sets (due to different basin characteristics) and importantly by different impact of human factor. Results suggest that the practice of interactive model operation, experience and forecasting strategy differs between responsible forecasting offices. Warning is based on model outputs interpretation by hydrologists-forecaster. Warning hit rate reached 0.60 for threshold set to lowest flood stage of which 0.11 was underestimation of flood degree (miss 0.22, false alarm 0.28). Critical success index of model forecast was 0.34, while the same criteria for warning reached 0.55. We assume that the increase accounts not only to change of scale from single forecasting point to region for warning, but partly also to forecaster's added value. There is no official warning strategy preferred in the Czech Republic (f.e. tolerance towards higher false alarm rate). Therefore forecaster decision and personal strategy is of great importance. Results show quite successful warning for 1st flood level exceedance, over-warning for 2nd flood level, but under-warning for 3rd (highest) flood level. That suggests general forecaster's preference of medium level warning (2nd flood level is legally determined to be the start of the flood and flood protection activities). In conclusion human forecaster's experience and analysis skill increases flood warning performance notably. However society preference should be specifically addressed in the warning strategy definition to support forecaster's decision making.

  14. Precipitation forecasts for rainfall runoff predictions. A case study in poorly gauged Ribb and Gumara catchments, upper Blue Nile, Ethiopia

    NASA Astrophysics Data System (ADS)

    Seyoum, Mesgana; van Andel, Schalk Jan; Xuan, Yunqing; Amare, Kibreab

    Flow forecasting in poorly gauged, flood-prone Ribb and Gumara sub-catchments of the Blue Nile was studied with the aim of testing the performance of Quantitative Precipitation Forecasts (QPFs). Four types of QPFs namely MM5 forecasts with a spatial resolution of 2 km; the Maximum, Mean and Minimum members (MaxEPS, MeanEPS and MinEPS where EPS stands for Ensemble Prediction System) of the fixed, low resolution (2.5 by 2.5 degrees) National Oceanic and Atmospheric Administration Global Forecast System (NOAA GFS) ensemble forecasts were used. Both the MM5 and the EPS were not calibrated (bias correction, downscaling (for EPS), etc.). In addition, zero forecasts assuming no rainfall in the coming days, and monthly average forecasts assuming average monthly rainfall in the coming days, were used. These rainfall forecasts were then used to drive the Hydrologic Engineering Center’s-Hydrologic Modeling System, HEC-HMS, hydrologic model for flow predictions. The results show that flow predictions using MaxEPS and MM5 precipitation forecasts over-predicted the peak flow for most of the seven events analyzed, whereas under-predicted peak flow was found using zero- and monthly average rainfall. The comparison of observed and predicted flow hydrographs shows that MM5, MaxEPS and MeanEPS precipitation forecasts were able to capture the rainfall signal that caused peak flows. Flow predictions based on MaxEPS and MeanEPS gave results that were quantitatively close to the observed flow for most events, whereas flow predictions based on MM5 resulted in large overestimations for some events. In follow-up research for this particular case study, calibration of the MM5 model will be performed. The overall analysis shows that freely available atmospheric forecasting products can provide additional information on upcoming rainfall and peak flow events in areas where only base-line forecasts such as no-rainfall or climatology are available.

  15. An operational ensemble prediction system for catchment rainfall over eastern Africa spanning multiple temporal and spatial scales

    NASA Astrophysics Data System (ADS)

    Riddle, E. E.; Hopson, T. M.; Gebremichael, M.; Boehnert, J.; Broman, D.; Sampson, K. M.; Rostkier-Edelstein, D.; Collins, D. C.; Harshadeep, N. R.; Burke, E.; Havens, K.

    2017-12-01

    While it is not yet certain how precipitation patterns will change over Africa in the future, it is clear that effectively managing the available water resources is going to be crucial in order to mitigate the effects of water shortages and floods that are likely to occur in a changing climate. One component of effective water management is the availability of state-of-the-art and easy to use rainfall forecasts across multiple spatial and temporal scales. We present a web-based system for displaying and disseminating ensemble forecast and observed precipitation data over central and eastern Africa. The system provides multi-model rainfall forecasts integrated to relevant hydrological catchments for timescales ranging from one day to three months. A zoom-in features is available to access high resolution forecasts for small-scale catchments. Time series plots and data downloads with forecasts, recent rainfall observations and climatological data are available by clicking on individual catchments. The forecasts are calibrated using a quantile regression technique and an optimal multi-model forecast is provided at each timescale. The forecast skill at the various spatial and temporal scales will discussed, as will current applications of this tool for managing water resources in Sudan and optimizing hydropower operations in Ethiopia and Tanzania.

