Sample records for forensic engine lubricating

  1. 1 H-NMR with Multivariate Analysis for Automobile Lubricant Comparison.

    PubMed

    Kim, Siwon; Yoon, Dahye; Lee, Dong-Kye; Yoon, Changshin; Kim, Suhkmann

    2017-07-01

    Identification of suspected automobile-related lubricants could provide valuable information in forensic cases. We examined that automobile lubricants might exhibit the chemometric characteristics to their individual usages. To compare the degree of clustering in the plots, we co-plotted general industrial oils that were highly dissimilar with automobile lubricants in additive compositions. 1 H-NMR spectroscopy was used with multivariate statistics as a tool for grouping, clustering, and identification of automobile lubricants in laboratory conditions. We analyzed automobile lubricants including automobile engine oils, automobile transmission oils, automobile gear oils, and motorcycle oils. In contrast to the general industrial oils, automobile lubricants showed relatively high tendencies of clustering to their usages. Our pilot study demonstrated that the comparison of known and questioned samples to their usages might be possible in forensic fields. © 2017 American Academy of Forensic Sciences.

  2. Engine lubrication circuit including two pumps

    DOEpatents

    Lane, William H.

    2006-10-03

    A lubrication pump coupled to the engine is sized such that the it can supply the engine with a predetermined flow volume as soon as the engine reaches a peak torque engine speed. In engines that operate predominately at speeds above the peak torque engine speed, the lubrication pump is often producing lubrication fluid in excess of the predetermined flow volume that is bypassed back to a lubrication fluid source. This arguably results in wasted power. In order to more efficiently lubricate an engine, a lubrication circuit includes a lubrication pump and a variable delivery pump. The lubrication pump is operably coupled to the engine, and the variable delivery pump is in communication with a pump output controller that is operable to vary a lubrication fluid output from the variable delivery pump as a function of at least one of engine speed and lubrication flow volume or system pressure. Thus, the lubrication pump can be sized to produce the predetermined flow volume at a speed range at which the engine predominately operates while the variable delivery pump can supplement lubrication fluid delivery from the lubrication pump at engine speeds below the predominant engine speed range.

  3. The Stability of Lubricant Oil Acidity of Biogas Fuelled Engine due to Biogas Desulfurization

    NASA Astrophysics Data System (ADS)

    Gde Tirta Nindhia, Tjokorda; Wayan Surata, I.; Wardana, Ari

    2017-05-01

    This research is established for the purpose of the understanding the stability of the acidity of lubricant oil in biogas fuelled engine due to the absence of hydrogen sulfide (H2S). As was recognized that other than Methane (CH4), there are also other gas impurities in the biogas such as carbon dioxide (CO2), hydrogen sulfide (H2S), moisture (H2O) and ammonia (NH3). Due to H2S contents in the biogas fuel, the engine was found failure. This is caused by corrosion in the combustion chamber due to increase of lubricant acidity. To overcome this problem in practical, the lubricant is increased the pH to basic level with the hope will be decrease to normal value after several time use. Other method is by installing pH measurement sensor in the engine lubricant so that when lubricant is known turn to be acid, then lubricant replacement should be done. In this research, the effect of biogas desulfurization down to zero level to the acidity of lubricant oil in the four stroke engine was carried out with the hope that neutral lubrication oil to be available during running the engine. The result indicates that by eliminating H2S due desulfurization process, effect on stability and neutrality of pH lubricant. By this method the engine safety can be obtained without often replacement the lubricant oil.

  4. Automotive Fuel Economy - Potential Improvement Through Selected Engine and Differential Gear Lubricants

    DOT National Transportation Integrated Search

    1981-07-01

    This report evaluates the effects of four engine lubricants and three differential gear lubricants on the fuel economy of two 1978 automobiles operated at 20F, 70F, and 100F ambient temperatures. The engine lubricants were evaluated using the 1978 Fe...

  5. Chemical discrimination of lubricant marketing types using direct analysis in real time time-of-flight mass spectrometry.

    PubMed

    Maric, Mark; Harvey, Lauren; Tomcsak, Maren; Solano, Angelique; Bridge, Candice

    2017-06-30

    In comparison to other violent crimes, sexual assaults suffer from very low prosecution and conviction rates especially in the absence of DNA evidence. As a result, the forensic community needs to utilize other forms of trace contact evidence, like lubricant evidence, in order to provide a link between the victim and the assailant. In this study, 90 personal bottled and condom lubricants from the three main marketing types, silicone-based, water-based and condoms, were characterized by direct analysis in real time time of flight mass spectrometry (DART-TOFMS). The instrumental data was analyzed by multivariate statistics including hierarchal cluster analysis, principal component analysis, and linear discriminant analysis. By interpreting the mass spectral data with multivariate statistics, 12 discrete groupings were identified, indicating inherent chemical diversity not only between but within the three main marketing groups. A number of unique chemical markers, both major and minor, were identified, other than the three main chemical components (i.e. PEG, PDMS and nonoxynol-9) currently used for lubricant classification. The data was validated by a stratified 20% withheld cross-validation which demonstrated that there was minimal overlap between the groupings. Based on the groupings identified and unique features of each group, a highly discriminating statistical model was then developed that aims to provide the foundation for the development of a forensic lubricant database that may eventually be applied to casework. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  6. 40 CFR 91.308 - Lubricating oil and test fuel.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Lubricating oil and test fuel. 91.308....308 Lubricating oil and test fuel. (a) Lubricating oil. (1) Use the engine lubricating oil which meets... specifications of the lubricating oil used for the test. (2) For two-stroke engines, the fuel/oil mixture ratio...

  7. 40 CFR 91.308 - Lubricating oil and test fuel.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Lubricating oil and test fuel. 91.308....308 Lubricating oil and test fuel. (a) Lubricating oil. (1) Use the engine lubricating oil which meets... specifications of the lubricating oil used for the test. (2) For two-stroke engines, the fuel/oil mixture ratio...

  8. 40 CFR 91.308 - Lubricating oil and test fuel.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Lubricating oil and test fuel. 91.308....308 Lubricating oil and test fuel. (a) Lubricating oil. (1) Use the engine lubricating oil which meets... specifications of the lubricating oil used for the test. (2) For two-stroke engines, the fuel/oil mixture ratio...

  9. 40 CFR 91.308 - Lubricating oil and test fuel.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Lubricating oil and test fuel. 91.308....308 Lubricating oil and test fuel. (a) Lubricating oil. (1) Use the engine lubricating oil which meets... specifications of the lubricating oil used for the test. (2) For two-stroke engines, the fuel/oil mixture ratio...

  10. 40 CFR 91.308 - Lubricating oil and test fuel.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Lubricating oil and test fuel. 91.308....308 Lubricating oil and test fuel. (a) Lubricating oil. (1) Use the engine lubricating oil which meets... specifications of the lubricating oil used for the test. (2) For two-stroke engines, the fuel/oil mixture ratio...

  11. 14 CFR 33.39 - Lubrication system.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Lubrication system. 33.39 Section 33.39... system. (a) The lubrication system of the engine must be designed and constructed so that it will... supply is in the engine. (b) The lubrication system of the engine must be designed and constructed to...

  12. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XVII, I--MAINTAINING THE LUBRICATION SYSTEM--CUMMINS DIESEL ENGINE, II--UNIT INSTALLATION AND REMOVAL--DRIVE LINES.

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE DIESEL ENGINE LUBRICATION SYSTEM AND THE PROCEDURES FOR REMOVAL AND INSTALLATION OF THE DRIVE LINE USED IN DIESEL ENGINE POWER DISTRIBUTION. TOPICS ARE (1) PROLONGING ENGINE LIFE, (2) FUNCTIONS OF THE LUBRICATING SYSTEM, (3) TRACING THE LUBRICANT FLOW, (4) DETERMINING…

  13. 41 CFR 101-26.602-1 - Procurement of lubricating oils, greases, and gear lubricants.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (nonaircraft) equipment and of aircraft engine oils on an annual program basis. Estimates of requirements for... program Due on or before Lubricating oils (nonaircraft) 4.1 November 15. Aircraft engine oils 4.2 June 15... lubricating oils, greases, and gear lubricants. 101-26.602-1 Section 101-26.602-1 Public Contracts and...

  14. 41 CFR 101-26.602-1 - Procurement of lubricating oils, greases, and gear lubricants.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (nonaircraft) equipment and of aircraft engine oils on an annual program basis. Estimates of requirements for... program Due on or before Lubricating oils (nonaircraft) 4.1 November 15. Aircraft engine oils 4.2 June 15... lubricating oils, greases, and gear lubricants. 101-26.602-1 Section 101-26.602-1 Public Contracts and...

  15. 41 CFR 101-26.602-1 - Procurement of lubricating oils, greases, and gear lubricants.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (nonaircraft) equipment and of aircraft engine oils on an annual program basis. Estimates of requirements for... program Due on or before Lubricating oils (nonaircraft) 4.1 November 15. Aircraft engine oils 4.2 June 15... lubricating oils, greases, and gear lubricants. 101-26.602-1 Section 101-26.602-1 Public Contracts and...

  16. 41 CFR 101-26.602-1 - Procurement of lubricating oils, greases, and gear lubricants.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (nonaircraft) equipment and of aircraft engine oils on an annual program basis. Estimates of requirements for... program Due on or before Lubricating oils (nonaircraft) 4.1 November 15. Aircraft engine oils 4.2 June 15... lubricating oils, greases, and gear lubricants. 101-26.602-1 Section 101-26.602-1 Public Contracts and...

  17. 41 CFR 101-26.602-1 - Procurement of lubricating oils, greases, and gear lubricants.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (nonaircraft) equipment and of aircraft engine oils on an annual program basis. Estimates of requirements for... program Due on or before Lubricating oils (nonaircraft) 4.1 November 15. Aircraft engine oils 4.2 June 15... lubricating oils, greases, and gear lubricants. 101-26.602-1 Section 101-26.602-1 Public Contracts and...

  18. Fundamentals of fluid lubrication

    NASA Technical Reports Server (NTRS)

    Hamrock, Bernard J.

    1991-01-01

    The aim is to coordinate the topics of design, engineering dynamics, and fluid dynamics in order to aid researchers in the area of fluid film lubrication. The lubrication principles that are covered can serve as a basis for the engineering design of machine elements. The fundamentals of fluid film lubrication are presented clearly so that students that use the book will have confidence in their ability to apply these principles to a wide range of lubrication situations. Some guidance on applying these fundamentals to the solution of engineering problems is also provided.

  19. Improving oil classification quality from oil spill fingerprint beyond six sigma approach.

    PubMed

    Juahir, Hafizan; Ismail, Azimah; Mohamed, Saiful Bahri; Toriman, Mohd Ekhwan; Kassim, Azlina Md; Zain, Sharifuddin Md; Ahmad, Wan Kamaruzaman Wan; Wah, Wong Kok; Zali, Munirah Abdul; Retnam, Ananthy; Taib, Mohd Zaki Mohd; Mokhtar, Mazlin

    2017-07-15

    This study involves the use of quality engineering in oil spill classification based on oil spill fingerprinting from GC-FID and GC-MS employing the six-sigma approach. The oil spills are recovered from various water areas of Peninsular Malaysia and Sabah (East Malaysia). The study approach used six sigma methodologies that effectively serve as the problem solving in oil classification extracted from the complex mixtures of oil spilled dataset. The analysis of six sigma link with the quality engineering improved the organizational performance to achieve its objectivity of the environmental forensics. The study reveals that oil spills are discriminated into four groups' viz. diesel, hydrocarbon fuel oil (HFO), mixture oil lubricant and fuel oil (MOLFO) and waste oil (WO) according to the similarity of the intrinsic chemical properties. Through the validation, it confirmed that four discriminant component, diesel, hydrocarbon fuel oil (HFO), mixture oil lubricant and fuel oil (MOLFO) and waste oil (WO) dominate the oil types with a total variance of 99.51% with ANOVA giving F stat >F critical at 95% confidence level and a Chi Square goodness test of 74.87. Results obtained from this study reveals that by employing six-sigma approach in a data-driven problem such as in the case of oil spill classification, good decision making can be expedited. Copyright © 2017. Published by Elsevier Ltd.

  20. High Temperature Solid Lubricant Materials for Heavy Duty and Advanced Heat Engines

    NASA Technical Reports Server (NTRS)

    Dellacorte, C.; Wood, J. C.

    1994-01-01

    Advanced engine designs incorporate higher mechanical and thermal loading to achieve efficiency improvements. This approach often leads to higher operating temperatures of critical sliding elements (e.g. piston ring/cylinder wall contacts and valve guides) which compromise the use of conventional and even advanced synthetic liquid lubricants. For these applications solid lubricants must be considered. Several novel solid lubricant composites and coatings designated PS/PM200 have been employed to dry and marginally oil lubricated contacts in advanced heat engines. These applications include cylinder kits of heavy duty diesels, and high temperature Stirling engines, sidewall seals of rotary engines, and various exhaust valve and exhaust component applications. This paper describes the tribological and thermophysical properties of these tribomaterials and reviews the results of applying them to engine applications. Other potential tribological materials and applications are also discussed with particular emphasis on heavy duty and advanced heat engines.

  1. Ionic Liquids as Novel Lubricants and /or Lubricant Additives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qu, J.; Viola, M. B.

    2013-10-31

    This ORNL-GM CRADA developed ionic liquids (ILs) as novel lubricants or oil additives for engine lubrication. A new group of oil-miscible ILs have been designed and synthesized with high thermal stability, non-corrosiveness, excellent wettability, and most importantly effective anti-scuffing/anti-wear and friction reduction characteristics. Mechanistic analysis attributes the superior lubricating performance of IL additives to their physical and chemical interactions with metallic surfaces. Working with a leading lubricant formulation company, the team has successfully developed a prototype low-viscosity engine oil using a phosphonium-phosphate IL as an anti-wear additive. Tribological bench tests of the IL-additized formulated oil showed 20-33% lower friction inmore » mixed and elastohydrodynamic lubrication and 38-92% lower wear in boundary lubrication when compared with commercial Mobil 1 and Mobil Clean 5W-30 engine oils. High-temperature, high load (HTHL) full-size engine tests confirmed the excellent anti-wear performance for the IL-additized engine oil. Sequence VID engine dynamometer tests demonstrated an improved fuel economy by >2% for this IL-additized engine oil benchmarked against the Mobil 1 5W-30 oil. In addition, accelerated catalyst aging tests suggest that the IL additive may potentially have less adverse impact on three-way catalysts compared to the conventional ZDDP. Follow-on research is needed for further development and optimization of IL chemistry and oil formulation to fully meet ILSAC GF-5 specifications and further enhance the automotive engine efficiency and durability.« less

  2. High temperature lubricating process

    DOEpatents

    Taylor, R.W.; Shell, T.E.

    1979-10-04

    It has been difficult to provide adequate lubrication for load bearing, engine components when such engines are operating in excess of about 475/sup 0/C. The present invention is a process for providing a solid lubricant on a load bearing, solid surface, such as in an engine being operated at temperatures in excess of about 475/sup 0/C. The process comprises contacting and maintaining the following steps: a gas phase is provided which includes at least one component reactable in a temperature dependent reaction to form a solid lubricant; the gas phase is contacted with the load bearing surface; the load bearing surface is maintained at a temperature which causes reaction of the gas phase component and the formation of the solid lubricant; and the solid lubricant is formed directly on the load bearing surface. The method is particularly suitable for use with ceramic engines.

  3. High temperature lubricating process

    DOEpatents

    Taylor, Robert W.; Shell, Thomas E.

    1982-01-01

    It has been difficult to provide adaquate lubrication for load bearing, engine components when such engines are operating in excess of about 475.degree. C. The present invention is a process for providing a solid lubricant on a load bearing, solid surface (14), such as in an engine (10) being operated at temperatures in excess of about 475.degree. C. The process comprises contacting and maintaining steps. A gas phase (42) is provided which includes at least one component reactable in a temperature dependent reaction to form a solid lubricant. The gas phase is contacted with the load bearing surface. The load bearing surface is maintained at a temperature which causes reaction of the gas phase component and the formation of the solid lubricant. The solid lubricant is formed directly on the load bearing surface. The method is particularly suitable for use with ceramic engines.

  4. Analysis of variation in oil pressure in lubricating system

    NASA Astrophysics Data System (ADS)

    Sharma, Sumit; Upreti, Mritunjay; Sharma, Bharat; Poddar, Keshav

    2018-05-01

    Automotive Maintenance for an engine contributes to its reliability, energy efficiency and repair cost reduction. Modeling of engine performance and fault detection require large amount of data, which are usually obtained on test benches. This report presents a methodical study on analysis of variation in lubrication system of various medium speed engines. Further this study is limited to the influence of Engine Oil Pressure on frictional losses, Torque analysis for various Oil Pressures and an analytical analysis of engine Lubrication System. The data collected from various Engines under diagnostics is represented graphically. Finally the illustrated results were used as a viable source for detection and troubleshooting of faults in Lubrication System of regular passenger vehicle.

  5. Model-based diagnostics of gas turbine engine lubrication systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byington, C.S.

    1998-09-01

    The objective of the current research was to develop improved methodology for diagnosing anomalies and maintaining oil lubrication systems for gas turbine engines. The effort focused on the development of reasoning modules that utilize the existing, inexpensive sensors and are applicable to on-line monitoring within the full-authority digital engine controller (FADEC) of the engine. The target application is the Enhanced TF-40B gas turbine engine that powers the Landing Craft Air Cushion (LCAC) platform. To accomplish the development of the requisite data fusion algorithms and automated reasoning for the diagnostic modules, Penn State ARL produced a generic Turbine Engine Lubrication Systemmore » Simulator (TELSS) and Data Fusion Workbench (DFW). TELSS is a portable simulator code that calculates lubrication system parameters based upon one-dimensional fluid flow resistance network equations. Validation of the TF- 40B modules was performed using engineering and limited test data. The simulation model was used to analyze operational data from the LCAC fleet. The TELSS, as an integral portion of the DFW, provides the capability to experiment with combinations of variables and feature vectors that characterize normal and abnormal operation of the engine lubrication system. The model-based diagnostics approach is applicable to all gas turbine engines and mechanical transmissions with similar pressure-fed lubrication systems.« less

  6. Annual Report - Compatibility of ZDDP and ionic liquid anti-wear additives with hard coatings for engine lubrications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qu, Jun; Zhou, Yan; Leonard, Donovan N

    The objectives for this considerations described here are to; investigate the compatibility of engine lubricant antiwear (AW) additives, specifically conventional zinc dialkyldithiophosphate (ZDDP) and newly developed ionic liquids (ILs), with selected commercial hard coatings, and provide fundamental understanding to guide future development of engine lubricants.

  7. Optimizing power cylinder lubrication on a large bore natural gas engine

    NASA Astrophysics Data System (ADS)

    Luedeman, Matthew R.

    More than 6000 integral compressors, located along America's natural gas pipelines, pump natural gas across the United States. These compressors are powered by 2-stroke, large bore natural gas burning engines. Lowering the operating costs, reducing the emissions, and ensuring that these engines remain compliant with future emission regulations are the drivers for this study. Substantial research has focused on optimizing efficiency and reducing the fuel derived emissions on this class of engine. However, significantly less research has focused on the effect and reduction of lubricating oil derived emissions. This study evaluates the impact of power cylinder lubricating oil on overall engine emissions with an emphasis on reducing oxidation catalyst poisoning. A traditional power cylinder lubricator was analyzed; power cylinder lubricating oil was found to significantly impact exhaust emissions. Lubricating oil was identified as the primary contributor of particulate matter production in a large bore natural gas engine. The particulate matter was determined to be primarily organic carbon, and most likely direct oil carryover of small oil droplets. The particulate matter production equated to 25% of the injected oil at a nominal power cylinder lubrication rate. In addition, power cylinder friction is considered the primary contributor to friction loss in the internal combustion engine. This study investigates the potential for optimizing power cylinder lubrication by controlling power cylinder injection to occur at the optimal time in the piston cycle. By injecting oil directly into the ring pack, it is believed that emissions, catalyst poisoning, friction, and wear can all be reduced. This report outlines the design and theory of two electronically controlled lubrication systems. Experimental results and evaluation of one of the systems is included.

  8. Analysis of chain saw lubricating oils commonly used in Thailand's southern border provinces for forensic science purpose.

    PubMed

    Choodum, Aree; Tripuwanard, Kijja; Daeid, Niamh Nic

    2014-08-01

    In recent years, Thailand's southern border provinces (Malay-Muslim-majority border provinces) have become the scene of violence and insurgency. One of the attack patterns is the blocking of roads with perennial plants followed by planned attacks using improvised explosive devices (IEDs) or weapons on first responders. Containers of viscous dark lubricating oil and traces of lubricants on the felled trees were usually found at the scene. These were suspected to be chain oil lubricant from the chainsaws used to cut down the trees used for the roadblock. This work aimed to differentiate the chromatographic patterns of used lubricating oils available in automobile repair shops from various locations across Thailand's southern border provinces. Lubricating oils were analyzed using gas chromatography/flame ionization detector (GC/FID) every two weeks to study their variation in chemical compositions over time. The results obtained from GC/FID were normalized for differentiation. This included four two-stroke, six four-stroke, and three recycled oils. Two lubricating oils found at an incident scene were also analyzed and the results compared with the chain oil from five seized chainsaws. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. Engineering Lubrication in Articular Cartilage

    PubMed Central

    McNary, Sean M.; Athanasiou, Kyriacos A.

    2012-01-01

    Despite continuous progress toward tissue engineering of functional articular cartilage, significant challenges still remain. Advances in morphogens, stem cells, and scaffolds have resulted in enhancement of the bulk mechanical properties of engineered constructs, but little attention has been paid to the surface mechanical properties. In the near future, engineered tissues will be able to withstand and support the physiological compressive and tensile forces in weight-bearing synovial joints such as the knee. However, there is an increasing realization that these tissue-engineered cartilage constructs will fail without the optimal frictional and wear properties present in native articular cartilage. These characteristics are critical to smooth, pain-free joint articulation and a long-lasting, durable cartilage surface. To achieve optimal tribological properties, engineered cartilage therapies will need to incorporate approaches and methods for functional lubrication. Steady progress in cartilage lubrication in native tissues has pushed the pendulum and warranted a shift in the articular cartilage tissue-engineering paradigm. Engineered tissues should be designed and developed to possess both tribological and mechanical properties mirroring natural cartilage. In this article, an overview of the biology and engineering of articular cartilage structure and cartilage lubrication will be presented. Salient progress in lubrication treatments such as tribosupplementation, pharmacological, and cell-based therapies will be covered. Finally, frictional assays such as the pin-on-disk tribometer will be addressed. Knowledge related to the elements of cartilage lubrication has progressed and, thus, an opportune moment is provided to leverage these advances at a critical step in the development of mechanically and tribologically robust, biomimetic tissue-engineered cartilage. This article is intended to serve as the first stepping stone toward future studies in functional tissue engineering of articular cartilage that begins to explore and incorporate methods of lubrication. PMID:21955119

  10. Characteristics Study of In-Situ Capacitive Sensor for Monitoring Lubrication Oil Debris.

    PubMed

    Han, Zhibin; Wang, Yishou; Qing, Xinlin

    2017-12-08

    As an essential part of engine health monitoring (EHM), online lubrication oil debris monitoring has recently received great attention for the assessment of rotating and reciprocating parts in aero-engines, due to its high integration, low cost and safe characteristics. However, it is be a challenge to find a suitable sensor operating in such a complex environment. We present an unconventional novel approach, in which a cylinder capacitive sensor is designed and integrated with the pipeline of an engine lubrication system, so that the capacitive sensor can effectively detect changes in the lubrication oil condition. In this paper, an attempt to illustrate the performance characteristics of the developed cylinder capacitive sensor is made, through an experiment system that simulates a real scenario of a lubrication oil system. The main aim of the research was to qualitatively describe the relationship between the sensor parameter and the lubrication oil debris. In addition, the effect of the temperature and flow rate of the lubrication oil on capacitance change was performed by several experiments and we figured out a compensation method. The experimental results demonstrated that the cylinder capacitive sensor can potentially be used for lubrication oil debris monitoring of the health condition of an aero-engine.

  11. Liquid lubricants for advanced aircraft engines

    NASA Technical Reports Server (NTRS)

    Loomis, William R.; Fusaro, Robert L.

    1993-01-01

    An overview of liquid lubricants for use in current and projected high performance turbojet engines is discussed. Chemical and physical properties are reviewed with special emphasis placed on the oxidation and thermal stability requirements imposed upon the lubrication system. A brief history is given of the development of turbine engine lubricants which led to the present day synthetic oils with their inherent modification advantages. The status and state of development of some eleven candidate classes of fluids for use in advanced turbine engines are discussed. Published examples of fundamental studies to obtain a better understanding of the chemistry involved in fluid degradation are reviewed. Alternatives to high temperature fluid development are described. The importance of continuing work on improving current high temperature lubricant candidates and encouraging development of new and improved fluid base stocks are discussed.

  12. Liquid lubricants for advanced aircraft engines

    NASA Technical Reports Server (NTRS)

    Loomis, William R.; Fusaro, Robert L.

    1992-01-01

    An overview of liquid lubricants for use in current and projected high performance turbojet engines is discussed. Chemical and physical properties are reviewed with special emphasis placed on the oxidation and thermal stability requirements imposed upon the lubrication system. A brief history is given of the development of turbine engine lubricants which led to the present day synthetic oils with their inherent modification advantages. The status and state of development of some eleven candidate classes of fluids for use in advanced turbine engines are discussed. Published examples of fundamental studies to obtain a better understanding of the chemistry involved in fluid degradation are reviewed. Alternatives to high temperature fluid development are described. The importance of continuing work on improving current high temperature lubricant candidates and encouraging development of new and improved fluid base stocks are discussed.

  13. 14 CFR 33.39 - Lubrication system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Lubrication system. 33.39 Section 33.39 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Reciprocating Aircraft Engines § 33.39 Lubrication...

  14. 14 CFR 33.39 - Lubrication system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Lubrication system. 33.39 Section 33.39 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Reciprocating Aircraft Engines § 33.39 Lubrication...

  15. 40 CFR 1065.740 - Lubricants.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Lubricants. 1065.740 Section 1065.740 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration Standards § 1065.740 Lubricants...

  16. 40 CFR 1065.740 - Lubricants.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Lubricants. 1065.740 Section 1065.740 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration Standards § 1065.740 Lubricants...

  17. 40 CFR 1065.740 - Lubricants.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Lubricants. 1065.740 Section 1065.740 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration Standards § 1065.740 Lubricants...

  18. 40 CFR 1065.740 - Lubricants.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Lubricants. 1065.740 Section 1065.740 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration Standards § 1065.740 Lubricants...

  19. 40 CFR 1065.740 - Lubricants.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Lubricants. 1065.740 Section 1065.740 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration Standards § 1065.740 Lubricants...

  20. 14 CFR 33.71 - Lubrication system.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Lubrication system. 33.71 Section 33.71 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.71 Lubrication system. (a...

  1. 40 CFR 1065.122 - Engine cooling and lubrication.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....122 Section 1065.122 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Equipment Specifications § 1065.122 Engine cooling and lubrication. (a) Engine cooling. Cool the engine during testing so its intake-air, oil, coolant, block, and...

  2. 40 CFR 1065.122 - Engine cooling and lubrication.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....122 Section 1065.122 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Equipment Specifications § 1065.122 Engine cooling and lubrication. (a) Engine cooling. Cool the engine during testing so its intake-air, oil, coolant, block, and...

