A ranking index for quality assessment of forensic DNA profiles forensic DNA profiles
2010-01-01
Background Assessment of DNA profile quality is vital in forensic DNA analysis, both in order to determine the evidentiary value of DNA results and to compare the performance of different DNA analysis protocols. Generally the quality assessment is performed through manual examination of the DNA profiles based on empirical knowledge, or by comparing the intensities (allelic peak heights) of the capillary electrophoresis electropherograms. Results We recently developed a ranking index for unbiased and quantitative quality assessment of forensic DNA profiles, the forensic DNA profile index (FI) (Hedman et al. Improved forensic DNA analysis through the use of alternative DNA polymerases and statistical modeling of DNA profiles, Biotechniques 47 (2009) 951-958). FI uses electropherogram data to combine the intensities of the allelic peaks with the balances within and between loci, using Principal Components Analysis. Here we present the construction of FI. We explain the mathematical and statistical methodologies used and present details about the applied data reduction method. Thereby we show how to adapt the ranking index for any Short Tandem Repeat-based forensic DNA typing system through validation against a manual grading scale and calibration against a specific set of DNA profiles. Conclusions The developed tool provides unbiased quality assessment of forensic DNA profiles. It can be applied for any DNA profiling system based on Short Tandem Repeat markers. Apart from crime related DNA analysis, FI can therefore be used as a quality tool in paternal or familial testing as well as in disaster victim identification. PMID:21062433
DNA Profiling Success Rates from Degraded Skeletal Remains in Guatemala.
Johnston, Emma; Stephenson, Mishel
2016-07-01
No data are available regarding the success of DNA Short Tandem Repeat (STR) profiling from degraded skeletal remains in Guatemala. Therefore, DNA profiling success rates relating to 2595 skeletons from eleven cases at the Forensic Anthropology Foundation of Guatemala (FAFG) are presented. The typical postmortem interval was 30 years. DNA was extracted from bone powder and amplified using Identifiler and Minifler. DNA profiling success rates differed between cases, ranging from 50.8% to 7.0%, the overall success rate for samples was 36.3%. The best DNA profiling success rates were obtained from femur (36.2%) and tooth (33.7%) samples. DNA profiles were significantly better from lower body bones than upper body bones (p = <0.0001). Bone samples from males gave significantly better profiles than samples from females (p = <0.0001). These results are believed to be related to bone density. The findings are important for designing forensic DNA sampling strategies in future victim recovery investigations. © 2016 American Academy of Forensic Sciences.
Zahra, Nathalie; Goodwin, William
2016-01-01
Biological samples recovered for forensic investigations are often degraded and/or have low amounts of DNA; in addition, in some instances the samples may be contaminated with chemicals that can act as PCR inhibitors. As a consequence this can make interpretation of the results challenging with the possibility of having partial profiles and false negative results. Because of the impact of DNA analysis on forensic investigations, it is important to monitor the process of DNA profiling, in particular the amplification reaction. In this chapter we describe a method for the in-house generation and use of internal amplification controls (IACs) with DNA profiling kits to monitor the success of the PCR proces. In the example we show the use of the SGM Plus® kit. These controls can also be used to aid the interpretation of the DNA profile.
Machado, Helena; Silva, Susana
2014-01-01
The creation and expansion of forensic DNA databases might involve potential threats to the protection of a range of human rights. At the same time, such databases have social benefits. Based on data collected through an online questionnaire applied to 628 individuals in Portugal, this paper aims to analyze the citizens' willingness to donate voluntarily a sample for profiling and inclusion in the National Forensic DNA Database and the views underpinning such a decision. Nearly one-quarter of the respondents would indicate 'no', and this negative response increased significantly with age and education. The overriding willingness to accept the inclusion of the individual genetic profile indicates an acknowledgement of the investigative potential of forensic DNA technologies and a relegation of civil liberties and human rights to the background, owing to the perceived benefits of protecting both society and the individual from crime. This rationale is mostly expressed by the idea that all citizens should contribute to the expansion of the National Forensic DNA Database for reasons that range from the more abstract assumption that donating a sample for profiling would be helpful in fighting crime to the more concrete suggestion that everyone (criminals and non-criminals) should be in the database. The concerns with the risks of accepting the donation of a sample for genetic profiling and inclusion in the National Forensic DNA Database are mostly related to lack of control and insufficient or unclear regulations concerning safeguarding individuals' data and supervising the access and uses of genetic data. By providing an empirically-grounded understanding of the attitudes regarding willingness to donate voluntary a sample for profiling and inclusion in a National Forensic DNA Database, this study also considers the citizens' perceived benefits and risks of operating forensic DNA databases. These collective views might be useful for the formation of international common ethical standards for the development and governance of DNA databases in a framework in which the citizens' perspectives are taken into consideration. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Kayser, Manfred
2015-09-01
Forensic DNA Phenotyping refers to the prediction of appearance traits of unknown sample donors, or unknown deceased (missing) persons, directly from biological materials found at the scene. "Biological witness" outcomes of Forensic DNA Phenotyping can provide investigative leads to trace unknown persons, who are unidentifiable with current comparative DNA profiling. This intelligence application of DNA marks a substantially different forensic use of genetic material rather than that of current DNA profiling presented in the courtroom. Currently, group-specific pigmentation traits are already predictable from DNA with reasonably high accuracies, while several other externally visible characteristics are under genetic investigation. Until individual-specific appearance becomes accurately predictable from DNA, conventional DNA profiling needs to be performed subsequent to appearance DNA prediction. Notably, and where Forensic DNA Phenotyping shows great promise, this is on a (much) smaller group of potential suspects, who match the appearance characteristics DNA-predicted from the crime scene stain or from the deceased person's remains. Provided sufficient funding being made available, future research to better understand the genetic basis of human appearance will expectedly lead to a substantially more detailed description of an unknown person's appearance from DNA, delivering increased value for police investigations in criminal and missing person cases involving unknowns. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
FaSTR DNA: a new expert system for forensic DNA analysis.
Power, Timothy; McCabe, Brendan; Harbison, Sally Ann
2008-06-01
The automation of DNA profile analysis of reference and crime samples continues to gain pace driven in part by a realisation by the criminal justice system of the positive impact DNA technology can have in aiding in the solution of crime and the apprehension of suspects. Expert systems to automate the profile analysis component of the process are beginning to be developed. In this paper, we report the validation of a new expert system FaSTR DNA, an expert system suitable for the analysis of DNA profiles from single source reference samples and from crime samples. We compare the performance of FaSTR DNA with that of other equivalent systems, GeneMapper ID v3.2 (Applied Biosystems, Foster City, CA) and FSS-i(3) v4 (The Forensic Science Service((R)) DNA expert System Suite FSS-i(3), Forensic Science Service, Birmingham, UK) with GeneScan Analysis v3.7/Genotyper v3.7 software (Applied Biosystems, Foster City, CA, USA) with manual review. We have shown that FaSTR DNA provides an alternative solution to automating DNA profile analysis and is appropriate for implementation into forensic laboratories. The FaSTR DNA system was demonstrated to be comparable in performance to that of GeneMapper ID v3.2 and superior to that of FSS-i(3) v4 for the analysis of DNA profiles from crime samples.
From forensic epigenetics to forensic epigenomics: broadening DNA investigative intelligence.
Vidaki, Athina; Kayser, Manfred
2017-12-21
Human genetic variation is a major resource in forensics, but does not allow all forensically relevant questions to be answered. Some questions may instead be addressable via epigenomics, as the epigenome acts as an interphase between the fixed genome and the dynamic environment. We envision future forensic applications of DNA methylation analysis that will broaden DNA-based forensic intelligence. Together with genetic prediction of appearance and biogeographic ancestry, epigenomic lifestyle prediction is expected to increase the ability of police to find unknown perpetrators of crime who are not identifiable using current forensic DNA profiling.
Butler, John M
2011-12-01
Forensic DNA testing has a number of applications, including parentage testing, identifying human remains from natural or man-made disasters or terrorist attacks, and solving crimes. This article provides background information followed by an overview of the process of forensic DNA testing, including sample collection, DNA extraction, PCR amplification, short tandem repeat (STR) allele separation and sizing, typing and profile interpretation, statistical analysis, and quality assurance. The article concludes with discussions of possible problems with the data and other forensic DNA testing techniques.
Forensic DNA methylation profiling from evidence material for investigative leads
Lee, Hwan Young; Lee, Soong Deok; Shin, Kyoung-Jin
2016-01-01
DNA methylation is emerging as an attractive marker providing investigative leads to solve crimes in forensic genetics. The identification of body fluids that utilizes tissue-specific DNA methylation can contribute to solving crimes by predicting activity related to the evidence material. The age estimation based on DNA methylation is expected to reduce the number of potential suspects, when the DNA profile from the evidence does not match with any known person, including those stored in the forensic database. Moreover, the variation in DNA implicates environmental exposure, such as cigarette smoking and alcohol consumption, thereby suggesting the possibility to be used as a marker for predicting the lifestyle of potential suspect. In this review, we describe recent advances in our understanding of DNA methylation variations and the utility of DNA methylation as a forensic marker for advanced investigative leads from evidence materials. [BMB Reports 2016; 49(7): 359-369] PMID:27099236
Walsh, Susan; Chaitanya, Lakshmi; Clarisse, Lindy; Wirken, Laura; Draus-Barini, Jolanta; Kovatsi, Leda; Maeda, Hitoshi; Ishikawa, Takaki; Sijen, Titia; de Knijff, Peter; Branicki, Wojciech; Liu, Fan; Kayser, Manfred
2014-03-01
Forensic DNA Phenotyping or 'DNA intelligence' tools are expected to aid police investigations and find unknown individuals by providing information on externally visible characteristics of unknown suspects, perpetrators and missing persons from biological samples. This is especially useful in cases where conventional DNA profiling or other means remain non-informative. Recently, we introduced the HIrisPlex system, capable of predicting both eye and hair colour from DNA. In the present developmental validation study, we demonstrate that the HIrisPlex assay performs in full agreement with the Scientific Working Group on DNA Analysis Methods (SWGDAM) guidelines providing an essential prerequisite for future HIrisPlex applications to forensic casework. The HIrisPlex assay produces complete profiles down to only 63 pg of DNA. Species testing revealed human specificity for a complete HIrisPlex profile, while only non-human primates showed the closest full profile at 20 out of the 24 DNA markers, in all animals tested. Rigorous testing of simulated forensic casework samples such as blood, semen, saliva stains, hairs with roots as well as extremely low quantity touch (trace) DNA samples, produced complete profiles in 88% of cases. Concordance testing performed between five independent forensic laboratories displayed consistent reproducible results on varying types of DNA samples. Due to its design, the assay caters for degraded samples, underlined here by results from artificially degraded DNA and from simulated casework samples of degraded DNA. This aspect was also demonstrated previously on DNA samples from human remains up to several hundreds of years old. With this paper, we also introduce enhanced eye and hair colour prediction models based on enlarged underlying databases of HIrisPlex genotypes and eye/hair colour phenotypes (eye colour: N = 9188 and hair colour: N = 1601). Furthermore, we present an online web-based system for individual eye and hair colour prediction from full and partial HIrisPlex DNA profiles. By demonstrating that the HIrisPlex assay is fully compatible with the SWGDAM guidelines, we provide the first forensically validated DNA test system for parallel eye and hair colour prediction now available to forensic laboratories for immediate casework application, including missing person cases. Given the robustness and sensitivity described here and in previous work, the HIrisPlex system is also suitable for analysing old and ancient DNA in anthropological and evolutionary studies. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Brown, John R.
1994-03-01
Forensic DNA profiling technology is a significant law enforcement tool due to its superior discriminating power. Applying the principles of population genetics to the DNA profile obtained in violent crime investigations results in low frequency of occurrence estimates for the DNA profile. These estimates often range from a frequency of occurrence of 1 in 50 unrelated individuals to 1 in a million unrelated individuals or even smaller. It is this power to discriminate among individuals in the population that has propelled forensic DNA technology to the forefront of forensic testing in violent crime cases. Not only is the technology extremely powerful in including or excluding a criminal suspect as the perpetrator, but it also gives rise to the potential of identifying criminal suspects in cases where the investigators of unknown suspect cases have exhausted all other available leads.
Likelihood ratio and posterior odds in forensic genetics: Two sides of the same coin.
Caliebe, Amke; Walsh, Susan; Liu, Fan; Kayser, Manfred; Krawczak, Michael
2017-05-01
It has become widely accepted in forensics that, owing to a lack of sensible priors, the evidential value of matching DNA profiles in trace donor identification or kinship analysis is most sensibly communicated in the form of a likelihood ratio (LR). This restraint does not abate the fact that the posterior odds (PO) would be the preferred basis for returning a verdict. A completely different situation holds for Forensic DNA Phenotyping (FDP), which is aimed at predicting externally visible characteristics (EVCs) of a trace donor from DNA left behind at the crime scene. FDP is intended to provide leads to the police investigation helping them to find unknown trace donors that are unidentifiable by DNA profiling. The statistical models underlying FDP typically yield posterior odds (PO) for an individual possessing a certain EVC. This apparent discrepancy has led to confusion as to when LR or PO is the appropriate outcome of forensic DNA analysis to be communicated to the investigating authorities. We thus set out to clarify the distinction between LR and PO in the context of forensic DNA profiling and FDP from a statistical point of view. In so doing, we also addressed the influence of population affiliation on LR and PO. In contrast to the well-known population dependency of the LR in DNA profiling, the PO as obtained in FDP may be widely population-independent. The actual degree of independence, however, is a matter of (i) how much of the causality of the respective EVC is captured by the genetic markers used for FDP and (ii) by the extent to which non-genetic such as environmental causal factors of the same EVC are distributed equally throughout populations. The fact that an LR should be communicated in cases of DNA profiling whereas the PO are suitable for FDP does not conflict with theory, but rather reflects the immanent differences between these two forensic applications of DNA information. Copyright © 2017 Elsevier B.V. All rights reserved.
Logical Framework of Forensic Identification: Ability to Resist Fabricated DNA.
Wang, Zheng; Zhou, Di; Zhang, Suhua; Bian, Yingnan; Hu, Zhen; Zhu, Ruxin; Lu, Daru; Li, Chengtao
2015-12-01
Over the past 30 years, DNA analysis has revolutionized forensic science and has become the most useful single tool in the multifaceted fight against crime. Today, DNA profiling with sets of highly polymorphic autosomal short tandem repeat markers is widely employed and accepted in the courts due to its high discriminating power and reliability. However, an artificial bloodstain purposefully created using molecular biology techniques succeeded in tricking a leading forensic DNA laboratory. The disturbing possibility that a forensic DNA profile can be faked shocked the general public and the mass media, and generated serious discussion about the credibility of DNA evidence. Herein, we present two exemplary assays based on tissue-specific methylation patterns and cell-specific mRNA expression, respectively. These two assays can be integrated into the DNA analysis pipelines without consumption of additional samples. We show that the two assays can not only distinguish between artificial and genuine samples, but also provide information on tissue origin. The two assays were tested on natural and artificial bloodstains (generated by polymerase chain reaction and whole genome amplification technique) and the results illustrated that the logical framework of forensic identification is still useful for forensic identification with the high credibility.
Forensic DNA methylation profiling from minimal traces: How low can we go?
Naue, Jana; Hoefsloot, Huub C J; Kloosterman, Ate D; Verschure, Pernette J
2018-03-01
Analysis of human DNA methylation (DNAm) can provide additional investigative leads in crime cases, e.g. the type of tissue or body fluid, the chronological age of an individual, and differentiation between identical twins. In contrast to the genetic profile, the DNAm level is not the same in every cell. At the single cell level, DNAm represents a binary event at a defined CpG site (methylated versus non-methylated). The DNAm level from a DNA extract however represents the average level of methylation of the CpG of interest of all molecules in the forensic sample. The variance of DNAm levels between replicates is often attributed to technological issues, i.e. degradation of DNA due to bisulfite treatment, preferential amplification of DNA, and amplification failure. On the other hand, we show that stochastic variations can lead to gross fluctuation in the analysis of methylation levels in samples with low DNA levels. This stochasticity in DNAm results is relevant since low DNA amounts (1pg - 1ng) is rather the norm than the exception when analyzing forensic DNA samples. This study describes a conceptual analysis of DNAm profiling and its dependence on the amount of input DNA. We took a close look at the variation of DNAm analysis due to DNA input and its consequences for different DNAm-based forensic applications. As can be expected, the 95%-confidence interval of measured DNAm becomes narrower with increasing amounts of DNA. We compared this aspect for two different DNAm-based forensic applications: body fluid identification and chronological age determination. Our study shows that DNA amount should be well considered when using DNAm for forensic applications. Copyright © 2017 Elsevier B.V. All rights reserved.
Subhani, Zuhaib; Daniel, Barbara; Frascione, Nunzianda
2018-05-25
This study evaluated the compatibility of the most common enhancement methods and lifting techniques with DNA profiling. Emphasis is placed on modern lifting techniques (i.e., gelatin lifters and Isomark™) and historical fingerprint lifts for which limited research has been previously conducted. A total of 180 fingerprints were deposited on a glass surface, enhanced, lifted, and processed for DNA typing. DNA could be extracted and profiled for all the powders and lifts tested and from both groomed fingerprints and natural prints with no significant difference in the percentage of profile recovered. DNA profiles could also be obtained from historical fingerprint lifts (79.2% of 72 lifts) with one or more alleles detected. These results demonstrate the compatibility between different powder/lift combinations and DNA profiling therefore augmenting the evidential value of fingerprints in forensic casework. © 2018 American Academy of Forensic Sciences.
Bodies of science and law: forensic DNA profiling, biological bodies, and biopower.
Toom, Victor
2012-01-01
How is jurisdiction transferred from an individual's biological body to agents of power such as the police, public prosecutors, and the judiciary, and what happens to these biological bodies when transformed from private into public objects? These questions are examined by analysing bodies situated at the intersection of science and law. More specifically, the transformation of ‘private bodies’ into ‘public bodies’ is analysed by going into the details of forensic DNA profiling in the Dutch jurisdiction. It will be argued that various ‘forensic genetic practices’ enact different forensic genetic bodies'. These enacted forensic genetic bodies are connected with various infringements of civil rights, which become articulated in exploring these forensic genetic bodies’‘normative registers’.
Calculating the weight of evidence in low-template forensic DNA casework.
Lohmueller, Kirk E; Rudin, Norah
2013-01-01
Interpreting and assessing the weight of low-template DNA evidence presents a formidable challenge in forensic casework. This report describes a case in which a similar mixed DNA profile was obtained from four different bloodstains. The defense proposed that the low-level minor profile came from an alternate suspect, the defendant's mistress. The strength of the evidence was assessed using a probabilistic approach that employed likelihood ratios incorporating the probability of allelic drop-out. Logistic regression was used to model the probability of drop-out using empirical validation data from the government laboratory. The DNA profile obtained from the bloodstain described in this report is at least 47 billion times more likely if, in addition to the victim, the alternate suspect was the minor contributor, than if another unrelated individual was the minor contributor. This case illustrates the utility of the probabilistic approach for interpreting complex low-template DNA profiles. © 2012 American Academy of Forensic Sciences.
Mendel Meets CSI: Forensic Genotyping as a Method to Teach Genetics & DNA Science
ERIC Educational Resources Information Center
Kurowski, Scotia; Reiss, Rebecca
2007-01-01
This article describes a forensic DNA science laboratory exercise for advanced high school and introductory college level biology courses. Students use a commercial genotyping kit and genetic analyzer or gene sequencer to analyze DNA recovered from a fictitious crime scene. DNA profiling and STR genotyping are outlined. DNA extraction, PCR, and…
Machado, Helena; Santos, Filipe; Silva, Susana
2011-07-15
In this paper we aim to discuss how Portuguese prisoners know and what they feel about surveillance mechanisms related to the inclusion and deletion of the DNA profiles of convicted criminals in the national forensic database. Through a set of interviews with individuals currently imprisoned we focus on the ways this group perceives forensic DNA technologies. While the institutional and political discourses maintain that the restricted use and application of DNA profiles within the national forensic database protects individuals' rights, the prisoners claim that police misuse of such technologies potentially makes it difficult to escape from surveillance and acts as a mean of reinforcing the stigma of delinquency. The prisoners also argue that additional intensive and extensive use of surveillance devices might be more protective of their own individual rights and might possibly increase potential for exoneration. Crown Copyright © 2011. Published by Elsevier Ireland Ltd. All rights reserved.
Cementum as a source of DNA in challenging forensic cases.
Mansour, Hussam; Krebs, Oliver; Sperhake, Jan Peter; Augustin, Christa; Koehne, Till; Amling, Michael; Püschel, Klaus
2018-02-01
Each forensic case is characterized by its own uniqueness. Deficient forensic cases require additional sources of human identifiers to assure the identity. We report on two different cases illustrating the role of teeth in answering challenging forensic questions. The first case involves identification of an adipocere male found in a car submersed in water for approximately 2 years. The second scenario, which involves paternity DNA testing of an exhumed body, was performed approximately 2.8 years post-mortem. The difficulty in anticipating the degradation of the DNA is one of the main obstacles. DNA profiling of dental tissues, DNA quantification by using real-time PCR (PowerQuant™ System/Promega) and a histological dental examination have been performed to address the encountered impediments of adverse post-mortem changes. Our results demonstrate that despite the adverse environmental conditions, a successful STR profile of DNA isolated from the root of teeth can be generated with respect to tooth type and apportion. We conclude that cementocytes are a fruitful source of DNA. Cementum resists DNA degradation in comparison to other tissues with respect to the intra- and inter-individual variation of histological and anatomical structures. Copyright © 2018 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
Current genetic methodologies in the identification of disaster victims and in forensic analysis.
Ziętkiewicz, Ewa; Witt, Magdalena; Daca, Patrycja; Zebracka-Gala, Jadwiga; Goniewicz, Mariusz; Jarząb, Barbara; Witt, Michał
2012-02-01
This review presents the basic problems and currently available molecular techniques used for genetic profiling in disaster victim identification (DVI). The environmental conditions of a mass disaster often result in severe fragmentation, decomposition and intermixing of the remains of victims. In such cases, traditional identification based on the anthropological and physical characteristics of the victims is frequently inconclusive. This is the reason why DNA profiling became the gold standard for victim identification in mass-casualty incidents (MCIs) or any forensic cases where human remains are highly fragmented and/or degraded beyond recognition. The review provides general information about the sources of genetic material for DNA profiling, the genetic markers routinely used during genetic profiling (STR markers, mtDNA and single-nucleotide polymorphisms [SNP]) and the basic statistical approaches used in DNA-based disaster victim identification. Automated technological platforms that allow the simultaneous analysis of a multitude of genetic markers used in genetic identification (oligonucleotide microarray techniques and next-generation sequencing) are also presented. Forensic and population databases containing information on human variability, routinely used for statistical analyses, are discussed. The final part of this review is focused on recent developments, which offer particularly promising tools for forensic applications (mRNA analysis, transcriptome variation in individuals/populations and genetic profiling of specific cells separated from mixtures).
Dieltjes, Patrick; Mieremet, René; Zuniga, Sofia; Kraaijenbrink, Thirsa; Pijpe, Jeroen; de Knijff, Peter
2011-07-01
Exploring technological limits is a common practice in forensic DNA research. Reliable genetic profiling based on only a few cells isolated from trace material retrieved from a crime scene is nowadays more and more the rule rather than the exception. On many crime scenes, cartridges, bullets, and casings (jointly abbreviated as CBCs) are regularly found, and even after firing, these potentially carry trace amounts of biological material. Since 2003, the Forensic Laboratory for DNA Research is routinely involved in the forensic investigation of CBCs in the Netherlands. Reliable DNA profiles were frequently obtained from CBCs and used to match suspects, victims, or other crime scene-related DNA traces. In this paper, we describe the sensitive method developed by us to extract DNA from CBCs. Using PCR-based genotyping of autosomal short tandem repeats, we were able to obtain reliable and reproducible DNA profiles in 163 out of 616 criminal cases (26.5%) and in 283 out of 4,085 individual CBC items (6.9%) during the period January 2003-December 2009. We discuss practical aspects of the method and the sometimes unexpected effects of using cell lysis buffer on the subsequent investigation of striation patterns on CBCs.
Forensic DNA Profiling and Database
Panneerchelvam, S.; Norazmi, M.N.
2003-01-01
The incredible power of DNA technology as an identification tool had brought a tremendous change in crimnal justice . DNA data base is an information resource for the forensic DNA typing community with details on commonly used short tandem repeat (STR) DNA markers. This article discusses the essential steps in compilation of COmbined DNA Index System (CODIS) on validated polymerase chain amplified STRs and their use in crime detection. PMID:23386793
2010-01-01
DNA analysis is frequently used to acquire information from biological material to aid enquiries associated with criminal offences, disaster victim identification and missing persons investigations. As the relevance and value of DNA profiling to forensic investigations has increased, so too has the desire to generate this information from smaller amounts of DNA. Trace DNA samples may be defined as any sample which falls below recommended thresholds at any stage of the analysis, from sample detection through to profile interpretation, and can not be defined by a precise picogram amount. Here we review aspects associated with the collection, DNA extraction, amplification, profiling and interpretation of trace DNA samples. Contamination and transfer issues are also briefly discussed within the context of trace DNA analysis. Whilst several methodological changes have facilitated profiling from trace samples in recent years it is also clear that many opportunities exist for further improvements. PMID:21122102
Walsh, Susan; Lindenbergh, Alexander; Zuniga, Sofia B; Sijen, Titia; de Knijff, Peter; Kayser, Manfred; Ballantyne, Kaye N
2011-11-01
The IrisPlex system consists of a highly sensitive multiplex genotyping assay together with a statistical prediction model, providing users with the ability to predict blue and brown human eye colour from DNA samples with over 90% precision. This 'DNA intelligence' system is expected to aid police investigations by providing phenotypic information on unknown individuals when conventional DNA profiling is not informative. Falling within the new area of forensic DNA phenotyping, this paper describes the developmental validation of the IrisPlex assay following the Scientific Working Group on DNA Analysis Methods (SWGDAM) guidelines for the application of DNA-based eye colour prediction to forensic casework. The IrisPlex assay produces complete SNP genotypes with only 31pg of DNA, approximately six human diploid cell equivalents, and is therefore more sensitive than commercial STR kits currently used in forensics. Species testing revealed human and primate specificity for a complete SNP profile. The assay is capable of producing accurate results from simulated casework samples such as blood, semen, saliva, hair, and trace DNA samples, including extremely low quantity samples. Due to its design, it can also produce full profiles with highly degraded samples often found in forensic casework. Concordance testing between three independent laboratories displayed reproducible results of consistent levels on varying types of simulated casework samples. With such high levels of sensitivity, specificity, consistency and reliability, this genotyping assay, as a core part of the IrisPlex system, operates in accordance with SWGDAM guidelines. Furthermore, as we demonstrated previously, the IrisPlex eye colour prediction system provides reliable results without the need for knowledge on the bio-geographic ancestry of the sample donor. Hence, the IrisPlex system, with its model-based prediction probability estimation of blue and brown human eye colour, represents a useful tool for immediate application in accredited forensic laboratories, to be used for forensic intelligence in tracing unknown individuals from crime scene samples. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Farash, Katherine; Hanson, Erin K; Ballantyne, Jack
2015-03-09
DNA profiles can be obtained from 'touch DNA' evidence, which comprises microscopic traces of human biological material. Current methods for the recovery of trace DNA employ cotton swabs or adhesive tape to sample an area of interest. However, such a 'blind-swabbing' approach will co-sample cellular material from the different individuals, even if the individuals' cells are located in geographically distinct locations on the item. Thus, some of the DNA mixtures encountered in touch DNA samples are artificially created by the swabbing itself. In some instances, a victim's DNA may be found in significant excess thus masking any potential perpetrator's DNA. In order to circumvent the challenges with standard recovery and analysis methods, we have developed a lower cost, 'smart analysis' method that results in enhanced genetic analysis of touch DNA evidence. We describe an optimized and efficient micromanipulation recovery strategy for the collection of bio-particles present in touch DNA samples, as well as an enhanced amplification strategy involving a one-step 5 µl microvolume lysis/STR amplification to permit the recovery of STR profiles from the bio-particle donor(s). The use of individual or few (i.e., "clumps") bioparticles results in the ability to obtain single source profiles. These procedures represent alternative enhanced techniques for the isolation and analysis of single bioparticles from forensic touch DNA evidence. While not necessary in every forensic investigation, the method could be highly beneficial for the recovery of a single source perpetrator DNA profile in cases involving physical assault (e.g., strangulation) that may not be possible using standard analysis techniques. Additionally, the strategies developed here offer an opportunity to obtain genetic information at the single cell level from a variety of other non-forensic trace biological material.
The Potential of Cosmetic Applicators as a Source of DNA for Forensic Analysis.
Adamowicz, Michael S; Labonte, Renáe D; Schienman, John E
2015-07-01
Personal products, such as toothbrushes, have been used as both known reference and evidentiary samples for forensic DNA analysis. This study examined the viability of a broad selection of cosmetic applicators for use as targets for human DNA extraction and short tandem repeat (STR) analysis using standard polymerase chain reaction (PCR) conditions. Applicator types included eyeliner smudgers, pencils and crayons, eye shadow sponges, mascara wands, concealer wands, face makeup sponges, pads and brushes, lipsticks and balms, and lip gloss wands. The quantity and quality of DNA extracted from each type of applicator were examined by assessing the number of loci successfully amplified and the peak balance of the heterozygous alleles in each full STR profile. While degraded DNA, stochastic amplification, and PCR inhibition were observed for some items, full STR profiles were developed for 14 of 76 applicators. The face makeup sponge applicators yielded the highest proportional number of full STR profiles (4/7). © 2015 American Academy of Forensic Sciences.
DNA typing in forensic medicine and in criminal investigations: a current survey.
Benecke, M
1997-05-01
Since 1985 DNA typing of biological material has become one of the most powerful tools for personal identification in forensic medicine and in criminal investigations [1-6]. Classical DNA "fingerprinting" is increasingly being replaced by polymerase chain reaction (PCR) based technology which detects very short polymorphic stretches of DNA [7-15]. DNA loci which forensic scientists study do not code for proteins, and they are spread over the whole genome [16, 17]. These loci are neutral, and few provide any information about individuals except for their identity. Minute amounts of biological material are sufficient for DNA typing. Many European countries are beginning to establish databases to store DNA profiles of crime scenes and known offenders. A brief overview is given of past and present DNA typing and the establishment of forensic DNA databases in Europe.
DNA typing in forensic medicine and in criminal investigations: a current survey
NASA Astrophysics Data System (ADS)
Benecke, Mark
Since 1985 DNA typing of biological material has become one of the most powerful tools for personal identification in forensic medicine and in criminal investigations [1-6]. Classical DNA "fingerprinting" is increasingly being replaced by polymerase chain reaction (PCR) based technology which detects very short polymorphic stretches of DNA [7-15]. DNA loci which forensic scientists study do not code for proteins, and they are spread over the whole genome [16, 17]. These loci are neutral, and few provide any information about individuals except for their identity. Minute amounts of biological material are sufficient for DNA typing. Many European countries are beginning to establish databases to store DNA profiles of crime scenes and known offenders. A brief overview is given of past and present DNA typing and the establishment of forensic DNA databases in Europe.
The effect of wild card designations and rare alleles in forensic DNA database searches.
Tvedebrink, Torben; Bright, Jo-Anne; Buckleton, John S; Curran, James M; Morling, Niels
2015-05-01
Forensic DNA databases are powerful tools used for the identification of persons of interest in criminal investigations. Typically, they consist of two parts: (1) a database containing DNA profiles of known individuals and (2) a database of DNA profiles associated with crime scenes. The risk of adventitious or chance matches between crimes and innocent people increases as the number of profiles within a database grows and more data is shared between various forensic DNA databases, e.g. from different jurisdictions. The DNA profiles obtained from crime scenes are often partial because crime samples may be compromised in quantity or quality. When an individual's profile cannot be resolved from a DNA mixture, ambiguity is introduced. A wild card, F, may be used in place of an allele that has dropped out or when an ambiguous profile is resolved from a DNA mixture. Variant alleles that do not correspond to any marker in the allelic ladder or appear above or below the extent of the allelic ladder range are assigned the allele designation R for rare allele. R alleles are position specific with respect to the observed/unambiguous allele. The F and R designations are made when the exact genotype has not been determined. The F and R designation are treated as wild cards for searching, which results in increased chance of adventitious matches. We investigated the probability of adventitious matches given these two types of wild cards. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
de Keijser, Jan W; Malsch, Marijke; Luining, Egge T; Weulen Kranenbarg, Marleen; Lenssen, Dominique J H M
2016-07-01
While DNA analysis is considered by many the gold standard in forensic science, there is ample room for variation in interpretation and reporting. This seems especially the case when working with (complex) mixed DNA profiles. Two consecutive studies on differential DNA reporting were conducted. In Study 1, we first examined type and magnitude of differences when forensic DNA experts across institutes and jurisdictions are handed an identical forensic case with mixed profiles. In Study 2, we explore the impact of the observed differential reporting on jurists' evaluation of the DNA evidence. 19 DNA expert reports from forensic institutes across Western jurisdictions were obtained. Differences between the reports were many and include extensiveness of the reports, explanations of technical issues, use of explanatory appendices, level of reporting, use of context information, and, most markedly, type and substantive content of the conclusions. In Study 2, a group of criminal law students judged a selection of these reports in a quasi experimental study design. Findings show that these differing reports have quite different evidentiary value for jurists, depending on which expert authored the report. It is argued that the impact of differential reporting on jurists' evaluation was so fundamental and substantive that it is seems reasonable to claim that in an actual court case it could make the difference between acquittal and conviction. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Authentication of forensic DNA samples.
Frumkin, Dan; Wasserstrom, Adam; Davidson, Ariane; Grafit, Arnon
2010-02-01
Over the past twenty years, DNA analysis has revolutionized forensic science, and has become a dominant tool in law enforcement. Today, DNA evidence is key to the conviction or exoneration of suspects of various types of crime, from theft to rape and murder. However, the disturbing possibility that DNA evidence can be faked has been overlooked. It turns out that standard molecular biology techniques such as PCR, molecular cloning, and recently developed whole genome amplification (WGA), enable anyone with basic equipment and know-how to produce practically unlimited amounts of in vitro synthesized (artificial) DNA with any desired genetic profile. This artificial DNA can then be applied to surfaces of objects or incorporated into genuine human tissues and planted in crime scenes. Here we show that the current forensic procedure fails to distinguish between such samples of blood, saliva, and touched surfaces with artificial DNA, and corresponding samples with in vivo generated (natural) DNA. Furthermore, genotyping of both artificial and natural samples with Profiler Plus((R)) yielded full profiles with no anomalies. In order to effectively deal with this problem, we developed an authentication assay, which distinguishes between natural and artificial DNA based on methylation analysis of a set of genomic loci: in natural DNA, some loci are methylated and others are unmethylated, while in artificial DNA all loci are unmethylated. The assay was tested on natural and artificial samples of blood, saliva, and touched surfaces, with complete success. Adopting an authentication assay for casework samples as part of the forensic procedure is necessary for maintaining the high credibility of DNA evidence in the judiciary system.
Assessment of the role of DNA repair in damaged forensic samples.
Ambers, Angie; Turnbough, Meredith; Benjamin, Robert; King, Jonathan; Budowle, Bruce
2014-11-01
Previous studies on DNA damage and repair have involved in vitro laboratory procedures that induce a single type of lesion in naked templates. Although repair of singular, sequestered types of DNA damage has shown some success, forensic and ancient specimens likely contain a number of different types of lesions. This study sought to (1) develop protocols to damage DNA in its native state, (2) generate a pool of candidate samples for repair that more likely emulate authentic forensic samples, and (3) assess the ability of the PreCR(TM) Repair Mix to repair the resultant lesions. Complexed, native DNA is more difficult to damage than naked DNA. Modified procedures included the use of higher concentrations and longer exposure times. Three types of samples, those that demonstrated damage based on short tandem repeat (STR) profile signals, were selected for repair experiments: environmentally damaged bloodstains, bleach-damaged whole blood, and human skeletal remains. Results showed trends of improved performance of STR profiling of bleach-damaged DNA. However, the repair assay did not improve DNA profiles from environmentally damaged bloodstains or bone, and in some cases resulted in lower RFU values for STR alleles. The extensive spectrum of DNA damage and myriad combinations of lesions that can be present in forensic samples appears to pose a challenge for the in vitro PreCR(TM) assay. The data suggest that the use of PreCR in casework should be considered with caution due to the assay's varied results.
2005-01-01
Précis The rapid implementation and continuing expansion of forensic DNA databases around the world has been supported by claims about their effectiveness in criminal investigations and challenged by assertions of the resulting intrusiveness into individual privacy. These two competing perspectives provide the basis for ongoing considerations about the categories of persons who should be subject to nonconsensual DNA sampling and profile retention as well as the uses to which such profiles should be put. This paper uses the example of the current arrangements for forensic DNA databasing in England & Wales to discuss the ways in which the legislative and operational basis for police DNA databasing is reliant upon continuous deliberations over these and other matters by a range of key stakeholders. We also assess the effects of the recent innovative use of DNA databasing for ‘familial searching’ in this jurisdiction in order to show how agreed understandings about the appropriate uses of DNA can become unsettled and reformulated even where their investigative effectiveness is uncontested. We conclude by making some observations about the future of what is recognised to be the largest forensic DNA database in the world. PMID:16240734
Jacewicz, R; Lewandowski, K; Rupa-Matysek, J; Jędrzejczyk, M; Berent, J
The study documents the risk that comes with DNA analysis of materials derived from patients after allogeneic hematopoietic stem cell transplantation (allo-HSCT) in forensic genetics. DNA chimerism was studied in 30 patients after allo-HSCT, based on techniques applied in contemporary forensic genetics, i.e. real-time PCR and multiplex PCR-STR with the use of autosomal DNA as well as Y-DNA markers. The results revealed that the DNA profile of the recipient's blood was identical with the donor's in the majority of cases. Therefore, blood analysis can lead to false conclusions in personal identification as well as kinship analysis. An investigation of buccal swabs revealed a mixture of DNA in the majority of recipients. Consequently, personal identification on the basis of stain analysis of the same origin may be impossible. The safest (but not ideal) material turned out to be the hair root. Its analysis based on autosomal DNA revealed 100% of the recipient's profile. However, an analysis based on Y-chromosome markers performed in female allo-HSCT recipients with male donors demonstrated the presence of donor DNA in hair cells - similarly to the blood and buccal swabs. In the light of potential risks arising from DNA profiling of biological materials derived from persons after allotransplantation in judicial aspects, certain procedures were proposed to eliminate such dangers. The basic procedures include abandoning the approach based exclusively on blood collection, both for kinship analysis and personal identification; asking persons who are to be tested about their history of allo-HSCT before sample collection and profile entry in the DNA database, and verification of DNA profiling based on hair follicles in uncertain cases.
Dayton, Melody; Koskinen, Mikko T; Tom, Bradley K; Mattila, Anna-Maria; Johnston, Eric; Halverson, Joy; Fantin, Dennis; DeNise, Sue; Budowle, Bruce; Smith, David Glenn; Kanthaswamy, Sree
2009-01-01
Aim To develop a reagent kit that enables multiplex polymerase chain reaction (PCR) amplification of 18 short tandem repeats (STR) and the canine sex-determining Zinc Finger marker. Methods Validation studies to determine the robustness and reliability in forensic DNA typing of this multiplex assay included sensitivity testing, reproducibility studies, intra- and inter-locus color balance studies, annealing temperature and cycle number studies, peak height ratio determination, characterization of artifacts such as stutter percentages and dye blobs, mixture analyses, species-specificity, case type samples analyses and population studies. Results The kit robustly amplified domesticated dog samples and consistently generated full 19-locus profiles from as little as 125 pg of dog DNA. In addition, wolf DNA samples could be analyzed with the kit. Conclusion The kit, which produces robust, reliable, and reproducible results, will be made available for the forensic research community after modifications based on this study’s evaluation to comply with the quality standards expected for forensic casework. PMID:19480022
The future of forensic DNA analysis
Butler, John M.
2015-01-01
The author's thoughts and opinions on where the field of forensic DNA testing is headed for the next decade are provided in the context of where the field has come over the past 30 years. Similar to the Olympic motto of ‘faster, higher, stronger’, forensic DNA protocols can be expected to become more rapid and sensitive and provide stronger investigative potential. New short tandem repeat (STR) loci have expanded the core set of genetic markers used for human identification in Europe and the USA. Rapid DNA testing is on the verge of enabling new applications. Next-generation sequencing has the potential to provide greater depth of coverage for information on STR alleles. Familial DNA searching has expanded capabilities of DNA databases in parts of the world where it is allowed. Challenges and opportunities that will impact the future of forensic DNA are explored including the need for education and training to improve interpretation of complex DNA profiles. PMID:26101278
Whose DNA is this? How relevant a question? (a note for forensic scientists).
Taroni, Franco; Biedermann, Alex; Vuille, Joëlle; Morling, Niels
2013-07-01
This communication seeks to draw the attention of researchers and practitioners dealing with forensic DNA profiling analyses to the following question: is a scientist's report, offering support to a hypothesis according to which a particular individual is the source of DNA detected during the analysis of a stain, relevant from the point of view of a Court of Justice? This question relates to skeptical views previously voiced by commentators mainly in the judicial area, but is avoided by a large majority of forensic scientists. Notwithstanding, the pivotal role of this question has recently been evoked during the international conference "The hidden side of DNA profiles. Artifacts, errors and uncertain evidence" held in Rome (April 27th to 28th, 2012). Indeed, despite the fact that this conference brought together some of the world's leading forensic DNA specialists, it appeared clearly that a huge gap still exists between questions lawyers are actually interested in, and the answers that scientists deliver to Courts in written reports or during oral testimony. Participants in the justice system, namely lawyers and jurors on the one hand and forensic geneticists on the other, unfortunately talk considerably different languages. It thus is fundamental to address this issue of communication about results of forensic DNA analyses, and open a dialogue with practicing non-scientists at large who need to make meaningful use of scientific results to approach and help solve judicial cases. This paper intends to emphasize the actuality of this topic and suggest beneficial ways ahead towards a more reasoned use of forensic DNA in criminal proceedings. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Identification and persistence of Pinus pollen DNA on cotton fabrics: A forensic application.
Schield, Cassandra; Campelli, Cassandra; Sycalik, Jennifer; Randle, Christopher; Hughes-Stamm, Sheree; Gangitano, David
2016-01-01
Advances in plant genomics have had an impact on the field of forensic botany. However, the use of pollen DNA profiling in forensic investigations has yet to be applied. Five volunteers wore a jacket with Pinus echinata pollen-containing cotton swatches for a 14-day period. Pollen decay was evaluated at days 0, 3, 6, 9 and 14 by microscopy. Pollen grains were then transferred to slides using a portable forensic vacuum handle. Ten single grains per swatch were isolated for DNA analysis. DNA was extracted using a high throughput extraction method. A nine-locus short tandem repeat (STR) multiplex system, including previously published primers from Pinus taeda, was developed. DNA was amplified by PCR using fluorescent dyes and analyzed by capillary electrophoresis. Pollen counts from cotton swatches in a 14-day period exhibited an exponential decay from 100% to 17%. The success rate of PCR amplification was 81.2%. Complete and partial STR profiles were generated from 250 pollen grains analyzed (44% and 37%, respectively). Due to the limited amount of DNA, drop-in events were observed (1.87%). However, the rate of contamination with pollen from other pine individuals originating from environmental sources was 4.4%. In conclusion, this study has shown that pollen can be a stable source of forensic DNA evidence, as a proof-of-principle, and that may persist on cotton clothing for at least 14 days of wear. This method can be applied in forensic cases where pollen grains larger than 10 μm (e.g., from herbs or trees) may be transferred to clothing (worn by suspect or victim) by primary contact. Copyright © 2015 The Chartered Society of Forensic Sciences. Published by Elsevier Ireland Ltd. All rights reserved.
AQME: A forensic mitochondrial DNA analysis tool for next-generation sequencing data.
Sturk-Andreaggi, Kimberly; Peck, Michelle A; Boysen, Cecilie; Dekker, Patrick; McMahon, Timothy P; Marshall, Charla K
2017-11-01
The feasibility of generating mitochondrial DNA (mtDNA) data has expanded considerably with the advent of next-generation sequencing (NGS), specifically in the generation of entire mtDNA genome (mitogenome) sequences. However, the analysis of these data has emerged as the greatest challenge to implementation in forensics. To address this need, a custom toolkit for use in the CLC Genomics Workbench (QIAGEN, Hilden, Germany) was developed through a collaborative effort between the Armed Forces Medical Examiner System - Armed Forces DNA Identification Laboratory (AFMES-AFDIL) and QIAGEN Bioinformatics. The AFDIL-QIAGEN mtDNA Expert, or AQME, generates an editable mtDNA profile that employs forensic conventions and includes the interpretation range required for mtDNA data reporting. AQME also integrates an mtDNA haplogroup estimate into the analysis workflow, which provides the analyst with phylogenetic nomenclature guidance and a profile quality check without the use of an external tool. Supplemental AQME outputs such as nucleotide-per-position metrics, configurable export files, and an audit trail are produced to assist the analyst during review. AQME is applied to standard CLC outputs and thus can be incorporated into any mtDNA bioinformatics pipeline within CLC regardless of sample type, library preparation or NGS platform. An evaluation of AQME was performed to demonstrate its functionality and reliability for the analysis of mitogenome NGS data. The study analyzed Illumina mitogenome data from 21 samples (including associated controls) of varying quality and sample preparations with the AQME toolkit. A total of 211 tool edits were automatically applied to 130 of the 698 total variants reported in an effort to adhere to forensic nomenclature. Although additional manual edits were required for three samples, supplemental tools such as mtDNA haplogroup estimation assisted in identifying and guiding these necessary modifications to the AQME-generated profile. Along with profile generation, AQME reported accurate haplogroups for 18 of the 19 samples analyzed. The single errant haplogroup assignment, although phylogenetically close, identified a bug that only affects partial mitogenome data. Future adjustments to AQME's haplogrouping tool will address this bug as well as enhance the overall scoring strategy to better refine and automate haplogroup assignments. As NGS enables broader use of the mtDNA locus in forensics, the availability of AQME and other forensic-focused mtDNA analysis tools will ease the transition and further support mitogenome analysis within routine casework. Toward this end, the AFMES-AFDIL has utilized the AQME toolbox in conjunction with the CLC Genomics Workbench to successfully validate and implement two NGS mitogenome methods. Copyright © 2017 Elsevier B.V. All rights reserved.
The collation of forensic DNA case data into a multi-dimensional intelligence database.
Walsh, S J; Moss, D S; Kliem, C; Vintiner, G M
2002-01-01
The primary aim of any DNA Database is to link individuals to unsolved offenses and unsolved offenses to each other via DNA profiling. This aim has been successfully realised during the operation of the New Zealand (NZ) DNA Databank over the past five years. The DNA Intelligence Project (DIP), a collaborative project involving NZ forensic and law enforcement agencies, interrogated the forensic case data held on the NZ DNA databank and collated it into a functional intelligence database. This database has been used to identify significant trends which direct Police and forensic personnel towards the most appropriate use of DNA technology. Intelligence is being provided in areas such as the level of usage of DNA techniques in criminal investigation, the relative success of crime scene samples and the geographical distribution of crimes. The DIP has broadened the dimensions of the information offered through the NZ DNA Databank and has furthered the understanding and investigative capability of both Police and forensic scientists. The outcomes of this research fit soundly with the current policies of 'intelligence led policing', which are being adopted by Police jurisdictions locally and overseas.
Oliveira, T C; Santos, A B R; Rabelo, K C N; Souza, C A; Santos, S M; Crovella, S
2016-11-03
The use of insects to answer questions in criminal investigations, as well as a combination of forensic genetic techniques to obtain human DNA from the organisms, especially necrophagous dipterians, have gained ground in recent decades among researchers and professionals in this area. The objective of our study was to evaluate and compare two methods of human DNA extraction, commonly used for forensic samples, to obtain human autosomal DNA and X chromosome short tandem repeat profiles from the digestive tract of Chrysomya albiceps (Diptera: Calliphoridae) larvae. Immature specimens were collected from corpses at the Institute of Forensic Medicine of Pernambuco and raised in bovine ground meat to allow stabilization of the colony. Groups of larvae in the third instar were provided with bovine ground meat plus human blood for 48 h, dissected, and then subjected to DNA extraction. DNA was extracted using two methods: a DNA IQ™ kit and a phenol-chloroform method. Genomic DNA was amplified using AmpFℓSTR ® Identifiler ® Plus PCR and Argus-X-12 ® kits, and samples were sequenced to determine if the two extraction techniques generated reliable profiles that were compatible with a reference sample. The existence of comparable profiles from both techniques demonstrates the usefulness of dipteran larvae for obtaining human DNA from corpses, which can be further used to correlate genetic profiles in a crime scene when other traces are not available. However, several variables still require revision; thus, the technique should be further investigated for its validity, security, and, in particular, its reproducibility.
Yoo, Seong Yeon; Cho, Nam Soo; Park, Myung Jin; Seong, Ki Min; Hwang, Jung Ho; Song, Seok Bean; Han, Myun Soo; Lee, Won Tae; Chung, Ki Wha
2011-01-01
Genotyping of highly polymorphic short tandem repeat (STR) markers is widely used for the genetic identification of individuals in forensic DNA analyses and in paternity disputes. The National DNA Profile Databank recently established by the DNA Identification Act in Korea contains the computerized STR DNA profiles of individuals convicted of crimes. For the establishment of a large autosomal STR loci population database, 1805 samples were obtained at random from Korean individuals and 15 autosomal STR markers were analyzed using the AmpFlSTR Identifiler PCR Amplification kit. For the 15 autosomal STR markers, no deviations from the Hardy-Weinberg equilibrium were observed. The most informative locus in our data set was the D2S1338 with a discrimination power of 0.9699. The combined matching probability was 1.521 × 10-17. This large STR profile dataset including atypical alleles will be important for the establishment of the Korean DNA database and for forensic applications. PMID:21597912
Yoo, Seong Yeon; Cho, Nam Soo; Park, Myung Jin; Seong, Ki Min; Hwang, Jung Ho; Song, Seok Bean; Han, Myun Soo; Lee, Won Tae; Chung, Ki Wha
2011-07-01
Genotyping of highly polymorphic short tandem repeat (STR) markers is widely used for the genetic identification of individuals in forensic DNA analyses and in paternity disputes. The National DNA Profile Databank recently established by the DNA Identification Act in Korea contains the computerized STR DNA profiles of individuals convicted of crimes. For the establishment of a large autosomal STR loci population database, 1805 samples were obtained at random from Korean individuals and 15 autosomal STR markers were analyzed using the AmpFlSTR Identifiler PCR Amplification kit. For the 15 autosomal STR markers, no deviations from the Hardy-Weinberg equilibrium were observed. The most informative locus in our data set was the D2S1338 with a discrimination power of 0.9699. The combined matching probability was 1.521 × 10(-17). This large STR profile dataset including atypical alleles will be important for the establishment of the Korean DNA database and for forensic applications.
SE33 locus as a reliable genetic marker for forensic DNA analysis systems
Bhinder, Munir Ahmad; Zahoor, Muhammad Yasir; Sadia, Haleema; Qasim, Muhammad; Perveen, Rukhsana; Anjum, Ghulam Murtaza; Iqbal, Muhammad; Ullah, Najeeb; Shehzad, Wasim; Tariq, Muhammad; Waryah, Ali Muhammad
2018-06-14
Background/aim: Genetic variation, an authentic tool of individual discrimination, is being used for forensic investigations worldwide. A missing result for even one out of 13-17 markers leads to an inconclusive report. Additional reliable markers are required to compensate such deficiencies. The SE33 locus has high genetic variability in different populations and is being used in forensic investigation systems in some countries. The purpose of the study was to assess the viability of use of the SE33 locus as a supportive marker for forensic DNA profiling. Materials and methods: Amplification of the SE33 locus was performed using the PowerPlex ES Monoplex System SE33 (Promega). After genotyping 204 Pakistani individuals, different genetic and forensic parameters for the SE33 locus were studied. Results: Genotyping of the SE33 locus revealed a total of 43 alleles including 3 novel alleles. Significant values of different forensic and genetic parameters including power of discrimination, power of exclusion, and polymorphism information content were observed. Conclusions: Addition of the SE33 locus in forensic DNA profiling may help to produce conclusive reports where results are inconclusive due to degraded evidence samples. The SE33 locus can confidently be used for Pakistani and neighboring populations having common ancestors from Iran to Central Asia, the Middle East, India and Turkey.
The validation of forensic DNA extraction systems to utilize soil contaminated biological evidence.
Kasu, Mohaimin; Shires, Karen
2015-07-01
The production of full DNA profiles from biological evidence found in soil has a high failure rate due largely to the inhibitory substance humic acid (HA). Abundant in various natural soils, HA co-extracts with DNA during extraction and inhibits DNA profiling by binding to the molecular components of the genotyping assay. To successfully utilize traces of soil contaminated evidence, such as that found at many murder and rape crime scenes in South Africa, a reliable HA removal extraction system would often be selected based on previous validation studies. However, for many standard forensic DNA extraction systems, peer-reviewed publications detailing the efficacy on soil evidence is either lacking or is incomplete. Consequently, these sample types are often not collected or fail to yield suitable DNA material due to the use of unsuitable methodology. The aim of this study was to validate the common forensic DNA collection and extraction systems used in South Africa, namely DNA IQ, FTA elute and Nucleosave for processing blood and saliva contaminated with HA. A forensic appropriate volume of biological evidence was spiked with HA (0, 0.5, 1.5 and 2.5 mg/ml) and processed through each extraction protocol for the evaluation of HA removal using QPCR and STR-genotyping. The DNA IQ magnetic bead system effectively removed HA from highly contaminated blood and saliva, and generated consistently acceptable STR profiles from both artificially spiked samples and crude soil samples. This system is highly recommended for use on soil-contaminated evidence over the cellulose card-based systems currently being preferentially used for DNA sample collection. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Farash, Katherine; Hanson, Erin K.; Ballantyne, Jack
2015-01-01
DNA profiles can be obtained from ‘touch DNA’ evidence, which comprises microscopic traces of human biological material. Current methods for the recovery of trace DNA employ cotton swabs or adhesive tape to sample an area of interest. However, such a ‘blind-swabbing’ approach will co-sample cellular material from the different individuals, even if the individuals’ cells are located in geographically distinct locations on the item. Thus, some of the DNA mixtures encountered in touch DNA samples are artificially created by the swabbing itself. In some instances, a victim’s DNA may be found in significant excess thus masking any potential perpetrator’s DNA. In order to circumvent the challenges with standard recovery and analysis methods, we have developed a lower cost, ‘smart analysis’ method that results in enhanced genetic analysis of touch DNA evidence. We describe an optimized and efficient micromanipulation recovery strategy for the collection of bio-particles present in touch DNA samples, as well as an enhanced amplification strategy involving a one-step 5 µl microvolume lysis/STR amplification to permit the recovery of STR profiles from the bio-particle donor(s). The use of individual or few (i.e., “clumps”) bioparticles results in the ability to obtain single source profiles. These procedures represent alternative enhanced techniques for the isolation and analysis of single bioparticles from forensic touch DNA evidence. While not necessary in every forensic investigation, the method could be highly beneficial for the recovery of a single source perpetrator DNA profile in cases involving physical assault (e.g., strangulation) that may not be possible using standard analysis techniques. Additionally, the strategies developed here offer an opportunity to obtain genetic information at the single cell level from a variety of other non-forensic trace biological material. PMID:25867046
Chaitanya, Lakshmi; Breslin, Krystal; Zuñiga, Sofia; Wirken, Laura; Pośpiech, Ewelina; Kukla-Bartoszek, Magdalena; Sijen, Titia; Knijff, Peter de; Liu, Fan; Branicki, Wojciech; Kayser, Manfred; Walsh, Susan
2018-07-01
Forensic DNA Phenotyping (FDP), i.e. the prediction of human externally visible traits from DNA, has become a fast growing subfield within forensic genetics due to the intelligence information it can provide from DNA traces. FDP outcomes can help focus police investigations in search of unknown perpetrators, who are generally unidentifiable with standard DNA profiling. Therefore, we previously developed and forensically validated the IrisPlex DNA test system for eye colour prediction and the HIrisPlex system for combined eye and hair colour prediction from DNA traces. Here we introduce and forensically validate the HIrisPlex-S DNA test system (S for skin) for the simultaneous prediction of eye, hair, and skin colour from trace DNA. This FDP system consists of two SNaPshot-based multiplex assays targeting a total of 41 SNPs via a novel multiplex assay for 17 skin colour predictive SNPs and the previous HIrisPlex assay for 24 eye and hair colour predictive SNPs, 19 of which also contribute to skin colour prediction. The HIrisPlex-S system further comprises three statistical prediction models, the previously developed IrisPlex model for eye colour prediction based on 6 SNPs, the previous HIrisPlex model for hair colour prediction based on 22 SNPs, and the recently introduced HIrisPlex-S model for skin colour prediction based on 36 SNPs. In the forensic developmental validation testing, the novel 17-plex assay performed in full agreement with the Scientific Working Group on DNA Analysis Methods (SWGDAM) guidelines, as previously shown for the 24-plex assay. Sensitivity testing of the 17-plex assay revealed complete SNP profiles from as little as 63 pg of input DNA, equalling the previously demonstrated sensitivity threshold of the 24-plex HIrisPlex assay. Testing of simulated forensic casework samples such as blood, semen, saliva stains, of inhibited DNA samples, of low quantity touch (trace) DNA samples, and of artificially degraded DNA samples as well as concordance testing, demonstrated the robustness, efficiency, and forensic suitability of the new 17-plex assay, as previously shown for the 24-plex assay. Finally, we provide an update to the publically available HIrisPlex website https://hirisplex.erasmusmc.nl/, now allowing the estimation of individual probabilities for 3 eye, 4 hair, and 5 skin colour categories from HIrisPlex-S input genotypes. The HIrisPlex-S DNA test represents the first forensically validated tool for skin colour prediction, and reflects the first forensically validated tool for simultaneous eye, hair and skin colour prediction from DNA. Copyright © 2018 Elsevier B.V. All rights reserved.
Evaluation of massively parallel sequencing for forensic DNA methylation profiling.
Richards, Rebecca; Patel, Jayshree; Stevenson, Kate; Harbison, SallyAnn
2018-05-11
Epigenetics is an emerging area of interest in forensic science. DNA methylation, a type of epigenetic modification, can be applied to chronological age estimation, identical twin differentiation and body fluid identification. However, there is not yet an agreed, established methodology for targeted detection and analysis of DNA methylation markers in forensic research. Recently a massively parallel sequencing-based approach has been suggested. The use of massively parallel sequencing is well established in clinical epigenetics and is emerging as a new technology in the forensic field. This review investigates the potential benefits, limitations and considerations of this technique for the analysis of DNA methylation in a forensic context. The importance of a robust protocol, regardless of the methodology used, that minimises potential sources of bias is highlighted. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Trace DNA Sampling Success from Evidence Items Commonly Encountered in Forensic Casework.
Dziak, Renata; Peneder, Amy; Buetter, Alicia; Hageman, Cecilia
2018-05-01
Trace DNA analysis is a significant part of a forensic laboratory's workload. Knowing optimal sampling strategies and item success rates for particular item types can assist in evidence selection and examination processes and shorten turnaround times. In this study, forensic short tandem repeat (STR) casework results were reviewed to determine how often STR profiles suitable for comparison were obtained from "handler" and "wearer" areas of 764 items commonly submitted for examination. One hundred and fifty-five (155) items obtained from volunteers were also sampled. Items were analyzed for best sampling location and strategy. For casework items, headwear and gloves provided the highest success rates. Experimentally, eyeglasses and earphones, T-shirts, fabric gloves and watches provided the highest success rates. Eyeglasses and latex gloves provided optimal results if the entire surfaces were swabbed. In general, at least 10%, and up to 88% of all trace DNA analyses resulted in suitable STR profiles for comparison. © 2017 American Academy of Forensic Sciences.
Elimination of bioweapons agents from forensic samples during extraction of human DNA.
Timbers, Jason; Wilkinson, Della; Hause, Christine C; Smith, Myron L; Zaidi, Mohsin A; Laframboise, Denis; Wright, Kathryn E
2014-11-01
Collection of DNA for genetic profiling is a powerful means for the identification of individuals responsible for crimes and terrorist acts. Biologic hazards, such as bacteria, endospores, toxins, and viruses, could contaminate sites of terrorist activities and thus could be present in samples collected for profiling. The fate of these hazards during DNA isolation has not been thoroughly examined. Our goals were to determine whether the DNA extraction process used by the Royal Canadian Mounted Police eliminates or neutralizes these agents and if not, to establish methods that render samples safe without compromising the human DNA. Our results show that bacteria, viruses, and toxins were reduced to undetectable levels during DNA extraction, but endospores remained viable. Filtration of samples after DNA isolation eliminated viable spores from the samples but left DNA intact. We also demonstrated that contamination of samples with some bacteria, endospores, and toxins for longer than 1 h compromised the ability to complete genetic profiling. © 2014 American Academy of Forensic Sciences.
Nagy, M; Otremba, P; Krüger, C; Bergner-Greiner, S; Anders, P; Henske, B; Prinz, M; Roewer, L
2005-08-11
Automated procedures for forensic DNA analyses are essential not only for large-throughput sample preparation, but are also needed to avoid errors during routine sample preparation. The most critical stage in PCR-based forensic analysis is DNA isolation, which should yield as much highly purified DNA as possible. The extraction method used consists of pre-treatment of stains and samples, cell lysis using chaotropic reagents, binding of the DNA to silica-coated magnetic particles, followed by elution of the DNA. Our work focuses mainly on sample preparation, obtaining the maximum possible amount of biological material from forensic samples, and the following cell lysis, to create a simple standardized lysis protocol suitable for nearly all forensic material. After optimization and validation, the M-48 BioRobot((R)) workstation has been used for more than 20,000 routine lab samples. There has been no evidence of cross contamination. Resulting DNA from as small as three nuclear cells yield reliable complete STR amplification profiles. The DNA remains stable after 2 years of storage.
Comparative evaluation of different extraction and quantification methods for forensic RNA analysis.
Grabmüller, Melanie; Madea, Burkhard; Courts, Cornelius
2015-05-01
Since about 2005, there is increasing interest in forensic RNA analysis whose versatility may very favorably complement traditional DNA profiling in forensic casework. There is, however, no method available specifically dedicated for extraction of RNA from forensically relevant sample material. In this study we compared five commercially available and commonly used RNA extraction kits and methods (mirVana™ miRNA Isolation Kit Ambion; Trizol® Reagent, Invitrogen; NucleoSpin® miRNA Kit Macherey-Nagel; AllPrep DNA/RNA Mini Kit and RNeasy® Mini Kit both Qiagen) to assess their relative effectiveness of yielding RNA of good quality and their compatibility with co-extraction of DNA amenable to STR profiling. We set up samples of small amounts of dried blood, liquid saliva, semen and buccal mucosa that were aged for different time intervals for co-extraction of RNA and DNA. RNA quality was assessed by determination of 'RNA integrity number' (RIN) and quantitative PCR based expression analysis. DNA quality was assessed via monitoring STR typing success rates. By comparison, the different methods exhibited considerable differences between RNA and DNA yields, RNA quality values and expression levels, and STR profiling success, with the AllPrep DNA/RNA Mini Kit and the NucleoSpin® miRNA Kit excelling at DNA co-extraction and RNA results, respectively. Overall, there was no 'best' method to satisfy all demands of comprehensible co-analysis of RNA and DNA and it appears that each method has specific merits and flaws. We recommend to cautiously choose from available methods and align its characteristics with the needs of the experimental setting at hand. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
The future of forensic DNA analysis.
Butler, John M
2015-08-05
The author's thoughts and opinions on where the field of forensic DNA testing is headed for the next decade are provided in the context of where the field has come over the past 30 years. Similar to the Olympic motto of 'faster, higher, stronger', forensic DNA protocols can be expected to become more rapid and sensitive and provide stronger investigative potential. New short tandem repeat (STR) loci have expanded the core set of genetic markers used for human identification in Europe and the USA. Rapid DNA testing is on the verge of enabling new applications. Next-generation sequencing has the potential to provide greater depth of coverage for information on STR alleles. Familial DNA searching has expanded capabilities of DNA databases in parts of the world where it is allowed. Challenges and opportunities that will impact the future of forensic DNA are explored including the need for education and training to improve interpretation of complex DNA profiles. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Tridico, Silvana R; Murray, Dáithí C; Addison, Jayne; Kirkbride, Kenneth P; Bunce, Michael
2014-01-01
Mammalian hairs are one of the most ubiquitous types of trace evidence collected in the course of forensic investigations. However, hairs that are naturally shed or that lack roots are problematic substrates for DNA profiling; these hair types often contain insufficient nuclear DNA to yield short tandem repeat (STR) profiles. Whilst there have been a number of initial investigations evaluating the value of metagenomics analyses for forensic applications (e.g. examination of computer keyboards), there have been no metagenomic evaluations of human hairs-a substrate commonly encountered during forensic practice. This present study attempts to address this forensic capability gap, by conducting a qualitative assessment into the applicability of metagenomic analyses of human scalp and pubic hair. Forty-two DNA extracts obtained from human scalp and pubic hairs generated a total of 79,766 reads, yielding 39,814 reads post control and abundance filtering. The results revealed the presence of unique combinations of microbial taxa that can enable discrimination between individuals and signature taxa indigenous to female pubic hairs. Microbial data from a single co-habiting couple added an extra dimension to the study by suggesting that metagenomic analyses might be of evidentiary value in sexual assault cases when other associative evidence is not present. Of all the data generated in this study, the next-generation sequencing (NGS) data generated from pubic hair held the most potential for forensic applications. Metagenomic analyses of human hairs may provide independent data to augment other forensic results and possibly provide association between victims of sexual assault and offender when other associative evidence is absent. Based on results garnered in the present study, we believe that with further development, bacterial profiling of hair will become a valuable addition to the forensic toolkit.
Zhao, Yuancun; Chen, Xiaogang; Yang, Yiwen; Zhao, Xiaohong; Zhang, Shu; Gao, Zehua; Fang, Ting; Wang, Yufang; Zhang, Ji
2018-05-07
Diatom examination has always been used for the diagnosis of drowning in forensic practice. However, traditional examination of the microscopic features of diatom frustules is time-consuming and requires taxonomic expertise. In this study, we demonstrate a potential DNA-based method of inferring suspected drowning site using pyrosequencing (PSQ) of the V7 region of 18S ribosome DNA (18S rDNA) as a diatom DNA barcode. By employing a sparse representation-based AdvISER-M-PYRO algorithm, the original PSQ signals of diatom DNA mixtures were deciphered to determine the corresponding taxa of the composite diatoms. Additionally, we evaluated the possibility of correlating water samples to collection sites by analyzing the PSQ signal profiles of diatom mixtures contained in the water samples via multidimensional scaling. The results suggest that diatomaceous PSQ profile analysis could be used as a cost-effective method to deduce the geographical origin of an environmental bio-sample.
Internal validation of the RapidHIT® ID system.
Wiley, Rachel; Sage, Kelly; LaRue, Bobby; Budowle, Bruce
2017-11-01
Traditionally, forensic DNA analysis has required highly skilled forensic geneticists in a dedicated laboratory to generate short tandem repeat (STR) profiles. STR profiles are routinely used either to associate or exclude potential donors of forensic biological evidence. The typing of forensic reference samples has become more demanding, especially with the requirement in some jurisdictions to DNA profile arrestees. The Rapid DNA (RDNA) platform, the RapidHIT ® ID (IntegenX ® , Pleasanton, CA), is a fully automated system capable of processing reference samples in approximately 90min with minimal human intervention. Thus, the RapidHIT ID instrument can be deployed to non-laboratory environments (e.g., booking stations) and run by trained atypical personnel such as law enforcement. In order to implement the RapidHIT ID platform, validation studies are needed to define the performance and limitations of the system. Internal validation studies were undertaken with four early-production RapidHIT ID units. Reliable and concordant STR profiles were obtained from reference buccal swabs. Throughout the study, no contamination was observed. The overall first-pass success rate with an "expert-like system" was 72%, which is comparable to another current RDNA platform commercially available. The system's second-pass success rate (involving manual interpretation on first-pass inconclusive results) increased to 90%. Inhibitors (i.e., coffee, smoking tobacco, and chewing tobacco) did not appear to affect typing by the instrument system; however, substrate (i.e., swab type) did impact typing success. Additionally, one desirable feature not available with other Rapid systems is that in the event of a system failed run, a swab can be recovered and subsequently re-analyzed in a new sample cartridge. Therefore, rarely should additional sampling or swab consumption be necessary. The RapidHIT ID system is a robust and reliable tool capable of generating complete STR profiles within the forensic DNA typing laboratory or with proper training in decentralized environments by non-laboratory personnel. Copyright © 2017 Elsevier B.V. All rights reserved.
Benschop, Corina C G; Connolly, Edward; Ansell, Ricky; Kokshoorn, Bas
2017-01-01
The interpretation of complex DNA profiles may differ between laboratories and reporting officers, which can lead to discrepancies in the final reports. In this study, we assessed the intra and inter laboratory variation in DNA mixture interpretation for three European ISO17025-accredited laboratories. To this aim, 26 reporting officers analyzed five sets of DNA profiles. Three main aspects were considered: 1) whether the mixed DNA profiles met the criteria for comparison to a reference profile, 2) the actual result of the comparison between references and DNA profiling data and 3) whether the weight of the DNA evidence could be assessed. Similarity in answers depended mostly on the complexity of the tasks. This study showed less variation within laboratories than between laboratories which could be the result of differences between internal laboratory guidelines and methods and tools available. Results show the profile types for which the three laboratories report differently, which informs indirectly on the complexity threshold the laboratories employ. Largest differences between laboratories were caused by the methods available to assess the weight of the DNA evidence. This exercise aids in training forensic scientists, refining laboratory guidelines and explaining differences between laboratories in court. Undertaking more collaborative exercises in future may stimulate dialog and consensus regarding interpretation. For training purposes, DNA profiles of the mixed stains and questioned references are made available. Copyright © 2016 The Chartered Society of Forensic Sciences. Published by Elsevier Ireland Ltd. All rights reserved.
Soler, Salvador; Borràs, Dionís; Vilanova, Santiago; Sifres, Alicia; Andújar, Isabel; Figàs, Maria R; Llosa, Ernesto R; Prohens, Jaime
2016-03-01
Legal limits on the psychoactive tetrahydrocannabinol (THC) content in Cannabis sativa plants have complicated genetic and forensic studies in this species. However, Cannabis seeds present very low THC levels. We developed a method for embryo extraction from seeds and an improved protocol for DNA extraction and tested this method in four hemp and six marijuana varieties. This embryo extraction method enabled the recovery of diploid embryos from individual seeds. An improved DNA extraction protocol (CTAB3) was used to obtain DNA from individual embryos at a concentration and quality similar to DNA extracted from leaves. DNA extracted from embryos was used for SSR molecular characterization in individuals from the 10 varieties. A unique molecular profile for each individual was obtained, and a clear differentiation between hemp and marijuana varieties was observed. The combined embryo extraction-DNA extraction methodology and the new highly polymorphic SSR markers facilitate genetic and forensic studies in Cannabis. © 2015 American Academy of Forensic Sciences.
Forensic identification in teeth with caries.
Alia-García, Esther; Parra-Pecharromán, David; Sánchez-Díaz, Ana; Mendez, Susy; Royuela, Ana; Gil-Alberdi, Laura; López-Palafox, Juan; Del Campo, Rosa
2015-12-01
Human teeth are biological structures that resist extreme conditions thus becoming a useful source of DNA for human forensic identification purposes. When it is possible, forensic prefer only non-damaged teeth whereas those with cavities are usually rejected to avoid both external and internal bacterial contamination. Cavities are one of the most prevalent dental pathology and its incidence increases with ageing. The aim of this study was to validate the use of teeth with cavities for forensic identification. A total of 120 individual teeth from unrelated patients (60 healthy and 60 with cavities, respectively) extracted by a dentist as part of the normal process of treatment, were submitted for further analysis. Dental pulp was obtained after tooth fragmentation, complete DNA was extracted and the corresponding human identification profile was obtained by the AmpFlSTR® NGM SElect™ kit. Cariogenic microbiota was determined by PCR-DGGE with bacterial universal primers and bands were excised, re-amplified and sequenced. From the 120 dental pieces analyzed, a defined genetic profile was obtained in 81 (67.5%) of them, with no statistical differences between the healthy and the cavities-affected teeth. Statistical association between teeth status, DNA content and genetic profiles was not observed. Complex bacterial communities were only detected in the cavities group, being the Streptococcus/Enterococcus, and Lactobacillus genera the most represented. We conclude that teeth with cavities are as valid as healthy dental pieces for forensic human identification. Moreover, the severity of the cariogenic lesion as well as associated bacterial communities seems not to influence the establishment of human dental profiles. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Kulstein, Galina; Marienfeld, Ralf; Miltner, Erich; Wiegand, Peter
2016-10-01
In the last years, microRNA (miRNA) analysis came into focus in the field of forensic genetics. Yet, no standardized and recommendable protocols for co-isolation of miRNA and DNA from forensic relevant samples have been developed so far. Hence, this study evaluated the performance of an automated Maxwell® 16 System-based strategy (Promega) for co-extraction of DNA and miRNA from forensically relevant (blood and saliva) samples compared to (semi-)manual extraction methods. Three procedures were compared on the basis of recovered quantity of DNA and miRNA (as determined by real-time PCR and Bioanalyzer), miRNA profiling (shown by Cq values and extraction efficiency), STR profiles, duration, contamination risk and handling. All in all, the results highlight that the automated co-extraction procedure yielded the highest miRNA and DNA amounts from saliva and blood samples compared to both (semi-)manual protocols. Also, for aged and genuine samples of forensically relevant traces the miRNA and DNA yields were sufficient for subsequent downstream analysis. Furthermore, the strategy allows miRNA extraction only in cases where it is relevant to obtain additional information about the sample type. Besides, this system enables flexible sample throughput and labor-saving sample processing with reduced risk of cross-contamination. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DNA in the Criminal Justice System: The DNA Success Story in Perspective.
Mapes, Anna A; Kloosterman, Ate D; de Poot, Christianne J
2015-07-01
Current figures on the efficiency of DNA as an investigative tool in criminal investigations only tell part of the story. To get the DNA success story in the right perspective, we examined all forensic reports from serious (N = 116) and high-volume crime cases (N = 2791) over the year 2011 from one police region in the Netherlands. These data show that 38% of analyzed serious crime traces (N = 384) and 17% of analyzed high-volume crime traces (N = 386) did not result in a DNA profile. Turnaround times (from crime scene to DNA report) were 66 days for traces from serious crimes and 44 days for traces from high-volume crimes. Suspects were truly identified through a match with the Offender DNA database of the Netherlands in 3% of the serious crime cases and in 1% of the high-volume crime cases. These data are important for both the forensic laboratory and the professionals in the criminal justice system to further optimize forensic DNA testing as an investigative tool. © 2015 American Academy of Forensic Sciences.
Stangegaard, Michael; Hjort, Benjamin B; Hansen, Thomas N; Hoflund, Anders; Mogensen, Helle S; Hansen, Anders J; Morling, Niels
2013-05-01
The presence of PCR inhibitors in extracted DNA may interfere with the subsequent quantification and short tandem repeat (STR) reactions used in forensic genetic DNA typing. DNA extraction from fabric for forensic genetic purposes may be challenging due to the occasional presence of PCR inhibitors that may be co-extracted with the DNA. Using 120 forensic trace evidence samples consisting of various types of fabric, we compared three automated DNA extraction methods based on magnetic beads (PrepFiler Express Forensic DNA Extraction Kit on an AutoMate Express, QIAsyphony DNA Investigator kit either with the sample pre-treatment recommended by Qiagen or an in-house optimized sample pre-treatment on a QIAsymphony SP) and one manual method (Chelex) with the aim of reducing the amount of PCR inhibitors in the DNA extracts and increasing the proportion of reportable STR-profiles. A total of 480 samples were processed. The highest DNA recovery was obtained with the PrepFiler Express kit on an AutoMate Express while the lowest DNA recovery was obtained using a QIAsymphony SP with the sample pre-treatment recommended by Qiagen. Extraction using a QIAsymphony SP with the sample pre-treatment recommended by Qiagen resulted in the lowest percentage of PCR inhibition (0%) while extraction using manual Chelex resulted in the highest percentage of PCR inhibition (51%). The largest number of reportable STR-profiles was obtained with DNA from samples extracted with the PrepFiler Express kit (75%) while the lowest number was obtained with DNA from samples extracted using a QIAsymphony SP with the sample pre-treatment recommended by Qiagen (41%). Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
ESDA®-Lite collection of DNA from latent fingerprints on documents.
Plaza, Dane T; Mealy, Jamia L; Lane, J Nicholas; Parsons, M Neal; Bathrick, Abigail S; Slack, Donia P
2015-05-01
The ability to detect and non-destructively collect biological samples for DNA processing would benefit the forensic community by preserving the physical integrity of evidentiary items for more thorough evaluations by other forensic disciplines. The Electrostatic Detection Apparatus (ESDA®) was systemically evaluated for its ability to non-destructively collect DNA from latent fingerprints deposited on various paper substrates for short tandem repeat (STR) DNA profiling. Fingerprints were deposited on a variety of paper substrates that included resume paper, cotton paper, magazine paper, currency, copy paper, and newspaper. Three DNA collection techniques were performed: ESDA collection, dry swabbing, and substrate cutting. Efficacy of each collection technique was evaluated by the quantity of DNA present in each sample and the percent profile generated by each sample. Both the ESDA and dry swabbing non-destructive sampling techniques outperformed the destructive methodology of substrate cutting. A greater number of full profiles were generated from samples collected with the non-destructive dry swabbing collection technique than were generated from samples collected with the ESDA; however, the ESDA also allowed the user to visualize the area of interest while non-destructively collecting the biological material. The ability to visualize the biological material made sampling straightforward and eliminated the need for numerous, random swabbings/cuttings. Based on these results, the evaluated non-destructive ESDA collection technique has great potential for real-world forensic implementation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Young, J M; Austin, J J; Weyrich, L S
2017-02-01
Analysis of physical evidence is typically a deciding factor in forensic casework by establishing what transpired at a scene or who was involved. Forensic geoscience is an emerging multi-disciplinary science that can offer significant benefits to forensic investigations. Soil is a powerful, nearly 'ideal' contact trace evidence, as it is highly individualistic, easy to characterise, has a high transfer and retention probability, and is often overlooked in attempts to conceal evidence. However, many real-life cases encounter close proximity soil samples or soils with low inorganic content, which cannot be easily discriminated based on current physical and chemical analysis techniques. The capability to improve forensic soil discrimination, and identify key indicator taxa from soil using the organic fraction is currently lacking. The development of new DNA sequencing technologies offers the ability to generate detailed genetic profiles from soils and enhance current forensic soil analyses. Here, we discuss the use of DNA metabarcoding combined with high-throughput sequencing (HTS) technology to distinguish between soils from different locations in a forensic context. Specifically, we provide recommendations for best practice, outline the potential limitations encountered in a forensic context and describe the future directions required to integrate soil DNA analysis into casework. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
[Current status of DNA databases in the forensic field: new progress, new legal needs].