  16. A Wind Forecasting System for Energy Application

    NASA Astrophysics Data System (ADS)

    Courtney, Jennifer; Lynch, Peter; Sweeney, Conor

    2010-05-01

    Accurate forecasting of available energy is crucial for the efficient management and use of wind power in the national power grid. With energy output critically dependent upon wind strength there is a need to reduce the errors associated wind forecasting. The objective of this research is to get the best possible wind forecasts for the wind energy industry. To achieve this goal, three methods are being applied. First, a mesoscale numerical weather prediction (NWP) model called WRF (Weather Research and Forecasting) is being used to predict wind values over Ireland. Currently, a gird resolution of 10km is used and higher model resolutions are being evaluated to establish whether they are economically viable given the forecast skill improvement they produce. Second, the WRF model is being used in conjunction with ECMWF (European Centre for Medium-Range Weather Forecasts) ensemble forecasts to produce a probabilistic weather forecasting product. Due to the chaotic nature of the atmosphere, a single, deterministic weather forecast can only have limited skill. The ECMWF ensemble methods produce an ensemble of 51 global forecasts, twice a day, by perturbing initial conditions of a 'control' forecast which is the best estimate of the initial state of the atmosphere. This method provides an indication of the reliability of the forecast and a quantitative basis for probabilistic forecasting. The limitation of ensemble forecasting lies in the fact that the perturbed model runs behave differently under different weather patterns and each model run is equally likely to be closest to the observed weather situation. Models have biases, and involve assumptions about physical processes and forcing factors such as underlying topography. Third, Bayesian Model Averaging (BMA) is being applied to the output from the ensemble forecasts in order to statistically post-process the results and achieve a better wind forecasting system. BMA is a promising technique that will offer calibrated probabilistic wind forecasts which will be invaluable in wind energy management. In brief, this method turns the ensemble forecasts into a calibrated predictive probability distribution. Each ensemble member is provided with a 'weight' determined by its relative predictive skill over a training period of around 30 days. Verification of data is carried out using observed wind data from operational wind farms. These are then compared to existing forecasts produced by ECMWF and Met Eireann in relation to skill scores. We are developing decision-making models to show the benefits achieved using the data produced by our wind energy forecasting system. An energy trading model will be developed, based on the rules currently used by the Single Electricity Market Operator for energy trading in Ireland. This trading model will illustrate the potential for financial savings by using the forecast data generated by this research.

  17. THE NEW ENGLAND AIR QUALITY FORECASTING PILOT PROGRAM: DEVELOPMENT OF AN EVALUATION PROTOCOL AND PERFORMANCE BENCHMARK

    EPA Science Inventory

    The National Oceanic and Atmospheric Administration recently sponsored the New England Forecasting Pilot Program to serve as a "test bed" for chemical forecasting by providing all of the elements of a National Air Quality Forecasting System, including the development and implemen...

  18. Towards an Australian ensemble streamflow forecasting system for flood prediction and water management

    NASA Astrophysics Data System (ADS)

    Bennett, J.; David, R. E.; Wang, Q.; Li, M.; Shrestha, D. L.

    2016-12-01

    Flood forecasting in Australia has historically relied on deterministic forecasting models run only when floods are imminent, with considerable forecaster input and interpretation. These now co-existed with a continually available 7-day streamflow forecasting service (also deterministic) aimed at operational water management applications such as environmental flow releases. The 7-day service is not optimised for flood prediction. We describe progress on developing a system for ensemble streamflow forecasting that is suitable for both flood prediction and water management applications. Precipitation uncertainty is handled through post-processing of Numerical Weather Prediction (NWP) output with a Bayesian rainfall post-processor (RPP). The RPP corrects biases, downscales NWP output, and produces reliable ensemble spread. Ensemble precipitation forecasts are used to force a semi-distributed conceptual rainfall-runoff model. Uncertainty in precipitation forecasts is insufficient to reliably describe streamflow forecast uncertainty, particularly at shorter lead-times. We characterise hydrological prediction uncertainty separately with a 4-stage error model. The error model relies on data transformation to ensure residuals are homoscedastic and symmetrically distributed. To ensure streamflow forecasts are accurate and reliable, the residuals are modelled using a mixture-Gaussian distribution with distinct parameters for the rising and falling limbs of the forecast hydrograph. In a case study of the Murray River in south-eastern Australia, we show ensemble predictions of floods generally have lower errors than deterministic forecasting methods. We also discuss some of the challenges in operationalising short-term ensemble streamflow forecasts in Australia, including meeting the needs for accurate predictions across all flow ranges and comparing forecasts generated by event and continuous hydrological models.

  19. Development of a flood early warning system and communication with end-users: the Vipava/Vipacco case study in the KULTURisk FP7 project

    NASA Astrophysics Data System (ADS)