  3. 40 CFR 1065.122 - Engine cooling and lubrication.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....122 Section 1065.122 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Equipment Specifications § 1065.122 Engine cooling and lubrication. (a) Engine cooling. Cool the engine during testing so its intake-air, oil, coolant, block, and...

  4. 40 CFR 1065.122 - Engine cooling and lubrication.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ....122 Section 1065.122 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Equipment Specifications § 1065.122 Engine cooling and lubrication. (a) Engine cooling. Cool the engine during testing so its intake-air, oil, coolant, block, and...

  5. 40 CFR 1065.122 - Engine cooling and lubrication.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....122 Section 1065.122 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Equipment Specifications § 1065.122 Engine cooling and lubrication. (a) Engine cooling. Cool the engine during testing so its intake-air, oil, coolant, block, and...

  6. Power system with an integrated lubrication circuit

    DOEpatents

    Hoff, Brian D [East Peoria, IL; Akasam, Sivaprasad [Peoria, IL; Algrain, Marcelo C [Peoria, IL; Johnson, Kris W [Washington, IL; Lane, William H [Chillicothe, IL

    2009-11-10

    A power system includes an engine having a first lubrication circuit and at least one auxiliary power unit having a second lubrication circuit. The first lubrication circuit is in fluid communication with the second lubrication circuit.

  7. Identification of lubrication oil in the particulate matter emissions from engine exhaust of in-service commercial aircraft.

    PubMed

    Yu, Zhenhong; Herndon, Scott C; Ziemba, Luke D; Timko, Michael T; Liscinsky, David S; Anderson, Bruce E; Miake-Lye, Richard C

    2012-09-04

    Lubrication oil was identified in the organic particulate matter (PM) emissions of engine exhaust plumes from in-service commercial aircraft at Chicago Midway Airport (MDW) and O'Hare International Airport (ORD). This is the first field study focused on aircraft lubrication oil emissions, and all of the observed plumes described in this work were due to near-idle engine operations. The identification was carried out with an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF AMS) via a collaborative laboratory and field investigation. A characteristic mass marker of lubrication oil, I(85)/I(71), the ratio of ion fragment intensity between m/z = 85 and 71, was used to distinguish lubrication oil from jet engine combustion products. This AMS marker was based on ion fragmentation patterns measured using electron impact ionization for two brands of widely used lubrication oil in a laboratory study. The AMS measurements of exhaust plumes from commercial aircraft in this airport field study reveal that lubrication oil is commonly present in organic PM emissions that are associated with emitted soot particles, unlike the purely oil droplets observed at the lubrication system vent. The characteristic oil marker, I(85)/I(71), was applied to quantitatively determine the contribution from lubrication oil in measured aircraft plumes, which ranges from 5% to 100%.

  8. Lubricity of biobased diesel fuels and additives

    USDA-ARS?s Scientific Manuscript database

    Modern diesel engines rely on the fuel itself to lubricate moving parts in the fuel and engine systems. Prior to the late 1990s, diesel fuel from petroleum provided sufficient lubricity to effectively reduce wear in injectors and fuel pumps. Increasingly stringent limitations on the sulfur content o...

  9. Characterization of lubrication oil emissions from aircraft engines.

    PubMed

    Yu, Zhenhong; Liscinsky, David S; Winstead, Edward L; True, Bruce S; Timko, Michael T; Bhargava, Anuj; Herndon, Scott C; Miake-Lye, Richard C; Anderson, Bruce E

    2010-12-15

    In this first ever study, particulate matter (PM) emitted from the lubrication system overboard breather vent for two different models of aircraft engines has been systematically characterized. Lubrication oil was confirmed as the predominant component of the emitted particulate matter based upon the characteristic mass spectrum of the pure oil. Total particulate mass and size distributions of the emitted oil are also investigated by several high-sensitivity aerosol characterization instruments. The emission index (EI) of lubrication oil at engine idle is in the range of 2-12 mg kg(-1) and increases with engine power. The chemical composition of the oil droplets is essentially independent of engine thrust, suggesting that engine oil does not undergo thermally driven chemical transformations during the ∼4 h test window. Volumetric mean diameter is around 250-350 nm for all engine power conditions with a slight power dependence.

  10. LOW-ENGINE-FRICTION TECHNOLOGY FOR ADVANCED NATURAL-GAS RECIPROCATING ENGINES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Victor Wong; Tian Tian; Luke Moughon

    This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston and piston ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and wear. An iterative process of simulation, experimentation and analysis is being followed towards achieving the goal of demonstrating a complete optimized low-friction engine system. To date, a detailed set of piston and piston-ring dynamic and friction models have been developed and applied that illustrate the fundamental relationships among mechanical, surface/material and lubricant design parameters and friction losses. Demonstration of low-friction ring-pack designs in the Waukesha VGFmore » 18GL engine confirmed total engine FEMP (friction mean effective pressure) reduction of 7-10% from the baseline configuration without significantly increasing oil consumption or blow-by flow. This represents a substantial (30-40%) reduction of the ringpack friction alone. The measured FMEP reductions were in good agreement with the model predictions. Further improvements via piston, lubricant, and surface designs offer additional opportunities. Tests of low-friction lubricants are in progress and preliminary results are very promising. The combined analysis of lubricant and surface design indicates that low-viscosity lubricants can be very effective in reducing friction, subject to component wear for extremely thin oils, which can be mitigated with further lubricant formulation and/or engineered surfaces. Hence a combined approach of lubricant design and appropriate wear reduction offers improved potential for minimum engine friction loss. Piston friction studies indicate that a flatter piston with a more flexible skirt, together with optimizing the waviness and film thickness on the piston skirt offer significant friction reduction. Combined with low-friction ring-pack, material and lubricant parameters, a total power cylinder friction reduction of 30-50% is expected, translating to an engine efficiency increase of two percentage points from its current baseline towards the goal of 50% ARES engine efficiency. The design strategies developed in this study have promising potential for application in all modern reciprocating engines as they represent simple, low-cost methods to extract significant fuel savings. The current program has possible spinoffs and applications in other industries as well, including transportation, CHP, and diesel power generation. The progress made in this program has wide engine efficiency implications, and potential deployment of low-friction engine components or lubricants in the near term is possible as current investigations continue.« less

  11. Characteristics Study of In-Situ Capacitive Sensor for Monitoring Lubrication Oil Debris

    PubMed Central

    Han, Zhibin; Wang, Yishou; Qing, Xinlin

    2017-01-01

    As an essential part of engine health monitoring (EHM), online lubrication oil debris monitoring has recently received great attention for the assessment of rotating and reciprocating parts in aero-engines, due to its high integration, low cost and safe characteristics. However, it is be a challenge to find a suitable sensor operating in such a complex environment. We present an unconventional novel approach, in which a cylinder capacitive sensor is designed and integrated with the pipeline of an engine lubrication system, so that the capacitive sensor can effectively detect changes in the lubrication oil condition. In this paper, an attempt to illustrate the performance characteristics of the developed cylinder capacitive sensor is made, through an experiment system that simulates a real scenario of a lubrication oil system. The main aim of the research was to qualitatively describe the relationship between the sensor parameter and the lubrication oil debris. In addition, the effect of the temperature and flow rate of the lubrication oil on capacitance change was performed by several experiments and we figured out a compensation method. The experimental results demonstrated that the cylinder capacitive sensor can potentially be used for lubrication oil debris monitoring of the health condition of an aero-engine. PMID:29292748

  12. Development of high temperature liquid lubricants for low-heat rejection: Heavy duty diesel engines

    NASA Technical Reports Server (NTRS)

    Wiczynski, P. D.; Marolewski, T. A.

    1993-01-01

    The objective of this DOE program was to develop a liquid lubricant that will allow advanced diesel engines to operate at top ring reversal temperatures approaching 500 C and sump temperatures approaching 250 C. The lubricants developed demonstrated at marginal increase in sump temperature capability, approximately 15 C, and an increase in top ring reversal temperature. A 15W-40 synthetic lubricant designated HTL-4 was the best lubricant developed in terms of stability, wear control, deposit control dispersancy, and particulate emissions.

  13. Overview of liquid lubricants for advanced aircraft

    NASA Technical Reports Server (NTRS)

    Loomis, W. R.

    1982-01-01

    An overall status report on liquid lubricants for use in high-performance turbojet engines is presented. Emphasis is placed on the oxidation and thermal stability requirements imposed upon the lubrication system. A brief history is iven of the development of turbine engine lubricants which led to synthetic oils with their inherent modification advantages. The status and state of development of some nine candidate classes of fluids for use in advanced turbine engines are discussed. Published examples of fundamental studies to obtain a better understanding of the chemistry involved in fluid degradation are reviewed. Also, alternatives to high temperature fluid development are described. The importance of of continuing work on improving high temperature lubricant candidates and encouraging development of fluid base stocks is discussed.

  14. AUTOMOTIVE DIESEL MAINTENANCE, UNIT V, MAINTAINING THE LUBRICATION SYSTEM--DETROIT DIESEL ENGINE.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE LUBRICATION SYSTEM. TOPICS ARE LUBE OILS USED, MAINTENANCE OF THE LUBRICATION SYSTEM, AND CRANKCASE VENTILATION COMPONENTS. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING FILM "BASIC ENGINE…

  15. Confirmation of heavy metal ions in used lubricating oil from a passenger car using chelating self-assembled monolayer.

    PubMed

    Ko, Young Gun; Kim, Choong Hyun

    2006-09-01

    In order to prevent engine failure, the oil must be changed before it loses its protective properties. It is necessary to monitor the actual physical and chemical condition of the oil to reliably determine the optimum oil-change interval. Our study focuses on the condition of the lubricating oil in an operated car engine. Shear stress curves and viscosity curves as a function of the shear rate for fresh and used lubricating oil were examined. Metal nitrate was detected in the lubricating oil from the operated car engine through the use of a chelating self-assembled monolayer.

  16. 40 CFR 86.513-2004 - Fuel and engine lubricant specifications.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 19 2014-07-01 2014-07-01 false Fuel and engine lubricant... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1978 and Later New Motorcycles; Test Procedures § 86.513-2004 Fuel and engine...

  17. 40 CFR 86.513-2004 - Fuel and engine lubricant specifications.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Fuel and engine lubricant... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1978 and Later New Motorcycles; Test Procedures § 86.513-2004 Fuel and engine...

  18. 40 CFR 86.513-94 - Fuel and engine lubricant specifications.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Fuel and engine lubricant...) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1978 and Later New Motorcycles; Test Procedures § 86.513-94 Fuel and engine...

  19. 40 CFR 86.513-94 - Fuel and engine lubricant specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Fuel and engine lubricant...) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1978 and Later New Motorcycles; Test Procedures § 86.513-94 Fuel and engine...

  20. 40 CFR 86.513-94 - Fuel and engine lubricant specifications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Fuel and engine lubricant...) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1978 and Later New Motorcycles; Test Procedures § 86.513-94 Fuel and engine...

  1. 40 CFR 86.513-2004 - Fuel and engine lubricant specifications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Fuel and engine lubricant... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1978 and Later New Motorcycles; Test Procedures § 86.513-2004 Fuel and engine...

  2. 40 CFR 86.513-94 - Fuel and engine lubricant specifications.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Fuel and engine lubricant...) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1978 and Later New Motorcycles; Test Procedures § 86.513-94 Fuel and engine...

  3. 40 CFR 86.513-2004 - Fuel and engine lubricant specifications.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Fuel and engine lubricant... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1978 and Later New Motorcycles; Test Procedures § 86.513-2004 Fuel and engine...

  4. 7 CFR 3201.25 - 2-Cycle engine oils.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false 2-Cycle engine oils. 3201.25 Section 3201.25... Designated Items § 3201.25 2-Cycle engine oils. (a) Definition. Lubricants designed for use in 2-cycle engines to provide lubrication, decreased spark plug fouling, reduced deposit formation, and/or reduced...

  5. 7 CFR 3201.102 - Engine crankcase oils.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Engine crankcase oils. 3201.102 Section 3201.102... Designated Items § 3201.102 Engine crankcase oils. (a) Definition. Lubricating products formulated to provide lubrication and wear protection for four-cycle gasoline or diesel engines. (b) Minimum biobased content. The...

  6. 7 CFR 3201.25 - 2-Cycle engine oils.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false 2-Cycle engine oils. 3201.25 Section 3201.25... Designated Items § 3201.25 2-Cycle engine oils. (a) Definition. Lubricants designed for use in 2-cycle engines to provide lubrication, decreased spark plug fouling, reduced deposit formation, and/or reduced...

  7. 7 CFR 3201.25 - 2-Cycle engine oils.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false 2-Cycle engine oils. 3201.25 Section 3201.25... Designated Items § 3201.25 2-Cycle engine oils. (a) Definition. Lubricants designed for use in 2-cycle engines to provide lubrication, decreased spark plug fouling, reduced deposit formation, and/or reduced...

  8. Fuels and Lubrication Researcher at the Aircraft Engine Research Laboratory

    NASA Image and Video Library

    1943-08-21

    A researcher at the National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory studies the fuel ignition process. Improved fuels and lubrication was an area of particular emphasis at the laboratory during World War II. The military sought to use existing types of piston engines in order to get large numbers of aircraft into the air as quickly as possible. To accomplish its goals, however, the military needed to increase the performance of these engines without having to wait for new models or extensive redesigns. The Aircraft Engine Research Laboratory was called on to lead this effort. The use of superchargers successfully enhanced engine performance, but the resulting heat increased engine knock [fuel detonation] and structural wear. These effects could be offset with improved cooling, lubrication, and fuel mixtures. The NACA researchers in the Fuels and Lubrication Division concentrated on new synthetic fuels, higher octane fuels, and fuel-injection systems. The laboratory studied 16 different types of fuel blends during the war, including extensive investigations of triptane and xylidine.

  9. Safety engineering in handling fuels and lubricants in civil aviation

    NASA Astrophysics Data System (ADS)

    Protoereiskii, Aleksandr Stepanovich

    The book is concerned with methods of improving working conditions, work hygiene, safety engineering, and fire and explosion prevention during the storage and handling of petroleum products at fuel and lubricant storage facilities. The discussion covers methods of protection against static and atmospheric discharges, lightning protection, safety engineering in fuel and lubricant laboratories, and methods of fire prevention and fire extinction. Attention is also given to methods for administering first aid in case of accidents and poisoning.

  10. High-Temperature Solid Lubricants Developed by NASA Lewis Offer Virtually "Unlimited Life" for Oil-Free Turbomachinery

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Valco, Mark J.

    1999-01-01

    The NASA Lewis Research Center is capitalizing on breakthroughs in foil air bearing performance, tribological coatings, and computer analyses to formulate the Oil-free Turbomachinery Program. The program s long-term goal is to develop an innovative, yet practical, oil-free aeropropulsion gas turbine engine that floats on advanced air bearings. This type of engine would operate at higher speeds and temperatures with lower weight and friction than conventional oil-lubricated engines. During startup and shutdown, solid lubricant coatings are required to prevent wear in such engines before the self-generating air-lubrication film develops. NASA s Tribology Branch has created PS304, a chrome-oxide-based plasma spray coating specifically tailored for shafts run against foil bearings. PS304 contains silver and barium fluoride/calcium fluoride eutectic (BaF2/CaF2) lubricant additives that, together, provide lubrication from cold start temperatures to over 650 C, the maximum use temperature for foil bearings. Recent lab tests show that bearings lubricated with PS304 survive over 100 000 start-stop cycles without experiencing any degradation in performance due to wear. The accompanying photograph shows a test bearing after it was run at 650 C. The rubbing process created a "polished" surface that enhances bearing load capacity.

  11. Engine having a high pressure hydraulic system and low pressure lubricating system

    DOEpatents

    Bartley, Bradley E.; Blass, James R.; Gibson, Dennis H.

    2000-01-01

    An engine includes a high pressure hydraulic system having a high pressure pump and at least one hydraulically-actuated device attached to an engine housing. A low pressure engine lubricating system is attached to the engine housing and includes a circulation conduit fluidly connected to an outlet from the high pressure pump.

  12. ISS Solar Array Alpha Rotary Joint (SARJ) Bearing Failure and Recovery: Technical and Project Management Lessons Learned

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Krantz, Timothy L.; Dube, Michael J.

    2011-01-01

    The photovoltaic solar panels on the International Space Station (ISS) track the Sun through continuous rotating motion enabled by large bearings on the main truss called solar array alpha rotary joints (SARJs). In late 2007, shortly after installation, the starboard SARJ had become hard to turn and had to be shut down after exceeding drive current safety limits. The port SARJ, of the same design, had been working well for over 2 years. An exhaustive failure investigation ensued that included multiple extravehicular activities to collect information and samples for engineering forensics, detailed structural and thermal analyses, and a careful review of the build records. The ultimate root cause was determined to be kinematic design vulnerability coupled with inadequate lubrication, and manufacturing flaws; this was corroborated through ground tests, metallurgical studies, and modeling. A highly successful recovery plan was developed and implemented that included replacing worn and damaged components in orbit and applying space-compatible grease to improve lubrication. Beyond the technical aspects, however, lie several key programmatic lessons learned. These lessons, such as running ground tests to intentional failure to experimentally verify failure modes, are reviewed and discussed so they can be applied to future projects to avoid such problems.

  13. 40 CFR 86.413-78 - Labeling.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... lubricant requirements (e.g., lead content, Research octane number, engine lubricant type); (vi) An... EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1978 and Later New... Emission Control Information; (ii) Full corporate name and trademark of the manufacturer; (iii) Engine...

  14. 40 CFR 86.413-78 - Labeling.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... lubricant requirements (e.g., lead content, Research octane number, engine lubricant type); (vi) An... EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1978 and Later New... Emission Control Information; (ii) Full corporate name and trademark of the manufacturer; (iii) Engine...

  15. 40 CFR 86.413-78 - Labeling.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... lubricant requirements (e.g., lead content, Research octane number, engine lubricant type); (vi) An... EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1978 and Later New... Emission Control Information; (ii) Full corporate name and trademark of the manufacturer; (iii) Engine...

  16. 40 CFR 86.413-78 - Labeling.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... lubricant requirements (e.g., lead content, Research octane number, engine lubricant type); (vi) An... EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1978 and Later New... Emission Control Information; (ii) Full corporate name and trademark of the manufacturer; (iii) Engine...

  17. 40 CFR 86.413-2006 - Labeling.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... lubricant requirements (e.g., lead content, research octane number, engine lubricant type); (vi...) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1978 and... Information”; (ii) Full corporate name and trademark of the manufacturer; (iii) Engine displacement (in cubic...

  18. 40 CFR 86.413-2006 - Labeling.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... lubricant requirements (e.g., lead content, research octane number, engine lubricant type); (vi...) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1978 and... Information”; (ii) Full corporate name and trademark of the manufacturer; (iii) Engine displacement (in cubic...

  19. 40 CFR 86.413-2006 - Labeling.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... lubricant requirements (e.g., lead content, research octane number, engine lubricant type); (vi...) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1978 and... Information”; (ii) Full corporate name and trademark of the manufacturer; (iii) Engine displacement (in cubic...

  20. 40 CFR 86.413-78 - Labeling.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... lubricant requirements (e.g., lead content, Research octane number, engine lubricant type); (vi) An... EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1978 and Later New... Emission Control Information; (ii) Full corporate name and trademark of the manufacturer; (iii) Engine...

  1. Emergency and microfog lubrication and cooling of bearings for Army helicopters

    NASA Technical Reports Server (NTRS)

    Rosenlieb, J. W.

    1978-01-01

    An analysis and system study was performed to provide design information regarding lubricant and coolant flow rates and flow paths for effective utilization of the lubricant and coolant in a once-through oil-mist (microfog) and coolant air system. A system was designed, manufactured, coupled with an existing rig and evaluation tests were performed using 46 mm bore split-inner angular-contact ball bearings under 1779N (400 lb.) thrust load. An emergency lubrication aspirator system was also manufactured and tested under lost lubricant conditions. The testing demonstrated the feasibility of using a mist oil and cooling air system to lubricate and cool a high speed helicopter engine mainshaft bearing. The testing also demonstrated the feasibility of using an emergency aspirator lubrication system as a viable survivability concept for helicopter mainshaft engine bearing for periods as long as 30 minutes.

  2. Lubricant Formulations to Enhance Engine Efficiency in Modern Internal Combustion Engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Wai; Wong, Victor; Plumley, Michael

    2017-04-19

    The research program presented aimed to investigate, develop, and demonstrate low-friction, environmentally-friendly and commercially-feasible lubricant formulations that would significantly improve the mechanical efficiency of modern engines without incurring increased wear, emissions or deterioration of the emission-aftertreatment system.

  3. Forensic engineering: applying materials and mechanics principles to the investigation of product failures.

    PubMed

    Hainsworth, S V; Fitzpatrick, M E

    2007-06-01

    Forensic engineering is the application of engineering principles or techniques to the investigation of materials, products, structures or components that fail or do not perform as intended. In particular, forensic engineering can involve providing solutions to forensic problems by the application of engineering science. A criminal aspect may be involved in the investigation but often the problems are related to negligence, breach of contract, or providing information needed in the redesign of a product to eliminate future failures. Forensic engineering may include the investigation of the physical causes of accidents or other sources of claims and litigation (for example, patent disputes). It involves the preparation of technical engineering reports, and may require giving testimony and providing advice to assist in the resolution of disputes affecting life or property.This paper reviews the principal methods available for the analysis of failed components and then gives examples of different component failure modes through selected case studies.

  4. Characterization and Evaluation of Re-Refined Engine Lubricating Oil.

    DTIC Science & Technology

    1981-12-01

    performance of re-refineod and virgin oils and to Investigate the potential esubstantlal esquivalknced of re-refined and virgin lubricating oils. The...d 20. Abstract (continued) engine deposits derived from virgin and re-refined engine oils. (2) The effects of virgin and re-refined oils on engine...blowby composition and engine deposit generation were determined using a spark ignition engine and, 3) Virgin and re-refined basestock production

  5. Compatibility of Anti-Wear Additives with Non-Ferrous Engine Bearing Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qu, Jun; Zhou, Yan

    Investigate the compatibility of engine lubricant antiwear (AW) additives, specifically conventional zinc dialkyldithiophosphate (ZDDP) and newly developed ionic liquids (ILs), with selected non-ferrous engine bearing alloys, specifically aluminum and bronze alloys that are commonly used in connecting rod end journal bearings and bushings, to gain fundamental understanding to guide future development of engine lubricants

  6. Oil-air mist lubrication as an emergency system and as a primary lubrication system. [for helicopter engines

    NASA Technical Reports Server (NTRS)

    Loomis, W. R.

    1976-01-01

    The feasibility of an emergency aspirator once-through lubrication system was demonstrated as a viable survivability concept for Army helicopter mainshaft engine bearings for periods as long as 30 minutes. It was also shown in an experimental study using a 46-mm bore bearing test machine that an oil-air mist once-through system with auxiliary air cooling is an effective primary lubrication system at speeds up to 2,500,000 DN for extended operating periods of at least 50 hours.

  7. Automotive Lubricant Specification and Testing

    NASA Astrophysics Data System (ADS)

    Fox, M. F.

    This chapter concerns commercial lubricant specification and testing, drawing together the many themes of previous chapters. Military lubricant standards were a very strong initial influence during World War II and led to the separate historical development of the North American and European specification systems. The wide range of functions that a successful lubricant must satisfy is discussed, together with issues of balancing special or universal applications, single or multiple engine tests, the philosophy of accelerated testing and the question of 'who sets the standards?' The role of engine tests and testing organisations is examined.

  8. Structural Oil Pan With Integrated Oil Filtration And Cooling System

    DOEpatents

    Freese, V, Charles Edwin

    2000-05-09

    An oil pan for an internal combustion engine includes a body defining a reservoir for collecting engine coolant. The reservoir has a bottom and side walls extending upwardly from the bottom to present a flanged lip through which the oil pan may be mounted to the engine. An oil cooler assembly is housed within the body of the oil pan for cooling lubricant received from the engine. The body includes an oil inlet passage formed integrally therewith for receiving lubricant from the engine and delivering lubricant to the oil cooler. In addition, the body also includes an oil pick up passage formed integrally therewith for providing fluid communication between the reservoir and the engine through the flanged lip.

  9. Low-Engine-Friction Technology for Advanced Natural-Gas Reciprocating Engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Victor Wong; Tian Tian; G. Smedley

    This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston and piston ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and wear. An iterative process of simulation, experimentation and analysis has been followed towards achieving the goal of demonstrating a complete optimized low-friction engine system. In this program, a detailed set of piston and piston-ring dynamic and friction models have been adapted and applied that illustrate the fundamental relationships among mechanical, surface/material and lubricant design parameters and friction losses. Demonstration of low-friction ring-pack designs in the Waukeshamore » VGF 18GL engine confirmed ring-pack friction reduction of 30-40%, which translates to total engine FEMP (friction mean effective pressure) reduction of 7-10% from the baseline configuration without significantly increasing oil consumption or blow-by flow. The study on surface textures, including roughness characteristics, cross hatch patterns, dimples and grooves have shown that even relatively small-scale changes can have a large effect on ring/liner friction, in some cases reducing FMEP by as much as 30% from a smooth surface case. The measured FMEP reductions were in good agreement with the model predictions. The combined analysis of lubricant and surface design indicates that low-viscosity lubricants can be very effective in reducing friction, subject to component wear for extremely thin oils, which can be mitigated with further lubricant formulation and/or engineered surfaces. Hence a combined approach of lubricant design and appropriate wear reduction offers improved potential for minimum engine friction loss. Testing of low-friction lubricants showed that total engine FMEP reduced by up to {approx}16.5% from the commercial reference oil without significantly increasing oil consumption or blow-by flow. Piston friction studies indicate that a flatter piston with a more flexible skirt, together with optimizing the waviness and film thickness on the piston skirt offer significant friction reduction. Combined with low-friction ring-pack, material and lubricant parameters, a total power cylinder friction reduction of 30-50% is expected, translating to an engine efficiency increase of two percentage points from its current baseline towards the goal of 50% ARES engine efficiency. The design strategies developed in this study have promising potential for application in all modern reciprocating engines as they represent simple, low-cost methods to extract significant fuel savings. The current program has possible spinoffs and applications in other industries as well, including transportation, CHP, and diesel power generation. The progress made in this program has wide engine efficiency implications, and potential deployment of low-friction engine components or lubricants in the near term is quite possible.« less

  10. ORNL-GM: Development of Ionic Liquid-Additized, GF-5/6 Compatible Low-Viscosity Oils for Automotive Engine and Rear Axle Lubrication for 4% Improved Fuel Economy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qu, Jun; Zhou, Yan; Luo, Huimin

    The overall objective of this project are as follows: Further develop ionic liquid (IL)-additized lowviscosity engine oils meeting the GF-5/6 specifications and possessing superior lubricating characteristics; Expand the IL additive technology to rear axle lubricants; and Seek a combined improvement in the vehicle fuel economy

  11. A Wavelength Modulated, Continuum Excited Furnance Atomic Fluorescence System for the Determination of Wear Metals in Jet Engine Lubricating Oils.