Baeta, Miriam; Martínez-Jarreta, Begoña
2009-01-01
One of the most polemic issues regarding the use of deoxyribonucleic acid (DNA) in the legal sphere, refers to the creation of DNA databases. Until relatively recently, Spain did not have a law to support the establishment of a national DNA profile bank for forensic purposes, and preserve the fundamental rights of subjects whose data are archived therein. The regulatory law of police databases regarding identifiers obtained from DNA approved in 2007, covers this void in the Spanish legislation and responds to the incessant need to adapt the laws to continuous scientific and technological progress.
Vidaki, Athina; Kalamara, Vivian; Carnero-Montoro, Elena; Spector, Timothy D; Bell, Jordana T; Kayser, Manfred
2018-05-14
Monozygotic (MZ) twins are typically indistinguishable via forensic DNA profiling. Recently, we demonstrated that epigenetic differentiation of MZ twins is feasible; however, proportions of twin differentially methylated CpG sites (tDMSs) identified in reference-type blood DNA were not replicated in trace-type blood DNA. Here we investigated buccal swabs as typical forensic reference material, and saliva and cigarette butts as commonly encountered forensic trace materials. As an analog to a forensic case, we analyzed one MZ twin pair. Epigenome-wide microarray analysis in reference-type buccal DNA revealed 25 candidate tDMSs with >0.5 twin-to-twin differences. MethyLight quantitative PCR (qPCR) of 22 selected tDMSs in trace-type DNA revealed in saliva DNA that six tDMSs (27.3%) had >0.1 twin-to-twin differences, seven (31.8%) had smaller (<0.1) but robustly detected differences, whereas for nine (40.9%) the differences were in the opposite direction relative to the microarray data; for cigarette butt DNA, results were 50%, 22.7%, and 27.3%, respectively. The discrepancies between reference-type and trace-type DNA outcomes can be explained by cell composition differences, method-to-method variation, and other technical reasons including bisulfite conversion inefficiency. Our study highlights the importance of the DNA source and that careful characterization of biological and technical effects is needed before epigenetic MZ twin differentiation is applicable in forensic casework.
DNA and RNA profiling of excavated human remains with varying postmortem intervals.
van den Berge, M; Wiskerke, D; Gerretsen, R R R; Tabak, J; Sijen, T
2016-11-01
When postmortem intervals (PMIs) increase such as with longer burial times, human remains suffer increasingly from the taphonomic effects of decomposition processes such as autolysis and putrefaction. In this study, various DNA analysis techniques and a messenger RNA (mRNA) profiling method were applied to examine for trends in nucleic acid degradation and the postmortem interval. The DNA analysis techniques include highly sensitive DNA quantitation (with and without degradation index), standard and low template STR profiling, insertion and null alleles (INNUL) of retrotransposable elements typing and mitochondrial DNA profiling. The used mRNA profiling system targets genes with tissue specific expression for seven human organs as reported by Lindenbergh et al. (Int J Legal Med 127:891-900, 27) and has been applied to forensic evidentiary traces but not to excavated tissues. The techniques were applied to a total of 81 brain, lung, liver, skeletal muscle, heart, kidney and skin samples obtained from 19 excavated graves with burial times ranging from 4 to 42 years. Results show that brain and heart are the organs in which both DNA and RNA remain remarkably stable, notwithstanding long PMIs. The other organ tissues either show poor overall profiling results or vary for DNA and RNA profiling success, with sometimes DNA and other times RNA profiling being more successful. No straightforward relations were observed between nucleic acid profiling results and the PMI. This study shows that not only DNA but also RNA molecules can be remarkably stable and used for profiling of long-buried human remains, which corroborate forensic applications. The insight that the brain and heart tissues tend to provide the best profiling results may change sampling policies in identification cases of degrading cadavers.
Analysis of fingerprint samples, testing various conditions, for forensic DNA identification.
Ostojic, Lana; Wurmbach, Elisa
2017-01-01
Fingerprints can be of tremendous value for forensic biology, since they can be collected from a wide variety of evident types, such as handles of weapons, tools collected in criminal cases, and objects with no apparent staining. DNA obtained from fingerprints varies greatly in quality and quantity, which ultimately affects the quality of the resulting STR profiles. Additional difficulties can arise when fingerprint samples show mixed STR profiles due to the handling of multiple persons. After applying a tested protocol for sample collection (swabbing with 5% Triton X-100), DNA extraction (using an enzyme that works at elevated temperatures), and PCR amplification (AmpFlSTR® Identifiler® using 31cycles) extensive analysis was performed to better understand the challenges inherent to fingerprint samples, with the ultimate goal of developing valuable profiles (≥50% complete). The impact of time on deposited fingerprints was investigated, revealing that while the quality of profiles deteriorated, full STR profiles could still be obtained from samples after 40days of storage at room temperature. By comparing the STR profiles from fingerprints of the dominant versus the non-dominant hand, we found a slightly better quality from the non-dominant hand, which was not always significant. Substrates seem to have greater effects on fingerprints. Tests on glass, plastic, paper and metal (US Quarter dollar, made of Cu and Ni), common substrates in offices and homes, showed best results for glass, followed by plastic and paper, while almost no profiles were obtained from a Quarter dollar. Important for forensic casework, we also assessed three-person mixtures of touched fingerprint samples. Unlike routinely used approaches for sampling evidence, the surface of an object (bottle) was sectioned into six equal parts and separate samples were taken from each section. The samples were processed separately for DNA extraction and STR amplification. The results included a few single source profiles and distinguishable two person mixtures. On average, this approach led to two profiles ≥50% complete per touched object. Some STR profiles were obtained more than once thereby increasing the confidence. Copyright © 2016 The Chartered Society of Forensic Sciences. Published by Elsevier Ireland Ltd. All rights reserved.
Mass spectrometry-based cDNA profiling as a potential tool for human body fluid identification.
Donfack, Joseph; Wiley, Anissa
2015-05-01
Several mRNA markers have been exhaustively evaluated for the identification of human venous blood, saliva, and semen in forensic genetics. As new candidate human body fluid specific markers are discovered, evaluated, and reported in the scientific literature, there is an increasing trend toward determining the ideal markers for cDNA profiling of body fluids of forensic interest. However, it has not been determined which molecular genetics-based technique(s) should be utilized to assess the performance of these markers. In recent years, only a few confirmatory, mRNA/cDNA-based methods have been evaluated for applications in body fluid identification. The most frequently described methods tested to date include quantitative polymerase chain reaction (qPCR) and capillary electrophoresis (CE). However these methods, in particular qPCR, often favor narrow multiplex PCR due to the availability of a limited number of fluorescent dyes/tags. In an attempt to address this technological constraint, this study explored matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) for human body fluid identification via cDNA profiling of venous blood, saliva, and semen. Using cDNA samples at 20pg input phosphoglycerate kinase 1 (PGK1) amounts, body fluid specific markers for the candidate genes were amplified in their corresponding body fluid (i.e., venous blood, saliva, or semen) and absent in the remaining two (100% specificity). The results of this study provide an initial indication that MALDI-TOF MS is a potential fluorescent dye-free alternative method for body fluid identification in forensic casework. However, the inherent issues of low amounts of mRNA, and the damage caused to mRNA by environmental exposures, extraction processes, and storage conditions are important factors that significantly hinder the implementation of cDNA profiling into forensic casework. Published by Elsevier Ireland Ltd.
A male and female RNA marker to infer sex in forensic analysis.
van den Berge, M; Sijen, T
2017-01-01
In forensics, DNA profiling is used for the identification of the donor of a trace, while messenger RNA (mRNA) profiling can be applied to identify the cellular origin such as body fluids or organ tissues. The presence of male cell material can be readily assessed by the incorporation of Y-chromosomal markers in quantitation or STR profiling systems. However, no forensic marker exists to positively identify female cell material; merely the presence of female DNA is deduced from the absence of a Y peak, or unbalanced X-Y signals at the Amelogenin locus or unbalanced response of the total and Y-specific quantifier. The presence of two X-chromosomes in female cells invokes dosage compensation, which is achieved through inactivation of one of the X-chromosomes in females. Since this process involves specific RNA molecules, identification of female cellular material may be possible through RNA profiling. Additionally, male material may be identified through RNAs expressed from the Y-chromosome. RNAs preferentially expressed in either sex were assessed for their potential to act as sex markers in forensic RNA assays. To confirm sex-specificity, body fluids and organ tissues of multiple donors of either sex were tested. Additionally, sensitivity of the markers and the suitability of positively identifying male-female mixtures were assessed and degraded samples were used to assess performance of the markers in forensic settings. The addition of sex-specific markers is of added informative value in any RNA profiling system and both markers were incorporated into existing RNA assays that either target body fluids or organs. These are the first forensic assays that enable positive identification of female cellular material. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Gill, P.; Gusmão, L.; Haned, H.; Mayr, W.R.; Morling, N.; Parson, W.; Prieto, L.; Prinz, M.; Schneider, H.; Schneider, P.M.; Weir, B.S.
2015-01-01
DNA profiling of biological material from scenes of crimes is often complicated because the amount of DNA is limited and the quality of the DNA may be compromised. Furthermore, the sensitivity of STR typing kits has been continuously improved to detect low level DNA traces. This may lead to (1) partial DNA profiles and (2) detection of additional alleles. There are two key phenomena to consider: allelic or locus ‘drop-out’, i.e. ‘missing’ alleles at one or more genetic loci, while ‘drop-in’ may explain alleles in the DNA profile that are additional to the assumed main contributor(s). The drop-in phenomenon is restricted to 1 or 2 alleles per profile. If multiple alleles are observed at more than two loci then these are considered as alleles from an extra contributor and analysis can proceed as a mixture of two or more contributors. Here, we give recommendations on how to estimate probabilities considering drop-out, Pr(D), and drop-in, Pr(C). For reasons of clarity, we have deliberately restricted the current recommendations considering drop-out and/or drop-in at only one locus. Furthermore, we offer recommendations on how to use Pr(D) and Pr(C) with the likelihood ratio principles that are generally recommended by the International Society of Forensic Genetics (ISFG) as measure of the weight of the evidence in forensic genetics. Examples of calculations are included. An Excel spreadsheet is provided so that scientists and laboratories may explore the models and input their own data. PMID:22864188
2012-01-01
Background Traditional PCR methods for forensic STR genotyping require approximately 2.5 to 4 hours to complete, contributing a significant portion of the time required to process forensic DNA samples. The purpose of this study was to develop and validate a fast PCR protocol that enabled amplification of the 16 loci targeted by the AmpFℓSTR® Identifiler® primer set, allowing decreased cycling times. Methods Fast PCR conditions were achieved by substituting the traditional Taq polymerase for SpeedSTAR™ HS DNA polymerase which is designed for fast PCR, by upgrading to a thermal cycler with faster temperature ramping rates and by modifying cycling parameters (less time at each temperature) and adopting a two-step PCR approach. Results The total time required for the optimized protocol is 26 min. A total of 147 forensically relevant DNA samples were amplified using the fast PCR protocol for Identifiler. Heterozygote peak height ratios were not affected by fast PCR conditions, and full profiles were generated for single-source DNA amounts between 0.125 ng and 2.0 ng. Individual loci in profiles produced with the fast PCR protocol exhibited average n-4 stutter percentages ranging from 2.5 ± 0.9% (THO1) to 9.9 ± 2.7% (D2S1338). No increase in non-adenylation or other amplification artefacts was observed. Minor contributor alleles in two-person DNA mixtures were reliably discerned. Low level cross-reactivity (monomorphic peaks) was observed with some domestic animal DNA. Conclusions The fast PCR protocol presented offers a feasible alternative to current amplification methods and could aid in reducing the overall time in STR profile production or could be incorporated into a fast STR genotyping procedure for time-sensitive situations. PMID:22394458
Foster, Amanda; Laurin, Nancy
2012-03-06
Traditional PCR methods for forensic STR genotyping require approximately 2.5 to 4 hours to complete, contributing a significant portion of the time required to process forensic DNA samples. The purpose of this study was to develop and validate a fast PCR protocol that enabled amplification of the 16 loci targeted by the AmpFℓSTR® Identifiler® primer set, allowing decreased cycling times. Fast PCR conditions were achieved by substituting the traditional Taq polymerase for SpeedSTAR™ HS DNA polymerase which is designed for fast PCR, by upgrading to a thermal cycler with faster temperature ramping rates and by modifying cycling parameters (less time at each temperature) and adopting a two-step PCR approach. The total time required for the optimized protocol is 26 min. A total of 147 forensically relevant DNA samples were amplified using the fast PCR protocol for Identifiler. Heterozygote peak height ratios were not affected by fast PCR conditions, and full profiles were generated for single-source DNA amounts between 0.125 ng and 2.0 ng. Individual loci in profiles produced with the fast PCR protocol exhibited average n-4 stutter percentages ranging from 2.5 ± 0.9% (THO1) to 9.9 ± 2.7% (D2S1338). No increase in non-adenylation or other amplification artefacts was observed. Minor contributor alleles in two-person DNA mixtures were reliably discerned. Low level cross-reactivity (monomorphic peaks) was observed with some domestic animal DNA. The fast PCR protocol presented offers a feasible alternative to current amplification methods and could aid in reducing the overall time in STR profile production or could be incorporated into a fast STR genotyping procedure for time-sensitive situations.
An instrument for automated purification of nucleic acids from contaminated forensic samples
Broemeling, David J; Pel, Joel; Gunn, Dylan C; Mai, Laura; Thompson, Jason D; Poon, Hiron; Marziali, Andre
2008-01-01
Forensic crime scene sample analysis, by its nature, often deals with samples in which there are low amounts of nucleic acids, on substrates that often lead to inhibition of subsequent enzymatic reactions such as PCR amplification for STR profiling. Common substrates include denim from blue jeans, which yields indigo dye as a PCR inhibitor, and soil, which yields humic substances as inhibitors. These inhibitors frequently co-extract with nucleic acids in standard column or bead-based preps, leading to frequent failure of STR profiling. We present a novel instrument for DNA purification of forensic samples that is capable of highly effective concentration of nucleic acids from soil particulates, fabric, and other complex samples including solid components. The novel concentration process, known as SCODA, is inherently selective for long charged polymers such as DNA, and therefore is able to effectively reject known contaminants. We present an automated sample preparation instrument based on this process, and preliminary results based on mock forensic samples. PMID:18438455
A review of state legislation on DNA forensic data banking.
McEwen, J. E.; Reilly, P. R.
1994-01-01
Recent advances in DNA identification technology are making their way into the criminal law. States across the country are enacting legislation to create repositories for the storage both of DNA samples collected from convicted offenders and of the DNA profiles derived from them. These data banks will be used to assist in the resolution of future crimes. This study surveys existing state statues, pending legislation, and administrative regulations that govern these DNA forensic data banks. We critically analyzed these laws with respect to their treatment of the collection, storage, analysis, retrieval, and use of DNA and DNA data. We found much variation among data-banking laws and conclude that, while DNA forensic data banking carries tremendous potential for law enforcement, many states, in their rush to create data banks, have paid little attention to issues of quality control, quality assurance, and privacy. In addition, the sweep of some laws is unnecessarily broad. Legislative modifications are needed in many states to better safeguard civil liberties and individual privacy. PMID:8198138
Case report: on the use of the HID-Ion AmpliSeq™ Ancestry Panel in a real forensic case.
Hollard, C; Keyser, C; Delabarde, T; Gonzalez, A; Vilela Lamego, C; Zvénigorosky, V; Ludes, B
2017-03-01
In the absence of any other conclusive forensic evidence, DNA profiling is the method of choice for body identification. This study focuses on the case of a carbonized corpse whose complete autosomal short tandem repeat (STR) profile could not lead to direct identification by the investigators. To assist in the progress of investigation, we endeavoured to determine the biogeographical origin and eye colour of the deceased individual. Along with Y chromosome and mitochondrial DNA analyses, we applied a next-generation sequencing (NGS) approach to the study of ancestry informative markers (AIMs) using the HID-Ion AmpliSeq™ Ancestry Panel launched by Thermo Fisher Scientific. This work gave us the opportunity to test this new technology in a real forensic case. Although this study highlights the benefits of such a combined approach, as it markedly improves the specificity of the biogeographical profile, it also underlines the need for the accurate characterization of a larger collection of reference populations and the necessity of caution in data interpretation.
Determining the optimal forensic DNA analysis procedure following investigation of sample quality.
Hedell, Ronny; Hedman, Johannes; Mostad, Petter
2018-07-01
Crime scene traces of various types are routinely sent to forensic laboratories for analysis, generally with the aim of addressing questions about the source of the trace. The laboratory may choose to analyse the samples in different ways depending on the type and quality of the sample, the importance of the case and the cost and performance of the available analysis methods. Theoretically well-founded guidelines for the choice of analysis method are, however, lacking in most situations. In this paper, it is shown how such guidelines can be created using Bayesian decision theory. The theory is applied to forensic DNA analysis, showing how the information from the initial qPCR analysis can be utilized. It is assumed the alternatives for analysis are using a standard short tandem repeat (STR) DNA analysis assay, using the standard assay and a complementary assay, or the analysis may be cancelled following quantification. The decision is based on information about the DNA amount and level of DNA degradation of the forensic sample, as well as case circumstances and the cost for analysis. Semi-continuous electropherogram models are used for simulation of DNA profiles and for computation of likelihood ratios. It is shown how tables and graphs, prepared beforehand, can be used to quickly find the optimal decision in forensic casework.
Fondevila, M; Børsting, C; Phillips, C; de la Puente, M; Consortium, Euroforen-NoE; Carracedo, A; Morling, N; Lareu, M V
2017-01-01
This review explores the key factors that influence the optimization, routine use, and profile interpretation of the SNaPshot single-base extension (SBE) system applied to forensic single-nucleotide polymorphism (SNP) genotyping. Despite being a mainly complimentary DNA genotyping technique to routine STR profiling, use of SNaPshot is an important part of the development of SNP sets for a wide range of forensic applications with these markers, from genotyping highly degraded DNA with very short amplicons to the introduction of SNPs to ascertain the ancestry and physical characteristics of an unidentified contact trace donor. However, this technology, as resourceful as it is, displays several features that depart from the usual STR genotyping far enough to demand a certain degree of expertise from the forensic analyst before tackling the complex casework on which SNaPshot application provides an advantage. In order to provide the basis for developing such expertise, we cover in this paper the most challenging aspects of the SNaPshot technology, focusing on the steps taken to design primer sets, optimize the PCR and single-base extension chemistries, and the important features of the peak patterns observed in typical forensic SNP profiles using SNaPshot. With that purpose in mind, we provide guidelines and troubleshooting for multiplex-SNaPshot-oriented primer design and the resulting capillary electrophoresis (CE) profile interpretation (covering the most commonly observed artifacts and expected departures from the ideal conditions). Copyright © 2017 Central Police University.
DNA profiling of trace DNA recovered from bedding.
Petricevic, Susan F; Bright, Jo-Anne; Cockerton, Sarah L
2006-05-25
Trace DNA is often detected on handled items and worn clothing examined in forensic laboratories. In this study, the potential transfer of trace DNA to bedding by normal contact, when an individual sleeps in a bed, is examined. Volunteers slept one night on a new, lower bed sheet in their own bed and one night in a bed foreign to them. Samples from the sheets were collected and analysed by DNA profiling. The results indicate that the DNA profile of an individual can be obtained from bedding after one night of sleeping in a bed. The DNA profile of the owner of the bed could also be detected in the foreign bed experiments. Since mixed DNA profiles can be obtained from trace DNA on bedding, caution should be exercised when drawing conclusions from DNA profiling results obtained from such samples. This transfer may have important repercussions in sexual assault investigations.
[The future of forensic DNA analysis for criminal justice].
Laurent, François-Xavier; Vibrac, Geoffrey; Rubio, Aurélien; Thévenot, Marie-Thérèse; Pène, Laurent
2017-11-01
In the criminal framework, the analysis of approximately 20 DNA microsatellites enables the establishment of a genetic profile with a high statistical power of discrimination. This technique gives us the possibility to establish or exclude a match between a biological trace detected at a crime scene and a suspect whose DNA was collected via an oral swab. However, conventional techniques do tend to complexify the interpretation of complex DNA samples, such as degraded DNA and mixture DNA. The aim of this review is to highlight the powerness of new forensic DNA methods (including high-throughput sequencing or single-cell sequencing) to facilitate the interpretation of the expert with full compliance with existing french legislation. © 2017 médecine/sciences – Inserm.
Forensic genetic analysis of bone remain samples.
Siriboonpiputtana, T; Rinthachai, T; Shotivaranon, J; Peonim, V; Rerkamnuaychoke, B
2018-03-01
DNA typing from degraded human remains is still challenging forensic DNA scientists not only in the prospective of DNA purification but also in the interpretation of established DNA profiles and data manipulation, especially in mass fatalities. In this report, we presented DNA typing protocol to investigate many skeletal remains in different degrees of decomposing. In addition, we established the grading system aiming for prior determination of the association between levels of decomposing and overall STR amplification efficacy. A total of 80 bone samples were subjected to DNA isolation using the modified DNA IQ™ System (Promega, USA) for bone extraction following with STR analysis using the AmpFLSTR Identifiler ® (Thermo Fisher Scientific, USA). In low destruction group, complete STR profiles were observed as 84.4% whereas partial profiles and non-amplified were found as 9.4% and 6.2%, respectively. Moreover, in medium destruction group, both complete and partial STR profiles were observed as 31.2% while 37.5% of this group was unable to amplify. Nevertheless, we could not purify DNA and were unable to generate STR profile in any sample from the high destroyed bone samples. Compact bones such as femur and humerus have high successful amplification rate superior than loose/spongy bones. Furthermore, costal cartilage could be a designate specimen for DNA isolation in a case of the body that was discovered approximately to 3 days after death which enabled to isolate high quality and quantity of DNA, reduce time and cost, and do not require special tools such as freezer mill. Copyright © 2018 Elsevier B.V. All rights reserved.
Van Neste, Christophe; Vandewoestyne, Mado; Van Criekinge, Wim; Deforce, Dieter; Van Nieuwerburgh, Filip
2014-03-01
Forensic scientists are currently investigating how to transition from capillary electrophoresis (CE) to massive parallel sequencing (MPS) for analysis of forensic DNA profiles. MPS offers several advantages over CE such as virtually unlimited multiplexy of loci, combining both short tandem repeat (STR) and single nucleotide polymorphism (SNP) loci, small amplicons without constraints of size separation, more discrimination power, deep mixture resolution and sample multiplexing. We present our bioinformatic framework My-Forensic-Loci-queries (MyFLq) for analysis of MPS forensic data. For allele calling, the framework uses a MySQL reference allele database with automatically determined regions of interest (ROIs) by a generic maximal flanking algorithm which makes it possible to use any STR or SNP forensic locus. Python scripts were designed to automatically make allele calls starting from raw MPS data. We also present a method to assess the usefulness and overall performance of a forensic locus with respect to MPS, as well as methods to estimate whether an unknown allele, which sequence is not present in the MySQL database, is in fact a new allele or a sequencing error. The MyFLq framework was applied to an Illumina MiSeq dataset of a forensic Illumina amplicon library, generated from multilocus STR polymerase chain reaction (PCR) on both single contributor samples and multiple person DNA mixtures. Although the multilocus PCR was not yet optimized for MPS in terms of amplicon length or locus selection, the results show excellent results for most loci. The results show a high signal-to-noise ratio, correct allele calls, and a low limit of detection for minor DNA contributors in mixed DNA samples. Technically, forensic MPS affords great promise for routine implementation in forensic genomics. The method is also applicable to adjacent disciplines such as molecular autopsy in legal medicine and in mitochondrial DNA research. Copyright © 2013 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Identification of body fluid-specific DNA methylation markers for use in forensic science.
Park, Jong-Lyul; Kwon, Oh-Hyung; Kim, Jong Hwan; Yoo, Hyang-Sook; Lee, Han-Chul; Woo, Kwang-Man; Kim, Seon-Young; Lee, Seung-Hwan; Kim, Yong Sung
2014-11-01
DNA methylation, which occurs at the 5'-position of the cytosine in CpG dinucleotides, has great potential for forensic identification of body fluids, because tissue-specific patterns of DNA methylation have been demonstrated, and DNA is less prone to degradation than proteins or RNA. Previous studies have reported several body fluid-specific DNA methylation markers, but DNA methylation differences are sometimes low in saliva and vaginal secretions. Moreover, specific DNA methylation markers in four types of body fluids (blood, saliva, semen, and vaginal secretions) have not been investigated with genome-wide profiling. Here, we investigated novel DNA methylation markers for identification of body fluids for use in forensic science using the Illumina HumanMethylation 450K bead array, which contains over 450,000 CpG sites. Using methylome data from 16 samples of blood, saliva, semen, and vaginal secretions, we first selected 2986 hypermethylated or hypomethylated regions that were specific for each type of body fluid. We then selected eight CpG sites as novel, forensically relevant DNA methylation markers: cg06379435 and cg08792630 for blood, cg26107890 and cg20691722 for saliva, cg23521140 and cg17610929 for semen, and cg01774894 and cg14991487 for vaginal secretions. These eight selected markers were evaluated in 80 body fluid samples using pyrosequencing, and all showed high sensitivity and specificity for identification of the target body fluid. We suggest that these eight DNA methylation markers may be good candidates for developing an effective molecular assay for identification of body fluids in forensic science. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
[Applications of DNA methylation markers in forensic medicine].
Zhao, Gui-sen; Yang, Qing-en
2005-02-01
DNA methylation is a post-replication modification that is predominantly found in cytosines of the dinucleotide sequence CpG. Epigenetic information is stored in the distribution of the modified base 5-methylcytosine. DNA methylation profiles represent a more chemically and biologically stable source of molecular diagnostic information than RNA or most proteins. Recent advances attest to the great promise of DNA methylation markers as powerful future tools in the clinic. In the past decade, DNA methylation analysis has been revolutionized by two technological advances--bisulphite modification of DNA and methylation-specific polymerase chain reaction (MSP). The methylation pattern of human genome is space-time specific, sex-specific, parent-of-origin specific and disease specific, providing us an alternative way to solve forensic problems.
Evaluation of DNA mixtures from database search.
Chung, Yuk-Ka; Hu, Yue-Qing; Fung, Wing K
2010-03-01
With the aim of bridging the gap between DNA mixture analysis and DNA database search, a novel approach is proposed to evaluate the forensic evidence of DNA mixtures when the suspect is identified by the search of a database of DNA profiles. General formulae are developed for the calculation of the likelihood ratio for a two-person mixture under general situations including multiple matches and imperfect evidence. The influence of the prior probabilities on the weight of evidence under the scenario of multiple matches is demonstrated by a numerical example based on Hong Kong data. Our approach is shown to be capable of presenting the forensic evidence of DNA mixtures in a comprehensive way when the suspect is identified through database search.
Practical relevance of pattern uniqueness in forensic science.
Jayaprakash, Paul T
2013-09-10
Uniqueness being unprovable, it has recently been argued that individualization in forensic science is irrelevant and, probability, as applied for DNA profiles, should be applied for all identifications. Critiques against uniqueness have omitted physical matching, a realistic and tangible individualization that supports uniqueness. Describing case examples illustrating pattern matches including physical matching, it is indicated that individualizations are practically relevant for forensic science as they establish facts on a definitive basis providing firm leads benefitting criminal investigation. As a tenet of forensic identification, uniqueness forms a fundamental paradigm relevant for individualization. Evidence on the indeterministic and stochastic causal pathways of characteristics in patterns available in the related fields of science sufficiently supports the proposition of uniqueness. Characteristics involved in physical matching and matching achieved in patterned evidence existing in the state of nature are not events amenable for counting; instead these are ensemble of visible units occupying the entire pattern area stretching the probability of re-occurrence of a verisimilitude pattern into infinity offering epistemic support to uniqueness. Observational methods are as respectable as instrumental or statistical methods since they are capable of generating results that are tangible and obviously valid as in physical matching. Applying the probabilistic interpretation used for DNA profiles to the other patterns would be unbefitting since these two are disparate, the causal pathways of the events, the loci, in the manipulated DNA profiles being determinable. While uniqueness enables individualizations, it does not vouch for eliminating errors. Instead of dismissing uniqueness and individualization, accepting errors as human or system failures and seeking remedial measures would benefit forensic science practice and criminal investigation. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Benschop, Corina C G; van de Merwe, Linda; de Jong, Jeroen; Vanvooren, Vanessa; Kempenaers, Morgane; Kees van der Beek, C P; Barni, Filippo; Reyes, Eusebio López; Moulin, Léa; Pene, Laurent; Haned, Hinda; Sijen, Titia
2017-07-01
Searching a national DNA database with complex and incomplete profiles usually yields very large numbers of possible matches that can present many candidate suspects to be further investigated by the forensic scientist and/or police. Current practice in most forensic laboratories consists of ordering these 'hits' based on the number of matching alleles with the searched profile. Thus, candidate profiles that share the same number of matching alleles are not differentiated and due to the lack of other ranking criteria for the candidate list it may be difficult to discern a true match from the false positives or notice that all candidates are in fact false positives. SmartRank was developed to put forward only relevant candidates and rank them accordingly. The SmartRank software computes a likelihood ratio (LR) for the searched profile and each profile in the DNA database and ranks database entries above a defined LR threshold according to the calculated LR. In this study, we examined for mixed DNA profiles of variable complexity whether the true donors are retrieved, what the number of false positives above an LR threshold is and the ranking position of the true donors. Using 343 mixed DNA profiles over 750 SmartRank searches were performed. In addition, the performance of SmartRank and CODIS were compared regarding DNA database searches and SmartRank was found complementary to CODIS. We also describe the applicable domain of SmartRank and provide guidelines. The SmartRank software is open-source and freely available. Using the best practice guidelines, SmartRank enables obtaining investigative leads in criminal cases lacking a suspect. Copyright © 2017 Elsevier B.V. All rights reserved.
Biedermann, Alex; Champod, Christophe; Jackson, Graham; Gill, Peter; Taylor, Duncan; Butler, John; Morling, Niels; Hicks, Tacha; Vuille, Joelle; Taroni, Franco
2016-01-01
When forensic scientists evaluate and report on the probative strength of single DNA traces, they commonly rely on only one number, expressing the rarity of the DNA profile in the population of interest. This is so because the focus is on propositions regarding the source of the recovered trace material, such as “the person of interest is the source of the crime stain.” In particular, when the alternative proposition is “an unknown person is the source of the crime stain,” one is directed to think about the rarity of the profile. However, in the era of DNA profiling technology capable of producing results from small quantities of trace material (i.e., non-visible staining) that is subject to easy and ubiquitous modes of transfer, the issue of source is becoming less central, to the point that it is often not contested. There is now a shift from the question “whose DNA is this?” to the question “how did it get there?” As a consequence, recipients of expert information are now very much in need of assistance with the evaluation of the meaning and probative strength of DNA profiling results when the competing propositions of interest refer to different activities. This need is widely demonstrated in day-to-day forensic practice and is also voiced in specialized literature. Yet many forensic scientists remain reluctant to assess their results given propositions that relate to different activities. Some scientists consider evaluations beyond the issue of source as being overly speculative, because of the lack of relevant data and knowledge regarding phenomena and mechanisms of transfer, persistence and background of DNA. Similarly, encouragements to deal with these activity issues, expressed in a recently released European guideline on evaluative reporting (Willis et al., 2015), which highlights the need for rethinking current practice, are sometimes viewed skeptically or are not considered feasible. In this discussion paper, we select and discuss recurrent skeptical views brought to our attention, as well as some of the alternative solutions that have been suggested. We will argue that the way forward is to address now, rather than later, the challenges associated with the evaluation of DNA results (from small quantities of trace material) in light of different activities to prevent them being misrepresented in court. PMID:28018424
Biedermann, Alex; Champod, Christophe; Jackson, Graham; Gill, Peter; Taylor, Duncan; Butler, John; Morling, Niels; Hicks, Tacha; Vuille, Joelle; Taroni, Franco
2016-01-01
When forensic scientists evaluate and report on the probative strength of single DNA traces, they commonly rely on only one number, expressing the rarity of the DNA profile in the population of interest. This is so because the focus is on propositions regarding the source of the recovered trace material, such as "the person of interest is the source of the crime stain." In particular, when the alternative proposition is "an unknown person is the source of the crime stain," one is directed to think about the rarity of the profile. However, in the era of DNA profiling technology capable of producing results from small quantities of trace material (i.e., non-visible staining) that is subject to easy and ubiquitous modes of transfer, the issue of source is becoming less central, to the point that it is often not contested. There is now a shift from the question "whose DNA is this?" to the question "how did it get there?" As a consequence, recipients of expert information are now very much in need of assistance with the evaluation of the meaning and probative strength of DNA profiling results when the competing propositions of interest refer to different activities. This need is widely demonstrated in day-to-day forensic practice and is also voiced in specialized literature. Yet many forensic scientists remain reluctant to assess their results given propositions that relate to different activities. Some scientists consider evaluations beyond the issue of source as being overly speculative, because of the lack of relevant data and knowledge regarding phenomena and mechanisms of transfer, persistence and background of DNA. Similarly, encouragements to deal with these activity issues, expressed in a recently released European guideline on evaluative reporting (Willis et al., 2015), which highlights the need for rethinking current practice, are sometimes viewed skeptically or are not considered feasible. In this discussion paper, we select and discuss recurrent skeptical views brought to our attention, as well as some of the alternative solutions that have been suggested. We will argue that the way forward is to address now, rather than later, the challenges associated with the evaluation of DNA results (from small quantities of trace material) in light of different activities to prevent them being misrepresented in court.
Investigation into stutter ratio variability between different laboratories.
Bright, Jo-Anne; Curran, James M
2014-11-01
The determination of parameters such as stutter ratio is important to inform a laboratory's forensic DNA profile interpretation strategy. As part of a large data analysis project to implement a continuous model of DNA profile interpretation we analysed stutter ratio data from eight different forensic laboratories for the Promega PowerPlex(®) 21 multiplex. This allowed a comparison of inter laboratory variation. The maximum difference for any one laboratory from the average of the best fit determined by the model was 0.31%. These results indicate that stutter ratios calculated from samples analysed using the same profiling kit are not expected to differ between laboratories, even those using different capillary electrophoresis platforms. A common set of laboratory parameters are able to be generated and used for profile interpretation at all laboratories using the same multiplex and cycle number, potentially reducing the need for individual laboratories to determine stutter ratios. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Checking of individuality by DNA profiling.
Brdicka, R; Nürnberg, P
1993-08-25
A review of methods of DNA analysis used in forensic medicine for identification, paternity testing, etc. is provided. Among other techniques, DNA fingerprinting using different probes and polymerase chain reaction-based techniques such as amplified sequence polymorphisms and minisatellite variant repeat mapping are thoroughly described and both theoretical and practical aspects are discussed.
Crouse, Cecelia A; Yeung, Stephanie; Greenspoon, Susan; McGuckian, Amy; Sikorsky, Julie; Ban, Jeff; Mathies, Richard
2005-08-01
To present validation studies performed for the implementation of existing and new technologies to increase the efficiency in the forensic DNA Section of the Palm Beach County Sheriff's Office (PBSO) Crime Laboratory. Using federally funded grants, internal support, and an external Process Mapping Team, the PBSO collaborated with forensic vendors, universities, and other forensic laboratories to enhance DNA testing procedures, including validation of the DNA IQ magnetic bead extraction system, robotic DNA extraction using the BioMek2000, the ABI7000 Sequence Detection System, and is currently evaluating a micro Capillary Array Electrophoresis device. The PBSO successfully validated and implemented both manual and automated Promega DNA IQ magnetic bead extractions system, which have increased DNA profile results from samples with low DNA template concentrations. The Beckman BioMek2000 DNA robotic workstation has been validated for blood, tissue, bone, hair, epithelial cells (touch evidence), and mixed stains such as semen. There has been a dramatic increase in the number of samples tested per case since implementation of the robotic extraction protocols. The validation of the ABI7000 real-time quantitative polymerase chain reaction (qPCR) technology and the single multiplex short tandem repeat (STR) PowerPlex16 BIO amplification system has provided both a time and a financial benefit. In addition, the qPCR system allows more accurate DNA concentration data and the PowerPlex 16 BIO multiplex generates DNA profiles data in half the time when compared to PowerPlex1.1 and PowerPlex2.1 STR systems. The PBSO's future efficiency requirements are being addressed through collaboration with the University of California at Berkeley and the Virginia Division of Forensic Science to validate microcapillary array electrophoresis instrumentation. Initial data demonstrated the electrophoresis of 96 samples in less than twenty minutes. The PBSO demonstrated, through the validation of more efficient extraction and quantification technology, an increase in the number of evidence samples tested using robotic/DNA IQ magnetic bead DNA extraction, a decrease in the number of negative samples amplified due to qPCR and implementation of a single multiplex amplification system. In addition, initial studies show the microcapillary array electrophoresis device (microCAE) evaluation results provide greater sensitivity and faster STR analysis output than current platforms.
Forensic DNA typing from teeth using demineralized root tips.
Corrêa, Heitor Simões Dutra; Pedro, Fabio Luis Miranda; Volpato, Luiz Evaristo Ricci; Pereira, Thiago Machado; Siebert Filho, Gilberto; Borges, Álvaro Henrique
2017-11-01
Teeth are widely used samples in forensic human genetic identification due to their persistence and practical sampling and processing. Their processing, however, has changed very little in the last 20 years, usually including powdering or pulverization of the tooth. The objective of this study was to present demineralized root tips as DNA sources while, at the same time, not involving powdering the samples or expensive equipment for teeth processing. One to five teeth from each of 20 unidentified human bodies recovered from midwest Brazil were analyzed. Whole teeth were demineralized in EDTA solution with daily solution change. After a maximum of approximately seven days, the final millimeters of the root tip was excised. This portion of the sample was used for DNA extraction through a conventional organic protocol. DNA quantification and STR amplification were performed using commercial kits followed by capillary electrophoresis on 3130 or 3500 genetic analyzers. For 60% of the unidentified bodies (12 of 20), a full genetic profile was obtained from the extraction of the first root tip. By the end of the analyses, full genetic profiles were obtained for 85% of the individuals studied, of which 80% were positively identified. This alternative low-tech approach for postmortem teeth processing is capable of extracting DNA in sufficient quantity and quality for forensic casework, showing that root tips are viable nuclear DNA sources even after demineralization. Copyright © 2017 Elsevier B.V. All rights reserved.
DNA Profiling of Convicted Offender Samples for the Combined DNA Index System
ERIC Educational Resources Information Center
Millard, Julie T
2011-01-01
The cornerstone of forensic chemistry is that a perpetrator inevitably leaves trace evidence at a crime scene. One important type of evidence is DNA, which has been instrumental in both the implication and exoneration of thousands of suspects in a wide range of crimes. The Combined DNA Index System (CODIS), a network of DNA databases, provides…
Criminal genomic pragmatism: prisoners' representations of DNA technology and biosecurity.
Machado, Helena; Silva, Susana
2012-01-01
Within the context of the use of DNA technology in crime investigation, biosecurity is perceived by different stakeholders according to their particular rationalities and interests. Very little is known about prisoners' perceptions and assessments of the uses of DNA technology in solving crime. To propose a conceptual model that serves to analyse and interpret prisoners' representations of DNA technology and biosecurity. A qualitative study using an interpretative approach based on 31 semi-structured tape-recorded interviews was carried out between May and September 2009, involving male inmates in three prisons located in the north of Portugal. The content analysis focused on the following topics: the meanings attributed to DNA and assessments of the risks and benefits of the uses of DNA technology and databasing in forensic applications. DNA was described as a record of identity, an exceptional material, and a powerful biometric identifier. The interviewees believed that DNA can be planted to incriminate suspects. Convicted offenders argued for the need to extend the criteria for the inclusion of DNA profiles in forensic databases and to restrict the removal of profiles. The conceptual model entitled criminal genomic pragmatism allows for an understanding of the views of prison inmates regarding DNA technology and biosecurity.
Weissensteiner, Hansi; Schönherr, Sebastian; Specht, Günther; Kronenberg, Florian; Brandstätter, Anita
2010-03-09
Mitochondrial DNA (mtDNA) is widely being used for population genetics, forensic DNA fingerprinting and clinical disease association studies. The recent past has uncovered severe problems with mtDNA genotyping, not only due to the genotyping method itself, but mainly to the post-lab transcription, storage and report of mtDNA genotypes. eCOMPAGT, a system to store, administer and connect phenotype data to all kinds of genotype data is now enhanced by the possibility of storing mtDNA profiles and allowing their validation, linking to phenotypes and export as numerous formats. mtDNA profiles can be imported from different sequence evaluation programs, compared between evaluations and their haplogroup affiliations stored. Furthermore, eCOMPAGT has been improved in its sophisticated transparency (support of MySQL and Oracle), security aspects (by using database technology) and the option to import, manage and store genotypes derived from various genotyping methods (SNPlex, TaqMan, and STRs). It is a software solution designed for project management, laboratory work and the evaluation process all-in-one. The extended mtDNA version of eCOMPAGT was designed to enable error-free post-laboratory data handling of human mtDNA profiles. This software is suited for small to medium-sized human genetic, forensic and clinical genetic laboratories. The direct support of MySQL and the improved database security options render eCOMPAGT a powerful tool to build an automated workflow architecture for several genotyping methods. eCOMPAGT is freely available at http://dbis-informatik.uibk.ac.at/ecompagt.
2010-01-01
Background Mitochondrial DNA (mtDNA) is widely being used for population genetics, forensic DNA fingerprinting and clinical disease association studies. The recent past has uncovered severe problems with mtDNA genotyping, not only due to the genotyping method itself, but mainly to the post-lab transcription, storage and report of mtDNA genotypes. Description eCOMPAGT, a system to store, administer and connect phenotype data to all kinds of genotype data is now enhanced by the possibility of storing mtDNA profiles and allowing their validation, linking to phenotypes and export as numerous formats. mtDNA profiles can be imported from different sequence evaluation programs, compared between evaluations and their haplogroup affiliations stored. Furthermore, eCOMPAGT has been improved in its sophisticated transparency (support of MySQL and Oracle), security aspects (by using database technology) and the option to import, manage and store genotypes derived from various genotyping methods (SNPlex, TaqMan, and STRs). It is a software solution designed for project management, laboratory work and the evaluation process all-in-one. Conclusions The extended mtDNA version of eCOMPAGT was designed to enable error-free post-laboratory data handling of human mtDNA profiles. This software is suited for small to medium-sized human genetic, forensic and clinical genetic laboratories. The direct support of MySQL and the improved database security options render eCOMPAGT a powerful tool to build an automated workflow architecture for several genotyping methods. eCOMPAGT is freely available at http://dbis-informatik.uibk.ac.at/ecompagt. PMID:20214782
An optimized procedure for obtaining DNA from fired and unfired ammunition.
Montpetit, Shawn; O'Donnell, Patrick
2015-07-01
Gun crimes are a significant problem facing law enforcement agencies. Traditional forensic examination of firearms involves comparisons of markings imparted to bullets and cartridge casings during the firing process. DNA testing of casings and cartridges may not be routinely done in crime laboratories due a variety of factors including the typically low amounts of DNA recovered. The San Diego Police Department (SDPD) Crime Laboratory conducted a study to optimize the collection and profiling of DNA from fired and unfired ammunition. The method was optimized to where interpretable DNA results were obtained for 26.1% of the total number of forensic casework evidence samples, and provided some insights into the level of secondary transfer that might be expected from this type of evidence. Briefly detailed are the results from the experimental study and the forensic casework analysis using the optimized process. Mixtures (samples having more DNA types than the loader's known genotype detected or visible at any marker) were obtained in 39.8% of research samples and the likely source of DNA mixtures is discussed. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Tucker, Valerie C; Kirkham, Amanda J; Hopwood, Andrew J
2012-05-01
We describe the forensic validation of Promega's PowerPlex® European Standard Investigator 16 (ESI 16) multiplex kit and compare results generated with the AmpFlSTR® SGM Plus® (SGM+) multiplex. ESI 16 combines the loci contained within the SGM+ multiplex with five additional loci: D2S441, D10S1248, D22S1045, D1S1656, and D12S391. A relative reduction in amplicon size of the SGM+ loci facilitates an increased robustness and amplification success of these amplicons with degraded DNA samples. Tests performed herein supplement ESI 16 data published previously with sensitivity, profile quality, mock casework, inhibitor and mixture study data collected in our laboratories in alignment with our internal technical and quality guidelines and those issued by the Scientific Working Group on DNA Analysis Methods (SWGDAM), the DNA Advisory Board (DAB) and the DNA working group (DNAWG) of the European Network of Forensic Science Institutes (ENFSI). Full profiles were routinely generated from a fully heterozygous single source DNA template using 62.5 pg for ESI 16 and 500 pg for SGM+. This increase in sensitivity has a consequent effect on mixture analyses and the detection of minor mixture components. The improved PCR chemistry confers enhanced tolerance to high levels of laboratory prepared inhibitors compared with SGM+ results. In summary, our results demonstrate that the ESI 16 multiplex kit is more robust and sensitive compared with SGM+ and will be a suitable replacement system for the analysis of forensic DNA samples providing compliance with the European standard set of STR loci.
Development of a novel forensic STR multiplex for ancestry analysis and extended identity testing.
Phillips, Chris; Fernandez-Formoso, Luis; Gelabert-Besada, Miguel; Garcia-Magariños, Manuel; Santos, Carla; Fondevila, Manuel; Carracedo, Angel; Lareu, Maria Victoria
2013-04-01
There is growing interest in developing additional DNA typing techniques to provide better investigative leads in forensic analysis. These include inference of genetic ancestry and prediction of common physical characteristics of DNA donors. To date, forensic ancestry analysis has centered on population-divergent SNPs but these binary loci cannot reliably detect DNA mixtures, common in forensic samples. Furthermore, STR genotypes, forming the principal DNA profiling system, are not routinely combined with forensic SNPs to strengthen frequency data available for ancestry inference. We report development of a 12-STR multiplex composed of ancestry informative marker STRs (AIM-STRs) selected from 434 tetranucleotide repeat loci. We adapted our online Bayesian classifier for AIM-SNPs: Snipper, to handle multiallele STR data using frequency-based training sets. We assessed the ability of the 12-plex AIM-STRs to differentiate CEPH Human Genome Diversity Panel populations, plus their informativeness combined with established forensic STRs and AIM-SNPs. We found combining STRs and SNPs improves the success rate of ancestry assignments while providing a reliable mixture detection system lacking from SNP analysis alone. As the 12 STRs generally show a broad range of alleles in all populations, they provide highly informative supplementary STRs for extended relationship testing and identification of missing persons with incomplete reference pedigrees. Lastly, mixed marker approaches (combining STRs with binary loci) for simple ancestry inference tests beyond forensic analysis bring advantages and we discuss the genotyping options available. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mock jurors' use of error rates in DNA database trawls.
Scurich, Nicholas; John, Richard S
2013-12-01
Forensic science is not infallible, as data collected by the Innocence Project have revealed. The rate at which errors occur in forensic DNA testing-the so-called "gold standard" of forensic science-is not currently known. This article presents a Bayesian analysis to demonstrate the profound impact that error rates have on the probative value of a DNA match. Empirical evidence on whether jurors are sensitive to this effect is equivocal: Studies have typically found they are not, while a recent, methodologically rigorous study found that they can be. This article presents the results of an experiment that examined this issue within the context of a database trawl case in which one DNA profile was tested against a multitude of profiles. The description of the database was manipulated (i.e., "medical" or "offender" database, or not specified) as was the rate of error (i.e., one-in-10 or one-in-1,000). Jury-eligible participants were nearly twice as likely to convict in the offender database condition compared to the condition not specified. The error rates did not affect verdicts. Both factors, however, affected the perception of the defendant's guilt, in the expected direction, although the size of the effect was meager compared to Bayesian prescriptions. The results suggest that the disclosure of an offender database to jurors might constitute prejudicial evidence, and calls for proficiency testing in forensic science as well as training of jurors are echoed. (c) 2013 APA, all rights reserved
The first successful use of a low stringency familial match in a French criminal investigation.
Pham-Hoai, Emmanuel; Crispino, Frank; Hampikian, Greg
2014-05-01
We describe how a very simple application of familial searching resolved a decade-old, high-profile rape/murder in France. This was the first use of familial searching in a criminal case using the French STR DNA database, which contains approximately 1,800,000 profiles. When an unknown forensic profile (18 loci) was searched against the French arrestee/offender database using CODIS configured for a low stringency search, a single low stringency match was identified. This profile was attributed to the father of the man suspected to be the source of the semen recovered from the murder victim Elodie Kulik. The identification was confirmed using Y-chromosome DNA from the putative father, an STR profile from the mother, and finally a tissue sample from the exhumed body of the man who left the semen. Because of this identification, the investigators are now pursuing possible co-conspirators. © 2014 American Academy of Forensic Sciences.
Inbar, Ehud; Lawyer, Philip; Sacks, David; Podini, Daniele
2016-05-01
In the Indian sub-continent, visceral leishmaniasis (VL), also known as kala azar, is a fatal form of leishmaniasis caused by the kinetoplastid parasite Leishmania donovani and transmitted by the sand fly Phlebotomus argentipes. VL is prevalent in northeast India where it is believed to have an exclusive anthroponotic transmission cycle. There are four distinct cohorts of L. donovani exposed individuals who can potentially serve as infection reservoirs: patients with active disease, cured VL cases, patients with post kala azar dermal leishmaniasis (PKDL), and asymptomatic individuals. The relative contribution of each group to sustaining the transmission cycle of VL is not known. To answer this critical epidemiological question, we have addressed the feasibility of an approach that would use forensic DNA methods to recover human DNA profiles from the blood meals of infected sand flies that would then be matched to reference DNA sampled from individuals living or working in the vicinity of the sand fly collections. We found that the ability to obtain readable human DNA fingerprints from sand flies depended entirely on the size of the blood meal and the kinetics of its digestion. Useable profiles were obtained from most flies within the first 24 hours post blood meal (PBM), with a sharp decline at 48 hours and no readable profiles at 72 hours. This early time frame necessitated development of a sensitive, nested-PCR method compatible with detecting L. donovani within a fresh, 24 hours blood meal in flies fed on infected hamsters. Our findings establish the feasibility of the forensic DNA method to directly trace the human source of an infected blood meal, with constraints imposed by the requirement that the flies be recovered for analysis within 24 hours of their infective feed.
Ananian, Viviana; Tozzo, Pamela; Ponzano, Elena; Nitti, Donato; Rodriguez, Daniele; Caenazzo, Luciana
2011-05-01
In certain circumstances, tumour tissue specimens are the only DNA resource available for forensic DNA analysis. However, cancer tissues can show microsatellite instability and loss of heterozygosity which, if concerning the short tandem repeats (STRs) used in the forensic field, can cause misinterpretation of the results. Moreover, though formalin-fixed paraffin-embedded tissues (FFPET) represent a large resource for these analyses, the quality of the DNA obtained from this kind of specimen can be an important limit. In this study, we evaluated the use of tumoural tissue as biological material for the determination of genetic profiles in the forensic field, highlighting which STR polymorphisms are more susceptible to tumour genetic alterations and which of the analysed tumours show a higher genetic variability. The analyses were conducted on samples of the same tissues conserved in different storage conditions, to compare genetic profiles obtained by frozen tissues and formalin-fixed paraffin-embedded tissues. The importance of this study is due to the large number of specimens analysed (122), the large number of polymorphisms analysed for each specimen (39), and the possibility to compare, many years after storage, the same tissue frozen and formalin-fixed paraffin-embedded. In the comparison between the genetic profiles of frozen tumour tissues and FFPET, the same genetic alterations have been reported in both kinds of specimens. However, FFPET showed new alterations. We conclude that the use of FFPET requires greater attention than frozen tissues in the results interpretation and great care in both pre-extraction and extraction processes.
The "Starch Wars" and the Early History of DNA Profiling.
Aronson, J D
2006-01-01
Just as the movie Star Wars had a prequel, so did the "DNA Wars"-the series of legal, scientific, and personal battles that took place over the admissibility of forensic DNA evidence from 1989 to 1994. Between the late 1970s and the mid-1980s, another forensic identification technique became mired in controversy: electrophoresis-based blood protein analysis. Although the debates over blood analysis were every bit as rancorous and frustrating to almost everybody involved - so much so that they became known as the "Starch Wars" - their importance has not been adequately appreciated in the recent history of forensic science. After reviewing the early history of blood typing, I will describe the development of the Multi-System approach to blood protein analysis that took place in California from 1977 to 1978. I will then elucidate the history of the Starch Wars, and demonstrate the ways that they shaped subsequent disputes over DNA evidence, especially in California. I will show that: (a) many of the forensic scientists, law enforcement officials, and lawyers who became prominent players in the DNA Wars were deeply involved in the court cases involving protein electrophoresis; and (b) many of the issues that became controversial in the disputes over DNA evidence first emerged in the Starch Wars. In the conclusion, I will suggest various ways to improve the quality of forensic science based on my analysis of the Starch Wars. Copyright © 2006 Central Police University.
Goga, Haruhisa
2012-09-01
It is crucial to identify the owner of unattended footwear left at a crime scene. However, retrieving enough DNA for DNA profiling from the owner's foot skin (plantar skin) cells from inside the footwear is often unsuccessful. This is sometimes because footwear that is used on a daily basis contains an abundance of bacteria that degrade DNA. Further, numerous other factors related to the inside of the shoe, such as high humidity and temperature, can encourage bacterial growth inside the footwear and enhance DNA degradation. This project sought to determine if bacteria from inside footwear could be used for footwear trace evidence. The plantar skins and insoles of shoes of volunteers were swabbed for bacteria, and their bacterial community profiles were compared using bacterial 16S rRNA terminal restriction fragment length polymorphism analysis. Sufficient bacteria were recovered from both footwear insoles and the plantar skins of the volunteers. The profiling identified that each volunteer's plantar skins harbored unique bacterial communities, as did the individuals' footwear insoles. In most cases, a significant similarity in the bacterial community was identified for the matched foot/insole swabs from each volunteer, as compared with those profiles from different volunteers. These observations indicate the probability to discriminate the owner of footwear by comparing the microbial DNA fingerprint from inside footwear with that of the skin from the soles of the feet of the suspected owner. This novel strategy will offer auxiliary forensic footwear evidence for human DNA identification, although further investigations into this technique are required.
Santurtún, Ana; Riancho, José A; Santurtún, Maite; Richard, Carlos; Colorado, M Mercedes; García Unzueta, Mayte; Zarrabeitia, María T
2017-09-01
Biological samples from patients who have undergone allogeneic hematopoietic stem cell transplantation (HSCT) constitute a challenge for individual identification. In this study we analyzed the genetic profiles (by the amplification of 15 autosomic STRs) of HSCT patients found in different types of samples (blood, hair and urine) that may be the source of DNA in civil or criminal forensic cases. Our results show that while in hair follicles the donor component was not detected in any patient, thus being a reliable source of biological material for forensic identification, mixed chimerism was detected in urine samples from all patient, and no correlation was found between the time elapsed from the transplant and the percentage of chimerism. These results certainly have practical implications if the urine is being considered as a source of DNA for identification purposes in HSTC patients. Moreover, taking into consideration that chimerism was found not only in patients with leukocyturia (given the hematopoietic origin of leukocytes, this was expected), but also in those without observable leukocytes in the sediment, we conclude that an alternative source or sources of donor DNA must be implicated. Copyright © 2017 The Chartered Society of Forensic Sciences. Published by Elsevier B.V. All rights reserved.
DNA profiling of trace evidence--mitigating evidence in a dog biting case.
Brauner, P; Reshef, A; Gorski, A
2001-09-01
A young girl was the victim of a severe dog attack. An animal, suspected of having caused the attack, was later impounded for investigation. Microclots of blood, recovered from the dog's fur, were analyzed by STR DNA. Results showed that this blood was not related to the biting. Other forensic evidence--hairs, fibers, and odontology--failed to connect a particular animal to the attack. The implications of these findings for the dog and its owners are discussed as well as other forensic methods for resolving such cases.
Forensic botany: usability of bryophyte material in forensic studies.
Virtanen, Viivi; Korpelainen, Helena; Kostamo, Kirsi
2007-10-25
Two experiments were performed to test the relevance of bryophyte (Plantae, Bryophyta) material for forensic studies. The first experiment was conducted to reveal if, and how well, plant fragments attach to footwear in general. In the test, 16 persons walked outdoors wearing rubber boots or hiking boots. After 24h of use outdoors the boots were carefully cleaned, and all plant fragments were collected. Afterwards, all plant material was examined to identify the species. In the second experiment, fresh material of nine bryophyte species was kept in a shed in adverse conditions for 18 months, after which DNA was extracted and subjected to genotyping to test the quality of the material. Both experiments give support for the usability of bryophyte material in forensic studies. The bryophyte fragments become attached to shoes, where they remain even after the wearer walks on a dry road for several hours. Bryophyte DNA stays intact, allowing DNA profiling after lengthy periods following detachment from the original plant source. Based on these experiments, and considering the fact that many bryophytes are clonal plants, we propose that bryophytes are among the most usable plants to provide botanical evidence for forensic investigations.
Application of DNA Profiling in Resolving Aviation Forensic Toxicology Issues
2009-10-01
National Technical Information Service, Springfield, VA 22161 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21 ...J,. Schumm. JW ..Development. of. highly. polymorphic.pentanucleotide.tandem.repeat.loci. with.low.stutter ..Profiles in DNA ..1998;2:3–6 . 21 ... PowerPlex ™ 16 System, Technical Manual No. D012 ..Madison,.WI:.Promega.Cor- poration;. 2000. (Available. at:. www .cstl .nist .gov/ strbase/images
Age Estimation with DNA: From Forensic DNA Fingerprinting to Forensic (Epi)Genomics: A Mini-Review.
Parson, Walther
2018-01-01
Forensic genetics developed from protein-based techniques a quarter of a century ago and became famous as "DNA fingerprinting," this being based on restriction fragment length polymorphisms (RFLPs) of high-molecular-weight DNA. The amplification of much smaller short tandem repeat (STR) sequences using the polymerase chain reaction soon replaced RFLP analysis and advanced to become the gold standard in genetic identification. Meanwhile, STR multiplexes have been developed and made commercially available which simultaneously amplify up to 30 STR loci from as little as 15 cells or fewer. The enormous information content that comes with the large variety of observed STR genotypes allows for genetic individualisation (with the exception of identical twins). Carefully selected core STR loci form the basis of intelligence-led DNA databases that provide investigative leads by linking unsolved crime scenes and criminals through their matched STR profiles. Nevertheless, the success of modern DNA fingerprinting depends on the availability of reference material from suspects. In order to provide new investigative leads in cases where such reference samples are absent, forensic scientists started to explore the prediction of phenotypic traits from the DNA of the evidentiary sample. This paradigm change now uses DNA and epigenetic markers to forecast characteristics that are useful to triage further investigative work. So far, the best investigated externally visible characteristics are eye, hair and skin colour, as well as geographic ancestry and age. Information on the chronological age of a stain donor (or any sample donor) is elemental for forensic investigations in a number of aspects and has, therefore, been explored by researchers in some detail. Among different methodological approaches tested to date, the methylation-sensitive analysis of carefully selected DNA markers (CpG sites) has brought the most promising results by providing prediction accuracies of ±3-4 years, which can be comparable to, or even surpass those from, eyewitness reports. This mini-review puts recent developments in age estimation via (epi)genetic methods in the context of the requirements and goals of forensic genetics and highlights paths to follow in the future of forensic genomics. © 2018 S. Karger AG, Basel.
Fontana, F; Rapone, C; Bregola, G; Aversa, R; de Meo, A; Signorini, G; Sergio, M; Ferrarini, A; Lanzellotto, R; Medoro, G; Giorgini, G; Manaresi, N; Berti, A
2017-07-01
Latest genotyping technologies allow to achieve a reliable genetic profile for the offender identification even from extremely minute biological evidence. The ultimate challenge occurs when genetic profiles need to be retrieved from a mixture, which is composed of biological material from two or more individuals. In this case, DNA profiling will often result in a complex genetic profile, which is then subject matter for statistical analysis. In principle, when more individuals contribute to a mixture with different biological fluids, their single genetic profiles can be obtained by separating the distinct cell types (e.g. epithelial cells, blood cells, sperm), prior to genotyping. Different approaches have been investigated for this purpose, such as fluorescent-activated cell sorting (FACS) or laser capture microdissection (LCM), but currently none of these methods can guarantee the complete separation of different type of cells present in a mixture. In other fields of application, such as oncology, DEPArray™ technology, an image-based, microfluidic digital sorter, has been widely proven to enable the separation of pure cells, with single-cell precision. This study investigates the applicability of DEPArray™ technology to forensic samples analysis, focusing on the resolution of the forensic mixture problem. For the first time, we report here the development of an application-specific DEPArray™ workflow enabling the detection and recovery of pure homogeneous cell pools from simulated blood/saliva and semen/saliva mixtures, providing full genetic match with genetic profiles of corresponding donors. In addition, we assess the performance of standard forensic methods for DNA quantitation and genotyping on low-count, DEPArray™-isolated cells, showing that pure, almost complete profiles can be obtained from as few as ten haploid cells. Finally, we explore the applicability in real casework samples, demonstrating that the described approach provides complete separation of cells with outstanding precision. In all examined cases, DEPArray™ technology proves to be a groundbreaking technology for the resolution of forensic biological mixtures, through the precise isolation of pure cells for an incontrovertible attribution of the obtained genetic profiles. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Tozzo, Pamela; Fassina, Antonio; Caenazzo, Luciana
2017-12-01
Current policy approaches to social and ethical issues surrounding biobanks manifest lack of public information given by researchers and government, despite the evidence that Italian citizens are well informed about technical and other public perspectives of biotechnologies. For this reason, the focus of our survey was to interview our University's students on these aspects. The sample consisted of Padua University students (N = 959), who were administered a questionnaire comprising eight questions covering their knowledge about biobanks, their perception of the related benefits and risks, their willingness to donate samples to a biobank for research purposes, their attitude to having their own DNA profile included in a forensic DNA database, and the reasons behind their answers. The vast majority of the students invited to take part in the survey completed the questionnaire, and the number of participants sufficed to be considered representative of the target population. Despite the respondents' unfamiliarity with the topics explored, suggested by the huge group of respondents answering "I don't know" to the questions regarding Itaian regulation and reality, their answers demonstrate a general agreement to participate in a biobanking scheme for research purposes, as expressed by the 91% of respondents who were reportedly willing to donate their samples. As for the idea of a forensic DNA database, 35% of respondents said they would agree to having their profile included in such a database, even if they were not fully aware of the benefits and risks of such action.This study shows that Italian people with a higher education take a generally positive attitude to the idea of donating biological samples. It contributes to empirical evidence of what Italy's citizens understand about biobanking, and of their willingness to donate samples for research purposes, and also to have their genetic profiles included in a national forensic DNA database. Our findings may have clear implications for the policy discussion on biobanks in Italy, in particular it is important to take into account the Italian population's poor consciousness of forensic DNA database, in order to ensure a better interaction between policy makers and citizens and to make them more aware of the need to balance the individual's rights and the security of society.
"New turns from old STaRs": enhancing the capabilities of forensic short tandem repeat analysis.
Phillips, Christopher; Gelabert-Besada, Miguel; Fernandez-Formoso, Luis; García-Magariños, Manuel; Santos, Carla; Fondevila, Manuel; Ballard, David; Syndercombe Court, Denise; Carracedo, Angel; Lareu, Maria Victoria
2014-11-01
The field of research and development of forensic STR genotyping remains active, innovative, and focused on continuous improvements. A series of recent developments including the introduction of a sixth dye have brought expanded STR multiplex sizes while maintaining sensitivity to typical forensic DNA. New supplementary kits complimenting the core STRs have also helped improve analysis of challenging identification cases such as distant pairwise relationships in deficient pedigrees. This article gives an overview of several recent key developments in forensic STR analysis: availability of expanded core STR kits and supplementary STRs, short-amplicon mini-STRs offering practical options for highly degraded DNA, Y-STR enhancements made from the identification of rapidly mutating loci, and enhanced analysis of genetic ancestry by analyzing 32-STR profiles with a Bayesian forensic classifier originally developed for SNP population data. As well as providing scope for genotyping larger numbers of STRs optimized for forensic applications, the launch of compact next-generation sequencing systems provides considerable potential for genotyping the sizeable proportion of nucleotide variation existing in forensic STRs, which currently escapes detection with CE. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Random whole metagenomic sequencing for forensic discrimination of soils.
Khodakova, Anastasia S; Smith, Renee J; Burgoyne, Leigh; Abarno, Damien; Linacre, Adrian
2014-01-01
Here we assess the ability of random whole metagenomic sequencing approaches to discriminate between similar soils from two geographically distinct urban sites for application in forensic science. Repeat samples from two parklands in residential areas separated by approximately 3 km were collected and the DNA was extracted. Shotgun, whole genome amplification (WGA) and single arbitrarily primed DNA amplification (AP-PCR) based sequencing techniques were then used to generate soil metagenomic profiles. Full and subsampled metagenomic datasets were then annotated against M5NR/M5RNA (taxonomic classification) and SEED Subsystems (metabolic classification) databases. Further comparative analyses were performed using a number of statistical tools including: hierarchical agglomerative clustering (CLUSTER); similarity profile analysis (SIMPROF); non-metric multidimensional scaling (NMDS); and canonical analysis of principal coordinates (CAP) at all major levels of taxonomic and metabolic classification. Our data showed that shotgun and WGA-based approaches generated highly similar metagenomic profiles for the soil samples such that the soil samples could not be distinguished accurately. An AP-PCR based approach was shown to be successful at obtaining reproducible site-specific metagenomic DNA profiles, which in turn were employed for successful discrimination of visually similar soil samples collected from two different locations.
Cox, Jordan O; DeCarmen, Teresa Sikes; Ouyang, Yiwen; Strachan, Briony; Sloane, Hillary; Connon, Cathey; Gibson, Kemper; Jackson, Kimberly; Landers, James P; Cruz, Tracey Dawson
2016-12-01
This work describes the development of a novel microdevice for forensic DNA processing of reference swabs. This microdevice incorporates an enzyme-based assay for DNA preparation, which allows for faster processing times and reduced sample handling. Infrared-mediated PCR (IR-PCR) is used for STR amplification using a custom reaction mixture, allowing for amplification of STR loci in 45 min while circumventing the limitations of traditional block thermocyclers. Uniquely positioned valves coupled with a simple rotational platform are used to exert fluidic control, eliminating the need for bulky external equipment. All microdevices were fabricated using laser ablation and thermal bonding of PMMA layers. Using this microdevice, the enzyme-mediated DNA liberation module produced DNA yields similar to or higher than those produced using the traditional (tube-based) protocol. Initial microdevice IR-PCR experiments to test the amplification module and reaction (using Phusion Flash/SpeedSTAR) generated near-full profiles that suffered from interlocus peak imbalance and poor adenylation (significant -A). However, subsequent attempts using KAPA 2G and Pfu Ultra polymerases generated full STR profiles with improved interlocus balance and the expected adenylated product. A fully integrated run designed to test microfluidic control successfully generated CE-ready STR amplicons in less than 2 h (<1 h of hands-on time). Using this approach, high-quality STR profiles were developed that were consistent with those produced using conventional DNA purification and STR amplification methods. This method is a smaller, more elegant solution than current microdevice methods and offers a cheaper, hands-free, closed-system alternative to traditional forensic methods. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resolution of aviation forensic toxicology findings with the aid of DNA profiling.
Chaturvedi, Arvind K; Craft, Kristi J; Kupfer, Doris M; Burian, Dennis; Canfield, Dennis V
2011-03-20
Body components of aviation accident fatalities are often scattered, disintegrated, commingled, contaminated, and/or putrefied at accident scenes. These situations may impose difficulties in victim identification/tissue matching. The prevalence of misidentification in relation to aviation accident forensic toxicology has not been well established. Therefore, the Civil Aerospace Medical Institute (CAMI) toxicology database was searched for the 1998-2008 period for those cases wherein DNA profiling was performed to resolve identity issue of the samples submitted to CAMI for toxicological evaluation. During this period, biological samples from the casualties of a total of 3523 accidents were submitted to CAMI. The submitted samples were primarily from pilots. Out of the 3523 accidents, at least, one fatality had occurred in 3366 (≈ 96%) accidents; thus, these accidents were considered fatal accidents. Accordingly, biological samples from 3319 pilots (3319 of the 3366 accidents) were received at CAMI for toxicological testing. Of these 3319 pilots, 3275 (≈ 99%) were fatally injured. DNA profiling was performed in 15 (≈ 0.5%) of the 3319 accidents. The profiling was conducted upon the requests of families in two accidents, accident investigators in three, and pathologists in four. In six accidents, contradictory toxicological findings led CAMI to initiate DNA profiling. The requests made by families and investigators were primarily triggered by inconsistency between the toxicological results and the history of drug use of the victims, while by pathologists because of commingling of samples. In three (20%) of the 15 accidents, at least one submitted sample was misidentified or mislabeled. The present study demonstrated that the number of aviation accident cases requiring DNA profiling was small and this DNA approach was effectively applied in resolving aviation toxicology findings associated with those accidents. Published by Elsevier Ireland Ltd.
Ogden, Samantha J; Horton, Jeffrey K; Stubbs, Simon L; Tatnell, Peter J
2015-01-01
The 1.2 mm Electric Coring Tool (e-Core™) was developed to increase the throughput of FTA(™) sample collection cards used during forensic workflows and is similar to a 1.2 mm Harris manual micro-punch for sampling dried blood spots. Direct short tandem repeat (STR) DNA profiling was used to compare samples taken by the e-Core tool with those taken by the manual micro-punch. The performance of the e-Core device was evaluated using a commercially available PowerPlex™ 18D STR System. In addition, an analysis was performed that investigated the potential carryover of DNA via the e-Core punch from one FTA disc to another. This contamination study was carried out using Applied Biosystems AmpflSTR™ Identifiler™ Direct PCR Amplification kits. The e-Core instrument does not contaminate FTA discs when a cleaning punch is used following excision of discs containing samples and generates STR profiles that are comparable to those generated by the manual micro-punch. © 2014 American Academy of Forensic Sciences.
Kim, Eun Hye; Lee, Hwan Young; Yang, In Seok; Jung, Sang-Eun; Yang, Woo Ick; Shin, Kyoung-Jin
2016-05-01
The next-generation sequencing (NGS) method has been utilized to analyze short tandem repeat (STR) markers, which are routinely used for human identification purposes in the forensic field. Some researchers have demonstrated the successful application of the NGS system to STR typing, suggesting that NGS technology may be an alternative or additional method to overcome limitations of capillary electrophoresis (CE)-based STR profiling. However, there has been no available multiplex PCR system that is optimized for NGS analysis of forensic STR markers. Thus, we constructed a multiplex PCR system for the NGS analysis of 18 markers (13CODIS STRs, D2S1338, D19S433, Penta D, Penta E and amelogenin) by designing amplicons in the size range of 77-210 base pairs. Then, PCR products were generated from two single-sources, mixed samples and artificially degraded DNA samples using a multiplex PCR system, and were prepared for sequencing on the MiSeq system through construction of a subsequent barcoded library. By performing NGS and analyzing the data, we confirmed that the resultant STR genotypes were consistent with those of CE-based typing. Moreover, sequence variations were detected in targeted STR regions. Through the use of small-sized amplicons, the developed multiplex PCR system enables researchers to obtain successful STR profiles even from artificially degraded DNA as well as STR loci which are analyzed with large-sized amplicons in the CE-based commercial kits. In addition, successful profiles can be obtained from mixtures up to a 1:19 ratio. Consequently, the developed multiplex PCR system, which produces small size amplicons, can be successfully applied to STR NGS analysis of forensic casework samples such as mixtures and degraded DNA samples. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Lepez, Trees; Vandewoestyne, Mado; Van Hoofstat, David; Deforce, Dieter
2014-11-01
The success rate of STR profiling of hairs found at a crime scene is quite low and negative results of hair analysis are frequently reported. To increase the success rate of DNA analysis of hairs in forensics, nuclei in hair roots can be counted after staining the hair root with DAPI. Two staining methods were tested: a longer method with two 1h incubations in respectively a DAPI- and a wash-solution, and a fast, direct staining of the hair root on microscope slides. The two staining methods were not significantly different. The results of the STR analysis for both procedures showed that 20 nuclei are necessary to obtain at least partial STR profiles. When more than 50 nuclei were counted, full STR profiles were always obtained. In 96% of the cases where no nuclei were detected, no STR profile could be obtained. However, 4% of the DAPI-negative hair roots resulted in at least partial STR profiles. Therefore, each forensic case has to be evaluated separately in function of the importance of the evidential value of the found hair. The fast staining method was applied in 36 forensic cases on 279 hairs in total. A fast screening method using DAPI can be used to increase the success rate of hair analysis in forensics. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Characterization of UVC-induced DNA damage in bloodstains: forensic implications.
Hall, Ashley; Ballantyne, Jack
2004-09-01
The ability to detect DNA polymorphisms using molecular genetic techniques has revolutionized the forensic analysis of biological evidence. DNA typing now plays a critical role within the criminal justice system, but one of the limiting factors with the technology is that DNA isolated from biological stains recovered from the crime scene is sometimes so damaged as to be intractable to analysis. Potential remedies for damaged DNA are likely to be dependent upon the precise nature of the DNA damage present in any particular sample but, unfortunately, current knowledge of the biochemical nature, and the extent, of such DNA damage in dried biological stains is rudimentary. As a model for DNA damage assessment in biological stains recovered from crime scenes, we have subjected human bloodstains and naked DNA in the hydrated and dehydrated states to varying doses of UVC radiation. It was possible to damage the DNA sufficiently in a bloodstain to cause a standard autosomal short tandem repeat (STR) profile to be lost. However, a detailed analysis of the process, based upon assays developed to detect bipyrimidine photoproducts (BPPPs), single- and double-strand breaks, and DNA-DNA crosslinks, produced some unexpected findings. Contrary to the situation with living tissues or cells in culture, the predominant UVC-induced damage to DNA in bloodstains appears not to be pyrimidine dimers. Although some evidence for the presence of BPPPs and DNA crosslinks was obtained, the major form of UVC damage causing genetic profile loss appeared to be single-strand breaks. It was not possible, however, to preclude the possibility that a combination of damage types was responsible for the profile loss observed. We demonstrate here that a significant measure of protection against UVC-mediated genetic profile loss in dried biological stain material is afforded by the dehydrated state of the DNA and, to a lesser extent, the DNA cellular milieu.
How convincing is a matching Y-chromosome profile?
2017-01-01
The introduction of forensic autosomal DNA profiles was controversial, but the problems were successfully addressed, and DNA profiling has gone on to revolutionise forensic science. Y-chromosome profiles are valuable when there is a mixture of male-source and female-source DNA, and interest centres on the identity of the male source(s) of the DNA. The problem of evaluating evidential weight is even more challenging for Y profiles than for autosomal profiles. Numerous approaches have been proposed, but they fail to deal adequately with the fact that men with matching Y-profiles are related in extended patrilineal clans, many of which may not be represented in available databases. The higher mutation rates of modern profiling kits have led to increased discriminatory power but they have also exacerbated the problem of fairly conveying evidential value. Because the relevant population is difficult to define, yet the number of matching relatives is fixed as population size varies, it is typically infeasible to derive population-based match probabilities relevant to a specific crime. We propose a conceptually simple solution, based on a simulation model and software to approximate the distribution of the number of males with a matching Y profile. We show that this distribution is robust to different values for the variance in reproductive success and the population growth rate. We also use importance sampling reweighting to derive the distribution of the number of matching males conditional on a database frequency, finding that this conditioning typically has only a modest impact. We illustrate the use of our approach to quantify the value of Y profile evidence for a court in a way that is both scientifically valid and easily comprehensible by a judge or juror. PMID:29099833
Teodorović, Smilja; Mijović, Dragan; Radovanović Nenadić, Una; Savić, Marina
2017-05-01
Worldwide, the establishment of national forensic DNA databases has transformed personal identification in the criminal justice system over the past two decades. It has also stimulated much debate centering on ethical issues, human rights, individual privacy, lack of safeguards and other standards. Therefore, a balance between effectiveness and intrusiveness of a national DNA repository is an imperative and needs to be achieved through a suitable legal framework. On its path to the European Union (EU), the Republic of Serbia is required to harmonize its national policies and legislation with the EU. Specifically, Chapter 24 of the EU acquis communautaire (Justice, Freedom and Security) stipulates the compulsory creation of a forensic DNA registry and adoption of corresponding legislation. This process is expected to occur in 2016. Thus, in light of launching the national DNA database, the goal of this work is to instigate a consultation with the Serbian public regarding their views on various aspects of the forensic DNA databank. Importantly, this study specifically assessed the opinions of distinct categories of citizens, including the general public, the prosecutors' offices staff, prisoners, prison guards, and students majoring in criminalistics. Our findings set a baseline for Serbian attitudes towards DNA databank custody, DNA sample and profile inclusion and retention criteria, ethical issues and concerns. Furthermore, results clearly demonstrate a permissive outlook of the respondents who are professional "beneficiaries" of genetic profiling and a restrictive position taken by the respondents whose genetic material has been acquired by the government. We believe that this opinion poll will be essential in discussions regarding a national DNA database, as well as in motivating further research on the reasons behind the observed views and subsequent development of educational strategies. All of these are, in turn, expected to aid the creation of suitable legislation and to increase societal confidence that the repository will be used in the legal system without interference with individual rights and freedoms. Copyright © 2017 Elsevier B.V. All rights reserved.
[Development of Chinese forensic Y-STR DNA database].
Ge, Jian-Ye; Yan, Jiang-Wei; Xie, Qun; Sun, Hong-Yu; Zhou, Huai-Gu; Li, Bin
2013-06-01
Y chromosome is a male-specific paternal inherited chromosome. The STR markers on Y chromosome have been widely used in forensic practices. This article summarizes the characteristics of Y-STR and some factors are considered of selecting appropriate Y-STR markers for Chinese population. The prospects of existing and potential forensic applications of Y-STR profiles are discussed including familial excluding, familial searching, crowd source deducing, mixture sample testing, and kinship identifying. The research, development, verification of Y-STR kit, Y-STR mutation rate, and search software are explored and some suggestions are given.
Science, truth, and forensic cultures: the exceptional legal status of DNA evidence.
Lynch, Michael
2013-03-01
Many epistemological terms, such as investigation, inquiry, argument, evidence, and fact were established in law well before being associated with science. However, while legal proof remained qualified by standards of 'moral certainty', scientific proof attained a reputation for objectivity. Although most forms of legal evidence (including expert evidence) continue to be treated as fallible 'opinions' rather than objective 'facts', forensic DNA evidence increasingly is being granted an exceptional factual status. It did not always enjoy such status. Two decades ago, the scientific status of forensic DNA evidence was challenged in the scientific literature and in courts of law, but by the late 1990s it was being granted exceptional legal status. This paper reviews the ascendancy of DNA profiling, and argues that its widely-heralded objective status is bound up with systems of administrative accountability. The 'administrative objectivity' of DNA evidence rests upon observable and reportable bureaucratic rules, records, recording devices, protocols, and architectural arrangements. By highlighting administrative sources of objectivity, this paper suggests that DNA evidence remains bound within the context of ordinary organisational and practical routines, and is not a transcendent source of 'truth' in the criminal justice system. Copyright © 2012. Published by Elsevier Ltd.