    Grossi, Giovanna; Caronna, Paolo; Ranzi, Roberto

    2014-05-01

    Within the framework of risk communication, the goal of an early warning system is to support the interaction between technicians and authorities (and subsequently population) as a prevention measure. The methodology proposed in the KULTURisk FP7 project aimed to build a closer collaboration between these actors, in the perspective of promoting pro-active actions to mitigate the effects of flood hazards. The transnational (Slovenia/ Italy) Soča/Isonzo case study focused on this concept of cooperation between stakeholders and hydrological forecasters. The DIMOSHONG_VIP hydrological model was calibrated for the Vipava/Vipacco River (650 km2), a tributary of the Soča/Isonzo River, on the basis of flood events occurred between 1998 and 2012. The European Centre for Medium-Range Weather Forecasts (ECMWF) provided the past meteorological forecasts, both deterministic (1 forecast) and probabilistic (51 ensemble members). The resolution of the ECMWF grid is currently about 15 km (Deterministic-DET) and 30 km (Ensemble Prediction System-EPS). A verification was conducted to validate the flood-forecast outputs of the DIMOSHONG_VIP+ECMWF early warning system. Basic descriptive statistics, like event probability, probability of a forecast occurrence and frequency bias were determined. Some performance measures were calculated, such as hit rate (probability of detection) and false alarm rate (probability of false detection). Relative Opening Characteristic (ROC) curves were generated both for deterministic and probabilistic forecasts. These analysis showed a good performance of the early warning system, in respect of the small size of the sample. A particular attention was spent to the design of flood-forecasting output charts, involving and inquiring stakeholders (Alto Adriatico River Basin Authority), hydrology specialists in the field, and common people. Graph types for both forecasted precipitation and discharge were set. Three different risk thresholds were identified ("attention", "pre-alarm" or "alert", "alarm"), with an "icon-style" representation, suitable for communication to civil protection stakeholders or the public. Aiming at showing probabilistic representations in a "user-friendly" way, we opted for the visualization of the single deterministic forecasted hydrograph together with the 5%, 25%, 50%, 75% and 95% percentiles bands of the Hydrological Ensemble Prediction System (HEPS). HEPS is generally used for 3-5 days hydrological forecasts, while the error due to incorrect initial data is comparable to the error due to the lower resolution with respect to the deterministic forecast. In the short term forecasting (12-48 hours) the HEPS-members show obviously a similar tendency; in this case, considering its higher resolution, the deterministic forecast is expected to be more effective. The plot of different forecasts in the same chart allows the use of model outputs from 4/5 days to few hours before a potential flood event. This framework was built to help a stakeholder, like a mayor, a civil protection authority, etc, in the flood control and management operations, and was designed to be included in a wider decision support system.

  20. Propagation of uncertainties through the oil spill model MEDSLIK-II: operational application to the Black Sea

    NASA Astrophysics Data System (ADS)

    Liubartseva, Svitlana; Coppini, Giovanni; Ciliberti, Stefania Angela; Lecci, Rita

    2017-04-01

    In operational oil spill modeling, MEDSLIK-II (De Dominicis et al., 2013) focuses on the reliability of the oil drift and fate predictions routinely fed by operational oceanographic and atmospheric forecasting chain. Uncertainty calculations enhance oil spill forecast efficiency, supplying probability maps to quantify the propagation of various uncertainties. Recently, we have developed the methodology that allows users to evaluate the variability of oil drift forecast caused by uncertain data on the initial oil spill conditions (Liubartseva et al., 2016). One of the key methodological aspects is a reasonable choice of a way of parameter perturbation. In case of starting oil spill location and time, these scalars might be treated as independent random parameters. If we want to perturb the underlying ocean currents and wind, we have to deal with deterministic vector parameters. To a first approximation, we suggest rolling forecasts as a set of perturbed ocean currents and wind. This approach does not need any extra hydrodynamic calculations, and it is quick enough to be performed in web-based applications. The capabilities of the proposed methodology are explored using the Black Sea Forecasting System (BSFS) recently implemented by Ciliberti et al. (2016) for the Copernicus Marine Environment Monitoring Service (http://marine.copernicus.eu/services-portfolio/access-to-products). BSFS horizontal resolution is 1/36° in zonal and 1/27° in meridional direction (ca. 3 km). Vertical domain discretization is represented by 31 unevenly spaced vertical levels. Atmospheric wind data are provided by the European Centre for Medium-Range Weather Forecasts (ECMWF) forecasts, at 1/8° (ca. 12.5 km) horizontal and 6-hour temporal resolution. A great variety of probability patterns controlled by different underlying flows is represented including the cyclonic Rim Current, flow bifurcations in anticyclonic eddies (e.g., Sevastopol and Batumi), northwestern shelf circulation, etc. Uncertainty imprints in the oil mass balance components are also analyzed. This work is conducted in the framework of the REACT Project funded by Fondazione CON IL SUD/Brains2South. References Ciliberti, S.A., Peneva, E., Storto, A., Kandilarov, R., Lecci, R., Yang, C., Coppini, G., Masina, S., Pinardi, N., 2016. Implementation of Black Sea numerical model based on NEMO and 3DVAR data assimilation scheme for operational forecasting, Geophys. Res. Abs., 18, EGU2016-16222. De Dominicis, M., Pinardi, N., Zodiatis, G., Lardner, R., 2013. MEDSLIK-II, a Lagrangian marine surface oil spill model for short term forecasting-Part 1: Theory, Geosci. Model Dev., 6, 1851-1869. Liubartseva, S., Coppini, G., Pinardi, N., De Dominicis, M., Lecci, R., Turrisi, G., Cretì, S., Martinelli, S., Agostini, P., Marra, P., Palermo, F., 2016. Decision support system for emergency management of oil spill accidents in the Mediterranean Sea, Nat. Hazards Earth Syst. Sci., 16, 2009-2020.

Top