    DTIC Science & Technology

    1980-01-01

    ting Oils 6. PERFORMING 04G. REPORT NUMBER -7 AUTHOR(s) 8 . CONTRACT OR GRANT NUMBER(s) O /Thomna-s F. Wynn, Jr: Capt, USAF 9. PERFORMING ORGANIZATION...EXCITED FURNACE ATOMIC FLUORESCENCE SYSTEM FOR THE DETERMINATION OF WEAR METALS IN JET ENGINE LUBRICATING OILS \\Ac ces-.ic’flr For DDC TL3 Unp-nnounced...DETERMINATION OF WEAR METALS IN JET ENGINE LUBRICATING OILS By Thomas F. Wynn, Jr. March, 1980 Chairman: James D. Winefordner Major Department: Chemistry A

  12. Rotordynamic Design Analysis of an Oil-Free Turbocharger

    NASA Technical Reports Server (NTRS)

    Howard, Samuel A.

    1997-01-01

    Modern heavy duty diesel engines utilize turbochargers for increased power output. Also, a wide range of power levels can be achieved with one engine displacement through the use of different turbocharger configurations, eliminating the need for several different sized engines. These are the reasons that virtually all diesel truck engines currently marketed use turbochargers. However, because these turbochargers rely on ring seals and oil-lubricated floating sleeve bearings, they often suffer breakdowns. These turbochargers operate at elevated temperatures which often causes the oil to degrade and even coke to the bearing surfaces. This can lead to catastrophic failure, increased particulate emissions from oil leaks, and, in extreme cases, engine fires. Replacing the oil lubricated bearings from these turbochargers with some other device is desirable to eliminate these inherent problems. Foil bearings are compliant selecting bearings lubricated by air and are well suited to high speed, light load applications. Thus, foil bearings present one potential replacement for oil-lubricated sleeve bearings. Their use as such is investigated in this work.

  13. Lubrication of Space Shuttle Main Engine Turbopump Bearings

    NASA Technical Reports Server (NTRS)

    Gibson, Howard; Munafo, Paul (Technical Monitor)

    2001-01-01

    The Space Shuttle has three main engines that are used for propulsion into orbit. These engines are fed propellants by four turbopumps on each engine. A main element in the turbopump is the bearings supporting the rotor that spins the turbine blades and the pump impeller. These bearings are required to spin at very high speeds, support radial and thrust loads, and have high wear resistance without the benefit of lubrication. The liquid hydrogen and oxygen propellants flow through the bearings to cool the surfaces. The volatile nature of the propellants excludes any conventional means of lubrication. Lubrication for these bearings is provided by the ball separator inside the bearing. The separator is a composite material that supplies a transfer film of lubrication to the rings and balls. New separator materials and lubrication schemes have been investigated at Marshall Space Flight Center in a bearing test rig with promising results. Hybrid bearings with silicon nitride balls have also been evaluated. The use of hybrid, silicon nitride ball bearings in conjunction -with better separator materials has shown excellent results. The work that Marshall has done is being utilized in turbopumps flying on the space shuttle fleet and will be utilized in future space travel. This result of this work is valuable for all aerospace and commercial applications where high-speed bearings are used.

  14. 76 FR 49525 - Advisory Circular 20-24C, Approval of Propulsion Fuels and Lubricating Oils

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-10

    ... Propulsion Fuels and Lubricating Oils AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of..., Approval of Propulsion Fuels and Lubricating Oils. This AC provides guidance on regulations and policy... approve aircraft, engines, or APUs to operate with specified propulsion fuels and lubricating oils. DATES...

  15. 40 CFR 90.308 - Lubricating oil and test fuels.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Lubricating oil and test fuels. 90.308... Equipment Provisions § 90.308 Lubricating oil and test fuels. (a) Lubricating oil. Use the engine... manufacturer. (b) Test Fuels—Certification. (1) The manufacturer must use gasoline having the specifications...

  16. 40 CFR 90.308 - Lubricating oil and test fuels.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Lubricating oil and test fuels. 90.308... Equipment Provisions § 90.308 Lubricating oil and test fuels. (a) Lubricating oil. Use the engine... manufacturer. (b) Test Fuels—Certification. (1) The manufacturer must use gasoline having the specifications...

  17. 40 CFR 90.308 - Lubricating oil and test fuels.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Lubricating oil and test fuels. 90.308... Equipment Provisions § 90.308 Lubricating oil and test fuels. (a) Lubricating oil. Use the engine... manufacturer. (b) Test Fuels—Certification. (1) The manufacturer must use gasoline having the specifications...

  18. 40 CFR 90.308 - Lubricating oil and test fuels.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Lubricating oil and test fuels. 90.308... Equipment Provisions § 90.308 Lubricating oil and test fuels. (a) Lubricating oil. Use the engine... manufacturer. (b) Test Fuels—Certification. (1) The manufacturer must use gasoline having the specifications...

  19. 40 CFR 90.308 - Lubricating oil and test fuels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Lubricating oil and test fuels. 90.308... Equipment Provisions § 90.308 Lubricating oil and test fuels. (a) Lubricating oil. Use the engine... manufacturer. (b) Test Fuels—Certification. (1) The manufacturer must use gasoline having the specifications...

  20. Solid Lubricant For Alumina

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher; Pepper, Stephen V.; Honecy, Frank S.

    1993-01-01

    Outer layer of silver lubricates, while intermediate layer of titanium ensures adhesion. Lubricating outer films of silver deposited on thin intermediate films of titanium on alumina substrates found to reduce sliding friction and wear. Films provide effective lubrication for ceramic seals, bearings, and other hot sliding components in advanced high-temperature engines.

  1. Design of Training Systems. Computerization of the Educational Technology Assessment Model (ETAM). Volume 2

    DTIC Science & Technology

    1977-05-01

    444 EN 2 31043 TEST UNIT INJECTORS AND/OR FUEL INJECTION NOZZLES 445 EN 2 31044 MAINTENANCE OF FUEL OIL INJECTORS 446 EN 2 31049 PREVENTION OF...OPERATIONAL MAINTENANCE OF DIESEL ENGINES OPERATE INTERNAL COMBUSTION ENGINES JACKING GEAR ON INTERNAL COMBUSTION ENGINES CARRYOUT TURNING OVER OF MAIN...ENGINES ALIGN LUBRICATING OIL SYSTEM USE OF STANDBY LUBRICATING OIL PUMPS PURGE DIESEL ENGINE FUEL INJECTION SYSTEM ENTRIES TO MAIN PROPULSION

  2. Inserts Automatically Lubricate Ball Bearings

    NASA Technical Reports Server (NTRS)

    Hager, J. A.

    1983-01-01

    Inserts on ball-separator ring of ball bearings provide continuous film of lubricant on ball surfaces. Inserts are machined or molded. Small inserts in ball pockets provide steady supply of lubricant. Technique is utilized on equipment for which maintenance is often poor and lubrication interval is uncertain, such as household appliances, automobiles, and marine engines.

  3. 40 CFR 89.330 - Lubricating oil and test fuels.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Lubricating oil and test fuels. 89.330... Equipment Provisions § 89.330 Lubricating oil and test fuels. (a) Lubricating oil. Use the engine... that is conducted by the Administrator shall be performed using test fuels that meet the specifications...

  4. 40 CFR 89.330 - Lubricating oil and test fuels.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Lubricating oil and test fuels. 89.330... Equipment Provisions § 89.330 Lubricating oil and test fuels. (a) Lubricating oil. Use the engine... that is conducted by the Administrator shall be performed using test fuels that meet the specifications...

  5. 40 CFR 89.330 - Lubricating oil and test fuels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Lubricating oil and test fuels. 89.330... Equipment Provisions § 89.330 Lubricating oil and test fuels. (a) Lubricating oil. Use the engine... that is conducted by the Administrator shall be performed using test fuels that meet the specifications...

  6. 40 CFR 89.330 - Lubricating oil and test fuels.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Lubricating oil and test fuels. 89.330... Equipment Provisions § 89.330 Lubricating oil and test fuels. (a) Lubricating oil. Use the engine... that is conducted by the Administrator shall be performed using test fuels that meet the specifications...

  7. 40 CFR 89.330 - Lubricating oil and test fuels.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Lubricating oil and test fuels. 89.330... Equipment Provisions § 89.330 Lubricating oil and test fuels. (a) Lubricating oil. Use the engine... that is conducted by the Administrator shall be performed using test fuels that meet the specifications...

  8. Feasibility Study of Vapor-Mist Phase Reaction Lubrication Using a Thioether Liquid

    NASA Technical Reports Server (NTRS)

    Morales, Wilfredo; Handschuh, Robert F.; Krantz, Timothy L.

    2007-01-01

    A primary technology barrier preventing the operation of gas turbine engines and aircraft gearboxes at higher temperatures is the inability of currently used liquid lubricants to survive at the desired operating conditions over an extended time period. Current state-of-the-art organic liquid lubricants rapidly degrade at temperatures above 300 C; hence, another form of lubrication is necessary. Vapor or mist phase reaction lubrication is a unique, alternative technology for high temperature lubrication. The majority of past studies have employed a liquid phosphate ester that was vaporized or misted, and delivered to bearings or gears where the phosphate ester reacted with the metal surfaces generating a solid lubricious film. This method resulted in acceptable operating temperatures suggesting some good lubrication properties, but the continuous reaction between the phosphate ester and the iron surfaces led to wear rates unacceptable for gas turbine engine or aircraft gearbox applications. In this study, an alternative non-phosphate liquid was used to mist phase lubricate a spur gearbox rig operating at 10,000 rpm under highly loaded conditions. After 21 million shaft revolutions of operation the gears exhibited only minor wear.

  9. 14 CFR 33.71 - Lubrication system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.71 Lubrication system. (a... in which an aircraft is expected to operate. (b) Oil strainer or filter. There must be an oil...

  10. 14 CFR 33.71 - Lubrication system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.71 Lubrication system. (a... in which an aircraft is expected to operate. (b) Oil strainer or filter. There must be an oil...

  11. Lubrication System 1. Check and Change the Engine Oil. Student Manual. Small Engine Repair Series. First Edition.

    ERIC Educational Resources Information Center

    Hill, Pamela

    This student manual on checking and changing the engine oil is the second of three in an instructional package on the lubrication system in the Small Engine Repair Series for handicapped students. The stated purpose for the booklet is to help students learn what tools and equipment to use and all the steps of the job. Informative material and…

  12. Analysis of BJ493 diesel engine lubrication system properties

    NASA Astrophysics Data System (ADS)

    Liu, F.

    2017-12-01

    The BJ493ZLQ4A diesel engine design is based on the primary model of BJ493ZLQ3, of which exhaust level is upgraded to the National GB5 standard due to the improved design of combustion and injection systems. Given the above changes in the diesel lubrication system, its improved properties are analyzed in this paper. According to the structures, technical parameters and indices of the lubrication system, the lubrication system model of BJ493ZLQ4A diesel engine was constructed using the Flowmaster flow simulation software. The properties of the diesel engine lubrication system, such as the oil flow rate and pressure at different rotational speeds were analyzed for the schemes involving large- and small-scale oil filters. The calculated values of the main oil channel pressure are in good agreement with the experimental results, which verifies the proposed model feasibility. The calculation results show that the main oil channel pressure and maximum oil flow rate values for the large-scale oil filter scheme satisfy the design requirements, while the small-scale scheme yields too low main oil channel’s pressure and too high. Therefore, application of small-scale oil filters is hazardous, and the large-scale scheme is recommended.

  13. Computational Chemistry and Lubrication

    NASA Technical Reports Server (NTRS)

    Zehe, Michael J.

    1998-01-01

    Members of NASA Lewis Research Center's Tribology and Surface Science Branch are applying high-level computational chemistry techniques to the development of new lubrication systems for space applications and for future advanced aircraft engines. The next generation of gas turbine engines will require a liquid lubricant to function at temperatures in excess of 350 C in oxidizing environments. Conventional hydrocarbon-based lubricants are incapable of operating in these extreme environments, but a class of compounds known as the perfluoropolyether (PFAE) liquids (see the preceding illustration) shows promise for such applications. These commercially available products are already being used as lubricants in conditions where low vapor pressure and chemical stability are crucial, such as in satellite bearings and composite disk platters. At higher temperatures, however, these compounds undergo a decomposition process that is assisted (catalyzed) by metal and metal oxide bearing surfaces. This decomposition process severely limits the applicability of PFAE's at higher temperatures. A great deal of laboratory experimentation has revealed that the extent of fluid degradation depends on the chemical properties of the bearing surface materials. Lubrication engineers would like to understand the chemical breakdown mechanism to design a less vulnerable PFAE or to develop a chemical additive to block this degradation.

  14. Microfog lubrication for aircraft engine bearings

    NASA Technical Reports Server (NTRS)

    Rosenlieb, J. W.

    1976-01-01

    An analysis and system study was performed to provide design information regarding lubricant and coolant flow rates and flow paths for effective utilization of the lubricant and coolant in a once through bearing oil mist (microfog) and coolant air system. Both static and dynamic tests were performed. Static tests were executed to evaluate and calibrate the mist supply system. A total of thirteen dynamic step speed bearing tests were performed using four different lubricants and several different mist and air supply configurations. The most effective configuration consisted of supplying the mist and the major portion of the cooling air axially through the bearing. The results of these tests have shown the feasibility of using a once through oil mist and cooling air system to lubricate and cool a high speed, high temperature aircraft engine mainshaft bearing.

  15. (Tribology conferences and forums)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yust, C.S.

    The principal meeting attended during this trip was the Japan International Tribology Conference Nagoya 1990. The conference encompassed a wide range of topics, including the tribology of ceramics, the tribology in high-performance automobiles, and many aspects of lubrication technology. Associated forums were also held on the tribology of advanced ceramics, on solid lubrication, and on automotive lubricants. Presentations made during the latter forum discussed anticipated trends in engine development and anticipated improvements in lubricants required for the next generation of engines. In addition to meetings, site visits were made to five industrial organizations to discuss ceramic tribology. Nippon Steel Corporationmore » and Toshiba Corporation are both very active in the ceramic area, Nippon Steel from their interest in research on new materials and Toshiba from both an interest in new materials and in support of their work in electronic devices. Two engine manufacturers were also visited, Toyota Motor Corporation, and Nissan Motor Co., Ltd. These companies were somewhat reserved in their discussion of progress in the utilization of ceramics in automobile engines.« less

  16. NASA PS304 Lubricant Tested in World's First Commercial Oil-Free Gas Turbine

    NASA Technical Reports Server (NTRS)

    Weaver, Harold F.

    2003-01-01

    In a marriage of research and commercial technology, a 30-kW Oil-Free Capstone microturbine electrical generator unit has been installed and is serving as a test bed for long-term life-cycle testing of NASA-developed PS304 shaft coatings. The coatings are used to reduce friction and wear of the turbine engine s foil air bearings during startup and shut down when sliding occurs, prior to the formation of a lubricating air film. This testing supports NASA Glenn Research Center s effort to develop Oil-Free gas turbine aircraft propulsion systems, which will employ advanced foil air bearings and NASA s PS304 high temperature solid lubricant to replace the ball bearings and lubricating oil found in conventional engines. Glenn s Oil-Free Turbomachinery team s current project is the demonstration of an Oil-Free business jet engine. In anticipation of future flight certification of Oil-Free aircraft engines, long-term endurance and durability tests are being conducted in a relevant gas turbine environment using the Capstone microturbine engine. By operating the engine now, valuable performance data for PS304 shaft coatings and for industry s foil air bearings are being accumulated.

  17. Effects of Micronic Filtration on Turbine Engine Lubricant Deposition.

    DTIC Science & Technology

    1983-10-01

    lubricant 0-82-3. Coupon Wear. Table 3 presents average wear as determined by weighing the coupons both pretest and posttest . The average coupons wear that...T AD-A141 802 EFFECTS Or MICRNI CFILTRATION ON TURBINE ENGINE 1/ LUBRICANT DEPOSITION(U) SOUTHWEST RESEARCH INST SAN ANTONIO TX J C TYLER ET AL. OCT...DEPOSITION SOUTHWEST RESEARCH INSTITUTE 6220 CULEBRA ROAD SAN ANTONIO, TEXAS 78284 c 4 0o OCTOBER 1983 co VT w FINAL REPORT FOR PERIOD 15 AUGUST 1980

  18. Method to improve lubricity of low-sulfur diesel and gasoline fuels

    DOEpatents

    Erdemir, Ali

    2004-08-31

    A method for providing lubricity in fuels and lubricants includes adding a boron compound to a fuel or lubricant to provide a boron-containing fuel or lubricant. The fuel or lubricant may contain a boron compound at a concentration between about 30 ppm and about 3,000 ppm and a sulfur concentration of less than about 500 ppm. A method of powering an engine to minimize wear, by burning a fuel containing boron compounds. The boron compounds include compound that provide boric acid and/or BO.sub.3 ions or monomers to the fuel or lubricant.

  19. Microfog lubricant application system for advanced turbine engine components, phase 3. [wetting characteristics and deposit forming tendencies of lubricants

    NASA Technical Reports Server (NTRS)

    Petrucco, R. J.; Leonardi, S. J.

    1973-01-01

    The wetting characteristics and deposit forming tendencies of a series of lubricants were evaluated using a microfog jet delivery system to wet a flat heated rotating disc. The performances of the nine lubricants are discussed in terms of the various testing parameters which include temperature, disc speed and lubricant gas flow rates. Also discussed are the heat transfer characteristics of two of the lubricants on that same plane disc specimen. The wetting characteristics and heat transfer characteristics of one of the lubricants on a complex disc simulating bearing geometry are also discussed.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furey, M.J.; Kajdas, C.; Kaltenbach, K.W.

    Advanced lubrication technologies based on the concept of tribopolymerization as a mechanism of boundary lubrication are described. Advantages of this approach as well as potential applications which could have an impact on the design, manufacture, and performance of existing and future automotive engines are presented and discussed. Tribopolymerization, a novel concept of molecular design developed by Furey and Kajdas, involves the continuous formation of thin polymeric films on rubbing surfaces; the protective films formed are self-replenishing. The antiwear compounds developed from this technology are effective with metals as well as ceramics and in the liquid as well as vapor phases.more » Furthermore, they are ashless and contain no harmful phosphorus or sulfur; and many are biodegradable. Thus, potential applications of this technology are diverse and include a variety of cost/performance/energy/environmental advantages. Examples include the following: (a) machining and cutting applications using thin films to reduce friction and ceramic tool wear; (b) the lubrication of ceramic engines (e.g., low heat rejection diesel engines) or ceramic components; (c) the development of ashless lubricants for existing and future automotive engines to reduce exhaust catalyst poisoning and environmental emissions; (d) ashless antiwear or ``lubricity`` additives for fuels, including gasoline, diesel and jet fuel; (e) vapor phase applications of this technology to high temperature gaseous systems or to fuel injector wear problems associated with the use of natural gas engines; and (f) the use of the concept of tribopolymerization as an enabling technology in the development of new engines and new automotive propulsion systems.« less

  1. An Improved Forensic Science Information Search.

    PubMed

    Teitelbaum, J

    2015-01-01

    Although thousands of search engines and databases are available online, finding answers to specific forensic science questions can be a challenge even to experienced Internet users. Because there is no central repository for forensic science information, and because of the sheer number of disciplines under the forensic science umbrella, forensic scientists are often unable to locate material that is relevant to their needs. The author contends that using six publicly accessible search engines and databases can produce high-quality search results. The six resources are Google, PubMed, Google Scholar, Google Books, WorldCat, and the National Criminal Justice Reference Service. Carefully selected keywords and keyword combinations, designating a keyword phrase so that the search engine will search on the phrase and not individual keywords, and prompting search engines to retrieve PDF files are among the techniques discussed. Copyright © 2015 Central Police University.

  2. New Lubricants Protect Machines and the Environment

    NASA Technical Reports Server (NTRS)

    2007-01-01

    In 1994, NASA and Lockheed Martin Space Operations commissioned Sun Coast Chemicals of Daytona Inc to develop a new type of lubricant that would be safe for the environment and help "grease the wheels" of the shuttle-bearing launcher platform. Founded in 1989, Sun Coast Chemicals is known amongst the racing circuit for effective lubricants that help overcome engine and transmission problems related to heat and wear damage. In a matter of weeks, Sun Coast Chemical produced the biodegradable, high-performance X-1R Crawler Track Lube. In 1996, Sun Coast Chemical determined there was a market for this new development, and introduced three derivative products, Train Track Lubricant, Penetrating Spray Lubricant, and Biodegradable Hydraulic Fluid, and then quickly followed with a gun lubricant/cleaner and a fishing rod and reel lubricant. Just recently, Sun Coast introduced the X-1R Corporation, which folds the high-performance, environmentally safe benefits into a full line of standard automotive and specially formulated racing products. The entire X-1R automotive product line has stood up to rigorous testing by groups such as the American Society of Mechanical Engineers, the Swedish National Testing and Research Institute, the Department of Mechanical Engineering at Oakland University (Rochester, Michigan), and Morgan-McClure Motorsports (Abingdon, Virginia). The X-1R Corporation also markets "handy packs" for simple jobs around the house, consisting of a multi-purpose, multi-use lubricant and grease. In 2003, The X-1R Corporation teamed up with Philadelphia-based Penn Tackle Manufacturing Co., a leading manufacturer of fishing tackle since 1932, to jointly develop and market a line of advanced lubrication products for saltwater and freshwater anglers

  3. Flight-vehicle materials, structures, and dynamics - Assessment and future directions. Vol. 4 - Tribological materials and NDE

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L. (Editor); Achenbach, J. D. (Editor)

    1993-01-01

    The present volume on tribological materials and NDE discusses liquid lubricants for advanced aircraft engines, a liquid lubricant for space applications, solid lubricants for aeronautics, and thin solid-lubricant films in space. Attention is given to the science and technology of NDE, tools for an NDE engineering base, experimental techniques in ultrasonics for NDE and material characterization, and laser ultrasonics. Topics addressed include thermal methods of NDE and quality control, digital radiography in the aerospace industry, materials characterization by ultrasonic methods, and NDE of ceramics and ceramic composites. Also discussed are smart materials and structures, intelligent processing of materials, implementation of NDE technology on flight structures, and solid-state weld evaluation.

  4. Effect of soot on oil properties and wear of engine components

    NASA Astrophysics Data System (ADS)

    Green, D. A.; Lewis, R.

    2007-09-01

    The objective of the work outlined in this paper was to increase the understanding of the wear mechanisms that occur within a soot contaminated contact zone, to help in future development of a predictive wear model to assist in the automotive engine valve train design process. The paper builds on previous work by the author, through testing of different lubricants and increased levels of soot contamination. Wear testing has been carried out using specimens operating under realistic engine conditions, using a reciprocating test-rig specifically designed for this application, where a steel disc is held in a heated bath of oil and a steel ball is attached to a reciprocating arm (replicating a sliding elephant's foot valve train contact). Detailed analysis of the test specimens has been performed using scanning electron microscopy to identify wear features relating to the proposed wear mechanisms. Analysis of worn engine components from durability engine tests has also been carried out for a comparison between specimen tests and engine testing. To assist the understanding of the wear test results obtained, the physical properties of contaminated lubricants were investigated, through viscosity, traction and friction measurements. The results have revealed how varying lubrication conditions change the wear rate of engine components and determine the wear mechanism that dominates in specific situations. Testing has also shown the positive effects of advanced engine lubricants to reduce the amount of wear produced with soot present.

  5. Lubrication handbook for use in the space industry. Part A: Solid lubricants. Part B: Liquid lubricants

    NASA Technical Reports Server (NTRS)

    Campbell, M. E.; Thompson, M. B.

    1972-01-01

    This handbook provides a ready reference for many of the solid and liquid lubricants used in the space industry. Lubricants and lubricant properties are arranged systematically so that designers, engineers, and maintenance personnel in the space industry can conveniently locate data needed for their work. The handbook is divided into two major parts. Part A is a compilation of chemical and physical property data of more than 250 solid lubricants, bonded solid lubricants, dispersions and composites. Part B is a compilation of chemical and physical property data of more than 250 liquid lubricants, greases, oils, compounds and fluids. The listed materials cover a broad spectrum, from manufacturing and ground support to hardware applications for missiles and spacecraft.

  6. Lubrication handbook for the space industry. Part A: Solid lubricants. Part B: Liquid lubricants

    NASA Technical Reports Server (NTRS)

    Mcmurtrey, E. L.

    1985-01-01

    This handbook is intended to provide a ready reference for many of the solid and liquid lubricants used in the space industry. Lubricants and lubricant properties are arranged systematically so that designers, engineers, and maintenance personnel can conveniently locate data needed for their work. This handbook is divided into two major parts (A and B). Part A is a compilation of solid lubricant suppliers information on chemical and physical property of data of more than 250 solid lubricants, bonded solid lubricants, dispersions, and composites. Part B is a compilation of chemical and physical porperty data of more then 250 liquid lubricants, greases, oils, compounds, and fluids. The listed materials cover a broad spectrum from manufacturing and ground support to hardware applications of spacecraft.

  7. Identifying lubricant options for compressor bearing designs

    NASA Astrophysics Data System (ADS)

    Karnaz, J.; Seeton, C.; Dixon, L.

    2017-08-01

    Today’s refrigeration and air conditioning market is not only driven by the environmental aspects of the refrigerants, but also by the energy efficiency and reliability of system operation. Numerous types of compressor designs are used in refrigeration and air conditioning applications which means that different bearings are used; and in some cases, multiple bearing types within a single compressor. Since only one lubricant is used, it is important to try to optimize the lubricant to meet the various demands and requirements for operation. This optimization entails investigating different types of lubricant chemistries, viscosities, and various formulation options. What makes evaluating these options more challenging is the refrigerant which changes the properties of the lubricant delivered to the bearing. Once the lubricant and refrigerant interaction are understood, through various test methods, then work can start on collaborating with compressor engineers on identifying the lubricant chemistry and formulation options. These interaction properties are important to the design engineer to make decisions on the adequacy of the lubricant before compressor tests are started. This paper will discuss the process to evaluate lubricants for various types of compressors and bearing design with focus on what’s needed for current refrigerant trends. In addition, the paper will show how the lubricant chemistry choice can be manipulated through understanding of the bearing design and knowledge of interaction with the refrigerant to maximize performance. Emphasis will be placed on evaluation of synthetic lubricants for both natural and synthetic low GWP refrigerants.

  8. Evaluation of PS 212 Coatings Under Boundary Lubrication Conditions with an Ester-based Oil to 300 C

    NASA Technical Reports Server (NTRS)

    Sliney, Harold E.; Loomis, William R.; Dellacorte, Christopher

    1994-01-01

    High friction and wear of turbine engine components occur during high temperature excursions above the oxidation threshold of the liquid lubricant. This paper reports on research to study the use of a high temperature self lubricating coating, PS 212 for back-up lubrication in the event of failure of the liquid lubricant. Pin on disk tests were performed under dry and boundary-lubricated conditions at disk temperatures up to 300 C. The liquid lubricant was a formulated polyol ester qualified under MIL L-23699. At test temperatures above the oil's thermal degradation level, the use of PS 212 reduced wear, providing a back-up lubricant effect.

  9. Minimizing of the boundary friction coefficient in automotive engines using Al2O3 and TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Ali, Mohamed Kamal Ahmed; Xianjun, Hou; Elagouz, Ahmed; Essa, F. A.; Abdelkareem, Mohamed A. A.