Jäger, Anne C; Alvarez, Michelle L; Davis, Carey P; Guzmán, Ernesto; Han, Yonmee; Way, Lisa; Walichiewicz, Paulina; Silva, David; Pham, Nguyen; Caves, Glorianna; Bruand, Jocelyne; Schlesinger, Felix; Pond, Stephanie J K; Varlaro, Joe; Stephens, Kathryn M; Holt, Cydne L
2017-05-01
Human DNA profiling using PCR at polymorphic short tandem repeat (STR) loci followed by capillary electrophoresis (CE) size separation and length-based allele typing has been the standard in the forensic community for over 20 years. Over the last decade, Next-Generation Sequencing (NGS) matured rapidly, bringing modern advantages to forensic DNA analysis. The MiSeq FGx™ Forensic Genomics System, comprised of the ForenSeq™ DNA Signature Prep Kit, MiSeq FGx™ Reagent Kit, MiSeq FGx™ instrument and ForenSeq™ Universal Analysis Software, uses PCR to simultaneously amplify up to 231 forensic loci in a single multiplex reaction. Targeted loci include Amelogenin, 27 common, forensic autosomal STRs, 24 Y-STRs, 7 X-STRs and three classes of single nucleotide polymorphisms (SNPs). The ForenSeq™ kit includes two primer sets: Amelogenin, 58 STRs and 94 identity informative SNPs (iiSNPs) are amplified using DNA Primer Set A (DPMA; 153 loci); if a laboratory chooses to generate investigative leads using DNA Primer Set B, amplification is targeted to the 153 loci in DPMA plus 22 phenotypic informative (piSNPs) and 56 biogeographical ancestry SNPs (aiSNPs). High-resolution genotypes, including detection of intra-STR sequence variants, are semi-automatically generated with the ForenSeq™ software. This system was subjected to developmental validation studies according to the 2012 Revised SWGDAM Validation Guidelines. A two-step PCR first amplifies the target forensic STR and SNP loci (PCR1); unique, sample-specific indexed adapters or "barcodes" are attached in PCR2. Approximately 1736 ForenSeq™ reactions were analyzed. Studies include DNA substrate testing (cotton swabs, FTA cards, filter paper), species studies from a range of nonhuman organisms, DNA input sensitivity studies from 1ng down to 7.8pg, two-person human DNA mixture testing with three genotype combinations, stability analysis of partially degraded DNA, and effects of five commonly encountered PCR inhibitors. Calculations from ForenSeq™ STR and SNP repeatability and reproducibility studies (1ng template) indicate 100.0% accuracy of the MiSeq FGx™ System in allele calling relative to CE for STRs (1260 samples), and >99.1% accuracy relative to bead array typing for SNPs (1260 samples for iiSNPs, 310 samples for aiSNPs and piSNPs), with >99.0% and >97.8% precision, respectively. Call rates of >99.0% were observed for all STRs and SNPs amplified with both ForenSeq™ primer mixes. Limitations of the MiSeq FGx™ System are discussed. Results described here demonstrate that the MiSeq FGx™ System meets forensic DNA quality assurance guidelines with robust, reliable, and reproducible performance on samples of various quantities and qualities. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Epigenetic discrimination of identical twins from blood under the forensic scenario.
Vidaki, Athina; Díez López, Celia; Carnero-Montoro, Elena; Ralf, Arwin; Ward, Kirsten; Spector, Timothy; Bell, Jordana T; Kayser, Manfred
2017-11-01
Monozygotic (MZ) twins share the same STR profile, demonstrating a practical problem in forensic casework. DNA methylation has provided a suitable resource for MZ twin differentiation; however, studies addressing the forensic feasibility are lacking. Here, we investigated epigenetic MZ twin differentiation from blood under the forensic scenario comprising i) the discovery of candidate markers in reference-type blood DNA via genome-wide analysis, ii) the technical validation of candidate markers in reference-type blood DNA using a suitable targeted method, and iii) the analysis of the validated markers in trace-type DNA. Genome-wide methylation analysis in blood DNA from 10 MZ twin pairs resulted in 19-111 twin-differentially methylated sites (tDMSs) per pair with >0.3 twin-to-twin differences. Considering all top three candidate tDMSs across all pairs in the technical validation based on methylation-specific qPCR, 67.85% generated >0.1 twin-to-twin differences. Of the validated tDMSs, 68.4% showed >0.1 twin-to-twin differences with qPCR in trace-type DNA across 8 pairs. Using an updated marker selection strategy, 8 additional candidate tDMSs were obtained for an example MZ pair, of which 7 showed >0.1 twin-to-twin differences in both reference- and trace-type DNA. Lastly, we introduce a high-resolution melting curve analysis of the entire fragment that can complement the proposed approach. Overall, our study demonstrates the general feasibility of epigenetic twin differentiation in the forensic context and highlights that the number of informative tDMSs in the final trace DNA analysis is crucial, as some candidate markers identified in reference DNA were shown not informative in the trace DNA due to various, including technical, reasons. Future studies will need to address the optimal number of epigenetic markers required for reliable identification of MZ twin individuals including statistical considerations. Copyright © 2017 Elsevier B.V. All rights reserved.
Evaluation Of A Powder-Free DNA Extraction Method For Skeletal Remains.
Harrel, Michelle; Mayes, Carrie; Gangitano, David; Hughes-Stamm, Sheree
2018-02-07
Bones are often recovered in forensic investigations, including missing persons and mass disasters. While traditional DNA extraction methods rely on grinding bone into powder prior to DNA purification, the TBone Ex buffer (DNA Chip Research Inc.) digests bone chips without powdering. In this study, six bones were extracted using the TBone Ex kit in conjunction with the PrepFiler ® BTA™ DNA extraction kit (Thermo Fisher Scientific) both manually and via an automated platform. Comparable amounts of DNA were recovered from a 50 mg bone chip using the TBone Ex kit and 50 mg of powdered bone with the PrepFiler ® BTA™ kit. However, automated DNA purification decreased DNA yield (p < 0.05). Nevertheless, short tandem repeat (STR) success was comparable across all methods tested. This study demonstrates that digestion of whole bone fragments is an efficient alternative to powdering bones for DNA extraction without compromising downstream STR profile quality. © 2018 American Academy of Forensic Sciences.
Guo, Fei; Yu, Jiao; Zhang, Lu; Li, Jun
2017-11-01
The ForenSeq™ DNA Signature Prep Kit (ForenSeq Kit) is designed to detect more than 200 forensically relevant markers in a single reaction on the MiSeq FGx™ Forensic Genomics System (MiSeq FGx System), including Amelogenin, 27 autosomal short tandem repeats (A-STRs), 7 X chromosomal STRs (X-STRs), 24 Y chromosomal STRs (Y-STRs) and 94 identity-informative single nucleotide polymorphisms (iSNPs) with the option to contain 22 phenotypic-informative SNPs (pSNPs) and 56 ancestry-informative SNPs (aSNPs). In this study, we evaluated the MiSeq FGx System on three major parts: methodological optimization (DNA extraction, sample quantification, library normalization, diluted libraries concentration, and sample-to-cell arrangement), massively parallel sequencing (MPS) performance (depth of coverage, sequence coverage ratio, and allele coverage ratio), and ForenSeq Kit characteristics (repeatability and concordance, sensitivity, mixture, stability and case-type samples). Results showed that quantitative polymerase chain reaction (qPCR)-based sample quantification and library normalization and the appropriate number of pooled libraries and concentration of diluted libraries provided a greater level of MPS performance and repeatability. Repeatable and concordant genotypes were obtained by the ForenSeq Kit. Full profiles were obtained from ≥100pg input DNA for STRs and ≥200pg for SNPs. A sample with ≥5% minor contributors was considered as a mixture by imbalanced allele coverage ratio distribution, and full profiles from minor contributors were easily detected between 9:1 and 1:9 mixtures with known reference profiles. The ForenSeq Kit tolerated considerable concentrations of inhibitors like ≤200μM hematin and ≤50μg/ml humic acid, and >56% STR profiles and >88% SNP profiles were obtained from ≥200-bp degraded samples. Also, it was adapted to case-type samples. As a whole, the ForenSeq Kit is a well-performed, robust, reliable, reproducible and highly informative assay, and it can fully meet requirements for human identification. Further, sensitive QC indicator and automated sample comparison function in the ForenSeq™ Universal Analysis Software are quite helpful, so that we can concentrate on questionable genotypes and avoid tedious and time-consuming labor to maximum the time spent in data analysis. Copyright © 2017 Elsevier B.V. All rights reserved.
Dong, Chun-nan; Yang, Ya-dong; Li, Shu-jin; Yang, Ya-ran; Zhang, Xiao-jing; Fang, Xiang-dong; Yan, Jiang-wei; Cong, Bin
2016-01-01
In the case of mass disasters, missing persons and forensic caseworks, highly degraded biological samples are often encountered. It can be a challenge to analyze and interpret the DNA profiles from these samples. Here we provide a new strategy to solve the problem by taking advantage of the intrinsic structural properties of DNA. We have assessed the in vivo positions of more than 35 million putative nucleosome cores in human leukocytes using high-throughput whole genome sequencing, and identified 2,462 single nucleotide variations (SNVs), 128 insertion-deletion polymorphisms (indels). After comparing the sequence reads with 44 STR loci commonly used in forensics, five STRs (TH01, TPOX, D18S51, DYS391, and D10S1248)were matched. We compared these “nucleosome protected STRs” (NPSTRs) with five other non-NPSTRs using mini-STR primer design, real-time PCR, and capillary gel electrophoresis on artificially degraded DNA. Moreover, genotyping performance of the five NPSTRs and five non-NPSTRs was also tested with real casework samples. All results show that loci located in nucleosomes are more likely to be successfully genotyped in degraded samples. In conclusion, after further strict validation, these markers could be incorporated into future forensic and paleontology identification kits, resulting in higher discriminatory power for certain degraded sample types. PMID:27189082
Hirata, Satoshi; Kojima, Kaname; Misawa, Kazuharu; Gervais, Olivier; Kawai, Yosuke; Nagasaki, Masao
2018-05-01
Forensic DNA typing is widely used to identify missing persons and plays a central role in forensic profiling. DNA typing usually uses capillary electrophoresis fragment analysis of PCR amplification products to detect the length of short tandem repeat (STR) markers. Here, we analyzed whole genome data from 1,070 Japanese individuals generated using massively parallel short-read sequencing of 162 paired-end bases. We have analyzed 843,473 STR loci with two to six basepair repeat units and cataloged highly polymorphic STR loci in the Japanese population. To evaluate the performance of the cataloged STR loci, we compared 23 STR loci, widely used in forensic DNA typing, with capillary electrophoresis based STR genotyping results in the Japanese population. Seventeen loci had high correlations and high call rates. The other six loci had low call rates or low correlations due to either the limitations of short-read sequencing technology, the bioinformatics tool used, or the complexity of repeat patterns. With these analyses, we have also purified the suitable 218 STR loci with four basepair repeat units and 53 loci with five basepair repeat units both for short read sequencing and PCR based technologies, which would be candidates to the actual forensic DNA typing in Japanese population.
Evaluation of Skin Surface as an Alternative Source of Reference DNA Samples: A Pilot Study.
Albujja, Mohammed H; Bin Dukhyil, Abdul Aziz; Chaudhary, Abdul Rauf; Kassab, Ahmed Ch; Refaat, Ahmed M; Babu, Saranya Ramesh; Okla, Mohammad K; Kumar, Sachil
2018-01-01
An acceptable area for collecting DNA reference sample is a part of the forensic DNA analysis development. The aim of this study was to evaluate skin surface cells (SSC) as an alternate source of reference DNA sample. From each volunteer (n = 10), six samples from skin surface areas (forearm and fingertips) and two traditional samples (blood and buccal cells) were collected. Genomic DNA was extracted and quantified then genotyped using standard techniques. The highest DNA concentration of SSC samples was collected using the tape/forearm method of collection (2.1 ng/μL). Cotton swabs moistened with ethanol yielded higher quantities of DNA than swabs moistened with salicylic acid, and it gave the highest percentage of full STR profiles (97%). This study supports the use of SSC as a noninvasive sampling technique and as a extremely useful source of DNA reference samples among certain cultures where the use of buccal swabs can be considered socially unacceptable. © 2017 American Academy of Forensic Sciences.
Comparison of hard tissues that are useful for DNA analysis in forensic autopsy.
Kaneko, Yu; Ohira, Hiroshi; Tsuda, Yukio; Yamada, Yoshihiro
2015-11-01
Forensic analysis of DNA from hard tissues can be important when investigating a variety of cases resulting from mass disaster or criminal cases. This study was conducted to evaluate the most suitable tissues, method and sample size for processing of hard tissues prior to DNA isolation. We also evaluated the elapsed time after death in relation to the quantity of DNA extracted. Samples of hard tissues (37 teeth, 42 skull, 42 rib, and 39 nails) from 42 individuals aged between 50 and 83 years were used. The samples were taken from remains following forensic autopsy (from 2 days to 2 years after death). To evaluate the integrity of the nuclear DNA isolated, the percentage of allele calls for short tandem repeat profiles were compared between the hard tissues. DNA typing results indicated that until 1 month after death, any of the four hard tissue samples could be used as an alternative to teeth, allowing analysis of all of the loci. However, in terms of the sampling site, collection method and sample size adjustment, the rib appeared to be the best choice in view of the ease of specimen preparation. Our data suggest that the rib could be an alternative hard tissue sample for DNA analysis of human remains. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Szabolcsi, Zoltán; Farkas, Zsuzsa; Borbély, Andrea; Bárány, Gusztáv; Varga, Dániel; Heinrich, Attila; Völgyi, Antónia; Pamjav, Horolma
2015-11-01
When the DNA profile from a crime-scene matches that of a suspect, the weight of DNA evidence depends on the unbiased estimation of the match probability of the profiles. For this reason, it is required to establish and expand the databases that reflect the actual allele frequencies in the population applied. 21,473 complete DNA profiles from Databank samples were used to establish the allele frequency database to represent the population of Hungarian suspects. We used fifteen STR loci (PowerPlex ESI16) including five, new ESS loci. The aim was to calculate the statistical, forensic efficiency parameters for the Databank samples and compare the newly detected data to the earlier report. The population substructure caused by relatedness may influence the frequency of profiles estimated. As our Databank profiles were considered non-random samples, possible relationships between the suspects can be assumed. Therefore, population inbreeding effect was estimated using the FIS calculation. The overall inbreeding parameter was found to be 0.0106. Furthermore, we tested the impact of the two allele frequency datasets on 101 randomly chosen STR profiles, including full and partial profiles. The 95% confidence interval estimates for the profile frequencies (pM) resulted in a tighter range when we used the new dataset compared to the previously published ones. We found that the FIS had less effect on frequency values in the 21,473 samples than the application of minimum allele frequency. No genetic substructure was detected by STRUCTURE analysis. Due to the low level of inbreeding effect and the high number of samples, the new dataset provides unbiased and precise estimates of LR for statistical interpretation of forensic casework and allows us to use lower allele frequencies. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
[Determination of Hair Shafts by InnoTyper® 21 Kit].
Li, F; Zhang, M; Wang, Y X; Shui, J J; Yan, M; Jin, X P; Zhu, X J
2017-12-01
To explore the application value of InnoTyper® 21 kit in forensic practice. Samples of hair shafts and saliva were collected from 8 unrelated individuals. Template DNA was extracted by AutoMate Express™ forensic DNA automatic extraction system. DNA was amplified by InnoTyper® 21 kit and AmpFℓSTR™ Identifiler™ Plus kit, respectively, and then the results were compared. After the amplification by InnoTyper® 21 kit, complete specific genotyping could be detected from the saliva samples, and the peak value of genotyping profiles of hair shafts without sheath cells was 57-1 219 RFU. Allelic gene deletion could be found sometimes. When amplified by AmpFℓSTR™ Identifiler™ Plus kit, complete specific genotyping could be detected from the saliva samples, and the specific fragment was not detected in hair shafts without sheath cells. The InnoTyper® 21 kit has certain application value in the cases of hair shafts without sheath cells. Copyright© by the Editorial Department of Journal of Forensic Medicine
Solomon, April D; Hytinen, Madison E; McClain, Aryn M; Miller, Marilyn T; Dawson Cruz, Tracey
2018-01-01
DNA profiles have been obtained from fingerprints, but there is limited knowledge regarding DNA analysis from archived latent fingerprints-touch DNA "sandwiched" between adhesive and paper. Thus, this study sought to comparatively analyze a variety of collection and analytical methods in an effort to seek an optimized workflow for this specific sample type. Untreated and treated archived latent fingerprints were utilized to compare different biological sampling techniques, swab diluents, DNA extraction systems, DNA concentration practices, and post-amplification purification methods. Archived latent fingerprints disassembled and sampled via direct cutting, followed by DNA extracted using the QIAamp® DNA Investigator Kit, and concentration with Centri-Sep™ columns increased the odds of obtaining an STR profile. Using the recommended DNA workflow, 9 of the 10 samples provided STR profiles, which included 7-100% of the expected STR alleles and two full profiles. Thus, with carefully selected procedures, archived latent fingerprints can be a viable DNA source for criminal investigations including cold/postconviction cases. © 2017 American Academy of Forensic Sciences.
Evaluation of parameters in mixed male DNA profiles for the Identifiler® multiplex system
HU, NA; CONG, BIN; GAO, TAO; HU, RONG; CHEN, YI; TANG, HUI; XUE, LUYAN; LI, SHUJIN; MA, CHUNLING
2014-01-01
The analysis of complex DNA mixtures is challenging for forensic DNA testing. Accurate and sensitive methods for profiling these samples are urgently required. In this study, we developed 11 groups of mixed male DNA samples (n=297) with scientific validation of D-value [>95% of D-values ≤0.1 with average peak height (APH) of the active alleles ≤2,500 rfu]. A strong linear correlation was detected between the peak height (PH) and peak area (PA) in the curve fit using the least squares method (P<2e-16). The Kruskal-Wallis rank-sum test revealed significant differences in the heterozygote balance ratio (Hb) at 16 short tandem repeat (STR) loci (P=0.0063) and 9 mixed gradients (P=0.02257). Locally weighted regression fitting of APH and Hb (inflection point at APH = 1,250 rfu) showed 92.74% of Hb >0.6 with the APH ≥1,250. The variation of Hb distribution in the different STR loci suggested the different forensic efficiencies of these loci. Allelic drop-out (ADO) correlated with the APH and mixed gradient. All ADOs had an APH of <1,000 rfu, and the number of ADO increased when the APH of mixed DNA profiles gradually decreased. These results strongly suggest that calibration parameters should be introduced to correct the deviation in the APH at each STR locus during the analysis of mixed DNA samples. PMID:24821391
Hicks, T; Biedermann, A; de Koeijer, J A; Taroni, F; Champod, C; Evett, I W
2015-12-01
The value of forensic results crucially depends on the propositions and the information under which they are evaluated. For example, if a full single DNA profile for a contemporary marker system matching the profile of Mr A is assessed, given the propositions that the DNA came from Mr A and given it came from an unknown person, the strength of evidence can be overwhelming (e.g., in the order of a billion). In contrast, if we assess the same result given that the DNA came from Mr A and given it came from his twin brother (i.e., a person with the same DNA profile), the strength of evidence will be 1, and therefore neutral, unhelpful and irrelevant(1) to the case at hand. While this understanding is probably uncontroversial and obvious to most, if not all practitioners dealing with DNA evidence, the practical precept of not specifying an alternative source with the same characteristics as the one considered under the first proposition may be much less clear in other circumstances. During discussions with colleagues and trainees, cases have come to our attention where forensic scientists have difficulty with the formulation of propositions. It is particularly common to observe that results (e.g., observations) are included in the propositions, whereas-as argued throughout this note-they should not be. A typical example could be a case where a shoe-mark with a logo and the general pattern characteristics of a Nike Air Jordan shoe is found at the scene of a crime. A Nike Air Jordan shoe is then seized at Mr A's house and control prints of this shoe compared to the mark. The results (e.g., a trace with this general pattern and acquired characteristics corresponding to the sole of Mr A's shoe) are then evaluated given the propositions 'The mark was left by Mr A's Nike Air Jordan shoe-sole' and 'The mark was left by an unknown Nike Air Jordan shoe'. As a consequence, the footwear examiner will not evaluate part of the observations (i.e., the mark presents the general pattern of a Nike Air Jordan) whereas they can be highly informative. Such examples can be found in all forensic disciplines. In this article, we present a few such examples and discuss aspects that will help forensic scientists with the formulation of propositions. In particular, we emphasise on the usefulness of notation to distinguish results that forensic scientists should evaluate from case information that the Court will evaluate. Copyright © 2015 The Chartered Society of Forensic Sciences. Published by Elsevier Ireland Ltd. All rights reserved.
'The story of Abraham, Isaac and Jacob" or "am I my brother's keeper?".
Oz, Carla; Zamir, Ashira; Gafny, Ron; Motro, Uzi
2003-01-01
Presented is a case report of a violent sexual assault where the DNA profile obtained from an item of evidence was compared to a suspect's profile. The profiles did not match, but the sharing of such a large number of alleles raised the suspicion that perhaps the real perpetrator was a blood relative of the suspect. The investigators requested a sample from the suspect's brother, and a match was defined. In an era of technological breakthroughs in the field of forensic DNA analysis, the importance of the scientist's attention to the evidence presented in each case is stressed.
Post-conviction DNA testing: the UK's first ‘exoneration’ case?
Johnson, Paul; Williams, Robin
2005-01-01
The routine incorporation of forensic DNA profiling into the criminal justice systems of the United Kingdom has been widely promoted as a device for improving the quality of investigative and prosecutorial processes. From its first uses in the 1980s, in cases of serious crime, to the now daily collection, analysis and comparison of genetic samples in the National DNA Database, DNA profiling has become a standard instrument of policing and a powerful evidential resource for prosecutors. However, the use of post-conviction DNA testing has, until recently, been uncommon in the United Kingdom. This paper explores the first case, in England, of the contribution of DNA profiling to a successful appeal against conviction by an imprisoned offender. Analysis of the details of this case is used to emphasise the ways in which novel forms of scientific evidence remain subject to traditional and heterogeneous tests of relevance and credibility. PMID:15112595
Maguire, C N; McCallum, L A; Storey, C; Whitaker, J P
2014-01-01
The National DNA Database (NDNAD) of England and Wales was established on April 10th 1995. The NDNAD is governed by a variety of legislative instruments that mean that DNA samples can be taken if an individual is arrested and detained in a police station. The biological samples and the DNA profiles derived from them can be used for purposes related to the prevention and detection of crime, the investigation of an offence and for the conduct of a prosecution. Following the South East Asian Tsunami of December 2004, the legislation was amended to allow the use of the NDNAD to assist in the identification of a deceased person or of a body part where death has occurred from natural causes or from a natural disaster. The UK NDNAD now contains the DNA profiles of approximately 6 million individuals representing 9.6% of the UK population. As the science of DNA profiling advanced, the National DNA Database provided a potential resource for increased intelligence beyond the direct matching for which it was originally created. The familial searching service offered to the police by several UK forensic science providers exploits the size and geographic coverage of the NDNAD and the fact that close relatives of an offender may share a significant proportion of that offender's DNA profile and will often reside in close geographic proximity to him or her. Between 2002 and 2011 Forensic Science Service Ltd. (FSS) provided familial search services to support 188 police investigations, 70 of which are still active cases. This technique, which may be used in serious crime cases or in 'cold case' reviews when there are few or no investigative leads, has led to the identification of 41 perpetrators or suspects. In this paper we discuss the processes, utility, and governance of the familial search service in which the NDNAD is searched for close genetic relatives of an offender who has left DNA evidence at a crime scene, but whose DNA profile is not represented within the NDNAD. We discuss the scientific basis of the familial search approach, other DNA-based methods for eliminating individuals from the candidate lists generated by these NDNAD searches, the value of filtering these lists by age, ethnic appearance and geography and the governance required by the NDNAD Strategy Board when a police force commissions a familial search. We present the FSS data in relation to the utility of the familial searching service and demonstrate the power of the technique by reference to casework examples. We comment on the uptake of familial searching of DNA databases in the USA, the Netherlands, Australia, and New Zealand. Finally, following the adverse ruling by the European Court of Human Rights against the UK in regard to the S & Marper cases and the consequent introduction of the Protection of Freedoms Act (2012), we discuss the impact that changes to regulations concerning the storage of DNA samples will have on the continuing provision of familial searching of the National DNA Database in England and Wales. Published by Elsevier Ireland Ltd.
Fonneløp, Ane Elida; Johannessen, Helen; Egeland, Thore; Gill, Peter
2016-07-01
As the profiling systems used in forensic analyses have become more sensitive in recent years, the risk of detecting a contamination in a DNA sample has increased proportionally. This requires more stringent work protocols and awareness to minimize the chance of contamination. Although there is high consciousness on contamination and best practice procedures in forensic labs, the same requirements are not always applied by the police. In this study we have investigated the risk of contamination from police staff. Environmental DNA was monitored by performing wipe tests (sampling of hot spots) at two large police units (scenes of crime departments). Additionally, the DNA profiles of the scenes of crime officers were compared to casework samples that their own unit had investigated in the period of 2009-2015. Furthermore, a pilot study to assess whether DNA from the outside package of an exhibit could be transferred to a DNA sample was carried out. Environmental DNA was detected in various samples from hot spots. Furthermore, 16 incidences of previously undetected police-staff contamination were found in casework that had been submitted between 2009 and 2015. In 6 cases the police officers with a matching DNA profile reported that they had not been involved with the case. We have demonstrated that DNA from the outside package can be transferred to an exhibit during examination. This experience demonstrates that when implementing the new multiplex systems, it is important to ensure that 'best practice' procedures are upgraded, and appropriate training is provided in order to ensure that police are aware of the increased contamination risks. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Forensic identification of CITES protected slimming cactus (Hoodia) using DNA barcoding.
Gathier, Gerard; van der Niet, Timotheus; Peelen, Tamara; van Vugt, Rogier R; Eurlings, Marcel C M; Gravendeel, Barbara
2013-11-01
Slimming cactus (Hoodia), found only in southwestern Africa, is a well-known herbal product for losing weight. Consequently, Hoodia extracts are sought-after worldwide despite a CITES Appendix II status. The failure to eradicate illegal trade is due to problems with detecting and identifying Hoodia using morphological and chemical characters. Our aim was to evaluate the potential of molecular identification of Hoodia based on DNA barcoding. Screening of nrITS1 and psbA-trnH DNA sequences from 26 accessions of Ceropegieae resulted in successful identification, while conventional chemical profiling using DLI-MS led to inaccurate detection and identification of Hoodia. The presence of Hoodia in herbal products was also successfully established using DNA sequences. A validation procedure of our DNA barcoding protocol demonstrated its robustness to changes in PCR conditions. We conclude that DNA barcoding is an effective tool for Hoodia detection and identification which can contribute to preventing illegal trade. © 2013 American Academy of Forensic Sciences.
Lee, Hwan Young; Jung, Sang-Eun; Lee, Eun Hee; Yang, Woo Ick; Shin, Kyoung-Jin
2016-09-01
The ability to predict the type of tissues or cells from molecular profiles of crime scene samples has important practical implications in forensics. A previously reported multiplex assay using DNA methylation markers could only discriminate between 4 types of body fluids: blood, saliva, semen, and the body fluid which originates from female reproductive organ. In the present study, we selected 15 menstrual blood-specific CpG marker candidates based on analysis of 12 genome-wide DNA methylation profiles of vaginal fluid and menstrual blood. The menstrual blood-specificity of the candidate markers was confirmed by comparison with HumanMethylation450 BeadChip array data obtained for 58 samples including 12 blood, 12 saliva, 12 semen, 3 vaginal fluid, and 19 skin epidermis samples. Among 15CpG marker candidates, 3 were located in the promoter region of the SLC26A10 gene, and 2 of them (cg09696411 and cg18069290) showed high menstrual blood specificity. DNA methylation at the 2CpG markers was further tested by targeted bisulfite sequencing of 461 additional samples including 49 blood, 52 saliva, 34 semen, 125 vaginal fluid, and 201 menstrual blood. Because the 2 markers showed menstrual blood-specific methylation patterns, we modified our previous multiplex methylation SNaPshot reaction to include these 2 markers. In addition, a blood marker cg01543184 with cross reactivity to semen was replaced with cg08792630, and a semen-specific unmethylation marker cg17621389 was removed. The resultant multiplex methylation SNaPshot allowed positive identification of blood, saliva, semen, vaginal fluid and menstrual blood using the 9CpG markers which show a methylation signal only in the target body fluids. Because of the complexity in cell composition, menstrual bloods produced DNA methylation profiles that vary with menstrual cycle and sample collection methods, which are expected to provide more insight into forensic menstrual blood test. Moreover, because the developed multiplex methylation SNaPshot reaction includes the 4CpG markers of which specificities have been confirmed by multiple studies, it will facilitate confirmatory tests for body fluids that are frequently observed in forensic casework. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Phillips, C; Gettings, K Butler; King, J L; Ballard, D; Bodner, M; Borsuk, L; Parson, W
2018-05-01
The STR sequence template file published in 2016 as part of the considerations from the DNA Commission of the International Society for Forensic Genetics on minimal STR sequence nomenclature requirements, has been comprehensively revised and audited using the latest GRCh38 genome assembly. The list of forensic STRs characterized was expanded by including supplementary autosomal, X- and Y-chromosome microsatellites in less common use for routine DNA profiling, but some likely to be adopted in future massively parallel sequencing (MPS) STR panels. We outline several aspects of sequence alignment and annotation that required care and attention to detail when comparing sequences to GRCh37 and GRCh38 assemblies, as well as the necessary matching of MPS-based allele descriptions to previously established repeat region structures described in initial sequencing studies of the less well known forensic STRs. The revised sequence guide is now available in a dynamically updated FTP format from the STRidER website with a date-stamped change log to allow users to explore their own MPS data with the most up-to-date forensic STR sequence information compiled in a simple guide. Copyright © 2018 Elsevier B.V. All rights reserved.
Microchip-based cell lysis and DNA extraction from sperm cells for application to forensic analysis.
Bienvenue, Joan M; Duncalf, Natalie; Marchiarullo, Daniel; Ferrance, Jerome P; Landers, James P
2006-03-01
The current backlog of casework is among the most significant challenges facing crime laboratories at this time. While the development of next-generation microchip-based technology for expedited forensic casework analysis offers one solution to this problem, this will require the adaptation of manual, large-volume, benchtop chemistry to small volume microfluidic devices. Analysis of evidentiary materials from rape kits where semen or sperm cells are commonly found represents a unique set of challenges for on-chip cell lysis and DNA extraction that must be addressed for successful application. The work presented here details the development of a microdevice capable of DNA extraction directly from sperm cells for application to the analysis of sexual assault evidence. A variety of chemical lysing agents are assessed for inclusion in the extraction protocol and a method for DNA purification from sperm cells is described. Suitability of the extracted DNA for short tandem repeat (STR) analysis is assessed and genetic profiles shown. Finally, on-chip cell lysis methods are evaluated, with results from fluorescence visualization of cell rupture and DNA extraction from an integrated cell lysis and purification with subsequent STR amplification presented. A method for on-chip cell lysis and DNA purification is described, with considerations toward inclusion in an integrated microdevice capable of both differential cell sorting and DNA extraction. The results of this work demonstrate the feasibility of incorporating microchip-based cell lysis and DNA extraction into forensic casework analysis.
Forensic DNA databases in Western Balkan region: retrospectives, perspectives, and initiatives
Marjanović, Damir; Konjhodžić, Rijad; Butorac, Sara Sanela; Drobnič, Katja; Merkaš, Siniša; Lauc, Gordan; Primorac, Damir; Anđelinović, Šimun; Milosavljević, Mladen; Karan, Željko; Vidović, Stojko; Stojković, Oliver; Panić, Bojana; Vučetić Dragović, Anđelka; Kovačević, Sandra; Jakovski, Zlatko; Asplen, Chris; Primorac, Dragan
2011-01-01
The European Network of Forensic Science Institutes (ENFSI) recommended the establishment of forensic DNA databases and specific implementation and management legislations for all EU/ENFSI members. Therefore, forensic institutions from Bosnia and Herzegovina, Serbia, Montenegro, and Macedonia launched a wide set of activities to support these recommendations. To assess the current state, a regional expert team completed detailed screening and investigation of the existing forensic DNA data repositories and associated legislation in these countries. The scope also included relevant concurrent projects and a wide spectrum of different activities in relation to forensics DNA use. The state of forensic DNA analysis was also determined in the neighboring Slovenia and Croatia, which already have functional national DNA databases. There is a need for a ‘regional supplement’ to the current documentation and standards pertaining to forensic application of DNA databases, which should include regional-specific preliminary aims and recommendations. PMID:21674821
Forensic DNA databases in Western Balkan region: retrospectives, perspectives, and initiatives.
Marjanović, Damir; Konjhodzić, Rijad; Butorac, Sara Sanela; Drobnic, Katja; Merkas, Sinisa; Lauc, Gordan; Primorac, Damir; Andjelinović, Simun; Milosavljević, Mladen; Karan, Zeljko; Vidović, Stojko; Stojković, Oliver; Panić, Bojana; Vucetić Dragović, Andjelka; Kovacević, Sandra; Jakovski, Zlatko; Asplen, Chris; Primorac, Dragan
2011-06-01
The European Network of Forensic Science Institutes (ENFSI) recommended the establishment of forensic DNA databases and specific implementation and management legislations for all EU/ENFSI members. Therefore, forensic institutions from Bosnia and Herzegovina, Serbia, Montenegro, and Macedonia launched a wide set of activities to support these recommendations. To assess the current state, a regional expert team completed detailed screening and investigation of the existing forensic DNA data repositories and associated legislation in these countries. The scope also included relevant concurrent projects and a wide spectrum of different activities in relation to forensics DNA use. The state of forensic DNA analysis was also determined in the neighboring Slovenia and Croatia, which already have functional national DNA databases. There is a need for a 'regional supplement' to the current documentation and standards pertaining to forensic application of DNA databases, which should include regional-specific preliminary aims and recommendations.
Post-Mortem Identification of a Fire Carbonized Body by STR Genotyping.
Dumache, Raluca; Muresan, Camelia; Ciocan, Veronica; Rogobete, Alexandru F; Enache, Alexandra
2016-10-01
Identification of bodies of unknown identity that are victims of exposure to very high temperatures, resulting from fires, plane crashes, and terrorist attacks, represents one of the most difficult sides of forensic genetics, because of the advanced state of decomposition. The aim of this study was the identification of the carbonized cadaver of a fire victim through STR genotyping. We used blood samples obtained from the iliac artery during the autopsy examination as biological samples from the unidentified victim. After DNA isolation and quantification, we proceeded to its amplification using the multiplex PCR kit AmpFlSTR Identifiler. The DNA products were separated using an ABI 3500 genetic analyzer. Further analysis of the data was done using Gene Mapper ID-X version 1.4 software. In this case, it was possible to obtain a complete DNA profile from the biological samples. Due to the fact that the amelogenin gene presented two alleles, X and Y, we concluded that the victim was a man. We conclude that STR profiling of unidentified bodies (carbonized, decomposed) represents a powerful method of human identification in forensic medicine.
The reliability of forensic osteology--a case in point. Case study.
Kemkes-Grottenthaler, A
2001-03-01
The medico-legal investigation of skeletons is a trans-disciplinary effort by forensic scientists as well as physical anthropologists. The advent of DNA extraction and amplification from bones and teeth has led to the assumption that morphological assessment of skeletal remains might soon become obsolete. But despite the introduction and success of molecular biology, the analysis of skeletal biology will remain an integral part of the identification process. This is due to the fact, that the skeletal record allows relatively fast and accurate inferences about the identity of the victim. Moreover, a standard biological profile may be established to effectively narrow the police investigator's search parameters. The following study demonstrates how skeletal biology may collaborate in the forensic investigation and support DNA fingerprinting evidence. In this case, the information gained from standard morphological methods about the unknown person's sex, age and heritage immediately led the police to suspect, that the remains were that of a young man from Vietnam, who had been missing for 2.5 years. The investigation then quickly shifted to prove the victim's identity via DNA extraction and mtDNA sequence analysis and biostatistical calculations involving questions of kinship [4].
Morrison, Jack; Watts, Giles; Hobbs, Glyn; Dawnay, Nick
2018-04-01
Field based forensic tests commonly provide information on the presence and identity of biological stains and can also support the identification of species. Such information can support downstream processing of forensic samples and generate rapid intelligence. These approaches have traditionally used chemical and immunological techniques to elicit the result but some are known to suffer from a lack of specificity and sensitivity. The last 10 years has seen the development of field-based genetic profiling systems, with specific focus on moving the mainstay of forensic genetic analysis, namely STR profiling, out of the laboratory and into the hands of the non-laboratory user. In doing so it is now possible for enforcement officers to generate a crime scene DNA profile which can then be matched to a reference or database profile. The introduction of these novel genetic platforms also allows for further development of new molecular assays aimed at answering the more traditional questions relating to body fluid identity and species detection. The current drive for field-based molecular tools is in response to the needs of the criminal justice system and enforcement agencies, and promises a step-change in how forensic evidence is processed. However, the adoption of such systems by the law enforcement community does not represent a new strategy in the way forensic science has integrated previous novel approaches. Nor do they automatically represent a threat to the quality control and assurance practices that are central to the field. This review examines the historical need and subsequent research and developmental breakthroughs in field-based forensic analysis over the past two decades with particular focus on genetic methods Emerging technologies from a range of scientific fields that have potential applications in forensic analysis at the crime scene are identified and associated issues that arise from the shift from laboratory into operational field use are discussed. Copyright © 2018 Elsevier B.V. All rights reserved.
Kanthaswamy, S
2015-10-01
This review highlights the importance of domestic animal genetic evidence sources, genetic testing, markers and analytical approaches as well as the challenges this field is facing in view of the de facto 'gold standard' human DNA identification. Because of the genetic similarity between humans and domestic animals, genetic analysis of domestic animal hair, saliva, urine, blood and other biological material has generated vital investigative leads that have been admitted into a variety of court proceedings, including criminal and civil litigation. Information on validated short tandem repeat, single nucleotide polymorphism and mitochondrial DNA markers and public access to genetic databases for forensic DNA analysis is becoming readily available. Although the fundamental aspects of animal forensic genetic testing may be reliable and acceptable, animal forensic testing still lacks the standardized testing protocols that human genetic profiling requires, probably because of the absence of monetary support from government agencies and the difficulty in promoting cooperation among competing laboratories. Moreover, there is a lack in consensus about how to best present the results and expert opinion to comply with court standards and bear judicial scrutiny. This has been the single most persistent challenge ever since the earliest use of domestic animal forensic genetic testing in a criminal case in the mid-1990s. Crime laboratory accreditation ensures that genetic test results have the courts' confidence. Because accreditation requires significant commitments of effort, time and resources, the vast majority of animal forensic genetic laboratories are not accredited nor are their analysts certified forensic examiners. The relevance of domestic animal forensic genetics in the criminal justice system is undeniable. However, further improvements are needed in a wide range of supporting resources, including standardized quality assurance and control protocols for sample handling, evidence testing, statistical analysis and reporting that meet the rules of scientific acceptance, reliability and human forensic identification standards. © 2015 Stichting International Foundation for Animal Genetics.
Evaluation of incest cases of Turkey in terms of DNA profiling difficulties.
Emre, Ramazan; Canturk, Kemal Murat; Komur, Ilhami; Dogan, Muhammed; Demirel, Husrev; Baspınar, Bunyamin
2015-11-01
We scanned suspicious 1200 paternity cases and 650 sexual abuse victims in Council of Forensic Medicine of Turkey between 2011 and 2014 and detected 50 incest cases and evaluated the forensic and genetic data of incest cases for source of DNA evidence, gender, age, SES (Socioeconomic status) and geographic location of victim, abusive person, extent of incest, pregnancy from incest and date of gestation termination and also aimed to discuss some DNA profiling difficulties. We detected incest from DNA evidences of curettage material (34%; Chorionic Villi (12%) and fetal tissue (22%)), alive baby after pregnancy (28%), sperm in vaginal swab (10%), sperm in anal swab (2%), sperm on clothing (24%) and in one case both sperm on clothing and in vaginal swab (2%). It was found that the most common incestuous relationship was elder-brother-sister incest (34%) and the second most common relationship was father-daughter incest (28%). The rarest incest was mother-son incest with only one reported case (2%). Forty-three victims (86%) were younger than 18 years old and 7 victims (14%) were older than 18 years old. Thirty-eight cases described full sexual intercourse and 31 of them culminated in pregnancy and 14 of them gave birth at the end of pregnancy. We had paternity rejection problem 3 (10%) of 31 incest cases between tested genetically related alleged fathers. Totally 20 STR loci did not discriminate the alleged fathers in two cases and we treated this problem increasing the number of STR loci and finally got the discrimination. In one case we detected same triallelic variant pattern at the same D3S1358 STR locus in both tested parents but child had not got STR variant; had only two alleles at this loci. We then evaluated the peak height values of STR variant alleles of tested persons and concluded a tetra-allelic baby without any STR incompatibility of 15 STR loci. Finally, forensic experts should aware of some DNA profiling difficulties while analyzing paternity incest cases due to increasing intra familial allelic share. We suggested that first try increasing the number of compared STR loci and secondly use alternative genetic markers and also be careful while evaluating triallelic STR variants. Copyright © 2015 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
Sirker, Miriam; Schneider, Peter M; Gomes, Iva
2016-11-01
Blood, saliva, and semen are some of the forensically most relevant biological stains commonly found at crime scenes, which can often be of small size or challenging due to advanced decay. In this context, it is of great importance to possess reliable knowledge about the effects of degradation under different environmental conditions and to use appropriate methods for retrieving maximal information from limited sample amount. In the last decade, RNA analysis has been demonstrated to be a reliable approach identifying the cell or tissue type of an evidentiary body fluid trace. Hence, messenger RNA (mRNA) profiling is going to be implemented into forensic casework to supplement the routinely performed short tandem repeat (STR) analysis, and therefore, the ability to co-isolate RNA and DNA from the same sample is a prerequisite. The objective of this work was to monitor and compare the degradation process of both nucleic acids for human blood, saliva, and semen stains at three different concentrations, exposed to dry and humid conditions during a 17-month time period. This study also addressed the question whether there are relevant differences in the efficiency of automated, magnetic bead-based single DNA or RNA extraction methods compared to a manually performed co-extraction method using silica columns. Our data show that mRNA, especially from blood and semen, can be recovered over the entire time period surveyed without compromising the success of DNA profiling; mRNA analysis indicates to be a robust and reliable technique to identify the biological source of aged stain material. The co-extraction method appears to provide mRNA and DNA of sufficient quantity and quality for all different forensic investigation procedures. Humidity and accompanied mold formation are detrimental to both nucleic acids.
Lapointe, Martine; Rogic, Anita; Bourgoin, Sarah; Jolicoeur, Christine; Séguin, Diane
2015-11-01
In recent years, sophisticated technology has significantly increased the sensitivity and analytical power of genetic analyses so that very little starting material may now produce viable genetic profiles. This sensitivity however, has also increased the risk of detecting unknown genetic profiles assumed to be that of the perpetrator, yet originate from extraneous sources such as from crime scene workers. These contaminants may mislead investigations, keeping criminal cases active and unresolved for long spans of time. Voluntary submission of DNA samples from crime scene workers is fairly low, therefore we have created a promotional method for our staff elimination database that has resulted in a significant increase in voluntary samples since 2011. Our database enforces privacy safeguards and allows for optional anonymity to all staff members. We also offer information sessions at various police precincts to advise crime scene workers of the importance and success of our staff elimination database. This study, a pioneer in its field, has obtained 327 voluntary submissions from crime scene workers to date, of which 46 individual profiles (14%) have been matched to 58 criminal cases. By implementing our methods and respect for individual privacy, forensic laboratories everywhere may see similar growth and success in explaining unidentified genetic profiles in stagnate criminal cases. Crown Copyright © 2015. Published by Elsevier Ireland Ltd. All rights reserved.
[Application of DNA labeling technology in forensic botany].
Znang, Xian; Li, Jing-Lin; Zhang, Xiang-Yu
2008-12-01
Forensic botany is a study of judicial plant evidence. Recently, researches on DNA labeling technology have been a mainstream of forensic botany. The article systematically reviews various types of DNA labeling techniques in forensic botany with enumerated practical cases, as well as the potential forensic application of each individual technique. The advantages of the DNA labeling technology over traditional morphological taxonomic methods are also summarized.
Evaluation of reliability on STR typing at leukemic patients used for forensic purposes.
Filoglu, G; Bulbul, O; Rayimoglu, G; Yediay, F E; Zorlu, T; Ongoren, S; Altuncul, H
2014-06-01
Over the past decades, main advances in the field of molecular biology, coupled with benefits in genomic technologies, have led to detailed molecular investigations in the genetic diversity generated by researchers. Short tandem repeat (STR) loci are polymorphic loci found throughout all eukaryotic genome. DNA profiling identification, parental testing and kinship analysis by analysis of STR loci have been widely used in forensic sciences since 1993. Malignant tissues may sometimes be the source of biological material for forensic analysis, including identification of individuals or paternity testing. There are a number of studies on microsatellite instability in different types of tumors by comparing the STR profiles of malignant and healthy tissues on the same individuals. Defects in DNA repair pathways (non-repair or mis-repair) and metabolism lead to an accumulation of microsatellite alterations in genomic DNA of various cancer types that result genomic instabilities on forensic analyses. Common forms of genomic instability are loss of heterozygosity (LOH) and microsatellite instability (MSI). In this study, the applicability of autosomal STR markers, which are routinely used in forensic analysis, were investigated in order to detect genotypes in blood samples collected from leukemic patients to estimate the reliability of the results when malignant tissues are used as a source of forensic individual identification. Specimens were collected from 90 acute and 10 chronic leukemia volunteers with oral swabs as well as their paired peripheral blood samples from the Oncology Centre of the Department of Hematology at Istanbul University, during the years 2010-2011. Specimens were tested and compared with 16 somatic STR loci (CSFIPO, THO1, TPOX, vWA, D2S1338, D3S1358, D5S818, D7S820, D8S1179, D13S317, D16S539, D18S51, D19S433, D21S11 and FGA) widely used in forensic identification and kinship. Only two STR instabilities were encountered among 100 specimens. An MSI in the FGA loci and a LOH in the D2S1338 loci were determined in two individuals separately. Our results demonstrate that the use of the biological samples from leukemia patients in forensic identification and kinship testing is questionable, especially if known microsatellite instability is available. Genetic instabilities may alter the STR polymorphism, leading to potential errors on forensic identification of individuals. Therefore, typing of autosomal STRs from leukemia patients should be performed with both healthy and malignant tissue samples of individual as references.
DNA fingerprinting in forensics: past, present, future
2013-01-01
DNA fingerprinting, one of the great discoveries of the late 20th century, has revolutionized forensic investigations. This review briefly recapitulates 30 years of progress in forensic DNA analysis which helps to convict criminals, exonerate the wrongly accused, and identify victims of crime, disasters, and war. Current standard methods based on short tandem repeats (STRs) as well as lineage markers (Y chromosome, mitochondrial DNA) are covered and applications are illustrated by casework examples. Benefits and risks of expanding forensic DNA databases are discussed and we ask what the future holds for forensic DNA fingerprinting. PMID:24245688
High-throughput STR analysis for DNA database using direct PCR.
Sim, Jeong Eun; Park, Su Jeong; Lee, Han Chul; Kim, Se-Yong; Kim, Jong Yeol; Lee, Seung Hwan
2013-07-01
Since the Korean criminal DNA database was launched in 2010, we have focused on establishing an automated DNA database profiling system that analyzes short tandem repeat loci in a high-throughput and cost-effective manner. We established a DNA database profiling system without DNA purification using a direct PCR buffer system. The quality of direct PCR procedures was compared with that of conventional PCR system under their respective optimized conditions. The results revealed not only perfect concordance but also an excellent PCR success rate, good electropherogram quality, and an optimal intra/inter-loci peak height ratio. In particular, the proportion of DNA extraction required due to direct PCR failure could be minimized to <3%. In conclusion, the newly developed direct PCR system can be adopted for automated DNA database profiling systems to replace or supplement conventional PCR system in a time- and cost-saving manner. © 2013 American Academy of Forensic Sciences Published 2013. This article is a U.S. Government work and is in the public domain in the U.S.A.
DNA typing for the identification of old skeletal remains from Korean War victims.
Lee, Hwan Young; Kim, Na Young; Park, Myung Jin; Sim, Jeong Eun; Yang, Woo Ick; Shin, Kyoung-Jin
2010-11-01
The identification of missing casualties of the Korean War (1950-1953) has been performed using mitochondrial DNA (mtDNA) profiles, but recent advances in DNA extraction techniques and approaches using smaller amplicons have significantly increased the possibility of obtaining DNA profiles from highly degraded skeletal remains. Therefore, 21 skeletal remains of Korean War victims and 24 samples from biological relatives of the supposed victims were selected based on circumstantial evidence and/or mtDNA-matching results and were analyzed to confirm the alleged relationship. Cumulative likelihood ratios were obtained from autosomal short tandem repeat, Y-chromosomal STR, and mtDNA-genotyping results, and mainly confirmed the alleged relationship with values over 10⁵. The present analysis emphasizes the value of mini- and Y-STR systems as well as an efficient DNA extraction method in DNA testing for the identification of old skeletal remains. © 2010 American Academy of Forensic Sciences.
Smith, Lisa L; Wetton, Jon H; Lall, Gurdeep K M; Flowe, Heather D; Jobling, Mark A
2017-09-01
In developed countries, DNA profiling routinely forms part of the forensic strategy in the investigation of sexual violence. Medical examinations provide opportunities for recovering DNA evidence from intimate swabs, which can be particularly probative in cases where the identity of the perpetrator is unknown and proof of intercourse between two people is required. In low-resource environments, such as developing countries, remote geographic locations, conflict (and post-conflict) affected regions and displaced communities where access to medical examinations is lacking, DNA evidence is not available to support prosecutions and perpetrators are rarely identified and held accountable for crimes of sexual violence. This paper reports the results of a proof-of-concept study testing the efficacy of a novel self-examination intimate swab designed for recovering DNA following unprotected sexual intercourse. The results of this study corroborate previous research which has demonstrated that male DNA profiles can be successfully recovered by post-coital, self-examination methods, and discusses how this novel approach could enable the integration of DNA evidence into victim-centred approaches to investigating and prosecuting sexual violence in low-resource environments. The results and discussion challenge the prevailing assumption that intimate DNA swabs must be collected by trained medical professionals in order to be of evidential value. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.
Alves, Cíntia; Pereira, Rui; Prieto, Lourdes; Aler, Mercedes; Amaral, Cesar R L; Arévalo, Cristina; Berardi, Gabriela; Di Rocco, Florencia; Caputo, Mariela; Carmona, Cristian Hernandez; Catelli, Laura; Costa, Heloísa Afonso; Coufalova, Pavla; Furfuro, Sandra; García, Óscar; Gaviria, Anibal; Goios, Ana; Gómez, Juan José Builes; Hernández, Alexis; Hernández, Eva Del Carmen Betancor; Miranda, Luís; Parra, David; Pedrosa, Susana; Porto, Maria João Anjos; Rebelo, Maria de Lurdes; Spirito, Matteo; Torres, María Del Carmen Villalobos; Amorim, António; Pereira, Filipe
2017-05-01
DNA is a powerful tool available for forensic investigations requiring identification of species. However, it is necessary to develop and validate methods able to produce results in degraded and or low quality DNA samples with the high standards obligatory in forensic research. Here, we describe a voluntary collaborative exercise to test the recently developed Species Identification by Insertions/Deletions (SPInDel) method. The SPInDel kit allows the identification of species by the generation of numeric profiles combining the lengths of six mitochondrial ribosomal RNA (rRNA) gene regions amplified in a single reaction followed by capillary electrophoresis. The exercise was organized during 2014 by a Working Commission of the Spanish and Portuguese-Speaking Working Group of the International Society for Forensic Genetics (GHEP-ISFG), created in 2013. The 24 participating laboratories from 10 countries were asked to identify the species in 11 DNA samples from previous GHEP-ISFG proficiency tests using a SPInDel primer mix and control samples of the 10 target species. A computer software was also provided to the participants to assist the analyses of the results. All samples were correctly identified by 22 of the 24 laboratories, including samples with low amounts of DNA (hair shafts) and mixtures of saliva and blood. Correct species identifications were obtained in 238 of the 241 (98.8%) reported SPInDel profiles. Two laboratories were responsible for the three cases of misclassifications. The SPInDel was efficient in the identification of species in mixtures considering that only a single laboratory failed to detect a mixture in one sample. This result suggests that SPInDel is a valid method for mixture analyses without the need for DNA sequencing, with the advantage of identifying more than one species in a single reaction. The low frequency of wrong (5.0%) and missing (2.1%) alleles did not interfere with the correct species identification, which demonstrated the advantage of using a method based on the analysis of multiple loci. Overall, the SPInDel method was easily implemented by laboratories using different genotyping platforms, the interpretation of results was straightforward and the SPInDel software was used without any problems. The results of this collaborative exercise indicate that the SPInDel method can be applied successfully in forensic casework investigations. Copyright © 2017 Elsevier B.V. All rights reserved.
FastID: Extremely Fast Forensic DNA Comparisons
2017-05-19
FastID: Extremely Fast Forensic DNA Comparisons Darrell O. Ricke, PhD Bioengineering Systems & Technologies Massachusetts Institute of...Technology Lincoln Laboratory Lexington, MA USA Darrell.Ricke@ll.mit.edu Abstract—Rapid analysis of DNA forensic samples can have a critical impact on...time sensitive investigations. Analysis of forensic DNA samples by massively parallel sequencing is creating the next gold standard for DNA
Social and ethical aspects of forensic genetics: A critical review.
Williams, R; Wienroth, M
2017-07-01
This review describes the social and ethical responses to the history of innovations in forensic genetics and their application to criminal investigations. Following an outline of the three recurrent social perspectives that have informed these responses (crime management, due process, and genetic surveillance), it goes on to introduce the repertoire of ethical considerations by describing a series of key reports that have shaped subsequent commentaries on forensic DNA profiling and databasing. Four major ethical concerns form the focus of the remainder of the paper (dignity, privacy, justice, and social solidarity), and key features of forensic genetic practice are examined in the light of these concerns. The paper concludes with a discussion of the concept of "proportionality" as a resource for balancing the social and ethical risks and benefits of the use of forensic genetics in support of criminal justice. Copyright © 2017 Central Police University.
Marshall, Charla; Sturk-Andreaggi, Kimberly; Daniels-Higginbotham, Jennifer; Oliver, Robert Sean; Barritt-Ross, Suzanne; McMahon, Timothy P
2017-11-01
Next-generation ancient DNA technologies have the potential to assist in the analysis of degraded DNA extracted from forensic specimens. Mitochondrial genome (mitogenome) sequencing, specifically, may be of benefit to samples that fail to yield forensically relevant genetic information using conventional PCR-based techniques. This report summarizes the Armed Forces Medical Examiner System's Armed Forces DNA Identification Laboratory's (AFMES-AFDIL) performance evaluation of a Next-Generation Sequencing protocol for degraded and chemically treated past accounting samples. The procedure involves hybridization capture for targeted enrichment of mitochondrial DNA, massively parallel sequencing using Illumina chemistry, and an automated bioinformatic pipeline for forensic mtDNA profile generation. A total of 22 non-probative samples and associated controls were processed in the present study, spanning a range of DNA quantity and quality. Data were generated from over 100 DNA libraries by ten DNA analysts over the course of five months. The results show that the mitogenome sequencing procedure is reliable and robust, sensitive to low template (one ng control DNA) as well as degraded DNA, and specific to the analysis of the human mitogenome. Haplotypes were overall concordant between NGS replicates and with previously generated Sanger control region data. Due to the inherent risk for contamination when working with low-template, degraded DNA, a contamination assessment was performed. The consumables were shown to be void of human DNA contaminants and suitable for forensic use. Reagent blanks and negative controls were analyzed to determine the background signal of the procedure. This background signal was then used to set analytical and reporting thresholds, which were designated at 4.0X (limit of detection) and 10.0X (limit of quantiation) average coverage across the mitogenome, respectively. Nearly all human samples exceeded the reporting threshold, although coverage was reduced in chemically treated samples resulting in a ∼58% passing rate for these poor-quality samples. A concordance assessment demonstrated the reliability of the NGS data when compared to known Sanger profiles. One case sample was shown to be mixed with a co-processed sample and two reagent blanks indicated the presence of DNA above the analytical threshold. This contamination was attributed to sequencing crosstalk from simultaneously sequenced high-quality samples to include the positive control. Overall this study demonstrated that hybridization capture and Illumina sequencing provide a viable method for mitogenome sequencing of degraded and chemically treated skeletal DNA samples, yet may require alternative measures of quality control. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Application of forensic DNA testing in the legal system.
Primorac, D; Schanfield, M S
2000-03-01
DNA technology has taken an irreplaceable position in the field of the forensic sciences. Since 1985, when Peter Gill and Alex Jeffreys first applied DNA technology to forensic problems, to the present, more than 50,000 cases worldwide have been solved through the use of DNA based technology. Although the development of DNA typing in forensic science has been extremely rapid, today we are witnessing a new era of DNA technology including automation and miniaturization. In forensic science, DNA analysis has become "the new form of scientific evidence" and has come under public scrutiny and the demand to show competence. More and more courts admit the DNA based evidence. We believe that in the near future this technology will be generally accepted in the legal system. There are two main applications of DNA analysis in forensic medicine: criminal investigation and paternity testing. In this article we present background information on DNA, human genetics, and the application of DNA analysis to legal problems, as well as the commonly applied respective mathematics.
Genomic profiling of plastid DNA variation in the Mediterranean olive tree
2011-01-01
Background Characterisation of plastid genome (or cpDNA) polymorphisms is commonly used for phylogeographic, population genetic and forensic analyses in plants, but detecting cpDNA variation is sometimes challenging, limiting the applications of such an approach. In the present study, we screened cpDNA polymorphism in the olive tree (Olea europaea L.) by sequencing the complete plastid genome of trees with a distinct cpDNA lineage. Our objective was to develop new markers for a rapid genomic profiling (by Multiplex PCRs) of cpDNA haplotypes in the Mediterranean olive tree. Results Eight complete cpDNA genomes of Olea were sequenced de novo. The nucleotide divergence between olive cpDNA lineages was low and not exceeding 0.07%. Based on these sequences, markers were developed for studying two single nucleotide substitutions and length polymorphism of 62 regions (with variable microsatellite motifs or other indels). They were then used to genotype the cpDNA variation in cultivated and wild Mediterranean olive trees (315 individuals). Forty polymorphic loci were detected on this sample, allowing the distinction of 22 haplotypes belonging to the three Mediterranean cpDNA lineages known as E1, E2 and E3. The discriminating power of cpDNA variation was particularly low for the cultivated olive tree with one predominating haplotype, but more diversity was detected in wild populations. Conclusions We propose a method for a rapid characterisation of the Mediterranean olive germplasm. The low variation in the cultivated olive tree indicated that the utility of cpDNA variation for forensic analyses is limited to rare haplotypes. In contrast, the high cpDNA variation in wild populations demonstrated that our markers may be useful for phylogeographic and populations genetic studies in O. europaea. PMID:21569271
Y chromosome STR typing in crime casework.
Roewer, Lutz
2009-01-01
Since the beginning of the nineties the field of forensic Y chromosome analysis has been successfully developed to become commonplace in laboratories working in crime casework all over the world. The ability to identify male-specific DNA renders highly variable Y-chromosomal polymorphisms, the STR sequences, an invaluable addition to the standard panel of autosomal loci used in forensic genetics. The male-specificity makes the Y chromosome especially useful in cases of male/female cell admixture, namely in sexual assault cases. On the other hand, the haploidy and patrilineal inheritance complicates the interpretation of a Y-STR match, because male relatives share for several generations an identical Y-STR profile. Since paternal relatives tend to live in the geographic and cultural territory of their ancestors, the Y chromosome analysis has a potential to make inferences on the population of origin of a given DNA profile. This review addresses the fields of application of Y chromosome haplotyping, the interpretation of results, databasing efforts and population genetics aspects.
[DNA extraction from bones and teeth using AutoMate Express forensic DNA extraction system].
Gao, Lin-Lin; Xu, Nian-Lai; Xie, Wei; Ding, Shao-Cheng; Wang, Dong-Jing; Ma, Li-Qin; Li, You-Ying
2013-04-01
To explore a new method in order to extract DNA from bones and teeth automatically. Samples of 33 bones and 15 teeth were acquired by freeze-mill method and manual method, respectively. DNA materials were extracted and quantified from the triturated samples by AutoMate Express forensic DNA extraction system. DNA extraction from bones and teeth were completed in 3 hours using the AutoMate Express forensic DNA extraction system. There was no statistical difference between the two methods in the DNA concentration of bones. Both bones and teeth got the good STR typing by freeze-mill method, and the DNA concentration of teeth was higher than those by manual method. AutoMate Express forensic DNA extraction system is a new method to extract DNA from bones and teeth, which can be applied in forensic practice.
Palmbach, Timothy; Blom, Jeffrey; Hoynes, Emily; Primorac, Dragan; Gaboury, Mario
2014-01-01
A study was conducted to determine if modern forensic DNA typing methods can be properly employed throughout the world with a final goal of increasing arrests, prosecutions, and convictions of perpetrators of modern day trafficking in persons while concurrently reducing the burden of victim testimony in legal proceedings. Without interruption of investigations, collection of samples containing DNA was conducted in a variety of settings. Evidentiary samples were analyzed on the ANDE Rapid DNA system. Many of the collected swabs yielded informative short tandem repeat profiles with Rapid DNA technology. PMID:24577820
Palmbach, Timothy M; Blom, Jeffrey; Hoynes, Emily; Primorac, Dragan; Gaboury, Mario
2014-02-01
A study was conducted to determine if modern forensic DNA typing methods can be properly employed throughout the world with a final goal of increasing arrests, prosecutions, and convictions of perpetrators of modern day trafficking in persons while concurrently reducing the burden of victim testimony in legal proceedings. Without interruption of investigations, collection of samples containing DNA was conducted in a variety of settings. Evidentiary samples were analyzed on the ANDE Rapid DNA system. Many of the collected swabs yielded informative short tandem repeat profiles with Rapid DNA technology.
Single-cell forensic short tandem repeat typing within microfluidic droplets.
Geng, Tao; Novak, Richard; Mathies, Richard A
2014-01-07
A short tandem repeat (STR) typing method is developed for forensic identification of individual cells. In our strategy, monodisperse 1.5 nL agarose-in-oil droplets are produced with a high frequency using a microfluidic droplet generator. Statistically dilute single cells, along with primer-functionalized microbeads, are randomly compartmentalized in the droplets. Massively parallel single-cell droplet polymerase chain reaction (PCR) is performed to transfer replicas of desired STR targets from the single-cell genomic DNA onto the coencapsulated microbeads. These DNA-conjugated beads are subsequently harvested and reamplified under statistically dilute conditions for conventional capillary electrophoresis (CE) STR fragment size analysis. The 9-plex STR profiles of single cells from both pure and mixed populations of GM09947 and GM09948 human lymphoid cells show that all alleles are correctly called and allelic drop-in/drop-out is not observed. The cell mixture study exhibits a good linear relationship between the observed and input cell ratios in the range of 1:1 to 10:1. Additionally, the STR profile of GM09947 cells could be deduced even in the presence of a high concentration of cell-free contaminating 9948 genomic DNA. Our method will be valuable for the STR analysis of samples containing mixtures of cells/DNA from multiple contributors and for low-concentration samples.
Application of DNA-based methods in forensic entomology.
Wells, Jeffrey D; Stevens, Jamie R
2008-01-01
A forensic entomological investigation can benefit from a variety of widely practiced molecular genotyping methods. The most commonly used is DNA-based specimen identification. Other applications include the identification of insect gut contents and the characterization of the population genetic structure of a forensically important insect species. The proper application of these procedures demands that the analyst be technically expert. However, one must also be aware of the extensive list of standards and expectations that many legal systems have developed for forensic DNA analysis. We summarize the DNA techniques that are currently used in, or have been proposed for, forensic entomology and review established genetic analyses from other scientific fields that address questions similar to those in forensic entomology. We describe how accepted standards for forensic DNA practice and method validation are likely to apply to insect evidence used in a death or other forensic entomological investigation.
Habtom, Habteab; Demanèche, Sandrine; Dawson, Lorna; Azulay, Chen; Matan, Ofra; Robe, Patrick; Gafny, Ron; Simonet, Pascal; Jurkevitch, Edouard; Pasternak, Zohar
2017-01-01
The ubiquity and transferability of soil makes it a resource for the forensic investigator, as it can provide a link between agents and scenes. However, the information contained in soils, such as chemical compounds, physical particles or biological entities, is seldom used in forensic investigations; due mainly to the associated costs, lack of available expertise, and the lack of soil databases. The microbial DNA in soil is relatively easy to access and analyse, having thus the potential to provide a powerful means for discriminating soil samples or linking them to a common origin. We compared the effectiveness and reliability of multiple methods and genes for bacterial characterisation in the differentiation of soil samples: ribosomal intergenic spacer analysis (RISA), terminal restriction fragment length polymorphism (TRFLP) of the rpoB gene, and five methods using the 16S rRNA gene: phylogenetic microarrays, TRFLP, and high throughput sequencing with Roche 454, Illumina MiSeq and IonTorrent PGM platforms. All these methods were also compared to long-chain hydrocarbons (n-alkanes) and fatty alcohol profiling of the same soil samples. RISA, 16S TRFLP and MiSeq performed best, reliably and significantly discriminating between adjacent, similar soil types. As TRFLP employs the same capillary electrophoresis equipment and procedures used to analyse human DNA, it is readily available for use in most forensic laboratories. TRFLP was optimized for forensic usage in five parameters: choice of primer pair, fluorescent tagging, concentrating DNA after digestion, number of PCR amplifications per sample and number of capillary electrophoresis runs per PCR amplification. This study shows that molecular microbial ecology methodologies are robust in discriminating between soil samples, illustrating their potential usage as an evaluative forensic tool. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
[Comparison of MPure-12 Automatic Nucleic Acid Purification and Chelex-100 Method].
Shen, X; Li, M; Wang, Y L; Chen, Y L; Lin, Y; Zhao, Z M; Que, T Z
2017-04-01
To explore the forensic application value of MPure-12 automatic nucleic acid purification (MPure-12 Method) for DNA extraction by extracting and typing DNA from bloodstains and various kinds of biological samples with different DNA contents. Nine types of biological samples, such as bloodstains, semen stains, and saliva were collected. DNA were extracted using MPure-12 method and Chelex-100 method, followed by PCR amplification and electrophoresis for obtaining STR-profiles. The samples such as hair root, chutty, butt, muscular tissue, saliva stain, bloodstain and semen stain were typed successfully by MPure-12 method. Partial alleles were lacked in the samples of saliva, and the genotyping of contact swabs was unsatisfactory. Additional, all of the bloodstains (20 μL, 15 μL, 10 μL, 5 μL, 1 μL) showed good typing results using Chelex-100 method. But the loss of alleles occurred in 1 μL blood volume by MPure-12 method. MPure-12 method is suitable for DNA extraction of a certain concentration blood samples.Chelex-100 method may be better for the extraction of trace blood samples.This instrument used in nucleic acid extraction has the advantages of simplicity of operator, rapidity, high extraction efficiency, high rate of reportable STR-profiles and lower man-made pollution. Copyright© by the Editorial Department of Journal of Forensic Medicine
Feline Non-repetitive Mitochondrial DNA Control Region Database for Forensic Evidence
Grahn, R. A.; Kurushima, J. D.; Billings, N. C.; Grahn, J.C.; Halverson, J. L.; Hammer, E.; Ho, C.K.; Kun, T. J.; Levy, J.K.; Lipinski, M. J.; Mwenda, J.M.; Ozpinar, H.; Schuster, R.K; Shoorijeh, S.J.; Tarditi, C. R.; Waly, N.E.; Wictum, E. J.; Lyons, L. A.
2010-01-01
The domestic cat is the one of the most popular pets throughout the world. A by-product of owning, interacting with, or being in a household with a cat is the transfer of shed fur to clothing or personal objects. As trace evidence, transferred cat fur is a relatively untapped resource for forensic scientists. Both phenotypic and genotypic characteristics can be obtained from cat fur, but databases for neither aspect exist. Because cats incessantly groom, cat fur may have nucleated cells, not only in the hair bulb, but also as epithelial cells on the hair shaft deposited during the grooming process, thereby generally providing material for DNA profiling. To effectively exploit cat hair as a resource, representative databases must be established. This study evaluates 402 bp of the mtDNA control region (CR) from 1,394 cats, including cats from 25 distinct worldwide populations and 26 breeds. Eighty-three percent of the cats are represented by 12 major mitotypes. An additional 8.0% are clearly derived from the major mitotypes. Unique sequences were found in 7.5% of the cats. The overall genetic diversity for this data set was 0.8813 ± 0.0046 with a random match probability of 11.8%. This region of the cat mtDNA has discriminatory power suitable for forensic application worldwide. PMID:20457082
Applicability of the ParaDNA(®) Screening System to Seminal Samples.
Tribble, Nicholas D; Miller, Jamie A D; Dawnay, Nick; Duxbury, Nicola J
2015-05-01
Seminal fluid represents a common biological material recovered from sexual assault crime scenes. Such samples can be prescreened using different techniques to determine cell type and relative amount before submitting for full STR profiling. The ParaDNA(®) Screening System is a novel forensic test which identifies the presence of DNA through amplification and detection of two common STR loci (D16S539 and TH01) and the Amelogenin marker. The detection of the Y allele in samples could provide a useful tool in the triage and submission of sexual assault samples by enforcement authorities. Male template material was detected on a range of common sexual assault evidence items including cotton pillow cases, condoms, swab heads and glass surfaces and shows a detection limit of 1 in 1000 dilution of neat semen. These data indicate this technology has the potential to be a useful tool for the detection of male donor DNA in sexual assault casework. © 2015 American Academy of Forensic Sciences.
High-Resolution Melting (HRM) of Hypervariable Mitochondrial DNA Regions for Forensic Science.
Dos Santos Rocha, Alípio; de Amorim, Isis Salviano Soares; Simão, Tatiana de Almeida; da Fonseca, Adenilson de Souza; Garrido, Rodrigo Grazinoli; Mencalha, Andre Luiz
2018-03-01
Forensic strategies commonly are proceeding by analysis of short tandem repeats (STRs); however, new additional strategies have been proposed for forensic science. Thus, this article standardized the high-resolution melting (HRM) of DNA for forensic analyzes. For HRM, mitochondrial DNA (mtDNA) from eight individuals were extracted from mucosa swabs by DNAzol reagent, samples were amplified by PCR and submitted to HRM analysis to identify differences in hypervariable (HV) regions I and II. To confirm HRM, all PCR products were DNA sequencing. The data suggest that is possible discriminate DNA from different samples by HRM curves. Also, uncommon dual-dissociation was identified in a single PCR product, increasing HRM analyzes by evaluation of melting peaks. Thus, HRM is accurate and useful to screening small differences in HVI and HVII regions from mtDNA and increase the efficiency of laboratory routines based on forensic genetics. © 2017 American Academy of Forensic Sciences.
Ambers, Angie D; Churchill, Jennifer D; King, Jonathan L; Stoljarova, Monika; Gill-King, Harrell; Assidi, Mourad; Abu-Elmagd, Muhammad; Buhmeida, Abdelbaset; Al-Qahtani, Mohammed; Budowle, Bruce
2016-10-17
Although the primary objective of forensic DNA analyses of unidentified human remains is positive identification, cases involving historical or archaeological skeletal remains often lack reference samples for comparison. Massively parallel sequencing (MPS) offers an opportunity to provide biometric data in such cases, and these cases provide valuable data on the feasibility of applying MPS for characterization of modern forensic casework samples. In this study, MPS was used to characterize 140-year-old human skeletal remains discovered at a historical site in Deadwood, South Dakota, United States. The remains were in an unmarked grave and there were no records or other metadata available regarding the identity of the individual. Due to the high throughput of MPS, a variety of biometric markers could be typed using a single sample. Using MPS and suitable forensic genetic markers, more relevant information could be obtained from a limited quantity and quality sample. Results were obtained for 25/26 Y-STRs, 34/34 Y SNPs, 166/166 ancestry-informative SNPs, 24/24 phenotype-informative SNPs, 102/102 human identity SNPs, 27/29 autosomal STRs (plus amelogenin), and 4/8 X-STRs (as well as ten regions of mtDNA). The Y-chromosome (Y-STR, Y-SNP) and mtDNA profiles of the unidentified skeletal remains are consistent with the R1b and H1 haplogroups, respectively. Both of these haplogroups are the most common haplogroups in Western Europe. Ancestry-informative SNP analysis also supported European ancestry. The genetic results are consistent with anthropological findings that the remains belong to a male of European ancestry (Caucasian). Phenotype-informative SNP data provided strong support that the individual had light red hair and brown eyes. This study is among the first to genetically characterize historical human remains with forensic genetic marker kits specifically designed for MPS. The outcome demonstrates that substantially more genetic information can be obtained from the same initial quantities of DNA as that of current CE-based analyses.
Swabbing firearms for handler's DNA.
Richert, Nicholas J
2011-07-01
Obtaining quality DNA profiles from firearms can be instrumental in assisting criminal investigations. Typically, swabbings of firearms for handler's DNA are conducted on specific regions of the firearm prior to submission to the laboratory for analysis. This review examines and compares 32 cases whose gun swabbings were either analyzed individually according to the specific region which was swabbed, or analyzed collectively by combining the swabbings from all the individual areas. Those firearms whose swabs were analyzed separately exhibited lower DNA yields and consequently fewer loci exhibiting genotypes. Those cases whose swabs were analyzed collectively exhibited higher DNA yields and consequently greater numbers of loci exhibiting genotypes. These findings demonstrate that collective swabbings result in more complete profiles and lead to the recommendation that a firearm be swabbed in its entirety using no more than two swabs. © 2011 American Academy of Forensic Sciences.
Evaluation of four commercial quantitative real-time PCR kits with inhibited and degraded samples.
Holmes, Amy S; Houston, Rachel; Elwick, Kyleen; Gangitano, David; Hughes-Stamm, Sheree
2018-05-01
DNA quantification is a vital step in forensic DNA analysis to determine the optimal input amount for DNA typing. A quantitative real-time polymerase chain reaction (qPCR) assay that can predict DNA degradation or inhibitors present in the sample prior to DNA amplification could aid forensic laboratories in creating a more streamlined and efficient workflow. This study compares the results from four commercial qPCR kits: (1) Investigator® Quantiplex® Pro Kit, (2) Quantifiler® Trio DNA Quantification Kit, (3) PowerQuant® System, and (4) InnoQuant® HY with high molecular weight DNA, low template samples, degraded samples, and DNA spiked with various inhibitors.The results of this study indicate that all kits were comparable in accurately predicting quantities of high quality DNA down to the sub-picogram level. However, the InnoQuant(R) HY kit showed the highest precision across the DNA concentration range tested in this study. In addition, all kits performed similarly with low concentrations of forensically relevant PCR inhibitors. However, in general, the Investigator® Quantiplex® Pro Kit was the most tolerant kit to inhibitors and provided the most accurate quantification results with higher concentrations of inhibitors (except with salt). PowerQuant® and InnoQuant® HY were the most sensitive to inhibitors, but they did indicate significant levels of PCR inhibition. When quantifying degraded samples, each kit provided different degradation indices (DI), with Investigator® Quantiplex® Pro indicating the largest DI and Quantifiler® Trio indicating the smallest DI. When the qPCR kits were paired with their respective STR kit to genotype highly degraded samples, the Investigator® 24plex QS and GlobalFiler® kits generated more complete profiles when the small target concentrations were used for calculating input amount.
Searching mixed DNA profiles directly against profile databases.
Bright, Jo-Anne; Taylor, Duncan; Curran, James; Buckleton, John
2014-03-01
DNA databases have revolutionised forensic science. They are a powerful investigative tool as they have the potential to identify persons of interest in criminal investigations. Routinely, a DNA profile generated from a crime sample could only be searched for in a database of individuals if the stain was from single contributor (single source) or if a contributor could unambiguously be determined from a mixed DNA profile. This meant that a significant number of samples were unsuitable for database searching. The advent of continuous methods for the interpretation of DNA profiles offers an advanced way to draw inferential power from the considerable investment made in DNA databases. Using these methods, each profile on the database may be considered a possible contributor to a mixture and a likelihood ratio (LR) can be formed. Those profiles which produce a sufficiently large LR can serve as an investigative lead. In this paper empirical studies are described to determine what constitutes a large LR. We investigate the effect on a database search of complex mixed DNA profiles with contributors in equal proportions with dropout as a consideration, and also the effect of an incorrect assignment of the number of contributors to a profile. In addition, we give, as a demonstration of the method, the results using two crime samples that were previously unsuitable for database comparison. We show that effective management of the selection of samples for searching and the interpretation of the output can be highly informative. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Probabilistic peak detection in CE-LIF for STR DNA typing.
Woldegebriel, Michael; van Asten, Arian; Kloosterman, Ate; Vivó-Truyols, Gabriel
2017-07-01
In this work, we present a novel probabilistic peak detection algorithm based on a Bayesian framework for forensic DNA analysis. The proposed method aims at an exhaustive use of raw electropherogram data from a laser-induced fluorescence multi-CE system. As the raw data are informative up to a single data point, the conventional threshold-based approaches discard relevant forensic information early in the data analysis pipeline. Our proposed method assigns a posterior probability reflecting the data point's relevance with respect to peak detection criteria. Peaks of low intensity generated from a truly existing allele can thus constitute evidential value instead of fully discarding them and contemplating a potential allele drop-out. This way of working utilizes the information available within each individual data point and thus avoids making early (binary) decisions on the data analysis that can lead to error propagation. The proposed method was tested and compared to the application of a set threshold as is current practice in forensic STR DNA profiling. The new method was found to yield a significant improvement in the number of alleles identified, regardless of the peak heights and deviation from Gaussian shape. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bintz, Brittania J; Dixon, Groves B; Wilson, Mark R
2014-07-01
Next-generation sequencing technologies enable the identification of minor mitochondrial DNA variants with higher sensitivity than Sanger methods, allowing for enhanced identification of minor variants. In this study, mixtures of human mtDNA control region amplicons were subjected to pyrosequencing to determine the detection threshold of the Roche GS Junior(®) instrument (Roche Applied Science, Indianapolis, IN). In addition to expected variants, a set of reproducible variants was consistently found in reads from one particular amplicon. A BLASTn search of the variant sequence revealed identity to a segment of a 611-bp nuclear insertion of the mitochondrial control region (NumtS) spanning the primer-binding sites of this amplicon (Nature 1995;378:489). Primers (Hum Genet 2012;131:757; Hum Biol 1996;68:847) flanking the insertion were used to confirm the presence or absence of the NumtS in buccal DNA extracts from twenty donors. These results further our understanding of human mtDNA variation and are expected to have a positive impact on the interpretation of mtDNA profiles using deep-sequencing methods in casework. © 2014 American Academy of Forensic Sciences.
Eduardoff, Mayra; Xavier, Catarina; Strobl, Christina; Casas-Vargas, Andrea; Parson, Walther
2017-01-01
The analysis of mitochondrial DNA (mtDNA) has proven useful in forensic genetics and ancient DNA (aDNA) studies, where specimens are often highly compromised and DNA quality and quantity are low. In forensic genetics, the mtDNA control region (CR) is commonly sequenced using established Sanger-type Sequencing (STS) protocols involving fragment sizes down to approximately 150 base pairs (bp). Recent developments include Massively Parallel Sequencing (MPS) of (multiplex) PCR-generated libraries using the same amplicon sizes. Molecular genetic studies on archaeological remains that harbor more degraded aDNA have pioneered alternative approaches to target mtDNA, such as capture hybridization and primer extension capture (PEC) methods followed by MPS. These assays target smaller mtDNA fragment sizes (down to 50 bp or less), and have proven to be substantially more successful in obtaining useful mtDNA sequences from these samples compared to electrophoretic methods. Here, we present the modification and optimization of a PEC method, earlier developed for sequencing the Neanderthal mitochondrial genome, with forensic applications in mind. Our approach was designed for a more sensitive enrichment of the mtDNA CR in a single tube assay and short laboratory turnaround times, thus complying with forensic practices. We characterized the method using sheared, high quantity mtDNA (six samples), and tested challenging forensic samples (n = 2) as well as compromised solid tissue samples (n = 15) up to 8 kyrs of age. The PEC MPS method produced reliable and plausible mtDNA haplotypes that were useful in the forensic context. It yielded plausible data in samples that did not provide results with STS and other MPS techniques. We addressed the issue of contamination by including four generations of negative controls, and discuss the results in the forensic context. We finally offer perspectives for future research to enable the validation and accreditation of the PEC MPS method for final implementation in forensic genetic laboratories. PMID:28934125
Zahra, Nathalie; Hadi, Sibte; Smith, Judith A; Iyengar, Arati; Goodwin, William
2011-06-01
DNA extracted from forensic samples can be degraded and also contain co-extracted contaminants that inhibit PCR. The effects of DNA degradation and PCR inhibition are often indistinguishable when examining a DNA profile. Two internal amplification controls (IACs) were developed to improve quality control of PCR using the AmpFℓSTR® SGM Plus® kit. The co-amplification of these controls with DNA samples was used to monitor amplification efficiency and detect PCR inhibitors. IAC fragments of 90 and 410 bp (IAC₉₀ and IAC₄₁₀) were generated from the plasmid pBR322 using tailed primers and then amplified with ROX-labelled primers. Co-amplification of IAC₉₀ and IAC₄₁₀ was performed with varying amounts of template DNA, degraded DNA and DNA contaminated with humic acid, heme and indigo dye. Both IAC₉₀ and IAC₄₁₀ were successfully amplified with human DNA without significantly affecting the quality of the DNA profile, even with DNA amounts lower than 0.5 ng. In the presence of inhibitors, the IAC₉₀ signal was still present after all human DNA loci fail to amplify; in contrast, the IAC₄₁₀ signal was reduced or absent at low levels of inhibition. Amplification of the two IACs provided an internal PCR control and allowed partial profiles caused by inhibition to be distinguished from degraded DNA profiles. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DNA Fingerprinting Using PCR: A Practical Forensic Science Activity
ERIC Educational Resources Information Center
Choi, Hyun-Jung; Ahn, Jung Hoon; Ko, Minsu
2008-01-01
This paper describes a forensic science simulation programme applicable for use in colleges. Students were asked to find a putative suspect by DNA fingerprinting using a simple protocol developed in this study. DNA samples were obtained from a hair root and a drop of blood, common sources of DNA in forensic science. The DNA fingerprinting protocol…
Forensic Analysis of Human DNA from Samples Contamined with Bioweapons Agents
2011-10-01
Forensic analysis of human DNA from samples contaminated with bioweapons agents Jason Timbers Kathryn Wright Royal Canadian Mounted...Police Forensic Science and Identification Service Prepared By: Royal Canadian Mounted Police RCMP Forensic Science Identification Services... Royal Canadian Mounted Police Forensic Science and Identification Service Prepared By: Royal Canadian Mounted Police RCMP Forensic Science
Genetic identification of missing persons: DNA analysis of human remains and compromised samples.
Alvarez-Cubero, M J; Saiz, M; Martinez-Gonzalez, L J; Alvarez, J C; Eisenberg, A J; Budowle, B; Lorente, J A
2012-01-01
Human identification has made great strides over the past 2 decades due to the advent of DNA typing. Forensic DNA typing provides genetic data from a variety of materials and individuals, and is applied to many important issues that confront society. Part of the success of DNA typing is the generation of DNA databases to help identify missing persons and to develop investigative leads to assist law enforcement. DNA databases house DNA profiles from convicted felons (and in some jurisdictions arrestees), forensic evidence, human remains, and direct and family reference samples of missing persons. These databases are essential tools, which are becoming quite large (for example the US Database contains 10 million profiles). The scientific, governmental and private communities continue to work together to standardize genetic markers for more effective worldwide data sharing, to develop and validate robust DNA typing kits that contain the reagents necessary to type core identity genetic markers, to develop technologies that facilitate a number of analytical processes and to develop policies to make human identity testing more effective. Indeed, DNA typing is integral to resolving a number of serious criminal and civil concerns, such as solving missing person cases and identifying victims of mass disasters and children who may have been victims of human trafficking, and provides information for historical studies. As more refined capabilities are still required, novel approaches are being sought, such as genetic testing by next-generation sequencing, mass spectrometry, chip arrays and pyrosequencing. Single nucleotide polymorphisms offer the potential to analyze severely compromised biological samples, to determine the facial phenotype of decomposed human remains and to predict the bioancestry of individuals, a new focus in analyzing this type of markers. Copyright © 2012 S. Karger AG, Basel.
Linacre, A; Gusmão, L; Hecht, W; Hellmann, A P; Mayr, W R; Parson, W; Prinz, M; Schneider, P M; Morling, N
2011-11-01
The use of non-human DNA typing in forensic science investigations, and specifically that from animal DNA, is ever increasing. The term animal DNA in this document refers to animal species encountered in a forensic science examination but does not include human DNA. Non-human DNA may either be: the trade and possession of a species, or products derived from a species, which is contrary to legislation; as evidence where the crime is against a person or property; instances of animal cruelty; or where the animal is the offender. The first instance is addressed by determining the species present, and the other scenarios can often be addressed by assigning a DNA sample to a particular individual organism. Currently there is little standardization of methodologies used in the forensic analysis of animal DNA or in reporting styles. The recommendations in this document relate specifically to animal DNA that is integral to a forensic science investigation and are not relevant to the breeding of animals for commercial purposes. This DNA commission was formed out of discussions at the International Society for Forensic Genetics 23rd Congress in Buenos Aires to outline recommendations on the use of non-human DNA in a forensic science investigation. Due to the scope of non-human DNA typing that is possible, the remit of this commission is confined to animal DNA typing only. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Trace DNA analysis: do you know what your neighbour is doing? A multi-jurisdictional survey.
Raymond, Jennifer J; van Oorschot, Roland A H; Walsh, Simon J; Roux, Claude
2008-01-01
Since 1997 the analysis of DNA recovered from handled objects, or 'trace' DNA, has become routine and is frequently demanded from crime scene examinations. However, this analysis often produces unpredictable results. The factors affecting the recovery of full profiles are numerous, and include varying methods of collection and analysis. Communication between forensic laboratories in Australia and New Zealand has been limited in the past, due in some part to sheer distance. Because of its relatively small population and low number of forensic jurisdictions this region is in an excellent position to provide a collective approach. However, the protocols, training methods and research of each jurisdiction had not been widely exchanged. A survey was developed to benchmark the current practices involved in trace DNA analysis, aiming to provide information for training programs and research directions, and to identify factors contributing to the success or failure of the analysis. The survey was divided in to three target groups: crime scene officers, DNA laboratory scientists, and managers of these staff. In late 2004 surveys were sent to forensic organisations in every Australian jurisdiction and New Zealand. A total of 169 completed surveys were received with a return rate of 54%. Information was collated regarding sampling, extraction, amplification and analysis methods, contamination prevention, samples collected, success rates, personnel training and education, and concurrent fingerprinting. The data from the survey responses provided an insight into aspects of trace DNA analysis, from crime scene to interpretation and management. Several concerning factors arose from the survey. Results collation is a significant issue being identified as poor and differing widely, preventing inter-jurisdictional comparison and intra-jurisdictional assessment of both the processes and outputs. A second point of note is the widespread lack of refresher training and proficiency testing, with no set standard for initial training courses. A common theme to these and other issues was the need for a collective approach to training and methodology in trace DNA analysis. Trace DNA is a small fraction of the evidence available in current investigations, and parallels to these results and problems will no doubt be found in other forensic disciplines internationally. The significant point to be realised from this study is the need for effective communication lines between forensic organisations to ensure that best practice is followed, ideally with a cohesive pan-jurisdictional approach.
An artificial neural network system to identify alleles in reference electropherograms.
Taylor, Duncan; Harrison, Ash; Powers, David
2017-09-01
Electropherograms are produced in great numbers in forensic DNA laboratories as part of everyday criminal casework. Before the results of these electropherograms can be used they must be scrutinised by analysts to determine what the identified data tells them about the underlying DNA sequences and what is purely an artefact of the DNA profiling process. This process of interpreting the electropherograms can be time consuming and is prone to subjective differences between analysts. Recently it was demonstrated that artificial neural networks could be used to classify information within an electropherogram as allelic (i.e. representative of a DNA fragment present in the DNA extract) or as one of several different categories of artefactual fluorescence that arise as a result of generating an electropherogram. We extend that work here to demonstrate a series of algorithms and artificial neural networks that can be used to identify peaks on an electropherogram and classify them. We demonstrate the functioning of the system on several profiles and compare the results to a leading commercial DNA profile reading system. Copyright © 2017 Elsevier B.V. All rights reserved.
Evaluating forensic biology results given source level propositions.
Taylor, Duncan; Abarno, Damien; Hicks, Tacha; Champod, Christophe
2016-03-01
The evaluation of forensic evidence can occur at any level within the hierarchy of propositions depending on the question being asked and the amount and type of information that is taken into account within the evaluation. Commonly DNA evidence is reported given propositions that deal with the sub-source level in the hierarchy, which deals only with the possibility that a nominated individual is a source of DNA in a trace (or contributor to the DNA in the case of a mixed DNA trace). We explore the use of information obtained from examinations, presumptive and discriminating tests for body fluids, DNA concentrations and some case circumstances within a Bayesian network in order to provide assistance to the Courts that have to consider propositions at source level. We use a scenario in which the presence of blood is of interest as an exemplar and consider how DNA profiling results and the potential for laboratory error can be taken into account. We finish with examples of how the results of these reports could be presented in court using either numerical values or verbal descriptions of the results. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Ogden, Rob
2010-09-01
Wildlife DNA forensics is receiving increasing coverage in the popular press and has begun to appear in the scientific literature in relation to several different fields. Recognized as an applied subject, it rests on top of very diverse scientific pillars ranging from biochemistry through to evolutionary genetics, all embedded within the context of modern forensic science. This breadth of scope, combined with typically limited resources, has often left wildlife DNA forensics hanging precariously between human DNA forensics and academics keen to seek novel applications for biological research. How best to bridge this gap is a matter for regular debate among the relatively few full-time practitioners in the field. The decisions involved in establishing forensic genetic services to investigate wildlife crime can be complex, particularly where crimes involve a wide range of species and evidential questions. This paper examines some of the issues relevant to setting up a wildlife DNA forensics laboratory based on experiences of working in this area over the past 7 years. It includes a discussion of various models for operating individual laboratories as well as options for organizing forensic testing at higher national and international levels.
75 FR 18488 - Intent To Grant an Exclusive License of U.S. Government-Owned Patent
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-12
... ``System and Method for the Deconvolution of Mixed DNA Profiles Using a Proportionately Shared Allele Approach'' to Niche Vision Forensics, LLC, with its principal place of business at 526 South Main Street Suite 714 G, Akron, OH 44311. ADDRESSES: Commander, U.S. Army Medical Research and Materiel Command...
DNA Barcodes for Forensically Important Fly Species in Brazil.
Koroiva, Ricardo; de Souza, Mirian S; Roque, Fabio de Oliveira; Pepinelli, Mateus
2018-04-07
Here, we analyze 248 DNA barcode sequences of 35 fly species of forensic importance in Brazil. DNA barcoding can be effectively used for specimen identification of these species, allowing the unambiguous identification of 31 species, an overall success rate of 88%. Our results show a high rate of success for molecular identification using DNA barcoding sequences and open new perspectives for immature species identification, a subject on which limited forensic investigations exist in Tropical regions. We also address the implications of building a robust forensic DNA barcode database. A geographic bias is recognized for the COI dataset available for forensically important fly species in Brazil, with concentration of sequences from specimens collected mainly in sites located in the Cerrado, Mata Atlântica, and Pampa biomes.
Pośpiech, Ewelina; Wojas-Pelc, Anna; Walsh, Susan; Liu, Fan; Maeda, Hitoshi; Ishikawa, Takaki; Skowron, Małgorzata; Kayser, Manfred; Branicki, Wojciech
2014-07-01
The role of epistatic effects in the determination of complex traits is often underlined but its significance in the prediction of pigmentation phenotypes has not been evaluated so far. The prediction of pigmentation from genetic data can be useful in forensic science to describe the physical appearance of an unknown offender, victim, or missing person who cannot be identified via conventional DNA profiling. Available forensic DNA prediction systems enable the reliable prediction of several eye and hair colour categories. However, there is still space for improvement. Here we verified the association of 38 candidate DNA polymorphisms from 13 genes and explored the extent to which interactions between them may be involved in human pigmentation and their impact on forensic DNA prediction in particular. The model-building set included 718 Polish samples and the model-verification set included 307 independent Polish samples and additional 72 samples from Japan. In total, 29 significant SNP-SNP interactions were found with 5 of them showing an effect on phenotype prediction. For predicting green eye colour, interactions between HERC2 rs12913832 and OCA2 rs1800407 as well as TYRP1 rs1408799 raised the prediction accuracy expressed by AUC from 0.667 to 0.697 and increased the prediction sensitivity by >3%. Interaction between MC1R 'R' variants and VDR rs731236 increased the sensitivity for light skin by >1% and by almost 3% for dark skin colour prediction. Interactions between VDR rs1544410 and TYR rs1042602 as well as between MC1R 'R' variants and HERC2 rs12913832 provided an increase in red/non-red hair prediction accuracy from an AUC of 0.902-0.930. Our results thus underline epistasis as a common phenomenon in human pigmentation genetics and demonstrate that considering SNP-SNP interactions in forensic DNA phenotyping has little impact on eye, hair and skin colour prediction. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
An Accelerated Analytical Process for the Development of STR Profiles for Casework Samples.
Laurin, Nancy; Frégeau, Chantal J
2015-07-01
Significant efforts are being devoted to the development of methods enabling rapid generation of short tandem repeat (STR) profiles in order to reduce turnaround times for the delivery of human identification results from biological evidence. Some of the proposed solutions are still costly and low throughput. This study describes the optimization of an analytical process enabling the generation of complete STR profiles (single-source or mixed profiles) for human identification in approximately 5 h. This accelerated process uses currently available reagents and standard laboratory equipment. It includes a 30-min lysis step, a 27-min DNA extraction using the Promega Maxwell(®) 16 System, DNA quantification in <1 h using the Qiagen Investigator(®) Quantiplex HYres kit, fast amplification (<26 min) of the loci included in AmpFℓSTR(®) Identifiler(®), and analysis of the profiles on the 3500-series Genetic Analyzer. This combination of fast individual steps produces high-quality profiling results and offers a cost-effective alternative approach to rapid DNA analysis. © 2015 American Academy of Forensic Sciences.
9649 forensic web watch--DNA in forensic science.
Bowyer, V L; Graham, E A M; Rutty, G N
2004-10-01
In 1923, within the Manual of Police technique, Edmond Locard published what is commonly known as the Doctrine of Exchange; a series of rules related to the exchange of trace evidence between the victim and offender. Although at the time of publication these rules principally applied to trace evidence related to print (for exchange finger print or shoeprint), fibre and blood, today one can add the very substance that defines each human being -- DNA. Since th first use of DNA evidence to help identify an offender in the Pitchfork Murders of 1986, the use of DNA within forensic science has developed from its humble days within a single experimental laboratory at the University of Leicester to a multi-million pound industry. It thus seams fitting that this forensic web watch should originate from the very University where the use of DNA in forensic science was conceived, drawing the readers attention to a number of sites which can be used as an introduction to the concept of the use of DNA in forensic science today.
Internal validation of STRmix™ for the interpretation of single source and mixed DNA profiles.
Moretti, Tamyra R; Just, Rebecca S; Kehl, Susannah C; Willis, Leah E; Buckleton, John S; Bright, Jo-Anne; Taylor, Duncan A; Onorato, Anthony J
2017-07-01
The interpretation of DNA evidence can entail analysis of challenging STR typing results. Genotypes inferred from low quality or quantity specimens, or mixed DNA samples originating from multiple contributors, can result in weak or inconclusive match probabilities when a binary interpretation method and necessary thresholds (such as a stochastic threshold) are employed. Probabilistic genotyping approaches, such as fully continuous methods that incorporate empirically determined biological parameter models, enable usage of more of the profile information and reduce subjectivity in interpretation. As a result, software-based probabilistic analyses tend to produce more consistent and more informative results regarding potential contributors to DNA evidence. Studies to assess and internally validate the probabilistic genotyping software STRmix™ for casework usage at the Federal Bureau of Investigation Laboratory were conducted using lab-specific parameters and more than 300 single-source and mixed contributor profiles. Simulated forensic specimens, including constructed mixtures that included DNA from two to five donors across a broad range of template amounts and contributor proportions, were used to examine the sensitivity and specificity of the system via more than 60,000 tests comparing hundreds of known contributors and non-contributors to the specimens. Conditioned analyses, concurrent interpretation of amplification replicates, and application of an incorrect contributor number were also performed to further investigate software performance and probe the limitations of the system. In addition, the results from manual and probabilistic interpretation of both prepared and evidentiary mixtures were compared. The findings support that STRmix™ is sufficiently robust for implementation in forensic laboratories, offering numerous advantages over historical methods of DNA profile analysis and greater statistical power for the estimation of evidentiary weight, and can be used reliably in human identification testing. With few exceptions, likelihood ratio results reflected intuitively correct estimates of the weight of the genotype possibilities and known contributor genotypes. This comprehensive evaluation provides a model in accordance with SWGDAM recommendations for internal validation of a probabilistic genotyping system for DNA evidence interpretation. Copyright © 2017. Published by Elsevier B.V.
White, Robert M; Mitchell, John M; Hart, E Dale; Evans, Amy; Meaders, Meredith; Norsworthy, Sarah E; Hayes, Eugene D; Flegel, Ron; Maha, George C; Shaffer, Megan D; Hall, Erin M; Rogers, Kelley
2018-02-01
For forensic biological sample collections, the specimen donor is linked solidly to his or her specimen through a chain of custody (CoC) sometimes referenced as a chain of evidence. Rarely, a donor may deny that a urine or oral fluid (OF) specimen is his or her specimen even with a patent CoC. The goal of this pilot study was to determine the potential effects of short-term storage on the quality and quantity of DNA in both types of specimen under conditions that may be encountered with employment-related drug testing specimens. Fresh urine and freshly collected oral fluid all produced complete STR profiles. For the "pad" type OF collectors, acceptable DNA was extractable both from the buffer/preservative and the pad. Although fresh urine and OF produced complete STR profiles, partial profiles were obtained after storage for most samples. An exception was the DNA in the Quantisal OF collector, from which a complete profile was obtained for both freshly collected OF and stored OF. Copyright © 2017 Elsevier B.V. All rights reserved.
Forensic aspects of DNA-based human identity testing.
Roper, Stephen M; Tatum, Owatha L
2008-01-01
The forensic applications of DNA-based human identity laboratory testing are often underappreciated. Molecular biology has seen an exponential improvement in the accuracy and statistical power provided by identity testing in the past decade. This technology, dependent upon an individual's unique DNA sequence, has cemented the use of DNA technology in the forensic laboratory. This paper will discuss the state of modern DNA-based identity testing, describe the technology used to perform this testing, and describe its use as it relates to forensic applications. We will also compare individual technologies, including polymerase chain reaction (PCR) and Southern Blotting, that are used to detect the molecular differences that make all individuals unique. An increasing reliance on DNA-based identity testing dictates that healthcare providers develop an understanding of the background, techniques, and guiding principles of this important forensic tool.
Duewer, D L; Lalonde, S A; Aubin, R A; Fourney, R M; Reeder, D J
1998-05-01
Knowledge of the expected uncertainty in restriction fragment length polymorphism (RFLP) measurements is required for confident exchange of such data among different laboratories. The total measurement uncertainty among all Technical Working Group for DNA Analysis Methods laboratories has previously been characterized and found to be acceptably small. Casework cell line control measurements provided by six Royal Canadian Mounted Police (RCMP) and 30 U.S. commercial, local, state, and Federal forensic laboratories enable quantitative determination of the within-laboratory precision and among-laboratory concordance components of measurement uncertainty typical of both sets of laboratories. Measurement precision is the same in the two countries for DNA fragments of size 1000 base pairs (bp) to 10,000 bp. However, the measurement concordance among the RCMP laboratories is clearly superior to that within the U.S. forensic community. This result is attributable to the use of a single analytical protocol in all RCMP laboratories. Concordance among U.S. laboratories cannot be improved through simple mathematical adjustments. Community-wide efforts focused on improved concordance may be the most efficient mechanism for further reduction of among-laboratory RFLP measurement uncertainty, should the resources required to fully evaluate potential cross-jurisdictional matches become burdensome as the number of RFLP profiles on record increases.
Patterns of exchange of forensic DNA data in the European Union through the Prüm system.
Santos, Filipe; Machado, Helena
2017-07-01
This paper presents a study of the 5-year operation (2011-2015) of the transnational exchange of forensic DNA data between Member States of the European Union (EU) for the purpose of combating cross-border crime and terrorism within the so-called Prüm system. This first systematisation of the full official statistical dataset provides an overall assessment of the match figures and patterns of operation of the Prüm system for DNA exchange. These figures and patterns are analysed in terms of the differentiated contributions by participating EU Member States. The data suggest a trend for West and Central European countries to concentrate the majority of Prüm matches, while DNA databases of Eastern European countries tend to contribute with profiles of people that match stains in other countries. In view of the necessary transparency and accountability of the Prüm system, more extensive and informative statistics would be an important contribution to the assessment of its functioning and societal benefits. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Ethical, legal and social implications of forensic molecular phenotyping in South Africa.
Slabbert, Nandi; Heathfield, Laura Jane
2018-06-01
Conventional forensic DNA analysis involves a matching principle, which compares DNA profiles from evidential samples to those from reference samples of known origin. In casework, however, the accessibility to a reference sample is not guaranteed which limits the use of DNA as an investigative tool. This has led to the development of phenotype prediction, which uses SNP analysis to estimate the physical appearance of the sample donor. Physical traits, such as eye, hair and skin colour, have been associated with certain alleles within specific genes involved in the melanogenesis pathways. These genetic markers are also associated with ancestry and their trait prediction ability has mainly been assessed in European and North American populations. This has prompted research investigating the discriminatory power of these markers in other populations, especially those exhibiting admixture. South Africa is well known for its diversity, and the viability of these particular SNPs still needs to be assessed within this population. South African law currently restricts the use of DNA for molecular phenotyping, and there are also numerous ethical and social considerations, all of which are discussed. © 2018 John Wiley & Sons Ltd.
Integrating forensic information in a crime intelligence database.
Rossy, Quentin; Ioset, Sylvain; Dessimoz, Damien; Ribaux, Olivier
2013-07-10
Since 2008, intelligence units of six states of the western part of Switzerland have been sharing a common database for the analysis of high volume crimes. On a daily basis, events reported to the police are analysed, filtered and classified to detect crime repetitions and interpret the crime environment. Several forensic outcomes are integrated in the system such as matches of traces with persons, and links between scenes detected by the comparison of forensic case data. Systematic procedures have been settled to integrate links assumed mainly through DNA profiles, shoemarks patterns and images. A statistical outlook on a retrospective dataset of series from 2009 to 2011 of the database informs for instance on the number of repetition detected or confirmed and increased by forensic case data. Time needed to obtain forensic intelligence in regard with the type of marks treated, is seen as a critical issue. Furthermore, the underlying integration process of forensic intelligence into the crime intelligence database raised several difficulties in regards of the acquisition of data and the models used in the forensic databases. Solutions found and adopted operational procedures are described and discussed. This process form the basis to many other researches aimed at developing forensic intelligence models. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Gill, Peter; Haned, Hinda; Bleka, Oyvind; Hansson, Oskar; Dørum, Guro; Egeland, Thore
2015-09-01
The introduction of Short Tandem Repeat (STR) DNA was a revolution within a revolution that transformed forensic DNA profiling into a tool that could be used, for the first time, to create National DNA databases. This transformation would not have been possible without the concurrent development of fluorescent automated sequencers, combined with the ability to multiplex several loci together. Use of the polymerase chain reaction (PCR) increased the sensitivity of the method to enable the analysis of a handful of cells. The first multiplexes were simple: 'the quad', introduced by the defunct UK Forensic Science Service (FSS) in 1994, rapidly followed by a more discriminating 'six-plex' (Second Generation Multiplex) in 1995 that was used to create the world's first national DNA database. The success of the database rapidly outgrew the functionality of the original system - by the year 2000 a new multiplex of ten-loci was introduced to reduce the chance of adventitious matches. The technology was adopted world-wide, albeit with different loci. The political requirement to introduce pan-European databases encouraged standardisation - the development of European Standard Set (ESS) of markers comprising twelve-loci is the latest iteration. Although development has been impressive, the methods used to interpret evidence have lagged behind. For example, the theory to interpret complex DNA profiles (low-level mixtures), had been developed fifteen years ago, but only in the past year or so, are the concepts starting to be widely adopted. A plethora of different models (some commercial and others non-commercial) have appeared. This has led to a confusing 'debate' about the 'best' to use. The different models available are described along with their advantages and disadvantages. A section discusses the development of national DNA databases, along with details of an associated controversy to estimate the strength of evidence of matches. Current methodology is limited to searches of complete profiles - another example where the interpretation of matches has not kept pace with development of theory. STRs have also transformed the area of Disaster Victim Identification (DVI) which frequently requires kinship analysis. However, genotyping efficiency is complicated by complex, degraded DNA profiles. Finally, there is now a detailed understanding of the causes of stochastic effects that cause DNA profiles to exhibit the phenomena of drop-out and drop-in, along with artefacts such as stutters. The phenomena discussed include: heterozygote balance; stutter; degradation; the effect of decreasing quantities of DNA; the dilution effect. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
von Wurmb-Schwark, Nicole; Mályusz, Victoria; Fremdt, Heike; Koch, Christine; Simeoni, Eva; Schwark, Thorsten
2006-05-01
The forensic scientist often has to cope with problematic samples from the crime scene due to their minute size and thus the low amount of extractable DNA. The retrieval of DNA from swabs taken from the surface of the skin, for example, in cases of strangulation, can be especially difficult. We systematically investigated swabs taken from the skin (to obtain a genetic profile from the victim and also from a possible offender) and from sperm cell containing swabs using two extraction kits: the Invisorb forensic and the Invisorb spin swab kit (both Invitek, Germany). DNA quality and quantity were tested on ethidium bromide containing agarose gels and in a highly sensitive duplex-PCR, which amplifies fragments specific for mitochondrial and nuclear DNA. Absolute quantification was done using real time PCR. Samples, which were positive in the duplex-PCR, were also employed to genetic fingerprinting using the Powerplex ES and the AmpFlSTRIdentifiler(TM) kits. Our study shows that the easy-to-use Invisorb spin swab kit is very suitable for DNA isolation from swabs taken from the skin and also from sperm cells. Retrieval of cells from the skin with swabs moistened in extraction buffer, not in distilled water, led to a significant higher DNA yield.
High-throughput sequencing of forensic genetic samples using punches of FTA cards with buccal swabs.
Kampmann, Marie-Louise; Buchard, Anders; Børsting, Claus; Morling, Niels
2016-01-01
Here, we demonstrate that punches from buccal swab samples preserved on FTA cards can be used for high-throughput DNA sequencing, also known as massively parallel sequencing (MPS). We typed 44 reference samples with the HID-Ion AmpliSeq Identity Panel using washed 1.2 mm punches from FTA cards with buccal swabs and compared the results with those obtained with DNA extracted using the EZ1 DNA Investigator Kit. Concordant profiles were obtained for all samples. Our protocol includes simple punch, wash, and PCR steps, reducing cost and hands-on time in the laboratory. Furthermore, it facilitates automation of DNA sequencing.
Craft, Kathleen J; Owens, Jeffrey D; Ashley, Mary V
2007-01-05
As highly polymorphic DNA markers become increasingly available for a wide range of plant and animal species, there will be increasing opportunities for applications to forensic investigations. To date, however, relatively few studies have reported using DNA profiles of non-human species to place suspects at or near crime scenes. Here we describe an investigation of a double homicide of a female and her near-term fetus. Leaf material taken from a suspect's vehicle was identified to be that of sand live oak, Quercus geminata, the same tree species that occurred near a shallow grave where the victims were found. Quercus-specific DNA microsatellites were used to genotype both dried and fresh material from trees located near the burial site and from the material taken from the suspect's car. Samples from the local population of Q. geminata were also collected and genotyped in order to demonstrate that genetic variation at four microsatellite loci was sufficient to assign leaves to an individual tree with high statistical certainty. The cumulative average probability of identity for these four loci was 2.06x10(-6). DNA was successfully obtained from the dried leaf material although PCR amplification was more difficult than amplification of DNA from fresh leaves. The DNA profiles of the dried leaves from the suspect's car did not match those of the trees near the crime scene. Although this investigation did not provide evidence that could be used against the suspect, it does demonstrate the potential for plant microsatellite markers providing physical evidence that links plant materials to live plants at or near crime scenes.
Peck, Michelle A; Sturk-Andreaggi, Kimberly; Thomas, Jacqueline T; Oliver, Robert S; Barritt-Ross, Suzanne; Marshall, Charla
2018-05-01
Generating mitochondrial genome (mitogenome) data from reference samples in a rapid and efficient manner is critical to harnessing the greater power of discrimination of the entire mitochondrial DNA (mtDNA) marker. The method of long-range target enrichment, Nextera XT library preparation, and Illumina sequencing on the MiSeq is a well-established technique for generating mitogenome data from high-quality samples. To this end, a validation was conducted for this mitogenome method processing up to 24 samples simultaneously along with analysis in the CLC Genomics Workbench and utilizing the AQME (AFDIL-QIAGEN mtDNA Expert) tool to generate forensic profiles. This validation followed the Federal Bureau of Investigation's Quality Assurance Standards (QAS) for forensic DNA testing laboratories and the Scientific Working Group on DNA Analysis Methods (SWGDAM) validation guidelines. The evaluation of control DNA, non-probative samples, blank controls, mixtures, and nonhuman samples demonstrated the validity of this method. Specifically, the sensitivity was established at ≥25 pg of nuclear DNA input for accurate mitogenome profile generation. Unreproducible low-level variants were observed in samples with low amplicon yields. Further, variant quality was shown to be a useful metric for identifying sequencing error and crosstalk. Success of this method was demonstrated with a variety of reference sample substrates and extract types. These studies further demonstrate the advantages of using NGS techniques by highlighting the quantitative nature of heteroplasmy detection. The results presented herein from more than 175 samples processed in ten sequencing runs, show this mitogenome sequencing method and analysis strategy to be valid for the generation of reference data. Copyright © 2018 Elsevier B.V. All rights reserved.
Morales Colón, Emely; Hernández, Mireya; Candelario, Mariel; Meléndez, María; Dawson Cruz, Tracey
2018-03-01
Traditional methods for bone pulverization typically generate heat, risking stability of DNA sample. SPEX™ has developed cryogenic grinders which introduce liquid nitrogen to cool the sample and aid in the grinding process. In this study, the Freezer Mill 6970 EFM was used with two DNA extraction methods and routine downstream STR analysis procedures. DNA from as little as 0.1 g of bone powder was used to develop full STR profiles after freezer mill pulverization, and the method was reproducible. Further, no contamination was detected upon cleaning/reuse of the sample vials. There were no significant differences in DNA yield, STR alleles detected, or peak heights using the freezer mill as compared to traditional grinding, and successful DNA profiles were achieved from as low as 0.1 g of bone powder with this method. Overall, this work indicates that this cryogenic mill method may be used as a viable alternative to traditional tissue grinders. © 2017 American Academy of Forensic Sciences.
Development of a new 26plex Y-STRs typing system for forensic application.
Zhang, Suhua; Tian, Huaizhou; Wang, Zheng; Zhao, Shumin; Hu, Zhen; Li, Chengtao; Ji, Chaoneng
2014-11-01
In this study, 26plex Y-STRs typing system, including 17 Y-STRs (DYS19, DYS389I, DYS389II, DYS390, DYS391, DYS392, DYS393, DYS385ab, DYS437, DYS438, DYS439, DYS448, DYS456, DYS458, DYS635 and GATA H4) recommended as YHRD standard loci and nine new highly discriminating Y-STRs (DYS549, DYS643, DYS388, DYS570, DYS533, DYS576, DYS460, DYS481 and DYS449), was established with 5-dye fluorescences labelling. Developmental validation indicated that the 26plex Y-STRs typing system was reproducible, accurate, sensitive and robust. The sensitivity of the system was such that a full profile was obtainable even with 125pg of male DNA. Specificity testing was demonstrated by the lack of cross-reactivity with a variety of commonly encountered animal species and bacteria. Also, the multiplex is suitable for mixture study. An average of above 97% of the minor alleles detected with the male/male mixture with 1:3 and 3:1 ratios, while an average of above 70% of the minor alleles detected with the male/male mixture with 1:19 and 19:1 ratios. Full profiles are consistently detected with 125pg of male DNA, even in the presence of excessive amounts of female DNA. In addition, the whole PCR amplification of the 26 Y-STRs can finish in 1h, making the multiplex system suitable for fast-detection. For the forensic evaluation of the multiplex system, 516 haplotypes were found among 517 unrelated males. HD of the multiplex system was 0.9999925 while DC was 0.9980658, which is suitable for forensic application. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Population genetic study of 10 short tandem repeat loci from 600 domestic dogs in Korea.
Moon, Seo Hyun; Jang, Yoon-Jeong; Han, Myun Soo; Cho, Myung-Haing
2016-09-30
Dogs have long shared close relationships with many humans. Due to the large number of dogs in human populations, they are often involved in crimes. Occasionally, canine biological evidence such as saliva, bloodstains and hairs can be found at crime scenes. Accordingly, canine DNA can be used as forensic evidence. The use of short tandem repeat (STR) loci from biological evidence is valuable for forensic investigations. In Korea, canine STR profiling-related crimes are being successfully analyzed, leading to diverse crimes such as animal cruelty, dog-attacks, murder, robbery, and missing and abandoned dogs being solved. However, the probability of random DNA profile matches cannot be analyzed because of a lack of canine STR data. Therefore, in this study, 10 STR loci were analyzed in 600 dogs in Korea (344 dogs belonging to 30 different purebreds and 256 crossbred dogs) to estimate canine forensic genetic parameters. Among purebred dogs, a separate statistical analysis was conducted for five major subgroups, 97 Maltese, 47 Poodles, 31 Shih Tzus, 32 Yorkshire Terriers, and 25 Pomeranians. Allele frequencies, expected (Hexp) and observed heterozygosity (Hobs), fixation index (F), probability of identity (P(ID)), probability of sibling identity (P(ID)sib) and probability of exclusion (PE) were then calculated. The Hexp values ranged from 0.901 (PEZ12) to 0.634 (FHC2079), while the P(ID)sib values were between 0.481 (FHC2079) and 0.304 (PEZ12) and the P(ID)sib was about 3.35 × 10(-)⁵ for the combination of all 10 loci. The results presented herein will strengthen the value of canine DNA to solving dog-related crimes.
Chaitanya, Lakshmi; Pajnič, Irena Zupanič; Walsh, Susan; Balažic, Jože; Zupanc, Tomaž; Kayser, Manfred
2017-01-01
Retrieving information about externally visible characteristics from DNA can provide investigative leads to find unknown perpetrators, and can also help in disaster victim and other missing person identification cases. Aiming for the application to both types of forensic casework, we previously developed and forensically validated the HIrisPlex test system enabling parallel DNA prediction of eye and hair colour. Although a recent proof-of-principle study demonstrated the general suitability of the HIrisPlex system for successfully analysing DNA from bones and teeth of various storage times and conditions, practical case applications to human remains are scarce. In this study, we applied the HIrisPlex system to 49 DNA samples obtained from bones or teeth of World War II victims excavated at six sites, mostly mass graves, in Slovenia. PCR-based DNA quantification ranged from 4pg/μl to 313pg/μl and on an average was 41pg/μl across all samples. All 49 samples generated complete HIrisPlex profiles with the exception of one MC1R DNA marker (N29insA) missing in 83.7% of the samples. In 44 of the 49 samples (89.8%) complete 15-loci autosomal STR (plus amelogenin) profiles were obtained. Of 5 pairs of skeletal remains for which STR profiling suggested an origin in the same individuals, respectively, 4 showed the same HIrisPlex profiles and predicted eye and hair colours, respectively, while discrepancies in one pair (sample 26 and 43) are likely to be explained by DNA quantity and quality issues observed in sample 43. Sample 43 had the lowest DNA concentration of only 4pg/μl, producing least reliable STR results and could be misleading in concluding that samples 43 and 26 originate from the same individual. The HIrisPlex-predicted eye and hair colours from two skeletal samples, suggested to derive from two brothers via STR profiling together with a living sister, were confirmed by the living sister's report. Overall, we demonstrate that after more than 70 years, HIrisPlex-based eye and hair colour prediction from skeletal remains is feasible with high success rate. Our results further encourage the use of the HIrisPlex system in missing person/disaster victim identification to aid the identification process in cases where ante-mortem samples or putative relatives are not directly available, and DNA predicted eye and hair colour information provides leads for locating them, allowing STRbased individual identification. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Effects of microbial DNA on human DNA profiles generated using the PowerPlex® 16 HS system.
Dembinski, Gina M; Picard, Christine J
2017-11-01
Most crime scenes are not sterile and therefore may be contaminated with environmental DNA, especially if a decomposing body is found. Collecting biological evidence from this individual will yield DNA samples mixed with microbial DNA. This also becomes important if postmortem swabs are collected from sexually assaulted victims. Although genotyping kits undergo validation tests, including bacterial screens, they do not account for the diverse microbial load during decomposition. We investigated the effect of spiking human DNA samples with known concentrations of DNA from 17 microbe species associated with decomposition on DNA profiles produced using the Promega PowerPlex ® HS system. Two species, Bacillus subtilis and Mycobacterium smegmatis, produced an extraneous allele at the TPOX locus. When repeated with the PowerPlex ® Fusion kit, the extra allele no longer amplified with these two species. This experiment demonstrates that caution should be exhibited if microbial load is high and the PowerPlex ® 16HS system is used. Copyright © 2017 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
The 'triple contrast' method in experimental wound ballistics and backspatter analysis.
Schyma, Christian; Lux, Constantin; Madea, Burkhard; Courts, Cornelius
2015-09-01
In practical forensic casework, backspatter recovered from shooters' hands can be an indicator of self-inflicted gunshot wounds to the head. In such cases, backspatter retrieved from inside the barrel indicates that the weapon found at the death scene was involved in causing the injury to the head. However, systematic research on the aspects conditioning presence, amount and specific patterns of backspatter is lacking so far. Herein, a new concept of backspatter investigation is presented, comprising staining technique, weapon and target medium: the 'triple contrast method' was developed, tested and is introduced for experimental backspatter analysis. First, mixtures of various proportions of acrylic paint for optical detection, barium sulphate for radiocontrast imaging in computed tomography and fresh human blood for PCR-based DNA profiling were generated (triple mixture) and tested for DNA quantification and short tandem repeat (STR) typing success. All tested mixtures yielded sufficient DNA that produced full STR profiles suitable for forensic identification. Then, for backspatter analysis, sealed foil bags containing the triple mixture were attached to plastic bottles filled with 10% ballistic gelatine and covered by a 2-3-mm layer of silicone. To simulate backspatter, close contact shots were fired at these models. Endoscopy of the barrel inside revealed coloured backspatter containing typable DNA and radiographic imaging showed a contrasted bullet path in the gelatine. Cross sections of the gelatine core exhibited cracks and fissures stained by the acrylic paint facilitating wound ballistic analysis.
U.S. initiatives to strengthen forensic science & international standards in forensic DNA.
Butler, John M
2015-09-01
A number of initiatives are underway in the United States in response to the 2009 critique of forensic science by a National Academy of Sciences committee. This article provides a broad review of activities including efforts of the White House National Science and Technology Council Subcommittee on Forensic Science and a partnership between the Department of Justice (DOJ) and the National Institute of Standards and Technology (NIST) to create the National Commission on Forensic Science and the Organization of Scientific Area Committees. These initiatives are seeking to improve policies and practices of forensic science. Efforts to fund research activities and aid technology transition and training in forensic science are also covered. The second portion of the article reviews standards in place or in development around the world for forensic DNA. Documentary standards are used to help define written procedures to perform testing. Physical standards serve as reference materials for calibration and traceability purposes when testing is performed. Both documentary and physical standards enable reliable data comparison, and standard data formats and common markers or testing regions are crucial for effective data sharing. Core DNA markers provide a common framework and currency for constructing DNA databases with compatible data. Recent developments in expanding core DNA markers in Europe and the United States are discussed. Published by Elsevier Ireland Ltd.
U.S. initiatives to strengthen forensic science & international standards in forensic DNA
Butler, John M.
2015-01-01
A number of initiatives are underway in the United States in response to the 2009 critique of forensic science by a National Academy of Sciences committee. This article provides a broad review of activities including efforts of the White House National Science and Technology Council Subcommittee on Forensic Science and a partnership between the Department of Justice (DOJ) and the National Institute of Standards and Technology (NIST) to create the National Commission on Forensic Science and the Organization of Scientific Area Committees. These initiatives are seeking to improve policies and practices of forensic science. Efforts to fund research activities and aid technology transition and training in forensic science are also covered. The second portion of the article reviews standards in place or in development around the world for forensic DNA. Documentary standards are used to help define written procedures to perform testing. Physical standards serve as reference materials for calibration and traceability purposes when testing is performed. Both documentary and physical standards enable reliable data comparison, and standard data formats and common markers or testing regions are crucial for effective data sharing. Core DNA markers provide a common framework and currency for constructing DNA databases with compatible data. Recent developments in expanding core DNA markers in Europe and the United States are discussed. PMID:26164236
Evaluation of Direct PCR Amplification Using Various Swabs and Washing Reagents.
Altshuler, Hallie; Roy, Reena
2015-11-01
DNA profiles were generated via direct amplification from blood and saliva samples deposited on various types of swab substrates. Each of the six non-FTA substrates used in this research was punched with a Harris 1.2 mm puncher. After 0.1 μL of blood or 0.5 μL saliva, samples were deposited on each of these punches, samples were pretreated with one of four buffers and washing reagents. Amplification was performed using direct and nondirect autosomal and Y-STR kits. Autosomal and Y-STR profiles were successfully generated from most of these substrates when pretreated with buffer or washing reagents. Concordant profiles were obtained within and between the six substrates, the six amplification kits, and all four reagents. The direct amplification of substrates which do not contain lysing agent would be beneficial to the forensic community as the procedure can be used on evidence samples commonly found at crime scenes. © 2015 American Academy of Forensic Sciences.
NGS-based likelihood ratio for identifying contributors in two- and three-person DNA mixtures.
Chan Mun Wei, Joshua; Zhao, Zicheng; Li, Shuai Cheng; Ng, Yen Kaow
2018-06-01
DNA fingerprinting, also known as DNA profiling, serves as a standard procedure in forensics to identify a person by the short tandem repeat (STR) loci in their DNA. By comparing the STR loci between DNA samples, practitioners can calculate a probability of match to identity the contributors of a DNA mixture. Most existing methods are based on 13 core STR loci which were identified by the Federal Bureau of Investigation (FBI). Analyses based on these loci of DNA mixture for forensic purposes are highly variable in procedures, and suffer from subjectivity as well as bias in complex mixture interpretation. With the emergence of next-generation sequencing (NGS) technologies, the sequencing of billions of DNA molecules can be parallelized, thus greatly increasing throughput and reducing the associated costs. This allows the creation of new techniques that incorporate more loci to enable complex mixture interpretation. In this paper, we propose a computation for likelihood ratio that uses NGS (next generation sequencing) data for DNA testing on mixed samples. We have applied the method to 4480 simulated DNA mixtures, which consist of various mixture proportions of 8 unrelated whole-genome sequencing data. The results confirm the feasibility of utilizing NGS data in DNA mixture interpretations. We observed an average likelihood ratio as high as 285,978 for two-person mixtures. Using our method, all 224 identity tests for two-person mixtures and three-person mixtures were correctly identified. Copyright © 2018 Elsevier Ltd. All rights reserved.
Adserias-Garriga, Joe; Thomas, Christian; Ubelaker, Douglas H; C Zapico, Sara
2018-03-01
When human remains are found, the priority of the investigation is to ascertain the identity of the deceased. A positive identification is a key factor in providing closure for the family of the deceased; it is also required to issue the death certificate and therefore, to settle legal affairs. Moreover, it is difficult for any forensic investigation involving human remains to be solved without the determination of an identity. Therefore, personal identification is necessary for social, legal and forensic reasons. In the last thirty years forensic odontology has experienced an important transformation, from primarily involving occasional dental identification into a broader role, contributing to the determination of the biological profile. In the same way, "DNA fingerprinting" has evolved not only in terms of improving its technology, but also in its application beyond the "classical": helping with the estimation of sex, age and ancestry. As these two forensic disciplines have developed independently, their pathways have crossed several times through human identification operations, especially the ones that require a multidisciplinary approach. Thus, the aim of this review is to describe the contributions of both forensic odontology and molecular biology/biochemistry to human identification, demonstrating how a multidisciplinary approach can lead to a better and more efficient identification. Copyright © 2017 Elsevier Ltd. All rights reserved.
Next Generation Sequencing Plus (NGS+) with Y-chromosomal Markers for Forensic Pedigree Searches.
Qian, Xiaoqin; Hou, Jiayi; Wang, Zheng; Ye, Yi; Lang, Min; Gao, Tianzhen; Liu, Jing; Hou, Yiping
2017-09-12
There is high demand for forensic pedigree searches with Y-chromosome short tandem repeat (Y-STR) profiling in large-scale crime investigations. However, when two Y-STR haplotypes have a few mismatched loci, it is difficult to determine if they are from the same male lineage because of the high mutation rate of Y-STRs. Here we design a new strategy to handle cases in which none of pedigree samples shares identical Y-STR haplotype. We combine next generation sequencing (NGS), capillary electrophoresis and pyrosequencing under the term 'NGS+' for typing Y-STRs and Y-chromosomal single nucleotide polymorphisms (Y-SNPs). The high-resolution Y-SNP haplogroup and Y-STR haplotype can be obtained with NGS+. We further developed a new data-driven decision rule, FSindex, for estimating the likelihood for each retrieved pedigree. Our approach enables positive identification of pedigree from mismatched Y-STR haplotypes. It is envisaged that NGS+ will revolutionize forensic pedigree searches, especially when the person of interest was not recorded in forensic DNA database.
[Laser microdissection for biology and medicine].
Podgornyĭ, O V; Lazarev, V N; Govorun, V M
2012-01-01
For routine extraction of DNA, RNA, proteins and metabolites, small tissue pieces are placed into lysing solution. These tissue pieces in general contain different cell types. For this reason, lysate contains components of different cell types, which complicates the interpretation of molecular analysis results. The laser microdissection allows overcoming this trouble. The laser microdissection is a method to procure tissue samples contained defined cell subpopulations, individual cells and even subsellular components under direct microscopic visualization. Collected samples can be undergone to different downstream molecular assays: DNA analysis, RNA transcript profiling, cDNA library generation and gene expression analysis, proteomic analysis and metabolite profiling. The laser microdissection has wide applications in oncology (research and routine), cellular and molecular biology, biochemistry and forensics. This paper reviews the principles of different laser microdissection instruments, examples of laser microdissection application and problems of sample preparation for laser microdissection.
[The joint applications of DNA chips and single nucleotide polymorphisms in forensic science].
Bai, Peng; Tian, Li; Zhou, Xue-ping
2005-05-01
DNA chip technology, being a new high-technology, shows its vigorous life and rapid growth. Single Nucleotide Polymorphisms (SNPs) is the most common diversity in the human genome. It provides suitable genetic markers which play a key role in disease linkage study, pharmacogenomics, forensic medicine, population evolution and immigration study. Their advantage such as being analyzed with DNA chips technology, is predicted to play an important role in the field of forensic medicine, especially in paternity test and individual identification. This report mainly reviews the characteristics of DNA chip and SNPs, and their joint applications in the practice of forensic medicine.
Purps, Josephine; Geppert, Maria; Nagy, Marion; Roewer, Lutz
2015-11-01
DNA testing is an established part of the investigation and prosecution of sexual assault. The primary purpose of DNA evidence is to identify a suspect and/or to demonstrate sexual contact. However, due to highly uneven proportions of female and male DNA in typical stains, routine autosomal analysis often fails to detect the DNA of the assailant. To evaluate the forensic efficiency of the combined application of autosomal and Y-chromosomal short tandem repeat (STR) markers, we present a large retrospective casework study of probative evidence collected in sexual-assault cases. We investigated up to 39 STR markers by testing combinations of the 16-locus NGMSElect kit with both the 23-locus PowerPlex Y23 and the 17-locus Yfiler kit. Using this dual approach we analyzed DNA extracts from 2077 biological stains collected in 287 cases over 30 months. To assess the outcome of the combined approach in comparison to stand-alone autosomal analysis we evaluated informative DNA profiles. Our investigation revealed that Y-STR analysis added up to 21% additional, highly informative (complete, single-source) profiles to the set of reportable autosomal STR profiles for typical stains collected in sexual-assault cases. Detection of multiple male contributors was approximately three times more likely with Y-chromosomal profiling than with autosomal STR profiling. In summary, 1/10 cases would have remained inconclusive (and could have been dismissed) if Y-STR analysis had been omitted from DNA profiling in sexual-assault cases. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
The nucleic acid revolution continues - will forensic biology become forensic molecular biology?
Gunn, Peter; Walsh, Simon; Roux, Claude
2014-01-01
Molecular biology has evolved far beyond that which could have been predicted at the time DNA identity testing was established. Indeed we should now perhaps be referring to "forensic molecular biology." Aside from DNA's established role in identifying the "who" in crime investigations, other developments in medical and developmental molecular biology are now ripe for application to forensic challenges. The impact of DNA methylation and other post-fertilization DNA modifications, plus the emerging role of small RNAs in the control of gene expression, is re-writing our understanding of human biology. It is apparent that these emerging technologies will expand forensic molecular biology to allow for inferences about "when" a crime took place and "what" took place. However, just as the introduction of DNA identity testing engendered many challenges, so the expansion of molecular biology into these domains will raise again the issues of scientific validity, interpretation, probative value, and infringement of personal liberties. This Commentary ponders some of these emerging issues, and presents some ideas on how they will affect the conduct of forensic molecular biology in the foreseeable future.
[Applications of DNA identification technology in protection of wild animals].
Ni, Ping-Ya; Pei, Li; Ge, Wen-Dong; Zhang, Ying; Yang, Xue-Ying; Xu, Xiao-Yu; Tu, Zheng
2011-12-01
With the development of biotechnology, forensic DNA identification technology in protection of wild animals has been used more and more widely. This review introduces the global status of wildlife crime and the relevant protection to wildlife, outlines the practical applications of forensic DNA identification technology with regard to species identification, determination of geographic origin, individual identification and paternity identification. It focus on the techniques commonly used in DNA typing and their merits and demerits, as well as the problems and prospects of forensic DNA technology for wildlife conservation.
Dash, Hirak Ranjan; Das, Surajit
2018-02-01
Forensic biology is a sub-discipline of biological science with an amalgam of other branches of science used in the criminal justice system. Any nucleated cell/tissue harbouring DNA, either live or dead, can be used as forensic exhibits, a source of investigation through DNA typing. These biological materials of human origin are rich source of proteins, carbohydrates, lipids, trace elements as well as water and, thus, provide a virtuous milieu for the growth of microbes. The obstinate microbial growth augments the degradation process and is amplified with the passage of time and improper storage of the biological materials. Degradation of these biological materials carriages a huge challenge in the downstream processes of forensic DNA typing technique, such as short tandem repeats (STR) DNA typing. Microbial degradation yields improper or no PCR amplification, heterozygous peak imbalance, DNA contamination from non-human sources, degradation of DNA by microbial by-products, etc. Consequently, the most precise STR DNA typing technique is nullified and definite opinion can be hardly given with degraded forensic exhibits. Thus, suitable precautionary measures should be taken for proper storage and processing of the biological exhibits to minimize their decaying process by micro-organisms.
DNA Fingerprinting in a Forensic Teaching Experiment
ERIC Educational Resources Information Center
Wagoner, Stacy A.; Carlson, Kimberly A.
2008-01-01
This article presents an experiment designed to provide students, in a classroom laboratory setting, a hands-on demonstration of the steps used in DNA forensic analysis by performing DNA extraction, DNA fingerprinting, and statistical analysis of the data. This experiment demonstrates how DNA fingerprinting is performed and how long it takes. It…
Forensic genetic SNP typing of low-template DNA and highly degraded DNA from crime case samples.
Børsting, Claus; Mogensen, Helle Smidt; Morling, Niels
2013-05-01
Heterozygote imbalances leading to allele drop-outs and disproportionally large stutters leading to allele drop-ins are known stochastic phenomena related to STR typing of low-template DNA (LtDNA). The large stutters and the many drop-ins in typical STR stutter positions are artifacts from the PCR amplification of tandem repeats. These artifacts may be avoided by typing bi-allelic markers instead of STRs. In this work, the SNPforID multiplex assay was used to type LtDNA. A sensitized SNP typing protocol was introduced, that increased signal strengths without increasing noise and without affecting the heterozygote balance. Allele drop-ins were only observed in experiments with 25 pg of DNA and not in experiments with 50 and 100 pg of DNA. The allele drop-in rate in the 25 pg experiments was 0.06% or 100 times lower than what was previously reported for STR typing of LtDNA. A composite model and two different consensus models were used to interpret the SNP data. Correct profiles with 42-49 SNPs were generated from the 50 and 100 pg experiments, whereas a few incorrect genotypes were included in the generated profiles from the 25 pg experiments. With the strict consensus model, between 35 and 48 SNPs were correctly typed in the 25 pg experiments and only one allele drop-out (error rate: 0.07%) was observed in the consensus profiles. A total of 28 crime case samples were selected for typing with the sensitized SNPforID protocol. The samples were previously typed with old STR kits during the crime case investigation and only partial profiles (0-6 STRs) were obtained. Eleven of the samples could not be quantified with the Quantifiler™ Human DNA Quantification kit because of partial or complete inhibition of the PCR. For eight of these samples, SNP typing was only possible when the buffer and DNA polymerase used in the original protocol was replaced with the AmpFℓSTR(®) SEfiler Plus™ Master Mix, which was developed specifically for challenging forensic samples. All the crime case samples were successfully typed with the SNPforID multiplex assay and the match probabilities ranged from 1.1×10(-15) to 7.9×10(-23). In comparison, four of the samples could not be typed with the AmpFℓSTR(®) SEfiler Plus™ kit and the match probabilities were higher than 10(-7) for another six samples. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Mukunthan, B; Nagaveni, N
2014-01-01
In genetic engineering, conventional techniques and algorithms employed by forensic scientists to assist in identification of individuals on the basis of their respective DNA profiles involves more complex computational steps and mathematical formulae, also the identification of location of mutation in a genomic sequence in laboratories is still an exigent task. This novel approach provides ability to solve the problems that do not have an algorithmic solution and the available solutions are also too complex to be found. The perfect blend made of bioinformatics and neural networks technique results in efficient DNA pattern analysis algorithm with utmost prediction accuracy.
Current and future directions of DNA in wildlife forensic science.
Johnson, Rebecca N; Wilson-Wilde, Linzi; Linacre, Adrian
2014-05-01
Wildlife forensic science may not have attained the profile of human identification, yet the scale of criminal activity related to wildlife is extensive by any measure. Service delivery in the arena of wildlife forensic science is often ad hoc, unco-ordinated and unregulated, yet many of those currently dedicated to wildlife conservation and the protection of endangered species are striving to ensure that the highest standards are met. The genetic markers and software used to evaluate data in wildlife forensic science are more varied than those in human forensic identification and are rarely standardised between species. The time and resources required to characterise and validate each genetic maker is considerable and in some cases prohibitive. Further, issues are regularly encountered in the construction of allelic databases and allelic ladders; essential in human identification studies, but also applicable to wildlife criminal investigations. Accreditation and certification are essential in human identification and are currently being strived for in the forensic wildlife community. Examples are provided as to how best practice can be demonstrated in all areas of wildlife crime analysis and ensure that this field of forensic science gains and maintains the respect it deserves. This review is aimed at those conducting human identification to illustrate how research concepts in wildlife forensic science can be used in the criminal justice system, as well as describing the real importance of this type of forensic analysis. Crown Copyright © 2013. Published by Elsevier Ireland Ltd. All rights reserved.
Development of forensic-quality full mtGenome haplotypes: success rates with low template specimens.
Just, Rebecca S; Scheible, Melissa K; Fast, Spence A; Sturk-Andreaggi, Kimberly; Higginbotham, Jennifer L; Lyons, Elizabeth A; Bush, Jocelyn M; Peck, Michelle A; Ring, Joseph D; Diegoli, Toni M; Röck, Alexander W; Huber, Gabriela E; Nagl, Simone; Strobl, Christina; Zimmermann, Bettina; Parson, Walther; Irwin, Jodi A
2014-05-01
Forensic mitochondrial DNA (mtDNA) testing requires appropriate, high quality reference population data for estimating the rarity of questioned haplotypes and, in turn, the strength of the mtDNA evidence. Available reference databases (SWGDAM, EMPOP) currently include information from the mtDNA control region; however, novel methods that quickly and easily recover mtDNA coding region data are becoming increasingly available. Though these assays promise to both facilitate the acquisition of mitochondrial genome (mtGenome) data and maximize the general utility of mtDNA testing in forensics, the appropriate reference data and database tools required for their routine application in forensic casework are lacking. To address this deficiency, we have undertaken an effort to: (1) increase the large-scale availability of high-quality entire mtGenome reference population data, and (2) improve the information technology infrastructure required to access/search mtGenome data and employ them in forensic casework. Here, we describe the application of a data generation and analysis workflow to the development of more than 400 complete, forensic-quality mtGenomes from low DNA quantity blood serum specimens as part of a U.S. National Institute of Justice funded reference population databasing initiative. We discuss the minor modifications made to a published mtGenome Sanger sequencing protocol to maintain a high rate of throughput while minimizing manual reprocessing with these low template samples. The successful use of this semi-automated strategy on forensic-like samples provides practical insight into the feasibility of producing complete mtGenome data in a routine casework environment, and demonstrates that large (>2kb) mtDNA fragments can regularly be recovered from high quality but very low DNA quantity specimens. Further, the detailed empirical data we provide on the amplification success rates across a range of DNA input quantities will be useful moving forward as PCR-based strategies for mtDNA enrichment are considered for targeted next-generation sequencing workflows. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
2013-01-01
Background DNA analysis of ancient skeletal remains is invaluable in evolutionary biology for exploring the history of species, including humans. Contemporary human bones and teeth, however, are relevant in forensic DNA analyses that deal with the identification of perpetrators, missing persons, disaster victims or family relationships. They may also provide useful information towards unravelling controversies that surround famous historical individuals. Retrieving information about a deceased person’s externally visible characteristics can be informative in both types of DNA analyses. Recently, we demonstrated that human eye and hair colour can be reliably predicted from DNA using the HIrisPlex system. Here we test the feasibility of the novel HIrisPlex system at establishing eye and hair colour of deceased individuals from skeletal remains of various post-mortem time ranges and storage conditions. Methods Twenty-one teeth between 1 and approximately 800 years of age and 5 contemporary bones were subjected to DNA extraction using standard organic protocol followed by analysis using the HIrisPlex system. Results Twenty-three out of 26 bone DNA extracts yielded the full 24 SNP HIrisPlex profile, therefore successfully allowing model-based eye and hair colour prediction. HIrisPlex analysis of a tooth from the Polish general Władysław Sikorski (1881 to 1943) revealed blue eye colour and blond hair colour, which was positively verified from reliable documentation. The partial profiles collected in the remaining three cases (two contemporary samples and a 14th century sample) were sufficient for eye colour prediction. Conclusions Overall, we demonstrate that the HIrisPlex system is suitable, sufficiently sensitive and robust to successfully predict eye and hair colour from ancient and contemporary skeletal remains. Our findings, therefore, highlight the HIrisPlex system as a promising tool in future routine forensic casework involving skeletal remains, including ancient DNA studies, for the prediction of eye and hair colour of deceased individuals. PMID:23317428
Draus-Barini, Jolanta; Walsh, Susan; Pośpiech, Ewelina; Kupiec, Tomasz; Głąb, Henryk; Branicki, Wojciech; Kayser, Manfred
2013-01-14
DNA analysis of ancient skeletal remains is invaluable in evolutionary biology for exploring the history of species, including humans. Contemporary human bones and teeth, however, are relevant in forensic DNA analyses that deal with the identification of perpetrators, missing persons, disaster victims or family relationships. They may also provide useful information towards unravelling controversies that surround famous historical individuals. Retrieving information about a deceased person's externally visible characteristics can be informative in both types of DNA analyses. Recently, we demonstrated that human eye and hair colour can be reliably predicted from DNA using the HIrisPlex system. Here we test the feasibility of the novel HIrisPlex system at establishing eye and hair colour of deceased individuals from skeletal remains of various post-mortem time ranges and storage conditions. Twenty-one teeth between 1 and approximately 800 years of age and 5 contemporary bones were subjected to DNA extraction using standard organic protocol followed by analysis using the HIrisPlex system. Twenty-three out of 26 bone DNA extracts yielded the full 24 SNP HIrisPlex profile, therefore successfully allowing model-based eye and hair colour prediction. HIrisPlex analysis of a tooth from the Polish general Władysław Sikorski (1881 to 1943) revealed blue eye colour and blond hair colour, which was positively verified from reliable documentation. The partial profiles collected in the remaining three cases (two contemporary samples and a 14th century sample) were sufficient for eye colour prediction. Overall, we demonstrate that the HIrisPlex system is suitable, sufficiently sensitive and robust to successfully predict eye and hair colour from ancient and contemporary skeletal remains. Our findings, therefore, highlight the HIrisPlex system as a promising tool in future routine forensic casework involving skeletal remains, including ancient DNA studies, for the prediction of eye and hair colour of deceased individuals.
Jeanguenat, Amy M; Budowle, Bruce; Dror, Itiel E
2017-11-01
Cognitive bias may influence process flows and decision making steps in forensic DNA analyses and interpretation. Currently, seven sources of bias have been identified that may affect forensic decision making with roots in human nature; environment, culture, and experience; and case specific information. Most of the literature and research on cognitive bias in forensic science has focused on patterned evidence; however, forensic DNA testing is not immune to bias, especially when subjective interpretation is involved. DNA testing can be strengthened by recognizing the existence of bias, evaluating where it influences decision making, and, when applicable, implementing practices to reduce or control its effects. Elements that may improve forensic decision making regarding bias include cognitively informed education and training, quality assurance procedures, review processes, analysis and interpretation, and context management of irrelevant information. Although bias exists, reliable results often can be (and have been) produced. However, at times bias can (and has) impacted the interpretation of DNA results negatively. Therefore, being aware of the dangers of bias and implementing measures to control its potential impact should be considered. Measures and procedures that handicap the workings of the crime laboratory or add little value to improving the operation are not advocated, but simple yet effective measures are suggested. This article is meant to raise awareness of cognitive bias contamination in forensic DNA testing and to give laboratories possible pathways to make sound decisions to address its influences. Copyright © 2017 The Chartered Society of Forensic Sciences. Published by Elsevier B.V. All rights reserved.
Wilson, Jamie L; Saint-Louis, Vertus; Auguste, Jensen O; Jackson, Bruce A
2012-11-01
Very little genetic data exist on Haitians, an estimated 1.2 million of whom, not including illegal immigrants, reside in the United States. The absence of genetic data on a population of this size reduces the discriminatory power of criminal and missing-person DNA databases in the United States and Caribbean. We present a forensic population study that provides the first genetic data set for Haiti. This study uses hypervariable segment one (HVS-1) mitochondrial DNA (mtDNA) nucleotide sequences from 291 subjects primarily from rural areas of northern and southern Haiti, where admixture would be minimal. Our results showed that the African maternal genetic component of Haitians had slightly higher West-Central African admixture than African-Americans and Dominicans, but considerably less than Afro-Brazilians. These results lay the foundation for further forensic genetics studies in the Haitian population and serve as a model for forensic mtDNA identification of individuals in other isolated or rural communities. © 2012 American Academy of Forensic Sciences.
Human Provenancing: It's Elemental…
NASA Astrophysics Data System (ADS)
Meier-Augenstein, Wolfram; Kemp
2009-04-01
Forensic science already uses a variety of methods often in combination to determine a deceased person's identity if neither personal effects nor next of kin (or close friends) can positively identify the victim. While disciplines such as forensic anthropology are able to work from a blank canvass as it were and can provide information on age, gender and ethnical grouping, techniques such as DNA profiling do rely on finding a match either in a database or a comparative sample presumed to be an ante-mortem sample of the victim or from a putative relation. Chances for either to succeed would be greatly enhanced if information gained from a forensic anthropological examination and, circumstances permitting a facial reconstruction could be linked to another technique that can work from a blank canvass or at least does not require comparison to a subject specific database. With the help of isotope ratio mass spectrometry even the very atoms from which a body is made can be used to say something about a person that will help to focus human identification using traditional techniques such as DNA, fingerprints and odontology. Stable isotope fingerprinting works on the basis that almost all chemical elements and in particular the so-called light elements such as carbon (C) that comprise most of the human body occur naturally in different forms, namely isotopes. 2H isotope abundance values recorded by the human body through food and drink ultimately reflect averaged isotopic composition of precipitation or ground water. Stable isotope analysis of 2H isotopic composition in different human tissue such as hair, nails, bone and teeth enables us to construct a time resolved isotopic profile or ‘fingerprint' that may not necessarily permit direct identification of a murder victim or mass disaster victim but in conjunction with forensic anthropological information will provide sufficient intelligence to construct a profile for intelligence lead identification stating where a victim was from (point of origin), how old they were, what their ‘life style' was and even if and where they had recently travelled. Data from several criminal investigations are presented to illustrate potential and limitation of stable isotope analysis of human tissue in aid of victim identification.
Nie, Y C; Yu, L J; Guan, H; Zhao, Y; Rong, H B; Jiang, B W; Zhang, T
2017-06-01
As an important part of epigenetic marker, DNA methylation involves in the gene regulation and attracts a wide spread attention in biological auxology, geratology and oncology fields. In forensic science, because of the relative stable, heritable, abundant, and age-related characteristics, DNA methylation is considered to be a useful complement to the classic genetic markers for age-prediction, tissue-identification, and monozygotic twins' discrimination. Various methods for DNA methylation detection have been validated based on methylation sensitive restriction endonuclease, bisulfite modification and methylation-CpG binding protein. In recent years, it is reported that the third generation sequencing method can be used to detect DNA methylation. This paper aims to make a review on the detection method of DNA methylation and its applications in forensic science. Copyright© by the Editorial Department of Journal of Forensic Medicine.
[Validation of Differential Extraction Kit in forensic sexual assault cases].
Wu, Dan; Cao, Yu; Xu, Yan; He, Bai-Fang; Bi, Gang; Zhou, Huai-Gu
2009-12-01
To evaluate the validity of Differential Extraction Kit in isolating spermatozoa and epithelial cell DNA from mixture samples. Selective lysis of spermatid and epithelial cells combined with paramagnetic particle method were applied to extract the DNA from the mock samples under controlled conditions and forensic case samples, and template DNA were analyzed by STR genotype method. This Differential Extraction Kit is efficient to obtain high quality spermatid and epithelial cell DNA from the mixture samples with different proportion of sperm to epithelial cell. The Differential Extraction Kit can be applied in DNA extraction for mixed stain from forensic sexual assault samples.
Santurro, Alessandro; Vullo, Anna Maria; Borro, Marina; Gentile, Giovanna; La Russa, Raffaele; Simmaco, Maurizio; Frati, Paola; Fineschi, Vittorio
2017-01-01
Personalized medicine (PM), included in P5 medicine (Personalized, Predictive, Preventive, Participative and Precision medicine) is an innovative approach to the patient, emerging from the need to tailor and to fit the profile of each individual. PM promises to dramatically impact also on forensic sciences and justice system in ways we are only beginning to understand. The application of omics (genomic, transcriptomics, epigenetics/imprintomics, proteomic and metabolomics) is ever more fundamental in the so called "molecular autopsy". Emerging fields of interest in forensic pathology are represented by diagnosis and detection of predisposing conditions to fatal thromboembolic and hypertensive events, determination of genetic variants related to sudden death, such as congenital long QT syndromes, demonstration of lesions vitality, identification of biological matrices and species diagnosis of a forensic trace on crime scenes without destruction of the DNA. The aim of this paper is to describe the state-of-art in the application of personalized medicine in forensic sciences, to understand the possibilities of integration in routine investigation of these procedures with classical post-mortem studies and to underline the importance of these new updates in medical examiners' armamentarium in determining cause of death or contributing factors to death. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Identification of organ tissue types and skin from forensic samples by microRNA expression analysis.
Sauer, Eva; Extra, Antje; Cachée, Philipp; Courts, Cornelius
2017-05-01
The identification of organ tissues in traces recovered from scenes and objects with regard to violent crimes involving serious injuries can be of considerable relevance in forensic investigations. Molecular genetic approaches are provably superior to histological and immunological assays in characterizing organ tissues, and micro-RNAs (miRNAs), due to their cell type specific expression patterns and stability against degradation, emerged as a promising molecular species for forensic analyses, with a range of tried and tested indicative markers. Thus, herein we present the first miRNA based approach for the forensic identification of organ tissues. Using quantitative PCR employing an empirically derived strategy for data normalization and unbiased statistical decision making, we assessed the differential expression of 15 preselected miRNAs in tissues of brain, kidney, lung, liver, heart muscle, skeletal muscle and skin. We show that not only can miRNA expression profiling be used to reliably differentiate between organ tissues but also that this method, which is compatible with and complementary to forensic DNA analysis, is applicable to realistic forensic samples e.g. mixtures, aged and degraded material as well as traces generated by mock stabbings and experimental shootings at ballistic models. Copyright © 2017 Elsevier B.V. All rights reserved.
Toscanini, U; Gusmão, L; Álava Narváez, M C; Álvarez, J C; Baldassarri, L; Barbaro, A; Berardi, G; Betancor Hernández, E; Camargo, M; Carreras-Carbonell, J; Castro, J; Costa, S C; Coufalova, P; Domínguez, V; Fagundes de Carvalho, E; Ferreira, S T G; Furfuro, S; García, O; Goios, A; González, R; de la Vega, A González; Gorostiza, A; Hernández, A; Jiménez Moreno, S; Lareu, M V; León Almagro, A; Marino, M; Martínez, G; Miozzo, M C; Modesti, N M; Onofri, V; Pagano, S; Pardo Arias, B; Pedrosa, S; Penacino, G A; Pontes, M L; Porto, M J; Puente-Prieto, J; Pérez, R Ramírez; Ribeiro, T; Rodríguez Cardozo, B; Rodríguez Lesmes, Y M; Sala, A; Santiago, B; Saragoni, V G; Serrano, A; Streitenberger, E R; Torres Morales, M A; Vannelli Rey, S A; Velázquez Miranda, M; Whittle, M R; Fernández, K; Salas, A
2016-11-01
Since 1992, the Spanish and Portuguese-Speaking Working Group of the ISFG (GHEP-ISFG) has been organizing annual Intercomparison Exercises (IEs) coordinated by the Quality Service at the National Institute of Toxicology and Forensic Sciences (INTCF) from Madrid, aiming to provide proficiency tests for forensic DNA laboratories. Each annual exercise comprises a Basic (recently accredited under ISO/IEC 17043: 2010) and an Advanced Level, both including a kinship and a forensic module. Here, we show the results for both autosomal and sex-chromosomal STRs, and for mitochondrial DNA (mtDNA) in two samples included in the forensic modules, namely a mixture 2:1 (v/v) saliva/blood (M4) and a mixture 4:1 (v/v) saliva/semen (M8) out of the five items provided in the 2014 GHEP-ISFG IE. Discrepancies, other than typos or nomenclature errors (over the total allele calls), represented 6.5% (M4) and 4.7% (M8) for autosomal STRs, 15.4% (M4) and 7.8% (M8) for X-STRs, and 1.2% (M4) and 0.0% (M8) for Y-STRs. Drop-out and drop-in alleles were the main cause of errors, with laboratories using different criteria regarding inclusion of minor peaks and stutter bands. Commonly used commercial kits yielded different results for a micro-variant detected at locus D12S391. In addition, the analysis of electropherograms revealed that the proportions of the contributors detected in the mixtures varied among the participants. In regards to mtDNA analysis, besides important discrepancies in reporting heteroplasmies, there was no agreement for the results of sample M4. Thus, while some laboratories documented a single control region haplotype, a few reported unexpected profiles (suggesting contamination problems). For M8, most laboratories detected only the haplotype corresponding to the saliva. Although the GHEP-ISFG has already a large experience in IEs, the present multi-centric study revealed challenges that still exist related to DNA mixtures interpretation. Overall, the results emphasize the need for further research and training actions in order to improve the analysis of mixtures among the forensic practitioners. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Teaching artificial intelligence to read electropherograms.
Taylor, Duncan; Powers, David
2016-11-01
Electropherograms are produced in great numbers in forensic DNA laboratories as part of everyday criminal casework. Before the results of these electropherograms can be used they must be scrutinised by analysts to determine what the identified data tells us about the underlying DNA sequences and what is purely an artefact of the DNA profiling process. A technique that lends itself well to such a task of classification in the face of vast amounts of data is the use of artificial neural networks. These networks, inspired by the workings of the human brain, have been increasingly successful in analysing large datasets, performing medical diagnoses, identifying handwriting, playing games, or recognising images. In this work we demonstrate the use of an artificial neural network which we train to 'read' electropherograms and show that it can generalise to unseen profiles. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Population-specific FST values for forensic STR markers: A worldwide survey.
Buckleton, John; Curran, James; Goudet, Jérôme; Taylor, Duncan; Thiery, Alexandre; Weir, B S
2016-07-01
The interpretation of matching between DNA profiles of a person of interest and an item of evidence is undertaken using population genetic models to predict the probability of matching by chance. Calculation of matching probabilities is straightforward if allelic probabilities are known, or can be estimated, in the relevant population. It is more often the case, however, that the relevant population has not been sampled and allele frequencies are available only from a broader collection of populations as might be represented in a national or regional database. Variation of allele probabilities among the relevant populations is quantified by the population structure quantity FST and this quantity affects matching proportions. Matching within a population can be interpreted only with respect to matching between populations and we show here that FST, can be estimated from sample allelic matching proportions within and between populations. We report such estimates from data we extracted from 250 papers in the forensic literature, representing STR profiles at up to 24 loci from nearly 500,000 people in 446 different populations. The results suggest that theta values in current forensic use do not have the buffer of conservatism often thought. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Population-specific FST values for forensic STR markers: A worldwide survey
Buckleton, John; Curran, James; Goudet, Jérôme; Taylor, Duncan; Thiery, Alexandre; Weir, B.S.
2016-01-01
The interpretation of matching between DNA profiles of a person of interest and an item of evidence is undertaken using population genetic models to predict the probability of matching by chance. Calculation of matching probabilities is straightforward if allelic probabilities are known, or can be estimated, in the relevant population. It is more often the case, however, that the relevant population has not been sampled and allele frequencies are available only from a broader collection of populations as might be represented in a national or regional database. Variation of allele probabilities among the relevant populations is quantified by the population structure quantity FST and this quanity affects matching propoptions. Matching within a population can be interpreted only with respect to matching between populations and we show here that FST, can be estimated from sample allelic matching proportions within and between populations. We report such estimates from data we extracted from 250 papers in the forensic literature, representing STR profiles at up to 24 loci from nearly 500,000 people in 446 different populations. The results suggest that theta values in current forensic use do not have the buffer of conservativism often thought. PMID:27082756
Minimizing inhibition of PCR-STR typing using digital agarose droplet microfluidics.
Geng, Tao; Mathies, Richard A
2015-01-01
The presence of PCR inhibitors in forensic and other biological samples reduces the amplification efficiency, sometimes resulting in complete PCR failure. Here we demonstrate a high-performance digital agarose droplet microfluidics technique for single-cell and single-molecule forensic short tandem repeat (STR) typing of samples contaminated with high concentrations of PCR inhibitors. In our multifaceted strategy, the mitigation of inhibitory effects is achieved by the efficient removal of inhibitors from the porous agarose microgel droplets carrying the DNA template through washing and by the significant dilution of targets and remaining inhibitors to the stochastic limit within the ultralow nL volume droplet reactors. Compared to conventional tube-based bulk PCR, our technique shows enhanced (20 ×, 10 ×, and 16 ×) tolerance of urea, tannic acid, and humic acid, respectively, in STR typing of GM09948 human lymphoid cells. STR profiling of single cells is not affected by small soluble molecules like urea and tannic acid because of their effective elimination from the agarose droplets; however, higher molecular weight humic acid still partially inhibits single-cell PCR when the concentration is higher than 200 ng/μL. Nevertheless, the full STR profile of 9948 male genomic DNA contaminated with 500 ng/μL humic acid was generated by pooling and amplifying beads carrying single-molecule 9948 DNA PCR products in a single secondary reaction. This superior performance suggests that our digital agarose droplet microfluidics technology is a promising approach for analyzing low-abundance DNA targets in the presence of inhibitors. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
MacLean, Charles E; Lamparello, Adam
2014-01-01
Forensic DNA Phenotyping ("FDP"), estimating the externally visible characteristics ("EVCs") of the source of human DNA left at a crime scene, is evolving from science fiction toward science fact. FDP can already identify a source's gender with 100% accuracy, and likely hair color, iris color, adult height, and a number of other EVCs with accuracy rates approaching 70%. Patent applications have been filed for approaches to generating 3D likenesses of DNA sources based on the DNA alone. Nonetheless, criminal investigators, particularly in the United States, have been reticent to apply FDP in their casework. The reticence is likely related to a number of perceived and real dilemmas associated with FDP: is FDP racial profiling, should we test unknown and unseen physical conditions, does testing for behavioral characteristics impermissibly violate the source's privacy, ought testing be permitted for samples from known sources or DNA databases, and should FDP be limited to use in investigations only or is FDP appropriate for use in a criminal court. As this article explains, although those dilemmas are substantive, they are not insurmountable, and can be quite easily managed with appropriate regulation and protocols. As FDP continues to develop, there will be less need for criminal investigators to shy away from FDP. Cold cases, missing persons, and victims in crimes without other evidence will one day soon all be well served by FDP.