    2016-12-01

    Minimizing of the boundary friction coefficient is critical for engine efficiency improvement. It is known that the tribological behavior has a major role in controlling the performance of automotive engines in terms of the fuel consumption. The purpose of this research is an experimental study to minimize the boundary friction coefficient via nano-lubricant additives. The tribological characteristics of Al2O3 and TiO2 nano-lubricants were evaluated under reciprocating test conditions to simulate a piston ring/cylinder liner interface in automotive engines. The nanoparticles were suspended in a commercially available lubricant in a concentration of 0.25 wt.% to formulate the nano-lubricants. The Al2O3 and TiO2 nanoparticles had sizes of 8-12 and 10 nm, respectively. The experimental results have shown that the boundary friction coefficient reduced by 35-51% near the top and bottom dead center of the stroke (TDC and BDC) for the Al2O3 and TiO2 nano-lubricants, respectively. The anti-wear mechanism was generated via the formation of protective films on the worn surfaces of the ring and liner. These results will be a promising approach for improving fuel economy in automotive.

  10. Penn State Multi-Discipline Tribology Group and Energy Institute Studies.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perez, Joseph

    This presentation is a summary of the current research activities on fuels and lubricants in the Multi-discipline Tribology group and the engine test group in the Combustion Laboratory of the Pennsylvania State University. The progress areas discussed in this summary include those found in Table 1. Table 1. RESEARCH AREAS: Diesel Engine Emission Reduction; Oxygenated Fuels; Improved Friction Fuels; Vegetable Oil Lubricants; Extended Drain Lubricants; Effect of Chemical Structure on Friction and Wear. The research is of interest either directly or indirectly to the goal of this workshop, diesel engine emissions reduction. The current projects at Penn State in themore » areas listed above will be discussed.« less

  11. 77 FR 14955 - DoD Information Assurance Scholarship Program (IASP)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-14

    ... IA and information technology (IT) management, technical, digital and multimedia forensics, cyber..., digital and multimedia forensics, electrical engineering, electronics engineering, information security...

  12. The Role of Tribology in the Development of an Oil-Free Turbocharger

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher

    1997-01-01

    Gas-turbine-based aeropropulsion engines are technologically mature. Thus, as with any mature technology, revolutionary approaches will be needed to achieve the significant performance gains that will keep the U.S. propulsion manufacturers well ahead of foreign competition. One such approach is the development of oil-free turbomachinery utilizing advanced foil air bearings, seals, and solid lubricants. By eliminating oil-lubricated bearings and seals and supporting an engine rotor on an air film, significant improvements can be realized. For example, the entire oil system including pipes, lines, filters, cooler, and tanks could be removed, thereby saving considerable weight. Since air has no thermal decomposition temperature, engine systems could operate without excessive cooling. Also, since air bearings have no diameter-rpm fatigue limits (D-N limits), engines could be designed to operate at much higher speeds and higher density, which would result in a smaller aeropropulsion package. Because of recent advances in compliant foil air bearings and high temperature solid lubricants, these technologies can be applied to oil-free turbomachinery. In an effort to develop these technologies and to demonstrate a project along the path to an oil-free gas turbine engine, NASA has undertaken the development of an oil-free turbocharger for a heavy duty diesel engine. This turbomachine can reach 120000 rpm at a bearing temperature of 540 C (1000 F) and, in comparison to oil-lubricated bearings, can increase efficiency by 10 to 15 percent because of reduced friction. In addition, because there are no oil lubricants, there are no seal-leakage-induced emissions.

  13. Fuels and Lubricants. Selecting and Storing.

    ERIC Educational Resources Information Center

    Parady, W. Harold; Colvin, Thomas S.

    The manual presents basic information for the person who plans to operate or service tractors, trucks, industrial engines, and automobiles. It tells how to select the proper fuels and lubricants and how to store them properly. Although there are no prerequisites to the study of the text, a general knowledge of engines and mobile-type vehicles is…

  14. 40 CFR 86.513 - Fuel and engine lubricant specifications.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Regulations for 1978 and Later New Motorcycles; Test Procedures § 86.513 Fuel and engine lubricant... of § 86.513—Gasoline Test Fuel Specifications Item Value Procedure 1 Distillation Range: 1. Initial... of § 86.513—Natural Gas Test Fuel Specifications Item Value 1 Methane, CH4 Minimum, 89.0 mole percent...

  15. Aviation-fuel lubricity evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1988-07-01

    Fuel-system components have experienced problems with the slipperiness or lubricity of the fuel back to the early 1960's. As a consequence of the level of refinement necessary for the PWA 523 fuel (now designated MIL-T-38219 grade JP-7) to obtain its high-temperature stability, many of the polar compounds contributing to lubricity had been removed, resulting in abnormal hydraulic fuel-pump wear. A lubricity-enhancing compound was developed (PWA 536) to eliminate the wear problem. High-pressure piston-type fuel pumps were one of the first parts of the engine fuel system to exhibit problems related to fuel properties. One early problem manifested itself as corrosionmore » of silver-plated slipper pads and was related to carryover of residual-chlorides fuel. Fuel controls were another part of the engine fuel system susceptible to fuel properties. Lack of lubricity agents caused fuel control sliding servo valves to stick.« less

  16. Development and validation of an environmentally friendly attenuated total reflectance in the mid-infrared region method for the determination of ethanol content in used engine lubrication oil.

    PubMed

    Hatanaka, Rafael Rodrigues; Sequinel, Rodrigo; Gualtieri, Carlos Eduardo; Tercini, Antônio Carlos Bergamaschi; Flumignan, Danilo Luiz; de Oliveira, José Eduardo

    2013-05-15

    Lubricating oils are crucial in the operation of automotive engines because they both reduce friction between moving parts and protect against corrosion. However, the performance of lubricant oil may be affected by contaminants, such as gasoline, diesel, ethanol, water and ethylene glycol. Although there are many standard methods and studies related to the quantification of contaminants in lubricant oil, such as gasoline and diesel oil, to the best of our knowledge, no methods have been reported for the quantification of ethanol in used Otto cycle engine lubrication oils. Therefore, this work aimed at the development and validation of a routine method based on partial least-squares multivariate analysis combined with attenuated total reflectance in the mid-infrared region to quantify ethanol content in used lubrication oil. The method was validated based on its figures of merit (using the net analyte signal) as follows: limit of detection (0.049%), limit of quantification (0.16%), accuracy (root mean square error of prediction=0.089% w/w), repeatability (0.05% w/w), fit (R(2)=0.9997), mean selectivity (0.047), sensitivity (0.011), inverse analytical sensitivity (0.016% w/w(-1)) and signal-to-noise ratio (max: 812.4 and min: 200.9). The results show that the proposed method can be routinely implemented for the quality control of lubricant oils. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Tribological performance of ultra-low viscosity composite base fluid with bio-derived fluid

    USDA-ARS?s Scientific Manuscript database

    One obvious approach to increase efficiencies in many lubricated systems such as ICE and gearbox is the reduction in viscosity of oil lubricant. Indeed, ultra-low viscosity engine oils are now commercially available. One approach to the development of ultra-low viscosity lubricants without compromis...

  18. High performance solid and liquid lubricants: An industrial guide

    NASA Technical Reports Server (NTRS)

    Mcmurtrey, Ernest L.

    1987-01-01

    This handbook is intended to provide a ready reference for many of the solid and liquid lubricants used in the space industry. Lubricants and lubricant properties are arranged systematically so that designers, engineers, and maintenance personnel can conveniently locate data needed for their work. This handbook is divided into two major parts (A and B). Part A is a compilation of solid lubricant suppliers information on chemical and physical property of data of more than 250 solid lubricants, bonded solid lubricants, dispersions, and composites. Part B is a compilation of chemical and physical property data of more than 250 liquid lubricants, greases, oils, compounds, and fluids. The listed materials cover a broad spectrum from manufacturing and ground support to hardware applications of spacecraft.

  19. Thermal modeling in an engine cooling system to control coolant flow for fuel consumption improvement

    NASA Astrophysics Data System (ADS)

    Park, Sangki; Woo, Seungchul; Kim, Minho; Lee, Kihyung

    2017-04-01

    The design and evaluation of engine cooling and lubrication systems is generally based on real vehicle tests. Our goal here was to establish an engine heat balance model based on mathematical and interpretive analysis of each element of a passenger diesel engine cooling system using a 1-D numerical model. The purpose of this model is to determine ways of optimizing the cooling and lubrication components of an engine and then to apply these methods to actual cooling and lubrication systems of engines that will be developed in the future. Our model was operated under the New European Driving Cycle (NEDC) mode conditions, which represent the fuel economy evaluation mode in Europe. The flow rate of the cooling system was controlled using a control valve. Our results showed that the fuel efficiency was improved by as much as 1.23 %, cooling loss by 1.35 %, and friction loss by 2.21 % throughout NEDC modes by modification of control conditions.

  20. Tests of several bearing materials lubricated by gasoline

    NASA Technical Reports Server (NTRS)

    Joachin, W F; Case, Harold W

    1926-01-01

    This investigation on the relative wear of several bearing materials lubricated by gasoline was conducted at the Langley Memorial Aeronautical Laboratory, as part of a general research on fuel injection engines for aircraft. The specific purpose of the work was to find a durable bearing material for gear pumps to be used for the delivery of gasoline and diesel engine fuel oil at moderate pressures to the high pressure pumps of fuel injection engines.

  1. Vapor-delivered lubrication of steel-steel and steel-ceramic systems

    NASA Astrophysics Data System (ADS)

    Li, H.; Klaus, E. E.; Duda, J. L.

    1993-04-01

    Heavy-duty natural gas engines run hot and relatively dry. This provides lubricant and lubrication problems in the piston ring-cylinder and valve areas. A potential materials solution to this problem is the use of ceramic bearing surfaces. The objective of the project was the investigation of the wear characteristics and surface interactions of lubricants on ceramic bearing surfaces and to compare these results with the behavior of the same lubricants on steel surfaces. The temperature range of interest in these comparisons is 200 to 370 C using a four-ball wear tester.

  2. Role of engine age and lubricant chemistry on the characteristics of EGR soot

    NASA Astrophysics Data System (ADS)

    Adeniran, Olusanmi Adeniji

    Exhaust products of Diesel Engines serves as an environmental hazard, and to curtail this problem a Tier 3 emission standard was introduced which involves change in engine designs and introduction of EGR systems in Diesel engines. EGR systems, however has the challenge of generating soot which are abrasive and are major causes of wear in Diesel engines. This work has studied the characteristics of EGR soot formed in different range of engine age and in different lubricant chemistries of Mineral and Synthetic based diesel Oils. It is found that lubricant degradation is encouraged by less efficient combustion as engine age increases, and these are precursors to formation of crystalline and amorphous particles that are causes of wear in Diesel Engines. It is found that soot from new engine is dominated by calcium based crystals which are from calcium sulfonate detergent, which reduces formation of second phase particles that can be abrasive. Diversity and peak intensity is seen to increase in soot samples as engine age increases. This understanding of second phase particles formed in engines across age ranges can help in the durability development of engine, improvement of Oil formulation for EGR engines, and in development of chemistries for after-treatment Oil solutions that can combat formation of abrasive particles in Oils.

  3. LOW-ENGINE-FRICTION TECHNOLOGY FOR ADVANCED NATURAL-GAS RECIPROCATING ENGINES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Victor Wong; Tian Tian; Luke Moughon

    2005-09-30

    This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston and piston ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and wear. An iterative process of simulation, experimentation and analysis is being followed towards achieving the goal of demonstrating a complete optimized low-friction engine system. To date, a detailed set of piston and piston-ring dynamic and friction models have been developed and applied that illustrate the fundamental relationships between design parameters and friction losses. Low friction ring designs have already been recommended in a previous phase, withmore » full-scale engine validation partially completed. Current accomplishments include the addition of several additional power cylinder design areas to the overall system analysis. These include analyses of lubricant and cylinder surface finish and a parametric study of piston design. The Waukesha engine was found to be already well optimized in the areas of lubricant, surface skewness and honing cross-hatch angle, where friction reductions of 12% for lubricant, and 5% for surface characteristics, are projected. For the piston, a friction reduction of up to 50% may be possible by controlling waviness alone, while additional friction reductions are expected when other parameters are optimized. A total power cylinder friction reduction of 30-50% is expected, translating to an engine efficiency increase of two percentage points from its current baseline towards the goal of 50% efficiency. Key elements of the continuing work include further analysis and optimization of the engine piston design, in-engine testing of recommended lubricant and surface designs, design iteration and optimization of previously recommended technologies, and full-engine testing of a complete, optimized, low-friction power cylinder system.« less

  4. Modeling Parasitic Energy Losses and the Impact of Advanced Tribological Concepts on Fuel Efficiency - Final CRADA Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fenske, George

    2016-11-28

    Our primary task for this project was to perform FMEP calculations for a broad range of parameters including engine type [spark ignition (SI) or compression ignition (CI)], engine size, engine mode (speed and load), lubricant viscosity, asperity friction, surface finish, oil type (mineral or synthetic), and additive (friction modifier), as discussed previously [1–3]. The actual analysis was limited to a large diesel engine and it included both load and speed dependencies as well as lubricant viscosity and speed.

  5. Supercritical Fluid Synthesis and Tribological Applications of Silver Nanoparticle-decorated Graphene in Engine Oil Nanofluid.

    PubMed

    Meng, Yuan; Su, Fenghua; Chen, Yangzhi

    2016-08-04

    Silver nanoparticle-decorated graphene nanocomposites were synthesized by a facile chemical reduction approach with the assistance of supercritical CO2 (ScCO2). The silver nanoparticles with diameters of 2-16 nm are uniformly distributed and firmly anchored on graphene nanosheets. The tribological properties of the as-synthesized nanocomposites as lubricant additives in engine oil were investigated by a four-ball tribometer. The engine oil with 0.06~0.10 wt.% Sc-Ag/GN nanocomposites displays remarkable lubricating performance, superior than the pure engine oil, the engine oil containing zinc dialkyl dithiophosphate (ZDDP), as well as the oil dispersed with the single nanomaterial of graphene oxides (GOs) and nano-Ag particles alone. The remarkable lubricating behaviors of Sc-Ag/GN probably derive from the synergistic interactions of nano-Ag and graphene in the nanocomposite and the action of the formed protective film on the contact balls. The anchored nano-Ag particles on graphene expand the interlamination spaces of graphene nanosheets and can prevent them from restacking during the rubbing process, resulting in the full play of lubricating activity of graphene. The formed protective film on the friction pairs significantly reduces the surface roughness of the sliding balls and hence preventing them from direct interaction during the sliding process.

  6. Supercritical Fluid Synthesis and Tribological Applications of Silver Nanoparticle-decorated Graphene in Engine Oil Nanofluid

    NASA Astrophysics Data System (ADS)

    Meng, Yuan; Su, Fenghua; Chen, Yangzhi

    2016-08-01

    Silver nanoparticle-decorated graphene nanocomposites were synthesized by a facile chemical reduction approach with the assistance of supercritical CO2 (ScCO2). The silver nanoparticles with diameters of 2-16 nm are uniformly distributed and firmly anchored on graphene nanosheets. The tribological properties of the as-synthesized nanocomposites as lubricant additives in engine oil were investigated by a four-ball tribometer. The engine oil with 0.06~0.10 wt.% Sc-Ag/GN nanocomposites displays remarkable lubricating performance, superior than the pure engine oil, the engine oil containing zinc dialkyl dithiophosphate (ZDDP), as well as the oil dispersed with the single nanomaterial of graphene oxides (GOs) and nano-Ag particles alone. The remarkable lubricating behaviors of Sc-Ag/GN probably derive from the synergistic interactions of nano-Ag and graphene in the nanocomposite and the action of the formed protective film on the contact balls. The anchored nano-Ag particles on graphene expand the interlamination spaces of graphene nanosheets and can prevent them from restacking during the rubbing process, resulting in the full play of lubricating activity of graphene. The formed protective film on the friction pairs significantly reduces the surface roughness of the sliding balls and hence preventing them from direct interaction during the sliding process.

  7. Supercritical Fluid Synthesis and Tribological Applications of Silver Nanoparticle-decorated Graphene in Engine Oil Nanofluid

    PubMed Central

    Meng, Yuan; Su, Fenghua; Chen, Yangzhi

    2016-01-01

    Silver nanoparticle-decorated graphene nanocomposites were synthesized by a facile chemical reduction approach with the assistance of supercritical CO2 (ScCO2). The silver nanoparticles with diameters of 2–16 nm are uniformly distributed and firmly anchored on graphene nanosheets. The tribological properties of the as-synthesized nanocomposites as lubricant additives in engine oil were investigated by a four-ball tribometer. The engine oil with 0.06~0.10 wt.% Sc-Ag/GN nanocomposites displays remarkable lubricating performance, superior than the pure engine oil, the engine oil containing zinc dialkyl dithiophosphate (ZDDP), as well as the oil dispersed with the single nanomaterial of graphene oxides (GOs) and nano-Ag particles alone. The remarkable lubricating behaviors of Sc-Ag/GN probably derive from the synergistic interactions of nano-Ag and graphene in the nanocomposite and the action of the formed protective film on the contact balls. The anchored nano-Ag particles on graphene expand the interlamination spaces of graphene nanosheets and can prevent them from restacking during the rubbing process, resulting in the full play of lubricating activity of graphene. The formed protective film on the friction pairs significantly reduces the surface roughness of the sliding balls and hence preventing them from direct interaction during the sliding process. PMID:27488733

  8. A Study of the Applicability of Atomic Emission Spectroscopy (AES), Fourier Transform Infrared (FT-IR) Spectroscopy, Direct Reading and Analytical Ferrography on High Performance Aircraft Engine Lubricating Oils

    DTIC Science & Technology

    1998-01-01

    Ferrography on High Performance Aircraft Engine Lubricating Oils Allison M. Toms, Sharon 0. Hem, Tim Yarborough Joint Oil Analysis Program Technical...turbine engines by spectroscopy (AES and FT-IR) and direct reading and analytical ferrography . A statistical analysis of the data collected is...presented. Key Words: Analytical ferrography ; atomic emission spectroscopy; condition monitoring; direct reading ferrography ; Fourier transform infrared

  9. Engine Lubricant

    NASA Technical Reports Server (NTRS)

    1993-01-01

    PS 212, a plasma-sprayed coating developed by NASA, is used to coat valves in a new rotorcam engine. The coating eliminates the need for a liquid lubricant in the rotorcam, which has no crankshaft, flywheel, distributor or water pump. Developed by Murray United Development Corporation, it is a rotary engine only 10 inches long with four cylinders radiating outward from a central axle. Company officials say the engine will be lighter, more compact and cheaper to manufacture than current engines and will feature cleaner exhaust emissions. A licensing arrangement with a manufacturer is under negotiation. Primary applications are for automobiles, but the engine may also be used in light aircraft.

  10. Forensic fingerprinting and source identification of the 2009 Sarnia (Ontario) oil spill.

    PubMed

    Wang, Zhendi; Yang, C; Yang, Z; Sun, J; Hollebone, B; Brown, C; Landriault, M

    2011-11-01

    This paper presents a case study in which integrated forensic oil fingerprinting and data interpretation techniques were used to characterize the chemical compositions and determine the source of the 2009 Sarnia (Ontario) oil spill incident. The diagnostic fingerprinting techniques include determination of hydrocarbon groups and semi-quantitative product-type screening via gas chromatography (GC), analysis of oil-characteristic biomarkers and the extended suite of parent and alkylated PAH (polycyclic aromatic hydrocarbon) homologous series via gas chromatography-mass spectrometry (GC-MS), determination and comparison of a variety of diagnostic ratios of "source-specific marker" compounds, and determination of the weathering degree of the spilled oil, and whether the spilled oil hydrocarbons have been mixed with any other "background" chemicals (biogenic and/or pyrogenic hydrocarbons). The detailed chemical fingerprinting data and results reveal the following: (1) all four samples are mixtures of diesel and lubricating oil with varying percentages of diesel to lube oil. Both samples 1460 and 1462 are majority diesel-range oil mixed with a smaller portion of lube oil. Sample 1461 contains slightly less diesel-range oil. Sample 1463 is majority lubricating-range oil. (2) The diesel in the four diesel/lube oil mixture samples was most likely the same diesel and from the same source. (3) The spill sample 1460 and the suspected-source sample 1462 have nearly identical concentrations and distribution patterns of target analytes including TPHs, n-alkane, PAHs and biomarker compounds; and have nearly identical diagnostic ratios of target compounds as well. Furthermore, a perfect "positive match" correlation line (with all normalized ratio data points falling into the straight correlation line) is clearly demonstrated. It is concluded that the spill oil water sample 1460 (#1, from the water around the vessel enclosed by a boom) matches with the suspected source sample 1462 (#3, from the vessel engine room bilge pump). (4) From the n-alkane and PAH analysis, it appears that the oil in the spill sample 1460 is slightly more weathered in comparison with sample 1462. The minor differences in fingerprints of two samples were most likely caused by weathering effects. (5) Sample 1461 (#2, from the vessel engine room bilge) and sample 1463 (#4, from the vessel bilge waste collection tank) demonstrated significantly different fingerprints and diagnostic ratios of target compounds from that of spill sample 1460. This was caused most likely by percentages of diesel to lube oil in these two samples different from that in spill sample 1460.

  11. Development of Engine and Lubricant Interferant Substances

    DTIC Science & Technology

    1976-05-01

    manufacturer’s recommended surfacvant to water ratio. As indicated earlier, aqueous foams have been deceloped printa~rily for firefighting . The two...Foainer .. 8.. . . ... ? 12 Ingestant Gas Compatibility with Aqueous Foam . . . . . . . 29 !I i2 DEVELOPMENT OF ENGINE AND LUBRICANT INTERFERANT...association with an aqueous foam . Commercially-available aqueous foam generating units are available from a number of different sources. Large single units

  12. [Identification of automotive lubricants and other heavy oils by isotachophoresis].

    PubMed

    Ishizawa, F; Misawa, S

    1989-06-01

    Automotive lubricants were analysed by isotachophoresis for the purpose of identification of lubricants and suspected stains adhered to victims in traffic accidents. As the results, it was found that each lubricant showed a characteristic isotachophreogram even if they were manufactured by the same maker, and that the isotachopherogram of the lubricant changed in proportion to the running distance of an automobile. Each lubricant had its own changing rate. Moreover, A, B, C heavy oils, asphalt, soy sauce and sauce, which apparently resembled lubricants when they adhered to victims, were analysed with this method. They were found to be clearly different from lubricants in isotachopherogram and they could be discriminated from lubricants. Therefore, it was found that lubricants could be easily identified or discriminated from other lubricants such as engine oils, gear oils and other oils by comparing their isotachopherograms obtained with this method in a short time. It was, however, difficult to suggest the maker of a lubricant from isotachopherogram. We conclude from these observations that isotachophoresis method is useful for the analysis of lubricants in case of traffic accidents.

  13. An evaluation of dry film lubricants and substrate materials for use on SSME gimbal bearings

    NASA Technical Reports Server (NTRS)

    Harp, J. A.

    1976-01-01

    Failure of the spherical bearing shaft of the Space Shuttle Main Engine (SSME) gimbal bearing assembly was encountered during Design Verification Specification testing of the full scale engine. Investigation revealed that the failure was caused by a deficiency in the lubrication system. Based upon the materials and gimbal operating conditions, a lubricant of MoS2 and graphite with a ceramic binder was the best lubricant candidate for this particular application; however, the decision to implement the change was not made without verification testing. Scaled down simulation testing was performed. Four different substrate materials and eight different dry film lubricants were subjected to tests under simulated SSME environmental and stress load conditions. The test specimens were evaluated for friction and operating life. Each test specimen was subjected to cyclic operation under load until failure. The force required to move the bearing surfaces relative to each other was monitored throughout the test, thus providing analytical data for derivation of the coefficient of friction. Results indicate that the MoS2/graphite lubricant with ceramic binder proved to be superior from the standpoint of endurance and also from the standpoint of friction reducing capabilities when applied to the titanium substrate material used on SSME. Endurance of this lubricant was approximately 16 times that of the lubricant which was being used when the SSME gimbal failed.

  14. Solid Lubricants for Oil-Free Turbomachinery

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher

    2005-01-01

    Recent breakthroughs in gas foil bearing solid lubricants and computer based modeling has enabled the development of revolulionary Oil-Free turbomachinery systems. These innovative new and solid lubricants at low speeds (start-up and shut down). Foil bearings are hydrodynamic, self acting fluid film bearings made from thin, flexible sheet metal foils. These thin foils trap a hydrodynamic lubricating air film between their surfaces and moving shaft surface. For low temperature applications, like ainrafl air cycle machines (ACM's), polymer coatings provide important solid lubrication during start-up and shut down prior to the development of the lubricating fluid film. The successful development of Oil-Free gas turbine engines requires bearings which can operate at much higher temperatures (greater than 300 C). To address this extreme solid lubrication need, NASA has invented a new family of compostie solid lubricant coatings, NASA PS300.

  15. The contribution of lubricant to the formation of particulate matter with reactivity controlled compression ignition in light-duty diesel engines

    DOE PAGES

    Storey, John Morse; Curran, Scott; Dempsey, Adam B.; ...

    2014-12-25

    Reactivity controlled compression ignition (RCCI) has been shown in single- and multi-cylinder engine research to achieve high thermal efficiencies with ultra-low NO X and soot emissions. The nature of the particulate matter (PM) produced by RCCI operation has been shown in recent research to be different than that of conventional diesel combustion and even diesel low-temperature combustion. Previous research has shown that the PM from RCCI operation contains a large amount of organic material that is volatile and semi-volatile. However, it is unclear if the organic compounds are stemming from fuel or lubricant oil. The PM emissions from dual-fuel RCCImore » were investigated in this study using two engine platforms, with an emphasis on the potential contribution of lubricant. Both engine platforms used the same base General Motors (GM) 1.9-L diesel engine geometry. The first study was conducted on a single-cylinder research engine with primary reference fuels (PRFs), n-heptane, and iso-octane. The second study was conducted on a four-cylinder GM 1.9-L ZDTH engine which was modified with a port fuel injection (PFI) system while maintaining the stock direct injection fuel system. Multi-cylinder RCCI experiments were run with PFI gasoline and direct injection of 2-ethylhexyl nitrate (EHN) mixed with gasoline at 5 % EHN by volume. In addition, comparison cases of conventional diesel combustion (CDC) were performed. Particulate size distributions were measured, and PM filter samples were collected for analysis of lube oil components. Triplicate PM filter samples (i.e., three individual filter samples) for both gas chromatography-mass spectroscopy (GC-MS; organic) analysis and X-ray fluorescence (XRF; metals) were obtained at each operating point and queued for analysis of both organic species and lubricant metals. Here, the results give a clear indication that lubricants do not contribute significantly to the formation of RCCI PM.« less

  16. Compact valve actuation mechanism

    NASA Technical Reports Server (NTRS)

    Brogdon, James William (Inventor); Gill, David Keith (Inventor)

    2000-01-01

    A valve actuation device. The device may include a free floating valve bridge movably supported within a cavity in the engine housing. The bridge may be provided with a cavity and an orifice arrangement for pumping gases entrained with lubricating fluid toward the piston stems as the bridge reciprocates back and forth. The device may also include a rocker arm that has a U-shaped cross-sectional shape for receiving at least a portion of the valve bridge, valve stem valve spring and spring retainer therein. The rocker arm may be provided with lubrication passages for directing lubrication to the point wherein it is pivotally affixed to the engine housing.

  17. Development of high temperature liquid lubricants for low-heat rejection heavy duty diesel engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiczynski, T.A.; Marolewski, T.A.

    1993-03-01

    Objective was to develop a liquid lubricant that will allow advanced diesel engines to operate at top ring reversal temperatures approaching 500 C and lubricant sump temperatures approaching 250 C. Base stock screening showed that aromatic esters and diesters has the lowest deposit level, compared to polyol esters, poly-alpha-olefins, or refined mineral oil of comparable viscosity. Classical aryl and alkyl ZDP antiwear additives are ineffective in reducing wear with aromatic esters; the phosphate ester was a much better antiwear additive, and polyol esters are more amenable to ZDP treatment. Zeolites and clays were evaluated for filtration.