Keating, Brendan; Bansal, Aruna T; Walsh, Susan; Millman, Jonathan; Newman, Jonathan; Kidd, Kenneth; Budowle, Bruce; Eisenberg, Arthur; Donfack, Joseph; Gasparini, Paolo; Budimlija, Zoran; Henders, Anjali K; Chandrupatla, Hareesh; Duffy, David L; Gordon, Scott D; Hysi, Pirro; Liu, Fan; Medland, Sarah E; Rubin, Laurence; Martin, Nicholas G; Spector, Timothy D; Kayser, Manfred
2013-05-01
When a forensic DNA sample cannot be associated directly with a previously genotyped reference sample by standard short tandem repeat profiling, the investigation required for identifying perpetrators, victims, or missing persons can be both costly and time consuming. Here, we describe the outcome of a collaborative study using the Identitas Version 1 (v1) Forensic Chip, the first commercially available all-in-one tool dedicated to the concept of developing intelligence leads based on DNA. The chip allows parallel interrogation of 201,173 genome-wide autosomal, X-chromosomal, Y-chromosomal, and mitochondrial single nucleotide polymorphisms for inference of biogeographic ancestry, appearance, relatedness, and sex. The first assessment of the chip's performance was carried out on 3,196 blinded DNA samples of varying quantities and qualities, covering a wide range of biogeographic origin and eye/hair coloration as well as variation in relatedness and sex. Overall, 95 % of the samples (N = 3,034) passed quality checks with an overall genotype call rate >90 % on variable numbers of available recorded trait information. Predictions of sex, direct match, and first to third degree relatedness were highly accurate. Chip-based predictions of biparental continental ancestry were on average ~94 % correct (further support provided by separately inferred patrilineal and matrilineal ancestry). Predictions of eye color were 85 % correct for brown and 70 % correct for blue eyes, and predictions of hair color were 72 % for brown, 63 % for blond, 58 % for black, and 48 % for red hair. From the 5 % of samples (N = 162) with <90 % call rate, 56 % yielded correct continental ancestry predictions while 7 % yielded sufficient genotypes to allow hair and eye color prediction. Our results demonstrate that the Identitas v1 Forensic Chip holds great promise for a wide range of applications including criminal investigations, missing person investigations, and for national security purposes.
Rapid quantification and sex determination of forensic evidence materials.
Andréasson, Hanna; Allen, Marie
2003-11-01
DNA quantification of forensic evidence is very valuable for an optimal use of the available biological material. Moreover, sex determination is of great importance as additional information in criminal investigations as well as in identification of missing persons, no suspect cases, and ancient DNA studies. While routine forensic DNA analysis based on short tandem repeat markers includes a marker for sex determination, analysis of samples containing scarce amounts of DNA is often based on mitochondrial DNA, and sex determination is not performed. In order to allow quantification and simultaneous sex determination on minute amounts of DNA, an assay based on real-time PCR analysis of a marker within the human amelogenin gene has been developed. The sex determination is based on melting curve analysis, while an externally standardized kinetic analysis allows quantification of the nuclear DNA copy number in the sample. This real-time DNA quantification assay has proven to be highly sensitive, enabling quantification of single DNA copies. Although certain limitations were apparent, the system is a rapid, cost-effective, and flexible assay for analysis of forensic casework samples.
Separation/extraction, detection, and interpretation of DNA mixtures in forensic science (review).
Tao, Ruiyang; Wang, Shouyu; Zhang, Jiashuo; Zhang, Jingyi; Yang, Zihao; Sheng, Xiang; Hou, Yiping; Zhang, Suhua; Li, Chengtao
2018-05-25
Interpreting mixed DNA samples containing material from multiple contributors has long been considered a major challenge in forensic casework, especially when encountering low-template DNA (LT-DNA) or high-order mixtures that may involve missing alleles (dropout) and unrelated alleles (drop-in), among others. In the last decades, extraordinary progress has been made in the analysis of mixed DNA samples, which has led to increasing attention to this research field. The advent of new methods for the separation and extraction of DNA from mixtures, novel or jointly applied genetic markers for detection and reliable interpretation approaches for estimating the weight of evidence, as well as the powerful massively parallel sequencing (MPS) technology, has greatly extended the range of mixed samples that can be correctly analyzed. Here, we summarized the investigative approaches and progress in the field of forensic DNA mixture analysis, hoping to provide some assistance to forensic practitioners and to promote further development involving this issue.
Crouse, C A; Ban, J D; D'Alessio, J K
1993-10-01
Sonication procedures for the extraction of DNA from forensic-type semen specimens have been developed, which, when compared to currently utilized sperm DNA extraction techniques, are simple, rapid and result in comparable DNA yields. Sperm DNA extraction by sonication was performed on whole semen, seminal stains, buccal swabs and post-coital specimens. Ultrasound disruption of sperm cells and their ultimate release of cellular DNA has been conducted in the presence of sperm wash buffers followed by organic extraction or Chelex 100 with little or no compromise to DNA quality, quantity or amplifiability. Two advantages of sonication over currently used forensic techniques to extract sperm DNA include 1) sperm DNA extraction that occurs within five minutes of sonication compared with an hour or greater for water bath incubations in classic enzyme digestion DNA extractions and 2) one less preparatory step with the Chelex/sonication protocol and three less steps with the sonication/organic protocol compared with other procedures thus eliminating potential sample-to-sample cross-contamination. Sperm DNA extracted by optimum sonication procedures was used for forensic HLA DQ alpha typing and restriction fragment length polymorphisms analysis without any adverse effects on typing results.
Direct PCR amplification of forensic touch and other challenging DNA samples: A review.
Cavanaugh, Sarah E; Bathrick, Abigail S
2018-01-01
DNA evidence sample processing typically involves DNA extraction, quantification, and STR amplification; however, DNA loss can occur at both the DNA extraction and quantification steps, which is not ideal for forensic evidence containing low levels of DNA. Direct PCR amplification of forensic unknown samples has been suggested as a means to circumvent extraction and quantification, thereby retaining the DNA typically lost during those procedures. Direct PCR amplification is a method in which a sample is added directly to an amplification reaction without being subjected to prior DNA extraction, purification, or quantification. It allows for maximum quantities of DNA to be targeted, minimizes opportunities for error and contamination, and reduces the time and monetary resources required to process samples, although data analysis may take longer as the increased DNA detection sensitivity of direct PCR may lead to more instances of complex mixtures. ISO 17025 accredited laboratories have successfully implemented direct PCR for limited purposes (e.g., high-throughput databanking analysis), and recent studies indicate that direct PCR can be an effective method for processing low-yield evidence samples. Despite its benefits, direct PCR has yet to be widely implemented across laboratories for the processing of evidentiary items. While forensic DNA laboratories are always interested in new methods that will maximize the quantity and quality of genetic information obtained from evidentiary items, there is often a lag between the advent of useful methodologies and their integration into laboratories. Delayed implementation of direct PCR of evidentiary items can be attributed to a variety of factors, including regulatory guidelines that prevent laboratories from omitting the quantification step when processing forensic unknown samples, as is the case in the United States, and, more broadly, a reluctance to validate a technique that is not widely used for evidence samples. The advantages of direct PCR of forensic evidentiary samples justify a re-examination of the factors that have delayed widespread implementation of this method and of the evidence supporting its use. In this review, the current and potential future uses of direct PCR in forensic DNA laboratories are summarized. Copyright © 2017 Elsevier B.V. All rights reserved.
Forensic individual age estimation with DNA: From initial approaches to methylation tests.
Freire-Aradas, A; Phillips, C; Lareu, M V
2017-07-01
Individual age estimation is a key factor in forensic science analysis that can provide very useful information applicable to criminal, legal, and anthropological investigations. Forensic age inference was initially based on morphological inspection or radiography and only later began to adopt molecular approaches. However, a lack of accuracy or technical problems hampered the introduction of these DNA-based methodologies in casework analysis. A turning point occurred when the epigenetic signature of DNA methylation was observed to gradually change during an individual´s lifespan. In the last four years, the number of publications reporting DNA methylation age-correlated changes has gradually risen and the forensic community now has a range of age methylation tests applicable to forensic casework. Most forensic age predictor models have been developed based on blood DNA samples, but additional tissues are now also being explored. This review assesses the most widely adopted genes harboring methylation sites, detection technologies, statistical age-predictive analyses, and potential causes of variation in age estimates. Despite the need for further work to improve predictive accuracy and establishing a broader range of tissues for which tests can analyze the most appropriate methylation sites, several forensic age predictors have now been reported that provide consistency in their prediction accuracies (predictive error of ±4 years); this makes them compelling tools with the potential to contribute key information to help guide criminal investigations. Copyright © 2017 Central Police University.
Parson, W; Gusmão, L; Hares, D R; Irwin, J A; Mayr, W R; Morling, N; Pokorak, E; Prinz, M; Salas, A; Schneider, P M; Parsons, T J
2014-11-01
The DNA Commission of the International Society of Forensic Genetics (ISFG) regularly publishes guidelines and recommendations concerning the application of DNA polymorphisms to the question of human identification. Previous recommendations published in 2000 addressed the analysis and interpretation of mitochondrial DNA (mtDNA) in forensic casework. While the foundations set forth in the earlier recommendations still apply, new approaches to the quality control, alignment and nomenclature of mitochondrial sequences, as well as the establishment of mtDNA reference population databases, have been developed. Here, we describe these developments and discuss their application to both mtDNA casework and mtDNA reference population databasing applications. While the generation of mtDNA for forensic casework has always been guided by specific standards, it is now well-established that data of the same quality are required for the mtDNA reference population data used to assess the statistical weight of the evidence. As a result, we introduce guidelines regarding sequence generation, as well as quality control measures based on the known worldwide mtDNA phylogeny, that can be applied to ensure the highest quality population data possible. For both casework and reference population databasing applications, the alignment and nomenclature of haplotypes is revised here and the phylogenetic alignment proffered as acceptable standard. In addition, the interpretation of heteroplasmy in the forensic context is updated, and the utility of alignment-free database searches for unbiased probability estimates is highlighted. Finally, we discuss statistical issues and define minimal standards for mtDNA database searches. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Machado, Helena; Silva, Susana
2015-01-01
The ethical aspects of biobanks and forensic DNA databases are often treated as separate issues. As a reflection of this, public participation, or the involvement of citizens in genetic databases, has been approached differently in the fields of forensics and medicine. This paper aims to cross the boundaries between medicine and forensics by exploring the flows between the ethical issues presented in the two domains and the subsequent conceptualisation of public trust and legitimisation. We propose to introduce the concept of ‘solidarity’, traditionally applied only to medical and research biobanks, into a consideration of public engagement in medicine and forensics. Inclusion of a solidarity-based framework, in both medical biobanks and forensic DNA databases, raises new questions that should be included in the ethical debate, in relation to both health services/medical research and activities associated with the criminal justice system. PMID:26139851
ERIC Educational Resources Information Center
Coticone, Sulekha Rao; Van Houten, Lora Bailey
2015-01-01
A special topics course combining two relevant and contemporary themes (forensic DNA analysis and illicit drug detection) was developed to stimulate student enthusiasm and enhance understanding of forensic science. Building on the interest of popular television shows such as "CSI" and "Breaking Bad," this course connects…
An integratable microfluidic cartridge for forensic swab samples lysis.
Yang, Jianing; Brooks, Carla; Estes, Matthew D; Hurth, Cedric M; Zenhausern, Frederic
2014-01-01
Fully automated rapid forensic DNA analysis requires integrating several multistep processes onto a single microfluidic platform, including substrate lysis, extraction of DNA from the released lysate solution, multiplexed PCR amplification of STR loci, separation of PCR products by capillary electrophoresis, and analysis for allelic peak calling. Over the past several years, most of the rapid DNA analysis systems developed started with the reference swab sample lysate and involved an off-chip lysis of collected substrates. As a result of advancement in technology and chemistry, addition of a microfluidic module for swab sample lysis has been achieved in a few of the rapid DNA analysis systems. However, recent reports on integrated rapid DNA analysis systems with swab-in and answer-out capability lack any quantitative and qualitative characterization of the swab-in sample lysis module, which is important for downstream forensic sample processing. Maximal collection and subsequent recovery of the biological material from the crime scene is one of the first and critical steps in forensic DNA technology. Herein we present the design, fabrication and characterization of an integratable swab lysis cartridge module and the test results obtained from different types of commonly used forensic swab samples, including buccal, saliva, and blood swab samples, demonstrating the compatibility with different downstream DNA extraction chemistries. This swab lysis cartridge module is easy to operate, compatible with both forensic and microfluidic requirements, and ready to be integrated with our existing automated rapid forensic DNA analysis system. Following the characterization of the swab lysis module, an integrated run from buccal swab sample-in to the microchip CE electropherogram-out was demonstrated on the integrated prototype instrument. Therefore, in this study, we demonstrate that this swab lysis cartridge module is: (1) functionally, comparable with routine benchtop lysis, (2) compatible with various types of swab samples and chemistries, and (3) integratable to achieve a micro total analysis system (μTAS) for rapid DNA analysis. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Scharnhorst, Günther; Kanthaswamy, Sree
2011-01-01
Aim To describe and assess the scientific and technical aspects of animal forensic testing at the University of California, Davis. The findings and recommendations contained in this report are designed to assess the past, evaluate the present, and recommend reforms that will assist the animal forensic science community in providing the best possible services that comply with court standards and bear judicial scrutiny. Methods A batch of 32 closed files of domestic dog DNA cases processed at the University of California, Davis, between August 2003 and July 2005 were reviewed in this study. The case files comprised copies of all original paperwork, copies of the cover letter or final report, laboratory notes, notes on analyses, submission forms, internal chains of custody, printed images and photocopies of evidence, as well as the administrative and technical reviews of those cases. Results While the fundamental aspects of animal DNA testing may be reliable and acceptable, the scientific basis for forensic testing animal DNA needs to be improved substantially. In addition to a lack of standardized and validated genetic testing protocols, improvements are needed in a wide range of topics including quality assurance and quality control measures, sample handling, evidence testing, statistical analysis, and reporting. Conclusion This review implies that although a standardized panel of short tandem repeat and mitochondrial DNA markers and publicly accessible genetic databases for canine forensic DNA analysis are already available, the persistent lack of supporting resources, including standardized quality assurance and quality control programs, still plagues the animal forensic community. This report focuses on closed cases from the period 2003-2005, but extends its scope more widely to include other animal DNA forensic testing services. PMID:21674824
Scharnhorst, Günther; Kanthaswamy, Sree
2011-06-01
To describe and assess the scientific and technical aspects of animal forensic testing at the University of California, Davis. The findings and recommendations contained in this report are designed to assess the past, evaluate the present, and recommend reforms that will assist the animal forensic science community in providing the best possible services that comply with court standards and bear judicial scrutiny. A batch of 32 closed files of domestic dog DNA cases processed at the University of California, Davis, between August 2003 and July 2005 were reviewed in this study. The case files comprised copies of all original paperwork, copies of the cover letter or final report, laboratory notes, notes on analyses, submission forms, internal chains of custody, printed images and photocopies of evidence, as well as the administrative and technical reviews of those cases. While the fundamental aspects of animal DNA testing may be reliable and acceptable, the scientific basis for forensic testing animal DNA needs to be improved substantially. In addition to a lack of standardized and validated genetic testing protocols, improvements are needed in a wide range of topics including quality assurance and quality control measures, sample handling, evidence testing, statistical analysis, and reporting. This review implies that although a standardized panel of short tandem repeat and mitochondrial DNA markers and publicly accessible genetic databases for canine forensic DNA analysis are already available, the persistent lack of supporting resources, including standardized quality assurance and quality control programs, still plagues the animal forensic community. This report focuses on closed cases from the period 2003-2005, but extends its scope more widely to include other animal DNA forensic testing services.
Microfluidic Devices for Forensic DNA Analysis: A Review.
Bruijns, Brigitte; van Asten, Arian; Tiggelaar, Roald; Gardeniers, Han
2016-08-05
Microfluidic devices may offer various advantages for forensic DNA analysis, such as reduced risk of contamination, shorter analysis time and direct application at the crime scene. Microfluidic chip technology has already proven to be functional and effective within medical applications, such as for point-of-care use. In the forensic field, one may expect microfluidic technology to become particularly relevant for the analysis of biological traces containing human DNA. This would require a number of consecutive steps, including sample work up, DNA amplification and detection, as well as secure storage of the sample. This article provides an extensive overview of microfluidic devices for cell lysis, DNA extraction and purification, DNA amplification and detection and analysis techniques for DNA. Topics to be discussed are polymerase chain reaction (PCR) on-chip, digital PCR (dPCR), isothermal amplification on-chip, chip materials, integrated devices and commercially available techniques. A critical overview of the opportunities and challenges of the use of chips is discussed, and developments made in forensic DNA analysis over the past 10-20 years with microfluidic systems are described. Areas in which further research is needed are indicated in a future outlook.
Forensics and mitochondrial DNA: applications, debates, and foundations.
Budowle, Bruce; Allard, Marc W; Wilson, Mark R; Chakraborty, Ranajit
2003-01-01
Debate on the validity and reliability of scientific methods often arises in the courtroom. When the government (i.e., the prosecution) is the proponent of evidence, the defense is obliged to challenge its admissibility. Regardless, those who seek to use DNA typing methodologies to analyze forensic biological evidence have a responsibility to understand the technology and its applications so a proper foundation(s) for its use can be laid. Mitochondrial DNA (mtDNA), an extranuclear genome, has certain features that make it desirable for forensics, namely, high copy number, lack of recombination, and matrilineal inheritance. mtDNA typing has become routine in forensic biology and is used to analyze old bones, teeth, hair shafts, and other biological samples where nuclear DNA content is low. To evaluate results obtained by sequencing the two hypervariable regions of the control region of the human mtDNA genome, one must consider the genetically related issues of nomenclature, reference population databases, heteroplasmy, paternal leakage, recombination, and, of course, interpretation of results. We describe the approaches, the impact some issues may have on interpretation of mtDNA analyses, and some issues raised in the courtroom.
Bieber, Frederick R; Buckleton, John S; Budowle, Bruce; Butler, John M; Coble, Michael D
2016-08-31
The evaluation and interpretation of forensic DNA mixture evidence faces greater interpretational challenges due to increasingly complex mixture evidence. Such challenges include: casework involving low quantity or degraded evidence leading to allele and locus dropout; allele sharing of contributors leading to allele stacking; and differentiation of PCR stutter artifacts from true alleles. There is variation in statistical approaches used to evaluate the strength of the evidence when inclusion of a specific known individual(s) is determined, and the approaches used must be supportable. There are concerns that methods utilized for interpretation of complex forensic DNA mixtures may not be implemented properly in some casework. Similar questions are being raised in a number of U.S. jurisdictions, leading to some confusion about mixture interpretation for current and previous casework. Key elements necessary for the interpretation and statistical evaluation of forensic DNA mixtures are described. Given the most common method for statistical evaluation of DNA mixtures in many parts of the world, including the USA, is the Combined Probability of Inclusion/Exclusion (CPI/CPE). Exposition and elucidation of this method and a protocol for use is the focus of this article. Formulae and other supporting materials are provided. Guidance and details of a DNA mixture interpretation protocol is provided for application of the CPI/CPE method in the analysis of more complex forensic DNA mixtures. This description, in turn, should help reduce the variability of interpretation with application of this methodology and thereby improve the quality of DNA mixture interpretation throughout the forensic community.
Protein-based forensic identification using genetically variant peptides in human bone.
Mason, Katelyn Elizabeth; Anex, Deon; Grey, Todd; Hart, Bradley; Parker, Glendon
2018-04-22
Bone tissue contains organic material that is useful for forensic investigations and may contain preserved endogenous protein that can persist in the environment for extended periods of time over a range of conditions. Single amino acid polymorphisms in these proteins reflect genetic information since they result from non-synonymous single nucleotide polymorphisms (SNPs) in DNA. Detection of genetically variant peptides (GVPs) - those peptides that contain amino acid polymorphisms - in digests of bone proteins allows for the corresponding SNP alleles to be inferred. Resulting genetic profiles can be used to calculate statistical measures of association between a bone sample and an individual. In this study proteomic analysis on rib cortical bone samples from 10 recently deceased individuals demonstrates this concept. A straight-forward acidic demineralization protocol yielded proteins that were digested with trypsin. Tryptic digests were analyzed by liquid chromatography mass spectrometry. A total of 1736 different proteins were identified across all resulting datasets. On average, individual samples contained 454±121 (x¯±σ) proteins. Thirty-five genetically variant peptides were identified from 15 observed proteins. Overall, 134 SNP inferences were made based on proteomically detected GVPs, which were confirmed by sequencing of subject DNA. Inferred individual SNP genetic profiles ranged in random match probability (RMP) from 1/6 to 1/42,472 when calculated with European population frequencies in the 1000 Genomes Project, Phase 3. Similarly, RMPs based on African population frequencies were calculated for each SNP genetic profile and likelihood ratios (LR) were obtained by dividing each European RMP by the corresponding African RMP. Resulting LR values ranged from 1.4 to 825 with a median value of 16. GVP markers offer a basis for the identification of compromised skeletal remains independent of the presence of DNA template. Published by Elsevier B.V.
Lenehan, Claire E; Tobe, Shanan S; Smith, Renee J; Popelka-Filcoff, Rachel S
2017-01-01
Many archaeological science studies use the concept of "provenance", where the origins of cultural material can be determined through physical or chemical properties that relate back to the origins of the material. Recent studies using DNA profiling of bacteria have been used for the forensic determination of soils, towards determination of geographic origin. This manuscript presents a novel approach to the provenance of archaeological minerals and related materials through the use of 16S rRNA sequencing analysis of microbial DNA. Through the microbial DNA characterization from ochre and multivariate statistics, we have demonstrated the clear discrimination between four distinct Australian cultural ochre sites.
Brandstätter, Anita; Peterson, Christine T; Irwin, Jodi A; Mpoke, Solomon; Koech, Davy K; Parson, Walther; Parsons, Thomas J
2004-10-01
Large forensic mtDNA databases which adhere to strict guidelines for generation and maintenance, are not available for many populations outside of the United States and western Europe. We have established a high quality mtDNA control region sequence database for urban Nairobi as both a reference database for forensic investigations, and as a tool to examine the genetic variation of Kenyan sequences in the context of known African variation. The Nairobi sequences exhibited high variation and a low random match probability, indicating utility for forensic testing. Haplogroup identification and frequencies were compared with those reported from other published studies on African, or African-origin populations from Mozambique, Sierra Leone, and the United States, and suggest significant differences in the mtDNA compositions of the various populations. The quality of the sequence data in our study was investigated and supported using phylogenetic measures. Our data demonstrate the diversity and distinctiveness of African populations, and underline the importance of establishing additional forensic mtDNA databases of indigenous African populations.
Loreille, Odile; Ratnayake, Shashikala; Stockwell, Timothy B.; Mallick, Swapan; Skoglund, Pontus; Onorato, Anthony J.; Bergman, Nicholas H.; Reich, David; Irwin, Jodi A.
2018-01-01
High throughput sequencing (HTS) has been used for a number of years in the field of paleogenomics to facilitate the recovery of small DNA fragments from ancient specimens. Recently, these techniques have also been applied in forensics, where they have been used for the recovery of mitochondrial DNA sequences from samples where traditional PCR-based assays fail because of the very short length of endogenous DNA molecules. Here, we describe the biological sexing of a ~4000-year-old Egyptian mummy using shotgun sequencing and two established methods of biological sex determination (RX and RY), by way of mitochondrial genome analysis as a means of sequence data authentication. This particular case of historical interest increases the potential utility of HTS techniques for forensic purposes by demonstrating that data from the more discriminatory nuclear genome can be recovered from the most damaged specimens, even in cases where mitochondrial DNA cannot be recovered with current PCR-based forensic technologies. Although additional work remains to be done before nuclear DNA recovered via these methods can be used routinely in operational casework for individual identification purposes, these results indicate substantial promise for the retrieval of probative individually identifying DNA data from the most limited and degraded forensic specimens. PMID:29494531
Nathalie, Zahra; Hadi, Sibte; Goodwin, William
2012-09-01
Forensic DNA profiling uses a series of commercial kits that co-amplify several loci in one reaction; the products of the PCR are fluorescently labelled and analysed using CE. Before CE, an aliquot of the PCR is mixed with formamide and an internal lane size standard. Using the SGM Plus amplification kit, we have developed two internal non-amplified controls of 80 bp and 380 bp that are labelled with ROX fluorescent dye and added to the PCR. Combined with two internal amplification controls of 90 bp and 410 bp, they provide additional controls for the PCR, electrokinetic injection, and CE and also function as an internal size standard. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Frégeau, Chantal J; Lett, C Marc; Elliott, Jim; Yensen, Craig; Fourney, Ron M
2008-05-01
An automated process has been developed for the analysis of forensic casework samples using TECAN Genesis RSP 150/8 or Freedom EVO liquid handling workstations equipped exclusively with nondisposable tips. Robot tip cleaning routines have been incorporated strategically within the DNA extraction process as well as at the end of each session. Alternative options were examined for cleaning the tips and different strategies were employed to verify cross-contamination. A 2% sodium hypochlorite wash (1/5th dilution of the 10.8% commercial bleach stock) proved to be the best overall approach for preventing cross-contamination of samples processed using our automated protocol. The bleach wash steps do not adversely impact the short tandem repeat (STR) profiles developed from DNA extracted robotically and allow for major cost savings through the implementation of fixed tips. We have demonstrated that robotic workstations equipped with fixed pipette tips can be used with confidence with properly designed tip washing routines to process casework samples using an adapted magnetic bead extraction protocol.
[Forensic hematology genetics--paternity testing].
Kratzer, A; Bär, W
1997-05-01
In Switzerland paternity investigations are carried out using DNA analysis only since 1991. DNA patterns are inherited and only with the exception of genetically identical twins they are different in everyone and therefore unique to an individual. Hence DNA-systems are an excellent tool to resolve paternity disputes. DNA polymorphisms used for paternity diagnosis are length polymorphisms of the highly polymorphic VNTR loci [variable number of tandem repeats]. The most frequently applied systems are the DNA single locus systems. In addition to the DNA single locus systems the application of PCR (PCR = polymerase chain reaction) based DNA systems has increased particularly in difficult deficiency cases or in cases where only small evidential samples or partially degraded DNA are available. Normally four independent DNA single probes are used to produce a DNA profile from the mother, the child and the alleged father. A child inherits half the DNA patterns from its mother and the other half from its true biological father. If an alleged father doesn't possess the paternal specific DNA pattern in his DNA profile he is excluded from the paternity. In case of non-exclusion the probability for paternity is calculated according to Essen-Möller. When applying four highly polymorphic DNA single locus systems the biostatistical evaluation leads always to W-values exceeding 99.8% [= required value for positive proof of paternity]. DNA analysis is currently the best available method to achieve such effective conclusions in paternity investigations.
Qualitative and quantitative assessment of single fingerprints in forensic DNA analysis.
Ostojic, Lana; Klempner, Stacey A; Patel, Rosni A; Mitchell, Adele A; Axler-DiPerte, Grace L; Wurmbach, Elisa
2014-11-01
Fingerprints and touched items are important sources of DNA for STR profiling, since this evidence can be recovered in a wide variety of criminal offenses. However, there are some fundamental difficulties in working with these samples, including variability in quantity and quality of extracted DNA. In this study, we collected and analyzed over 700 fingerprints. We compared a commercially available extraction protocol (Zygem) to two methods developed in our laboratory, a simple one-tube protocol and a high sensitivity protocol (HighSens) that includes additional steps to concentrate and purify the DNA. The amplification protocols tested were AmpFLSTR® Identifiler® using either 28 or 31 amplification cycles, and Identifiler® Plus using 32 amplification cycles. We found that the HighSens and Zygem extraction methods were significantly better in their DNA yields than the one-tube method. Identifiler® Plus increased the quality of the STR profiles for the one-tube extraction significantly. However, this effect could not be verified for the other extraction methods. Furthermore, microscopic analysis of single fingerprints revealed that some individuals tended to shed more material than others onto glass slides. However, a dense deposition of skin flakes did not strongly correlate with a high quality STR profile. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A Stepanov, V.; Balanovsky, O.P.; Melnikov, A.V.; Lash-Zavada, A.Yu.; Khar’kov, V.N.; Tyazhelova, T.V.; Akhmetova, V.L.; Zhukova, O.V.; Shneider, Yu.V.; Shil’nikova, I.N.; Borinskaya, S.A.; Marusin, A.V.; Spiridonova, M.G.; Simonova, K.V.; Khitrinskaya, I.Yu.; Radzhabov, M.O.; Romanov, A.G.; Shtygasheva, O.V.; Koshel’, S.M.; Balanovskaya, E.V.; Rybakova, A.V.; Khusnutdinova, E.K.; Puzyrev, V.P.; Yankovsky, N.K.
2011-01-01
Seventeen population groups within the Russian Federation were characterized for the first time using a panel of 15 genetic markers that are used for DNA identification and in forensic medical examinations. The degree of polymorphism and population diversity of microsatellite loci within the Power Plex system (Promega) in Russian populations; the distribution of alleles and genotypes within the populations of six cities and 11 ethnic groups of the Russian Federation; the levels of intra- and interpopulation genetic differentiation of population; genetic relations between populations; and the identification and forensic medical characteristics of the system of markers under study were determined. Significant differences were revealed between the Russian populations and the U.S. reference base that was used recently in the forensic medical examination of the RF. A database of the allelic frequencies of 15 microsatellite loci that are used for DNA identification and forensic medical examination was created; the database has the potential of becoming the reference for performing forensic medical examinations in Russia. The spatial organization of genetic diversity over the panel of the STR markers that are used for DNA identification was revealed. It represents the general regularities of geographical clusterization of human populations over various types of genetic markers. The necessity to take into account a population’s genetic structure during forensic medical examinations and DNA identification of criminal suspects was substantiated. PMID:22649684
Catelli, María Laura; Alvarez-Iglesias, Vanesa; Gómez-Carballa, Alberto; Mosquera-Miguel, Ana; Romanini, Carola; Borosky, Alicia; Amigo, Jorge; Carracedo, Angel; Vullo, Carlos; Salas, Antonio
2011-08-30
The genetic background of Argentineans is a mosaic of different continental ancestries. From colonial to present times, the genetic contribution of Europeans and sub-Saharan Africans has superposed to or replaced the indigenous genetic 'stratum'. A sample of 384 individuals representing different Argentinean provinces was collected and genotyped for the first and the second mitochondrial DNA (mtDNA) hypervariable regions, and selectively genotyped for mtDNA SNPs. This data was analyzed together with additional 440 profiles from rural and urban populations plus 304 from Native American Argentineans, all available from the literature. A worldwide database was used for phylogeographic inferences, inter-population comparisons, and admixture analysis. Samples identified as belonging to hg (hg) H2a5 were sequenced for the entire mtDNA genome. Phylogenetic and admixture analyses indicate that only half of the Native American component in urban Argentineans might be attributed to the legacy of extinct ancestral Argentineans and that the Spanish genetic contribution is slightly higher than the Italian one. Entire H2a5 genomes linked these Argentinean mtDNAs to the Basque Country and improved the phylogeny of this Basque autochthonous clade. The fingerprint of African slaves in urban Argentinean mtDNAs was low and it can be phylogeographically attributed predominantly to western African. The European component is significantly more prevalent in the Buenos Aires province, the main gate of entrance for Atlantic immigration to Argentina, while the Native American component is larger in North and South Argentina. AMOVA, Principal Component Analysis and hgs/haplotype patterns in Argentina revealed an important level of genetic sub-structure in the country. Studies aimed to compare mtDNA frequency profiles from different Argentinean geographical regions (e.g., forensic and case-control studies) should take into account the important genetic heterogeneity of the country in order to prevent false positive claims of association in disease studies or inadequate evaluation of forensic evidence.
2011-01-01
Background The genetic background of Argentineans is a mosaic of different continental ancestries. From colonial to present times, the genetic contribution of Europeans and sub-Saharan Africans has superposed to or replaced the indigenous genetic 'stratum'. A sample of 384 individuals representing different Argentinean provinces was collected and genotyped for the first and the second mitochondrial DNA (mtDNA) hypervariable regions, and selectively genotyped for mtDNA SNPs. This data was analyzed together with additional 440 profiles from rural and urban populations plus 304 from Native American Argentineans, all available from the literature. A worldwide database was used for phylogeographic inferences, inter-population comparisons, and admixture analysis. Samples identified as belonging to hg (hg) H2a5 were sequenced for the entire mtDNA genome. Results Phylogenetic and admixture analyses indicate that only half of the Native American component in urban Argentineans might be attributed to the legacy of extinct ancestral Argentineans and that the Spanish genetic contribution is slightly higher than the Italian one. Entire H2a5 genomes linked these Argentinean mtDNAs to the Basque Country and improved the phylogeny of this Basque autochthonous clade. The fingerprint of African slaves in urban Argentinean mtDNAs was low and it can be phylogeographically attributed predominantly to western African. The European component is significantly more prevalent in the Buenos Aires province, the main gate of entrance for Atlantic immigration to Argentina, while the Native American component is larger in North and South Argentina. AMOVA, Principal Component Analysis and hgs/haplotype patterns in Argentina revealed an important level of genetic sub-structure in the country. Conclusions Studies aimed to compare mtDNA frequency profiles from different Argentinean geographical regions (e.g., forensic and case-control studies) should take into account the important genetic heterogeneity of the country in order to prevent false positive claims of association in disease studies or inadequate evaluation of forensic evidence. PMID:21878127
The current status of microscopical hair comparisons.
Rowe, W F
2001-12-08
Although the microscopical comparison of human hairs has been accepted in courts of law for over a century, recent advances in DNA technology have called this type of forensic examination into question. In a number of cases, post-conviction DNA testing has exonerated defendants who were convicted in part on the results of microscopical hair comparisons. A federal judge has held a Daubert hearing on the microscopical comparison of human hairs and has concluded that this type of examination does not meet the criteria for admission of scientific evidence in federal courts. A review of the available scientific literature on microscopical hair comparisons (including studies conducted by the Royal Canadian Mounted Police and the Federal Bureau of Investigation) leads to three conclusions: (1) microscopical comparisons of human hairs can yield scientifically defensible conclusions that can contribute to criminal investigations and criminal prosecutions, (2) the reliability of microscopical hair comparisons is strongly affected by the training of the forensic hair examiner, (3) forensic hair examiners cannot offer estimates of the probability of a match of a questioned hair with a hair from a randomly selected person. In order for microscopical hair examinations to survive challenges under the U.S. Supreme Court's Daubert decision, hair microscopists must be better trained and undergo frequent proficiency testing. More research on the error rates of microscopical hair comparisons should be undertaken, and guidelines for the permissible interpretations of such comparisons should be established. Until these issues have been addressed and satisfactorily resolved, microscopical hair comparisons should be regarded by law enforcement agencies and courts of law as merely presumptive in nature, and all microscopical hair comparisons should be confirmed by nuclear DNA profiling or mitochondrial DNA sequencing.
Witt, Sebastian; Neumann, Jan; Zierdt, Holger; Gébel, Gabriella; Röscheisen, Christiane
2012-09-01
Automated systems have been increasingly utilized for DNA extraction by many forensic laboratories to handle growing numbers of forensic casework samples while minimizing the risk of human errors and assuring high reproducibility. The step towards automation however is not easy: The automated extraction method has to be very versatile to reliably prepare high yields of pure genomic DNA from a broad variety of sample types on different carrier materials. To prevent possible cross-contamination of samples or the loss of DNA, the components of the kit have to be designed in a way that allows for the automated handling of the samples with no manual intervention necessary. DNA extraction using paramagnetic particles coated with a DNA-binding surface is predestined for an automated approach. For this study, we tested different DNA extraction kits using DNA-binding paramagnetic particles with regard to DNA yield and handling by a Freedom EVO(®)150 extraction robot (Tecan) equipped with a Te-MagS magnetic separator. Among others, the extraction kits tested were the ChargeSwitch(®)Forensic DNA Purification Kit (Invitrogen), the PrepFiler™Automated Forensic DNA Extraction Kit (Applied Biosystems) and NucleoMag™96 Trace (Macherey-Nagel). After an extensive test phase, we established a novel magnetic bead extraction method based upon the NucleoMag™ extraction kit (Macherey-Nagel). The new method is readily automatable and produces high yields of DNA from different sample types (blood, saliva, sperm, contact stains) on various substrates (filter paper, swabs, cigarette butts) with no evidence of a loss of magnetic beads or sample cross-contamination. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
The nucleic acid revolution continues – will forensic biology become forensic molecular biology?
Gunn, Peter; Walsh, Simon; Roux, Claude
2014-01-01
Molecular biology has evolved far beyond that which could have been predicted at the time DNA identity testing was established. Indeed we should now perhaps be referring to “forensic molecular biology.” Aside from DNA’s established role in identifying the “who” in crime investigations, other developments in medical and developmental molecular biology are now ripe for application to forensic challenges. The impact of DNA methylation and other post-fertilization DNA modifications, plus the emerging role of small RNAs in the control of gene expression, is re-writing our understanding of human biology. It is apparent that these emerging technologies will expand forensic molecular biology to allow for inferences about “when” a crime took place and “what” took place. However, just as the introduction of DNA identity testing engendered many challenges, so the expansion of molecular biology into these domains will raise again the issues of scientific validity, interpretation, probative value, and infringement of personal liberties. This Commentary ponders some of these emerging issues, and presents some ideas on how they will affect the conduct of forensic molecular biology in the foreseeable future. PMID:24634675
Nondestructive Biological Evidence Collection with Alternative Swabs and Adhesive Lifters.
Plaza, Dane T; Mealy, Jamia L; Lane, J Nicholas; Parsons, M Neal; Bathrick, Abigail S; Slack, Donia P
2016-03-01
In forensic science, biological material is typically collected from evidence via wet/dry double swabbing with cotton swabs, which is effective but can visibly damage an item's surface. When an item's appearance must be maintained, dry swabbing and tape-lifting may be employed as collection techniques that are visually nondestructive to substrates' surfaces. This study examined the efficacy of alternative swab matrices and adhesive lifters when collecting blood and fingerprints from glass, painted drywall, 100% cotton, and copy paper. Data were evaluated by determining the percent profile and quality score for each STR profile generated. Hydraflock(®) swabs, BVDA Gellifters(®) , and Scenesafe FAST™ tape performed as well as or better than cotton swabs when collecting fingerprints from painted drywall and 100% cotton. Collection success was also dependent on the type of biological material sampled and the substrate on which it was deposited. These results demonstrated that alternative swabs and adhesive lifters can be effective for nondestructive DNA collection from various substrates. © 2015 American Academy of Forensic Sciences.
Mitochondrial sequence analysis for forensic identification using pyrosequencing technology.
Andréasson, H; Asp, A; Alderborn, A; Gyllensten, U; Allen, M
2002-01-01
Over recent years, requests for mtDNA analysis in the field of forensic medicine have notably increased, and the results of such analyses have proved to be very useful in forensic cases where nuclear DNA analysis cannot be performed. Traditionally, mtDNA has been analyzed by DNA sequencing of the two hypervariable regions, HVI and HVII, in the D-loop. DNA sequence analysis using the conventional Sanger sequencing is very robust but time consuming and labor intensive. By contrast, mtDNA analysis based on the pyrosequencing technology provides fast and accurate results from the human mtDNA present in many types of evidence materials in forensic casework. The assay has been developed to determine polymorphic sites in the mitochondrial D-loop as well as the coding region to further increase the discrimination power of mtDNA analysis. The pyrosequencing technology for analysis of mtDNA polymorphisms has been tested with regard to sensitivity, reproducibility, and success rate when applied to control samples and actual casework materials. The results show that the method is very accurate and sensitive; the results are easily interpreted and provide a high success rate on casework samples. The panel of pyrosequencing reactions for the mtDNA polymorphisms were chosen to result in an optimal discrimination power in relation to the number of bases determined.
Advances in DNA metabarcoding for food and wildlife forensic species identification.
Staats, Martijn; Arulandhu, Alfred J; Gravendeel, Barbara; Holst-Jensen, Arne; Scholtens, Ingrid; Peelen, Tamara; Prins, Theo W; Kok, Esther
2016-07-01
Species identification using DNA barcodes has been widely adopted by forensic scientists as an effective molecular tool for tracking adulterations in food and for analysing samples from alleged wildlife crime incidents. DNA barcoding is an approach that involves sequencing of short DNA sequences from standardized regions and comparison to a reference database as a molecular diagnostic tool in species identification. In recent years, remarkable progress has been made towards developing DNA metabarcoding strategies, which involves next-generation sequencing of DNA barcodes for the simultaneous detection of multiple species in complex samples. Metabarcoding strategies can be used in processed materials containing highly degraded DNA e.g. for the identification of endangered and hazardous species in traditional medicine. This review aims to provide insight into advances of plant and animal DNA barcoding and highlights current practices and recent developments for DNA metabarcoding of food and wildlife forensic samples from a practical point of view. Special emphasis is placed on new developments for identifying species listed in the Convention on International Trade of Endangered Species (CITES) appendices for which reliable methods for species identification may signal and/or prevent illegal trade. Current technological developments and challenges of DNA metabarcoding for forensic scientists will be assessed in the light of stakeholders' needs.
Public Perceptions and Expectations of the Forensic Use of DNA: Results of a Preliminary Study
ERIC Educational Resources Information Center
Curtis, Cate
2009-01-01
The forensic use of Deoxyribonucleic Acid (DNA) is demonstrating significant success as a crime-solving tool. However, numerous concerns have been raised regarding the potential for DNA use to contravene cultural, ethical, and legal codes. In this article the expectations and level of knowledge of the New Zealand public of the DNA data-bank and…
Microfluidic Devices for Forensic DNA Analysis: A Review
Bruijns, Brigitte; van Asten, Arian; Tiggelaar, Roald; Gardeniers, Han
2016-01-01
Microfluidic devices may offer various advantages for forensic DNA analysis, such as reduced risk of contamination, shorter analysis time and direct application at the crime scene. Microfluidic chip technology has already proven to be functional and effective within medical applications, such as for point-of-care use. In the forensic field, one may expect microfluidic technology to become particularly relevant for the analysis of biological traces containing human DNA. This would require a number of consecutive steps, including sample work up, DNA amplification and detection, as well as secure storage of the sample. This article provides an extensive overview of microfluidic devices for cell lysis, DNA extraction and purification, DNA amplification and detection and analysis techniques for DNA. Topics to be discussed are polymerase chain reaction (PCR) on-chip, digital PCR (dPCR), isothermal amplification on-chip, chip materials, integrated devices and commercially available techniques. A critical overview of the opportunities and challenges of the use of chips is discussed, and developments made in forensic DNA analysis over the past 10–20 years with microfluidic systems are described. Areas in which further research is needed are indicated in a future outlook. PMID:27527231
MtDNA SNP multiplexes for efficient inference of matrilineal genetic ancestry within Oceania.
Ballantyne, Kaye N; van Oven, Mannis; Ralf, Arwin; Stoneking, Mark; Mitchell, R John; van Oorschot, Roland A H; Kayser, Manfred
2012-07-01
Human mitochondrial DNA (mtDNA) is a convenient marker for tracing matrilineal bio-geographic ancestry and is widely applied in forensic, genealogical and anthropological studies. In forensic applications, DNA-based ancestry inference can be useful for finding unknown suspects by concentrating police investigations in cases where autosomal STR profiling was unable to provide a match, or can help provide clues in missing person identification. Although multiplexed mtDNA single nucleotide polymorphism (SNP) assays to infer matrilineal ancestry at a (near) continental level are already available, such tools are lacking for the Oceania region. Here, we have developed a hierarchical system of three SNaPshot multiplexes for genotyping 26 SNPs defining all major mtDNA haplogroups for Oceania (including Australia, Near Oceania and Remote Oceania). With this system, it was possible to conclusively assign 74% of Oceanian individuals to their Oceanian matrilineal ancestry in an established literature database (after correcting for obvious external admixture). Furthermore, in a set of 161 genotyped individuals collected in Australia, Papua New Guinea and Fiji, 87.6% were conclusively assigned an Oceanian matrilineal origin. For the remaining 12.4% of the genotyped samples either a Eurasian origin was detected indicating likely European admixture (1.9%), the identified haplogroups are shared between Oceania and S/SE-Asia (5%), or the SNPs applied did not allow a geographic inference to be assigned (5.6%). Sub-regional assignment within Oceania was possible for 32.9% of the individuals genotyped: 49.5% of Australians were assigned an Australian origin and 13.7% of the Papua New Guineans were assigned a Near Oceanian origin, although none of the Fijians could be assigned a specific Remote Oceanian origin. The low assignment rates of Near and Remote Oceania are explained by recent migrations from Asia via Near Oceania into Remote Oceania. Combining the mtDNA multiplexes for Oceania introduced here with those we developed earlier for all other continental regions, global matrilineal bio-geographic ancestry assignment from DNA is now achievable in a highly efficient way that is also suitable for applications with limited material such as forensic case work. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
ERIC Educational Resources Information Center
Stupperich, Alexandra; Ihm, Helga; Strack, Micha
2009-01-01
Concerning the discussion about the connection of personality traits, personality disorders, and mental illness, this study focused on the personality profiles of male forensic patients, prison inmates, and young men without criminal reports. The main topic centered on group-specific personality profiles and identifying personality facets…
Prevalence and persistence of male DNA identified in mixed saliva samples after intense kissing.
Kamodyová, Natália; Durdiaková, Jaroslava; Celec, Peter; Sedláčková, Tatiana; Repiská, Gabriela; Sviežená, Barbara; Minárik, Gabriel
2013-01-01
Identification of foreign biological material by genetic profiling is widely used in forensic DNA testing in different cases of sexual violence, sexual abuse or sexual harassment. In all these kinds of sexual assaults, the perpetrator could constrain the victim to kissing. The value of the victim's saliva taken after such an assault has not been investigated in the past with currently widely used molecular methods of extremely high sensitivity (e.g. qPCR) and specificity (e.g. multiplex Y-STR PCR). In our study, 12 voluntary pairs were tested at various intervals after intense kissing and saliva samples were taken from the women to assess the presence of male DNA. Sensitivity-focused assays based on the SRY (single-copy gene) and DYS (multi-copy gene) sequence motifs confirmed the presence of male DNA in female saliva after 10 and even 60min after kissing, respectively. For specificity, standard multiplex Y-STR PCR profiling was performed and male DNA was found in female saliva samples, as the entire Y-STR profile, even after 30min in one sample. Our study confirms that foreign DNA tends to persist for a restricted period of time in the victim's mouth, can be isolated from saliva after prompt collection and can be used as a valuable source of evidence. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Whole genome amplification and real-time PCR in forensic casework
Giardina, Emiliano; Pietrangeli, Ilenia; Martone, Claudia; Zampatti, Stefania; Marsala, Patrizio; Gabriele, Luciano; Ricci, Omero; Solla, Gianluca; Asili, Paola; Arcudi, Giovanni; Spinella, Aldo; Novelli, Giuseppe
2009-01-01
Background WGA (Whole Genome Amplification) in forensic genetics can eliminate the technical limitations arising from low amounts of genomic DNA (gDNA). However, it has not been used to date because any amplification bias generated may complicate the interpretation of results. Our aim in this paper was to assess the applicability of MDA to forensic SNP genotyping by performing a comparative analysis of genomic and amplified DNA samples. A 26-SNPs TaqMan panel specifically designed for low copy number (LCN) and/or severely degraded genomic DNA was typed on 100 genomic as well as amplified DNA samples. Results Aliquots containing 1, 0.1 and 0.01 ng each of 100 DNA samples were typed for a 26-SNPs panel. Similar aliquots of the same DNA samples underwent multiple displacement amplification (MDA) before being typed for the same panel. Genomic DNA samples showed 0% PCR failure rate for all three dilutions, whilst the PCR failure rate of the amplified DNA samples was 0% for the 1 ng and 0.1 ng dilutions and 0.077% for the 0.01 ng dilution. The genotyping results of both the amplified and genomic DNA samples were also compared with reference genotypes of the same samples obtained by direct sequencing. The genomic DNA samples showed genotype concordance rates of 100% for all three dilutions while the concordance rates of the amplified DNA samples were 100% for the 1 ng and 0.1 ng dilutions and 99.923% for the 0.01 ng dilution. Moreover, ten artificially-degraded DNA samples, which gave no results when analyzed by current forensic methods, were also amplified by MDA and genotyped with 100% concordance. Conclusion We investigated the suitability of MDA material for forensic SNP typing. Comparative analysis of amplified and genomic DNA samples showed that a large number of SNPs could be accurately typed starting from just 0.01 ng of template. We found that the MDA genotyping call and accuracy rates were only slightly lower than those for genomic DNA. Indeed, when 10 pg of input DNA was used in MDA, we obtained 99.923% concordance, indicating a genotyping error rate of 1/1299 (7.7 × 10-4). This is quite similar to the genotyping error rate of STRs used in current forensic analysis. Such efficiency and accuracy of SNP typing of amplified DNA suggest that MDA can also generate large amounts of genome-equivalent DNA from a minimal amount of input DNA. These results show for the first time that MDA material is suitable for SNP-based forensic protocols and in general when samples fail to give interpretable STR results. PMID:19366436
Characterizing the genetic structure of a forensic DNA database using a latent variable approach.
Kruijver, Maarten
2016-07-01
Several problems in forensic genetics require a representative model of a forensic DNA database. Obtaining an accurate representation of the offender database can be difficult, since databases typically contain groups of persons with unregistered ethnic origins in unknown proportions. We propose to estimate the allele frequencies of the subpopulations comprising the offender database and their proportions from the database itself using a latent variable approach. We present a model for which parameters can be estimated using the expectation maximization (EM) algorithm. This approach does not rely on relatively small and possibly unrepresentative population surveys, but is driven by the actual genetic composition of the database only. We fit the model to a snapshot of the Dutch offender database (2014), which contains close to 180,000 profiles, and find that three subpopulations suffice to describe a large fraction of the heterogeneity in the database. We demonstrate the utility and reliability of the approach with three applications. First, we use the model to predict the number of false leads obtained in database searches. We assess how well the model predicts the number of false leads obtained in mock searches in the Dutch offender database, both for the case of familial searching for first degree relatives of a donor and searching for contributors to three-person mixtures. Second, we study the degree of partial matching between all pairs of profiles in the Dutch database and compare this to what is predicted using the latent variable approach. Third, we use the model to provide evidence to support that the Dutch practice of estimating match probabilities using the Balding-Nichols formula with a native Dutch reference database and θ=0.03 is conservative. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
A novel cell culture model as a tool for forensic biology experiments and validations.
Feine, Ilan; Shpitzen, Moshe; Roth, Jonathan; Gafny, Ron
2016-09-01
To improve and advance DNA forensic casework investigation outcomes, extensive field and laboratory experiments are carried out in a broad range of relevant branches, such as touch and trace DNA, secondary DNA transfer and contamination confinement. Moreover, the development of new forensic tools, for example new sampling appliances, by commercial companies requires ongoing validation and assessment by forensic scientists. A frequent challenge in these kinds of experiments and validations is the lack of a stable, reproducible and flexible biological reference material. As a possible solution, we present here a cell culture model based on skin-derived human dermal fibroblasts. Cultured cells were harvested, quantified and dried on glass slides. These slides were used in adhesive tape-lifting experiments and tests of DNA crossover confinement by UV irradiation. The use of this model enabled a simple and concise comparison between four adhesive tapes, as well as a straightforward demonstration of the effect of UV irradiation intensities on DNA quantity and degradation. In conclusion, we believe this model has great potential to serve as an efficient research tool in forensic biology. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Tobe, Shanan S; Bailey, Stuart; Govan, James; Welch, Lindsey A
2013-03-01
Although poaching is a common wildlife crime, the high and prohibitive cost of specialised animal testing means that many cases are left un-investigated. We previously described a novel approach to wildlife crime investigation that looked at the identification of human DNA on poached animal remains (Tobe, Govan and Welch, 2011). Human DNA was successfully isolated and amplified from simulated poaching incidents, however a low template protocol was required which made this method unsuitable for use in many laboratories. We now report on an optimised recovery and amplification protocol which removes the need for low template analysis. Samples from 10 deer (40 samples total - one from each leg) analysed in the original study were re-analysed in the current study with an additional 11 deer samples. Four samples analysed using Chelex did not show any results and a new method was devised whereby the available DNA was concentrated. By combining the DNA extracts from all tapings of the same deer remains followed by concentration, the recovered quantity of human DNA was found to be 29.5pg±43.2pg, 31× greater than the previous study. The use of the Investigator Decaplex SE (QIAGEN) STR kit provided better results in the form of more complete profiles than did the AmpFℓSTR® SGM Plus® kit at 30cycles (Applied Biosystems). Re-analysis of the samples from the initial study using the new, optimised protocol resulted in an average increase of 18% of recovered alleles. Over 17 samples, 71% of the samples analysed using the optimised protocol showed sufficient amplification for comparison to a reference profile and gave match probabilities ranging from 7.7690×10(-05) to 2.2706×10(-14). The removal of low template analysis means this optimised method provides evidence of high probative value and is suitable for immediate use in forensic laboratories. All methods and techniques used are standard and are compatible with current SOPs. As no high cost non-human DNA analysis is required the overall process is no more expensive than the investigation of other volume crime samples. The technique is suitable for immediate use in poaching incidents. Copyright © 2012 Forensic Science Society. Published by Elsevier Ireland Ltd. All rights reserved.
Zhang, Suhua; Sun, Kuan; Bian, Yingnan; Zhao, Qi; Wang, Zheng; Ji, Chaoneng; Li, Chengtao
2015-12-14
InDels are short-length polymorphisms characterized by low mutation rates, high inter-population diversity, short amplicon strategy and simplicity of laboratory analysis. This work describes the developmental validation of an X-InDels panel amplifying 18 bi-allelic markers and Amelogenin in one single PCR system. Developmental validation indicated that this novel panel was reproducible, accurate, sensitive and robust for forensic application. Sensitivity testing of the panel was such that a full profile was obtainable even with 125 pg of human DNA with intra-locus balance above 70%. Specificity testing was demonstrated by the lack of cross-reactivity with a variety of commonly encountered animal species and microorganisms. For the stability testing in cases of PCR inhibition, full profiles have been obtained with hematin (≤1000 μM) and humic acid (≤150 ng/μL). For the forensic investigation of the 18 X-InDels in the HAN population of China, no locus deviated from the Hardy-Weinberg equilibrium and linkage disequilibrium. Since they are independent from each other, the CDPfemale was 0.999999726 and CDPmale was 0.999934223. The forensic parameters suggested that this X-Indel panel is polymorphic and informative, which provides valuable X-linked information for deficient relationship cases where autosomal markers are uninformative.
Zhang, Suhua; Sun, Kuan; Bian, Yingnan; Zhao, Qi; Wang, Zheng; Ji, Chaoneng; Li, Chengtao
2015-01-01
InDels are short-length polymorphisms characterized by low mutation rates, high inter-population diversity, short amplicon strategy and simplicity of laboratory analysis. This work describes the developmental validation of an X-InDels panel amplifying 18 bi-allelic markers and Amelogenin in one single PCR system. Developmental validation indicated that this novel panel was reproducible, accurate, sensitive and robust for forensic application. Sensitivity testing of the panel was such that a full profile was obtainable even with 125 pg of human DNA with intra-locus balance above 70%. Specificity testing was demonstrated by the lack of cross-reactivity with a variety of commonly encountered animal species and microorganisms. For the stability testing in cases of PCR inhibition, full profiles have been obtained with hematin (≤1000 μM) and humic acid (≤150 ng/μL). For the forensic investigation of the 18 X-InDels in the HAN population of China, no locus deviated from the Hardy–Weinberg equilibrium and linkage disequilibrium. Since they are independent from each other, the CDPfemale was 0.999999726 and CDPmale was 0.999934223. The forensic parameters suggested that this X-Indel panel is polymorphic and informative, which provides valuable X-linked information for deficient relationship cases where autosomal markers are uninformative. PMID:26655948
A call for more science in forensic science.
Bell, Suzanne; Sah, Sunita; Albright, Thomas D; Gates, S James; Denton, M Bonner; Casadevall, Arturo
2018-05-01
Forensic science is critical to the administration of justice. The discipline of forensic science is remarkably complex and includes methodologies ranging from DNA analysis to chemical composition to pattern recognition. Many forensic practices developed under the auspices of law enforcement and were vetted primarily by the legal system rather than being subjected to scientific scrutiny and empirical testing. Beginning in the 1990s, exonerations based on DNA-related methods revealed problems with some forensic disciplines, leading to calls for major reforms. This process generated a National Academy of Science report in 2009 that was highly critical of many forensic practices and eventually led to the establishment of the National Commission for Forensic Science (NCFS) in 2013. The NCFS was a deliberative body that catalyzed communication between nonforensic scientists, forensic scientists, and other stakeholders in the legal community. In 2017, despite continuing problems with forensic science, the Department of Justice terminated the NCFS. Just when forensic science needs the most support, it is getting the least. We urge the larger scientific community to come to the aid of our forensic colleagues by advocating for urgently needed research, testing, and financial support.
Sonet, Gontran; Jordaens, Kurt; Braet, Yves; Bourguignon, Luc; Dupont, Eréna; Backeljau, Thierry; De Meyer, Marc; Desmyter, Stijn
2013-01-01
Abstract Fly larvae living on dead corpses can be used to estimate post-mortem intervals. The identification of these flies is decisive in forensic casework and can be facilitated by using DNA barcodes provided that a representative and comprehensive reference library of DNA barcodes is available. We constructed a local (Belgium and France) reference library of 85 sequences of the COI DNA barcode fragment (mitochondrial cytochrome c oxidase subunit I gene), from 16 fly species of forensic interest (Calliphoridae, Muscidae, Fanniidae). This library was then used to evaluate the ability of two public libraries (GenBank and the Barcode of Life Data Systems – BOLD) to identify specimens from Belgian and French forensic cases. The public libraries indeed allow a correct identification of most specimens. Yet, some of the identifications remain ambiguous and some forensically important fly species are not, or insufficiently, represented in the reference libraries. Several search options offered by GenBank and BOLD can be used to further improve the identifications obtained from both libraries using DNA barcodes. PMID:24453564
Genetics and Forensics: Making the National DNA Database
Johnson, Paul; Williams, Robin; Martin, Paul
2005-01-01
This paper is based on a current study of the growing police use of the epistemic authority of molecular biology for the identification of criminal suspects in support of crime investigation. It discusses the development of DNA profiling and the establishment and development of the UK National DNA Database (NDNAD) as an instance of the ‘scientification of police work’ (Ericson and Shearing 1986) in which the police uses of science and technology have a recursive effect on their future development. The NDNAD, owned by the Association of Chief Police Officers of England and Wales, is the first of its kind in the world and currently contains the genetic profiles of more than 2 million people. The paper provides a framework for the examination of this socio-technical innovation, begins to tease out the dense and compact history of the database and accounts for the way in which changes and developments across disparate scientific, governmental and policing contexts, have all contributed to the range of uses to which it is put. PMID:16467921
Kulstein, Galina; Hadrys, Thorsten; Wiegand, Peter
2018-01-01
Short tandem repeat (STR) typing from skeletal remains can be a difficult task. Dependent on the environmental conditions of the provenance of the bones, DNA can be degraded and STR typing inhibited. Generally, dense and compact bones are known to preserve DNA better. Several studies already proved that femora and teeth have high DNA typing success rates. Unfortunately, these elements are not present in all cases involving skeletal remains. Processing partial or singular skeletal elements, it is favorable to select bone areas where DNA preservation is comparably higher. Especially, cranial bones are often accidentally discovered during criminal investigations. The cranial bone is composed of multiple parts. In this examination, we evaluated the potential of the petrous bone for human identification of skeletal remains in forensic case work. Material from different sections of eight unknown cranial bones and-where available-additionally other skeletal elements, collected at the DNA department of the Institute of Legal Medicine in Ulm, Germany, from 2010 to 2017, were processed with an optimized DNA extraction and STR typing strategy. The results highlight that STR typing from the petrous bones leads to reportable profiles in all individuals, even in cases where the analysis of the parietal bone failed. Moreover, the comparison of capillary electrophorese (CE) typing to massively parallel sequencing (MPS) analysis shows that MPS has the potential to analyze degraded human remains and is even capable to provide additional information about phenotype and ancestry of unknown individuals.
DNA methylation-based age prediction from various tissues and body fluids
Jung, Sang-Eun; Shin, Kyoung-Jin; Lee, Hwan Young
2017-01-01
Aging is a natural and gradual process in human life. It is influenced by heredity, environment, lifestyle, and disease. DNA methylation varies with age, and the ability to predict the age of donor using DNA from evidence materials at a crime scene is of considerable value in forensic investigations. Recently, many studies have reported age prediction models based on DNA methylation from various tissues and body fluids. Those models seem to be very promising because of their high prediction accuracies. In this review, the changes of age-associated DNA methylation and the age prediction models for various tissues and body fluids were examined, and then the applicability of the DNA methylation-based age prediction method to the forensic investigations was discussed. This will improve the understandings about DNA methylation markers and their potential to be used as biomarkers in the forensic field, as well as the clinical field. PMID:28946940
Typeability of DNA in Touch Traces Deposited on Paper and Optical Data Discs.
Sołtyszewski, Ireneusz; Szeremeta, Michał; Skawrońska, Małgorzata; Niemcunowicz-Janica, Anna; Pepiński, Witold
2015-01-01
Nucleated epithelial cells that are transferred by casual touching and handling of objects are the primary source of biological evidence that is found in high-volume crimes. Cellular material associated with touch traces usually contains low levels of DNA template making it challenging to acquire an informative profile. The main purpose of this study was to examine the efficacy of DNA typing in fingerprints deposited on optical data discs and the office paper. Latent fingerprints were made by 60 subjects of both sexes (30 males and 30 females). A highly effective DNA extraction method with QIAamp DNA Mini Kit (Qiagen) and an increased sensitivity PCR by AmpFlSTR® NGM™ Amplification Kit (Applied Biosystems) carried out at standard 30 cycles and at increased 34 cycles were used. The mean value of total DNA recovery was 0.4 ng from CDs/DVDs and 0.3 ng from the office paper. Amplification of Low Template DNA (LT-DNA) resulted in improved analytical success by increasing the number of PCR cycles from standard 30 to 34. On the other hand, the increased PCR cycles resulted in allele drop-ins showing additional peaks, the majority of which were outside the stutter positions. Rigorous procedures and interpretation guidelines are required during LT-DNA for producing reliable and reproducible DNA profiles for forensic purposes.
Identification of Missing Norwegian World War II Soldiers, in Karelia Russia.
Morild, Inge; Hamre, Stian S; Huel, Rene; Parsons, Thomas J
2015-07-01
This article presents the multidisciplinary effort in trying to identify the skeletal remains of 100 Norwegian soldiers serving in the German army, killed in Karelia Russia in 1944, from the recovery of the remains through the final identification using DNA. Of the 150 bone samples sent for DNA testing, 93 DNA profiles were obtained relating to 57 unique individuals. The relatives could not be directly contacted as the soldiers were considered as traitors to Norway; therefore, only 45 reference samples, relating to 42 cases of the missing, were donated. DNA matches for 14 soldiers and 12 additional body part re-associations for these individuals were found. Another 24 bone samples were re-associated with 16 individuals, but no familial match was found. More than six decades after the end of WWII, DNA analysis can significantly contribute to the identification of the remains. © 2015 American Academy of Forensic Sciences.
The effect of mark enhancement techniques on the subsequent detection of saliva.
McAllister, Patricia; Graham, Eleanor; Deacon, Paul; Farrugia, Kevin J
2016-09-01
There appears to be a limited but growing body of research on the sequential analysis/treatment of multiple types of evidence. The development of an integrated forensic approach is necessary to maximise evidence recovery and to ensure that a particular treatment is not detrimental to other types of evidence. This study aims to assess the effect of latent and blood mark enhancement techniques (e.g. fluorescence, ninhydrin, acid violet 17, black iron-oxide powder suspension) on the subsequent detection of saliva. Saliva detection was performed by means of a presumptive test (Phadebas®) in addition to analysis by a rapid stain identification (RSID) kit test and confirmatory DNA testing. Additional variables included a saliva depletion series and a number of different substrates with varying porosities as well as different ageing periods. Examination and photography under white light and fluorescence was carried out prior to and after chemical enhancement. All enhancement techniques (except Bluestar® Forensic Magnum luminol) employed in this study resulted in an improved visualisation of the saliva stains, although the inherent fluorescence of saliva was sometimes blocked after chemical treatment. The use of protein stains was, in general, detrimental to the detection of saliva. Positive results were less pronounced after the use of black iron-oxide powder suspension, cyanoacrylate fuming followed by BY40 and ninhydrin when compared to the respective positive controls. The application of Bluestar® Forensic Magnum luminol and black magnetic powder proved to be the least detrimental, with no significant difference between the test results and the positive controls. The use of non-destructive fluorescence examination provided good visualisation; however, only the first few marks in the depletion were observed. Of the samples selected for DNA analysis only depletion 1 samples contained sufficient DNA quantity for further processing using standard methodology. The 28-day delay between sample deposition and collection resulted in a 5-fold reduction in the amount of useable DNA. When sufficient DNA quantities were recovered, enhancement techniques did not have a detrimental effect on the ability to generate DNA profiles. This study aims to contribute to a strategy for maximising evidence recovery and efficiency for the detection of latent marks and saliva. The results demonstrate that most of the enhancement techniques employed in this study were not detrimental to the subsequent detection of saliva by means of presumptive, confirmative and DNA tests. Copyright © 2016 The Chartered Society of Forensic Sciences. Published by Elsevier Ireland Ltd. All rights reserved.
Basic research in evolution and ecology enhances forensics.
Tomberlin, Jeffery K; Benbow, M Eric; Tarone, Aaron M; Mohr, Rachel M
2011-02-01
In 2009, the National Research Council recommended that the forensic sciences strengthen their grounding in basic empirical research to mitigate against criticism and improve accuracy and reliability. For DNA-based identification, this goal was achieved under the guidance of the population genetics community. This effort resulted in DNA analysis becoming the 'gold standard' of the forensic sciences. Elsewhere, we proposed a framework for streamlining research in decomposition ecology, which promotes quantitative approaches to collecting and applying data to forensic investigations involving decomposing human remains. To extend the ecological aspects of this approach, this review focuses on forensic entomology, although the framework can be extended to other areas of decomposition. Published by Elsevier Ltd.
Reduction of Powerplex(®) Y23 reaction volume for genotyping buccal cell samples on FTA(TM) cards.
Raziel, Aliza; Dell'Ariccia-Carmon, Aviva; Zamir, Ashira
2015-01-01
PowerPlex(®) Y23 is a novel kit for Y-STR typing that includes new highly discriminating loci. The Israel DNA Database laboratory has recently adopted it for routine Y-STR analysis. This study examined PCR amplification from 1.2-mm FTA punch in reduced volumes of 5 and 10 μL. Direct amplification and washing of the FTA punches were examined in different PCR cycle numbers. One short robotically performed wash was found to improve the quality and the percent of profiles obtained. The optimal PCR cycle number was determined for 5 and 10 μL reaction volumes. The percent of obtained profiles, color balance, and reproducibility were examined. High-quality profiles were achieved in 90% and 88% of the samples amplified in 5 and 10 μL, respectively, in the first attempt. Volume reduction to 5 μL has a vast economic impact especially for DNA database laboratories. © 2014 American Academy of Forensic Sciences.
Case report of a fatal bear attack documented by forensic wildlife genetics.
Frosch, Christiane; Dutsov, Aleksandar; Georgiev, Georgi; Nowak, Carsten
2011-08-01
Fatal bear attacks on humans are extremely rare across Europe. Here we report a fatal bear attack on a man in Bulgaria. We used microsatellite analysis for bear individualization based on hair samples found near the man's corpse. The genetic profile of the killing bear was compared to that of a bear shot three days later near the killing scene. Our results show that the wrong bear has been shot. Shortly after our results were reported a second person was attacked by a bear nearby. This case documents the importance of forensic DNA analysis following severe wildlife attacks in order to improve wildlife management actions in regions were direct human-bear conflicts are likely to happen. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Machado, Helena; Silva, Susana
2015-10-01
The ethical aspects of biobanks and forensic DNA databases are often treated as separate issues. As a reflection of this, public participation, or the involvement of citizens in genetic databases, has been approached differently in the fields of forensics and medicine. This paper aims to cross the boundaries between medicine and forensics by exploring the flows between the ethical issues presented in the two domains and the subsequent conceptualisation of public trust and legitimisation. We propose to introduce the concept of 'solidarity', traditionally applied only to medical and research biobanks, into a consideration of public engagement in medicine and forensics. Inclusion of a solidarity-based framework, in both medical biobanks and forensic DNA databases, raises new questions that should be included in the ethical debate, in relation to both health services/medical research and activities associated with the criminal justice system. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Santurtún, Ana; Riancho, José A; Arozamena, Jana; López-Duarte, Mónica; Zarrabeitia, María T
2017-01-01
Several methods have been developed to determinate genetic profiles from a mixed samples and chimerism analysis in transplanted patients. The aim of this study was to explore the effectiveness of using the droplet digital PCR (ddPCR) for mixed chimerism detection (a mixture of genetic profiles resulting after allogeneic hematopoietic stem cell transplantation (HSCT)). We analyzed 25 DNA samples from patients who had undergone HSCT and compared the performance of ddPCR and two established methods for chimerism detection, based upon the Indel and STRs analysis, respectively. Additionally, eight artificial mixture DNA samples were created to evaluate the sensibility of ddPCR. Our results show that the chimerism percentages estimated by the analysis of a single Indel using ddPCR were very similar to those calculated by the amplification of 15 STRs (r 2 = 0.970) and with the results obtained by the amplification of 38 Indels (r 2 = 0.975). Moreover, the amplification of a single Indel by ddPCR was sensitive enough to detect a minor DNA contributor comprising down to 0.5 % of the sample. We conclude that ddPCR can be a powerful tool for the determination of a genetic profile of forensic mixtures and clinical chimerism analysis when traditional techniques are not sensitive enough.
DNA transfer-a never ending story. A study on scenarios involving a second person as carrier.
Helmus, Janine; Bajanowski, Thomas; Poetsch, Micaela
2016-01-01
The transfer of DNA directly from one item to another has been shown in many studies with elaborate discussions on the nature of the DNA donor as well as material and surface of the items or surrounding features. Every DNA transfer scenario one can imagine seems to be possible. This evokes more and more intricate scenarios proposed by lawyers or attorneys searching for an explanation of the DNA of a certain person on a distinct item with impact on a crime. At court, the forensic genetic scientist has to comment on the probability of these scenarios thus calling for extensive studies on such settings. Here, the possibility of an involvement of a second person as a carrier of the donor's DNA in a variety of different scenarios including three pairs of people and two kinds of items (textiles and plastic bags) was investigated. All transfer settings were executed with and without gloves on the carrier's hands. DNA left on the items was isolated and analyzed using the Powerplex® ESX17 kit. In 21 out of 180 samples, all alleles of the donor DNA could be obtained on the second item (12%), on eight samples, the donor's DNA was dominant compared to all other alleles (38% of samples with complete donor profile). Additionally, 51 samples displayed at least more than half of the donor's alleles (28%). The complete DNA profile of the carrier was found in 47 out of 180 samples (42 partial profiles). In summary, it could be shown that a transfer of donor DNA from epithelial cells through a carrier to a second item is possible, even if the carrier does not wear gloves.
DNA profiles from clothing fibers using direct PCR.
Blackie, Renée; Taylor, Duncan; Linacre, Adrian
2016-09-01
We report on the successful use of direct PCR amplification of single fibers from items of worn clothing. Items of clothing were worn throughout the course of a day, with the individual commencing regular activities. Single fibers were taken from the cuff of the clothing at regular intervals and amplified directly. The same areas were subjected to tape-lifting, and also amplified directly for comparison. The NGM™ kit that amplifies 15 STR loci plus amelogenin was used. A total of 35 single fiber samples were processed and analyzed from five items of clothing, with 81 % of samples returning a profile of 14 alleles or more. All tape-lift samples amplified directly produced DNA profiles of 15 alleles or more. The aim was to develop a simple, operational method that could be used routinely in forensic science casework and that has the potential to generate more complete profiles, which would not be detected using standard extraction methods on this type of sample. For ease of implementation, the process also adheres to standard methods with no increase in the cycle number.
Bond, John W; Weart, Jocelyn R
2017-05-01
Recovery, profiling, and speculative searching of trace DNA (not attributable to a body fluid/cell type) over a twelve-month period in a U.S. Crime Laboratory and U.K. police force are compared. Results show greater numbers of U.S. firearm-related items submitted for analysis compared with the U.K., where greatest numbers were submitted from burglary or vehicle offenses. U.S. multiple recovery techniques (double swabbing) occurred mainly during laboratory examination, whereas the majority of U.K. multiple recovery techniques occurred at the scene. No statistical difference was observed for useful profiles from single or multiple recovery. Database loading of interpretable profiles was most successful for U.K. items related to burglary or vehicle offenses. Database associations (matches) represented 7.0% of all U.S. items and 13.1% of all U.K. items. The U.K. strategy for burglary and vehicle examination demonstrated that careful selection of both items and sampling techniques is crucial to obtaining the observed results. © 2016 American Academy of Forensic Sciences.
Ciavaglia, Sherryn; Linacre, Adrian
2018-05-01
Reptile species, and in particular snakes, are protected by national and international agreements yet are commonly handled illegally. To aid in the enforcement of such legislation, we report on the development of three 11-plex assays from the genome of the carpet python to type 24 loci of tetra-nucleotide and penta-nucleotide repeat motifs (pure, compound and complex included). The loci range in size between 70 and 550 bp. Seventeen of the loci are newly characterised with the inclusion of seven previously developed loci to facilitate cross-comparison with previous carpet python genotyping studies. Assays were optimised in accordance with human forensic profiling kits using one nanogram template DNA. Three loci are included in all three of the multiplex reactions as quality assurance markers, to ensure sample identity and genotyping accuracy is maintained across the three profiling assays. Allelic ladders have been developed for the three assays to ensure consistent and precise allele designation. A DNA reference database of allele frequencies is presented based on 249 samples collected from throughout the species native range. A small number of validation tests are conducted to demonstrate the utility of these multiplex assays. We suggest further appropriate validation tests that should be conducted prior to the application of the multiplex assays in criminal investigations involving carpet pythons. Copyright © 2018 Elsevier B.V. All rights reserved.
Campbell, Rebecca; Fehler-Cabral, Giannina; Bybee, Deborah; Shaw, Jessica
2017-10-01
Throughout the United States, hundreds of thousands of sexual assault kits (SAKs) (also termed "rape kits") have not been submitted by the police for forensic DNA testing. DNA evidence can help sexual assault investigations and prosecutions by identifying offenders, revealing serial offenders through DNA matches across cases, and exonerating those who have been wrongly accused. In this article, we describe a 5-year action research project conducted with 1 city that had large numbers of untested SAKs-Detroit, Michigan-and our examination into why thousands of rape kits in this city were never submitted for forensic DNA testing. This mixed methods study combined ethnographic observations and qualitative interviews to identify stakeholders' perspectives as to why rape kits were not routinely submitted for testing. Then, we quantitatively examined whether these factors may have affected police practices regarding SAK testing, as evidenced by predictable changes in SAK submission rates over time. Chronic resource scarcity only partially explained why the organizations that serve rape victims-the police, crime lab, prosecution, and victim advocacy-could not test all rape kits, investigate all reported sexual assaults, and support all rape survivors. SAK submission rates significantly increased once criminal justice professionals in this city had full access to the FBI DNA forensic database Combined DNA Index System (CODIS), but even then, most SAKs were still not submitted for DNA testing. Building crime laboratories' capacities for DNA testing and training police on the utility of forensic evidence and best practices in sexual assault investigations can help remedy, and possibly prevent, the problem of untested rape kits. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Scudder, Nathan; McNevin, Dennis; Kelty, Sally F; Walsh, Simon J; Robertson, James
2018-03-01
Use of DNA in forensic science will be significantly influenced by new technology in coming years. Massively parallel sequencing and forensic genomics will hasten the broadening of forensic DNA analysis beyond short tandem repeats for identity towards a wider array of genetic markers, in applications as diverse as predictive phenotyping, ancestry assignment, and full mitochondrial genome analysis. With these new applications come a range of legal and policy implications, as forensic science touches on areas as diverse as 'big data', privacy and protected health information. Although these applications have the potential to make a more immediate and decisive forensic intelligence contribution to criminal investigations, they raise policy issues that will require detailed consideration if this potential is to be realised. The purpose of this paper is to identify the scope of the issues that will confront forensic and user communities. Copyright © 2017 The Chartered Society of Forensic Sciences. All rights reserved.
Helping to distinguish primary from secondary transfer events for trace DNA.
Taylor, Duncan; Biedermann, Alex; Samie, Lydie; Pun, Ka-Man; Hicks, Tacha; Champod, Christophe
2017-05-01
DNA is routinely recovered in criminal investigations. The sensitivity of laboratory equipment and DNA profiling kits means that it is possible to generate DNA profiles from very small amounts of cellular material. As a consequence, it has been shown that DNA we detect may not have arisen from a direct contact with an item, but rather through one or more intermediaries. Naturally the questions arising in court, particularly when considering trace DNA, are of how DNA may have come to be on an item. While scientists cannot directly answer this question, forensic biological results can help in discriminating between alleged activities. Much experimental research has been published showing the transfer and persistence of DNA under varying conditions, but as of yet the results of these studies have not been combined to deal with broad questions about transfer mechanisms. In this work we use published data and Bayesian networks to develop a statistical logical framework by which questions of transfer mechanism can be approached probabilistically. We also identify a number of areas where further work could be carried out in order to improve our knowledge base when helping to address questions about transfer mechanisms. Finally, we apply the constructed Bayesian network to ground truth known data to determine if, with current knowledge, there is any power in DNA quantities to distinguish primary and secondary transfer events. Copyright © 2017 Elsevier B.V. All rights reserved.
Laser mass spectrometry for DNA fingerprinting for forensic applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, C.H.; Tang, K.; Taranenko, N.I.
The application of DNA fingerprinting has become very broad in forensic analysis, patient identification, diagnostic medicine, and wildlife poaching, since every individual`s DNA structure is identical within all tissues of their body. DNA fingerprinting was initiated by the use of restriction fragment length polymorphisms (RFLP). In 1987, Nakamura et al. found that a variable number of tandem repeats (VNTR) often occurred in the alleles. The probability of different individuals having the same number of tandem repeats in several different alleles is very low. Thus, the identification of VNTR from genomic DNA became a very reliable method for identification of individuals.more » DNA fingerprinting is a reliable tool for forensic analysis. In DNA fingerprinting, knowledge of the sequence of tandem repeats and restriction endonuclease sites can provide the basis for identification. The major steps for conventional DNA fingerprinting include (1) specimen processing (2) amplification of selected DNA segments by PCR, and (3) gel electrophoresis to do the final DNA analysis. In this work we propose to use laser desorption mass spectrometry for fast DNA fingerprinting. The process and advantages are discussed.« less
Diway, Bibian; Khoo, Eyen
2017-01-01
The development of timber tracking methods based on genetic markers can provide scientific evidence to verify the origin of timber products and fulfill the growing requirement for sustainable forestry practices. In this study, the origin of an important Dark Red Meranti wood, Shorea platyclados, was studied by using the combination of seven chloroplast DNA and 15 short tandem repeats (STRs) markers. A total of 27 natural populations of S. platyclados were sampled throughout Malaysia to establish population level and individual level identification databases. A haplotype map was generated from chloroplast DNA sequencing for population identification, resulting in 29 multilocus haplotypes, based on 39 informative intraspecific variable sites. Subsequently, a DNA profiling database was developed from 15 STRs allowing for individual identification in Malaysia. Cluster analysis divided the 27 populations into two genetic clusters, corresponding to the region of Eastern and Western Malaysia. The conservativeness tests showed that the Malaysia database is conservative after removal of bias from population subdivision and sampling effects. Independent self-assignment tests correctly assigned individuals to the database in an overall 60.60−94.95% of cases for identified populations, and in 98.99−99.23% of cases for identified regions. Both the chloroplast DNA database and the STRs appear to be useful for tracking timber originating in Malaysia. Hence, this DNA-based method could serve as an effective addition tool to the existing forensic timber identification system for ensuring the sustainably management of this species into the future. PMID:28430826
Jan, Catherine
2016-01-01
The parrot family represents one of the bird group with the largest number of endangered species, as a result of habitat destruction and illegal trade. This illicit traffic involves the smuggling of eggs and animals, and the laundering through captive breeding facilities of wild-caught animals. Despite the huge potential of wildlife DNA forensics to determine with conclusive evidence illegal trade, current usage of DNA profiling approaches in parrots has been limited by the lack of suitable molecular markers specifically developed for the focal species and by low cross-species polymorphism. In this study, we isolated DNA microsatellite markers in seven parrot species threatened with extinction (Amazona brasiliensis, A. oratrix, A. pretrei, A. rhodocorytha, Anodorhynchus leari, Ara rubrogenys and Primolius couloni). From an enriched genomic library followed by 454 pyrosequencing, we characterized a total of 106 polymorphic microsatellite markers (mostly tetranucleotides) in the seven species and tested them across an average number of 19 individuals per species. The mean number of alleles per species and across loci varied from 6.4 to 8.3, with the mean observed heterozygosities ranging from 0.65 to 0.84. Identity and parentage exclusion probabilities were highly discriminatory. The high variability displayed by these microsatellite loci demonstrates their potential utility to perform individual genotyping and parentage analyses, in order to develop a DNA testing framework to determine illegal traffic in these threatened species. PMID:27688959
Jan, Catherine; Fumagalli, Luca
2016-01-01
The parrot family represents one of the bird group with the largest number of endangered species, as a result of habitat destruction and illegal trade. This illicit traffic involves the smuggling of eggs and animals, and the laundering through captive breeding facilities of wild-caught animals. Despite the huge potential of wildlife DNA forensics to determine with conclusive evidence illegal trade, current usage of DNA profiling approaches in parrots has been limited by the lack of suitable molecular markers specifically developed for the focal species and by low cross-species polymorphism. In this study, we isolated DNA microsatellite markers in seven parrot species threatened with extinction (Amazona brasiliensis, A. oratrix, A. pretrei, A. rhodocorytha, Anodorhynchus leari, Ara rubrogenys and Primolius couloni). From an enriched genomic library followed by 454 pyrosequencing, we characterized a total of 106 polymorphic microsatellite markers (mostly tetranucleotides) in the seven species and tested them across an average number of 19 individuals per species. The mean number of alleles per species and across loci varied from 6.4 to 8.3, with the mean observed heterozygosities ranging from 0.65 to 0.84. Identity and parentage exclusion probabilities were highly discriminatory. The high variability displayed by these microsatellite loci demonstrates their potential utility to perform individual genotyping and parentage analyses, in order to develop a DNA testing framework to determine illegal traffic in these threatened species.
Lutz, Tasha
2015-01-01
Contamination of forensic specimens can have significant and detrimental effects on cases presented in court. In 2010 a wrongful conviction in Australia resulted in an inquiry with 25 recommendations to minimize the risk of DNA contamination of forensic specimens. DNA decontamination practices in a clinical forensic medical service currently attempt to comply with these recommendations. Evaluation of these practices has not been undertaken. The aim of this project was to audit the current DNA decontamination practices of forensic medical and nursing examiners in the forensic medical examination process and implement changes based on the audit findings. A re-audit following implementation would be undertaken to identify change and inform further research. The Joanna Briggs Institute's Practical Application of Clinical Evidence System and Getting Research into Practice were used as the audit tool in this project. A baseline audit was conducted; analysis of this audit process was then undertaken. Following education and awareness training targeted at clinicians, a re-audit was completed. There were a total of 24 audit criteria; the baseline audit reflected 20 of these criteria had 100% compliance. The remaining 4 audit criteria demonstrated compliance between 65% and 90%. Education and awareness training resulted in improved compliance in 2 of the 4 audit criteria, with the remaining 2 having unchanged compliance. The findings demonstrated that education and raising awareness can improve clinical practice; however there are also external factors outside the control of the clinicians that influence compliance with best practice.
DNA recovery from latent fingermarks treated with an infrared fluorescent fingerprint powder.
Al Oleiwi, Abdulrahman; Hussain, Imtiaz; McWhorter, Allyce; Sutton, Raul; King, Roberto S P
2017-08-01
The effect of the infrared fluorescent fingermark visualisation powder, fpNatural 1™, on the recovery of both the quantity and quality of touch DNA from fingerprints deposited on glass slides, was investigated using qPCR and STR typing. Four donors each deposited replicate marks, which were either left untreated (n=5) or treated by dusting with fpNatural 1™ (n=5). Each sample was swabbed using the double swab technique, before being extracted using the EZNA Forensic DNA kit and then DNA quantitated before being subjected to DNA profile analysis. Results showed that there was no significant effect of fpNatural 1™ on either the quantity or quality of recovered DNA. This suggests that fpNatural 1™ may prove a good choice of powder for regular use at crime scenes or in the laboratory. The fpNatural 1™ properties of low density, water immiscibility and low DNA affinity may account for these positive outcomes. Copyright © 2017 Elsevier B.V. All rights reserved.
Greenspoon, S A; Sykes, K L V; Ban, J D; Pollard, A; Baisden, M; Farr, M; Graham, N; Collins, B L; Green, M M; Christenson, C C
2006-12-20
Human genome, pharmaceutical and research laboratories have long enjoyed the application of robotics to performing repetitive laboratory tasks. However, the utilization of robotics in forensic laboratories for processing casework samples is relatively new and poses particular challenges. Since the quantity and quality (a mixture versus a single source sample, the level of degradation, the presence of PCR inhibitors) of the DNA contained within a casework sample is unknown, particular attention must be paid to procedural susceptibility to contamination, as well as DNA yield, especially as it pertains to samples with little biological material. The Virginia Department of Forensic Science (VDFS) has successfully automated forensic casework DNA extraction utilizing the DNA IQ(trade mark) System in conjunction with the Biomek 2000 Automation Workstation. Human DNA quantitation is also performed in a near complete automated fashion utilizing the AluQuant Human DNA Quantitation System and the Biomek 2000 Automation Workstation. Recently, the PCR setup for casework samples has been automated, employing the Biomek 2000 Automation Workstation and Normalization Wizard, Genetic Identity version, which utilizes the quantitation data, imported into the software, to create a customized automated method for DNA dilution, unique to that plate of DNA samples. The PCR Setup software method, used in conjunction with the Normalization Wizard method and written for the Biomek 2000, functions to mix the diluted DNA samples, transfer the PCR master mix, and transfer the diluted DNA samples to PCR amplification tubes. Once the process is complete, the DNA extracts, still on the deck of the robot in PCR amplification strip tubes, are transferred to pre-labeled 1.5 mL tubes for long-term storage using an automated method. The automation of these steps in the process of forensic DNA casework analysis has been accomplished by performing extensive optimization, validation and testing of the software methods.
A simple automated instrument for DNA extraction in forensic casework.
Montpetit, Shawn A; Fitch, Ian T; O'Donnell, Patrick T
2005-05-01
The Qiagen BioRobot EZ1 is a small, rapid, and reliable automated DNA extraction instrument capable of extracting DNA from up to six samples in as few as 20 min using magnetic bead technology. The San Diego Police Department Crime Laboratory has validated the BioRobot EZ1 for the DNA extraction of evidence and reference samples in forensic casework. The BioRobot EZ1 was evaluated for use on a variety of different evidence sample types including blood, saliva, and semen evidence. The performance of the BioRobot EZ1 with regard to DNA recovery and potential cross-contamination was also assessed. DNA yields obtained with the BioRobot EZ1 were comparable to those from organic extraction. The BioRobot EZ1 was effective at removing PCR inhibitors, which often co-purify with DNA in organic extractions. The incorporation of the BioRobot EZ1 into forensic casework has streamlined the DNA analysis process by reducing the need for labor-intensive phenol-chloroform extractions.
Exclusion probabilities and likelihood ratios with applications to kinship problems.
Slooten, Klaas-Jan; Egeland, Thore
2014-05-01
In forensic genetics, DNA profiles are compared in order to make inferences, paternity cases being a standard example. The statistical evidence can be summarized and reported in several ways. For example, in a paternity case, the likelihood ratio (LR) and the probability of not excluding a random man as father (RMNE) are two common summary statistics. There has been a long debate on the merits of the two statistics, also in the context of DNA mixture interpretation, and no general consensus has been reached. In this paper, we show that the RMNE is a certain weighted average of inverse likelihood ratios. This is true in any forensic context. We show that the likelihood ratio in favor of the correct hypothesis is, in expectation, bigger than the reciprocal of the RMNE probability. However, with the exception of pathological cases, it is also possible to obtain smaller likelihood ratios. We illustrate this result for paternity cases. Moreover, some theoretical properties of the likelihood ratio for a large class of general pairwise kinship cases, including expected value and variance, are derived. The practical implications of the findings are discussed and exemplified.
Investigating CSI: portrayals of DNA testing on a forensic crime show and their potential effects.
Ley, Barbara L; Jankowski, Natalie; Brewer, Paul R
2012-01-01
The popularity of forensic crime shows such as CSI has fueled debate about their potential social impact. This study considers CSI's potential effects on public understandings regarding DNA testing in the context of judicial processes, the policy debates surrounding crime laboratory procedures, and the forensic science profession, as well as an effect not discussed in previous accounts: namely, the show's potential impact on public understandings of DNA and genetics more generally. To develop a theoretical foundation for research on the "CSI effect," it draws on cultivation theory, social cognitive theory, and audience reception studies. It then uses content analysis and textual analysis to illuminate how the show depicts DNA testing. The results demonstrate that CSI tends to depict DNA testing as routine, swift, useful, and reliable and that it echoes broader discourses about genetics. At times, however, the show suggests more complex ways of thinking about DNA testing and genetics.
Enhanced low-template DNA analysis conditions and investigation of allele dropout patterns.
Hedell, Ronny; Dufva, Charlotte; Ansell, Ricky; Mostad, Petter; Hedman, Johannes
2015-01-01
Forensic DNA analysis applying PCR enables profiling of minute biological samples. Enhanced analysis conditions can be applied to further push the limit of detection, coming with the risk of visualising artefacts and allele imbalances. We have evaluated the consecutive increase of PCR cycles from 30 to 35 to investigate the limitations of low-template (LT) DNA analysis, applying the short tandem repeat (STR) analysis kit PowerPlex ESX 16. Mock crime scene DNA extracts of four different quantities (from around 8-84 pg) were tested. All PCR products were analysed using 5, 10 and 20 capillary electrophoresis (CE) injection seconds. Bayesian models describing allele dropout patterns, allele peak heights and heterozygote balance were developed to assess the overall improvements in EPG quality with altered PCR/CE settings. The models were also used to evaluate the impact of amplicon length, STR marker and fluorescent label on the risk for allele dropout. The allele dropout probability decreased for each PCR cycle increment from 30 to 33 PCR cycles. Irrespective of DNA amount, the dropout probability was not affected by further increasing the number of PCR cycles. For the 42 and 84 pg samples, mainly complete DNA profiles were generated applying 32 PCR cycles. For the 8 and 17 pg samples, the allele dropouts decreased from 100% using 30 cycles to about 75% and 20%, respectively. The results for 33, 34 and 35 PCR cycles indicated that heterozygote balance and stutter ratio were mainly affected by DNA amount, and not directly by PCR cycle number and CE injection settings. We found 32 and 33 PCR cycles with 10 CE injection seconds to be optimal, as 34 and 35 PCR cycles did not improve allele detection and also included CE saturation problems. We find allele dropout probability differences between several STR markers. Markers labelled with the fluorescent dyes CXR-ET (red in electropherogram) and TMR-ET (shown as black) generally have higher dropout risks compared with those labelled with JOE (green) and fluorescein (blue). Overall, the marker D10S1248 has the lowest allele dropout probability and D8S1179 the highest. The marker effect is mainly pronounced for 30-32 PCR cycles. Such effects would not be expected if the amplification efficiencies were identical for all markers. Understanding allele dropout risks and the variability in peak heights and balances is important for correct interpretation of forensic DNA profiles. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Adamowicz, Michael S.; Stasulli, Dominique M.; Sobestanovich, Emily M.; Bille, Todd W.
2014-01-01
Samples for forensic DNA analysis are often collected from a wide variety of objects using cotton or nylon tipped swabs. Testing has shown that significant quantities of DNA are retained on the swab, however, and subsequently lost. When processing evidentiary samples, the recovery of the maximum amount of available DNA is critical, potentially dictating whether a usable profile can be derived from a piece of evidence or not. The QIAamp DNA Investigator extraction kit was used with its recommended protocol for swabs (one hour incubation at 56°C) as a baseline. Results indicate that over 50% of the recoverable DNA may be retained on the cotton swab tip, or otherwise lost, for both blood and buccal cell samples when using this protocol. The protocol’s incubation time and temperature were altered, as was incubating while shaking or stationary to test for increases in recovery efficiency. An additional step was then tested that included periodic re-suspension of the swab tip in the extraction buffer during incubation. Aliquots of liquid blood or a buccal cell suspension were deposited and dried on cotton swabs and compared with swab-less controls. The concentration of DNA in each extract was quantified and STR analysis was performed to assess the quality of the extracted DNA. Stationary incubations and those performed at 65°C did not result in significant gains in DNA yield. Samples incubated for 24 hours yielded less DNA. Increased yields were observed with three and 18 hour incubation periods. Increases in DNA yields were also observed using a swab re-suspension method for both cell types. The swab re-suspension method yielded an average two-fold increase in recovered DNA yield with buccal cells and an average three-fold increase with blood cells. These findings demonstrate that more of the DNA collected on swabs can be recovered with specific protocol alterations. PMID:25549111
Curriculum and course materials for a forensic DNA biology course.
Elkins, Kelly M
2014-01-01
The Forensic Science Education Programs Accreditation Commission (FEPAC) requires accredited programs offer a "coherent curriculum" to ensure each student gains a "thorough grounding of the natural…sciences." Part of this curriculum includes completion of a minimum of 15 semester-hours forensic science coursework, nine of which can involve a class in forensic DNA biology. Departments that have obtained or are pursuing FEPAC accreditation can meet this requirement by offering a stand-alone forensic DNA biology course; however, materials necessary to instruct students are often homegrown and not standardized; in addition, until recently, the community lacked commercially available books, lab manuals, and teaching materials, and many of the best pedagogical resources were scattered across various peer-reviewed journals. The curriculum discussed below is an attempt to synthesize this disparate information, and although certainly not the only acceptable methodology, the below discussion represents "a way" for synthesizing and aggregating this information into a cohesive, comprehensive whole. Copyright © 2013 by The International Union of Biochemistry and Molecular Biology.
2017-01-01
Amplicon (targeted) sequencing by massively parallel sequencing (PCR-MPS) is a potential method for use in forensic DNA analyses. In this application, PCR-MPS may supplement or replace other instrumental analysis methods such as capillary electrophoresis and Sanger sequencing for STR and mitochondrial DNA typing, respectively. PCR-MPS also may enable the expansion of forensic DNA analysis methods to include new marker systems such as single nucleotide polymorphisms (SNPs) and insertion/deletions (indels) that currently are assayable using various instrumental analysis methods including microarray and quantitative PCR. Acceptance of PCR-MPS as a forensic method will depend in part upon developing protocols and criteria that define the limitations of a method, including a defensible analytical threshold or method detection limit. This paper describes an approach to establish objective analytical thresholds suitable for multiplexed PCR-MPS methods. A definition is proposed for PCR-MPS method background noise, and an analytical threshold based on background noise is described. PMID:28542338
Mitochondria in anthropology and forensic medicine.
Grzybowski, Tomasz; Rogalla, Urszula
2012-01-01
Mitochondria's role in crucial metabolic pathways is probably the first answer which comes to our minds for the question: what do these tiny organelles serve for? However, specific features of their DNA made them extremely useful also in the field of anthropology and forensics. MtDNA analyses became a milestone in the complex task of unraveling earliest human migrations. Evidence provided by these experiments left no doubts on modern humans origins pointing to Africa being our cradle. It also contributed to interpretation of putative ways of our dispersal around Asia and Americas thousands years ago. On the other hand, analysis of mtDNA is well established and valuable tool in forensic genetics. When other definitely more popular markers give no answer on identity, it is the time to employ information carried by mitochondria. This chapter summarizes not only current reports on the role of mitochondria in forensics and reconstruction of modern humans phylogeny, but also calls one's attention to a broad range of difficulties and constraints associated with mtDNA analyses.
Young, Brian; King, Jonathan L; Budowle, Bruce; Armogida, Luigi
2017-01-01
Amplicon (targeted) sequencing by massively parallel sequencing (PCR-MPS) is a potential method for use in forensic DNA analyses. In this application, PCR-MPS may supplement or replace other instrumental analysis methods such as capillary electrophoresis and Sanger sequencing for STR and mitochondrial DNA typing, respectively. PCR-MPS also may enable the expansion of forensic DNA analysis methods to include new marker systems such as single nucleotide polymorphisms (SNPs) and insertion/deletions (indels) that currently are assayable using various instrumental analysis methods including microarray and quantitative PCR. Acceptance of PCR-MPS as a forensic method will depend in part upon developing protocols and criteria that define the limitations of a method, including a defensible analytical threshold or method detection limit. This paper describes an approach to establish objective analytical thresholds suitable for multiplexed PCR-MPS methods. A definition is proposed for PCR-MPS method background noise, and an analytical threshold based on background noise is described.
Siu, B W M; Au-Yeung, C C Y; Chan, A W L; Chan, L S Y; Yuen, K K; Leung, H W; Yan, C K; Ng, K K; Lai, A C H; Davies, S; Collins, M
Mapping forensic psychiatric services with the security needs of patients is a salient step in service planning, audit and review. A valid and reliable instrument for measuring the security needs of Chinese forensic psychiatric inpatients was not yet available. This study aimed to develop and validate the Chinese version of the Security Needs Assessment Profile for measuring the profiles of security needs of Chinese forensic psychiatric inpatients. The Security Needs Assessment Profile by Davis was translated into Chinese. Its face validity, content validity, construct validity and internal consistency reliability were assessed by measuring the security needs of 98 Chinese forensic psychiatric inpatients. Principal factor analysis for construct validity provided a six-factor security needs model explaining 68.7% of the variance. Based on the Cronbach's alpha coefficient, the internal consistency reliability was rated as acceptable for procedural security (0.73), and fair for both physical security (0.62) and relational security (0.58). A significant sex difference (p=0.002) in total security score was found. The Chinese version of the Security Needs Assessment Profile is a valid and reliable instrument for assessing the security needs of Chinese forensic psychiatric inpatients. Copyright © 2017 Elsevier Ltd. All rights reserved.
Forensic dentistry in human identification: A review of the literature.
Ata-Ali, Javier; Ata-Ali, Fadi
2014-04-01
An update is provided of the literature on the role of odontology in human identification, based on a PubMed-Medline search of the last 5 years and using the terms: "forensic dentistry" (n = 464 articles), "forensic odontology" (n = 141 articles) and "forensic dentistry identification" (n = 169 articles). Apart from these initial 774 articles, others considered to be important and which were generated by a manual search and cited as references in review articles were also included. Forensic dentistry requires interdisciplinary knowledge, since the data obtained from the oral cavity can contribute to identify an individual or provide information needed in a legal process. Furthermore, the data obtained from the oral cavity can narrow the search range of an individual and play a key role in the victim identification process following mass disasters or catastrophes. This literature search covering the last 5 years describes the novelties referred to buccodental studies in comparative identification, buccodental evaluation in reconstructive identification, human bites as a method for identifying the aggressor, and the role of DNA in dental identification. The oral cavity is a rich and noninvasive source of DNA, and can be used to solve problems of a social, economic or legal nature. Key words:Forensic identification, DNA, forensic dentistry, rugoscopy, cheiloscopy, saliva.
Forensic dentistry in human identification: A review of the literature
Ata-Ali, Fadi
2014-01-01
An update is provided of the literature on the role of odontology in human identification, based on a PubMed-Medline search of the last 5 years and using the terms: “forensic dentistry” (n = 464 articles), “forensic odontology” (n = 141 articles) and “forensic dentistry identification” (n = 169 articles). Apart from these initial 774 articles, others considered to be important and which were generated by a manual search and cited as references in review articles were also included. Forensic dentistry requires interdisciplinary knowledge, since the data obtained from the oral cavity can contribute to identify an individual or provide information needed in a legal process. Furthermore, the data obtained from the oral cavity can narrow the search range of an individual and play a key role in the victim identification process following mass disasters or catastrophes. This literature search covering the last 5 years describes the novelties referred to buccodental studies in comparative identification, buccodental evaluation in reconstructive identification, human bites as a method for identifying the aggressor, and the role of DNA in dental identification. The oral cavity is a rich and noninvasive source of DNA, and can be used to solve problems of a social, economic or legal nature. Key words:Forensic identification, DNA, forensic dentistry, rugoscopy, cheiloscopy, saliva. PMID:24790717
A collaborative exercise on DNA methylation based body fluid typing.
Jung, Sang-Eun; Cho, Sohee; Antunes, Joana; Gomes, Iva; Uchimoto, Mari L; Oh, Yu Na; Di Giacomo, Lisa; Schneider, Peter M; Park, Min Sun; van der Meer, Dieudonne; Williams, Graham; McCord, Bruce; Ahn, Hee-Jung; Choi, Dong Ho; Lee, Yang Han; Lee, Soong Deok; Lee, Hwan Young
2016-10-01
A collaborative exercise on DNA methylation based body fluid identification was conducted by seven laboratories. For this project, a multiplex methylation SNaPshot reaction composed of seven CpG markers was used for the identification of four body fluids, including blood, saliva, semen, and vaginal fluid. A total of 30 specimens were prepared and distributed to participating laboratories after thorough testing. The required experiments included four increasingly complex tasks: (1) CE of a purified single-base extension reaction product, (2) multiplex PCR and multiplex single-base extension reaction of bisulfite-modified DNA, (3) bisulfite conversion of genomic DNA, and (4) extraction of genomic DNA from body fluid samples. In tasks 2, 3 and 4, one or more mixtures were analyzed, and specimens containing both known and unknown body fluid sources were used. Six of the laboratories generated consistent body fluid typing results for specimens of bisulfite-converted DNA and genomic DNA. One laboratory failed to set up appropriate conditions for capillary analysis of reference single-base extension products. In general, variation in the values obtained for DNA methylation analysis between laboratories increased with the complexity of the required experiments. However, all laboratories concurred on the interpretation of the DNA methylation profiles produced. Although the establishment of interpretational guidelines on DNA methylation based body fluid identification has yet to be performed, this study supports the addition of DNA methylation profiling to forensic body fluid typing. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Irwin, Jodi A; Saunier, Jessica L; Strouss, Katharine M; Sturk, Kimberly A; Diegoli, Toni M; Just, Rebecca S; Coble, Michael D; Parson, Walther; Parsons, Thomas J
2007-06-01
In an effort to increase the quantity, breadth and availability of mtDNA databases suitable for forensic comparisons, we have developed a high-throughput process to generate approximately 5000 control region sequences per year from regional US populations, global populations from which the current US population is derived and global populations currently under-represented in available forensic databases. The system utilizes robotic instrumentation for all laboratory steps from pre-extraction through sequence detection, and a rigorous eight-step, multi-laboratory data review process with entirely electronic data transfer. Over the past 3 years, nearly 10,000 control region sequences have been generated using this approach. These data are being made publicly available and should further address the need for consistent, high-quality mtDNA databases for forensic testing.
The use of the M-Vac® wet-vacuum system as a method for DNA recovery.
Vickar, Toby; Bache, Katherine; Daniel, Barbara; Frascione, Nunzianda
2018-07-01
Collecting sufficient template DNA from a crime scene sample is often challenging, especially with low quantity samples such as touch DNA (tDNA). Traditional DNA collection methods such as double swabbing have limitations, in particular when used on certain substrates which can be found at crime scenes, thus a better collection method is advantageous. Here, the effectiveness of the M-Vac® Wet-Vacuum System is evaluated as a method for DNA recovery on tiles and bricks. It was found that the M-Vac® recovered 75% more DNA than double swabbing on bricks. However, double swabbing collected significantly more DNA than the M-Vac® on tiles. Additionally, it was found that cell-free DNA is lost in the filtration step of M-Vac® collection. In terms of peak height and number of true alleles detected, no significant difference was found between the DNA profiles obtained through M-Vac® collection versus double swabbing of tDNA depositions from 12 volunteers on bricks. The results demonstrate that the M-Vac® has potential for DNA collection from porous surfaces such as bricks, but that alterations to the filter apparatus would be beneficial to increase the amount of genetic material collected for subsequent DNA profiling. These results are anticipated to be a starting point to validate the M-Vac® as a DNA collection device, providing an alternative method when DNA is present on a difficult substrate, or if traditional DNA collection methods have failed. Copyright © 2018 The Chartered Society of Forensic Sciences. Published by Elsevier B.V. All rights reserved.
Trace samples of human blood in mosquitoes as a forensic investigation tool.
Rabêlo, K C N; Albuquerque, C M R; Tavares, V B; Santos, S M; Souza, C A; Oliveira, T C; Oliveira, N C L; Crovella, S
2015-11-23
Investigations of any type of crime invariably starts at the crime scene by collecting evidence. Thus, the purpose of this research was to collect and analyze an entomological trace from an environment that is similar to those of indoor crime scenes. Hematophagous mosquitoes were collected from two residential units; saliva of volunteers that were residents in the units was also collected for genetic analysis as reference samples. We examined the allele frequencies of 15 short tandem repeat loci (D8S1179, D21S11, D7S820, CSF1PO, D3S1358, TH01, D13S317, D16S539, D2S1338, D19S433, vWA, TPOX, D18S51, D5S818, and FGA) and amelogenin. A total of 26 female hematophagous mosquitoes were identified as Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus; we were able to obtain 11 forensically valid genetic profiles, with a minimum of 0.028203 ng/μL of human DNA. Thus, the results of this study showed that it was possible to correlate human genetic information from mosquitoes with the volunteer reference samples, which validates the use of this information as forensic evidence. Furthermore, we observed mixed genetic profiles from one mosquito. Therefore, it is clearly important to collect these insects indoors where crimes were committed, because it may be possible to find intact genetic profiles of suspects in the blood found in the digestive tract of hematophagous mosquitoes for later comparison to identify an offender and/or exclude suspects.
Forr, Camilla; Schei, Berit; Stene, Lise Eilin; Ormstad, Kari; Hagemann, Cecilie Therese
2018-02-01
The aim of this study was to examine the association between victim, suspect and assault characteristics and (1) forensic analysis of trace evidence, (2) detection of spermatozoa and (3) DNA match in police-reported cases of rape/attempted rape. In addition, we explored whether DNA findings were associated with legal outcome. We conducted a retrospective, descriptive study based on police-reported rapes and attempted rapes of women ≥16 years of age in Sør-Trøndelag Police District throughout 1997-2010. Police data were merged with information from the Sexual Assault Centre (SAC) at St. Olavs University Hospital, Trondheim, Norway. We used binary and multivariable logistic regression for the comparisons. We identified 324 victims (mean age 24 years). The police requested analysis in 135 (45%) of the 299 collected victim samples. The police decision to analyze was after adjustment associated with the victim being employed or under education, and a public venue, but not with interval from assault to sampling. Spermatozoa were detected in 79 (61%) of the analyzed cases, of which 71 were collected from victims within 24h. Interval from assault being <24h and reporting a penetrative assault remained associated with the findings of spermatozoa after adjustments. Forensic analyses of trace evidence collected from victim, suspect and/or venue disclosed matching DNA profiles in 57 (40%) of a total of 143 analyzed cases. Matching DNA profiles were associated with suspect being known to the victim and with the venue being private. A higher proportion of cases with a DNA match were prosecuted in court: 20 of the 29 cases prosecuted. However, despite a DNA match 35 cases were anyway dismissed because of insufficient evidence. Although many of the associations in our study were expected, it is still important to report the actual numbers to gain insight into the importance of a DNA match in legal proceedings. A substantial proportion of cases with DNA match was dismissed because of insufficient evidence. To strengthen the justice response to sexual assault, it is essential to generate knowledge about the role of medico-legal evidence in such cases, and there are obviously other non-medical factors influencing the legal decisions. Copyright © 2017 Elsevier B.V. All rights reserved.
Persistence of immersed blood and hair DNA: A preliminary study based on casework.
Frippiat, Christophe; Gastaldi, Agathe; Van Grunderbeeck, Séverine
2017-10-01
In some cases, evidence is collected from rivers, canals, lakes or sink pipes. To determine the utility of analyzing these samples and for cases in which DNA was recovered from submerged bulletproof vest parts, we evaluated the time necessary to degrade the blood and, subsequently, DNA on bulletproof vests. In a second experiment, also based on cases, blood was diluted in water from a kitchen sink pipe and incubated at room temperature for different times. Subsequently, DNA quality was assessed. In a parallel experiment, hair roots were incubated in spring water for different time periods. This study demonstrates that after one week of immersion of the bulletproof vest parts in a canal only one sample from more than 100 samples gave a partial genetic profile. No genetic profile were obtained for the 99 other samples. After one month immersion and despite the finding that blood remained detectable on bulletproof vest parts, no genetic profile was obtained for all samples using the classical STR approach. For longer immersion times, no genetic profiles were obtained. In sink pipe water, an incubation time of 72 h (h) was necessary before significant blood degradation occurred. Nevertheless, high inter-sample variability was observed. This high variability may be explained by the variability of water composition coming from nine different sink pipes. For hair root cells incubated in water, we observed that more than 90% of the DNA was degraded after 72 h. Copyright © 2017 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
Kastle-Meyer blood test reagents are deleterious to DNA.
Sloots, James; Lalonde, Wendy; Reid, Barbara; Millman, Jonathan
2017-12-01
The Kastle-Meyer (KM) test is a quick and easy chemical test for blood used in forensic analyses. Two practical variations of this test are the KM-rub (indirect) test and the more sensitive KM-direct test, the latter of which is performed by applying reagents directly to a suspected blood stain. This study found that sodium hydroxide present in the KM reagents eliminated the potential to generate a DNA profile when applied directly to small quantities of blood. A modified approach to the KM-rub test that increases its sensitivity is presented as a method to replace destructive KM-direct testing. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.
Forensic Science in Support of Wildlife Conservation Efforts - Genetic Approaches (Global Trends).
Linacre, A
2011-01-01
Wildlife forensic science is a relatively recent development to meet the increasing need of the criminal justice system where there are investigations in alleged transgressions of either international or national legislation. This application of science draws on conservation genetics and forensic geneticists from mainstream forensic science. This review is a broad overview of the history of forensic wildlife science and some of the recent developments in forensic wildlife genetics with the application of DNA developments to nonhuman samples encountered in a forensic science investigation. The review will move from methods to look at the entire genome, when there is no previous knowledge of the species studied, through methods of species identification, using DNA to determine a possible geographic origin, through to assigning samples to a particular individual or a close genetic relative of this individual. The transfer of research methods into the criminal justice system for the investigation of wildlife crimes has been largely successful as is illustrated in the review. The review concludes with comments on the need for standardization and regulation in wildlife forensic science. Copyright © 2011 Central Police University.
Harper, Kathryn A; Meiklejohn, Kelly A; Merritt, Richard T; Walker, Jessica; Fisher, Constance L; Robertson, James M
2018-02-01
Hairs are commonly submitted as evidence to forensic laboratories, but standard nuclear DNA analysis is not always possible. Mitochondria (mt) provide another source of genetic material; however, manual isolation is laborious. In a proof-of-concept study, we assessed pressure cycling technology (PCT; an automated approach that subjects samples to varying cycles of high and low pressure) for extracting mtDNA from single, short hairs without roots. Using three microscopically similar donors, we determined the ideal PCT conditions and compared those yields to those obtained using the traditional manual micro-tissue grinder method. Higher yields were recovered from grinder extracts, but yields from PCT extracts exceeded the requirements for forensic analysis, with the DNA quality confirmed through sequencing. Automated extraction of mtDNA from hairs without roots using PCT could be useful for forensic laboratories processing numerous samples.
Ancestry Analysis in the 11-M Madrid Bomb Attack Investigation
Phillips, Christopher; Prieto, Lourdes; Fondevila, Manuel; Salas, Antonio; Gómez-Tato, Antonio; Álvarez-Dios, José; Alonso, Antonio; Blanco-Verea, Alejandro; Brión, María; Montesino, Marta; Carracedo, Ángel; Lareu, María Victoria
2009-01-01
The 11-M Madrid commuter train bombings of 2004 constituted the second biggest terrorist attack to occur in Europe after Lockerbie, while the subsequent investigation became the most complex and wide-ranging forensic case in Spain. Standard short tandem repeat (STR) profiling of 600 exhibits left certain key incriminatory samples unmatched to any of the apprehended suspects. A judicial order to perform analyses of unmatched samples to differentiate European and North African ancestry became a critical part of the investigation and was instigated to help refine the search for further suspects. Although mitochondrial DNA (mtDNA) and Y-chromosome markers routinely demonstrate informative geographic differentiation, the populations compared in this analysis were known to show a proportion of shared mtDNA and Y haplotypes as a result of recent gene-flow across the western Mediterranean, while any two loci can be unrepresentative of the ancestry of an individual as a whole. We based our principal analysis on a validated 34plex autosomal ancestry-informative-marker single nucleotide polymorphism (AIM-SNP) assay to make an assignment of ancestry for DNA from seven unmatched case samples including a handprint from a bag containing undetonated explosives together with personal items recovered from various locations in Madrid associated with the suspects. To assess marker informativeness before genotyping, we predicted the probable classification success for the 34plex assay with standard error estimators for a naïve Bayesian classifier using Moroccan and Spanish training sets (each n = 48). Once misclassification error was found to be sufficiently low, genotyping yielded seven near-complete profiles (33 of 34 AIM-SNPs) that in four cases gave probabilities providing a clear assignment of ancestry. One of the suspects predicted to be North African by AIM-SNP analysis of DNA from a toothbrush was identified late in the investigation as Algerian in origin. The results achieved illustrate the benefit of adding specialized marker sets to provide enhanced scope and power to an already highly effective system of DNA analysis for forensic identification. PMID:19668368
Romero-Montoya, Lydia; Martínez-Rodríguez, Hugo; Pérez, Miguel Antonio; Argüello-García, Raúl
2011-03-20
In the forensic laboratory the biological analyses for rape investigation commonly include vaginal swabs as sample material combined to biochemical tests including sperm cytology (SC) and detection of acid phosphatase activity (AP) and prostate-specific antigen (PSA, p30) for the conclusive identification of semen components. Most reports comparing these tests relied on analysis of semen samples or donor swabs taken under controlled conditions; however their individual or combined efficacy under real live sampling conditions in different laboratories is largely unknown. We carried out SC, APA and PSA analyses in vaginal swabs collected from casework rapes submitted to Mexican Forensic Laboratories at Texcoco and Toluca. On the basis of positive and negative results from each assay and sample, data were classified into eight categories (I-VIII) and compared with those obtained in the two only similar studies reported in Toronto, Canada and Hong Kong, China. SC and APA assays had the higher overall positivity in Toluca and Texcoco samples respectively and otherwise PSA had a lower but very similar positivity between these two laboratories. When compared to the previous studies some similarities were found, namely similar frequencies (at a ratio of approximately 1 out of 3) of samples being positive or negative by all techniques (Categories I and VI respectively) and a comparable overall positivity of APA and SC but higher than that of PSA. Indeed the combined results of using SC, APA and PSA tests was considered as conclusive for semen detection from approximately 1 out of 3 cases (Category I) to approximately 1 out of 2 cases in a scenario where at least SC is positive, strongly presumptive in 2 out of 3 cases (with at least one test positive) and the remainder 1 out of 3 cases (Category VI) suggested absence of semen. By determining Y-STR polymorphisms (12-loci) in additional samples obtained at Toluca laboratory, complete DNA profiles were determined from all Category I samples, none marker was detected from all Category VI samples and mostly partial profiles were obtained from samples of other categories. These observations give an overview on the variability in efficacy of each test performed at different laboratories and provide a general notion about the in praxis contribution of SC, APA and PSA tests for further DNA typing in the forensic analysis of rape. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
The GHEP–EMPOP collaboration on mtDNA population data—A new resource for forensic casework
Prieto, L.; Zimmermann, B.; Goios, A.; Rodriguez-Monge, A.; Paneto, G.G.; Alves, C.; Alonso, A.; Fridman, C.; Cardoso, S.; Lima, G.; Anjos, M.J.; Whittle, M.R.; Montesino, M.; Cicarelli, R.M.B.; Rocha, A.M.; Albarrán, C.; de Pancorbo, M.M.; Pinheiro, M.F.; Carvalho, M.; Sumita, D.R.; Parson, W.
2011-01-01
Mitochondrial DNA (mtDNA) population data for forensic purposes are still scarce for some populations, which may limit the evaluation of forensic evidence especially when the rarity of a haplotype needs to be determined in a database search. In order to improve the collection of mtDNA lineages from the Iberian and South American subcontinents, we here report the results of a collaborative study involving nine laboratories from the Spanish and Portuguese Speaking Working Group of the International Society for Forensic Genetics (GHEP-ISFG) and EMPOP. The individual laboratories contributed population data that were generated throughout the past 10 years, but in the majority of cases have not been made available to the scientific community. A total of 1019 haplotypes from Iberia (Basque Country, 2 general Spanish populations, 2 North and 1 Central Portugal populations), and Latin America (3 populations from São Paulo) were collected, reviewed and harmonized according to defined EMPOP criteria. The majority of data ambiguities that were found during the reviewing process (41 in total) were transcription errors confirming that the documentation process is still the most error-prone stage in reporting mtDNA population data, especially when performed manually. This GHEP–EMPOP collaboration has significantly improved the quality of the individual mtDNA datasets and adds mtDNA population data as valuable resource to the EMPOP database (www.empop.org). PMID:21075696
An Ultra-High Discrimination Y Chromosome Short Tandem Repeat Multiplex DNA Typing System
Hanson, Erin K.; Ballantyne, Jack
2007-01-01
In forensic casework, Y chromosome short tandem repeat markers (Y-STRs) are often used to identify a male donor DNA profile in the presence of excess quantities of female DNA, such as is found in many sexual assault investigations. Commercially available Y-STR multiplexes incorporating 12–17 loci are currently used in forensic casework (Promega's PowerPlex® Y and Applied Biosystems' AmpFlSTR® Yfiler®). Despite the robustness of these commercial multiplex Y-STR systems and the ability to discriminate two male individuals in most cases, the coincidence match probabilities between unrelated males are modest compared with the standard set of autosomal STR markers. Hence there is still a need to develop new multiplex systems to supplement these for those cases where additional discriminatory power is desired or where there is a coincidental Y-STR match between potential male participants. Over 400 Y-STR loci have been identified on the Y chromosome. While these have the potential to increase the discrimination potential afforded by the commercially available kits, many have not been well characterized. In the present work, 91 loci were tested for their relative ability to increase the discrimination potential of the commonly used ‘core’ Y-STR loci. The result of this extensive evaluation was the development of an ultra high discrimination (UHD) multiplex DNA typing system that allows for the robust co-amplification of 14 non-core Y-STR loci. Population studies with a mixed African American and American Caucasian sample set (n = 572) indicated that the overall discriminatory potential of the UHD multiplex was superior to all commercial kits tested. The combined use of the UHD multiplex and the Applied Biosystems' AmpFlSTR® Yfiler® kit resulted in 100% discrimination of all individuals within the sample set, which presages its potential to maximally augment currently available forensic casework markers. It could also find applications in human evolutionary genetics and genetic genealogy. PMID:17668066
Identification of forensic samples by using an infrared-based automatic DNA sequencer.
Ricci, Ugo; Sani, Ilaria; Klintschar, Michael; Cerri, Nicoletta; De Ferrari, Francesco; Giovannucci Uzielli, Maria Luisa
2003-06-01
We have recently introduced a new protocol for analyzing all core loci of the Federal Bureau of Investigation's (FBI) Combined DNA Index System (CODIS) with an infrared (IR) automatic DNA sequencer (LI-COR 4200). The amplicons were labeled with forward oligonucleotide primers, covalently linked to a new infrared fluorescent molecule (IRDye 800). The alleles were displayed as familiar autoradiogram-like images with real-time detection. This protocol was employed for paternity testing, population studies, and identification of degraded forensic samples. We extensively analyzed some simulated forensic samples and mixed stains (blood, semen, saliva, bones, and fixed archival embedded tissues), comparing the results with donor samples. Sensitivity studies were also performed for the four multiplex systems. Our results show the efficiency, reliability, and accuracy of the IR system for the analysis of forensic samples. We also compared the efficiency of the multiplex protocol with ultraviolet (UV) technology. Paternity tests, undegraded DNA samples, and real forensic samples were analyzed with this approach based on IR technology and with UV-based automatic sequencers in combination with commercially-available kits. The comparability of the results with the widespread UV methods suggests that it is possible to exchange data between laboratories using the same core group of markers but different primer sets and detection methods.
Parson, Walther; Strobl, Christina; Huber, Gabriela; Zimmermann, Bettina; Gomes, Sibylle M.; Souto, Luis; Fendt, Liane; Delport, Rhena; Langit, Reina; Wootton, Sharon; Lagacé, Robert; Irwin, Jodi
2013-01-01
Insights into the human mitochondrial phylogeny have been primarily achieved by sequencing full mitochondrial genomes (mtGenomes). In forensic genetics (partial) mtGenome information can be used to assign haplotypes to their phylogenetic backgrounds, which may, in turn, have characteristic geographic distributions that would offer useful information in a forensic case. In addition and perhaps even more relevant in the forensic context, haplogroup-specific patterns of mutations form the basis for quality control of mtDNA sequences. The current method for establishing (partial) mtDNA haplotypes is Sanger-type sequencing (STS), which is laborious, time-consuming, and expensive. With the emergence of Next Generation Sequencing (NGS) technologies, the body of available mtDNA data can potentially be extended much more quickly and cost-efficiently. Customized chemistries, laboratory workflows and data analysis packages could support the community and increase the utility of mtDNA analysis in forensics. We have evaluated the performance of mtGenome sequencing using the Personal Genome Machine (PGM) and compared the resulting haplotypes directly with conventional Sanger-type sequencing. A total of 64 mtGenomes (>1 million bases) were established that yielded high concordance with the corresponding STS haplotypes (<0.02% differences). About two-thirds of the differences were observed in or around homopolymeric sequence stretches. In addition, the sequence alignment algorithm employed to align NGS reads played a significant role in the analysis of the data and the resulting mtDNA haplotypes. Further development of alignment software would be desirable to facilitate the application of NGS in mtDNA forensic genetics. PMID:23948325
Raina, Anupuma; Chaudhary, Garima; Dogra, Tirath Das; Khandelwal, Deepchand; Balayan, Ajay; Jain, Vandana; Kanga, Uma; Seth, Tulika
2016-04-01
Transfusion-associated graft-versus-host disease (TA-GVHD) is a rare condition. It can occur after blood transfusion in immune-compromised and occasionally even in immune-competent patients, and is associated with a mortality rate of >90%. The diagnosis of TA-GVHD is often delayed because of its non-specific clinical features. A case of an immune-competent child who developed TA-GVHD is reported here. DNA profiling (short tandem repeat analysis), a technique that has a wide application in forensic medicine, was performed to detect the presence of donor cells in this patient. The findings suggest that more studies are needed with this tool, and the diagnostic potential of using other multiple biological specimens for DNA profiling such as the hair follicle and buccal swab should be evaluated. This is the first case report where the donor's DNA fingerprinting pattern was substantiated from a patient's hair follicle sample. Chimerism was also present in the blood and buccal swab specimens. © The Author(s) 2015.
Picanço, Juliane Bentes; Raimann, Paulo Eduardo; Motta, Carlos Henrique Ares Silveira da; Rodenbusch, Rodrigo; Gusmão, Leonor; Alho, Clarice Sampaio
2015-05-01
Genotyping of polymorphic short tandem repeats (STRs) loci is widely used in forensic DNA analysis. STR loci eventually present tri-allelic pattern as a genotyping irregularity and, in that situation, the doubt about the tri-allele locus frequency calculation can reduce the analysis strength. In the TPOX human STR locus, tri-allelic genotypes have been reported with a widely varied frequency among human populations. We investigate whether there is a single extra allele (the third allele) in the TPOX tri-allelic pattern, what it is, and where it is, aiming to understand its genomic anatomy and to propose the knowledge of this TPOX extra allele from genetic profile, thus preserving the two standard TPOX alleles in forensic analyses. We looked for TPOX tri-allelic subjects in 75,113 Brazilian families. Considering only the parental generation (mother+father) we had 150,226 unrelated subjects evaluated. From this total, we found 88 unrelated subjects with tri-allelic pattern in the TPOX locus (0.06%; 88/150,226). Seventy three of these 88 subjects (73/88; 83%) had the Clayton's original Type 2 tri-allelic pattern (three peaks of even intensity). The remaining 17% (15/88) show a new Type 2 derived category with heterozygote peak imbalance (one double dose peak plus one regular sized peak). In this paper we present detailed data from 66 trios (mother+father+child) with true biological relationships. In 39 of these families (39/66; 59%) the extra TPOX allele was transmitted either from the mother or from the father to the child. Evidences indicated the allele 10 as the extra TPOX allele, and it is on the X chromosome. The present data, which support the previous Lane hypothesis, improve the knowledge about tri-allelic pattern of TPOX CODIS' locus allowing the use of TPOX profile in forensic analyses even when with tri-allelic pattern. This evaluation is now available for different forensic applications. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
An inter-laboratory comparison study on transfer, persistence and recovery of DNA from cable ties.
Steensma, Kristy; Ansell, Ricky; Clarisse, Lindy; Connolly, Edward; Kloosterman, Ate D; McKenna, Louise G; van Oorschot, Roland A H; Szkuta, Bianca; Kokshoorn, Bas
2017-11-01
To address questions on the activity that led to the deposition of biological traces in a particular case, general information on the probabilities of transfer, persistence and recovery of cellular material in relevant scenarios is necessary. These figures may be derived from experimental data described in forensic literature when conditions relevant to the case were included. The experimental methodology regarding sampling, DNA extraction, DNA typing and profile interpretation that were used to generate these published data may differ from those applied in the case and thus the applicability of the literature data may be questioned. To assess the level of variability that different laboratories obtain when similar exhibits are analysed, we performed an inter-laboratory study between four partner laboratories. Five sets of 20 cable ties bound by different volunteers were distributed to the participating laboratories and sampled and processed according to the in-house protocols. Differences were found for the amount of retrieved DNA, as well as for the reportability and composition of the DNA profiles. These differences also resulted in different probabilities of transfer, persistence and recovery for each laboratory. Nevertheless, when applied to a case example, these differences resulted in similar assignments of weight of evidence given activity-level propositions. Copyright © 2017 Elsevier B.V. All rights reserved.
New incompatibilities uncovered using the Promega DNA IQ™ chemistry.
Laurin, Nancy; Célestin, Florence; Clark, Meagan; Wilkinson, Della; Yamashita, Brian; Frégeau, Chantal
2015-12-01
Over the years, the Promega DNA IQ™ System was proven an effective technology for the production of clean DNA from a wide variety of casework specimens. The capture of DNA using the DNA IQ™ paramagnetic beads, however, was shown to be affected by a few specific chemicals that could be present on exhibits submitted to the laboratory. In this study, various blood and latent fingerprint enhancement reagents/methods, marker pens and adhesive tapes, applied at the crime scene or in the forensic laboratory on casework exhibits or used to collect biological material, were tested for their compatibility with the DNA IQ™ technology. Although no impact on DNA recovery was observed for most reagents, the MAGNA™ Jet Black fingerprint powder and three 3M Scotch(®) adhesive tapes were shown to severely or completely inhibit DNA binding onto the DNA IQ™ beads. The effect of MAGNA™ Jet Black on DNA recovery could be counteracted by separating the magnetic powder from the lysates by centrifugation or filtration, prior to DNA extraction. High quality STR profiles were obtained from samples subjected to MAGNA™ Jet Black suggesting it does not impact DNA integrity. Crown Copyright © 2015. Published by Elsevier Ireland Ltd. All rights reserved.
Zhao, Xing-Chun; Wang, Le; Sun, Jing; Jiang, Bo-Wei; Zhang, Er-Li; Ye, Jian
2016-01-01
Vaginal swabs taken in rape cases usually contain epithelial cells from the victim and sperm from the assailant and forensic DNA analysis requires separation of sperm from these cell mixtures. PH-20, which is a glycosylphosphatidylinositol-anchored hyaluronidase located on the head of sperm, has important functions in fertilization. Here we describe a newly developed method for sperm isolation using anti-PH-20 antibody-coupled immunomagnetic beads (anti-PH-20 IMBs). Optical microscopy and scanning electron microscopy showed the IMBs recognized the head of sperm specifically and exhibited a great capacity to capture sperm cells. However, we found it necessary to incubate the IMB-sperm complex with DNase I before sperm lysis in order to remove any female DNA completely. We compared the sensitivity of anti-PH-20 IMBs in sperm and epithelial cell discrimination to those coated with a different anti-sperm antibody (anti-SP-10, anti-ADAM2 or anti-JLP). Only the anti-PH-20 IMBs succeeded in isolating sperm from cell mixtures at a sperm/epithelial cell ratio of 103:105. Further, our method exhibited greater power and better stability for sperm isolation compared to the traditional differential lysis strategy. Taken together, the anti-PH-20 IMB method described here could be effective for the isolation of sperm needed to obtain a single-sourced DNA profile as an aid to identifying the perpetrator in sexual assault cases.
Zhao, Xing-Chun; Wang, Le; Sun, Jing; Jiang, Bo-Wei; Zhang, Er-Li; Ye, Jian
2016-01-01
Vaginal swabs taken in rape cases usually contain epithelial cells from the victim and sperm from the assailant and forensic DNA analysis requires separation of sperm from these cell mixtures. PH-20, which is a glycosylphosphatidylinositol-anchored hyaluronidase located on the head of sperm, has important functions in fertilization. Here we describe a newly developed method for sperm isolation using anti-PH-20 antibody-coupled immunomagnetic beads (anti-PH-20 IMBs). Optical microscopy and scanning electron microscopy showed the IMBs recognized the head of sperm specifically and exhibited a great capacity to capture sperm cells. However, we found it necessary to incubate the IMB–sperm complex with DNase I before sperm lysis in order to remove any female DNA completely. We compared the sensitivity of anti-PH-20 IMBs in sperm and epithelial cell discrimination to those coated with a different anti-sperm antibody (anti-SP-10, anti-ADAM2 or anti-JLP). Only the anti-PH-20 IMBs succeeded in isolating sperm from cell mixtures at a sperm/epithelial cell ratio of 103:105. Further, our method exhibited greater power and better stability for sperm isolation compared to the traditional differential lysis strategy. Taken together, the anti-PH-20 IMB method described here could be effective for the isolation of sperm needed to obtain a single-sourced DNA profile as an aid to identifying the perpetrator in sexual assault cases. PMID:27442128
Le Roux, Delphine; Root, Brian E; Reedy, Carmen R; Hickey, Jeffrey A; Scott, Orion N; Bienvenue, Joan M; Landers, James P; Chassagne, Luc; de Mazancourt, Philippe
2014-08-19
A system that automatically performs the PCR amplification and microchip electrophoretic (ME) separation for rapid forensic short tandem repeat (STR) forensic profiling in a single disposable plastic chip is demonstrated. The microchip subassays were optimized to deliver results comparable to conventional benchtop methods. The microchip process was accomplished in sub-90 min compared with >2.5 h for the conventional approach. An infrared laser with a noncontact temperature sensing system was optimized for a 45 min PCR compared with the conventional 90 min amplification time. The separation conditions were optimized using LPA-co-dihexylacrylamide block copolymers specifically designed for microchip separations to achieve accurate DNA size calling in an effective length of 7 cm in a plastic microchip. This effective separation length is less than half of other reports for integrated STR analysis and allows a compact, inexpensive microchip design. This separation quality was maintained when integrated with microchip PCR. Thirty samples were analyzed conventionally and then compared with data generated by the microfluidic chip system. The microfluidic system allele calling was 100% concordant with the conventional process. This study also investigated allelic ladder consistency over time. The PCR-ME genetic profiles were analyzed using binning palettes generated from two sets of allelic ladders run three and six months apart. Using these binning palettes, no allele calling errors were detected in the 30 samples demonstrating that a microfluidic platform can be highly consistent over long periods of time.
Li, Xue-Bo; Wang, Qing-Shan; Feng, Yu; Ning, Shu-Hua; Miao, Yuan-Ying; Wang, Ye-Quan; Li, Hong-Wei
2014-11-01
Forensic DNA analysis of sexual assault evidence requires unambiguous differentiation of DNA profiles in mixed samples. To investigate the feasibility of magnetic bead-based separation of sperm from cell mixtures using a monoclonal antibody against MOSPD3 (motile sperm domain-containing protein 3), 30 cell samples were prepared by mixing 10(4) female buccal epithelial cells with sperm cells of varying densities (10(3), 10(4), or 10(5) cells/mL). Western blot and immunofluorescence assays showed that MOSPD3 was detectable on the membrane of sperm cells, but not in buccal epithelial cells. After biotinylated MOSPD3 antibody was incubated successively with the prepared cell mixtures and avidin-coated magnetic beads, microscopic observation revealed that each sperm cell was bound by two or more magnetic beads, in the head, neck, mid-piece, or flagellum. A full single-source short tandem repeat profile could be obtained in 80% of mixed samples containing 10(3) sperm cells/mL and in all samples containing ≥10(4) sperm cells/mL. For dried vaginal swab specimens, the rate of successful detection was 100% in both flocked and cotton swabs preserved for 1 day, 87.5% in flocked swabs and 40% in cotton swabs preserved for 3 days, and 40% in flocked swabs and 16.67% in cotton swabs preserved for 10 days. Our findings suggest that immunomagnetic bead-based separation is potentially a promising alternative to conventional methods for isolating sperm cells from mixed forensic samples.
Farncombe, K M; Beresford, D; Kyle, C J
2014-07-01
Forensic entomology involves the use of insects and arthropods to assist a spectrum of medico-criminal investigations that range from identifying cases of abuse, corpse movements, and most commonly, post mortem interval estimates. Many of these applications focus on the use of blowflies given their predicable life history characteristics in their larval stages. Molecular tools have become increasingly important in the unambiguous identification of larval blowfly species, however, these same tools have the potential to broaden the array of molecular applications in forensic entomology to include individual identifications and population assignments. Herein, we establish a microsatellite profiling system for the blowfly, Phormiaregina (Diptera: Calliphoridae). The goal being to create a system to identify the population genetic structure of this species and subsequently establish if these data are amenable to identifying corpse movements based on the geographic distribution of specific genetic clusters of blowflies. Using next generation sequencing technology, we screened a partial genomic DNA sequence library of P.regina, searching for di-, tetra-, and penta-nucleotide microsatellite loci. We identified and developed primers for 84 highly repetitive segments of DNA, of which 14 revealed consistent genotypes and reasonable levels of genetic variation (4-26 alleles/locus; heterozygosity ranged from 0.385 to 0.909). This study provides the first step in assessing the utility of microsatellite markers to track the movements and sources of corpses via blowflies. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Current developments in forensic interpretation of mixed DNA samples (Review).
Hu, Na; Cong, Bin; Li, Shujin; Ma, Chunling; Fu, Lihong; Zhang, Xiaojing
2014-05-01
A number of recent improvements have provided contemporary forensic investigations with a variety of tools to improve the analysis of mixed DNA samples in criminal investigations, producing notable improvements in the analysis of complex trace samples in cases of sexual assult and homicide. Mixed DNA contains DNA from two or more contributors, compounding DNA analysis by combining DNA from one or more major contributors with small amounts of DNA from potentially numerous minor contributors. These samples are characterized by a high probability of drop-out or drop-in combined with elevated stutter, significantly increasing analysis complexity. At some loci, minor contributor alleles may be completely obscured due to amplification bias or over-amplification, creating the illusion of additional contributors. Thus, estimating the number of contributors and separating contributor genotypes at a given locus is significantly more difficult in mixed DNA samples, requiring the application of specialized protocols that have only recently been widely commercialized and standardized. Over the last decade, the accuracy and repeatability of mixed DNA analyses available to conventional forensic laboratories has greatly advanced in terms of laboratory technology, mathematical models and biostatistical software, generating more accurate, rapid and readily available data for legal proceedings and criminal cases.
Current developments in forensic interpretation of mixed DNA samples (Review)
HU, NA; CONG, BIN; LI, SHUJIN; MA, CHUNLING; FU, LIHONG; ZHANG, XIAOJING
2014-01-01
A number of recent improvements have provided contemporary forensic investigations with a variety of tools to improve the analysis of mixed DNA samples in criminal investigations, producing notable improvements in the analysis of complex trace samples in cases of sexual assult and homicide. Mixed DNA contains DNA from two or more contributors, compounding DNA analysis by combining DNA from one or more major contributors with small amounts of DNA from potentially numerous minor contributors. These samples are characterized by a high probability of drop-out or drop-in combined with elevated stutter, significantly increasing analysis complexity. At some loci, minor contributor alleles may be completely obscured due to amplification bias or over-amplification, creating the illusion of additional contributors. Thus, estimating the number of contributors and separating contributor genotypes at a given locus is significantly more difficult in mixed DNA samples, requiring the application of specialized protocols that have only recently been widely commercialized and standardized. Over the last decade, the accuracy and repeatability of mixed DNA analyses available to conventional forensic laboratories has greatly advanced in terms of laboratory technology, mathematical models and biostatistical software, generating more accurate, rapid and readily available data for legal proceedings and criminal cases. PMID:24748965
Hanson, E; Ingold, S; Haas, C; Ballantyne, J
2018-05-01
The recovery of a DNA profile from the perpetrator or victim in criminal investigations can provide valuable 'source level' information for investigators. However, a DNA profile does not reveal the circumstances by which biological material was transferred. Some contextual information can be obtained by a determination of the tissue or fluid source of origin of the biological material as it is potentially indicative of some behavioral activity on behalf of the individual that resulted in its transfer from the body. Here, we sought to improve upon established RNA based methods for body fluid identification by developing a targeted multiplexed next generation mRNA sequencing assay comprising a panel of approximately equal sized gene amplicons. The multiplexed biomarker panel includes several highly specific gene targets with the necessary specificity to definitively identify most forensically relevant biological fluids and tissues (blood, semen, saliva, vaginal secretions, menstrual blood and skin). In developing the biomarker panel we evaluated 66 gene targets, with a progressive iteration of testing target combinations that exhibited optimal sensitivity and specificity using a training set of forensically relevant body fluid samples. The current assay comprises 33 targets: 6 blood, 6 semen, 6 saliva, 4 vaginal secretions, 5 menstrual blood and 6 skin markers. We demonstrate the sensitivity and specificity of the assay and the ability to identify body fluids in single source and admixed stains. A 16 sample blind test was carried out by one lab with samples provided by the other participating lab. The blinded lab correctly identified the body fluids present in 15 of the samples with the major component identified in the 16th. Various classification methods are being investigated to permit inference of the body fluid/tissue in dried physiological stains. These include the percentage of reads in a sample that are due to each of the 6 tissues/body fluids tested and inter-sample differential gene expression revealed by agglomerative hierarchical clustering. Copyright © 2018 Elsevier B.V. All rights reserved.
Development of a 20-locus fluorescent multiplex system as a valuable tool for national DNA database.
Jiang, Xianhua; Guo, Fei; Jia, Fei; Jin, Ping; Sun, Zhu
2013-02-01
The multiplex system allows the detection of 19 autosomal short tandem repeat (STR) loci [including all Combined DNA Index System (CODIS) STR loci as well as D2S1338, D6S1043, D12S391, D19S433, Penta D and Penta E] plus the sex-determining locus Amelogenin in a single reaction, comprising all STR loci in various commercial kits used in the China national DNA database (NDNAD). Primers are designed so that the amplicons are distributed ranging from 90 base pairs (bp) to 450 bp within a five-dye fluorescent design with the fifth dye reserved for the internal size standard. With 30 cycles, 125 pg to 2 ng DNA template showed optimal profiling result, while robust profiles could also be achieved by adjusting the cycle numbers for the DNA template beyond that optimal DNA input range. Mixture studies showed that 83% and 87% of minor alleles were detected at 9:1 and 1:9 ratios, respectively. When 4 ng of degraded DNA was digested by 2-min DNase and 1 ng undegraded DNA was added to 400 μM haematin, the complete profiles were still observed. Polymerase chain reaction (PCR)-based procedures were examined and optimized including the concentrations of primer set, magnesium and the Taq polymerase as well as volume, cycle number and annealing temperature. In addition, the system has been validated by 3000 bloodstain samples and 35 common case samples in line with the Chinese National Standards and Scientific Working Group on DNA Analysis Methods (SWGDAM) guidelines. The total probability of identity (TPI) can reach to 8×10(-24), where DNA database can be improved at the level of 10 million DNA profiles or more because the number of expected match is far from one person (4×10(-10)) and can be negligible. Further, our system also demonstrates its good performance in case samples and it will be an ideal tool for forensic DNA typing and databasing with potential application. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Defense Biometric and Forensic Office Research, Development, Test and Evaluation Strategy
2015-01-06
investments in biometric and forensic RDT&E. From refining biometric modalities to exploring ‘ game changing’ forensic technologies such as rapid DNA to the... ASD (R&E)), is to identify, fund, manage and transition projects that support biometric and/or forensic requirements. In the second role, the DBFO...forensic stakeholders cannot fund, to the COIs for consideration. Increase contacts with ASD (R&E) divisions/laboratories focused on basic research
Li, X; Cai, J F; Guo, Y D; Xiong, F; Zhang, L; Feng, H; Meng, F M; Fu, Y; Li, J B; Chen, Y Q
2011-08-01
Insect larvae and adult insects found on human corpses can provide important forensic evidence however it is useful to be able to prove evidence of association. Without this, it could be claimed that the insect evidence was a contaminant or had been planted on the body. This paper describes how mitochondrial DNA (mtDNA) and STR analysis of the crop contents of larvae of the blowfly Aldrichina grahami collected from separated body parts was used to provide evidence of association.
Allele frequencies for 13 STRs loci in a Western Anatolia population and their forensic evaluation.
Baransel Isir, Aysun; Ozkorkmaz, Abdulmuttalip; Pehlivan, Sacide
2015-01-01
Numerous studies demonstrated that STRs have become powerful tools in forensic case work. To profile DNA samples from 104 Turkish males for 13 autosomal, STR markers intended for human identification purposes and to estimate the allele frequency distribution in forensic cases in a Turkish population. Thirteen autosomal STR loci, namely D3S1358, D2S1338, D16S539, D8S1179, D21S11, D18S51, TH01, D13S317, D7S820, CSF1PO, TPOX, D5S818 and FGA, were analysed in a sample of 104 healthy and unrelated Turkish individuals who have been living in the city of İzmir. All loci were amplified by using AmpFlSTR Identifier Kit. Genetic analysis was carried out on an ABI PRISM 310 Genetic Analyser. For each locus, 6-15 alleles were found with frequencies ranging from 0.005-0.514 and heterozygosities ranging from 0.686-0.868. The PIC value was highly significant (0.999). The 13 STR loci in the AmpFlSTR Identifier Kit are suitable for forensic identification and paternity tests due to high heterozygosity. The observed PD value is sufficiently high for human identification purposes. In conclusion, the 13 STR loci seem to be useful markers for personal identification and forensic case work in the Turkish population. The results also demonstrate the importance of region-specific studies.
Bandelt, Hans-Jürgen; Kloss-Brandstätter, Anita; Richards, Martin B; Yao, Yong-Gang; Logan, Ian
2014-02-01
Since the determination in 1981 of the sequence of the human mitochondrial DNA (mtDNA) genome, the Cambridge Reference Sequence (CRS), has been used as the reference sequence to annotate mtDNA in molecular anthropology, forensic science and medical genetics. The CRS was eventually upgraded to the revised version (rCRS) in 1999. This reference sequence is a convenient device for recording mtDNA variation, although it has often been misunderstood as a wild-type (WT) or consensus sequence by medical geneticists. Recently, there has been a proposal to replace the rCRS with the so-called Reconstructed Sapiens Reference Sequence (RSRS). Even if it had been estimated accurately, the RSRS would be a cumbersome substitute for the rCRS, as the new proposal fuses--and thus confuses--the two distinct concepts of ancestral lineage and reference point for human mtDNA. Instead, we prefer to maintain the rCRS and to report mtDNA profiles by employing the hitherto predominant circumfix style. Tree diagrams could display mutations by using either the profile notation (in conventional short forms where appropriate) or in a root-upwards way with two suffixes indicating ancestral and derived nucleotides. This would guard against misunderstandings about reporting mtDNA variation. It is therefore neither necessary nor sensible to change the present reference sequence, the rCRS, in any way. The proposed switch to RSRS would inevitably lead to notational chaos, mistakes and misinterpretations.
Recovery of latent fingerprints and DNA on human skin.
Färber, Doris; Seul, Andrea; Weisser, Hans-Joachim; Bohnert, Michael
2010-11-01
The project "Latent Fingerprints and DNA on Human Skin" was the first systematic research in Europe dealing with detection of fingerprints and DNA left by offenders on the skin of corpses. One thousand samples gave results that allow general statements on the materials and methods used. The tests were carried out according to a uniform trial structure. Fingerprints were deposited by natural donors on corpses. The latent fingerprints were treated with magnetic powder or black fingerprint powder. Afterward, they were lifted with silicone casting material (Isomark(®)) or gelatine foil. All lifts were swabbed to recover DNA. It was possible to visualize comparable and identifiable fingerprints on the skin of corpses (16%). In the same categories, magnetic powder (18.4%) yielded better results than black fingerprint powder (13.6%). The number of comparable and identifiable fingerprints decreased on the lifts (12.7%). Isomark(®) (14.9%) was the better lifting material in comparison with gelatine foil (10.1%). In one-third of the samples, DNA could be extracted from the powdered and lifted latents. Black fingerprint powder delivered the better result with a rate of 2.2% for full DNA profiles and profiles useful for exclusion in comparison with 1.8% for the magnetic powder traces. Isomark(®) (3.1%) yielded better results than gelatine foil (0.6%). © 2010 American Academy of Forensic Sciences.
Pineda, Gina M; Montgomery, Anne H; Thompson, Robyn; Indest, Brooke; Carroll, Marion; Sinha, Sudhir K
2014-11-01
There is a constant need in forensic casework laboratories for an improved way to increase the first-pass success rate of forensic samples. The recent advances in mini STR analysis, SNP, and Alu marker systems have now made it possible to analyze highly compromised samples, yet few tools are available that can simultaneously provide an assessment of quantity, inhibition, and degradation in a sample prior to genotyping. Currently there are several different approaches used for fluorescence-based quantification assays which provide a measure of quantity and inhibition. However, a system which can also assess the extent of degradation in a forensic sample will be a useful tool for DNA analysts. Possessing this information prior to genotyping will allow an analyst to more informatively make downstream decisions for the successful typing of a forensic sample without unnecessarily consuming DNA extract. Real-time PCR provides a reliable method for determining the amount and quality of amplifiable DNA in a biological sample. Alu are Short Interspersed Elements (SINE), approximately 300bp insertions which are distributed throughout the human genome in large copy number. The use of an internal primer to amplify a segment of an Alu element allows for human specificity as well as high sensitivity when compared to a single copy target. The advantage of an Alu system is the presence of a large number (>1000) of fixed insertions in every human genome, which minimizes the individual specific variation possible when using a multi-copy target quantification system. This study utilizes two independent retrotransposon genomic targets to obtain quantification of an 80bp "short" DNA fragment and a 207bp "long" DNA fragment in a degraded DNA sample in the multiplex system InnoQuant™. The ratio of the two quantitation values provides a "Degradation Index", or a qualitative measure of a sample's extent of degradation. The Degradation Index was found to be predictive of the observed loss of STR markers and alleles as degradation increases. Use of a synthetic target as an internal positive control (IPC) provides an additional assessment for the presence of PCR inhibitors in the test sample. In conclusion, a DNA based qualitative/quantitative/inhibition assessment system that accurately predicts the status of a biological sample, will be a valuable tool for deciding which DNA test kit to utilize and how much target DNA to use, when processing compromised forensic samples for DNA testing. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Joki-Erkkilä, Minna; Tuomisto, Sari; Seppänen, Mervi; Huhtala, Heini; Ahola, Arja; Rainio, Juha; Karhunen, Pekka J
2014-10-01
The purpose of the research was to evaluate gynecological evidence collection techniques; the benefit of cervical canal brush sample compared to vaginal fornix and cervical swab samples and the time frame for detecting Y-chromosomal material QiAmp DNA Mini Kit(®) and Quantifiler Y Human Male DNA Quantification Kit(®) in adult volunteers following consensual intercourse. Eighty-four adult female volunteers following consensual intercourse were recruited for the study. By combining all sample collecting techniques, 81.0% of the volunteers were Y-DNA positive. Up to 60 h the conventional swab sampling techniques detected more Y-DNA positive samples when compared to the brush technique. However, after 60 h, the cervical canal brush sample technique showed its benefit by detecting 27.3% (6/22) of Y-DNA positive samples, which were Y-DNA negative in both conventional swab sampling techniques. By combining swab and brush techniques, 75% of the volunteers were still Y-DNA positive in 72-144 post-coital hours. The rate of measurable Y-DNA decreased approximately 3% per hour. Despite reported consensual intercourse, 6.8% (3/44) of volunteers were Y-DNA negative within 48 h. Y-DNA was not detected after 144 post-coital hours (6 days). In conclusion, the brush as a forensic evidence collection method may provide additional biological trace evidence from the cervical canal, although the best biological trace evidence collection can be obtained by combining all three sampling techniques. The time frame for gynecological forensic evidence sample collection should be considered to be at least a week if sexual violence is suspected. Copyright © 2014 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
Kirgiz, Irina A; Calloway, Cassandra
2017-04-01
Tape lifting and FTA paper scraping methods were directly compared to traditional double swabbing for collecting touch DNA from car steering wheels (n = 70 cars). Touch DNA was collected from the left or right side of each steering wheel (randomized) using two sterile cotton swabs, while the other side was sampled using water-soluble tape or FTA paper cards. DNA was extracted and quantified in duplicate using qPCR. Quantifiable amounts of DNA were detected for 100% of the samples (n = 140) collected independent of the method. However, the DNA collection yield was dependent on the collection method. A statistically significant difference in DNA yield was observed between FTA scraping and double swabbing methods (p = 0.0051), with FTA paper collecting a two-fold higher amount. Statistical analysis showed no significant difference in DNA yields between the double swabbing and tape lifting techniques (p = 0.21). Based on the DNA concentration required for 1 ng input, 47% of the samples collected using FTA paper would be expected to yield a short tandem repeat (STR) profile compared to 30% and 23% using double swabbing or tape, respectively. Further, 55% and 77% of the samples collected using double swabbing or tape, respectively, did not yield a high enough DNA concentration for the 0.5 ng of DNA input recommended for conventional STR kits and would be expected to result in a partial or no profile compared to 35% of the samples collected using FTA paper. STR analysis was conducted for a subset of the higher concentrated samples to confirm that the DNA collected from the steering wheel was from the driver. 32 samples were selected with DNA amounts of at least 1 ng total DNA (100 pg/μl when concentrated if required). A mixed STR profile was observed for 26 samples (88%) and the last driver was the major DNA contributor for 29 samples (94%). For one sample, the last driver was the minor DNA contributor. A full STR profile of the last driver was observed for 21 samples (69%) and a partial profile was observed for nine samples (25%); STR analysis failed for two samples collected using tape (6%). In conclusion, we show that the FTA paper scraping method has the potential to collect higher DNA yields from touch DNA evidence deposited on non-porous surfaces often encountered in criminal cases compared to conventional methods. Copyright © 2017 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
Santos, C; Fondevila, M; Ballard, D; Banemann, R; Bento, A M; Børsting, C; Branicki, W; Brisighelli, F; Burrington, M; Capal, T; Chaitanya, L; Daniel, R; Decroyer, V; England, R; Gettings, K B; Gross, T E; Haas, C; Harteveld, J; Hoff-Olsen, P; Hoffmann, A; Kayser, M; Kohler, P; Linacre, A; Mayr-Eduardoff, M; McGovern, C; Morling, N; O'Donnell, G; Parson, W; Pascali, V L; Porto, M J; Roseth, A; Schneider, P M; Sijen, T; Stenzl, V; Court, D Syndercombe; Templeton, J E; Turanska, M; Vallone, P M; Oorschot, R A H van; Zatkalikova, L; Carracedo, Á; Phillips, C
2015-11-01
There is increasing interest in forensic ancestry tests, which are part of a growing number of DNA analyses that can enhance routine profiling by obtaining additional genetic information about unidentified DNA donors. Nearly all ancestry tests use single nucleotide polymorphisms (SNPs), but these currently rely on SNaPshot single base extension chemistry that can fail to detect mixed DNA. Insertion-deletion polymorphism (Indel) tests have been developed using dye-labeled primers that allow direct capillary electrophoresis detection of PCR products (PCR-to-CE). PCR-to-CE maintains the direct relationship between input DNA and signal strength as each marker is detected with a single dye, so mixed DNA is more reliably detected. We report the results of a collaborative inter-laboratory exercise of 19 participants (15 from the EDNAP European DNA Profiling group) that assessed a 34-plex SNP test using SNaPshot and a 46-plex Indel test using PCR-to-CE. Laboratories were asked to type five samples with different ancestries and detect an additional mixed DNA sample. Statistical inference of ancestry was made by participants using the Snipper online Bayes analysis portal plus an optional PCA module that analyzes the genotype data alongside calculation of Bayes likelihood ratios. Exercise results indicated consistent genotyping performance from both tests, reaching a particularly high level of reliability for the Indel test. SNP genotyping gave 93.5% concordance (compared to the organizing laboratory's data) that rose to 97.3% excluding one laboratory with a large number of miscalled genotypes. Indel genotyping gave a higher concordance rate of 99.8% and a reduced no-call rate compared to SNP analysis. All participants detected the mixture from their Indel peak height data and successfully assigned the correct ancestry to the other samples using Snipper, with the exception of one laboratory with SNP miscalls that incorrectly assigned ancestry of two samples and did not obtain informative likelihood ratios for a third. Therefore, successful ancestry assignments were achieved by participants in 92 of 95 Snipper analyses. This exercise demonstrates that ancestry inference tests based on binary marker sets can be readily adopted by laboratories that already have well-established CE regimes in place. The Indel test proved to be easy to use and allowed all exercise participants to detect the DNA mixture as well as achieving complete and concordant profiles in nearly all cases. Lastly, two participants successfully ran parallel next-generation sequencing analyses (each using different systems) and achieved high levels of genotyping concordance using the exercise PCR primer mixes unmodified. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
A high-throughput Sanger strategy for human mitochondrial genome sequencing
2013-01-01
Background A population reference database of complete human mitochondrial genome (mtGenome) sequences is needed to enable the use of mitochondrial DNA (mtDNA) coding region data in forensic casework applications. However, the development of entire mtGenome haplotypes to forensic data quality standards is difficult and laborious. A Sanger-based amplification and sequencing strategy that is designed for automated processing, yet routinely produces high quality sequences, is needed to facilitate high-volume production of these mtGenome data sets. Results We developed a robust 8-amplicon Sanger sequencing strategy that regularly produces complete, forensic-quality mtGenome haplotypes in the first pass of data generation. The protocol works equally well on samples representing diverse mtDNA haplogroups and DNA input quantities ranging from 50 pg to 1 ng, and can be applied to specimens of varying DNA quality. The complete workflow was specifically designed for implementation on robotic instrumentation, which increases throughput and reduces both the opportunities for error inherent to manual processing and the cost of generating full mtGenome sequences. Conclusions The described strategy will assist efforts to generate complete mtGenome haplotypes which meet the highest data quality expectations for forensic genetic and other applications. Additionally, high-quality data produced using this protocol can be used to assess mtDNA data developed using newer technologies and chemistries. Further, the amplification strategy can be used to enrich for mtDNA as a first step in sample preparation for targeted next-generation sequencing. PMID:24341507
Iuvaro, Alessandra; Bini, Carla; Dilloo, Silvia; Sarno, Stefania; Pelotti, Susi
2018-04-17
The collection of biological debris beneath fingernails can be useful in forensic casework when a struggle between the victim and the offender is suspected. In the present study, we set up a controlled scratching experiment in which female volunteers scratched the male volunteers' forearms, simulating a defensive action during an assault. A total of 160 fingernail samples were collected: 80 "control samples" before the scratching, 40 samples immediately after the scratching (t = 0 h), and 40 samples 5 h after the scratching (t = 5 h). The aim was to evaluate, using a real-time PCR approach and Y-STR profiling, the transfer and the persistence of male DNA under female fingernails after scratching. A significant reduction in DNA yield was observed between fingernail samples collected immediately and those collected 5 h after scratching, with a corresponding decrease in Y-STR profile quality. Overall, 38/40 (95%) of the fingernail samples collected immediately (t = 0 h) and 24/40 (60%) of those collected 5 h later (t = 5 h) were suitable for comparison and the scratched male volunteers could not be excluded as donors of the foreign DNA from 37 (92.5%) of the t = 0 h and from 10 (25%) of the t = 5 h profiles. The analysis of male DNA under female fingernails showed that Y-chromosome STR typing may provide extremely valuable genetic information of the male contributor(s), although 5 h after scratching the profile of the scratched male was lost in three-quarters of samples.