  18. GENERIC VERIFICATION PROTOCOL FOR DETERMINATION OF EMISSIONS REDUCTIONS OBTAINED BY USE OF ALTERNATIVE OR REFORMULATED LIQUID FUELS, FUEL ADDITIVES, FUEL EMULSIONS AND LUBRICANTS FOR HIGHWAY AND NONROAD USE DISEL ENGINES AND LIGHT DUTY GASOLINE ENGINES AND VEHICLES

    EPA Science Inventory

    This report sets standards by which the emissions reduction provided by fuel and lubricant technologies can be tested and be tested in a comparable way. It is a generic protocol under the Environmental Technology Verification program.

  19. Lubrication System 2. Service the Crankcase Breather. Student Manual. Small Engine Repair Series. First Edition.

    ERIC Educational Resources Information Center

    Hill, Pamela

    This student manual on servicing the crankcase breather is the third of three in an instructional package on the lubrication system in the Small Engine Repair Series for handicapped students. The stated purpose for the booklet is to help students learn what tools and equipment to use and all the steps of the job. Informative material and…

  20. The use of surface layer with boron in friction pairs lubricated by engine oils

    NASA Astrophysics Data System (ADS)

    Szczypiński-Sala, W.; Lubas, J.

    2016-09-01

    The aim of the present work is to determine the influence of surface layers with boron and engine oil on the processes of friction and wear in friction pairs. The ring samples with borided surface layer cooperated under test conditions with counterparts made with CuPb30 and AlSn20 bearing alloys. During the tests, the friction pairs were lubricated with 15W/40 Lotos mineral oil and 5W/40 Lotos synthetic oil. The lubrication of friction area with Lotos mineral oil causes the reduction of the friction force, the temperature in the friction area and the wear of the bearing alloys under study, whereas the lubrication with Lotos synthetic oil reduces the changes in the geometrical structure of the cooperating friction pair elements. Lubrication of the friction area in the start-up phase of the friction pair by mineral oil causes faster stabilization of the friction conditions in the contact area than in the cause of lubrication of the friction pair by synthetic oil. The intensity of wear of the AlSn20 bearing alloy cooperating with the borided surface layer is three times smaller than the intensity of use of the CuPb30 alloy bearing.

  1. Lubricant rheology applied to elastohydrodynamic lubrication

    NASA Technical Reports Server (NTRS)

    Winer, W. O.; Sanborn, D. M.

    1977-01-01

    Viscosity measurements in a high pressure rheometer, elastohydrodynamic simulator studies (including the development of a temperature measuring technique), and analytical fluid modeling for elastohydrodynamic contacts are described. The more recent research which is described concerns infrared temperature measurements in elastohydrodynamic contacts and the exploration of the glassy state of lubricants. A correlation, of engineering significance, was made between transient surface temperature measurements and surface roughness profiles. Measurements of glass transitions of lubricants and the study of the effect of rate processes on materials lead to the conclusion that typical lubricants go into the glassy state as they pass through the contact region of typical elastohydrodynamic contacts.

  2. Diagnosis of lubricating oil by evaluating cyanide and carbon molecular emission lines in laser induced breakdown spectra

    NASA Astrophysics Data System (ADS)

    Elnasharty, I. Y.; Kassem, A. K.; Sabsabi, M.; Harith, M. A.

    2011-08-01

    To prevent engine failure it is essential to change lubricating oil regularly before it loses its protective properties. It is also necessary to monitor the physical and chemical conditions of the oil to reliably determine the optimum oil-change intervals. The present work focuses on studying evolution of the cyanide (CN) and carbon (C 2) molecular spectral emission lines in the laser induced breakdown spectra of lubricating oil as a function of its consumption. The intensities of these molecular bands have been taken as indicator of engine oil degradation at certain mileage. Furthermore, the percentage of decay of CN and C 2 integral intensity values at the corresponding mileage was calculated in order to relate it to the degree of consumption of the motor oil. Such percentage decay of the CN and C 2 integral intensities have been found to increase gradually with increasing mileage which is accompanied with increasing depletion of engine oil. The results of using LIBS technique in the present measurements proved that it is possible to have a direct, straightforward and easy method for prediction of lubricating oil degree of consumption. This may facilitate scheduling the proper time and/or mileage intervals for changing the oil to avoid any possibility of engine failure.

  3. Investigations on the effect of chlorine in lubricating oil and the presence of a diesel oxidation catalyst on PCDD/F releases from an internal combustion engine.

    PubMed

    Dyke, Patrick H; Sutton, Mike; Wood, David; Marshall, Jonathan

    2007-04-01

    This paper reports on an intensive study into releases of polychlorinated dibenzo-p-dioxins (PCDD), polychlorinated furans (PCDF) and polychlorinated biphenyls (PCB) from a diesel engine and the analysis of PCDD/F and PCB in crankcase lubricating oil. Experimental conditions were set and carefully controlled in order to maximize the possible impact of, and our ability to measure the effect of, changes in the levels of chlorine in the lubricant. Emissions to air were measured using modified EPA methods following the principles of the European EN 1948 standards. A series of 40 experimental runs were completed using three reference lubricants formulated to have three levels of chlorine present as a residual component (at levels of 12, 131 and 259 mg kg(-1) or ppm). The engine was run with and without the diesel oxidation catalyst. All lubricants were realistic oils and the use of unrealistic additives or doping of components - particularly chlorine - in the fuel and lubricant was carefully avoided. Analysis of fuel and lubricant (before and after testing) samples required strenuous attention to achieve acceptable recoveries and showed non-detectable levels of PCB and PCDD/F at a detection limit of around 1.5 ng I-TEQ kg(-1) (ppt), indistinguishable from the laboratory blank. The testing demonstrated the need for extreme care to be taken in developing measurement methods that are sufficiently sensitive for measuring chlorine content of fluids and PCDD/F in oils, the latter being particularly challenging. Mean emissions of PCDD/F with the diesel oxidation catalyst in place were 23 pg I-TEQ l(-1) of fuel and with the diesel oxidation catalyst removed 97 pg I-TEQ l(-1) of fuel. The results of this testing showed that the emissions of PCDD/F were greatly reduced by the presence of a diesel oxidation catalyst in the exhaust, a finding that has not been explicitly tested in previous work. They also show that emissions from the engine were not controlled by the level of chlorine in the lubricant and that emissions did not change in response to a much greater step change in the total chlorine entering the combustion chamber due to a change in the level of chlorine in the fuel. Emissions when the engine was configured with a diesel oxidation catalyst showed a consistent pattern that appears to be unique in the experience of the authors.

  4. Green tribology: principles, research areas and challenges.

    PubMed

    Nosonovsky, Michael; Bhushan, Bharat

    2010-10-28

    In this introductory paper for the Theme Issue on green tribology, we discuss the concept of green tribology and its relation to other areas of tribology as well as other 'green' disciplines, namely, green engineering and green chemistry. We formulate the 12 principles of green tribology: the minimization of (i) friction and (ii) wear, (iii) the reduction or complete elimination of lubrication, including self-lubrication, (iv) natural and (v) biodegradable lubrication, (vi) using sustainable chemistry and engineering principles, (vii) biomimetic approaches, (viii) surface texturing, (ix) environmental implications of coatings, (x) real-time monitoring, (xi) design for degradation, and (xii) sustainable energy applications. We further define three areas of green tribology: (i) biomimetics for tribological applications, (ii) environment-friendly lubrication, and (iii) the tribology of renewable-energy application. The integration of these areas remains a primary challenge for this novel area of research. We also discuss the challenges of green tribology and future directions of research.

  5. Investigation of lubricants under boundary friction

    NASA Technical Reports Server (NTRS)

    Heidebroek, E; Pietsch, E

    1942-01-01

    Numerous observations of such lubrication processes within range of boundary friction on journal bearings and gear tooth profiles have strengthened the supposition that it should be possible to study the attendant phenomena with engineering methods and equipment. These considerations formed the basis of the present studies, which have led to the discovery of relations governing the suitability of bearing surfaces and the concept of "lubricating quality."

  6. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XXVI, I--CATERPILLAR LUBRICATION SYSTEMS AND COMPONENTS, II--LEARNING ABOUT BRAKES (PART I).

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE FUNCTIONS OF DIESEL ENGINE LUBRICATION SYSTEMS AND COMPONENTS AND THE PRINCIPLES OF OPERATION OF BRAKE SYSTEMS USED ON DIESEL POWERED VEHICLES. TOPICS ARE (1) THE NEED FOR OIL, (2) SERVICE CLASSIFICATION OF OILS, (3) CATERPILLAR LUBRICATION SYSTEM COMPONENTS (4)…

  7. Measurement and Assessment of Bearing Degradation in Ester-Based Lubricant Systems

    DTIC Science & Technology

    2009-02-01

    Co Ni Fe M50 -- 4 1 4.25 0.3 0.3 0.8 -- -- Bal. P675 ~2% 13 0.6 1.8 0.4 0.65 0.07 5.4 2.6 Bal. Compositions in wt% Bearing Steels Lubricant-Water...Measurement and Assessment of Bearing Degradation in Ester- Based Lubricant Systems Darryl P. Butt Department of Materials Science and Engineering...to 00-00-2009 4. TITLE AND SUBTITLE Measurement and Assessment of Bearing Degradation in Ester-Based Lubricant Systems 5a. CONTRACT NUMBER 5b

  8. Surfactants in lubrication – Recent developments

    USDA-ARS?s Scientific Manuscript database

    Lubricants are used in a wide range of industries and applications including: manufacturing (stamping, grinding, drilling, rolling, etc.,); transportation (e.g., engine oils, gear oils, transmission fluids, greases etc.); mining and construction (e.g., hydraulic fluids); medical and personal care (e...

  9. Liquid chromatographic analysis of a formulated ester from a gas-turbine engine test

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.; Morales, W.

    1983-01-01

    Size exclusion chromatography (SEC) utilizing mu-Bondagel and mu-Styragel columns with a tetrahydrofuran mobile phase was used to determine the chemical degradation of lubricant samples from a gas-turbine engine test. A MIL-L-27502 candidate, ester-based lubricant was run in a J57-29 engine at a bulk oil temperature of 216 C. In general, the analyses indicated a progressive loss of primary ester, additive depletion, and formation of higher molecular weight material. An oil sample taken at the conclusion of the test showed a reversal of this trend because of large additions of new oil. The high-molecular-weight product from the degraded ester absorbed strongly in the ultraviolet region at 254 nanometers. This would indicate the presence of chromophoric groups. An analysis of a similar ester lubricant from a separate high-temperature bearing test yielded qualitatively similar results.

  10. Ethylene/acrylic elastomers (EAE): sealing application candidates for the automotive industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carr, J.; Ginn, A.

    1979-01-01

    EAE, based on experimental elastomers developed by Du Pont and called ''Vamac'' (formerly ''MPE''), are ethylene/methyl acrylate copolymers compounded with appropriate plasticizers, fillers, and other additives. They function satisfactorily at -54/sup 0/ to +177/sup 0/C and have excellent tensile strength, elongation, and resistance to compression set, corrosion, tear, and weathering. They show good resistance to automatic transmission fluids, engine oil, some gear lubricants and hydrocarbon greases, water, engine coolants, and dilute acids and bases, but should not be used with gasoline, concentrated acids, high-pressure steam, automotive brake fluids, phosphate ester-based hydraulic fluids, diester-based synthetic lubricants, or chlorinated hydrocarbons. They needmore » no solid-lubricant or antiwear additives, but special mold-release preparations are necessary. They should be useful as seals for the transmission front pump, the clutch, and the engine front crankshaft and possibly for other sealing and nonseal applications (e.g., spark-plug boots).« less

  11. Materials as additives for advanced lubrication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pol, Vilas G.; Thackeray, Michael M.; Mistry, Kuldeep

    This invention relates to carbon-based materials as anti-friction and anti-wear additives for advanced lubrication purposes. The materials comprise carbon nanotubes suspended in a liquid hydrocarbon carrier. Optionally, the compositions further comprise a surfactant (e.g., to aid in dispersion of the carbon particles). Specifically, the novel lubricants have the ability to significantly lower friction and wear, which translates into improved fuel economies and longer durability of mechanical devices and engines.

  12. Cost-Cutting Powdered Lubricant

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Scientists at NASA's Glenn Research Center developed a high-temperature, solid lubricant coating material that is saving the manufacturing industry millions of dollars. The material came out of 3 decades of tribological research, work studying high-temperature friction, lubrication, and the wearing of interacting surfaces that are in relative motion. It was developed as a shaft coating deposited by thermal spraying to protect foil air bearings used in oil-free turbomachinery, like gas turbines, and is meant to be part of a larger project: an oil-free aircraft engine capable of operating at high temperatures with increased reliability, lowered weight, reduced maintenance requirements, and increased power. This advanced coating, PS300, is a self-lubricating bearing material containing chromium oxide, with additions of a low-temperature start up lubricant (silver) and a high-temperature lubricant, making it remarkably stable at high temperatures, and better suited than previously available materials for high-stress conditions. It improves efficiency, lowers friction, reduces emissions, and has been used by NASA in advanced aeropropulsion engines, refrigeration compressors, turbochargers, and hybrid electrical turbogenerators. PS300 is ideal in any application where lowered weight and reduced maintenance are desired, and high-temperature uses and heavy operating speeds are expected. It has notable uses for the Space Agency, but it has even further-reaching potential for the industrial realm.

  13. Kuipers lubricates and cleans the beverage adapter on the PWD

    NASA Image and Video Library

    2012-01-23

    ISS030-E-156300 (23 Jan. 2012) --- European Space Agency astronaut Andre Kuipers, Expedition 30 flight engineer, lubricates and cleans the beverage adapter on the Potable Water Dispenser (PWD) in the Harmony node of the International Space Station.

  14. CFD analysis of turboprop engine oil cooler duct for best rate of climb condition

    NASA Astrophysics Data System (ADS)

    Kalia, Saurabh; CA, Vinay; Hegde, Suresh M.

    2016-09-01

    Turboprop engines are widely used in commuter category airplanes. Aircraft Design bureaus routinely conduct the flight tests to confirm the performance of the system. The lubrication system of the engine is designed to provide a constant supply of clean lubrication oil to the engine bearings, the reduction gears, the torque-meter, the propeller and the accessory gearbox. The oil lubricates, cools and also conducts foreign material to the oil filter where it is removed from further circulation. Thus a means of cooling the engine oil must be provided and a suitable oil cooler (OC) and ducting system was selected and designed for this purpose. In this context, it is relevant to study and analyse behaviour of the engine oil cooler system before commencing actual flight tests. In this paper, the performance of the oil cooler duct with twin flush NACA inlet housed inside the nacelle has been studied for aircraft best rate of climb (ROC) condition using RANS based SST K-omega model by commercial software ANSYS Fluent 13.0. From the CFD analysis results, it is found that the mass flow rate captured and pressure drop across the oil cooler for the best ROC condition is meeting the oil cooler manufacturer requirements thus, the engine oil temperature is maintained within prescribed limits.

  15. A Visual Photographic Study of Cylinder Lubrication

    NASA Technical Reports Server (NTRS)

    Shaw, Milton C; Nussdorfer, Theodore

    1946-01-01

    A V-type engine provided with a glass cylinder was used to study visually the lubrication characteristics of an aircraft-type piston. Photographs and data were obtained with the engine motored at engine speeds up to 1000 r.p.m. and constant cylinder-head pressures of 0 and 50 pounds per square inch. A study was made of the orientation of the piston under various operating conditions, which indicated that the piston was inclined with the crown nearest the major-thrust cylinder face throughout the greater part of the cycle. The piston moved laterally in the cylinder under the influence of piston side thrust.

  16. Persistence of Polydimethylsiloxane Condom Lubricants.

    PubMed

    Tottey, Leah S; Coulson, Sally A; Wevers, Gerhard E; Fabian, Laura; McClelland, Heather; Dustin, Mickayla

    2018-05-14

    Polydimethylsiloxane (PDMS) is commonly used to lubricate condoms. The detection of PDMS on swabs from complainants can be used to support an allegation of sexual assault. Previous research has focused on establishing analytical techniques for detecting PDMS. This research examined the persistence of PDMS on the penis, in the vagina, in the mouth, and on skin. The longest PDMS detection times were 20 h on the penis, 35 h in the vagina, and 52 h on skin. PDMS was detected up to 4 h in the mouth if the participant did not eat or drink and up to 9 h if the participant slept. PDMS was not detected in the mouth after eating or drinking. The presence of biological fluids had no detrimental effect on the analysis. Aqueous extraction of swabs for DNA did not remove any significant amount of PDMS; hence, swab remains could be subsequently analyzed for PDMS. © 2018 American Academy of Forensic Sciences.

  17. Surface Design and Engineering Toward Wear-Resistant, Self-Lubricant Diamond Films and Coatings. Chapter 10

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1999-01-01

    This chapter describes three studies on the surface design, surface engineering, and tribology of chemical-vapor-deposited (CVD) diamond films and coatings toward wear-resistant, self-lubricating diamond films and coatings. Friction mechanisms and solid lubrication mechanisms of CVD diamond are stated. Effects of an amorphous hydrogenated carbon on CVD diamond, an amorphous, nondiamond carbon surface layer formed on CVD diamond by carbon and nitrogen ion implantation, and a materials combination of cubic boron nitride and CVD diamond on the adhesion, friction, and wear behaviors of CVD diamond in ultrahigh vacuum are described. How surface modification and the selected materials couple improved the tribological functionality of coatings, giving low coefficient of friction and good wear resistance, is explained.

  18. Ultrahigh-performance liquid chromatography/electrospray ionization linear ion trap Orbitrap mass spectrometry of antioxidants (amines and phenols) applied in lubricant engineering.

    PubMed

    Kassler, Alexander; Pittenauer, Ernst; Doerr, Nicole; Allmaier, Guenter

    2014-01-15

    For the qualification and quantification of antioxidants (aromatic amines and sterically hindered phenols), most of them applied as lubricant additives, two ultrahigh-performance liquid chromatography (UHPLC) electrospray ionization mass spectrometric methods applying the positive and negative ion mode have been developed for lubricant design and engineering thus allowing e.g. the study of the degradation of lubricants. Based on the different chemical properties of the two groups of antioxidants, two methods offering a fast separation (10 min) without prior derivatization were developed. In order to reach these requirements, UHPLC was coupled with an LTQ Orbitrap hybrid tandem mass spectrometer with positive and negative ion electrospray ionization for simultaneous detection of spectra from UHPLC-high-resolution (HR)-MS (full scan mode) and UHPLC-low-resolution linear ion trap MS(2) (LITMS(2)), which we term UHPLC/HRMS-LITMS(2). All 20 analytes investigated could be qualified by an UHPLC/HRMS-LITMS(2) approach consisting of simultaneous UHPLC/HRMS (elemental composition) and UHPLC/LITMS(2) (diagnostic product ions) according to EC guidelines. Quantification was based on an UHPLC/LITMS(2) approach due to increased sensitivity and selectivity compared to UHPLC/HRMS. Absolute quantification was only feasible for seven analytes with well-specified purity of references whereas relative quantification was obtainable for another nine antioxidants. All of them showed good standard deviation and repeatability. The combined methods allow qualitative and quantitative determination of a wide variety of different antioxidants including aminic/phenolic compounds applied in lubricant engineering. These data show that the developed methods will be versatile tools for further research on identification and characterization of the thermo-oxidative degradation products of antioxidants in lubricants. Copyright © 2013 John Wiley & Sons, Ltd.

  19. Thermo-mechanical properties of carbon nanotubes and applications in thermal management

    NASA Astrophysics Data System (ADS)

    Nguyen, Manh Hong; Thang Bui, Hung; Trinh Pham, Van; Phan, Ngoc Hong; Nguyen, Tuan Hong; Chuc Nguyen, Van; Quang Le, Dinh; Khoi Phan, Hong; Phan, Ngoc Minh

    2016-06-01

    Thanks to their very high thermal conductivity, high Young’s modulus and unique tensile strength, carbon nanotubes (CNTs) have become one of the most suitable nano additives for heat conductive materials. In this work, we present results obtained for the synthesis of heat conductive materials containing CNT based thermal greases, nanoliquids and lubricating oils. These synthesized heat conductive materials were applied to thermal management for high power electronic devices (CPUs, LEDs) and internal combustion engines. The simulation and experimental results on thermal greases for an Intel Pentium IV processor showed that the thermal conductivity of greases increases 1.4 times and the saturation temperature of the CPU decreased by 5 °C by using thermal grease containing 2 wt% CNTs. Nanoliquids containing CNT based distilled water/ethylene glycol were successfully applied in heat dissipation for an Intel Core i5 processor and a 450 W floodlight LED. The experimental results showed that the saturation temperature of the Intel Core i5 processor and the 450 W floodlight LED decreased by about 6 °C and 3.5 °C, respectively, when using nanoliquids containing 1 g l-1 of CNTs. The CNTs were also effectively utilized additive materials for the synthesis of lubricating oils to improve the thermal conductivity, heat dissipation efficiency and performance efficiency of engines. The experimental results show that the thermal conductivity of lubricating oils increased by 12.5%, the engine saved 15% fuel consumption, and the longevity of the lubricating oil increased up to 20 000 km by using 0.1% vol. CNTs in the lubricating oils. All above results have confirmed the tremendous application potential of heat conductive materials containing CNTs in thermal management for high power electronic devices, internal combustion engines and other high power apparatus.

  20. Biodegradation of waste lubricants by a newly isolated Ochrobactrum sp. C1.

    PubMed

    Bhattacharya, Munna; Biswas, Dipa; Sana, Santanu; Datta, Sriparna

    2015-10-01

    A potential degrader of paraffinic and aromatic hydrocarbons was isolated from oil-contaminated soil from steel plant effluent area in Burnpur, India. The strain was investigated for degradation of waste lubricants (waste engine oil and waste transformer oil) that often contain EPA (Environmental Protection Agency, USA) classified priority pollutants and was identified as Ochrobactrum sp. C1 by 16S rRNA gene sequencing. The strain C1 was found to tolerate unusually high waste lubricant concentration along with emulsification capability of the culture broth, and its degradation efficiency was 48.5 ± 0.5 % for waste engine oil and 30.47 ± 0.25 % for waste transformer oil during 7 days incubation period. In order to get optimal degradation efficiency, a three level Box-Behnken design was employed to optimize the physical parameters namely pH, temperature and waste oil concentration. The results indicate that at temperature 36.4 °C, pH 7.3 and with 4.6 % (v/v) oil concentration, the percentage degradation of waste engine oil will be 57 % within 7 days. At this optimized condition, the experimental values (56.7 ± 0.25 %) are in a good agreement with the predicted values with a calculated R 2 to be 0.998 and significant correlation between biodegradation and emulsification activity (E 24  = 69.42 ± 0.32 %) of the culture broth toward engine oil was found with a correlation coefficient of 0.972. This is the first study showing that an Ochrobactrum sp. strain is capable of degrading waste lubricants, which might contribute to the bioremediation of waste lubricating oil-contaminated soil.

  1. Dropwise Condensation of Low Surface Tension Fluids on Omniphobic Surfaces

    PubMed Central

    Rykaczewski, Konrad; Paxson, Adam T.; Staymates, Matthew; Walker, Marlon L.; Sun, Xiaoda; Anand, Sushant; Srinivasan, Siddarth; McKinley, Gareth H.; Chinn, Jeff; Scott, John Henry J.; Varanasi, Kripa K.

    2014-01-01

    Compared to the significant body of work devoted to surface engineering for promoting dropwise condensation heat transfer of steam, much less attention has been dedicated to fluids with lower interfacial tension. A vast array of low-surface tension fluids such as hydrocarbons, cryogens, and fluorinated refrigerants are used in a number of industrial applications, and the development of passive means for increasing their condensation heat transfer coefficients has potential for significant efficiency enhancements. Here we investigate condensation behavior of a variety of liquids with surface tensions in the range of 12 to 28 mN/m on three types of omniphobic surfaces: smooth oleophobic, re-entrant superomniphobic, and lubricant-impregnated surfaces. We demonstrate that although smooth oleophobic and lubricant-impregnated surfaces can promote dropwise condensation of the majority of these fluids, re-entrant omniphobic surfaces became flooded and reverted to filmwise condensation. We also demonstrate that on the lubricant-impregnated surfaces, the choice of lubricant and underlying surface texture play a crucial role in stabilizing the lubricant and reducing pinning of the condensate. With properly engineered surfaces to promote dropwise condensation of low-surface tension fluids, we demonstrate a four to eight-fold improvement in the heat transfer coefficient. PMID:24595171

  2. Dropwise condensation of low surface tension fluids on omniphobic surfaces.

    PubMed

    Rykaczewski, Konrad; Paxson, Adam T; Staymates, Matthew; Walker, Marlon L; Sun, Xiaoda; Anand, Sushant; Srinivasan, Siddarth; McKinley, Gareth H; Chinn, Jeff; Scott, John Henry J; Varanasi, Kripa K

    2014-03-05

    Compared to the significant body of work devoted to surface engineering for promoting dropwise condensation heat transfer of steam, much less attention has been dedicated to fluids with lower interfacial tension. A vast array of low-surface tension fluids such as hydrocarbons, cryogens, and fluorinated refrigerants are used in a number of industrial applications, and the development of passive means for increasing their condensation heat transfer coefficients has potential for significant efficiency enhancements. Here we investigate condensation behavior of a variety of liquids with surface tensions in the range of 12 to 28 mN/m on three types of omniphobic surfaces: smooth oleophobic, re-entrant superomniphobic, and lubricant-impregnated surfaces. We demonstrate that although smooth oleophobic and lubricant-impregnated surfaces can promote dropwise condensation of the majority of these fluids, re-entrant omniphobic surfaces became flooded and reverted to filmwise condensation. We also demonstrate that on the lubricant-impregnated surfaces, the choice of lubricant and underlying surface texture play a crucial role in stabilizing the lubricant and reducing pinning of the condensate. With properly engineered surfaces to promote dropwise condensation of low-surface tension fluids, we demonstrate a four to eight-fold improvement in the heat transfer coefficient.

  3. Evaluation of sensor arrays for engine oils using artificial oil alteration

    NASA Astrophysics Data System (ADS)

    Sen, Sedat; Schneidhofer, Christoph; Dörr, Nicole; Vellekoop, Michael J.

    2011-06-01

    With respect to varying operation conditions, only sensors directly installed in the engine can detect the current oil condition hence enabling to get the right time for the oil change. Usually, only one parameter is not sufficient to obtain reliable information about the current oil condition. For this reason, appropriate sensor principles were evaluated for the design of sensor arrays for the measurement of critical lubricant parameters. In this contribution, we report on the development of a sensor array for engine oils using laboratory analyses of used engine oils for the correlation with sensor signals. The sensor array comprises the measurement of conductivity, permittivity, viscosity and temperature as well as oil corrosiveness as a consequence of acidification of the lubricant. As a key method, rapid evaluation of the sensors was done by short term simulation of entire oil change intervals based on artificial oil alteration. Thereby, the compatibility of the sensor array to the lubricant and the oil deterioration during the artificial alteration process was observed by the sensors and confirmed by additional laboratory analyses of oil samples take.

  4. Optical Methods For Automatic Rating Of Engine Test Components

    NASA Astrophysics Data System (ADS)

    Pritchard, James R.; Moss, Brian C.

    1989-03-01

    In recent years, increasing commercial and legislative pressure on automotive engine manufacturers, including increased oil drain intervals, cleaner exhaust emissions and high specific power outputs, have led to increasing demands on lubricating oil performance. Lubricant performance is defined by bench engine tests run under closely controlled conditions. After test, engines are dismantled and the parts rated for wear and accumulation of deposit. This rating must be consistently carried out in laboratories throughout the world in order to ensure lubricant quality meeting the specified standards. To this end, rating technicians evaluate components, following closely defined procedures. This process is time consuming, inaccurate and subject to drift, requiring regular recalibration of raters by means of international rating workshops. This paper describes two instruments for automatic rating of engine parts. The first uses a laser to determine the degree of polishing of the engine cylinder bore, caused by the reciprocating action of piston. This instrument has been developed to prototype stage by the NDT Centre at Harwell under contract to Exxon Chemical, and is planned for production within the next twelve months. The second instrument uses red and green filtered light to determine the type, quality and position of deposit formed on the piston surfaces. The latter device has undergone feasibility study, but no prototype exists.

  5. Experimental Investigations to Enhance the Tribological Performance of Engine Oil by Using Nano-Boric Acid and Functionalized Multiwalled Carbon Nanotubes: A Comparative Study to Assess Wear in Bronze Alloy

    NASA Astrophysics Data System (ADS)

    Ajay Vardhaman, B. S.; Amarnath, M.; Ramkumar, J.; Rai, Prabhat K.

    2018-04-01

    In various mechanical systems, lubricants are generally used to reduce friction and wear; thus, the total energy loss in the mechanical systems can be minimized by the proper enhancement of lubrication properties. In general, friction modifiers and antiwear additives are used to improve the tribological properties of the lubricant. However, the use of these additives has to be phased out due to their fast chemical degradation in their applications and other environmental issues. In recent years, the use of nanoparticles as a potential lubricant additive has received considerable attention because of its excellent mechanical and tribological characteristics. The present work describes the tribological behavior of nano-boric acid, multiwalled carbon nanotubes (MWCNTs), and functionalized multiwalled carbon nanotubes (FMWCNTs) modified with carboxylic acid. These nanoparticles were used to enhance the tribological properties of engine oil (SAE20W40) used to lubricate bronze alloy samples. The performance of these nano-coolants was assessed on a linear reciprocating ball-on-flat tribometer. Results highlight the friction and wear behavior of the nano-boric acid, MWCNTs, and FMWCNTs under three varying parameters such as the effect of nanoparticles concentration, load-carrying capacity, and sliding speed. The addition of nano-boric acid, MWCNTs, and FMWCNTs has significantly improved the tribological properties of the base lubricant. The addition of 0.5 wt.% of nano-boric acid, MWCNTs, and FMWCNTs to the base lubricant has decreased the coefficient of friction by 19.76, 30.55, and 35.65%, respectively, and a significant reduction in wear volume by 55.17, 71.42, and 88.97% was obtained in comparison with base lubricant.

  6. Steady-state and dynamic analysis of a jet engine, gas lubricated shaft seal

    NASA Technical Reports Server (NTRS)

    Shapiro, W.; Colsher, R.

    1974-01-01

    Dynamic response of a gas-lubricated, jet-engine main shaft seal was analytically established as a function of collar misalignment and secondary seal friction. Response was obtained by a forward integration-in-time (time-transient) scheme, which traces a time history of seal motions in all its degrees of freedom. Results were summarized in the form of a seal tracking map which indicated regions of acceptable collar misalignments and secondary seal friction. Methodology, results and interpretations are comprehensively described.

  7. Isolation and application of Gordonia sp. JC11 for removal of boat lubricants.

    PubMed

    Chanthamalee, Jirapat; Luepromchai, Ekawan

    2012-01-01

    Boat lubricants are continuously released into the marine environment and thereby cause chronic oil pollution. This study aims to isolate lubricant-degrading microorganisms from Thai coastal areas as well as to apply a selected strain for removal of boat lubricants. Ten microorganisms in the genera of Gordonia, Microbacterium, Acinetobacter, Pseudomonas, Brucella, Enterococcus and Candida were initially isolated by crude oil enrichment culture techniques. The lubricant-removal activity of these isolates was investigated with mineral-based lubricants that had been manufactured for the 4-stroke diesel engines of fishing boats. Gordonia sp. JC11, the most effective strain was able to degrade 25-55% of 1,000 mg L(-1) total hydrocarbons in six tested lubricants, while only 0-15% of the lubricants was abiotically removed. The bacterium had many characteristics that promoted lubricant degradation such as hydrocarbon utilization ability, emulsification activity and cell surface hydrophobicity. For bioaugmentation treatment of lubricant contaminated seawater, the inoculum of Gordonia sp. JC11 was prepared by immobilizing the bacterium on polyurethane foam (PUF). PUF-immobilized Gordonia sp. JC11 was able to remove 42-56% of 100-1,000 mg L(-1) waste lubricant No. 2 within 5 days. This lubricant removal efficiency was higher than those of free cells and PUF without bacterial cells. The bioaugmentation treatment significantly increased the number of lubricant-degrading microorganisms in the fishery port seawater microcosm and resulted in rapid removal of waste lubricant No. 2.

  8. Waste Oil Burn-Off in Coast Guard Powerplants : Waste Oil Filtering Systems and Diesel Engine Performance

    DOT National Transportation Integrated Search

    1976-06-01

    This report documents two tasks of a continuing study to determine the feasibility of burning waste lubricating oils in Coast Guard powerplants. The first task evaluated the effectiveness of two treatment devices for the clean-up of waste lubricating...

  9. Influence of fatty acid methyl esters from hydroxylated vegetable oils on diesel fuel lubricity.

    PubMed

    Goodrum, John W; Geller, Daniel P

    2005-05-01

    Current and future regulations on the sulfur content of diesel fuel have led to a decrease in lubricity of these fuels. This decreased lubricity poses a significant problem as it may lead to wear and damage of diesel engines, primarily fuel injection systems. Vegetable oil based diesel fuel substitutes (biodiesel) have been shown to be clean and effective and may increase overall lubricity when added to diesel fuel at nominally low levels. Previous studies on castor oil suggest that its uniquely high level of the hydroxy fatty acid ricinoleic acid may impart increased lubricity to the oil and its derivatives as compared to other vegetable oils. Likewise, the developing oilseed Lesquerella may also increase diesel lubricity through its unique hydroxy fatty acid composition. This study examines the effect of castor and Lesquerella oil esters on the lubricity of diesel fuel using the High-Frequency Reciprocating Rig (HFRR) test and compares these results to those for the commercial vegetable oil derivatives soybean and rapeseed methyl esters.

  10. Measurements of elastohydrodynamic film thickness, wear and tempering behavior of high pressure oxygen turbopump bearings

    NASA Technical Reports Server (NTRS)

    Dufrane, K. F.; Merriman, T. L.; Kannel, J. W.; Stockwell, R. D.; Hauser, D.; Vanecho, J. A.

    1984-01-01

    The reusable design of the Space Shuttle requires a target life of 7.5 hours for the turbopumps of the Space Shuttle main engine (SSME). This large increase from the few hundred seconds required in single-use rockets has caused various problems with the bearings of the turbopumps. The berings of the high pressure oxygen turbopump (HPOTP) were of particular concern because of wear, spalling, and cage failures at service time well below the required 7.5 hours. Lubrication and wear data were developed for the bearings. Since the HPOTP bearings operate in liquid oxygen, conventional liquid lubricants cannot be applied. Therefore, solid lubricant coatings and lubricant transfer from the polytetrafluorethylene (FTFE) cage were the primary lubrication approaches for the bearings. Measurements were made using liquid nitrogen in a rolling disk machine to determine whether usable elastohydrodynamic films could be generated to assist in the bearing lubrication.

  11. The relationship between fuel lubricity and diesel injection system wear

    NASA Astrophysics Data System (ADS)

    Lacy, Paul I.

    1992-01-01

    Use of low-lubricity fuel may have contributed to increased failure rates associated with critical fuel injection equipment during the 1991 Operation Desert Storm. However, accurate quantitative analysis of failed components from the field is almost impossible due to the unique service history of each pump. This report details the results of pump stand tests with fuels of equal viscosity, but widely different lubricity. Baseline tests were also performed using reference no. 2 diesel fuel. Use of poor lubricity fuel under these controlled conditions was found to greatly reduce both pump durability and engine performance. However, both improved metallurgy and fuel lubricity additives significantly reduced wear. Good correlation was obtained between standard bench tests and lightly loaded pump components. However, high contact loads on isolated components produced a more severe wear mechanism that is not well reflected by the Ball-on-Cylinder Lubricity Evaluator.

  12. Phosphate Reactions as Mechanisms of High-Temperature Lubrication

    NASA Technical Reports Server (NTRS)

    Nagarajan, Anitha; Garrido, Carolina; Gatica, Jorge E.; Morales, Wilfredo

    2006-01-01

    One of the major problems preventing the operation of advanced gas turbine engines at higher temperatures is the inability of currently used liquid lubricants to survive at these higher temperatures under friction and wear conditions. Current state-of-the-art organic liquid lubricants rapidly degrade at temperatures above 300 C; hence some other form of lubrication is necessary. Vapor-phase lubrication is a promising new technology for high-temperature lubrication. This lubrication method employs a liquid phosphate ester that is vaporized and delivered to bearings or gears; the vapor reacts with the metal surfaces, generating a solid lubricious film that has proven very stable at high temperatures. In this study, solid lubricious films were grown on cast-iron foils in order to obtain reaction and diffusion rate data to help characterize the growth mechanism. A phenomenological mathematical model of the film deposition process was derived incorporating transport and kinetic parameters that were coupled to the experimental data. This phenomenological model can now be reliably used as a predictive and scale-up tool for future vapor-phase lubrication studies.

  13. Dairy Equipment Lubrication

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Lake To Lake Dairy Cooperative, Manitowoc, Wisconsin, operates four plants in Wisconsin for processing milk, butter and cheese products from its 1,300 member farms. The large co-op was able to realize substantial savings by using NASA information for improved efficiency in plant maintenance. Under contract to Marshall Space Flight Center, Midwest Research Institute compiled a handbook consolidating information about commercially available lubricants. The handbook details chemical and physical properties, applications, specifications, test procedures and test data for liquid and solid lubricants. Lake To Lake's plant engineer used the handbook to effect savings in maintenance labor and materials costs by reducing the number of lubricants used on certain equipment. Strict U.S. Department of Agriculture and Food and Drug Administration regulations preclude lubrication changes n production equipment, but the co-op's maintenance chief was able to eliminate seven types of lubricants for ancillary equipment, such as compressors and high pressure pumps. Handbook data enabled him to select comparable but les expensive lubricants in the materials consolidation process, and simplified lubrication schedules and procedures. The handbook is in continuing use as a reference source when a new item of equipment is purchased.

  14. Lubricant effects on bearing life

    NASA Technical Reports Server (NTRS)

    Zaretsky, Erwin V.

    1986-01-01

    Lubricant considerations for rolling-element bearings have within the last two decades taken on added importance in the design and operation of mechanical systems. The phenomenon which limits the useful life of bearings is rolling-element or surface pitting fatigue. The elastohydrodynamic (EHD) film thickness which separates the ball or roller surface from those of the raceways of the bearing directly affects bearing life. Chemical additives added to the lubricant can also significantly affect bearings life and reliability. The interaction of these physical and chemical effects is important to the design engineer and user of these systems. Design methods and lubricant selection for rolling-element bearings are presented and discussed.

  15. 11. DETAIL OF UNITEDTOD TWINTANDEM STEAM ENGINE, SHOWING HIGHPRESSURE CYLINDER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. DETAIL OF UNITED-TOD TWIN-TANDEM STEAM ENGINE, SHOWING HIGH-PRESSURE CYLINDER AND VALVE, AND LUBRICATING EQUIPMENT FOR ENGINE. - Republic Iron & Steel Company, Youngstown Works, Blooming Mill & Blooming Mill Engines, North of Poland Avenue, Youngstown, Mahoning County, OH

  16. 40 CFR 90.118 - Certification procedure-service accumulation and usage of deterioration factors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... recommended lubrication and filter changes, may be performed during service accumulation without the... on the test engine(s). (e) For purposes of establishing whether Phase 2 engines comply with...

  17. Oil-Free Turbomachinery Being Developed

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Valco, Mark J.

    2001-01-01

    NASA and the Army Research Laboratory (ARL) along with industry and university researchers, are developing Oil-Free technology that will have a revolutionary impact on turbomachinery systems used in commercial and military applications. System studies have shown that eliminating an engine's oil system can yield significant savings in weight, maintenance, and operational costs. The Oil-Free technology (foil air bearings, high-temperature coatings, and advanced modeling) is being developed to eliminate the need for oil lubrication systems on high-speed turbomachinery such as turbochargers and gas turbine engines that are used in aircraft propulsion systems. The Oil-Free technology is enabled by recent breakthroughs in foil bearing load capacity, solid lubricant coatings, and computer-based analytical modeling. During the past fiscal year, a U.S. patent was awarded for the NASA PS300 solid lubricant coating, which was developed at the NASA Glenn Research Center. PS300 has enabled the successful operation of foil air bearings to temperatures over 650 C and has resulted in wear lives in excess of 100,000 start/stop cycles. This leapfrog improvement in performance over conventional solid lubricants (limited to 300 C) creates new application opportunities for high-speed, high-temperature Oil-Free gas turbine engines. On the basis of this break-through coating technology and the world's first successful demonstration of an Oil-Free turbocharger in fiscal year 1999, industry is partnering with NASA on a 3-year project to demonstrate a small, Oil-Free turbofan engine for aeropropulsion.

  18. The Role of NDT in Forensic Engineering

    NASA Astrophysics Data System (ADS)

    Leon-Salamanca, Teodoro

    2007-03-01

    Forensic engineering refers to a comprehensive investigation of the root cause of failures in structures and operating equipment, usually dealing with the relation and application of engineering facts to legal problems and product liability. The first and often most critical step is to use NDT to fully define the size, shape, and possible nature of all defects in the failed item prior to performing destructive tests. An example of a case where NDT played a critical role is presented.

  19. Impact of engine lubricant properties on regulated gaseous emissions of 2000-2001 model-year gasoline vehicles.

    PubMed

    Durbin, Thomas D; Sauer, Claudia G; Pisano, John T; Rhee, Sam H; Huai, Tao; Miller, J Wayne; MacKay, Gervase I; Robbins, John; Gamble, Heather; Hochhauser, Albert M; Ingham, Michael C; Gorse, Robert A; Beard, Loren K

    2004-03-01

    The impact of the sulfur (S) content in lubricating oil was evaluated for four ultra-low-emission vehicles and two super-ultra-low-emission vehicles, all with low mileage. The S content in the lube oils ranged from 0.01 to 0.76%, while the S content of the gasoline was fixed at 0.2 ppmw. Vehicles were configured with aged catalysts and tested over the Federal Test Procedure, at idle and at 50-mph cruise conditions. In all testing modes, variations in the S level of the lubricant did not significantly affect the regulated gas-phase tailpipe emissions. In addition to the regulated gas-phase emissions, a key element of the research was measuring the engine-out sulfur dioxide (SO2) in near-real-time. This research used a new methodology based on a differential optical absorption spectrometer (DOAS) to measure SO2 from the lubricants used in this study. With the DOAS, the contribution of SO2 emissions for the highest-S lubricant was found to range from less than 1 to 6 ppm on a gasoline S equivalent basis over the range of vehicles and test cycles used. The development and operation of the DOAS is discussed in this paper.

  20. Use of Textured Surfaces to Mitigate Sliding Friction and Wear of Lubricated and Non-Lubricated Contacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blau, Peter Julian

    If properly employed, the placement of three-dimensional feature patterns, also referred to as textures, on relatively-moving, load-bearing surfaces can be beneficial to their friction and wear characteristics. For example, geometric patterns can function as lubricant supply channels or depressions in which to trap debris. They can also alter lubricant flow in a manner that produces thicker load-bearing films locally. Considering the area occupied by solid areas and spaces, textures also change the load distribution on surfaces. At least ten different attributes of textures can be specified, and their combinations offer wide latitude in surface engineering. By employing directional machining andmore » grinding procedures, texturing has been used on bearings and seals for well over a half century, and the size scales of texturing vary widely. This report summarizes past work on the texturing of load-bearing surfaces, including past research on laser surface dimpling of ceramics done at ORNL. Textured surfaces generally show most pronounced effects when they are used in conformal or nearly conformal contacts, like that in face seals. Combining textures with other forms of surface modification and lubrication methods can offer additional benefits in surface engineering for tribology. As the literature and past work at ORNL shows, texturing does not always provide benefits. Rather, the selected pattern and arrangement of features must be matched to characteristics of the proposed application, bearing materials, and lubricants.« less

  1. Bio-derived Fuel Blend Dilution of Marine Engine Oil and Imapct on Friction and Wear Behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ajayi, Oyelayo O.; Lorenzo-Martin, Cinta; Fenske, George R.

    To reduce the amount of petroleum-derived fuel used in vehicles and vessels powered by internal combustion engines, the addition of bio-derived fuel extenders is a common practice. Ethanol is perhaps the most common bio-derived fuel used for blending, and butanol is being evaluated as a promising alternative. The present study determined the fuel dilution rate of three lubricating oils (E0, E10, and i-B16) in a marine engine operating in on-water conditions with a start-and-stop cycle protocol. The level of fuel dilution increased with the number of cycles for all three fuels. The most dilution was observed with i-B16 fuel, andmore » the least with E10 fuel. In all cases, fuel dilution substantially reduced the oil viscosity. The impacts of fuel dilution and the consequent viscosity reduction on the lubricating capability of the engine oil in terms of friction, wear, and scuffing prevention were evaluated by four different tests protocols. Although the fuel dilution of the engine oil had minimal effect on friction, because the test conditions were under the boundary lubrication regime, significant effects were observed on wear in many cases. Fuel dilution also was observed to reduce the load-carrying capacity of the engine oils in terms of scuffing load reduction.« less

  2. Production of Biomass-Based Automotive Lubricants by Reductive Etherification.

    PubMed

    Jadhav, Deepak; Grippo, Adam M; Shylesh, Sankaranarayanapillai; Gokhale, Amit A; Redshaw, John; Bell, Alexis T

    2017-06-09

    Growing concern with the effects of CO 2 emissions due to the combustion of petroleum-based transportation fuels has motivated the search for means to increase engine efficiency. The discovery of ethers with low viscosity presents an important opportunity to improve engine efficiency and fuel economy. We show here a strategy for the catalytic synthesis of such ethers by reductive etherification/O-alkylation of alcohols using building blocks that can be sourced from biomass. We find that long-chain branched ethers have several properties that make them superior lubricants to the mineral oil and synthetic base oils used today. These ethers provide a class of potentially renewable alternatives to conventional lubricants produced from petroleum and may contribute to the reduction of greenhouse gases associated with vehicle emissions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Splash lubricating system for an engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakano, K.; Tani, Y.; Umeda, T.

    1986-12-16

    A splash lubrication system is described for an engine comprising a crank case, a crank room formed in the crank case, an oil reserving room formed in a lower part of the crank case for lubricating oil, and an oil splasher. The splasher extends from a big end of a connecting rod downward so as to splash oil from the oil reserving room to the crank room on its way from a front side to a back side along the lower part of its orbit. The improvement described here comprises: a transverse partition substantially covering the oil reserving room, disposedmore » at an upper space thereof, having an opening which allows the oil splasher to move therein. It includes three buffer plates covering front, right and left sides of the opening respectively for controlling oil level thereunder.« less

  4. Effects of fresh lubricant oils on particle emissions emitted by a modern gasoline direct injection passenger car.

    PubMed

    Pirjola, Liisa; Karjalainen, Panu; Heikkilä, Juha; Saari, Sampo; Tzamkiozis, Theodoros; Ntziachristos, Leonidas; Kulmala, Kari; Keskinen, Jorma; Rönkkö, Topi

    2015-03-17

    Particle emissions from a modern turbocharged gasoline direct injection passenger car equipped with a three-way catalyst and an exhaust gas recirculation system were studied while the vehicle was running on low-sulfur gasoline and, consecutively, with five different lubrication oils. Exhaust particle number concentration, size distribution, and volatility were determined both at laboratory and on-road conditions. The results indicated that the choice of lubricant affected particle emissions both during the cold start and warm driving cycles. However, the contribution of engine oil depended on driving conditions being higher during acceleration and steady state driving than during deceleration. The highest emission factors were found with two oils that had the highest metal content. The results indicate that a 10% decrease in the Zn content of engine oils is linked with an 11-13% decrease to the nonvolatile particle number emissions in steady driving conditions and a 5% decrease over the New European Driving Cycle. The effect of lubricant on volatile particles was even higher, on the order of 20%.

  5. Influence of load and sliding velocity on wear resistance of solid-lubricant composites of ultra-high molecular weight polyethylene

    NASA Astrophysics Data System (ADS)

    Panin, S. V.; Kornienko, L. A.; Buslovich, D. G.; Alexenko, V. O.; Ivanova, L. R.

    2017-12-01

    To determine the limits of the operation loading intervals appropriate for the use of solid lubricant UHMWPE composites in tribounits for mechanical engineering and medicine, the tribotechnical properties of UHMWPE blends with the optimum solid lubricant filler content (polytetrafluoroethylene, calcium stearate, molybdenum disulfide, colloidal graphite, boron nitride) are studied under dry sliding friction at different velocities (V = 0.3 and 0.5 m/s) and loads (P = 60 and 140 N). It is shown that the wear resistance of solid lubricant UHMWPE composites at moderate sliding velocities (V = 0.3 m/s) and loads (P = 60 N) increases 2-3 times in comparison with pure UHMWPE, while at high load P = 140 N wear resistance of both neat UHMWPE and its composites is reduced almost twice. At high sliding velocities and loads (up to P = 140 N), multiple increasing of the wear of pure UHMWPE and its composites takes place (by the factor of 5 to 10). The operational conditions of UHMWPE composites in tribounits in engineering and medicine are discussed.

  6. Solid lubrication design methodology

    NASA Technical Reports Server (NTRS)

    Aggarwal, B. B.; Yonushonis, T. M.; Bovenkerk, R. L.

    1984-01-01

    A single element traction rig was used to measure the traction forces at the contact of a ball against a flat disc at room temperature under combined rolling and sliding. The load and speed conditions were selected to match those anticipated for bearing applications in adiabatic diesel engines. The test program showed that the magnitude of traction forces were almost the same for all the lubricants tested; a lubricant should, therefore, be selected on the basis of its ability to prevent wear of the contact surfaces. Traction vs. slide/roll ratio curves were similar to those for liquid lubricants but the traction forces were an order of magnitude higher. The test data was used to derive equations to predict traction force as a function of contact stress and rolling speed. Qualitative design guidelines for solid lubricated concentrated contacts are proposed.

  7. Sputtered silver films to improve chromium carbide based solid lubricant coatings for use to 900 C

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher; Sliney, Harold E.; Deadmore, Daniel L.

    1988-01-01

    Thin silver films, 250 to 3500 A thick, were sputtered onto PS200, a plasma sprayed, chromium carbide based solid lubricant coating, to reduce run-in wear and improve tribological properties. The coating contains bonded chromium carbide as the wear resistant base stock with silver and barium fluoride/calcium fluoride eutectic added as low and high temperature lubricants, respectively. Potential applications for the PS200 coating are cylinder wall/piston ring lubrication for Stirling engines and foil bearing journal lubrication. In this preliminary program, the silver film overlay thickness was optimized based on tests using a pin-on-disk tribometer. The friction and wear studies were performed in a helium atmosphere at temperatures from 25 to 760 C with a sliding velocity of 2.7 m/s under a 4.9 N load. Films between 1000 and 1500 A provide the best lubrication of the counterface material. The films enrich the sliding surface with lubricant and reduce the initial abrasiveness of the as ground, plasma-sprayed coating surface, thus reducing wear.

  8. Sputtered silver films to improve chromium carbide based solid lubricant coatings for use to 900 C

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher; Sliney, Harold E.; Deadmore, Daniel L.

    1988-01-01

    Thin silver films, 250 to 3500 A thick, were sputtered onto PS200, a plasma sprayed, chromium carbide based solid lubricant coating, to reduce run-in wear and improve tribological properties. The coating contains bonded chromium carbide as the wear resistant base stock with silver and barium fluoride/calcium fluoride eutectic added as low and high temperature lubricants respectively. Potential applications for the PS200 coating are cylinder wall/piston ring lubrication for Stirling engines and foil bearing journal lubrication. In this preliminary program, the silver film overlay thickness was optimized based on tests using a pin-on-disk tribometer. The friction and wear studies were performed in a helium atmosphere at temperatures from 25 to 760 C with a sliding velocity of 2.7 m/s under a 4.9 N load. Films between 1000 and 1500 A provide the best lubrication of the counterface material. The films enrich the sliding surface with lubricant and reduce the initial abrasiveness of the as ground, plasma-sprayed coating surface, thus reducing wear.

  9. Lubricant retention in liquid-infused microgrooves exposed to turbulent flow

    NASA Astrophysics Data System (ADS)

    Fu, Matthew; Chen, Ting-Hsuan; Arnold, Craig; Hultmark, Marcus

    2017-11-01

    Liquid infused surfaces are a promising method of passive drag reduction for turbulent flows. These surfaces rely on functionalized roughness elements to trap a liquid lubricant that is immiscible with external fluids. The presence of the lubricant creates a collection of fluid-fluid interfaces which can support a finite slip velocity at the effective surface. Generating a streamwise slip at the surface has been demonstrated as an effective mechanism for drag reduction; however, sustained drag reduction is predicated on the retention of the lubricating layer. Here, a turbulent channel-flow facility is used to characterize the robustness of liquid-infused surfaces and evaluate criteria for ensuring retention of the lubricant. Microscale grooved surfaces infused with alkane lubricants are mounted flush in the channel and exposed to turbulent flows. The retention of lubricants and pressure drop are monitored to characterize the effects of surface geometry and lubricant properties. To improve the retention of lubricant within grooved structures, a novel laser patterning technique is used to scribe chemical barriers onto grooved surfaces and evaluated. Supported under ONR Grants N00014-12-1-0875 and N00014-12-1-0962 (program manager Ki-Han Kim) and by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.

  10. Study on the applicability of a precise, accurate method for rapid evaluation of engine and lubricant performance. [determination of wear metal in used lubricating oils

    NASA Technical Reports Server (NTRS)

    Kinard, J. T.

    1975-01-01

    The development of a procedure for obtaining data related to wear metal determinations in used lubricants is discussed. The procedure makes it possible to obtain rapid, simultaneous determinations of a number of wear metals at levels of parts per thousand to low parts per billion using a small amount of sample. The electrode assembly and instrumentation used in the process are described. Samples of data obtained from tests conducted under controlled conditions are tabulated.

  11. FRONT DETAIL OF RIGHT ENGINE AND WING. MECHANICS CHECK METAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FRONT DETAIL OF RIGHT ENGINE AND WING. MECHANICS CHECK METAL CHIP DETECTOR ON RIGHT ENGINE. THE LEADING EDGE FLAPS ON THE RIGHT WING ARE DOWN PRIOR TO LUBRICATION. - Greater Buffalo International Airport, Maintenance Hangar, Buffalo, Erie County, NY

  12. 7 CFR 2902.25 - 2-Cycle engine oils.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false 2-Cycle engine oils. 2902.25 Section 2902.25... Items § 2902.25 2-Cycle engine oils. (a) Definition. Lubricants designed for use in 2-cycle engines to... procurement preference for qualifying biobased 2-cycle engine oils. By that date, Federal agencies that have...