Mishra, Sudhanshu; Singh, Sujeet Kumar; Munjal, Ashok Kumar; Aspi, Jouni; Goyal, Surendra Prakash
2014-01-03
In India, six landscapes and source populations that are important for long-term conservation of Bengal tigers (Panthera tigris tigris) have been identified. Except for a few studies, nothing is known regarding the genetic structure and extent of gene flow among most of the tiger populations across India as the majority of them are small, fragmented and isolated. Thus, individual-based relationships are required to understand the species ecology and biology for planning effective conservation and genetics-based individual identification has been widely used. But this needs screening and describing characteristics of microsatellite loci from DNA from good-quality sources so that the required number of loci can be selected and the genotyping error rate minimized. In the studies so far conducted on the Bengal tiger, a very small number of loci (n = 35) have been tested with high-quality source of DNA, and information on locus-specific characteristics is lacking. The use of such characteristics has been strongly recommended in the literature to minimize the error rate and by the International Society for Forensic Genetics (ISFG) for forensic purposes. Therefore, we describe for the first time locus-specific genetic and genotyping profile characteristics, crucial for population genetic studies, using high-quality source of DNA of the Bengal tiger. We screened 39 heterologous microsatellite loci (Sumatran tiger, domestic cat, Asiatic lion and snow leopard) in captive individuals (n = 8), of which 21 loci are being reported for the first time in the Bengal tiger, providing an additional choice for selection. The mean relatedness coefficient (R = -0.143) indicates that the selected tigers were unrelated. Thirty-four loci were polymorphic, with the number of alleles ranging from 2 to 7 per locus, and the remaining five loci were monomorphic. Based on the PIC values (> 0.500), and other characteristics, we suggest that 16 loci (3 to 7 alleles) be used for genetic and forensic study purposes. The probabilities of matching genotypes of unrelated individuals (3.692 × 10(-19)) and siblings (4.003 × 10(-6)) are within the values needed for undertaking studies in population genetics, relatedness, sociobiology and forensics.
Fredericks, Jamie D; Ringrose, Trevor J; Dicken, Anthony; Williams, Anna; Bennett, Phil
2015-03-01
Extracting viable DNA from many forensic sample types can be very challenging, as environmental conditions may be far from optimal with regard to DNA preservation. Consequently, skeletal tissue can often be an invaluable source of DNA. The bone matrix provides a hardened material that encapsulates DNA, acting as a barrier to environmental insults that would otherwise be detrimental to its integrity. However, like all forensic samples, DNA in bone can still become degraded in extreme conditions, such as intense heat. Extracting DNA from bone can be laborious and time-consuming. Thus, a lot of time and money can be wasted processing samples that do not ultimately yield viable DNA. We describe the use of colorimetry as a novel diagnostic tool that can assist DNA analysis from heat-treated bone. This study focuses on characterizing changes in the material and physical properties of heated bone, and their correlation with digitally measured color variation. The results demonstrate that the color of bone, which serves as an indicator of the chemical processes that have occurred, can be correlated with the success or failure of subsequent DNA amplification. Copyright © 2014 Forensic Science Society. Published by Elsevier Ireland Ltd. All rights reserved.
ERIC Educational Resources Information Center
Harron, Jason; Langdon, John; Gonzalez, Jennifer; Cater, Scott
2017-01-01
The term forensic science may evoke thoughts of blood-spatter analysis, DNA testing, and identifying molds, spores, and larvae. A growing part of this field, however, is that of digital forensics, involving techniques with clear connections to math and physics. This article describes a five-part project involving smartphones and the investigation…
[Advances of forensic entomology in China].
Lan, Ling-mei; Liao, Zhi-gang; Chen, Yao-qing; Yao, Yue; Li, Jian-bo; Li, Mao-yang; Cai, Ji-feng
2006-12-01
Forensic entomology is a branch of forensic medicine, which applies studies of insects and arthropods to getting evidence for court and has an analogous advantage in the estimation of the postmortem interval (PMI) and other questions of forensic relevance. The paper expounds its definition and contents and reviews some progress of the studies in some aspects in China such as the constitution and succession of insect community on the different cadavers, the applications of morphological features of insects and the technology of analysis of deoxyribonucleic acid (DNA) in forensic entomology, and forensic entomological toxicology etc.
Optimizing direct amplification of forensic commercial kits for STR determination.
Caputo, M; Bobillo, M C; Sala, A; Corach, D
2017-04-01
Direct DNA amplification in forensic genotyping reduces analytical time when large sample sets are being analyzed. The amplification success depends mainly upon two factors: on one hand, the PCR chemistry and, on the other, the type of solid substrate where the samples are deposited. We developed a workflow strategy aiming to optimize times and cost when starting from blood samples spotted onto diverse absorbent substrates. A set of 770 blood samples spotted onto Blood cards, Whatman ® 3 MM paper, FTA™ Classic cards, and Whatman ® Grade 1 was analyzed by a unified working strategy including a low-cost pre-treatment, a PCR amplification volume scale-down, and the use of the 3500 Genetic Analyzer as the analytical platform. Samples were analyzed using three different commercial multiplex STR direct amplification kits. The efficiency of the strategy was evidenced by a higher percentage of high-quality profiles obtained (over 94%), a reduced number of re-injections (average 3.2%), and a reduced amplification failure rate (lower than 5%). Average peak height ratio among different commercial kits was 0.91, and the intra-locus balance showed values ranging from 0.92 to 0.94. A comparison with previously reported results was performed demonstrating the efficiency of the proposed modifications. The protocol described herein showed high performance, producing optimal quality profiles, and being both time and cost effective. Copyright © 2017 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
Malignant Tumors and Forensics – Dilemmas and Proposals
Budimlija, Zoran; Lu, Connie; Axler-DiPerte, Grace; Seifarth, Jessica; Popiolek, Dorota; Fogt, Franz; Prinz, Mechthild
2009-01-01
Aim To evaluate the effect of genetic instability and degradation in archived histology samples from cancerous tumors and to investigate the validity of short tandem repeat (STR) typing of these samples and its potential effect on human identification. Methods Two hundred and twenty eight slides of archival pathology tissues from 13 different types of malignant tumors were compared with healthy tissues from the same individuals. DNA analysis was performed using standard techniques for forensic STR analysis, PowerPlex®16 and Identifiler® on 2 distinct sample sets. Genetic instability was assessed by comparing reference tissues with cancerous tissues derived from the same individual. Loss of heterozygosity, a ≥50% reduction in heterozygosity ratio between healthy and diseased samples, and microsatellite instability, the presence of an additional allele not present in reference tissue, were assessed. The quality of profiles obtained with respect to completeness among the archived samples and degradation using the 2 platforms were also compared. Results Profiles obtained using the Identifiler® system were generally more complete, but showed 3-fold higher levels of instability (86%) than those obtained using PowerPlex® 16 (27%). Instances of genetic instability were distributed throughout all loci in both multiplex STR systems. Conclusion After having compared 2 widely used forensic chemistries, we suggest individual validation of each kit for use with samples likely to exhibit instability combined with fixation induced degradation or artifact. A “one size fits all” approach for interpretation of these samples among commercially available multiplexes is not recommended. PMID:19480018
Study of microtip-based extraction and purification of DNA from human samples for portable devices
NASA Astrophysics Data System (ADS)
Fotouhi, Gareth
DNA sample preparation is essential for genetic analysis. However, rapid and easy-to-use methods are a major challenge to obtaining genetic information. Furthermore, DNA sample preparation technology must follow the growing need for point-of-care (POC) diagnostics. The current use of centrifuges, large robots, and laboratory-intensive protocols has to be minimized to meet the global challenge of limited access healthcare by bringing the lab to patients through POC devices. To address these challenges, a novel extraction method of genomic DNA from human samples is presented by using heat-cured polyethyleneimine-coated microtips generating a high electric field. The microtip extraction method is based on recent work using an electric field and capillary action integrated into an automated device. The main challenges to the method are: (1) to obtain a stable microtip surface for the controlled capture and release of DNA and (2) to improve the recovery of DNA from samples with a high concentration of inhibitors, such as human samples. The present study addresses these challenges by investigating the heat curing of polyethyleneimine (PEI) coated on the surface of the microtip. Heat-cured PEI-coated microtips are shown to control the capture and release of DNA. Protocols are developed for the extraction and purification of DNA from human samples. Heat-cured PEI-coated microtip methods of DNA sample preparation are used to extract genomic DNA from human samples. It is discovered through experiment that heat curing of a PEI layer on a gold-coated surface below 150°C could inhibit the signal of polymerase chain reaction (PCR). Below 150°C, the PEI layer is not completely cured and dissolved off the gold-coated surface. Dissolved PEI binds with DNA to inhibit PCR. Heat curing of a PEI layer above 150°C on a gold-coated surface prevents inhibition to PCR and gel electrophoresis. In comparison to gold-coated microtips, the 225°C-cured PEI-coated microtips improve the recovery of DNA to 45% efficiency. Furthermore, the 225°C-cured PEI-coated microtips recover more DNA than gold-coated microtips when the surface is washed. Heat-cured (225°C) PEI-coated microtips are used for the recovery of human genomic DNA from whole blood. A washing protocol is developed to remove inhibiting particles bound to the PEI-coated microtip surface after DNA extraction. From 1.25 muL of whole blood, an average of 1.83 ng of human genomic DNA is captured, purified, and released using a 225°C-cured PEI-coated microtip in less than 30 minutes. The extracted DNA is profiled by short tandem repeat analysis (STR). For forensic and medical applications, genomic DNA is extracted from dried samples using heat-cured PEI-coated microtips that are integrated into an automated device. DNA extraction from dried samples is critical for forensics. The use of dried samples in the medical field is increasing because dried samples are convenient for storage, biosafety, and contamination. The main challenge is the time required to properly extract DNA in a purified form. Typically, a 1 hour incubation period is required to complete this process. Overnight incubation is sometimes necessary. To address this challenge, a pre-extraction washing step is investigated to remove inhibiting particles from dried blood spots (DBS) before DNA is released from dried form into solution for microtip extraction. The developed protocol is expanded to extract DNA from a variety of dried samples including nasal swabs, buccal swabs, and other forensic samples. In comparison to a commercial kit, the microtip-based extraction reduced the processing time from 1.5 hours to 30 minutes or less with an equivalent concentration of extracted DNA from dried blood spots. The developed assay will benefit genetic studies on newborn screening, forensic investigation, and POC diagnostics.
Turchi, Chiara; Stanciu, Florin; Paselli, Giorgia; Buscemi, Loredana; Parson, Walther; Tagliabracci, Adriano
2016-09-01
To evaluate the pattern of Romanian population from a mitochondrial perspective and to establish an appropriate mtDNA forensic database, we generated a high-quality mtDNA control region dataset from 407 Romanian subjects belonging to four major historical regions: Moldavia, Transylvania, Wallachia and Dobruja. The entire control region (CR) was analyzed by Sanger-type sequencing assays and the resulting 306 different haplotypes were classified into haplogroups according to the most updated mtDNA phylogeny. The Romanian gene pool is mainly composed of West Eurasian lineages H (31.7%), U (12.8%), J (10.8%), R (10.1%), T (9.1%), N (8.1%), HV (5.4%),K (3.7%), HV0 (4.2%), with exceptions of East Asian haplogroup M (3.4%) and African haplogroup L (0.7%). The pattern of mtDNA variation observed in this study indicates that the mitochondrial DNA pool is geographically homogeneous across Romania and that the haplogroup composition reveals signals of admixture of populations of different origin. The PCA scatterplot supported this scenario, with Romania located in southeastern Europe area, close to Bulgaria and Hungary, and as a borderland with respect to east Mediterranean and other eastern European countries. High haplotype diversity (0.993) and nucleotide diversity indices (0.00838±0.00426), together with low random match probability (0.0087) suggest the usefulness of this control region dataset as a forensic database in routine forensic mtDNA analysis and in the investigation of maternal genetic lineages in the Romanian population. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Budimlija, Zoran M; Prinz, Mechthild K; Zelson-Mundorff, Amy; Wiersema, Jason; Bartelink, Eric; MacKinnon, Gaille; Nazzaruolo, Bianca L; Estacio, Sheila M; Hennessey, Michael J; Shaler, Robert C
2003-06-01
To present individual body identification efforts, as part of the World Trade Center (WTC) mass disaster identification project. More than 500 samples were tested by using polymerase chain reaction (PCR) amplification and short tandem repeat (STR) typing. The extent to which the remains were fragmented and affected by taphonomic factors complicated the identification project. Anthropologists reviewed 19,000 samples, and detected inconsistencies in 69, which were further split into 239 new cases and re-sampled by DNA specialists. The severity and nature of the disaster required an interdisciplinary effort. DNA profiling of 500 samples was successful in 75% of the cases. All discrepancies, which occurred between bone and tissue samples taken from the same body part, were resolved by re-sampling and re-testing of preferably bone tissue. Anthropologists detected inconsistencies in 69 cases, which were then split into 239 new cases. Out of 125 "split" cases, 65 were excluded from their original case. Of these 65 cases, 37 did not match any profiles in M-FISys, probably because profiles were incomplete or no exemplar for the victim was available. Out of the 60 remains not excluded from their original case, 30 were partial profiles and did not reach the statistical requirement to match their original case, because the population frequency of the DNA profile had to be =1 in 10(9) for men and =1 in 10(8) for women. Due to transfer of soft tissue and other commingling of remains, DNA testing alone would have led to problems if only soft tissue would have been tested. This was one of the reasons that forensic anthropologists were needed to evaluate the consistency between all linked body parts. Especially in disasters with a high potential for commingling, the described anthropological review process should be part of the investigation.
The Extraction and Recovery Efficiency of Pure DNA for Different Types of Swabs.
Bruijns, Brigitte B; Tiggelaar, Roald M; Gardeniers, Han
2018-06-11
The extraction and recovery efficiency of swabs used to collect evidence at crime scenes is relatively low (typically <50%) for bacterial spores and body fluids. Cell-free deoxyribonucleic acid (DNA) is an interesting alternative compared to whole cells as a source for forensic analysis, but extraction and recovery from swabs has not been tested before using pure DNA. In this study cotton, foam, nylon flocked, polyester and rayon swabs are investigated in order to collect pure DNA isolated from saliva samples. The morphology and absorption capacity of swabs is studied. Extraction and recovery efficiencies are determined and compared to the maximum theoretical efficiency. The results indicate that a substantial part of DNA is not extracted from the swab and some types of swab seem to bind effectively with DNA. The efficiency of the different types of swab never exceeds 50%. The nylon flocked 4N6FLOQSwab used for buccal sampling performs the best. © 2018 The Authors. Journal of Forensic Sciences published by Wiley Periodicals, Inc. on behalf of American Academy of Forensic Sciences.
Han, Jun P; Sun, Jing; Wang, Le; Liu, Peng; Zhuang, Bin; Zhao, Lei; Liu, Yao; Li, Cai X
2017-11-01
Microfluidic chips offer significant speed, cost, and sensitivity advantages, but numerous parameters must be optimized to provide microchip electrophoresis detection. Experiments were conducted to study the factors, including sieving matrices (the concentration and type), surface modification, analysis temperature, and electric field strengths, which all impact the effectiveness of microchip electrophoresis detection of DNA samples. Our results showed that the best resolution for ssDNA was observed using 4.5% w/v (7 M urea) lab-fabricated LPA gel, dynamic wall coating of the microchannel, electrophoresis temperatures between 55 and 60°C, and electrical fields between 350 and 450 V/cm on the microchip-based capillary electrophoresis (μCE) system. One base-pair resolution could be achieved in the 19-cm-length microchannel. Furthermore, both 9947A standard genomic DNA and DNA extracted from blood spots were demonstrated to be successfully separated with well-resolved DNA peaks in 8 min. Therefore, the microchip electrophoresis system demonstrated good potential for rapid forensic DNA analysis. © 2017 American Academy of Forensic Sciences.
Identification of the skeletal remains of a murder victim by DNA analysis.
Hagelberg, E; Gray, I C; Jeffreys, A J
1991-08-01
There is considerable anthropological and forensic interest in the possibility of DNA typing skeletal remains. Trace amounts of DNA can be recovered even from 5,500-year-old bones and multicopy human mitochondrial DNA sequences can frequently be amplified from such DNA using the polymerase chain reaction (PCR). But given the sensitivity of PCR, it is very difficult to exclude contaminating material. We now report the successful identification of the 8-year-old skeletal remains of a murder victim, by comparative typing of nuclear microsatellite markers in the remains and in the presumptive parents of the victim. This analysis establishes the authenticity of the bone DNA and the feasibility of bone DNA typing in forensic investigations.
Curriculum and Course Materials for a Forensic DNA Biology Course
ERIC Educational Resources Information Center
Elkins, Kelly M.
2014-01-01
The Forensic Science Education Programs Accreditation Commission (FEPAC) requires accredited programs offer a "coherent curriculum" to ensure each student gains a "thorough grounding of the natural…sciences." Part of this curriculum includes completion of a minimum of 15 semester-hours forensic science coursework, nine of which…
NASA Astrophysics Data System (ADS)
Millard, Julie T.; Pilon, André M.
2003-04-01
A recent forensic approach for identification of unknown biological samples is mitochondrial DNA (mtDNA) sequencing. We describe a laboratory exercise suitable for an undergraduate biochemistry course in which the polymerase chain reaction is used to amplify a 440 base pair hypervariable region of human mtDNA from a variety of "crime scene" samples (e.g., teeth, hair, nails, cigarettes, envelope flaps, toothbrushes, and chewing gum). Amplification is verified via agarose gel electrophoresis and then samples are subjected to cycle sequencing. Sequence alignments are made via the program CLUSTAL W, allowing students to compare samples and solve the "crime."
Amelogenin test: From forensics to quality control in clinical and biochemical genomics.
Francès, F; Portolés, O; González, J I; Coltell, O; Verdú, F; Castelló, A; Corella, D
2007-01-01
The increasing number of samples from the biomedical genetic studies and the number of centers participating in the same involves increasing risk of mistakes in the different sample handling stages. We have evaluated the usefulness of the amelogenin test for quality control in sample identification. Amelogenin test (frequently used in forensics) was undertaken on 1224 individuals participating in a biomedical study. Concordance between referred sex in the database and amelogenin test was estimated. Additional sex-error genetic detecting systems were developed. The overall concordance rate was 99.84% (1222/1224). Two samples showed a female amelogenin test outcome, being codified as males in the database. The first, after checking sex-specific biochemical and clinical profile data was found to be due to a codification error in the database. In the second, after checking the database, no apparent error was discovered because a correct male profile was found. False negatives in amelogenin male sex determination were discarded by additional tests, and feminine sex was confirmed. A sample labeling error was revealed after a new DNA extraction. The amelogenin test is a useful quality control tool for detecting sex-identification errors in large genomic studies, and can contribute to increase its validity.
Database extraction strategies for low-template evidence.
Bleka, Øyvind; Dørum, Guro; Haned, Hinda; Gill, Peter
2014-03-01
Often in forensic cases, the profile of at least one of the contributors to a DNA evidence sample is unknown and a database search is needed to discover possible perpetrators. In this article we consider two types of search strategies to extract suspects from a database using methods based on probability arguments. The performance of the proposed match scores is demonstrated by carrying out a study of each match score relative to the level of allele drop-out in the crime sample, simulating low-template DNA. The efficiency was measured by random man simulation and we compared the performance using the SGM Plus kit and the ESX 17 kit for the Norwegian population, demonstrating that the latter has greatly enhanced power to discover perpetrators of crime in large national DNA databases. The code for the database extraction strategies will be prepared for release in the R-package forensim. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
González-Andrade, Fabricio; Sánchez, Dora
2005-10-01
We present individual body identification efforts, to identify skeletal remains and relatives of missing persons of an explosion took place inside one of the munitions recesses of the Armoured Brigade of the Galapagos Armoured Cavalry, in the city of Riobamba, Ecuador, on Wednesday, November 20, 2002. Nineteen samples of bone remains and two tissue samples (a blood stain on a piece of fabric) from the zero zone were analysed. DNA extraction was made by Isoamilic Phenol-Chloroform-Alcohol, and proteinase K. We increased PCR cycles to identify DNA from bones to 35 cycles in some cases. An ABI 310 sequencer was used. Determination of the fragment size and the allelic designation of the different loci was carried out by comparison with the allelic ladders of the PowerPlex 16 kit and Gene Scan Analysis Software programme. Five possible family groups were established and were compared with the profiles found. Classical Bayesian methods were used to calculate the Likelihood Ratio and it was possible to identify five different genetic profiles in our country. This paper is important because is a novel experience for our forensic services, because this was the first time DNA had been used as an identification method in disasters, and it was validated by Ecuadorian justice like a very effective method.
Electrostatic sampling of trace DNA from clothing.
Zieger, Martin; Defaux, Priscille Merciani; Utz, Silvia
2016-05-01
During acts of physical aggression, offenders frequently come into contact with clothes of the victim, thereby leaving traces of DNA-bearing biological material on the garments. Since tape-lifting and swabbing, the currently established methods for non-destructive trace DNA sampling from clothing, both have their shortcomings in collection efficiency and handling, we thought about a new collection method for these challenging samples. Testing two readily available electrostatic devices for their potential to sample biological material from garments made of different fabrics, we found one of them, the electrostatic dust print lifter (DPL), to perform comparable to well-established sampling with wet cotton swabs. In simulated aggression scenarios, we had the same success rate for the establishment of single aggressor profiles, suitable for database submission, with both the DPL and wet swabbing. However, we lost a substantial amount of information with electrostatic sampling, since almost no mixed aggressor-victim profiles suitable for database entry could be established, compared to conventional swabbing. This study serves as a proof of principle for electrostatic DNA sampling from items of clothing. The technique still requires optimization before it might be used in real casework. But we are confident that in the future it could be an efficient and convenient contribution to the toolbox of forensic practitioners.
ERIC Educational Resources Information Center
Raina, P.; Lunsky, Y.
2010-01-01
The current study describes and compares profiles of patients in the same specialized hospital program for patients with intellectual disability with and without forensic involvement. A retrospective chart review of 78 individuals (39 forensic and 39 non-forensic) served between 2006 and 2008 was completed. The forensic sample was more likely to…
The UK National DNA Database: Implementation of the Protection of Freedoms Act 2012.
Amankwaa, Aaron Opoku; McCartney, Carole
2018-03-01
In 2008, the European Court of Human Rights, in S and Marper v the United Kingdom, ruled that a retention regime that permits the indefinite retention of DNA records of both convicted and non-convicted ("innocent") individuals is disproportionate. The court noted that there was inadequate evidence to justify the retention of DNA records of the innocent. Since the Marper ruling, the laws governing the taking, use, and retention of forensic DNA in England and Wales have changed with the enactment of the Protection of Freedoms Act 2012 (PoFA). This Act, put briefly, permits the indefinite retention of DNA profiles of most convicted individuals and temporal retention for some first-time convicted minors and innocent individuals on the National DNA Database (NDNAD). The PoFA regime was implemented in October 2013. This paper examines ten post-implementation reports of the NDNAD Strategy Board (3), the NDNAD Ethics Group (3) and the Office of the Biometrics Commissioner (OBC) (4). Overall, the reports highlight a considerable improvement in the performance of the database, with a current match rate of 63.3%. Further, the new regime has strengthened the genetic privacy protection of UK citizens. The OBC reports detail implementation challenges ranging from technical, legal and procedural issues to sufficient understanding of the requirements of PoFA by police forces. Risks highlighted in these reports include the deletion of some "retainable" profiles, which could potentially lead to future crimes going undetected. A further risk is the illegal retention of some profiles from innocent individuals, which may lead to privacy issues and legal challenges. In conclusion, the PoFA regime appears to be working well, however, critical research is still needed to evaluate its overall efficacy compared to other retention regimes. Copyright © 2018 Elsevier B.V. All rights reserved.
Forensics on a Shoestring Budget
ERIC Educational Resources Information Center
Greco, Joseph A.
2005-01-01
In recent years, forensic science has gained popularity thanks in part to high-profile court cases and television programs. Although the cost of forensic equipment and supplies may initially seem too expensive for the typical high school classroom, the author developed an activity that incorporates forensics into her 10th-grade biology curriculum…
Thomas, Richard M; Parks, Connie L; Richard, Adam H
2016-09-01
A common task in forensic anthropology involves the estimation of the biological sex of a decedent by exploiting the sexual dimorphism between males and females. Estimation methods are often based on analysis of skeletal collections of known sex and most include a research-based accuracy rate. However, the accuracy rates of sex estimation methods in actual forensic casework have rarely been studied. This article uses sex determinations based on DNA results from 360 forensic cases to develop accuracy rates for sex estimations conducted by forensic anthropologists. The overall rate of correct sex estimation from these cases is 94.7% with increasing accuracy rates as more skeletal material is available for analysis and as the education level and certification of the examiner increases. Nine of 19 incorrect assessments resulted from cases in which one skeletal element was available, suggesting that the use of an "undetermined" result may be more appropriate for these cases. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.
Using probabilistic theory to develop interpretation guidelines for Y-STR profiles.
Taylor, Duncan; Bright, Jo-Anne; Buckleton, John
2016-03-01
Y-STR profiling makes up a small but important proportion of forensic DNA casework. Often Y-STR profiles are used when autosomal profiling has failed to yield an informative result. Consequently Y-STR profiles are often from the most challenging samples. In addition to these points, Y-STR loci are linked, meaning that evaluation of haplotype probabilities are either based on overly simplified counting methods or computationally costly genetic models, neither of which extend well to the evaluation of mixed Y-STR data. For all of these reasons Y-STR data analysis has not seen the same advances as autosomal STR data. We present here a probabilistic model for the interpretation of Y-STR data. Due to the fact that probabilistic systems for Y-STR data are still some way from reaching active casework, we also describe how data can be analysed in a continuous way to generate interpretational thresholds and guidelines. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Multiplex pyrosequencing of InDel markers for forensic DNA analysis.
Bus, Magdalena M; Karas, Ognjen; Allen, Marie
2016-12-01
The capillary electrophoresis (CE) technology is commonly used for fragment length separation of markers in forensic DNA analysis. In this study, pyrosequencing technology was used as an alternative and rapid tool for the analysis of biallelic InDel (insertion/deletion) markers for individual identification. The DNA typing is based on a subset of the InDel markers that are included in the Investigator ® DIPplex Kit, which are sequenced in a multiplex pyrosequencing analysis. To facilitate the analysis of degraded DNA, the polymerase chain reaction (PCR) fragments were kept short in the primer design. Samples from individuals of Swedish origin were genotyped using the pyrosequencing strategy and analysis of the Investigator ® DIPplex markers with CE. A comparison between the pyrosequencing and CE data revealed concordant results demonstrating a robust and correct genotyping by pyrosequencing. Using optimal marker combination and a directed dispensation strategy, five markers could be multiplexed and analyzed simultaneously. In this proof-of-principle study, we demonstrate that multiplex InDel pyrosequencing analysis is possible. However, further studies on degraded samples, lower DNA quantities, and mixtures will be required to fully optimize InDel analysis by pyrosequencing for forensic applications. Overall, although CE analysis is implemented in most forensic laboratories, multiplex InDel pyrosequencing offers a cost-effective alternative for some applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
[DNA Extraction from Old Bones by AutoMate Express™ System].
Li, B; Lü, Z
2017-08-01
To establish a method for extracting DNA from old bones by AutoMate Express™ system. Bones were grinded into powder by freeze-mill. After extraction by AutoMate Express™, DNA were amplified and genotyped by Identifiler®Plus and MinFiler™ kits. DNA were extracted from 10 old bone samples, which kept in different environments with the postmortem interval from 10 to 20 years, in 3 hours by AutoMate Express™ system. Complete STR typing results were obtained from 8 samples. AutoMate Express™ system can quickly and efficiently extract DNA from old bones, which can be applied in forensic practice. Copyright© by the Editorial Department of Journal of Forensic Medicine
Kaminiwa, Junko; Honda, Katsuya; Sugano, Yukiko; Yano, Shizue; Nishi, Takeki; Sekine, Yuko
2013-05-01
Polymerase chain reaction (PCR) has been rapidly established as one of the most widely used techniques in molecular biology. Because most DNA analysis is PCR-based, the analysis of unamplifiable DNA of poor quality or low quantity is nearly impossible. However, we observed that if an appropriate concentration of vanadium chloride is added to the standard reaction mixture, the enzymatic amplification of DNA could be enhanced. Using multiplex PCR with the addition of vanadium, DNA typing was possible from even trace amounts of DNA that we were unable to amplify using normal reaction conditions. This method might be an effective tool for not only criminal investigations and ancient DNA analysis, but also for nearly all fields using DNA technology. Copyright © 2012 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
Purification of crime scene DNA extracts using centrifugal filter devices
2013-01-01
Background The success of forensic DNA analysis is limited by the size, quality and purity of biological evidence found at crime scenes. Sample impurities can inhibit PCR, resulting in partial or negative DNA profiles. Various DNA purification methods are applied to remove impurities, for example, employing centrifugal filter devices. However, irrespective of method, DNA purification leads to DNA loss. Here we evaluate the filter devices Amicon Ultra 30 K and Microsep 30 K with respect to recovery rate and general performance for various types of PCR-inhibitory crime scene samples. Methods Recovery rates for DNA purification using Amicon Ultra 30 K and Microsep 30 K were gathered using quantitative PCR. Mock crime scene DNA extracts were analyzed using quantitative PCR and short tandem repeat (STR) profiling to test the general performance and inhibitor-removal properties of the two filter devices. Additionally, the outcome of long-term routine casework DNA analysis applying each of the devices was evaluated. Results Applying Microsep 30 K, 14 to 32% of the input DNA was recovered, whereas Amicon Ultra 30 K retained 62 to 70% of the DNA. The improved purity following filter purification counteracted some of this DNA loss, leading to slightly increased electropherogram peak heights for blood on denim (Amicon Ultra 30 K and Microsep 30 K) and saliva on envelope (Amicon Ultra 30 K). Comparing Amicon Ultra 30 K and Microsep 30 K for purification of DNA extracts from mock crime scene samples, the former generated significantly higher peak heights for rape case samples (P-values <0.01) and for hairs (P-values <0.036). In long-term routine use of the two filter devices, DNA extracts purified with Amicon Ultra 30 K were considerably less PCR-inhibitory in Quantifiler Human qPCR analysis compared to Microsep 30 K. Conclusions Amicon Ultra 30 K performed better than Microsep 30 K due to higher DNA recovery and more efficient removal of PCR-inhibitory substances. The different performances of the filter devices are likely caused by the quality of the filters and plastic wares, for example, their DNA binding properties. DNA purification using centrifugal filter devices can be necessary for successful DNA profiling of impure crime scene samples and for consistency between different PCR-based analysis systems, such as quantification and STR analysis. In order to maximize the possibility to obtain complete STR DNA profiles and to create an efficient workflow, the level of DNA purification applied should be correlated to the inhibitor-tolerance of the STR analysis system used. PMID:23618387
Weiler, Natalie E C; Matai, Anuska S; Sijen, Titia
2012-01-01
Forensic laboratories employ various approaches to obtain short tandem repeat (STR) profiles from minimal traces (<100 pg DNA input). Most approaches aim to sensitize DNA profiling by increasing the amplification level by a higher cycle number or enlarging the amount of PCR products analyzed during capillary electrophoresis. These methods have limitations when unequal mixtures are genotyped, since the major component will be over-amplified or over-loaded. This study explores an alternative strategy for improved detection of the minor components in low template (LT) DNA typing that may be better suited for the detection of the minor component in mixtures. The strategy increases the PCR amplification efficiency by extending the primer annealing time several folds. When the AmpFℓSTR(®) Identifiler(®) amplification parameters are changed to an annealing time of 20 min during all 28 cycles, the drop-out frequency is reduced for both pristine DNA and single or multiple donor mock case work samples. In addition, increased peak heights and slightly more drop-ins are observed while the heterozygous peak balance remains similar as with the conventional Identifiler protocol. By this extended protocol, full DNA profiles were obtained from only 12 sperm heads (which corresponds to 36 pg of DNA) that were collected by laser micro dissection. Notwithstanding the improved detection, allele drop-outs do persist, albeit in lower frequencies. Thus a LT interpretation strategy such as deducing consensus profiles from multiple independent amplifications is appropriate. The use of extended PCR conditions represents a general approach to improve detection of unequal mixtures as shown using four commercially available kits (AmpFℓSTR(®) Identifiler, SEfiler Plus, NGM and Yfiler). The extended PCR protocol seems to amplify more of the molecules in LT samples during PCR, which results in a lower drop-out frequency. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Deng, Jian-qiang; Hou, Yi-ping
2005-08-01
Genetic analysis from forensic microsamples is a urgent, difficult task in forensic science, because it is frequently limited by the amount of specimen available in forensic practice, much effort has been carried out to resolve this difficulty. Whole genome amplification (WGA) technology, which was developing quickly in these years, has been thought to be a powerful, reliable and efficient strategy in analysis of minute amount DNA on many fields. In this review, we discuss its application in forensic science.
Park, Seong Hwan; Park, Chung Hyun; Zhang, Yong; Piao, Huguo; Chung, Ukhee; Kim, Seong Yoon; Ko, Kwang Soo; Yi, Cheong-Ho; Jo, Tae-Ho; Hwang, Juck-Joon
2013-01-01
Identifying species of insects used to estimate postmortem interval (PMI) is a major subject in forensic entomology. Because forensic insect specimens are morphologically uniform and are obtained at various developmental stages, DNA markers are greatly needed. To develop new autosomal DNA markers to identify species, partial genomic sequences of the bicoid (bcd) genes, containing the homeobox and its flanking sequences, from 12 blowfly species (Aldrichina grahami, Calliphora vicina, Calliphora lata, Triceratopyga calliphoroides, Chrysomya megacephala, Chrysomya pinguis, Phormia regina, Lucilia ampullacea, Lucilia caesar, Lucilia illustris, Hemipyrellia ligurriens and Lucilia sericata; Calliphoridae: Diptera) were determined and analyzed. This study first sequenced the ten blowfly species other than C. vicina and L. sericata. Based on the bcd sequences of these 12 blowfly species, a phylogenetic tree was constructed that discriminates the subfamilies of Calliphoridae (Luciliinae, Chrysomyinae, and Calliphorinae) and most blowfly species. Even partial genomic sequences of about 500 bp can distinguish most blowfly species. The short intron 2 and coding sequences downstream of the bcd homeobox in exon 3 could be utilized to develop DNA markers for forensic applications. These gene sequences are important in the evolution of insect developmental biology and are potentially useful for identifying insect species in forensic science. PMID:23586044
The impact of chimerism in DNA-based forensic sex determination analysis.
George, Renjith; Donald, Preethy Mary; Nagraj, Sumanth Kumbargere; Idiculla, Jose Joy; Hj Ismail, Rashid
2013-01-01
Sex determination is the most important step in personal identification in forensic investigations. DNA-based sex determination analysis is comparatively more reliable than the other conventional methods of sex determination analysis. Advanced technology like real-time polymerase chain reaction (PCR) offers accurate and reproducible results and is at the level of legal acceptance. But still there are situations like chimerism where an individual possess both male and female specific factors together in their body. Sex determination analysis in such cases can give erroneous results. This paper discusses the phenomenon of chimerism and its impact on sex determination analysis in forensic investigations.
Long-term room temperature preservation of corpse soft tissue: an approach for tissue sample storage
2011-01-01
Background Disaster victim identification (DVI) represents one of the most difficult challenges in forensic sciences, and subsequent DNA typing is essential. Collected samples for DNA-based human identification are usually stored at low temperature to halt the degradation processes of human remains. We have developed a simple and reliable procedure for soft tissue storage and preservation for DNA extraction. It ensures high quality DNA suitable for PCR-based DNA typing after at least 1 year of room temperature storage. Methods Fragments of human psoas muscle were exposed to three different environmental conditions for diverse time periods at room temperature. Storage conditions included: (a) a preserving medium consisting of solid sodium chloride (salt), (b) no additional substances and (c) garden soil. DNA was extracted with proteinase K/SDS followed by organic solvent treatment and concentration by centrifugal filter devices. Quantification was carried out by real-time PCR using commercial kits. Short tandem repeat (STR) typing profiles were analysed with 'expert software'. Results DNA quantities recovered from samples stored in salt were similar up to the complete storage time and underscored the effectiveness of the preservation method. It was possible to reliably and accurately type different genetic systems including autosomal STRs and mitochondrial and Y-chromosome haplogroups. Autosomal STR typing quality was evaluated by expert software, denoting high quality profiles from DNA samples obtained from corpse tissue stored in salt for up to 365 days. Conclusions The procedure proposed herein is a cost efficient alternative for storage of human remains in challenging environmental areas, such as mass disaster locations, mass graves and exhumations. This technique should be considered as an additional method for sample storage when preservation of DNA integrity is required for PCR-based DNA typing. PMID:21846338
Forensic genetic analysis of bio-geographical ancestry.
Phillips, Chris
2015-09-01
With the great strides made in the last ten years in the understanding of human population variation and the detailed characterization of the genome, it is now possible to identify sets of ancestry informative markers suitable for relatively small-scale PCR-based assays and use them to analyze the ancestry of an individual from forensic DNA. This review outlines some of the current understanding of past human population structure and how it may have influenced the complex distribution of contemporary human diversity. A simplified description of human diversity can provide a suitable basis for choosing the best ancestry-informative markers, which is important given the constraints of multiplex sizes in forensic DNA tests. It is also important to decide the level of geographic resolution that is realistic to ensure the balance between informativeness and an over-simplification of complex human diversity patterns. A detailed comparison is made of the most informative ancestry markers suitable for forensic use and assessments are made of the data analysis regimes that can provide statistical inferences of a DNA donor's bio-geographical ancestry. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Camarena, Lucy R; Glasscock, Bailey K; Daniels, Demi; Ackley, Nicolle; Sciarretta, Marybeth; Seashols-Williams, Sarah J
2017-03-01
Connection of a perpetrator to a sexual assault is best performed through the confirmed presence of semen, thereby proving sexual contact. Evidentiary items can include sanitary napkins or diapers containing superabsorbent polymers (SAPs), complicating spermatozoa visualization and DNA analysis. In this report, we evaluated the impact of SAPS on the current forensic DNA workflow, developing an efficient centrifugal protocol for separating spermatozoa from SAP material. The optimized filtration method was compared to common practices of excising the top layer only, resulting in significantly higher sperm yields when a core sample of the substrate was taken. Direct isolation of the SAP-containing materials without filtering resulted in 20% sample failure; additionally, SAP material was observed in the final eluted DNA samples, causing physical interference. Thus, use of the described centrifugal-filtering method is a simple preliminary step that improves spermatozoa visualization and enables more consistent DNA yields, while also avoiding SAP interference. © 2016 American Academy of Forensic Sciences.
Eurlings, Marcel C M; Lens, Frederic; Pakusza, Csilla; Peelen, Tamara; Wieringa, Jan J; Gravendeel, Barbara
2013-05-01
Indian snakeroot (Rauvolfia serpentina) is a valuable forest product, root extracts of which are used as an antihypertensive drug. Increasing demand led to overharvesting in the wild. Control of international trade is hampered by the inability to identify root samples to the species level. We therefore evaluated the potential of molecular identification by searching for species-specific DNA polymorphisms. We found two species-specific indels in the rps16 intron region for R. serpentina. Our DNA barcoding method was tested for its specificity, reproducibility, sensitivity and stability. We included samples of various tissues and ages, which had been treated differently for preservation. DNA extractions were tested in a range of amplification settings and dilutions. Species-specific rps16 intron sequences were obtained from 79 herbarium accessions and one confiscated root, encompassing 39 different species. Our results demonstrate that molecular analysis provides new perspectives for forensic identification of Indian snakeroot. © 2013 American Academy of Forensic Sciences.
The development of miniplex primer sets for the analysis of degraded DNA
NASA Astrophysics Data System (ADS)
McCord, Bruce; Opel, Kerry; Chung, Denise; Drabek, Jiri; Tatarek, Nancy; Meadows Jantz, Lee; Butler, John
2005-05-01
In this project, a new set of multiplexed PCR reactions has been developed for the analysis of degraded DNA. These DNA markers, known as Miniplexes, utilize primers that have shorter amplicons for use in short tandem repeat (STR) analysis of degraded DNA. In our work we have defined six of these new STR multiplexes, each of which consists of 3 to 4 reduced size STR loci, and each labeled with a different fluorescent dye. When compared to commercially available STR systems, reductions in size of up to 300 basepairs are possible. In addition, these newly designed amplicons consist of loci that are fully compatible with the the national computer DNA database known as CODIS. To demonstrate compatibility with commercial STR kits, a concordance study of 532 DNA samples of Caucasian, African American, and Hispanic origin was undertaken There was 99.77% concordance between allele calls with the two methods. Of these 532 samples, only 15 samples showed discrepancies at one of 12 loci. These occurred predominantly at 2 loci, vWA and D13S317. DNA sequencing revealed that these locations had deletions between the two primer binding sites. Uncommon deletions like these can be expected in certain samples and will not affect the utility of the Miniplexes as tools for degraded DNA analysis. The Miniplexes were also applied to enzymatically digested DNA to assess their potential in degraded DNA analysis. The results demonstrated a greatly improved efficiency in the analysis of degraded DNA when compared to commercial STR genotyping kits. A series of human skeletal remains that had been exposed to a variety of environmental conditions were also examined. Sixty-four percent of the samples generated full profiles when amplified with the Miniplexes, while only sixteen percent of the samples tested generated full profiles with a commercial kit. In addition, complete profiles were obtained for eleven of the twelve Miniplex loci which had amplicon size ranges less than 200 base pairs. These data clearly demonstrate that smaller PCR amplicons provide an attractive alternative to mitochondrial DNA for forensic analysis of degraded DNA.
Tack, Lois C; Thomas, Michelle; Reich, Karl
2007-03-01
Forensic labs globally face the same problem-a growing need to process a greater number and wider variety of samples for DNA analysis. The same forensic lab can be tasked all at once with processing mixed casework samples from crime scenes, convicted offender samples for database entry, and tissue from tsunami victims for identification. Besides flexibility in the robotic system chosen for forensic automation, there is a need, for each sample type, to develop new methodology that is not only faster but also more reliable than past procedures. FTA is a chemical treatment of paper, unique to Whatman Bioscience, and is used for the stabilization and storage of biological samples. Here, the authors describe optimization of the Whatman FTA Purification Kit protocol for use with the AmpFlSTR Identifiler PCR Amplification Kit.
Čakar, Jasmina; Pilav, Amela; Džehverović, Mirela; Ahatović, Anesa; Haverić, Sanin; Ramić, Jasmin; Marjanović, Damir
2018-01-01
The floods in Bosnia and Herzegovina in May 2014 caused landslides all over the country. In the small village of Šerići, near the town of Zenica, a landslide destroyed the local cemetery, relocated graves, and commingled skeletal remains. As the use of other physical methods of identification (facial recognition, fingerprint analysis, dental analysis, etc.) was not possible, DNA analysis was applied. DNA was isolated from 20 skeletal remains (bone and tooth samples) and six reference samples (blood from living relatives) and amplified using PowerPlex ® Fusion and PowerPlex ® Y23 kits. DNA profiles were generated for all reference samples and 17 skeletal remains. A statistical analysis (calculation of paternity, maternity, and sibling indexes and matching probabilities) resulted in 10 positive identifications. In this study, 5 individuals were identified based on one reference sample. This has once again demonstrated the significance of DNA analysis in resolving the most complicated cases, such as the identification of commingled human skeletal remains. © 2017 American Academy of Forensic Sciences.
Crespillo, M; Barrio, P A; Luque, J A; Alves, C; Aler, M; Alessandrini, F; Andrade, L; Barretto, R M; Bofarull, A; Costa, S; García, M A; García, O; Gaviria, A; Gladys, A; Gorostiza, A; Hernández, A; Herrera, M; Hombreiro, L; Ibarra, A A; Jiménez, M J; Luque, G M; Madero, P; Martínez-Jarreta, B; Masciovecchio, M V; Modesti, N M; Moreno, F; Pagano, S; Pedrosa, S; Plaza, G; Prat, E; Puente, J; Rendo, F; Ribeiro, T; Sala, A; Santamaría, E; Saragoni, V G; Whittle, M R
2014-05-01
One of the main objectives of the Spanish and Portuguese-Speaking Group of the International Society for Forensic Genetics (GHEP-ISFG) is to promote and contribute to the development and dissemination of scientific knowledge in the area of forensic genetics. Due to this fact, GHEP-ISFG holds different working commissions that are set up to develop activities in scientific aspects of general interest. One of them, the Mixture Commission of GHEP-ISFG, has organized annually, since 2009, a collaborative exercise on analysis and interpretation of autosomal short tandem repeat (STR) mixture profiles. Until now, three exercises have been organized (GHEP-MIX01, GHEP-MIX02 and GHEP-MIX03), with 32, 24 and 17 participant laboratories respectively. The exercise aims to give a general vision by addressing, through the proposal of mock cases, aspects related to the edition of mixture profiles and the statistical treatment. The main conclusions obtained from these exercises may be summarized as follows. Firstly, the data show an increased tendency of the laboratories toward validation of DNA mixture profiles analysis following international recommendations (ISO/IEC 17025:2005). Secondly, the majority of discrepancies are mainly encountered in stutters positions (53.4%, 96.0% and 74.9%, respectively for the three editions). On the other hand, the results submitted reveal the importance of performing duplicate analysis by using different kits in order to reduce errors as much as possible. Regarding the statistical aspect (GHEP-MIX02 and 03), all participants employed the likelihood ratio (LR) parameter to evaluate the statistical compatibility and the formulas employed were quite similar. When the hypotheses to evaluate the LR value were locked by the coordinators (GHEP-MIX02) the results revealed a minor number of discrepancies that were mainly due to clerical reasons. However, the GHEP-MIX03 exercise allowed the participants to freely come up with their own hypotheses to calculate the LR value. In this situation the laboratories reported several options to explain the mock cases proposed and therefore significant differences between the final LR values were obtained. Complete information concerning the background of the criminal case is a critical aspect in order to select the adequate hypotheses to calculate the LR value. Although this should be a task for the judicial court to decide, it is important for the expert to account for the different possibilities and scenarios, and also offer this expertise to the judge. In addition, continuing education in the analysis and interpretation of mixture DNA profiles may also be a priority for the vast majority of forensic laboratories. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
DNA testing in homicide investigations.
Prahlow, Joseph A; Cameron, Thomas; Arendt, Alexander; Cornelis, Kenneth; Bontrager, Anthony; Suth, Michael S; Black, Lisa; Tobey, Rebbecca; Pollock, Sharon; Stur, Shawn; Cotter, Kenneth; Gabrielse, Joel
2017-10-01
Objectives With the widespread use of DNA testing, police, death investigators, and attorneys need to be aware of the capabilities of this technology. This review provides an overview of scenarios where DNA evidence has played a major role in homicide investigations in order to highlight important educational issues for police, death investigators, forensic pathologists, and attorneys. Methods This was a nonrandom, observational, retrospective study. Data were obtained from the collective files of the authors from casework during a 15-year period, from 2000 through 2014. Results A series of nine scenarios, encompassing 11 deaths, is presented from the standpoint of the police and death investigation, the forensic pathology autopsy performance, the subsequent DNA testing of evidence, and, ultimately, the final adjudication of cases. Details of each case are presented, along with a discussion that focuses on important aspects of sample collection for potential DNA testing, especially at the crime scene and the autopsy. The presentation highlights the diversity of case and evidence types in which DNA testing played a valuable role in the successful prosecution of the case. Conclusions By highlighting homicides where DNA testing contributed to the successful adjudication of cases, police, death investigators, forensic pathologists, and attorneys will be better informed regarding the types of evidence and situations where such testing is of potential value.
Wang, Zheng; Zhou, Di; Jia, Zhenjun; Li, Luyao; Wu, Wei; Li, Chengtao; Hou, Yiping
2016-01-01
STRs, scattered throughout the genome with higher mutation rate, are attractive to genetic application like forensic, anthropological and population genetics studies. STR profiling has now been applied in various aspects of human identification in forensic investigations. This work described the developmental validation of a novel and universal assay, the Huaxia Platinum System, which amplifies all markers in the expanded CODIS core loci and the Chinese National Database in one single PCR system. Developmental validation demonstrated that this novel assay is accurate, sensitive, reproducible and robust. No discordant calls were observed between the Huaxia Platinum System and other STR systems. Full genotypes could be achieved even with 250 pg of human DNA. Additionally, 402 unrelated individuals from 3 main ethnic groups of China (Han, Uygur and Tibetan) were genotyped to investigate the effectiveness of this novel assay. The CMP were 2.3094 × 10−27, 4.3791 × 10−28 and 6.9118 × 10−27, respectively, and the CPE were 0.99999999939059, 0.99999999989653 and 0.99999999976386, respectively. Aforementioned results suggested that the Huaxia Platinum System is polymorphic and informative, which provides efficient tool for national DNA database and facilitate international data sharing. PMID:27498550
Schwartz-Marín, Ernesto; Wade, Peter; Cruz-Santiago, Arely; Cárdenas, Roosbelinda
2015-12-01
Abstract This article examines the role that vernacular notions of racialized-regional difference play in the constitution and stabilization of DNA populations in Colombian forensic science, in what we frame as a process of public science. In public science, the imaginations of the scientific world and common-sense public knowledge are integral to the production and circulation of science itself. We explore the origins and circulation of a scientific object--'La Tabla', published in Paredes et al. and used in genetic forensic identification procedures--among genetic research institutes, forensic genetics laboratories and courtrooms in Bogotá. We unveil the double life of this central object of forensic genetics. On the one hand, La Tabla enjoys an indisputable public place in the processing of forensic genetic evidence in Colombia (paternity cases, identification of bodies, etc.). On the other hand, the relations it establishes between 'race', geography and genetics are questioned among population geneticists in Colombia. Although forensic technicians are aware of the disputes among population geneticists, they use and endorse the relations established between genetics, 'race' and geography because these fit with common-sense notions of visible bodily difference and the regionalization of race in the Colombian nation.
Schwartz-Marín, Ernesto; Wade, Peter; Cruz-Santiago, Arely; Cárdenas, Roosbelinda
2015-01-01
This article examines the role that vernacular notions of racialized-regional difference play in the constitution and stabilization of DNA populations in Colombian forensic science, in what we frame as a process of public science. In public science, the imaginations of the scientific world and common-sense public knowledge are integral to the production and circulation of science itself. We explore the origins and circulation of a scientific object – ‘La Tabla’, published in Paredes et al. and used in genetic forensic identification procedures – among genetic research institutes, forensic genetics laboratories and courtrooms in Bogotá. We unveil the double life of this central object of forensic genetics. On the one hand, La Tabla enjoys an indisputable public place in the processing of forensic genetic evidence in Colombia (paternity cases, identification of bodies, etc.). On the other hand, the relations it establishes between ‘race’, geography and genetics are questioned among population geneticists in Colombia. Although forensic technicians are aware of the disputes among population geneticists, they use and endorse the relations established between genetics, ‘race’ and geography because these fit with common-sense notions of visible bodily difference and the regionalization of race in the Colombian nation. PMID:27480000
Feine, Ilan; Shpitzen, Moshe; Geller, Boris; Salmon, Eran; Peleg, Tsach; Roth, Jonathan; Gafny, Ron
2017-07-01
Electrical tapes (ETs) are a common component of improvised explosive devices (IEDs) used by terrorists or criminal organizations and represent a valuable forensic resource for DNA and latent fingerprints recovery. However, DNA recovery rates are typically low and usually below the minimal amount required for amplification. In addition, most DNA extraction methods are destructive and do not allow further latent fingerprints development. In the present study a cell culture based touch DNA model was used to demonstrate a two-step acetone-water DNA recovery protocol from ETs. This protocol involves only the adhesive side of the ET and increases DNA recovery rates by up to 70%. In addition, we demonstrated partially successful latent fingerprints development from the non-sticky side of the ETs. Taken together, this protocol maximizes the forensic examination of ETs and is recommended for routine casework processing. Copyright © 2017 Elsevier B.V. All rights reserved.
Helmus, Janine; Zorell, Sarah; Bajanowski, Thomas; Poetsch, Micaela
2018-01-01
DNA traces on clothes of drowned bodies can provide important evidence for police investigations, especially in cases of suspected suicides or homicides. However, it is generally assumed that the water "erodes" a large part of the DNA depending especially on the exposure time. In forensic casework, DNA of suspects could be found frequently on clothes of drowned bodies after hours, sometimes days of exposure to water. This study was conducted to attempt a general statement about the conditions under which sufficient DNA remains can be expected for molecular genetic analysis. For this purpose, different scenarios were designed including DNA from three to five people, different types of waters (tap, pond, bathtub and river) for various time periods, with higher water pressure, different temperature, and soapy water (bathtub). Epithelial cells and blood cells were mounted on cotton cloths, and the DNA left after exposure was analyzed using the Powerplex® ESX17fast kit. In the indoor experiments, complete profiles could be seen even after 10 min rinsing of clothes under the tap and after 1 week in the bathtub. Outdoors, the results differed considerably between summer and winter as well as between pond and river. The longest exposure time still resulting in a complete profile was 2 weeks for a sample with skin cells in the pond during winter. In summer, the time period for erasing the bulk of DNA was 4 hours regarding epithelial samples and more than 1 day for blood samples in pond and river environments. All in all, the results demonstrate that DNA could still be recovered from clothes exposed to water for more than 1 week.
Chaitanya, Lakshmi; van Oven, Mannis; Brauer, Silke; Zimmermann, Bettina; Huber, Gabriela; Xavier, Catarina; Parson, Walther; de Knijff, Peter; Kayser, Manfred
2016-03-01
The use of mitochondrial DNA (mtDNA) for maternal lineage identification often marks the last resort when investigating forensic and missing-person cases involving highly degraded biological materials. As with all comparative DNA testing, a match between evidence and reference sample requires a statistical interpretation, for which high-quality mtDNA population frequency data are crucial. Here, we determined, under high quality standards, the complete mtDNA control-region sequences of 680 individuals from across the Netherlands sampled at 54 sites, covering the entire country with 10 geographic sub-regions. The complete mtDNA control region (nucleotide positions 16,024-16,569 and 1-576) was amplified with two PCR primers and sequenced with ten different sequencing primers using the EMPOP protocol. Haplotype diversity of the entire sample set was very high at 99.63% and, accordingly, the random-match probability was 0.37%. No population substructure within the Netherlands was detected with our dataset. Phylogenetic analyses were performed to determine mtDNA haplogroups. Inclusion of these high-quality data in the EMPOP database (accession number: EMP00666) will improve its overall data content and geographic coverage in the interest of all EMPOP users worldwide. Moreover, this dataset will serve as (the start of) a national reference database for mtDNA applications in forensic and missing person casework in the Netherlands. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
A review of bioinformatic methods for forensic DNA analyses.
Liu, Yao-Yuan; Harbison, SallyAnn
2018-03-01
Short tandem repeats, single nucleotide polymorphisms, and whole mitochondrial analyses are three classes of markers which will play an important role in the future of forensic DNA typing. The arrival of massively parallel sequencing platforms in forensic science reveals new information such as insights into the complexity and variability of the markers that were previously unseen, along with amounts of data too immense for analyses by manual means. Along with the sequencing chemistries employed, bioinformatic methods are required to process and interpret this new and extensive data. As more is learnt about the use of these new technologies for forensic applications, development and standardization of efficient, favourable tools for each stage of data processing is being carried out, and faster, more accurate methods that improve on the original approaches have been developed. As forensic laboratories search for the optimal pipeline of tools, sequencer manufacturers have incorporated pipelines into sequencer software to make analyses convenient. This review explores the current state of bioinformatic methods and tools used for the analyses of forensic markers sequenced on the massively parallel sequencing (MPS) platforms currently most widely used. Copyright © 2017 Elsevier B.V. All rights reserved.
Hird, H J; Brown, M K
2017-11-01
The identification of samples at a crime scene which require forensic DNA typing has been the focus of recent research interest. We propose a simple, but sensitive analysis system which can be deployed at a crime scene to identify crime scene stains as human or non-human. The proposed system uses the isothermal amplification of DNA in a rapid assay format, which returns results in as little as 30min from sampling. The assay system runs on the Genie II device, a proven in-field detection system which could be deployed at a crime scene. The results presented here demonstrate that the system was sufficiently specific and sensitive and was able to detect the presence of human blood, semen and saliva on mock forensic samples. Copyright © 2017. Published by Elsevier B.V.
Forensic DNA phenotyping: Developing a model privacy impact assessment.
Scudder, Nathan; McNevin, Dennis; Kelty, Sally F; Walsh, Simon J; Robertson, James
2018-05-01
Forensic scientists around the world are adopting new technology platforms capable of efficiently analysing a larger proportion of the human genome. Undertaking this analysis could provide significant operational benefits, particularly in giving investigators more information about the donor of genetic material, a particularly useful investigative lead. Such information could include predicting externally visible characteristics such as eye and hair colour, as well as biogeographical ancestry. This article looks at the adoption of this new technology from a privacy perspective, using this to inform and critique the application of a Privacy Impact Assessment to this emerging technology. Noting the benefits and limitations, the article develops a number of themes that would influence a model Privacy Impact Assessment as a contextual framework for forensic laboratories and law enforcement agencies considering implementing forensic DNA phenotyping for operational use. Copyright © 2018 Elsevier B.V. All rights reserved.
The use of forensic case data in intelligence-led policing: the example of drug profiling.
Morelato, Marie; Beavis, Alison; Tahtouh, Mark; Ribaux, Olivier; Kirkbride, Paul; Roux, Claude
2013-03-10
To date, forensic science has predominantly focused on generating evidence for judicial proceedings. While many recognise its broader and important contribution to the initial stages of the forensic process, resources do not seem to be employed efficiently. It is often discovered retrospectively that necessary information was previously available in a database or within existing files. Such information could have been proactively used in order to solve a particular case, a number of linked cases or better understand the criminal activity as a whole. This article reviews this broader contribution of forensic science, with a particular emphasis on drug intelligence at the Australian Federal Police (AFP) in Australia. Using the AFP as a model organisation, an overview of the current situation and the contribution of physical and chemical profiling are first discussed. The situation in Europe, and in particular in Switzerland, is also presented. It is argued that a change of attitude towards a more intelligence-led perspective is required in forensic science in general, and in drug profiling in particular. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Classification of Ancient Mammal Individuals Using Dental Pulp MALDI-TOF MS Peptide Profiling
Tran, Thi-Nguyen-Ny; Aboudharam, Gérard; Gardeisen, Armelle; Davoust, Bernard; Bocquet-Appel, Jean-Pierre; Flaudrops, Christophe; Belghazi, Maya; Raoult, Didier; Drancourt, Michel
2011-01-01
Background The classification of ancient animal corpses at the species level remains a challenging task for forensic scientists and anthropologists. Severe damage and mixed, tiny pieces originating from several skeletons may render morphological classification virtually impossible. Standard approaches are based on sequencing mitochondrial and nuclear targets. Methodology/Principal Findings We present a method that can accurately classify mammalian species using dental pulp and mass spectrometry peptide profiling. Our work was organized into three successive steps. First, after extracting proteins from the dental pulp collected from 37 modern individuals representing 13 mammalian species, trypsin-digested peptides were used for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis. The resulting peptide profiles accurately classified every individual at the species level in agreement with parallel cytochrome b gene sequencing gold standard. Second, using a 279–modern spectrum database, we blindly classified 33 of 37 teeth collected in 37 modern individuals (89.1%). Third, we classified 10 of 18 teeth (56%) collected in 15 ancient individuals representing five mammal species including human, from five burial sites dating back 8,500 years. Further comparison with an upgraded database comprising ancient specimen profiles yielded 100% classification in ancient teeth. Peptide sequencing yield 4 and 16 different non-keratin proteins including collagen (alpha-1 type I and alpha-2 type I) in human ancient and modern dental pulp, respectively. Conclusions/Significance Mass spectrometry peptide profiling of the dental pulp is a new approach that can be added to the arsenal of species classification tools for forensics and anthropology as a complementary method to DNA sequencing. The dental pulp is a new source for collagen and other proteins for the species classification of modern and ancient mammal individuals. PMID:21364886
Genotyping of 75 SNPs using arrays for individual identification in five population groups.
Hwa, Hsiao-Lin; Wu, Lawrence Shih Hsin; Lin, Chun-Yen; Huang, Tsun-Ying; Yin, Hsiang-I; Tseng, Li-Hui; Lee, James Chun-I
2016-01-01
Single nucleotide polymorphism (SNP) typing offers promise to forensic genetics. Various strategies and panels for analyzing SNP markers for individual identification have been published. However, the best panels with fewer identity SNPs for all major population groups are still under discussion. This study aimed to find more autosomal SNPs with high heterozygosity for individual identification among Asian populations. Ninety-six autosomal SNPs of 502 DNA samples from unrelated individuals of five population groups (208 Taiwanese Han, 83 Filipinos, 62 Thais, 69 Indonesians, and 80 individuals with European, Near Eastern, or South Asian ancestry) were analyzed using arrays in an initial screening, and 75 SNPs (group A, 46 newly selected SNPs; groups B, 29 SNPs based on a previous SNP panel) were selected for further statistical analyses. Some SNPs with high heterozygosity from Asian populations were identified. The combined random match probability of the best 40 and 45 SNPs was between 3.16 × 10(-17) and 7.75 × 10(-17) and between 2.33 × 10(-19) and 7.00 × 10(-19), respectively, in all five populations. These loci offer comparable power to short tandem repeats (STRs) for routine forensic profiling. In this study, we demonstrated the population genetic characteristics and forensic parameters of 75 SNPs with high heterozygosity from five population groups. This SNPs panel can provide valuable genotypic information and can be helpful in forensic casework for individual identification among these populations.
Laurin, Nancy; Frégeau, Chantal
2012-01-01
The goal of this work was to optimize and validate a fast amplification protocol for the multiplex amplification of the STR loci included in AmpFlSTR(®) Profiler Plus(®) to expedite human DNA identification. By modifying the cycling conditions and by combining the use of a DNA polymerase optimized for high speed PCR (SpeedSTAR™ HS) and a more efficient thermal cycler instrument (Bio-RAD C1000™), we were able to reduce the amplification process from 4h to 26 min. No modification to the commercial AmpFlSTR(®) Profiler Plus(®) primer mix was required. When compared to the current Royal Canadian Mounted Police (RCMP) amplification protocol, no differences with regards to specificity, sensitivity, heterozygote peak height ratios and overall profile balance were noted. Moreover, complete concordance was obtained with profiles previously generated with the standard amplification protocol and minor alleles in mixture samples were reliably typed. An increase in n-4 stutter ratios (2.2% on average for all loci) was observed for profiles amplified with the fast protocol compared to the current procedure. Our results document the robustness of this rapid amplification protocol for STR profiling using the AmpFlSTR(®) Profiler Plus(®) primer set and demonstrate that comparable data can be obtained in substantially less time. This new approach could provide an alternative option to current multiplex STR typing amplification protocols in order to increase throughput or expedite time-sensitive cases. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
DNA methylation: the future of crime scene investigation?
Gršković, Branka; Zrnec, Dario; Vicković, Sanja; Popović, Maja; Mršić, Gordan
2013-07-01
Proper detection and subsequent analysis of biological evidence is crucial for crime scene reconstruction. The number of different criminal acts is increasing rapidly. Therefore, forensic geneticists are constantly on the battlefield, trying hard to find solutions how to solve them. One of the essential defensive lines in the fight against the invasion of crime is relying on DNA methylation. In this review, the role of DNA methylation in body fluid identification and other DNA methylation applications are discussed. Among other applications of DNA methylation, age determination of the donor of biological evidence, analysis of the parent-of-origin specific DNA methylation markers at imprinted loci for parentage testing and personal identification, differentiation between monozygotic twins due to their different DNA methylation patterns, artificial DNA detection and analyses of DNA methylation patterns in the promoter regions of circadian clock genes are the most important ones. Nevertheless, there are still a lot of open chapters in DNA methylation research that need to be closed before its final implementation in routine forensic casework.
Dental DNA fingerprinting in identification of human remains
Girish, KL; Rahman, Farzan S; Tippu, Shoaib R
2010-01-01
The recent advances in molecular biology have revolutionized all aspects of dentistry. DNA, the language of life yields information beyond our imagination, both in health or disease. DNA fingerprinting is a tool used to unravel all the mysteries associated with the oral cavity and its manifestations during diseased conditions. It is being increasingly used in analyzing various scenarios related to forensic science. The technical advances in molecular biology have propelled the analysis of the DNA into routine usage in crime laboratories for rapid and early diagnosis. DNA is an excellent means for identification of unidentified human remains. As dental pulp is surrounded by dentin and enamel, which forms dental armor, it offers the best source of DNA for reliable genetic type in forensic science. This paper summarizes the recent literature on use of this technique in identification of unidentified human remains. PMID:21731342
[Whole Genome Sequencing of Human mtDNA Based on Ion Torrent PGM™ Platform].
Cao, Y; Zou, K N; Huang, J P; Ma, K; Ping, Y
2017-08-01
To analyze and detect the whole genome sequence of human mitochondrial DNA (mtDNA) by Ion Torrent PGM™ platform and to study the differences of mtDNA sequence in different tissues. Samples were collected from 6 unrelated individuals by forensic postmortem examination, including chest blood, hair, costicartilage, nail, skeletal muscle and oral epithelium. Amplification of whole genome sequence of mtDNA was performed by 4 pairs of primer. Libraries were constructed with Ion Shear™ Plus Reagents kit and Ion Plus Fragment Library kit. Whole genome sequencing of mtDNA was performed using Ion Torrent PGM™ platform. Sanger sequencing was used to determine the heteroplasmy positions and the mutation positions on HVⅠ region. The whole genome sequence of mtDNA from all samples were amplified successfully. Six unrelated individuals belonged to 6 different haplotypes. Different tissues in one individual had heteroplasmy difference. The heteroplasmy positions and the mutation positions on HVⅠ region were verified by Sanger sequencing. After a consistency check by the Kappa method, it was found that the results of mtDNA sequence had a high consistency in different tissues. The testing method used in present study for sequencing the whole genome sequence of human mtDNA can detect the heteroplasmy difference in different tissues, which have good consistency. The results provide guidance for the further applications of mtDNA in forensic science. Copyright© by the Editorial Department of Journal of Forensic Medicine
Review and future prospects for DNA barcoding methods in forensic palynology.
Bell, Karen L; Burgess, Kevin S; Okamoto, Kazufusa C; Aranda, Roman; Brosi, Berry J
2016-03-01
Pollen can be a critical forensic marker in cases where determining geographic origin is important, including investigative leads, missing persons cases, and intelligence applications. However, its use has previously been limited by the need for a high level of specialization by expert palynologists, slow speeds of identification, and relatively poor taxonomic resolution (typically to the plant family or genus level). By contrast, identification of pollen through DNA barcoding has the potential to overcome all three of these limitations, and it may seem surprising that the method has not been widely implemented. Despite what might seem a straightforward application of DNA barcoding to pollen, there are technical issues that have delayed progress. However, recent developments of standard methods for DNA barcoding of pollen, along with improvements in high-throughput sequencing technology, have overcome most of these technical issues. Based on these recent methodological developments in pollen DNA barcoding, we believe that now is the time to start applying these techniques in forensic palynology. In this article, we discuss the potential for these methods, and outline directions for future research to further improve on the technology and increase its applicability to a broader range of situations. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Separation of sperm and epithelial cells based on the hydrodynamic effect for forensic analysis
Liu, Weiran; Chen, Weixing; Liu, Ran; Ou, Yuan; Liu, Haoran; Xie, Lan; Lu, Ying; Li, Caixia; Li, Bin; Cheng, Jing
2015-01-01
In sexual assault cases, forensic samples are a mixture of sperm from the perpetrator and epithelial cells from the victim. To obtain an independent short tandem repeat (STR) profile of the perpetrator, sperm cells must be separated from the mixture of cells. However, the current method used in crime laboratories, namely, differential extraction, is a time-consuming and labor-intensive process. To achieve a rapid and automated sample pretreatment process, we fabricated a microdevice for hydrodynamic and size-based separation of sperm and epithelial cells. When cells in suspension were introduced into the device's microfluidic channels, they were forced to flow along different streamlines and into different outlets due to their different diameters. With the proposed microdevice, sperm can be separated within a short period of time (0.5 h for a 50-μl mock sample). The STR profiles of the products in the sperm outlet reservoir demonstrated that a highly purified male DNA fraction could be obtained (94.0% male fraction). This microdevice is of low-cost and can be easily integrated with other subsequent analysis units, providing great potential in the process of analyzing sexual assault evidence as well as in other areas requiring cell sorting. PMID:26392829
Nori, Deepthi V; McCord, Bruce R
2015-09-01
This study reports the development of a two-step protocol using pressure cycling technology (PCT) and alkaline lysis for differential extraction of DNA from mixtures of sperm and vaginal epithelial cells recovered from cotton swabs. In controlled experiments, in which equal quantities of sperm and female epithelial cells were added to cotton swabs, 5 min of pressure pulsing in the presence of 0.4 M NaOH resulted in 104 ± 6% recovery of female epithelial DNA present on the swab. Following the pressure treatment, exposing the swabs to a second 5-min alkaline treatment at 95 °C without pressure resulted in the selective recovery of 69 ± 6% of the sperm DNA. The recovery of the vaginal epithelia and sperm DNA was optimized by examining the effect of sodium hydroxide concentration, incubation temperature, and time. Following the alkaline lysis steps, the samples were neutralized with 2 M Tris (pH 7.5) and purified with phenol-chloroform-isoamyl alcohol to permit downstream analysis. The total processing time to remove both fractions from the swab was less than 20 min. Short tandem repeat (STR) analysis of these fractions obtained from PCT treatment and alkaline lysis generated clean profiles of female epithelial DNA and male sperm DNA for 1:1 mixtures of female and male cells and predominant male profiles for mixtures up to 5:1 female to male cells. By reducing the time and increasing the recovery of DNA from cotton swabs, this new method presents a novel and potentially useful procedure for forensic differential extractions.
[Review of Second Generation Sequencing and Its Application in Forensic Genetics].
Zhang, S H; Bian, Y N; Zhao, Q; Li, C T
2016-08-01
The rapid development of second generation sequencing (SGS) within the past few years has led to the increasement of data throughput and read length while at the same time brought down substantially the sequencing cost. This made new breakthrough in the area of biology and ushered the forensic genetics into a new era. Based on the history of sequencing application in forensic genetics, this paper reviews the importance of sequencing technologies for genetic marker detection. The application status and potential of SGS in forensic genetics are discussed based on the already explored SGS platforms of Roche, Illumina and Life Technologies. With these platforms, DNA markers (SNP, STR), RNA markers (mRNA, microRNA) and whole mtDNA can be sequenced. However, development and validation of application kits, maturation of analysis software, connection to the existing databases and the possible ethical issues occurred with big data will be the key factors that determine whether this technology can substitute or supplement PCR-CE, the mature technology, and be widely used for cases detection. Copyright© by the Editorial Department of Journal of Forensic Medicine.
Vullo, Carlos M; Romero, Magdalena; Catelli, Laura; Šakić, Mustafa; Saragoni, Victor G; Jimenez Pleguezuelos, María Jose; Romanini, Carola; Anjos Porto, Maria João; Puente Prieto, Jorge; Bofarull Castro, Alicia; Hernandez, Alexis; Farfán, María José; Prieto, Victoria; Alvarez, David; Penacino, Gustavo; Zabalza, Santiago; Hernández Bolaños, Alejandro; Miguel Manterola, Irati; Prieto, Lourdes; Parsons, Thomas
2016-03-01
The GHEP-ISFG Working Group has recognized the importance of assisting DNA laboratories to gain expertise in handling DVI or missing persons identification (MPI) projects which involve the need for large-scale genetic profile comparisons. Eleven laboratories participated in a DNA matching exercise to identify victims from a hypothetical conflict with 193 missing persons. The post mortem database was comprised of 87 skeletal remain profiles from a secondary mass grave displaying a minimal number of 58 individuals with evidence of commingling. The reference database was represented by 286 family reference profiles with diverse pedigrees. The goal of the exercise was to correctly discover re-associations and family matches. The results of direct matching for commingled remains re-associations were correct and fully concordant among all laboratories. However, the kinship analysis for missing persons identifications showed variable results among the participants. There was a group of laboratories with correct, concordant results but nearly half of the others showed discrepant results exhibiting likelihood ratio differences of several degrees of magnitude in some cases. Three main errors were detected: (a) some laboratories did not use the complete reference family genetic data to report the match with the remains, (b) the identity and/or non-identity hypotheses were sometimes wrongly expressed in the likelihood ratio calculations, and (c) many laboratories did not properly evaluate the prior odds for the event. The results suggest that large-scale profile comparisons for DVI or MPI is a challenge for forensic genetics laboratories and the statistical treatment of DNA matching and the Bayesian framework should be better standardized among laboratories. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Goodwin, William H
2017-09-01
DNA analysis was first applied to the identification of victims of armed conflicts and other situations of violence (ACOSV) in the mid-1990s, starting in South America and the Balkans. Argentina was the first country to establish a genetic database specifically developed to identify disappeared children. Following on from these programs the early 2000s marked major programs, using a largely DNA-led approach, identifying missing persons in the Balkans and following the attack on the World Trade Center in New York. These two identification programs significantly expanded the magnitude of events to which DNA analysis was used to help provide the identity of missing persons. Guidelines developed by Interpol (2014) [1] related to best practice for identification of human remains following DVI type scenarios have been widely disseminated around the forensic community; in numerous cases these guidelines have been adopted or incorporated into national guidelines/standards/practice. However, given the complexity of many humanitarian contexts in which forensic science is employed there is a lack of internationally accepted guidelines, related to these contexts, for authorities to reference. In response the Argentine government's Human Rights Division in the Ministry of Foreign Affairs and Worship (MREC) proposed that the United Nations (UN) should promote best practice in the use of forensic genetics in humanitarian forensic action: this was adopted by the UN in Resolutions A/HRC/RES/10/26 and A/HRC/RES/15/5. Following on from the adoption of the resolutions MREC has coordinated, with the support of the International Committee of the Red Cross (ICRC), the drafting of a set of guidelines (MREC, ICRC, 2014) [2], with input from national and international agencies. To date the guidelines have been presented to South America's MERCOSUR and the UN and have been disseminated to interested parties. Copyright © 2017 Elsevier B.V. All rights reserved.
Extra-bodily DNA sampling by the police.
Gans, Jeremy
2013-12-01
Forensic investigators have statutory powers to take DNA samples directly from suspects' bodies in certain circumstances but sometimes the powers fall short, legally or practically Police may then look for samples that have become separated from their suspects for one reason or another. No jurisdiction currently bars or even regulates this practice, which is instead loosely governed by laws on property, consent and evidence. This article argues that this lack of regulation undermines the entire system of forensic procedure laws.
The forensic value of X-linked markers in mixed-male DNA analysis.
He, HaiJun; Zha, Lagabaiyila; Cai, JinHong; Huang, Jian
2018-05-04
Autosomal genetic markers and Y chromosome markers have been widely applied in analysis of mixed stains at crime scenes by forensic scientists. However, true genotype combinations are often difficult to distinguish using autosomal markers when similar amounts of DNA are contributed by multiple donors. In addition, specific individuals cannot be determined by Y chromosomal markers because male relatives share the same Y chromosome. X-linked markers, possessing characteristics somewhere intermediate between autosomes and the Y chromosome, are less universally applied in criminal casework. In this paper, X markers are proposed to apply to male mixtures because their true genes can be more easily and accurately recognized than the decision of the genotypes of AS markers. In this study, an actual two-man mixed stain from a forensic case file and simulated male-mixed DNA were examined simultaneously with the X markers and autosomal markers. Finally, the actual mixture was separated successfully by the X markers, although it was unresolved by AS-STRs, and the separation ratio of the simulated mixture was much higher using Chr X tools than with AS methods. We believe X-linked markers provide significant advantages in individual discrimination of male mixtures that should be further applied to forensic work.
Methodological approach to crime scene investigation: the dangers of technology
NASA Astrophysics Data System (ADS)
Barnett, Peter D.
1997-02-01
The visitor to any modern forensic science laboratory is confronted with equipment and processes that did not exist even 10 years ago: thermocyclers to allow genetic typing of nanogram amounts of DNA isolated from a few spermatozoa; scanning electron microscopes that can nearly automatically detect submicrometer sized particles of molten lead, barium and antimony produced by the discharge of a firearm and deposited on the hands of the shooter; and computers that can compare an image of a latent fingerprint with millions of fingerprints stored in the computer memory. Analysis of populations of physical evidence has permitted statistically minded forensic scientists to use Bayesian inference to draw conclusions based on a priori assumptions which are often poorly understood, irrelevant, or misleading. National commissions who are studying quality control in DNA analysis propose that people with barely relevant graduate degrees and little forensic science experience be placed in charge of forensic DNA laboratories. It is undeniable that high- tech has reversed some miscarriages of justice by establishing the innocence of a number of people who were imprisoned for years for crimes that they did not commit. However, this papers deals with the dangers of technology in criminal investigations.
Optimization of ultrahigh-speed multiplex PCR for forensic analysis.
Gibson-Daw, Georgiana; Crenshaw, Karin; McCord, Bruce
2018-01-01
In this paper, we demonstrate the design and optimization of an ultrafast PCR amplification technique, used with a seven-locus multiplex that is compatible with conventional capillary electrophoresis systems as well as newer microfluidic chip devices. The procedure involves the use of a high-speed polymerase and a rapid cycling protocol to permit multiplex PCR amplification of forensic short tandem repeat loci in 6.5 min. We describe the selection and optimization of master mix reagents such as enzyme, buffer, MgCl 2 , and dNTPs, as well as primer ratios, total volume, and cycle conditions, in order to get the best profile in the shortest time possible. Sensitivity and reproducibility studies are also described. The amplification process utilizes a small high-speed thermocycler and compact laptop, making it portable and potentially useful for rapid, inexpensive on-site genotyping. The seven loci of the multiplex were taken from conventional STR genotyping kits and selected for their size and lack of overlap. Analysis was performed using conventional capillary electrophoresis and microfluidics with fluorescent detection. Overall, this technique provides a more rapid method for rapid sample screening of suspects and victims. Graphical abstract Rapid amplification of forensic DNA using high speed thermal cycling followed by capillary or microfluidic electrophoresis.
Li, Liming; Wang, Yi; Yang, Shuping; Xia, Mingying; Yang, Yajun; Wang, Jiucun; Lu, Daru; Pan, Xingwei; Ma, Teng; Jiang, Pei; Yu, Ge; Zhao, Ziqin; Ping, Yuan; Zhou, Huaigu; Zhao, Xueying; Sun, Hui; Liu, Bing; Jia, Dongtao; Li, Chengtao; Hu, Rile; Lu, Hongzhou; Liu, Xiaoyang; Chen, Wenqing; Mi, Qin; Xue, Fuzhong; Su, Yongdong; Jin, Li; Li, Shilin
2017-05-01
The applications of DNA profiling aim to identify perpetrators, missing family members and disaster victims in forensic investigations. Single nucleotide polymorphisms (SNPs) based forensic applications are emerging rapidly with a potential to replace short tandem repeats (STRs) based panels which are now being used widely, and there is a need for a well-designed SNP panel to meet such challenge for this transition. Here we present a panel of 175 SNP markers (referred to as Fudan ID Panel or FID), selected from ∼3.6 million SNPs, for the application of personal identification. We optimized and validated FID panel using 729 Chinese individuals using a next generation sequencing (NGS) technology. We showed that the SNPs in the panel possess very high heterozygosity as well as low within- and among-continent differentiations, enabling FID panel exhibit discrimination power in both regional and worldwide populations, with the average match probabilities ranging from 4.77×10 -71 to 1.06×10 -64 across 54 world populations. With the advent of biomedical research, the SNPs connecting physical anthropological, physiological, behavioral and phenotypic traits will be eventually added to the forensic panels that will revolutionize criminal investigation. Copyright © 2017 Elsevier B.V. All rights reserved.