  13. Advanced diesel engine component development program, tasks 4-14

    NASA Astrophysics Data System (ADS)

    Kaushal, Tony S.; Weber, Karen E.

    1994-11-01

    This report summarizes the Advanced Diesel Engine Component Development (ADECD) Program to develop and demonstrate critical technology needed to advance the heavy-duty low heat rejection engine concept. Major development activities reported are the design, analysis, and fabrication of monolithic ceramic components; vapor phase and solid film lubrication; electrohydraulic valve actuation; and high pressure common rail injection. An advanced single cylinder test bed was fabricated as a laboratory tool in studying these advanced technologies. This test bed simulates the reciprocator for a system having no cooling system, turbo compounding, Rankine bottoming cycle, common rail injection, and variable valve actuation to achieve fuel consumption of 160 g/kW-hr (.26 lb/hp-hr). The advanced concepts were successfully integrated into the test engine. All ceramic components met their functional and reliability requirements. The firedeck, cast-in-place ports, valves, valve guides, piston cap, and piston ring were made from silicon nitride. Breakthroughs required to implement a 'ceramic' engine included the fabrication of air-gap cylinder heads, elimination of compression gaskets, machining of ceramic valve seats within the ceramic firedeck, fabrication of cast-in-place ceramic port liners, implementation of vapor phase lubrication, and elimination of the engine coolant system. Silicon nitride valves were successfully developed to meet several production abuse test requirements and incorporated into the test bed with a ceramic valve guide and solid film lubrication. The ADECD cylinder head features ceramic port shields to increase insulation and exhaust energy recovery. The combustion chamber includes a ceramic firedeck and piston cap. The tribological challenge posed by top ring reversal temperatures of 550 C was met through the development of vapor phase lubrication using tricresyl phosphate at the ring-liner interface. A solenoid-controlled, variable valve actuation system that eliminated the conventional camshaft was demonstrated on the test bed. High pressure fuel injection via a common rail system was also developed to reduce particulate emissions.

  14. Advanced diesel engine component development program, tasks 4-14

    NASA Technical Reports Server (NTRS)

    Kaushal, Tony S.; Weber, Karen E.

    1994-01-01

    This report summarizes the Advanced Diesel Engine Component Development (ADECD) Program to develop and demonstrate critical technology needed to advance the heavy-duty low heat rejection engine concept. Major development activities reported are the design, analysis, and fabrication of monolithic ceramic components; vapor phase and solid film lubrication; electrohydraulic valve actuation; and high pressure common rail injection. An advanced single cylinder test bed was fabricated as a laboratory tool in studying these advanced technologies. This test bed simulates the reciprocator for a system having no cooling system, turbo compounding, Rankine bottoming cycle, common rail injection, and variable valve actuation to achieve fuel consumption of 160 g/kW-hr (.26 lb/hp-hr). The advanced concepts were successfully integrated into the test engine. All ceramic components met their functional and reliability requirements. The firedeck, cast-in-place ports, valves, valve guides, piston cap, and piston ring were made from silicon nitride. Breakthroughs required to implement a 'ceramic' engine included the fabrication of air-gap cylinder heads, elimination of compression gaskets, machining of ceramic valve seats within the ceramic firedeck, fabrication of cast-in-place ceramic port liners, implementation of vapor phase lubrication, and elimination of the engine coolant system. Silicon nitride valves were successfully developed to meet several production abuse test requirements and incorporated into the test bed with a ceramic valve guide and solid film lubrication. The ADECD cylinder head features ceramic port shields to increase insulation and exhaust energy recovery. The combustion chamber includes a ceramic firedeck and piston cap. The tribological challenge posed by top ring reversal temperatures of 550 C was met through the development of vapor phase lubrication using tricresyl phosphate at the ring-liner interface. A solenoid-controlled, variable valve actuation system that eliminated the conventional camshaft was demonstrated on the test bed. High pressure fuel injection via a common rail system was also developed to reduce particulate emissions.

  15. 75 FR 59060 - Airworthiness Directives; Turboméca S.A. ARRIEL 2B Turboshaft Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-27

    ... Airworthiness Directives; Turbom[eacute]ca S.A. ARRIEL 2B Turboshaft Engines AGENCY: Federal Aviation... turboshaft engines. That AD currently requires initial and repetitive inspections, cleaning, lubrication, and... engines that incorporate modification TU 132. That AD also provides an optional terminating action for the...

  16. Analysis of oil consumption in cylinder of diesel engine for optimization of piston rings

    NASA Astrophysics Data System (ADS)

    Zhang, Junhong; Zhang, Guichang; He, Zhenpeng; Lin, Jiewei; Liu, Hai

    2013-01-01

    The performance and particulate emission of a diesel engine are affected by the consumption of lubricating oil. Most studies on oil consumption mechanism of the cylinder have been done by using the experimental method, however they are very costly. Therefore, it is very necessary to study oil consumption mechanism of the cylinder and obtain the accurate results by the calculation method. Firstly, four main modes of lubricating oil consumption in cylinder are analyzed and then the oil consumption rate under common working conditions are calculated for the four modes based on an engine. Then, the factors that affect the lubricating oil consumption such as working conditions, the second ring closed gap, the elastic force of the piston rings are also investigated for the four modes. The calculation results show that most of the lubricating oil is consumed by evaporation on the liner surface. Besides, there are three other findings: (1) The oil evaporation from the liner is determined by the working condition of an engine; (2) The increase of the ring closed gap reduces the oil blow through the top ring end gap but increases blow-by; (3) With the increase of the elastic force of the ring, both the left oil film thickness and the oil throw-off at the top ring decrease. The oil scraping of the piston top edge is consequently reduced while the friction loss between the rings and the liner increases. A neural network prediction model of the lubricating oil consumption in cylinder is established based on the BP neural network theory, and then the model is trained and validated. The main piston rings parameters which affect the oil consumption are optimized by using the BP neural network prediction model and the prediction accuracy of this BP neural network is within 8%, which is acceptable for normal engineering applications. The oil consumption is also measured experimentally. The relative errors of the calculated and experimental values are less than 10%, verifying the validity of the simulation results. Applying the established simulation model and the validated BP network model is able to generate numerical results with sufficient accuracy, which significantly reduces experimental work and provides guidance for the optimal design of the piston rings diesel engines.

  17. Aviation combustion toxicology: an overview.

    PubMed

    Chaturvedi, Arvind K

    2010-01-01

    Aviation combustion toxicology is a subspecialty of the field of aerospace toxicology, which is composed of aerospace and toxicology. The term aerospace, that is, the environment extending above and beyond the surface of the Earth, is also used to represent the combined fields of aeronautics and astronautics. Aviation is another term interchangeably used with aerospace and aeronautics and is explained as the science and art of operating powered aircraft. Toxicology deals with the adverse effects of substances on living organisms. Although toxicology borrows knowledge from biology, chemistry, immunology, pathology, physiology, and public health, the most closely related field to toxicology is pharmacology. Economic toxicology, environmental toxicology, and forensic toxicology, including combustion toxicology, are the three main branches of toxicology. In this overview, a literature search for the period of 1960-2007 was performed and information related to aviation combustion toxicology collected. The overview included introduction; combustion, fire, and smoke; smoke gas toxicity; aircraft material testing; fire gases and their interactive effects; result interpretation; carboxyhemoglobin and blood cyanide ion levels; pyrolytic products of aircraft engine oils, fluids, and lubricants; and references. This review is anticipated to be an informative resource for aviation combustion toxicology and fire-related casualties.

  18. A Forensic Examination of Online Search Facility URL Record Structures.

    PubMed

    Horsman, Graeme

    2018-05-29

    The use of search engines and associated search functions to locate content online is now common practice. As a result, a forensic examination of a suspect's online search activity can be a critical aspect in establishing whether an offense has been committed in many investigations. This article offers an analysis of online search URL structures to support law enforcement and associated digital forensics practitioners interpret acts of online searching during an investigation. Google, Bing, Yahoo!, and DuckDuckGo searching functions are examined, and key URL attribute structures and metadata have been documented. In addition, an overview of social media searching covering Twitter, Facebook, Instagram, and YouTube is offered. Results show the ability to extract embedded metadata from search engine URLs which can establish online searching behaviors and the timing of searches. © 2018 American Academy of Forensic Sciences.

  19. High temperature self-lubricating coatings for air lubricated foil bearings for the automotive gas turbine engine

    NASA Technical Reports Server (NTRS)

    Bhushan, B.

    1980-01-01

    coating combinations were developed for compliant surface bearings and journals to be used in an automotive gas turbine engine. The coatings were able to withstand the sliding start/stops during rotor liftoff and touchdown and occasional short time, high speed rubs under representative loading of the engine. Some dozen coating variations of CdO-graphite, Cr2O3 (by sputtering) and CaF2 (plasma sprayed) were identified. The coatings were optimized and they were examined for stoichiometry, metallurgical condition, and adhesion. Sputtered Cr2O3 was most adherent when optimum parameters were used and it was applied on an annealed (soft) substrate. Metallic binders and interlayers were used to improve the ductility and the adherence.

  20. Energy efficient engine. Core engine bearings, drives and configuration: Detailed design report

    NASA Technical Reports Server (NTRS)

    Broman, C. L.

    1981-01-01

    The detailed design of the forward and aft sumps, the accessory drive system, the lubrication system, and the piping/manifold configuration to be employed in the core engine test of the Energy Efficient Engine is addressed. The design goals for the above components were established based on the requirements of the test cell engine.

  1. Reclamation of Synthetic Turbine Engine Lubricants.

    DTIC Science & Technology

    1981-08-01

    test in which the comparison of lubricants is based upon differences in degradation levels produced under a fixed time/temperature condition. Referring...release; distribution unlimited 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, II different from Report) 18 SUPPLEMENTARY NOTES 19 KEY...plant. Division in this respect was entirely fortuitous, depending only upon convenience in handling and inspecting the barrels at different delivery

  2. Tribological properties of alumina-boria-silicate fabric from 25 to 850 C

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher

    1988-01-01

    Demanding tribological properties are required of the materials used for the sliding seal between the sidewalls and the lower wall of the variable area hypersonic engine. Temperatures range from room temperature and below to operating temperatures of 1000 C in an environment of air, hydrogen, and water vapor. Candidate sealing materials for this application are an alumina-boria-silicate, ceramic, fabric rope sliding against the engine walls which may be made from copper- or nickel-based alloys. Using a pin-on-disk tribometer, the friction and wear properties of some of these potential materials and possible lubrication methods are evaluated. The ceramic fabric rope displayed unacceptably high friction coefficients (0.6 to 1.3) and, thus, requires lubrication. Sputtered thin films of gold, silver, and CaF2 reduced the friction by a factor of two. Sprayed coatings of boride nitride did not effectively lubricate the fabric. Static heat treatment tests at 950 C indicate that the fabric is chemically attacked by large quantities of silver, CaF2, and boron nitride. Sputtered films or powder impregnation of the fabric with gold may provide adequate lubrication up to 1000 C without showing any chemical attack.

  3. Mountain Plains Learning Experience Guide: Automotive Repair. Course: Engine Repair.

    ERIC Educational Resources Information Center

    Schramm, C.; Osland, Walt

    One of twelve individualized courses included in an automotive repair curriculum, this course covers theory and construction, inspection diagnoses, and service and overhaul of automotive engines. The course is comprised of five units: (1) Fundamentals of Four-Cycle Engines, (2) Engine Construction, (3) Valve Train, (4) Lubricating Systems, and (5)…

  4. Automotive Engines; Automotive Mechanics I: 9043.03.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    This automotive engines course studies and demonstrates the theory and principles of operation of the automotive four stroke cycle engine. The student will develop an understanding of the systems necessary to make the engine perform as designed, such as cooling, fuel, ignition and lubrication. This is a one or two quinmester credit course of 45…

  5. Military Curriculum Materials for Vocational and Technical Education. Engine Principles, 8-3. Edition 5.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This individualized, self-paced course for independent study in engine principles has been adapted from military curriculum materials for vocational education use. The course provides the student with basic information on engine principles including different kinds of combustion engines, lubrication systems, and cooling systems. It is organized…

  6. Auto Mechanics I. Learning Activity Packets (LAPs). Section C--Engine.

    ERIC Educational Resources Information Center

    Oklahoma State Board of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This document contains five learning activity packets (LAPs) that outline the study activities for the "engine" instructional area for an Auto Mechanics I course. The five LAPs cover the following topics: basic engine principles, cooling system, engine lubrication system, exhaust system, and fuel system. Each LAP contains a cover sheet…

  7. A Review to the Laser Cladding of Self-Lubricating Composite Coatings

    NASA Astrophysics Data System (ADS)

    Quazi, M. M.; Fazal, M. A.; Haseeb, A. S. M. A.; Yusof, Farazila; Masjuki, H. H.; Arslan, A.

    2016-06-01

    Liquid lubricants are extremely viable in reducing wear damage and friction of mating components. However, due to the relentless pressure and the recent trend towards higher operating environments in advanced automotive and aerospace turbo-machineries, these lubricants cease to perform and hence, an alternate system is required for maintaining the self-lubricating environment. From the viewpoint of tribologist, wear is related to near-surface regions and hence, surface coatings are considered suitable for improving the functioning of tribo-pairs. Wear resistant coatings can be fabricated with the addition of various solid lubricants so as to reduce friction drag. In order to protect bulk substrates, self-lubricating wear resistant composite coatings have been fabricated by employing various surface coating techniques such as electrochemical process, physical and chemical vapor depositions, thermal and plasma spraying, laser cladding etc. Studies related to laser-based surface engineering approaches have remained vibrant and are recognized in altering the near surface regions. In this work, the latest developments in laser based self-lubricating composite coatings are highlighted. Furthermore, the effect of additives, laser processing parameters and their corresponding influence on mechanical and tribological performance is briefly reviewed.

  8. Program for the improvement of downhole drilling motor bearings and seals. Phase IV. Semi-annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tibbitts, G.A.; DeLafosse, P.H.; Black, A.

    1980-07-01

    Four main areas of development for the project are covered: design and fabrication of a dynamometer and a mud cooling system for the Bearing-Seal Package Test Facility; modification of the Bearing-Seal Package Test Facility based on test results; testing of new lubricant samples from Pacer Lubricants, Inc., in the Terra Tek High Temperature Lubricant Tester; and testing of new seal types in the Terra Tek Sea Tester. The Maurer Engineering Report, Semi-Annual Progress Report on Improvement of Downhole Motor Bearings and Seals by Jeff L. Barnwell, has been included as Appendix B.

  9. DOE-OTM Tribology Program semiannual progress report, October 1992--March 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The OTM Tribology Program supports applied research and exploratory development which private enterprise will not or cannot pursue, in specifically identified industrial problem areas pertaining to energy conservation in the transportation sector. Under the current Annual Operating Plan (AOP) the tribology project is structured to conform with the ongoing and planned research activities in three program elements: (1) advanced lubrication--experimental investigations of lubrication phenomena and the development of improved or novel lubricants and lubricant-delivery systems for current and advanced engine systems; (2) engineered tribological interfaces--research and development on various coating processes to modify the microstructure and chemical composition of near-surfacemore » regions in order to improve their friction and wear properties for use in advanced engine designs; (3) advanced tribomaterials and components--tribomaterials evaluation of the friction and wear behavior of newly emerging materials, particularly those promising low friction and wealth at elevated temperatures in advanced engine designs: and tribocomponents evaluation which focuses on development of models, analysis/design tools to enable US transportation industry to employ a tribology-by-design approach and dissemination of program developments to the US transportation industry. Project Management encompasses the administrative and managerial duties of planning, including assessments of application areas with significant tribological energy losses and opportunities for tribological advances in the transportation sector; program implementation, including the review of proposals, organization and conduct of RFP and/or ROA solicitations, selection of R and D projects; and the issues of contracts grants and purchase orders; monitoring of project activities: reporting, information exchange and technology transfer. The current organization of the tribology project, the lead responsibilities for each program element and the present contractors are shown in Table 1. Brief summaries of progress made in this are included.« less

  10. Effect of load on the tribological properties of hypereutectic Al-Si alloy under boundary lubrication conditions

    NASA Astrophysics Data System (ADS)

    Kumar, Parveen; Wani, M. F.

    2017-11-01

    Researchers reported that the IC engine components (piston, cylinder liner etc) fail due to the friction losses (~45%) and wear losses (~25-40%). So the demand of light weight, low friction and wear resistance alloys increases day by day, which reduces the emission and increases the efficiency of the IC engine. In this connection, tribological tests on hypereutectic Al-25Si alloy were performed using a ball-on-disk configuration under dry and lubricated sliding conditions. Hypereutectic Al-25Si alloy was prepared by rapid solidification process with T6 condition. T6 condition improves the friction, wear and mechanical properties of the alloy. Friction coefficient and wear rate of the alloy was measured under high loads ranging from 100 to 300 N. It was found that the friction coefficient (COF) and wear rate of hypereutectic Al-25Si alloy/steel tribo pair increased with increase in load. Significant reduction in COF and wear rate was accomplished with SAE20W50 engine oil and Si particles act as solid lubricant. Optical microscope, 3D surface profilometer and scanning electron microscope (SEM) coupled with an energy dispersive spectrometer (EDS) were used for characterization the worn surface morphologies. The morphology, size and distribution of high Si particles due to its fabrication process caused the improvements in COF and wear rate under lubricated conditions. Adhesive wear, abrasive wear and plastic deformation acted as the dominant wear mechanism for hypereutectic Al-25Si alloy.

  11. Filtration effects on ball bearing life and condition in a contaminated lubricant

    NASA Technical Reports Server (NTRS)

    Loewenthal, S. H.; Moyer, D. W.

    1978-01-01

    Ball bearings were fatigue tested with a noncontaminated lubricant and with a contaminated lubricant under four levels of filtration. The test filters had absolute particle removal ratings of 3, 30, 49, and 105 microns. Aircraft turbine engine contaminants were injected into the filter's supply line at a constant rate of 125 milligrams per bearing hour. Bearing life and running track condition generally improved with finer filtration. The experimental lives of 3 and 30 micron filter bearings were statistically equivalent, approaching those obtained with the noncontaminated lubricant bearings. Compared to these bearings, the lives of the 49 micron bearings were statistically lower. The 105 micron bearings experienced gross wear. The degree of surface distress, weight loss, and probable failure mode were dependent on filtration level, with finer filtration being clearly beneficial.

  12. Small Gas Engine Repair.

    ERIC Educational Resources Information Center

    Connecticut State Dept. of Education, Hartford. Div. of Vocational-Technical Schools.

    Instructional materials are provided for a small gas engine course. A list of objectives appears first, followed by a list of internal parts and skills/competencies related to those parts for engine work, ignition and electrical systems, fuel system, crankcase lubrication system, arc welding skills, and gas welding skills. Outlines are provided…

  13. Single Common Powertrain Lubricant Development

    DTIC Science & Technology

    2012-01-01

    2 2.2 ENGINE DURABILITY TESTING...Page Figure 1 – General Engine Products 6.5L(T) Test Cell Installation ............................................... 9 Figure 2 ... 2 Run 3 Repeatability Run - 1 Repeatability Run - 2 Repeatability Run - 3 3-Run Average Engine Oil Consumption [lb/hr] 0.061 0.082 0.086 0.076

  14. Carbon Fiber Reinforced Carbon Composites Rotary Valves for Internal Combustion Engines

    NASA Technical Reports Server (NTRS)

    Northam, G. Burton (Inventor); Ransone, Philip O. (Inventor); Rivers, H. Kevin (Inventor)

    1999-01-01

    Carbon fiber reinforced carbon composite rotary, sleeve, and disc valves for internal combustion engines and the like are disclosed. The valves are formed from knitted or braided or warp-locked carbon fiber shapes. Also disclosed are valves fabricated from woven carbon fibers and from molded carbon matrix material. The valves of the present invention with their very low coefficient of thermal expansion and excellent thermal and self-lubrication properties, do not present the sealing and lubrication problems that have prevented rotary, sleeve, and disc valves from operating efficiently and reliably in the past. Also disclosed are a sealing tang to further improve sealing capabilities and anti-oxidation treatments.

  15. 7 CFR 2902.25 - 2-Cycle engine oils.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 15 2011-01-01 2011-01-01 false 2-Cycle engine oils. 2902.25 Section 2902.25... Items § 2902.25 2-Cycle engine oils. (a) Definition. Lubricants designed for use in 2-cycle engines to... least 34 percent, which shall be based on the amount of qualifying biobased carbon in the product as a...

  16. Clerget 100 hp heavy-oil engine

    NASA Technical Reports Server (NTRS)

    Leglise, Pierre

    1931-01-01

    A complete technical description of the Clerget heavy-oil engine is presented along with the general characteristics. The general characteristics are: 9 cylinders, bore 120 mm, stroke 130 mm, four-stroke cycle engine, rated power limited to 100 hp at 1800 rpm; weight 228 kg; propeller with direct drive and air cooling. Moving parts, engine block, and lubrication are all presented.

  17. The experimental evaluation and application of high-temperature solid lubricants. Ph.D. Thesis - Case Western Reserve Univ., 1989 Final Report

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher

    1990-01-01

    A research program is described which developes an understanding of high-temperature solid lubrication and experimental techniques through the development of a composite lubricant coating system. The knowledge gained through this research was then applied to a specific engineering challenge, the tribology of a sliding seal for hypersonic flight vehicles. The solid lubricant coating is a chromium carbide based composite combined with silver, which acts as a low temperature lubricant, and barium fluoride/calcium fluoride eutectic, which acts as a high-temperature lubricant. This composite coating provides good wear resistance and low friction for sliding contacts from room temperature to over 900 C in reducing or oxidative environments. The specific research on this coating included a composition screening using a foil gas bearing test rig and the use of thin silver films to reduce initial wear using a pin-on-disk test rig. The chemical stability of the materials used was also addressed. This research indicated that soft metallic films and materials which become soft at elevated temperatures are potentially good lubricants. The general results from the experiments with the model solid lubricant coating were then applied to a sliding seal design concept. This seal design requires that a braided ceramic fabric slide against a variety of metal counterface materials at temperatures from 25 to 850 C in an oxidative environment. A pin-on-disk tribometer was used to evaluate the tribological properties of these materials and to develop lubrication techniques. The results indicate that these seal materials must be lubricated to prevent wear and reduce friction. Thin films of silver, gold and calcium fluoride provided lubrication to the sliding materials.

  18. Lubricating oil burn-off in Coast Guard power plants

    DOT National Transportation Integrated Search

    1975-02-01

    The results of a feasibility study for the burn-off of waste oils in Coast Guard power plants are presented. Among the factors considered in this evaluation were: simplicity, cost, engine manufacturers recommendations, mixing ratios, engine emissions...

  19. Aircraft Engine Sump Fire Mitigation

    NASA Technical Reports Server (NTRS)

    Rosenlieb, J. W.

    1973-01-01

    An investigation was performed of the conditions in which fires can result and be controlled within the bearing sump simulating that of a gas turbine engine; Esso 4040 Turbo Oil, Mobil Jet 2, and Monsanto MCS-2931 lubricants were used. Control variables include the oil inlet temperature, bearing temperature, oil inlet and scavenge rates, hot air inlet temperature and flow rate, and internal sump baffling. In addition to attempting spontaneous combustion, an electric spark and a rub (friction) mechanism were employed to ignite fires. Spontaneous combustion was not obtained; however, fires were readily ignited with the electric spark while using each of the three test lubricants. Fires were also ignited using the rub mechanism with the only test lubricant evaluated, Esso 4040. Major parameters controlling ignitions were: Sump configuration; Bearing and oil temperatures, hot air temperature and flow and bearing speed. Rubbing between stationary parts and rotating parts (eg. labyrinth seal and mating rub strip) is a very potent fire source suggesting that observed accidental fires in gas turbine sumps may well arise from this cause.

  20. Bio-tribology.

    PubMed

    Dowson, Duncan

    2012-01-01

    It is now forty six years since the separate topics of friction, lubrication, wear and bearing design were integrated under the title 'Tribology' [Department of Education and Science, Lubrication (Tribology) Education and Research. A Report on the Present Position and Industry's Needs, HMSO, London, 1966]. Significant developments have been reported in many established and new aspects of tribology during this period. The subject has contributed to improved performance of much familiar equipment, such as reciprocating engines, where there have been vast improvements in engine reliability and efficiency. Nano-tribology has been central to remarkable advances in information processing and digital equipment. Shortly after widespread introduction of the term tribology, integration with biology and medicine prompted rapid and extensive interest in the fascinating sub-field now known as Bio-tribology [D. Dowson and V. Wright, Bio-tribology, in The Rheology of Lubricants, ed. T. C. Davenport, Applied Science Publishers, Barking, 1973, pp. 81-88]. An outline will be given of some of the developments in the latter field.

  1. United Stirling's Solar Engine Development: the Background for the Vanguard Engine

    NASA Technical Reports Server (NTRS)

    Holgersson, S.

    1984-01-01

    The development and testing resulting in the Vanguard engine and some of the characteristics of the Stirling engine based power conversion unit are described. The major part of the solar engine development is concentrated to the three different areas, the receiver, the lubrication system and the control system. Five engines are on test within the solar project. The function of the components are validated in actual solar tests.

  2. Two High-Temperature Foil Journal Bearings

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    2006-01-01

    An enlarged, high-temperature-compliant foil bearing has been built and tested to demonstrate the feasibility of such bearings for use in aircraft gas turbine engines. Foil bearings are attractive for use in some machines in which (1) speeds of rotation, temperatures, or both exceed maximum allowable values for rolling-element bearings; (2) conventional lubricants decompose at high operating temperatures; and/or (3) it is necessary or desirable not to rely on conventional lubrication systems. In a foil bearing, the lubricant is the working fluid (e.g., air or a mixture of combustion gases) in the space between the journal and the shaft in the machine in which the bearing is installed.

  3. Filtration effects on ball bearing life and condition in a contaminated lubricant

    NASA Technical Reports Server (NTRS)

    Loewenthal, S. H.; Moyer, D. W.

    1978-01-01

    Ball bearings were fatigue tested with a noncontaminated MIL-L-23699 lubricant and with a contaminated MIL-L-23699 lubricant under four levels of filtration. The test filters had absolute particle removal ratings of 3, 30, 49, and 105 microns. Aircraft turbine engine contaminants were injected into the filter's supply line at a constant rate of 125 milligrams per bearing hour. Bearing life and running track condition generally improved with finer filtration. The experimental lives of 3- and 30-micron filter bearings were statistically equivalent, approaching those obtained with the noncontaminated lubricant bearings. Compared to these bearings, the lives of the 49-micron bearings were statistically lower. The 105-micron bearings experienced gross wear. The degree of surface distress, weight loss, and probable failure mode were dependent on filtration level, with finer filtration being clearly beneficial.