Fondevila, M; Phillips, C; Santos, C; Freire Aradas, A; Vallone, P M; Butler, J M; Lareu, M V; Carracedo, A
2013-01-01
A revision of an established 34 SNP forensic ancestry test has been made by swapping the under-performing rs727811 component SNP with the highly informative rs3827760 that shows a near-fixed East Asian specific allele. We collated SNP variability data for the revised SNP set in 66 reference populations from 1000 Genomes and HGDP-CEPH panels and used this as reference data to analyse four U.S. populations showing a range of admixture patterns. The U.S. Hispanics sample in particular displayed heterogeneous values of co-ancestry between European, Native American and African contributors, likely to reflect in part, the way this disparate group is defined using cultural as well as population genetic parameters. The genotyping of over 700 U.S. population samples also provided the opportunity to thoroughly gauge peak mobility variation and peak height ratios observed from routine use of the single base extension chemistry of the 34-plex test. Finally, the genotyping of the widely used DNA profiling Standard Reference Material samples plus other control DNAs completes the audit of the 34-plex assay to allow forensic practitioners to apply this test more readily in their own laboratories. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Prediction of autosomal STR typing success in ancient and Second World War bone samples.
Zupanič Pajnič, Irena; Zupanc, Tomaž; Balažic, Jože; Geršak, Živa Miriam; Stojković, Oliver; Skadrić, Ivan; Črešnar, Matija
2017-03-01
Human-specific quantitative PCR (qPCR) has been developed for forensic use in the last 10 years and is the preferred DNA quantification technique since it is very accurate, sensitive, objective, time-effective and automatable. The amount of information that can be gleaned from a single quantification reaction using commercially available quantification kits has increased from the quantity of nuclear DNA to the amount of male DNA, presence of inhibitors and, most recently, to the degree of DNA degradation. In skeletal remains samples from disaster victims, missing persons and war conflict victims, the DNA is usually degraded. Therefore the new commercial qPCR kits able to assess the degree of degradation are potentially able to predict the success of downstream short tandem repeat (STR) typing. The goal of this study was to verify the quantification step using the PowerQuant kit with regard to its suitability as a screening method for autosomal STR typing success on ancient and Second World War (WWII) skeletal remains. We analysed 60 skeletons excavated from five archaeological sites and four WWII mass graves from Slovenia. The bones were cleaned, surface contamination was removed and the bones ground to a powder. Genomic DNA was obtained from 0.5g of bone powder after total demineralization. The DNA was purified using a Biorobot EZ1 device. Following PowerQuant quantification, DNA samples were subjected to autosomal STR amplification using the NGM kit. Up to 2.51ng DNA/g of powder were extracted. No inhibition was detected in any of bones analysed. 82% of the WWII bones gave full profiles while 73% of the ancient bones gave profiles not suitable for interpretation. Four bone extracts yielded no detectable amplification or zero quantification results and no profiles were obtained from any of them. Full or useful partial profiles were produced only from bone extracts where short autosomal (Auto) and long degradation (Deg) PowerQuant targets were detected. It is concluded that STR typing of old bones after quantification with the PowerQuant should be performed only when both Auto and Deg targets are detected simultaneously with no respect to [Auto]/[Deg] ratio. Prediction of STR typing success could be made according to successful amplification of Deg fragment. The PowerQuant kit is capable of identifying bone DNA samples that will not yield useful STR profiles using the NGM kit, and it can be used as a predictor of autosomal STR typing success of bone extracts obtained from ancient and WWII skeletal remains. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Mitochondrial DNA heteroplasmy in the emerging field of massively parallel sequencing
Just, Rebecca S.; Irwin, Jodi A.; Parson, Walther
2015-01-01
Long an important and useful tool in forensic genetic investigations, mitochondrial DNA (mtDNA) typing continues to mature. Research in the last few years has demonstrated both that data from the entire molecule will have practical benefits in forensic DNA casework, and that massively parallel sequencing (MPS) methods will make full mitochondrial genome (mtGenome) sequencing of forensic specimens feasible and cost-effective. A spate of recent studies has employed these new technologies to assess intraindividual mtDNA variation. However, in several instances, contamination and other sources of mixed mtDNA data have been erroneously identified as heteroplasmy. Well vetted mtGenome datasets based on both Sanger and MPS sequences have found authentic point heteroplasmy in approximately 25% of individuals when minor component detection thresholds are in the range of 10–20%, along with positional distribution patterns in the coding region that differ from patterns of point heteroplasmy in the well-studied control region. A few recent studies that examined very low-level heteroplasmy are concordant with these observations when the data are examined at a common level of resolution. In this review we provide an overview of considerations related to the use of MPS technologies to detect mtDNA heteroplasmy. In addition, we examine published reports on point heteroplasmy to characterize features of the data that will assist in the evaluation of future mtGenome data developed by any typing method. PMID:26009256
Olekšáková, Tereza; Žurovcová, Martina; Klimešová, Vanda; Barták, Miroslav; Šuláková, Hana
2018-04-01
Several methods of DNA extraction, coupled with 'DNA barcoding' species identification, were compared using specimens from early developmental stages of forensically important flies from the Calliphoridae and Sarcophagidae families. DNA was extracted at three immature stages - eggs, the first instar larvae, and empty pupal cases (puparia) - using four different extraction methods, namely, one simple 'homemade' extraction buffer protocol and three commercial kits. The extraction conditions, including the amount of proteinase K and incubation times, were optimized. The simple extraction buffer method was successful for half of the eggs and for the first instar larval samples. The DNA Lego Kit and DEP-25 DNA Extraction Kit were useful for DNA extractions from the first instar larvae samples, and the DNA Lego Kit was also successful regarding the extraction from eggs. The QIAamp DNA mini kit was the most effective; the extraction was successful with regard to all sample types - eggs, larvae, and pupari.
Ferri, Gianmarco; Alù, Milena; Corradini, Beatrice; Beduschi, Giovanni
2009-09-01
Forensic botany can provide significant supporting evidence during criminal investigations. However, it is still an underutilized field of investigation with its most common application limited to identifying specific as well as suspected illegal plants. The ubiquitous presence of plant species can be useful in forensics, but the absence of an accurate identification system remains the major obstacle to the present inability to routinely and correctly identify trace botanical evidence. Many plant materials cannot be identified and differentiated to the species level by traditional morphological characteristics when botanical specimens are degraded and lack physical features. By taking advantage of a universal barcode system, DNA sequencing, and other biomolecular techniques used routinely in forensic investigations, two chloroplast DNA regions were evaluated for their use as "barcoding" markers for plant identification in the field of forensics. We therefore investigated the forensic use of two non-coding plastid regions, psbA-trnH and trnL-trnF, to create a multimarker system for species identification that could be useful throughout the plant kingdom. The sequences from 63 plants belonging to our local flora were submitted and registered on the GenBank database. Sequence comparison to set up the level of identification (species, genus, or family) through Blast algorithms allowed us to assess the suitability of this method. The results confirmed the effectiveness of our botanic universal multimarker assay in forensic investigations.
Choice of population database for forensic DNA profile analysis.
Steele, Christopher D; Balding, David J
2014-12-01
When evaluating the weight of evidence (WoE) for an individual to be a contributor to a DNA sample, an allele frequency database is required. The allele frequencies are needed to inform about genotype probabilities for unknown contributors of DNA to the sample. Typically databases are available from several populations, and a common practice is to evaluate the WoE using each available database for each unknown contributor. Often the most conservative WoE (most favourable to the defence) is the one reported to the court. However the number of human populations that could be considered is essentially unlimited and the number of contributors to a sample can be large, making it impractical to perform every possible WoE calculation, particularly for complex crime scene profiles. We propose instead the use of only the database that best matches the ancestry of the queried contributor, together with a substantial FST adjustment. To investigate the degree of conservativeness of this approach, we performed extensive simulations of one- and two-contributor crime scene profiles, in the latter case with, and without, the profile of the second contributor available for the analysis. The genotypes were simulated using five population databases, which were also available for the analysis, and evaluations of WoE using our heuristic rule were compared with several alternative calculations using different databases. Using FST=0.03, we found that our heuristic gave WoE more favourable to the defence than alternative calculations in well over 99% of the comparisons we considered; on average the difference in WoE was just under 0.2 bans (orders of magnitude) per locus. The degree of conservativeness of the heuristic rule can be adjusted through the FST value. We propose the use of this heuristic for DNA profile WoE calculations, due to its ease of implementation, and efficient use of the evidence while allowing a flexible degree of conservativeness. Copyright © 2014. Published by Elsevier Ireland Ltd.
Ambers, Angie; Wiley, Rachel; Novroski, Nicole; Budowle, Bruce
2018-01-01
Previous studies have shown that nylon flocked swabs outperform traditional fiber swabs in DNA recovery due to their innovative design and lack of internal absorbent core to entrap cellular materials. The microFLOQ ® Direct swab, a miniaturized version of the 4N6 FLOQSwab ® , has a small swab head that is treated with a lysing agent which allows for direct amplification and DNA profiling from sample collection to final result in less than two hours. Additionally, the microFLOQ ® system subsamples only a minute portion of a stain and preserves the vast majority of the sample for subsequent testing or re-analysis, if desired. The efficacy of direct amplification of DNA from dilute bloodstains, saliva stains, and touch samples was evaluated using microFLOQ ® Direct swabs and the GlobalFiler™ Express system. Comparisons were made to traditional methods to assess the robustness of this alternate workflow. Controlled studies with 1:19 and 1:99 dilutions of bloodstains and saliva stains consistently yielded higher STR peak heights than standard methods with 1ng input DNA from the same samples. Touch samples from common items yielded single source and mixed profiles that were consistent with primary users of the objects. With this novel methodology/workflow, no sample loss occurs and therefore more template DNA is available during amplification. This approach may have important implications for analysis of low quantity and/or degraded samples that plague forensic casework. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Mitochondrial DNA Profiling of Illegal Tortoiseshell Products Derived from Hawksbill Sea Turtles.
Foran, David R; Ray, Rebecca L
2016-07-01
The hawksbill sea turtle (Eretmochelys imbricata) is a highly endangered species, commonly poached for its ornate shell. "Tortoiseshell" products made from the shell are widely, although illegally, available in many countries. Hawksbills have a circumglobal distribution; thus, determining their origin is difficult, although genetic differences exist geographically. In the research presented, a procedure was developed to extract and amplify mitochondrial DNA from tortoiseshell items, in an effort to better understand where the species is being poached. Confiscated tortoiseshell items were obtained from the U.S. Fish and Wildlife Service, and DNA from 56 of them was analyzed. Multiple mitochondrial haplotypes were identified, including five not previously reported. Only one tortoiseshell item proved to be of Atlantic origin, while all others corresponded to genetic stocks in the Indo-Pacific region. The developed methodology allows for unique, and previously unattainable, genetic information on the illegal poaching of sea turtles for the decorative tortoiseshell trade. © 2016 American Academy of Forensic Sciences.
Investigative studies into the recovery of DNA from improvised explosive device containers.
Hoffmann, Shane G; Stallworth, Shawn E; Foran, David R
2012-05-01
Apprehending those who utilize improvised explosive devices (IEDs) is a national priority owing to their use both domestically and abroad. IEDs are often concealed in bags, boxes, or backpacks to prevent their detection. Given this, the goal of the research presented was to identify IED handlers through postblast DNA recovery from IED containers. Study participants were asked to use backpacks for 11 days, after which they served as containers for pipe bombs. Eleven postdeflagration backpack regions likely to be handled were swabbed and analyzed via mini-short tandem repeats (miniSTRs) and alleles were called blind. An experimental consensus method was examined in which profiles from all regions were considered, to help identify spurious drop-in/out. Results were correct for all loci, except one that remained ambiguous. The results show that recovering DNA from IED containers is a viable approach for aiding in the identification of those who may have been involved in an IED event. © 2011 American Academy of Forensic Sciences.
Content based information retrieval in forensic image databases.
Geradts, Zeno; Bijhold, Jurrien
2002-03-01
This paper gives an overview of the various available image databases and ways of searching these databases on image contents. The developments in research groups of searching in image databases is evaluated and compared with the forensic databases that exist. Forensic image databases of fingerprints, faces, shoeprints, handwriting, cartridge cases, drugs tablets, and tool marks are described. The developments in these fields appear to be valuable for forensic databases, especially that of the framework in MPEG-7, where the searching in image databases is standardized. In the future, the combination of the databases (also DNA-databases) and possibilities to combine these can result in stronger forensic evidence.
Launching the Greek forensic DNA database. The legal framework and arising ethical issues.
Voultsos, Polychronis; Njau, Samuel; Tairis, Nikolaos; Psaroulis, Dimitrios; Kovatsi, Leda
2011-11-01
Since the creation of the first national DNA database in Europe in 1995, many European countries have legislated laws for initiating and regulating their own databases. The Greek government legislated a law in 2008, by which the National DNA Database of Greece was founded and regulated. According to this law, only DNA profiles from convicted criminals were recorded. Nevertheless, a year later, in 2009, the law was amended to permit the creation of an expanded database including innocent people and children. Unfortunately, the new law is very vague in many aspects and does not respect the principle of proportionality. Therefore, according to our opinion, it will soon need to be re-amended. Furthermore, prior to legislating the new law, there was no debate with the community itself in order to clarify what system would best suit Greece and what the citizens would be willing to accept. We present the current legal framework in Greece, we highlight issues that need to be clarified and we discuss possible ethical issues that may arise. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Coble, M D; Buckleton, J; Butler, J M; Egeland, T; Fimmers, R; Gill, P; Gusmão, L; Guttman, B; Krawczak, M; Morling, N; Parson, W; Pinto, N; Schneider, P M; Sherry, S T; Willuweit, S; Prinz, M
2016-11-01
The use of biostatistical software programs to assist in data interpretation and calculate likelihood ratios is essential to forensic geneticists and part of the daily case work flow for both kinship and DNA identification laboratories. Previous recommendations issued by the DNA Commission of the International Society for Forensic Genetics (ISFG) covered the application of bio-statistical evaluations for STR typing results in identification and kinship cases, and this is now being expanded to provide best practices regarding validation and verification of the software required for these calculations. With larger multiplexes, more complex mixtures, and increasing requests for extended family testing, laboratories are relying more than ever on specific software solutions and sufficient validation, training and extensive documentation are of upmost importance. Here, we present recommendations for the minimum requirements to validate bio-statistical software to be used in forensic genetics. We distinguish between developmental validation and the responsibilities of the software developer or provider, and the internal validation studies to be performed by the end user. Recommendations for the software provider address, for example, the documentation of the underlying models used by the software, validation data expectations, version control, implementation and training support, as well as continuity and user notifications. For the internal validations the recommendations include: creating a validation plan, requirements for the range of samples to be tested, Standard Operating Procedure development, and internal laboratory training and education. To ensure that all laboratories have access to a wide range of samples for validation and training purposes the ISFG DNA commission encourages collaborative studies and public repositories of STR typing results. Published by Elsevier Ireland Ltd.
Forensic archaeology and anthropology : An Australian perspective.
Oakley, Kate
2005-09-01
Forensic archaeology is an extremely powerful investigative discipline and, in combination with forensic anthropology, can provide a wealth of evidentiary information to police investigators and the forensic community. The re-emergence of forensic archaeology and anthropology within Australia relies on its diversification and cooperation with established forensic medical organizations, law enforcement forensic service divisions, and national forensic boards. This presents a unique opportunity to develop a new multidisciplinary approach to forensic archaeology/anthropology within Australia as we hold a unique set of environmental, social, and cultural conditions that diverge from overseas models and require different methodological approaches. In the current world political climate, more forensic techniques are being applied at scenes of mass disasters, genocide, and terrorism. This provides Australian forensic archaeology/anthropology with a unique opportunity to develop multidisciplinary models with contributions from psychological profiling, ballistics, sociopolitics, cultural anthropology, mortuary technicians, post-blast analysis, fire analysis, and other disciplines from the world of forensic science.
Frégeau, Chantal J; Dalpé, Claude
2016-02-01
A portable DNA extraction instrument was evaluated for its ability to decontaminate blood and saliva samples deposited on different surfaces (metal, plastic and glass) contaminated with stable isotopes of cobalt (Co), cesium (Cs), and strontium (Sr) as equivalents to their radiogenic (60)Co, (137)Cs, and (90)Sr isotopes, respectively, that could be released during a nuclear weapon accident or a radiological dispersal device (RDD) detonation. Despite the very high contamination levels tested in this study, successful removal of greater than 99.996% of the Co, Cs, Sr contaminants was achieved based on inductively coupled plasma-mass spectrometry (ICP-MS) and neutron activation analyses carried out on all liquids (including DNA eluates) and solid waste produced during automated DNA extraction. The remaining amounts of Co, Cs and Sr in the DNA eluates, when converted to dose rates (corresponding to (60)Co, (137)Cs and (90)Sr), were determined to be below the recommended dose limits for the general public in most of the scenarios tested. The presence of Co, Cs and Sr contaminants in the cell lysates had no adverse impact on the binding of DNA onto the magnetic DNA IQ™ beads. DNA yields were similar to uncontaminated controls. The remaining Co, Cs and Sr in the DNA eluates did not interfere with real-time PCR DNA quantification. In addition, the quality of the AmpFlSTR(®) Identifiler(®) profiles derived in 26min using an accelerated protocol was very good and comparable to controls. This study emphasizes the use of an accelerated process involving a portable DNA extraction instrument to significantly reduce radioactive dose rates to allow contaminated samples to be processed safely in a forensic mobile laboratory to expedite the identification of individuals potentially involved in the dispersal of nuclear or other radioactive materials. Crown Copyright © 2016. Published by Elsevier Ireland Ltd. All rights reserved.
Next generation sequencing (NGS): a golden tool in forensic toolkit.
Aly, S M; Sabri, D M
The DNA analysis is a cornerstone in contemporary forensic sciences. DNA sequencing technologies are powerful tools that enrich molecular sciences in the past based on Sanger sequencing and continue to glowing these sciences based on Next generation sequencing (NGS). Next generation sequencing has excellent potential to flourish and increase the molecular applications in forensic sciences by jumping over the pitfalls of the conventional method of sequencing. The main advantages of NGS compared to conventional method that it utilizes simultaneously a large number of genetic markers with high-resolution of genetic data. These advantages will help in solving several challenges such as mixture analysis and dealing with minute degraded samples. Based on these new technologies, many markers could be examined to get important biological data such as age, geographical origins, tissue type determination, external visible traits and monozygotic twins identification. It also could get data related to microbes, insects, plants and soil which are of great medico-legal importance. Despite the dozens of forensic research involving NGS, there are requirements before using this technology routinely in forensic cases. Thus, there is a great need to more studies that address robustness of these techniques. Therefore, this work highlights the applications of forensic sciences in the era of massively parallel sequencing.
Theory and applications of the polymerase chain reaction.
Remick, D G; Kunkel, S L; Holbrook, E A; Hanson, C A
1990-04-01
The polymerase chain reaction (PCR) is a newly developed molecular biology technique that can significantly amplify DNA or RNA. The process consists of repetitive cycles of specific DNA synthesis, defined by short stretches of preselected DNA. With each cycle, there is a doubling of the final, desired DNA product such that a million-fold amplification is possible. This powerful method has numerous applications in diagnostic pathology, especially in the fields of microbiology, forensic science, and hematology. The PCR may be used to directly detect viral DNA, which may facilitate the diagnosis of acquired immune deficiency syndrome (AIDS) or other viral diseases. PCR amplification of DNA allows detection of specific sequences from extremely small samples, such as with forensic material. In hematology, PCR may help in the diagnosis of hemoglobinopathies or of neoplastic disorders by documenting chromosomal translocations. The new PCR opens exciting new avenues for diagnostic pathology using this new technology.
Forensic DNA expertise of incest in early period of pregnancy.
Jakovski, Zlatko; Jankova, Renata; Nikolova, Ksenija; Spasevska, Liljana; Jovanovic, Rubens; Janeska, Biljana
2011-01-01
Proving incest from tissue obtained by abortion early in pregnancy can be a challenge. Problems include the small quantity of embryonic tissue in the products of conception, and the mixing of DNA from mother and embryo. In many cases, this amorphous material cannot be grossly segregated into maternal and fetal components. Thus, morphological discrimination requires microscopy to select relevant tissue particles from which DNA can be typed. This combination of methods is reliable and efficient. In this article, we present two cases of incest discovered by examination of products of conception. Copyright © 2010 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
Developmental validation of a Cannabis sativa STR multiplex system for forensic analysis.
Howard, Christopher; Gilmore, Simon; Robertson, James; Peakall, Rod
2008-09-01
A developmental validation study based on recommendations of the Scientific Working Group on DNA Analysis Methods (SWGDAM) was conducted on a multiplex system of 10 Cannabis sativa short tandem repeat loci. Amplification of the loci in four multiplex reactions was tested across DNA from dried root, stem, and leaf sources, and DNA from fresh, frozen, and dried leaf tissue with a template DNA range of 10.0-0.01 ng. The loci were amplified and scored consistently for all DNA sources when DNA template was in the range of 10.0-1.0 ng. Some allelic dropout and PCR failure occurred in reactions with lower template DNA amounts. Overall, amplification was best using 10.0 ng of template DNA from dried leaf tissue indicating that this is the optimal source material. Cross species amplification was observed in Humulus lupulus for three loci but there was no allelic overlap. This is the first study following SWGDAM validation guidelines to validate short tandem repeat markers for forensic use in plants.
A Simple and Efficient Method of Extracting DNA from Aged Bones and Teeth.
Liu, Qiqi; Liu, Liyan; Zhang, Minli; Zhang, Qingzhen; Wang, Qiong; Ding, Xiaoran; Shao, Liting; Zhou, Zhe; Wang, Shengqi
2018-05-01
DNA is often difficult to extract from old bones and teeth due to low levels of DNA and high levels of degradation. This study established a simple yet efficient method for extracting DNA from 20 aged bones and teeth (approximately 60 years old). Based on the concentration and STR typing results, the new method of DNA extraction (OM) developed in this study was compared with the PrepFiler™ BTA Forensic DNA Extraction Kit (BM). The total amount of DNA extracted using the OM method was not significantly different from that extracted using the commercial kit (p > 0.05). However, the number of STR loci detected was significantly higher in the samples processed using the OM method than using the BM method (p < 0.05). This study aimed to establish a DNA extraction method for aged bones and teeth to improve the detection rate of STR typing and reduce costs compared to the BM technique. © 2017 American Academy of Forensic Sciences.
Home - Virginia Department of Forensic Science
Procedure Manuals Training Manuals Digital & Multimedia Evidence Computer Analysis Video Analysis Procedure Manual Training Manual FAQ Updates Firearms & Toolmarks Procedure Manuals Training Manuals Forensic Biology Procedure Manuals Training Manuals Familial Searches Post-Conviction DNA Issues FAQ
The professional competence profile of Finnish nurses practising in a forensic setting.
Koskinen, L; Likitalo, H; Aho, J; Vuorio, O; Meretoja, R
2014-05-01
Forensic nurses in Finland work in the two state-maintained forensic hospitals. The main function of these hospitals is to perform forensic psychiatric evaluation and provide treatment for two groups of patients: violent offenders found not guilty by reason of insanity, and those too dangerous or difficult to be treated in regional hospitals. Although the forensic nurses work with the most challenging psychiatric patients, they do not have any preparatory special education for the work. This paper describes the development of nurses who participated in a 1-year further education programme that was tailored to them. The nurses experienced that the 1-year education had a significant impact on their overall competence level. They found that their skills for observing, helping, teaching and caring for their patients had increased during the education. Conversely, it was found that the nurses collaborated little with their patients' family members. They were also not familiar with utilizing research findings in improving their care of patients. Forensic nursing is a global and relatively young profession that combines nursing care and juridical processes. There are, however, significant differences in the qualifications of forensic nurses internationally. The aim of the study was to describe the professional competence profile of practising forensic nurses in Finland and to explore the effects of a 1-year further education programme on that competence profile. The data were collected in 2011-2012 using the Nurse Competence Scale comprising seven competence categories, and analysed using the software package SPSS version 19.0 (SPSS, Inc., Armonk, NY, USA). The participants were 19 forensic nurses and their 15 head nurses. The assessed overall scores from both informant groups indicated a high level of competence across the seven categories. The nurses felt that the overall competence level had increased during the education programme. The increase seen by the head nurses was smaller. The less frequent competence items included utilization of research and involvement of family in care. It can be stated that the 1-year further education programme was effective in developing the nurses' competence profile and, in particular, affected their professional self-confidence. It will, however, be essential to strengthen their skills for working with families and their awareness of evidence-based forensic nursing. © 2013 John Wiley & Sons Ltd.
Van Neste, Christophe; Van Criekinge, Wim; Deforce, Dieter; Van Nieuwerburgh, Filip
2016-01-01
It is difficult to predict if and when massively parallel sequencing of forensic STR loci will replace capillary electrophoresis as the new standard technology in forensic genetics. The main benefits of sequencing are increased multiplexing scales and SNP detection. There is not yet a consensus on how sequenced profiles should be reported. We present the Forensic Loci Allele Database (FLAD) service, made freely available on http://forensic.ugent.be/FLAD/. It offers permanent identifiers for sequenced forensic alleles (STR or SNP) and their microvariants for use in forensic allele nomenclature. Analogous to Genbank, its aim is to provide permanent identifiers for forensically relevant allele sequences. Researchers that are developing forensic sequencing kits or are performing population studies, can register on http://forensic.ugent.be/FLAD/ and add loci and allele sequences with a short and simple application interface (API). Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Direct analysis in real time mass spectrometry for analysis of sexual assault evidence.
Musah, Rabi A; Cody, Robert B; Dane, A John; Vuong, Angela L; Shepard, Jason R E
2012-05-15
Sexual assault crimes are vastly underreported and suffer from alarmingly low prosecution and conviction rates. The key scientific method to aid in prosecution of such cases is forensic DNA analysis, where biological evidence such as semen collected using a rape test kit is used to determine a suspect's DNA profile. However, the growing awareness by criminals of the importance of DNA in the prosecution of sexual assaults has resulted in increased condom use by assailants as a means to avoid leaving behind their DNA. Thus, other types of trace evidence are important to help corroborate victims' accounts, exonerate the innocent, link suspects to the crime, or confirm penetration. Direct Analysis in Real Time Mass Spectrometry (DART-MS) was employed for the comprehensive characterization of non-DNA trace evidence associated with sexual assault. The ambient ionization method associated with DART-MS is extremely rapid and samples are processed instantaneously, without the need for extraction, sample preparation, or other means that might compromise forensic evidence for future analyses. In a single assay, we demonstrated the ability to identify lubricant formulations associated with sexual assault, such as the spermicide nonoxynol-9, compounds used in condom manufacture, and numerous other trace components as probative evidence. In addition, the method can also serve to identify compounds within trace biological residues, such as fatty acids commonly identified in latent fingerprints. Characterization of lubricant residues as probative evidence serves to establish a connection between the victim and the perpetrator, and the availability of these details may lead to higher rates of prosecution and conviction, as well as more severe penalties. The methodology described here opens the way for the adoption of a comprehensive, rapid, and sensitive analysis for use in crime labs, while providing knowledge that can inform and guide criminal justice policy and practice. Copyright © 2012 John Wiley & Sons, Ltd.
Cotton, Robin W; Fisher, Matthew B
2015-09-01
Forensic DNA testing is grounded in molecular biology and population genetics. The technologies that were the basis of restriction length polymorphism testing (RFLP) have given way to PCR based technologies. While PCR has been the pillar of short tandem repeat (STR) methods and will continue to be used as DNA sequencing and analysis of single nucleotide polymorphisms (SNPs) are introduced into human identification, the molecular biology techniques in use today represent significant advances since the introduction of STR testing. Large forensic laboratories with dedicated research teams and forensic laboratories which are part of academic institutions have the resources to keep track of advances which can then be considered for further research or incorporated into current testing methods. However, many laboratories have limited ability to keep up with research advances outside of the immediate area of forensic science and may not have access to a large university library systems. This review focuses on filling this gap with respect to areas of research that intersect with selected methods used in forensic biology. The review summarizes information collected from several areas of the scientific literature where advances in molecular biology have produced information relevant to DNA analysis of sexual assault evidence and methods used in presumptive and confirmatory identification of semen. Older information from the literature is also included where this information may not be commonly known and is relevant to current methods. The topics selected highlight (1) information from applications of proteomics to sperm biology and human reproduction, (2) seminal fluid proteins and prostate cancer diagnostics, (3) developmental biology of sperm from the fertility literature and (4) areas where methods are common to forensic analysis and research in contraceptive use and monitoring. Information and progress made in these areas coincide with the research interests of forensic biology and cross-talk between these disciplines may benefit both. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
GrigoraSNPs: Optimized Analysis of SNPs for DNA Forensics.
Ricke, Darrell O; Shcherbina, Anna; Michaleas, Adam; Fremont-Smith, Philip
2018-04-16
High-throughput sequencing (HTS) of single nucleotide polymorphisms (SNPs) enables additional DNA forensic capabilities not attainable using traditional STR panels. However, the inclusion of sets of loci selected for mixture analysis, extended kinship, phenotype, biogeographic ancestry prediction, etc., can result in large panel sizes that are difficult to analyze in a rapid fashion. GrigoraSNP was developed to address the allele-calling bottleneck that was encountered when analyzing SNP panels with more than 5000 loci using HTS. GrigoraSNPs uses a MapReduce parallel data processing on multiple computational threads plus a novel locus-identification hashing strategy leveraging target sequence tags. This tool optimizes the SNP calling module of the DNA analysis pipeline with runtimes that scale linearly with the number of HTS reads. Results are compared with SNP analysis pipelines implemented with SAMtools and GATK. GrigoraSNPs removes a computational bottleneck for processing forensic samples with large HTS SNP panels. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.
Scherer, James R; Liu, Peng; Mathies, Richard A
2010-11-01
We have developed a compact, laser-induced fluorescence detection scanner, the multichannel capillary array electrophoresis portable scanner (McCAEPs) as a platform for electrophoretic detection and control of high-throughput, integrated microfluidic devices for genetic and other analyses. The instrument contains a confocal optical system with a rotary objective for detecting four different fluorescence signals, a pneumatic system consisting of two pressure/vacuum pumps and 28 individual addressable solenoid valves for control of on-chip microvalves and micropumps, four Polymerase Chain Reaction (PCR) temperature control systems, and four high voltage power supplies for electrophoresis. The detection limit of the instrument is ~20 pM for on-chip capillary electrophoresis of fluorescein dyes. To demonstrate the system performance for forensic short tandem repeat (STR) analysis, two experiments were conducted: (i) electrophoretic separation and detection of STR samples on a 96-lane microfabricated capillary array electrophoresis microchip. Fully resolved PowerPlex(®) 16 STR profiles amplified from 1 ng of 9947A female standard DNA were successfully obtained; (ii) nine-plex STR amplification, sample injection, separation, and fluorescence detection of 100-copy 9948 male standard DNA in a single integrated PCR- capillary electrophoresis microchip. These results demonstrate that the McCAEPs can be used as a versatile control and detection instrument that operates integrated microfluidic devices for high-performance forensic human identification.
Short tandem repeat analysis in Japanese population.
Hashiyada, M
2000-01-01
Short tandem repeats (STRs), known as microsatellites, are one of the most informative genetic markers for characterizing biological materials. Because of the relatively small size of STR alleles (generally 100-350 nucleotides), amplification by polymerase chain reaction (PCR) is relatively easy, affording a high sensitivity of detection. In addition, STR loci can be amplified simultaneously in a multiplex PCR. Thus, substantial information can be obtained in a single analysis with the benefits of using less template DNA, reducing labor, and reducing the contamination. We investigated 14 STR loci in a Japanese population living in Sendai by three multiplex PCR kits, GenePrint PowerPlex 1.1 and 2.2. Fluorescent STR System (Promega, Madison, WI, USA) and AmpF/STR Profiler (Perkin-Elmer, Norwalk, CT, USA). Genomic DNA was extracted using sodium dodecyl sulfate (SDS) proteinase K or Chelex 100 treatment followed by the phenol/chloroform extraction. PCR was performed according to the manufacturer's protocols. Electrophoresis was carried out on an ABI 377 sequencer and the alleles were determined by GeneScan 2.0.2 software (Perkin-Elmer). In 14 STRs loci, statistical parameters indicated a relatively high rate, and no significant deviation from Hardy-Weinberg equilibrium was detected. We apply this STR system to paternity testing and forensic casework, e.g., personal identification in rape cases. This system is an effective tool in the forensic sciences to obtain information on individual identification.
NASA Astrophysics Data System (ADS)
Scherer, James R.; Liu, Peng; Mathies, Richard A.
2010-11-01
We have developed a compact, laser-induced fluorescence detection scanner, the multichannel capillary array electrophoresis portable scanner (McCAEPs) as a platform for electrophoretic detection and control of high-throughput, integrated microfluidic devices for genetic and other analyses. The instrument contains a confocal optical system with a rotary objective for detecting four different fluorescence signals, a pneumatic system consisting of two pressure/vacuum pumps and 28 individual addressable solenoid valves for control of on-chip microvalves and micropumps, four Polymerase Chain Reaction (PCR) temperature control systems, and four high voltage power supplies for electrophoresis. The detection limit of the instrument is ˜20 pM for on-chip capillary electrophoresis of fluorescein dyes. To demonstrate the system performance for forensic short tandem repeat (STR) analysis, two experiments were conducted: (i) electrophoretic separation and detection of STR samples on a 96-lane microfabricated capillary array electrophoresis microchip. Fully resolved PowerPlex® 16 STR profiles amplified from 1 ng of 9947A female standard DNA were successfully obtained; (ii) nine-plex STR amplification, sample injection, separation, and fluorescence detection of 100-copy 9948 male standard DNA in a single integrated PCR- capillary electrophoresis microchip. These results demonstrate that the McCAEPs can be used as a versatile control and detection instrument that operates integrated microfluidic devices for high-performance forensic human identification.
Grabmüller, Melanie; Schyma, Christian; Euteneuer, Jan; Madea, Burkhard; Courts, Cornelius
2015-09-01
When a firearm projectile hits a biological target a spray of biological material (e.g., blood and tissue fragments) can be propelled from the entrance wound back towards the firearm. This phenomenon has become known as "backspatter" and if caused by contact shots or shots from short distances traces of backspatter may reach, consolidate on, and be recovered from, the inside surfaces of the firearm. Thus, a comprehensive investigation of firearm-related crimes must not only comprise of wound ballistic assessment but also backspatter analysis, and may even take into account potential correlations between these emergences. The aim of the present study was to evaluate and expand the applicability of the "triple contrast" method by probing its compatibility with forensic analysis of nuclear and mitochondrial DNA and the simultaneous investigation of co-extracted mRNA and miRNA from backspatter collected from internal components of different types of firearms after experimental shootings. We demonstrate that "triple contrast" stained biological samples collected from the inside surfaces of firearms are amenable to forensic co-analysis of DNA and RNA and permit sequence analysis of the entire mtDNA displacement-loop, even for "low template" DNA amounts that preclude standard short tandem repeat DNA analysis. Our findings underscore the "triple contrast" method's usefulness as a research tool in experimental forensic ballistics.
Recovery of human DNA profiles from poached deer remains: a feasibility study.
Tobe, Shanan S; Govan, James; Welch, Lindsey A
2011-12-01
Poaching is a crime that occurs worldwide and can be extremely difficult to investigate and prosecute due to the nature of the evidence available. If a species is protected by international legislation such as the Convention on International Trade in Endangered Species of Wild Fauna and Flora then simply possessing any part of that species is illegal. Previous studies have focused on the identification of endangered species in cases of potential poaching. Difficulties arise if the poached animal is not endangered. Species such as deer have hunting seasons whereby they can legally be hunted however poaching is the illegal take of deer, irrespective of season. Therefore, identification of deer alone has little probative value as samples could have originated from legal hunting activities in season. After a deer is hunted it is usual to remove the innards, head and lower limbs. The limbs are removed through manual force and represent a potential source of human touch DNA. We investigate the potential to recover and profile human autosomal DNA from poached deer remains. Samples from the legs of ten culled deer were obtained (40 in total) using minitapes. DNA from samples was extracted, quantified and amplified to determine if it would be possible to recover human STR profiles. Low quantification data led to the use of an extended PCR cycling protocol of 34 cycles. Samples from seven deer amplified, however some samples were excluded from further analysis due to 'drop in' alleles or the low level of successfully amplified loci. Samples from five deer could be further analysed and gave match probabilities ranging from 6.37×10(-3) to 9.53×10(-11). This study demonstrates the potential of recovering human touch DNA from poached animal remains. There is the potential for this test to be used in relation to other species of poached remains or other types of wildlife crimes. This is the first time, to our knowledge, that human STR profiling has been successfully applied to touch DNA in regards to simulated wildlife crime. Copyright © 2011 Forensic Science Society. Published by Elsevier Ireland Ltd. All rights reserved.
DNA quality and quantity from up to 16 years old post-mortem blood stored on FTA cards.
Rahikainen, Anna-Liina; Palo, Jukka U; de Leeuw, Wiljo; Budowle, Bruce; Sajantila, Antti
2016-04-01
Blood samples preserved on FTA cards offer unique opportunities for genetic research. DNA recovered from these cards should be stable for long periods of time. However, it is not well established as how well the DNA stored on FTA card for substantial time periods meets the demands of forensic or genomic DNA analyses and especially so for from post-mortem (PM) samples in which the quality can vary upon initial collection. The aim of this study was to evaluate the time-dependent degradation on DNA quality and quantity extracted from up to 16 years old post-mortem bloodstained FTA cards. Four random FTA samples from eight time points spanning 1998 to 2013 (n=32) were collected and extracted in triplicate. The quantity and quality of the extracted DNA samples were determined with Quantifiler(®) Human Plus (HP) Quantification kit. Internal sample and sample-to-sample variation were evaluated by comparing recovered DNA yields. The DNA from the triplicate samplings were subsequently combined and normalized for further analysis. The practical effect of degradation on DNA quality was evaluated from normalized samples both with forensic and pharmacogenetic target markers. Our results suggest that (1) a PM change, e.g. blood clotting prior to sampling, affects the recovered DNA yield, creating both internal and sample-to-sample variation; (2) a negative correlation between the FTA card storage time and DNA quantity (r=-0.836 at the 0.01 level) was observed; (3) a positive correlation (r=0.738 at the level 0.01) was found between FTA card storage time and degradation levels. However, no inhibition was observed with the method used. The effect of degradation was manifested clearly with functional applications. Although complete STR-profiles were obtained for all samples, there was evidence of degradation manifested as decreased peak heights in the larger-sized amplicons. Lower amplification success was notable with the large 5.1 kb CYP2D6 gene fragment which strongly supports degradation of the stored samples. According to our results, DNA stored on FTA cards is rather stable over a long time period. DNA extracted from this storage medium can be used as human identification purposes as the method used is sufficiently sensitive and amplicon sizes tend to be <400 bp. However, DNA integrity was affected during storage. This effect should be taken into account depending on the intended application especially if high quality DNA and long PCR amplicons are required. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Role of forensic pathologists in mass disasters.
Schuliar, Yves; Knudsen, Peter Juel Thiis
2012-06-01
The forensic pathologist has always had a central role in the identification of the dead in every day practice, in accidents, and in disasters involving hundreds or thousands of victims. This role has changed in recent years, as advances in forensic odontology, genetics and anthropology have improved the chances of identifying victims beyond recognition. According to the Interpol DVI Guide, fingerprints, dental examination and DNA are the primary identifiers, and this has given new emphasis to the role of the forensic pathologist as the leader of a multidisciplinary team of experts in a disaster situation, based on his or her qualifications and the experience gained from doing the same work in the everyday situation of an institute of forensic medicine.
Greenspoon, Susan A; Ban, Jeffrey D; Sykes, Karen; Ballard, Elizabeth J; Edler, Shelley S; Baisden, Melissa; Covington, Brian L
2004-01-01
Robotic systems are commonly utilized for the extraction of database samples. However, the application of robotic extraction to forensic casework samples is a more daunting task. Such a system must be versatile enough to accommodate a wide range of samples that may contain greatly varying amounts of DNA, but it must also pose no more risk of contamination than the manual DNA extraction methods. This study demonstrates that the BioMek 2000 Laboratory Automation Workstation, used in combination with the DNA IQ System, is versatile enough to accommodate the wide range of samples typically encountered by a crime laboratory. The use of a silica coated paramagnetic resin, as with the DNA IQ System, facilitates the adaptation of an open well, hands off, robotic system to the extraction of casework samples since no filtration or centrifugation steps are needed. Moreover, the DNA remains tightly coupled to the silica coated paramagnetic resin for the entire process until the elution step. A short pre-extraction incubation step is necessary prior to loading samples onto the robot and it is at this step that most modifications are made to accommodate the different sample types and substrates commonly encountered with forensic evidentiary samples. Sexual assault (mixed stain) samples, cigarette butts, blood stains, buccal swabs, and various tissue samples were successfully extracted with the BioMek 2000 Laboratory Automation Workstation and the DNA IQ System, with no evidence of contamination throughout the extensive validation studies reported here.
Gupta, Sandeep Kumar; Kumar, Ajit; Hussain, Syed Ainul; Vipin; Singh, Lalji
2013-06-01
The Indian wild pig (Sus scrofa cristatus) is a protected species and listed in the Indian Wildlife (Protection) Act, 1972. The wild pig is often hunted illegally and sold in market as meat warranting punishment under law. To avoid confusion in identification of these two subspecies during wildlife forensic examinations, we describe genetic differentiation of Indian wild and domestic pigs using a molecular technique. Analysis of sequence generated from the partial fragment (421bp) of mitochondrial DNA (mtDNA) cytochrome b (Cyt b) gene exhibited unambiguous (>3%) genetic variation between Indian wild and domestic pigs. We observed nine forensically informative nucleotide sequence (FINS) variations between Indian wild and domestic pigs. The overall genetic variation described in this study is helpful in forensic identification of the biological samples of wild and domestic pigs. It also helped in differentiating the Indian wild pig from other wild pig races. This study indicates that domestic pigs in India are not descendent of the Indian wild pig, however; they are closer to the other wild pig races found in Asia and Europe. Copyright © 2012 Forensic Science Society. Published by Elsevier Ireland Ltd. All rights reserved.
Direct PCR Improves the Recovery of DNA from Various Substrates.
Templeton, Jennifer E L; Taylor, Duncan; Handt, Oliva; Skuza, Pawel; Linacre, Adrian
2015-11-01
This study reports on the comparison of a standard extraction process with the direct PCR approach of processing low-level DNA swabs typical in forensic investigations. Varying concentrations of control DNA were deposited onto three commonly encountered substrates, brass, plastic, and glass, left to dry, and swabbed using premoistened DNA-free nylon FLOQswabs(™) . Swabs (n = 90) were either processed using the DNA IQ(™) kit or, for direct PCR, swab fibers (~2 mm(2) ) were added directly to the PCR with no prior extraction. A significant increase in the height of the alleles (p < 0.005) was observed when using the direct PCR approach over the extraction methodology when controlling for surface type and mass of DNA deposited. The findings indicate the potential use of direct PCR for increasing the PCR product obtained from low-template DNA samples in addition to minimizing contamination and saving resources. © 2015 American Academy of Forensic Sciences.
Kim, Na Young; Lee, Hwan Young; Park, Sun Joo; Yang, Woo Ick; Shin, Kyoung-Jin
2013-05-01
Two multiplex polymerase chain reaction (PCR) systems (Midiplex and Miniplex) were developed for the amplification of the mitochondrial DNA (mtDNA) control region, and the efficiencies of the multiplexes for amplifying degraded DNA were validated using old skeletal remains. The Midiplex system consisted of two multiplex PCRs to amplify six overlapping amplicons ranging in length from 227 to 267 bp. The Miniplex system consisted of three multiplex PCRs to amplify 10 overlapping short amplicons ranging in length from 142 to 185 bp. Most mtDNA control region sequences of several 60-year-old and 400-500-year-old skeletal remains were successfully obtained using both PCR systems and consistent with those previously obtained by monoplex amplification. The multiplex system consisting of smaller amplicons is effective for mtDNA sequence analyses of ancient and forensic degraded samples, saving time, cost, and the amount of DNA sample consumed during analysis. © 2013 American Academy of Forensic Sciences.
Kowalczyk, Marek; Sekuła, Andrzej; Mleczko, Piotr; Olszowy, Zofia; Kujawa, Anna; Zubek, Szymon; Kupiec, Tomasz
2015-01-01
Aim To assess the usefulness of a DNA-based method for identifying mushroom species for application in forensic laboratory practice. Methods Two hundred twenty-one samples of clinical forensic material (dried mushrooms, food remains, stomach contents, feces, etc) were analyzed. ITS2 region of nuclear ribosomal DNA (nrDNA) was sequenced and the sequences were compared with reference sequences collected from the National Center for Biotechnology Information gene bank (GenBank). Sporological identification of mushrooms was also performed for 57 samples of clinical material. Results Of 221 samples, positive sequencing results were obtained for 152 (69%). The highest percentage of positive results was obtained for samples of dried mushrooms (96%) and food remains (91%). Comparison with GenBank sequences enabled identification of all samples at least at the genus level. Most samples (90%) were identified at the level of species or a group of closely related species. Sporological and molecular identification were consistent at the level of species or genus for 30% of analyzed samples. Conclusion Molecular analysis identified a larger number of species than sporological method. It proved to be suitable for analysis of evidential material (dried hallucinogenic mushrooms) in forensic genetic laboratories as well as to complement classical methods in the analysis of clinical material. PMID:25727040
Tillmar, Andreas O; Kling, Daniel; Butler, John M; Parson, Walther; Prinz, Mechthild; Schneider, Peter M; Egeland, Thore; Gusmão, Leonor
2017-07-01
Forensic genetic laboratories perform an increasing amount of genetic analyses of the X chromosome, in particular to solve complex cases of kinship analysis. For some biological relationships X-chromosomal markers can be more informative than autosomal markers, and there are a large number of markers, methods and databases that have been described for forensic use. Due to their particular mode of inheritance, and their physical location on a single chromosome, some specific considerations are required when estimating the weight of evidence for X-chromosomal marker DNA data. The DNA Commission of the International Society for Forensic Genetics (ISFG) hereby presents guidelines and recommendations for the use of X-chromosomal markers in kinship analysis with a special focus on the biostatistical evaluation. Linkage and linkage disequilibrium (association of alleles) are of special importance for such evaluations and these concepts and the implications for likelihood calculations are described in more detail. Furthermore it is important to use appropriate computer software that accounts for linkage and linkage disequilibrium among loci, as well as for mutations. Even though some software exist, there is still a need for further improvement of dedicated software. Copyright © 2017 Elsevier B.V. All rights reserved.
Kowalczyk, Marek; Sekuła, Andrzej; Mleczko, Piotr; Olszowy, Zofia; Kujawa, Anna; Zubek, Szymon; Kupiec, Tomasz
2015-02-01
To assess the usefulness of a DNA-based method for identifying mushroom species for application in forensic laboratory practice. Two hundred twenty-one samples of clinical forensic material (dried mushrooms, food remains, stomach contents, feces, etc) were analyzed. ITS2 region of nuclear ribosomal DNA (nrDNA) was sequenced and the sequen-ces were compared with reference sequences collected from the National Center for Biotechnology Information gene bank (GenBank). Sporological identification of mushrooms was also performed for 57 samples of clinical material. Of 221 samples, positive sequencing results were obtained for 152 (69%). The highest percentage of positive results was obtained for samples of dried mushrooms (96%) and food remains (91%). Comparison with GenBank sequences enabled identification of all samples at least at the genus level. Most samples (90%) were identified at the level of species or a group of closely related species. Sporological and molecular identification were consistent at the level of species or genus for 30% of analyzed samples. Molecular analysis identified a larger number of species than sporological method. It proved to be suitable for analysis of evidential material (dried hallucinogenic mushrooms) in forensic genetic laboratories as well as to complement classical methods in the analysis of clinical material.
Whole-Genome Sequencing in Microbial Forensic Analysis of Gamma-Irradiated Microbial Materials.
Broomall, Stacey M; Ait Ichou, Mohamed; Krepps, Michael D; Johnsky, Lauren A; Karavis, Mark A; Hubbard, Kyle S; Insalaco, Joseph M; Betters, Janet L; Redmond, Brady W; Rivers, Bryan A; Liem, Alvin T; Hill, Jessica M; Fochler, Edward T; Roth, Pierce A; Rosenzweig, C Nicole; Skowronski, Evan W; Gibbons, Henry S
2016-01-15
Effective microbial forensic analysis of materials used in a potential biological attack requires robust methods of morphological and genetic characterization of the attack materials in order to enable the attribution of the materials to potential sources and to exclude other potential sources. The genetic homogeneity and potential intersample variability of many of the category A to C bioterrorism agents offer a particular challenge to the generation of attributive signatures, potentially requiring whole-genome or proteomic approaches to be utilized. Currently, irradiation of mail is standard practice at several government facilities judged to be at particularly high risk. Thus, initial forensic signatures would need to be recovered from inactivated (nonviable) material. In the study described in this report, we determined the effects of high-dose gamma irradiation on forensic markers of bacterial biothreat agent surrogate organisms with a particular emphasis on the suitability of genomic DNA (gDNA) recovered from such sources as a template for whole-genome analysis. While irradiation of spores and vegetative cells affected the retention of Gram and spore stains and sheared gDNA into small fragments, we found that irradiated material could be utilized to generate accurate whole-genome sequence data on the Illumina and Roche 454 sequencing platforms. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Pacifiplex: an ancestry-informative SNP panel centred on Australia and the Pacific region.
Santos, Carla; Phillips, Christopher; Fondevila, Manuel; Daniel, Runa; van Oorschot, Roland A H; Burchard, Esteban G; Schanfield, Moses S; Souto, Luis; Uacyisrael, Jolame; Via, Marc; Carracedo, Ángel; Lareu, Maria V
2016-01-01
The analysis of human population variation is an area of considerable interest in the forensic, medical genetics and anthropological fields. Several forensic single nucleotide polymorphism (SNP) assays provide ancestry-informative genotypes in sensitive tests designed to work with limited DNA samples, including a 34-SNP multiplex differentiating African, European and East Asian ancestries. Although assays capable of differentiating Oceanian ancestry at a global scale have become available, this study describes markers compiled specifically for differentiation of Oceanian populations. A sensitive multiplex assay, termed Pacifiplex, was developed and optimized in a small-scale test applicable to forensic analyses. The Pacifiplex assay comprises 29 ancestry-informative marker SNPs (AIM-SNPs) selected to complement the 34-plex test, that in a combined set distinguish Africans, Europeans, East Asians and Oceanians. Nine Pacific region study populations were genotyped with both SNP assays, then compared to four reference population groups from the HGDP-CEPH human diversity panel. STRUCTURE analyses estimated population cluster membership proportions that aligned with the patterns of variation suggested for each study population's currently inferred demographic histories. Aboriginal Taiwanese and Philippine samples indicated high East Asian ancestry components, Papua New Guinean and Aboriginal Australians samples were predominantly Oceanian, while other populations displayed cluster patterns explained by the distribution of divergence amongst Melanesians, Polynesians and Micronesians. Genotype data from Pacifiplex and 34-plex tests is particularly well suited to analysis of Australian Aboriginal populations and when combined with Y and mitochondrial DNA variation will provide a powerful set of markers for ancestry inference applied to modern Australian demographic profiles. On a broader geographic scale, Pacifiplex adds highly informative data for inferring the ancestry of individuals from Oceanian populations. The sensitivity of Pacifiplex enabled successful genotyping of population samples from 50-year-old serum samples obtained from several Oceanian regions that would otherwise be unlikely to produce useful population data. This indicates tests primarily developed for forensic ancestry analysis also provide an important contribution to studies of populations where useful samples are in limited supply. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Origin and development of forensic medicine in Egypt.
Kharoshah, Magdy Abdel Azim; Zaki, Mamdouh Kamal; Galeb, Sherien Salah; Moulana, Ashraf Abdel Reheem; Elsebaay, Elsebaay Ahmed
2011-01-01
Egyptians are one of the first civilisations to practice the removal and examination of internal organs of humans. Their practices ranged from embalming to faith healing to surgery and autopsy. Modern radiological studies, together with various forensic techniques, allowed scientists unique glimpses of the state of health in Egypt 4000 years ago and discovered one of the earliest applications of autopsy, the main element of forensic medicine practice today. The Egyptian Forensic Medicine Authority handles a relatively large number of cases annually and depends on different assisting laboratories (forensic histopathology, microbiology, serology unit, DNA laboratory, forensic chemistry laboratory) as well as the Counterfeiting and Forgery unit. Crime scene investigations are performed mainly through the criminal laboratory related to the Ministry of Interior. Forensic Medicine is studied thoroughly in the faculty of medicine (undergraduates), as well as by forensic medical examiners at postgraduate level (diploma, master's and doctorate). This review recommends more scientific cooperation with universities in the field of forensic medicine and related sciences to solve various crimes with meticulous detail. Copyright © 2010 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
Barrio, P A; Crespillo, M; Luque, J A; Aler, M; Baeza-Richer, C; Baldassarri, L; Carnevali, E; Coufalova, P; Flores, I; García, O; García, M A; González, R; Hernández, A; Inglés, V; Luque, G M; Mosquera-Miguel, A; Pedrosa, S; Pontes, M L; Porto, M J; Posada, Y; Ramella, M I; Ribeiro, T; Riego, E; Sala, A; Saragoni, V G; Serrano, A; Vannelli, S
2018-07-01
One of the main goals of the Spanish and Portuguese-Speaking Group of the International Society for Forensic Genetics (GHEP-ISFG) is to promote and contribute to the development and dissemination of scientific knowledge in the field of forensic genetics. Due to this fact, GHEP-ISFG holds different working commissions that are set up to develop activities in scientific aspects of general interest. One of them, the Mixture Commission of GHEP-ISFG, has organized annually, since 2009, a collaborative exercise on analysis and interpretation of autosomal short tandem repeat (STR) mixture profiles. Until now, six exercises have been organized. At the present edition (GHEP-MIX06), with 25 participant laboratories, the exercise main aim was to assess mixture profiles results by issuing a report, from the proposal of a complex mock case. One of the conclusions obtained from this exercise is the increasing tendency of participating laboratories to validate DNA mixture profiles analysis following international recommendations. However, the results have shown some differences among them regarding the edition and also the interpretation of mixture profiles. Besides, although the last revision of ISO/IEC 17025:2017 gives indications of how results should be reported, not all laboratories strictly follow their recommendations. Regarding the statistical aspect, all those laboratories that have performed statistical evaluation of the data have employed the likelihood ratio (LR) as a parameter to evaluate the statistical compatibility. However, LR values obtained show a wide range of variation. This fact could not be attributed to the software employed, since the vast majority of laboratories that performed LR calculation employed the same software (LRmixStudio). Thus, the final allelic composition of the edited mixture profile and the parameters employed in the software could explain this data dispersion. This highlights the need, for each laboratory, to define through internal validations its criteria for editing and interpreting mixtures, and to continuous train in software handling. Copyright © 2018 Elsevier B.V. All rights reserved.
Error rates in forensic DNA analysis: definition, numbers, impact and communication.
Kloosterman, Ate; Sjerps, Marjan; Quak, Astrid
2014-09-01
Forensic DNA casework is currently regarded as one of the most important types of forensic evidence, and important decisions in intelligence and justice are based on it. However, errors occasionally occur and may have very serious consequences. In other domains, error rates have been defined and published. The forensic domain is lagging behind concerning this transparency for various reasons. In this paper we provide definitions and observed frequencies for different types of errors at the Human Biological Traces Department of the Netherlands Forensic Institute (NFI) over the years 2008-2012. Furthermore, we assess their actual and potential impact and describe how the NFI deals with the communication of these numbers to the legal justice system. We conclude that the observed relative frequency of quality failures is comparable to studies from clinical laboratories and genetic testing centres. Furthermore, this frequency is constant over the five-year study period. The most common causes of failures related to the laboratory process were contamination and human error. Most human errors could be corrected, whereas gross contamination in crime samples often resulted in irreversible consequences. Hence this type of contamination is identified as the most significant source of error. Of the known contamination incidents, most were detected by the NFI quality control system before the report was issued to the authorities, and thus did not lead to flawed decisions like false convictions. However in a very limited number of cases crucial errors were detected after the report was issued, sometimes with severe consequences. Many of these errors were made in the post-analytical phase. The error rates reported in this paper are useful for quality improvement and benchmarking, and contribute to an open research culture that promotes public trust. However, they are irrelevant in the context of a particular case. Here case-specific probabilities of undetected errors are needed. These should be reported, separately from the match probability, when requested by the court or when there are internal or external indications for error. It should also be made clear that there are various other issues to consider, like DNA transfer. Forensic statistical models, in particular Bayesian networks, may be useful to take the various uncertainties into account and demonstrate their effects on the evidential value of the forensic DNA results. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Searching for the mother missed since the Second World War.
Zupanič Pajnič, Irena; Petaros, Anja; Balažic, Jože; Geršak, Ksenija
2016-11-01
The aim of the study was to perform the genetic identification of a human cranium from a Second World War gravesite in Slovenia and find out if it belonged to the mother of a woman used as a family reference. Both genetic and anthropological examinations were carried out. The genetic examination was performed on 2 molars and petrous bone. Prior to DNA isolation 0.5 g of tooth and bone powder was decalcified. The DNA was purified in a Biorobot EZ1 (Qiagen) device. The nuclear DNA of the samples was quantified and short tandem repeat (STR) typing performed using two different autosomal and Y-STR kits. Up to 22.4 ng DNA/g of powder was obtained from samples analyzed. We managed to obtain nuclear DNA for successful STR typing from the left second molar and from the petrous bone. Full autosomal genetic profile including amelogenin locus revealed the male origin of the cranium that was further confirmed by the analyses of Y-STRs. The same conclusions were adopted after the anthropological analysis which identified the cranium as that of a very young Caucasoid male. The male origin of the cranium rejected the possibility of motherhood for the compared daughter. For traceability in the event of contamination, we created an elimination database including genetic profiles of the nuclear and Y-STRs of all persons that had been in contact with the analyzed cranium and no match was found. Copyright © 2016 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
Improvement and automation of a real-time PCR assay for vaginal fluids.
De Vittori, E; Giampaoli, S; Barni, F; Baldi, M; Berti, A; Ripani, L; Romano Spica, V
2016-05-01
The identification of vaginal fluids is crucial in forensic science. Several molecular protocols based on PCR amplification of mfDNA (microflora DNA) specific for vaginal bacteria are now available. Unfortunately mfDNA extraction and PCR reactions require manual optimization of several steps. The aim of present study was the verification of a partial automatization of vaginal fluids identification through two instruments widely diffused in forensic laboratories: EZ1 Advanced robot and Rotor Gene Q 5Plex HRM. Moreover, taking advantage of 5-plex thermocycler technology, the ForFluid kit performances were improved by expanding the mfDNA characterization panel with a new bacterial target for vaginal fluids and with an internal positive control (IPC) to monitor PCR inhibition. Results underlined the feasibility of a semi-automated extraction of mfDNA using a BioRobot and demonstrated the analytical improvements of the kit. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Ilgili, Önder; Arda, Berna
This paper presents and analyses, in terms of privacy and confidentiality, the Turkish Draft Law on National DNA Database prepared in 2004, and concerning the use of DNA analysis for forensic objectives and identity verification in Turkey. After a short introduction including related concepts, we evaluate the draft law and provide articles about confidentiality. The evaluation reminded us of some important topics at international level for the developing countries. As a result, the need for sophisticated legislations about DNA databases, for solutions to issues related to the education of employees, and the technological dependency to other countries emerged as main challenges in terms of confidentiality for the developing countries. As seen in the Turkish Draft Law on National DNA Database, the protection of the fundamental rights and freedoms requires more care during the legislative efforts.
How long does it take a static speaking individual to contaminate the immediate environment?
Port, Nicholas J; Bowyer, Victoria L; Graham, Eleanor A M; Batuwangala, Madu S; Rutty, Guy N
2006-09-01
Developments in forensic genetic profiling mean that only a very little DNA is required to generate an identifying profile. However, as this sensitivity increases so does the risk of contamination with non-offender DNA, potentially leading to the conviction of innocents, or release of the guilty. The work of Rutty et al. showed that a static and talking person deposited DNA in front of them within a 15-minute period. This work expands on that of Rutty et al. by determining the time period required for an individual to deposit sufficient DNA for a positive identification to be made, and the distance that this contamination can be detected from the speaking individual. To simulate a scene of crime, sheets of Benchkote(®) were used to represent an area of interest and an unprotected subject talked over them for a variety of times, in a variety of positions (standing, kneeling, and sitting at a desk). Results show that contamination by talking in both kneeling and sitting positions occurred almost immediately (<30 seconds, but not from just one sentence) up to 69 cm from the subject. When standing, contamination could be observed up to a maximum 115 cm from the subject, and was only present in one of three repeats when talking for only 30 seconds. This article illustrates how rapidly a static person can potentially contaminate an area in front of him or herself within a laboratory or scene environment, just by talking.
Varietal Tracing of Virgin Olive Oils Based on Plastid DNA Variation Profiling
Pérez-Jiménez, Marga; Besnard, Guillaume; Dorado, Gabriel; Hernandez, Pilar
2013-01-01
Olive oil traceability remains a challenge nowadays. DNA analysis is the preferred approach to an effective varietal identification, without any environmental influence. Specifically, olive organelle genomics is the most promising approach for setting up a suitable set of markers as they would not interfere with the pollinator variety DNA traces. Unfortunately, plastid DNA (cpDNA) variation of the cultivated olive has been reported to be low. This feature could be a limitation for the use of cpDNA polymorphisms in forensic analyses or oil traceability, but rare cpDNA haplotypes may be useful as they can help to efficiently discriminate some varieties. Recently, the sequencing of olive plastid genomes has allowed the generation of novel markers. In this study, the performance of cpDNA markers on olive oil matrices, and their applicability on commercial Protected Designation of Origin (PDO) oils were assessed. By using a combination of nine plastid loci (including multi-state microsatellites and short indels), it is possible to fingerprint six haplotypes (in 17 Spanish olive varieties), which can discriminate high-value commercialized cultivars with PDO. In particular, a rare haplotype was detected in genotypes used to produce a regional high-value commercial oil. We conclude that plastid haplotypes can help oil traceability in commercial PDO oils and set up an experimental methodology suitable for organelle polymorphism detection in the complex olive oil matrices. PMID:23950947
[Application and progress of RNA in forensic science].
Gao, Lin-Lin; Li, You-Ying; Yan, Jiang-Wei; Liu, Ya-Cheng
2011-12-01
With the development of molecular biology, the evidences of genetics has been used widely in forensic sciences. DNA technology has played an important role in individual identification and paternity testing, RNA technology is showing more and more wide application in prospect. This article reviews the application and progress of RNA in forensic science including estimation of postmortem interval, bloodstain age, wound age, as well as determination of cause of death and the source of body fluids.
Sahajpal, Vivek; Goyal, S P
2010-06-01
The exhibits obtained in wildlife offence cases quite often present a challenging situation for the forensic expert. The selection of proper approach for analysis is vital for a successful analysis. A generalised forensic analysis approach should proceed from the use of non-destructive techniques (morphological and microscopic examination) to partially destructive and finally destructive techniques (DNA analysis). The findings of non-destructive techniques may sometime be inconclusive but they definitely help in steering further forensic analysis in a proper direction. We describe a recent case where a very small dried skin piece (<0.05 mg) with just one small trimmed guard hair (0.4 cm) on it was received for species identification. The single guard hair was examined microscopically to get an indication of the type of species. We also describe the extraction procedure with a lower amount of sample, using an automated extraction method (Qiagen Biorobot EZ1) and PCR amplification of three mitochondrial genes (16s rRNA, 12s rRNA and cytochrome b) for species identification. Microscopic examination of the single hair indicated a viverrid species but the initial DNA analysis with 16s rRNA (through NCBI BLAST) showed the highest homology (93%) with a hyaenid species (Hyaena hyaena). However, further DNA analysis based on 12s rRNA and cytochrome b gene proved that the species was indeed a viverrid i.e. Viverricula indica (small Indian civet). The highest homology shown with a Hyaenid species by the 16s rRNA sequence from the case sample was due to lack of a 16s rRNA sequence for Viverricula indica in the NCBI data base. The case highlights the importance of morphological and microscopic examinations in wildlife offence cases. With respect to DNA extraction technology we found that automatic extraction method of Biorobot EZ1 (Qiagen) is quite useful with less amount of sample (much below recommended amount). Copyright 2009 Forensic Science Society. Published by Elsevier Ireland Ltd. All rights reserved.
Forensic quest for age determination of bloodstains.
Bremmer, Rolf H; de Bruin, Karla G; van Gemert, Martin J C; van Leeuwen, Ton G; Aalders, Maurice C G
2012-03-10
Bloodstains at crime scenes are among the most important types of evidence for forensic investigators. They can be used for DNA-profiling for verifying the suspect's identity or for pattern analysis in order to reconstruct the crime. However, until now, using bloodstains to determine the time elapsed since the crime was committed is still not possible. From a criminalistic point of view, an accurate estimation of when the crime was committed enables to verify witnesses' statements, limits the number of suspects and assesses alibis. Despite several attempts and exploration of many technologies during a century, no method has been materialized into forensic practice. This review gives an overview of an extensive search in scientific literature of techniques that address the quest for age determination of bloodstains. We found that most techniques are complementary to each other, in short as well as long term age determination. Techniques are compared concerning their sensitivity for short and long term ageing of bloodstains and concerning their possible applicability to be used on a crime scene. In addition, experimental challenges like substrate variation, interdonor variation and environmental influences are addressed. Comparison of these techniques contributes to our knowledge of the physics and biochemistry in an ageing bloodstain. Further improvement and incorporation of environmental factors are necessary to enable age determination of bloodstains to be acceptable in court. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Application of Next-generation Sequencing Technology in Forensic Science
Yang, Yaran; Xie, Bingbing; Yan, Jiangwei
2014-01-01
Next-generation sequencing (NGS) technology, with its high-throughput capacity and low cost, has developed rapidly in recent years and become an important analytical tool for many genomics researchers. New opportunities in the research domain of the forensic studies emerge by harnessing the power of NGS technology, which can be applied to simultaneously analyzing multiple loci of forensic interest in different genetic contexts, such as autosomes, mitochondrial and sex chromosomes. Furthermore, NGS technology can also have potential applications in many other aspects of research. These include DNA database construction, ancestry and phenotypic inference, monozygotic twin studies, body fluid and species identification, and forensic animal, plant and microbiological analyses. Here we review the application of NGS technology in the field of forensic science with the aim of providing a reference for future forensics studies and practice. PMID:25462152
Thai, Quan Ke; Chung, Dung Anh; Tran, Hoang-Dung
2017-06-26
Canine and wolf mitochondrial DNA haplotypes, which can be used for forensic or phylogenetic analyses, have been defined in various schemes depending on the region analyzed. In recent studies, the 582 bp fragment of the HV1 region is most commonly used. 317 different canine HV1 haplotypes have been reported in the rapidly growing public database GenBank. These reported haplotypes contain several inconsistencies in their haplotype information. To overcome this issue, we have developed a Canis mtDNA HV1 database. This database collects data on the HV1 582 bp region in dog mitochondrial DNA from the GenBank to screen and correct the inconsistencies. It also supports users in detection of new novel mutation profiles and assignment of new haplotypes. The Canis mtDNA HV1 database (CHD) contains 5567 nucleotide entries originating from 15 subspecies in the species Canis lupus. Of these entries, 3646 were haplotypes and grouped into 804 distinct sequences. 319 sequences were recognized as previously assigned haplotypes, while the remaining 485 sequences had new mutation profiles and were marked as new haplotype candidates awaiting further analysis for haplotype assignment. Of the 3646 nucleotide entries, only 414 were annotated with correct haplotype information, while 3232 had insufficient or lacked haplotype information and were corrected or modified before storing in the CHD. The CHD can be accessed at http://chd.vnbiology.com . It provides sequences, haplotype information, and a web-based tool for mtDNA HV1 haplotyping. The CHD is updated monthly and supplies all data for download. The Canis mtDNA HV1 database contains information about canine mitochondrial DNA HV1 sequences with reconciled annotation. It serves as a tool for detection of inconsistencies in GenBank and helps identifying new HV1 haplotypes. Thus, it supports the scientific community in naming new HV1 haplotypes and to reconcile existing annotation of HV1 582 bp sequences.
Genetic relationships between blowflies (Calliphoridae) of forensic importance.
Stevens, J; Wall, R
2001-08-15
Phylogenetic relationships among blowfly (Calliphoridae) species of forensic importance are explored using DNA sequence data from the large sub-unit (lsu, 28S) ribosomal RNA (rRNA) gene, the study includes representatives of a range of calliphorid species commonly encountered in forensic analysis in Britain and Europe. The data presented provide a basis to define molecular markers, including the identification of highly informative intra-sequence regions, which may be of use in the identification of larvae for forensic entomology. Phylogenetic analysis of the sequences also provides new insights into the different evolutionary patterns apparent within the family Calliphoridae which, additionally, can provide a measure of the degree of genetic variation likely to be encountered within taxonomic groups of differing forensic utility.
STRBase: a short tandem repeat DNA database for the human identity testing community
Ruitberg, Christian M.; Reeder, Dennis J.; Butler, John M.
2001-01-01
The National Institute of Standards and Technology (NIST) has compiled and maintained a Short Tandem Repeat DNA Internet Database (http://www.cstl.nist.gov/biotech/strbase/) since 1997 commonly referred to as STRBase. This database is an information resource for the forensic DNA typing community with details on commonly used short tandem repeat (STR) DNA markers. STRBase consolidates and organizes the abundant literature on this subject to facilitate on-going efforts in DNA typing. Observed alleles and annotated sequence for each STR locus are described along with a review of STR analysis technologies. Additionally, commercially available STR multiplex kits are described, published polymerase chain reaction (PCR) primer sequences are reported, and validation studies conducted by a number of forensic laboratories are listed. To supplement the technical information, addresses for scientists and hyperlinks to organizations working in this area are available, along with the comprehensive reference list of over 1300 publications on STRs used for DNA typing purposes. PMID:11125125
Application of random match probability calculations to mixed STR profiles.
Bille, Todd; Bright, Jo-Anne; Buckleton, John
2013-03-01
Mixed DNA profiles are being encountered more frequently as laboratories analyze increasing amounts of touch evidence. If it is determined that an individual could be a possible contributor to the mixture, it is necessary to perform a statistical analysis to allow an assignment of weight to the evidence. Currently, the combined probability of inclusion (CPI) and the likelihood ratio (LR) are the most commonly used methods to perform the statistical analysis. A third method, random match probability (RMP), is available. This article compares the advantages and disadvantages of the CPI and LR methods to the RMP method. We demonstrate that although the LR method is still considered the most powerful of the binary methods, the RMP and LR methods make similar use of the observed data such as peak height, assumed number of contributors, and known contributors where the CPI calculation tends to waste information and be less informative. © 2013 American Academy of Forensic Sciences.
Rapid DNA analysis for automated processing and interpretation of low DNA content samples.
Turingan, Rosemary S; Vasantgadkar, Sameer; Palombo, Luke; Hogan, Catherine; Jiang, Hua; Tan, Eugene; Selden, Richard F
2016-01-01
Short tandem repeat (STR) analysis of casework samples with low DNA content include those resulting from the transfer of epithelial cells from the skin to an object (e.g., cells on a water bottle, or brim of a cap), blood spatter stains, and small bone and tissue fragments. Low DNA content (LDC) samples are important in a wide range of settings, including disaster response teams to assist in victim identification and family reunification, military operations to identify friend or foe, criminal forensics to identify suspects and exonerate the innocent, and medical examiner and coroner offices to identify missing persons. Processing LDC samples requires experienced laboratory personnel, isolated workstations, and sophisticated equipment, requires transport time, and involves complex procedures. We present a rapid DNA analysis system designed specifically to generate STR profiles from LDC samples in field-forward settings by non-technical operators. By performing STR in the field, close to the site of collection, rapid DNA analysis has the potential to increase throughput and to provide actionable information in real time. A Low DNA Content BioChipSet (LDC BCS) was developed and manufactured by injection molding. It was designed to function in the fully integrated Accelerated Nuclear DNA Equipment (ANDE) instrument previously designed for analysis of buccal swab and other high DNA content samples (Investigative Genet. 4(1):1-15, 2013). The LDC BCS performs efficient DNA purification followed by microfluidic ultrafiltration of the purified DNA, maximizing the quantity of DNA available for subsequent amplification and electrophoretic separation and detection of amplified fragments. The system demonstrates accuracy, precision, resolution, signal strength, and peak height ratios appropriate for casework analysis. The LDC rapid DNA analysis system is effective for the generation of STR profiles from a wide range of sample types. The technology broadens the range of sample types that can be processed and minimizes the time between sample collection, sample processing and analysis, and generation of actionable intelligence. The fully integrated Expert System is capable of interpreting a wide range or sample types and input DNA quantities, allowing samples to be processed and interpreted without a technical operator.
Stangegaard, Michael; Frøslev, Tobias G; Frank-Hansen, Rune; Hansen, Anders J; Morling, Niels
2011-04-01
We have implemented and validated automated protocols for DNA extraction and PCR setup using a Tecan Freedom EVO liquid handler mounted with the Te-MagS magnetic separation device (Tecan, Männedorf, Switzerland). The protocols were validated for accredited forensic genetic work according to ISO 17025 using the Qiagen MagAttract DNA Mini M48 kit (Qiagen GmbH, Hilden, Germany) from fresh whole blood and blood from deceased individuals. The workflow was simplified by returning the DNA extracts to the original tubes minimizing the risk of misplacing samples. The tubes that originally contained the samples were washed with MilliQ water before the return of the DNA extracts. The PCR was setup in 96-well microtiter plates. The methods were validated for the kits: AmpFℓSTR Identifiler, SGM Plus and Yfiler (Applied Biosystems, Foster City, CA), GenePrint FFFL and PowerPlex Y (Promega, Madison, WI). The automated protocols allowed for extraction and addition of PCR master mix of 96 samples within 3.5h. In conclusion, we demonstrated that (1) DNA extraction with magnetic beads and (2) PCR setup for accredited, forensic genetic short tandem repeat typing can be implemented on a simple automated liquid handler leading to the reduction of manual work, and increased quality and throughput. Copyright © 2011 Society for Laboratory Automation and Screening. Published by Elsevier Inc. All rights reserved.
Seashols-Williams, Sarah; Green, Raquel; Wohlfahrt, Denise; Brand, Angela; Tan-Torres, Antonio Limjuco; Nogales, Francy; Brooks, J Paul; Singh, Baneshwar
2018-05-17
Sequencing and classification of microbial taxa within forensically relevant biological fluids has the potential for applications in the forensic science and biomedical fields. The quantity of bacterial DNA from human samples is currently estimated based on quantity of total DNA isolated. This method can miscalculate bacterial DNA quantity due to the mixed nature of the sample, and consequently library preparation is often unreliable. We developed an assay that can accurately and specifically quantify bacterial DNA within a mixed sample for reliable 16S ribosomal DNA (16S rDNA) library preparation and high throughput sequencing (HTS). A qPCR method was optimized using universal 16S rDNA primers, and a commercially available bacterial community DNA standard was used to develop a precise standard curve. Following qPCR optimization, 16S rDNA libraries from saliva, vaginal and menstrual secretions, urine, and fecal matter were amplified and evaluated at various DNA concentrations; successful HTS data were generated with as low as 20 pg of bacterial DNA. Changes in bacterial DNA quantity did not impact observed relative abundances of major bacterial taxa, but relative abundance changes of minor taxa were observed. Accurate quantification of microbial DNA resulted in consistent, successful library preparations for HTS analysis. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tims, Sebastian; van Wamel, Willem; Endtz, Hubert P.; Kayser, Manfred
2009-01-01
Human fingertip microflora is transferred to touched objects and may provide forensically relevant information on individual hosts, such as on geographic origins, if endogenous microbial skin species/strains would be retrievable from physical fingerprints and would carry geographically restricted DNA diversity. We tested the suitability of physical fingerprints for revealing human host information, with geographic inference as example, via microbial DNA fingerprinting. We showed that the transient exogenous fingertip microflora is frequently different from the resident endogenous bacteria of the same individuals. In only 54% of the experiments, the DNA analysis of the transient fingertip microflora allowed the detection of defined, but often not the major, elements of the resident microflora. Although we found microbial persistency in certain individuals, time-wise variation of transient and resident microflora within individuals was also observed when resampling fingerprints after 3 weeks. While microbial species differed considerably in their frequency spectrum between fingerprint samples from volunteers in Europe and southern Asia, there was no clear geographic distinction between Staphylococcus strains in a cluster analysis, although bacterial genotypes did not overlap between both continental regions. Our results, though limited in quantity, clearly demonstrate that the dynamic fingerprint microflora challenges human host inferences for forensic purposes including geographic ones. Overall, our results suggest that human fingerprint microflora is too dynamic to allow for forensic marker developments for retrieving human information. Electronic supplementary material The online version of this article (doi:10.1007/s00414-009-0352-9) contains supplementary material, which is available to authorized users. PMID:19551400
mtDNA Mutations and Their Role in Aging, Diseases and Forensic Sciences
Zapico, Sara C.; Ubelaker, Douglas H.
2013-01-01
Mitochondria are independent organelles with their own DNA. As a primary function, mitochondria produce the energy for the cell through Oxidative Phosphorylation (OXPHOS) in the Electron Transport Chain (ETC). One of the toxic products of this process is Reactive Oxygen Species (ROS), which can induce oxidative damage in macromolecules like lipids, proteins and DNA. Mitochondrial DNA (mtDNA) is less protected and has fewer reparation mechanisms than nuclear DNA (nDNA), and as such is more exposed to oxidative, mutation-inducing damage. This review analyzes the causes and consequences of mtDNA mutations and their relationship with the aging process. Neurodegenerative diseases, related with the aging, are consequences of mtDNA mutations resulting in a decrease in mitochondrial function. Also described are “mitochondrial diseases”, pathologies produced by mtDNA mutations and whose symptoms are related with mitochondrial dysfunction. Finally, mtDNA haplogroups are defined in this review; these groups are important for determination of geographical origin of an individual. Additionally, different haplogroups exhibit variably longevity and risk of certain diseases. mtDNA mutations in aging and haplogroups are of special interest to forensic science research. Therefore this review will help to clarify the key role of mtDNA mutations in these processes and support further research in this area. PMID:24307969