  4. Plasma-assisted physical vapor deposition surface treatments for tribological control

    NASA Technical Reports Server (NTRS)

    Spalvins, Talivaldis

    1990-01-01

    In any mechanical or engineering system where contacting surfaces are in relative motion, adhesion, wear, and friction affect reliability and performance. With the advancement of space age transportation systems, the tribological requirements have dramatically increased. This is due to the optimized design, precision tolerance requirements, and high reliability expected for solid lubricating films in order to withstand hostile operating conditions (vacuum, high-low temperatures, high loads, and space radiation). For these problem areas the ion-assisted deposition/modification processes (plasma-based and ion beam techniques) offer the greatest potential for the synthesis of thin films and the tailoring of adherence and chemical and structural properties for optimized tribological performance. The present practices and new approaches of applying soft solid lubricant and hard wear resistant films to engineering substrates are reviewed. The ion bombardment treatments have increased film adherence, lowered friction coefficients, and enhanced wear life of the solid lubricating films such as the dichalcogenides (MoS2) and the soft metals (Au, Ag, Pb). Currently, sputtering is the preferred method of applying MoS2 films; and ion plating, the soft metallic films. Ultralow friction coefficients (less than 0.01) were achieved with sputtered MoS2. Further, new diamond-like carbon and BN lubricating films are being developed by using the ion assisted deposition techniques.

  5. The tribology of PS212 coatings and PM212 composites for the lubrication of titanium 6Al-4V components of a Stirling engine space power system

    NASA Technical Reports Server (NTRS)

    Sliney, Harold E.; Lukaszewicz, Victor; Dellacorte, Christopher

    1994-01-01

    The Stirling space power machine incorporates a linear alternator to generate electrical power. The alternator is a reciprocating device that is driven by a solar or nuclear-powered Stirling engine. The power piston and cylinder are made of titanium 6Al-4V (Ti6-4) alloy, and are designed to be lubricated by a hydrodynamically-generated gas film. Rubbing occurs during starts and stops and there is the possibility of an occasional high speed rub. Since titanium is known to have a severe galling tendency in sliding contacts, a 'back-up', self-lubricating coating on the cylinder and/or the piston is needed. This report describes the results of a research program to study the lubrication of Ti6-4 with the following chromium carbide based materials: plasma-sprayed PS212 coatings and sintered PM212 counterfaces. Program objectives are to achieve adherent coatings on Ti6-4 and to measure the friction and wear characteristics of the following sliding combinations under conditions simulative of the Stirling-driven space power linear alternator: Ti6-4/Ti6-4 baseline, Ti6-4/PS212-coated Ti6-4, and PS212-coated Ti6-4/PM212.

  6. The tribology of PS212 coatings and PM212 composites for the lubrication of titanium 6A1-4V components of a Stirling engine space power system

    NASA Technical Reports Server (NTRS)

    Sliney, Harold E.; Dellacorte, Christopher; Lukaszewicz, Victor

    1995-01-01

    The Stirling space power machine incorporates a linear alternator to generate electrical power. The alternator is a reciprocating device that is driven by a solar or nuclear-powered Stirling engine. The power piston and cylinder are made of titanium 6A1-4V (Ti6-4) alloy, and are designed to be lubricated by a hydrodynamically-generated gas film. Rubbing occurs during starts and stops and there is a possibility of an occasional high speed rub. Since titanium is known to have a severe galling tendency in sliding contacts, a 'backup,' self-lubricating coating on the cylinder and/or the piston is needed. This report describes the results of a research program to study the lubrication of Ti6-4 with the following chromium carbide based materials: plasma-sprayed PS212 coatings and sintered PM212 counterfaces. Program objectives are to achieve adherent coatings on Ti6-4 and to measure the friction and wear characteristics of the following sliding combinations under conditions simulative of the Stirling-driven space power linear alternator: Ti6-4/Ti6-4 baseline, Ti6-4/PS212 coated Ti6-4, and Ps212 coated Ti6-4/PM212

  7. Will future helicopters be diesel powered

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1982-05-01

    An investigator has found that, if current gas turbine engines in helicopters are replaced by compound adiabatic diesel engines, fuel savings of 40% are possible. This would hold true if the diesel engines are retrofitted to the current helicopter fleet or adapted to new helicopter designs. Problems such as engine placement, weight, and lubrication exist but may be surmountable with proper design.

  8. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XXVIII, I--CATERPILLAR STARTING (PONEY) ENGINE (PART II), II--UNDERSTANDING MORE ABOUT STARTING DEVICES.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF DIESEL ENGINE STARTING ENGINES. TOPICS ARE (1) STARTING ENGINE MAGNETO (WICO), (2) MAGNETO MAINTENANCE, (3) SPARK PLUGS, (4) GENERAL DESCRIPTION (STARTING DEVICES), (5) OPERATING (STARTING DEVICES), (6) LUBRICATION (STARTING DEVICES), (7)…

  9. Ferrographic and spectrometer oil analysis from a failed gas turbine engine

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.

    1982-01-01

    An experimental gas turbine engine was destroyed as a result of the combustion of its titanium components. It was concluded that a severe surge may have caused interference between rotating and stationary compressor that either directly or indirectly ignited the titanium components. Several engine oil samples (before and after the failure) were analyzed with a Ferrograph, a plasma, an atomic absorption, and an emission spectrometer to see if this information would aid in the engine failure diagnosis. The analyses indicated that a lubrication system failure was not a causative factor in the engine failure. Neither an abnormal wear mechanism nor a high level of wear debris was detected in the engine oil sample taken just prior to the test in which the failure occurred. However, low concentrations (0.2 to 0.5 ppm) of titanium were evident in this sample and samples taken earlier. After the failure, higher titanium concentrations ( 2 ppm) were detected in oil samples taken from different engine locations. Ferrographic analysis indicated that most of the titanium was contained in spherical metallic debris after the failure. The oil analyses eliminated a lubrication system bearing or shaft seal failure as the cause of the engine failure.

  10. Carbon Fiber Reinforced Carbon Composite Rotary Valve for an Internal Combustion Engine

    NASA Technical Reports Server (NTRS)

    Northam, G.Burton (Inventor); Ransone, Philip O. (Inventor); Rivers, H. Kevin (Inventor)

    2000-01-01

    Carbon fiber reinforced carbon composite rotary sleeve, and disc valves for internal combustion engines and the like are disclosed. The valves are formed from knitted or braided or wrap-locked carbon fiber shapes. Also disclosed are valves fabricated from woven carbon fibers and from molded carbon matrix material. The valves of the present invention with their very low coefficient of thermal expansion and excellent thermal and self-lubrication properties do not present the sealing and lubrication problems that have prevented rotary sleeve and disc valves from operating efficiently and reliably in the past. Also disclosed are a sealing tang to further improve sealing capabilities and anti-oxidation treatments.

  11. Transfer film evaluation for shuttle engine turbopump bearing

    NASA Technical Reports Server (NTRS)

    Kannel, J. W.; Dufrane, K. F.

    1981-01-01

    A series of low speed experiments to evaluate the possible occurrence of transfer film lubrication and the effectiveness of burnished films in the shuttle spacecraft main engine thrust bearings were conducted. No evidence of transfer film lubrication was evident, although this could have been the result of the (used) condition of the bearing. Burnished films of either Teflon or Rulon were found to greatly enhance the performance of the bearing. Crush load experiments indicated that the bearing ultimate load capability is on the order of 489,000 N (110,000 pounds). The effect of ball (as well as race) burnishing techniques on bearing performance, different types of burnished films, and transfer film formation are suggested for further study.

  12. 46 CFR 169.605 - General.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false General. 169.605 Section 169.605 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Machinery and Electrical... engine cooling water temperature, exhaust cooling water temperature and engine lubricating oil pressure...

  13. The Use of Ion Implantation for Materials Processing.

    DTIC Science & Technology

    1982-07-02

    corrosion studies. i this application main shaft bearings for turbojet engirps are being implanted to impart corrosion resistance to the rolling element...following discussion. Steels of this composition can be deep harened to Rockwell C-65 when quenched from the austenitizing temperature of 1230 C. An oil ...lubricant was a synthetic polyester lubricant used for turbojet engine bearings. As can be seen in Fig. 16 the wear rate after running-in is a factor

  14. Tribological properties of Ag/Ti films on Al2O3 ceramic substrates

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher; Pepper, Stephen V.; Honecy, Frank S.

    1991-01-01

    Ag solid lubricant films, with a thin Ti interlayer for enhanced adhesion, were sputter deposited on Al2O3 substrate disks to reduce friction and wear. The dual Ag/Ti films were tested at room temperature in a pin-on-disk tribometer sliding against bare, uncoated Al2O3 pins under a 4.9 N load at a sliding velocity of 1 m/s. The Ag/Ti films reduced the friction coefficient by 50 percent to about 0.41 compared to unlubricated baseline specimens. Pin wear was reduced by a factor of 140 and disk wear was reduced by a factor of 2.5 compared to the baseline. These films retain their good tribological properties including adhesion after heat treatments at 850 C and thus may be able to lubricate over a wide temperature range. This lubrication technique is applicable to space lubrication, advanced heat engines, and advanced transportation systems.

  15. Replacement bearing for Rocketdyne SSME HPOTPs using alternate self-lubricating retainer materials

    NASA Technical Reports Server (NTRS)

    Gleeson, J.; Dufrane, K.; Kannel, J.

    1992-01-01

    Research was conducted to develop replacement bearings for the Rocketdyne Space Shuttle main engine (SSME) high pressure oxidizer turbopumps (HPOTPs). The replacement bearings consisted of standard balls and races with a special Battelle Self-Lubricating Insert Configuration (BASIC) retainer. The BASIC retainer consists of a phosphor bronze housing with inserts consisting of a polytetrafluoretheylene (PTFE) and bronze compound. The PTFE contacts the balls and the land guiding surface on the outer race. A PTFE transfer film is formed on balls and races, which lubricates the critical interfaces. The BASIC retainer is a one-to-one replacement for the current Armalon retainer, but has superior lubricating properties and is stronger over the broad temperature range anticipated for the HPOTP bearings. As a part of the project 40 sets of balls and races (two sizes) and 52 BASIC retainers were shipped to NASA/MSFC.

  16. Formulation and evaluation of C-Ether fluids as lubricants useful to 260 C. [air breathing engines

    NASA Technical Reports Server (NTRS)

    Clark, F. S.; Miller, D. R.

    1980-01-01

    Three base stocks were evaluated in bench and bearing tests to determine their suitability for use at bulk oil temperatures (BOT) from -40 C to +260 C. A polyol ester gave good bearing tests at a bulk temperature of 218 C, but only a partially successful run at 274 C. These results bracket the fluid's maximum operating temperature between these values. An extensive screening program selected lubrication additives for a C-ether (modified polyphenyl ether) base stock. One formulation lubricated a bearing for 111 hours at 274 C (BOT), but this fluid gave many deposit related problems. Other C-ether blends produced cage wear or fatigue failures. Studies of a third fluid, a C-ether/disiloxane blend, consisted of bench oxidation and lubrication tests. These showed that some additives react differently in the blend than in pure C-ethers.

  17. High temperature lubricant screening and systems studies

    NASA Technical Reports Server (NTRS)

    Jones, D. A.

    1973-01-01

    Four candidate lubricants for next generation aircraft gas turbine application were tested under open atmosphere conditions in a rig simulating an advanced engine 125 mm bore mainshaft thrust bearing position. Testing was conducted at speeds to 24,000 rpm (3,000,000 bearing DN), bearing ring temperature of 500 F, and with 1200 F air and 100 psi differential pressure across the seals installed in a dual tandem arrangement. Test bearing was a 125 mm bore split inner ring, outer race riding angular contact ball bearing under a 3280 lb. thrust load. One lubricant, a type 2 ester, performed extremely well. The mainshaft seal limited the performance. Numerous design improvements for this seal were indicated.

  18. 40 CFR 92.125 - Pre-test procedures and preconditioning.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Pre-test procedures and... PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.125 Pre-test procedures and preconditioning. (a) Locomotive testing. (1) Determine engine lubricating...

  19. 40 CFR 92.125 - Pre-test procedures and preconditioning.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Pre-test procedures and... PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.125 Pre-test procedures and preconditioning. (a) Locomotive testing. (1) Determine engine lubricating...

  20. 40 CFR 92.125 - Pre-test procedures and preconditioning.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Pre-test procedures and... PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.125 Pre-test procedures and preconditioning. (a) Locomotive testing. (1) Determine engine lubricating...

  1. 40 CFR 92.125 - Pre-test procedures and preconditioning.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Pre-test procedures and... PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.125 Pre-test procedures and preconditioning. (a) Locomotive testing. (1) Determine engine lubricating...

  2. A low cost mid-infrared sensor for on line contamination monitoring of lubricating oils in marine engines

    NASA Astrophysics Data System (ADS)

    Ben Mohammadi, L.; Kullmann, F.; Holzki, M.; Sigloch, S.; Klotzbuecher, T.; Spiesen, J.; Tommingas, T.; Weismann, P.; Kimber, G.

    2010-04-01

    The chemical and physical condition of oils in marine engines must be monitored to ensure optimum performance of the engine and to avoid damage by degraded oil not adequately lubricating the engine. Routine monitoring requires expensive laboratory testing and highly skilled analysts. This work describes the adaptation and implementation of a mid infrared (MIR) sensor module for continued oil condition monitoring in two-stroke and four-stroke diesel engines. The developed sensor module will help to reduce costs in oil analysis by eliminating the need to collect and send samples to a laboratory for analysis. The online MIR-Sensor module measures the contamination of oil with water, soot, as well as the degradation indicated by the TBN (Total Base Number) value. For the analysis of water, TBN, and soot in marine engine oils, four spectral regions of interest have been identified. The optical absorption in these bands correlating with the contaminations is measured simultaneously by using a four-field thermopile detector, combined with appropriate bandpass filters. Recording of the MIR-absorption was performed in a transmission mode using a flow-through cell with appropriate path length. Since in this case no spectrometer is required, the sensor including the light source, the flowthrough- cell, and the detector can be realised at low cost and in a very compact manner. The optical configuration of the sensor with minimal component number and signal intensity optimisation at the four-field detector was implemented by using non-sequential ray tracing simulation. The used calibration model was robust enough to predict accurately the value for soot, water, and TBN concentration for two-stroke and four-stroke engine oils. The sensor device is designed for direct installation on the host engine or machine and, therefore, becoming an integral part of the lubrication system. It can also be used as a portable stand-alone system for machine fluid analysis in the field.

  3. Vapor/Mist Used to Lubricate Gears After Loss of Primary Lubrication System

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Morales, Wilfredo

    2001-01-01

    Loss of lubrication in rotorcraft drive systems is a demanding requirement placed on drive system manufacturers. The drive system must operate for at least 30 minutes once the primary lubrication system has failed. This test is a military requirement that must be passed prior to certification of the aircraft. As new aircraft engines, operating at higher speeds, are fielded, the requirements for the drive system become increasingly more difficult. Also, the drive system must be lightweight, which minimizes the opportunity to use the gear bodies to absorb the tremendous amount of heating that takes place. In many cases, the amount of heat generated because of the high speed and load requires an emergency lubrication system that negatively impacts the aircraft's weight, complexity, and cost. A single mesh spur gear test rig is being used at the NASA Glenn Research Center to investigate possible emergency lubrication system improvements that will minimize the impact of having these systems onboard rotorcraft. A technique currently being investigated uses a vapor/mist system to lubricate the contacting surfaces after the primary lubrication system has been shut down. A number of tests were conducted in which the vapor/mist used the same lubricant as the primary system, but at a greatly reduced flow rate. Each test was initiated with the primary lubrication system operational and at steady-state conditions for a given speed and load. Then the primary lubrication system was shut down, and the vapor/mist lubrication system was initiated. An example of the tests conducted is shown in the figures. These preliminary tests have uncovered a mechanism that provides a lubricious, carbonaceous solid on the surface that actually reduces the surface temperature of the meshing gear teeth during operation. Surface analysis of the carbonaceous solid revealed it was graphitic. This mechanism is the synthetic lubricant "coking" on the active profile of the gears, which reduces the friction between the contacting gear surfaces. The level of load affects the onset of this mechanism: the higher the load, the sooner coking takes place. Future work will investigate several other factors that could improve the already promising results that have been attained.

  4. Determination of metallo-organic and particulate wear metals in lubricating oils associated with hybrid ceramic bearings by inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Russell, Robin Ann

    It is possible to increase both the performance and operating environment of jet engines by using hybrid ceramic bearings. Our laboratory is concerned with investigating lubricating fluids for wear metals associated with silicon nitride ball bearings and steel raceways. Silicon nitride is characterized by low weight, low thermal expansion, high strength, and corrosion resistance. These attributes result in longer engine lifetimes than when metallic ball bearings are used. Before the routine use of ceramic ball bearings can be realized, the wear mechanisms of the materials should be thoroughly understood. One important variable in determining wear degradation is the concentration of metal present in the lubricating oils used with the bearings. A complete method for analyzing used lubricating oils for wear metal content must accurately determine all metal forms present. Oil samples pose problems for routine analysis due to complex organic matrices. Nebulizing these types of samples into an Inductively Coupled Plasma - Mass Spectrometer introduces many problems including clogging of the sample cone with carbon and increasing interferences. In addition, other techniques such as Atomic Absorption Spectrometry and Atomic Emission Spectrometry are particle size dependent. They are unable to analyze particles greater than 10 mum in size. This dissertation describes a method of analyzing lubricating oils for both metallo-organic and particulate species by ICP-MS. Microwave digestion of the oil samples eliminates the need for elaborate sample introduction schemes as well as the use of a modified carrier gas. Al, Cr, Fe, Mg, Mo, Ni, Ti, and Y have been determined in both aqueous and organic media. Metallo-organic solutions of these metals were successfully digested, nebulized into the ICP, and the singly charged ions measured by mass spectrometry. Metal particulates in oil matrices have also been quantitatively determined by the above method. Linear analytical curves were obtained for these elements from the detection limits (˜1 ppb) to greater than 1 ppm. Used lubricating oil samples were also analyzed by microwave digestion ICP-MS. Oil samples were collected from a Rolling Contact Fatigue tester. Two bearing systems were evaluated: M50 steel balls on an M50 steel rod, and Sisb3Nsb4 balls on an M50 steel rod. Improved operating conditions were obtained when the Sisb3Nsb4 balls were used, which corresponds to longer engine lifetimes.

  5. 7 CFR 3201.103 - Gasoline fuel additives.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Gasoline fuel additives. 3201.103 Section 3201.103... Designated Items § 3201.103 Gasoline fuel additives. (a) Definition. Chemical agents added to gasoline to increase octane levels, improve lubricity, and provide engine cleaning properties to gasoline-fired engines...

  6. 40 CFR 92.125 - Pre-test procedures and preconditioning.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Pre-test procedures and preconditioning... PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.125 Pre-test procedures and preconditioning. (a) Locomotive testing. (1) Determine engine lubricating...

  7. Computer-Based Adaptation Tool for Advanced Diesel Engines Used in Military Applications

    DTIC Science & Technology

    2008-09-04

    Scholarships. 4. Rupinder Kumar Sharma , MS in Mechanical Engineering, “Performance of EGR Cooling Device”, May 2006. 5. Rajesh Patel, MS in...secondary motions and hydrodynamic lubrication regime in a single cylinder internal combustion engine”. 9. Vijay K. Venugopal, MS in Mechanical

  8. [Creating language model of the forensic medicine domain for developing a autopsy recording system by automatic speech recognition].

    PubMed

    Niijima, H; Ito, N; Ogino, S; Takatori, T; Iwase, H; Kobayashi, M

    2000-11-01

    For the purpose of practical use of speech recognition technology for recording of forensic autopsy, a language model of the speech recording system, specialized for the forensic autopsy, was developed. The language model for the forensic autopsy by applying 3-gram model was created, and an acoustic model for Japanese speech recognition by Hidden Markov Model in addition to the above were utilized to customize the speech recognition engine for forensic autopsy. A forensic vocabulary set of over 10,000 words was compiled and some 300,000 sentence patterns were made to create the forensic language model, then properly mixing with a general language model to attain high exactitude. When tried by dictating autopsy findings, this speech recognition system was proved to be about 95% of recognition rate that seems to have reached to the practical usability in view of speech recognition software, though there remains rooms for improving its hardware and application-layer software.

  9. Piston and Ring Assembly Friction Studies in Cummins 903 Engine

    DTIC Science & Technology

    1989-06-01

    5.0 um/div, horiz = 1.0 mm/div, Sample Interval of 7.0 um 121 Cr Oxide plasma ring on Cummins kaman-Cr Oxide, non lubricated 1.88I .9B 1I .8e8 I T 48...Chromium Oxide Liner, No Lubricant 122 Cr Oxide Plasma ring on Cummins-Naman Cr Oxide, Synthetic A oil 1.88- .908 I .788 T 1 .680 N .48 f C 38" " : " • Oo

  10. Optical microsystem for analyzing engine lubricants

    NASA Astrophysics Data System (ADS)

    Scott, Andrew J.; Mabesa, Jose R., Jr.; Gorsich, David; Rathgeb, Brian; Said, Ali A.; Dugan, Mark; Haddock, Tom F.; Bado, Philippe W.

    2004-12-01

    It is possible to dramatically improve the performance, reliability, and maintainability of vehicles and other similarly complex equipment if improved sensing and diagnostics systems are available. Each year military and commercial maintenance personnel unnecessarily replace, at scheduled intervals, significant amounts of lubricant fluids in vehicles, weapon systems, and supporting equipment. Personnel draw samples of fluids and send them to test labs for analysis to determine if replacement is necessary. Systematic use of either on-board (embedded) lubricant quality analysis capabilities will save millions of dollars each year in avoided fluid changes, saved labor, prevented damage to mechanical components while providing associated environmental benefits. This paper discusses the design, the manufacturing, and the evaluation of robust optical sensors designed to monitor the condition of industrial fluids. The sensors reported are manufactured from bulk fused silica substrates. They incorporate three-dimensional micro fluidic circuitry side-by-side with three-dimensional wave guided optical networks. The manufacturing of the optical waveguides are completed using a direct-write process based on the use of femtosecond laser pulses to locally alter the structure of the glass substrate at the nano-level. The microfluidic circuitry is produced using the same femtosecond laser based process, followed by an anisotropic wet chemical etching step. Data will be presented regarding the use of these sensors to monitor the quality of engine oil and possibly some other vehicle lubricants such as hydraulic oil.

  11. Development of Gas-Lubricated Pistons for Heavy Duty Diesel Engine Technology Program

    NASA Technical Reports Server (NTRS)

    Shapiro, W.

    1984-01-01

    Static testing of a segmented, gas-lubricated, piston-ring was accomplished. The ring utilizes high-pressure gas generated during the diesel cycle to energize a hydrostatic gas film between the piston and cylinder liner. The configuration was deficient in overall performance, because all segments of a ring set failed to form a fluid-film simultaneously, when exposed to internal preload. The difficulty was traced to the moment balance required to prevent the segments from overturning and contacting the cylinder walls. Some individual sectors formed a film and performed well in every respect including load capability to 6,000 N. These results produce optimism as to the ultimate feasibility of hydrostatic, gas-lubricated piston rings. In addition to test results, the principles of operation, and theoretical developments are presented. Breathable liner concepts are suggested for future consideration. In these configurations, solid hydrostatic pistons are coupled with flexible liners that elastically deform to form a gas-film under hydrostatic pressurization. Breathable liners afford the mechanical simplicity required for mass produced engines, and initial examination indicates satisfactory operation.

  12. Ferrographic and spectrometer oil analysis from a failed gas turbine engine

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.

    1983-01-01

    An experimental gas turbine engine was destroyed as a result of the combustion of its titanium components. It was concluded that a severe surge may have caused interference between rotating and stationary compressor parts that either directly or indirectly ignited the titanium components. Several engine oil samples (before and after the failure) were analyzed with a Ferrograph, and with plasma, atomic absorption, and emission spectrometers to see if this information would aid in the engine failure diagnosis. The analyses indicated that a lubrication system failure was not a causative factor in the engine failure. Neither an abnormal wear mechanism nor a high level of wear debris was detected in the engine oil sample taken just prior to the test in which the failure occurred. However, low concentrations (0.2 to 0.5 ppm) of titanium were evident in this sample and samples taken earlier. After the failure, higher titanium concentrations (2 ppm) were detected in oil samples taken from different engine locations. Ferrographic analysis indicated that most of the titanium was contained in spherical metallic debris after the failure. The oil analyses eliminated a lubrication system bearing or shaft seal failure as the cause of the engine failure. Previously announced in STAR as N83-12433

  13. Advanced airbreathing engine lubricants study with a tetraester fluid and a synthetic paraffinic oil at 492 K (425 F)

    NASA Technical Reports Server (NTRS)

    Zaretsky, E. V.; Bamberger, E. N.

    1972-01-01

    Groups of 120-mm-bore angular-contact ball bearings made from AISI M-50 steel were fatigue tested with a tetraester and a synthetic paraffinic oil at a bearing temperature of 492 K (425 F) in an air environment. Bearing life exceeded AFBMA-predicted (catalog) life by factors in excess of 4 and 10 for the tetraester and synthetic paraffinic fluids, respectively. The final viscosities after 500 hours of operation were 14 and 6 times the initial values, respectively. During the same time period, when the test oil is replaced at a rate approximating the replenishment rate in actual commerical engine usage, no significant increase in lubricant viscosity with time was observed.

  14. Proceedings of the 1998 diesel engine emissions reduction workshop [DEER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This workshop was held July 6--9, 1998 in Castine, Maine. The purpose of this workshop was to provide a multidisciplinary forum for exchange of state-of-the-art information on reduction of diesel engine emissions. Attention was focused on the following: agency/organization concerns on engine emissions; diesel engine issues and challenges; health risks from diesel engines emissions; fuels and lubrication technologies; non-thermal plasma and urea after-treatment technologies; and diesel engine technologies for emission reduction 1 and 2.

  15. Experiments on Ultrasonic Lubrication Using a Piezoelectrically-assisted Tribometer and Optical Profilometer

    PubMed Central

    Dong, Sheng; Dapino, Marcelo

    2015-01-01

    Friction and wear are detrimental to engineered systems. Ultrasonic lubrication is achieved when the interface between two sliding surfaces is vibrated at a frequency above the acoustic range (20 kHz). As a solid-state technology, ultrasonic lubrication can be used where conventional lubricants are unfeasible or undesirable. Further, ultrasonic lubrication allows for electrical modulation of the effective friction coefficient between two sliding surfaces. This property enables adaptive systems that modify their frictional state and associated dynamic response as the operating conditions change. Surface wear can also be reduced through ultrasonic lubrication. We developed a protocol to investigate the dependence of friction force reduction and wear reduction on the linear sliding velocity between ultrasonically lubricated surfaces. A pin-on-disc tribometer was built which differs from commercial units in that a piezoelectric stack is used to vibrate the pin at 22 kHz normal to the rotating disc surface. Friction and wear metrics including effective friction force, volume loss, and surface roughness are measured without and with ultrasonic vibrations at a constant pressure of 1 to 4 MPa and three different sliding velocities: 20.3, 40.6, and 87 mm/sec. An optical profilometer is utilized to characterize the wear surfaces. The effective friction force is reduced by 62% at 20.3 mm/sec. Consistently with existing theories for ultrasonic lubrication, the percent reduction in friction force diminishes with increasing speed, down to 29% friction force reduction at 87 mm/sec. Wear reduction remains essentially constant (49%) at the three speeds considered. PMID:26436691

  16. Influence of fluid viscosity and wetting on multiscale viscoelastic lubrication in soft tribological contacts.

    PubMed

    Selway, Nichola; Chan, Vincent; Stokes, Jason R

    2017-02-22

    Friction (and lubrication) between soft contacts is prevalent in many natural and engineered systems and plays a crucial role in determining their functionality. The contribution of viscoelastic hysteresis losses to friction in these systems has been well-established and defined for dry contacts; however, the influence of fluid viscosity and wetting on these components of friction has largely been overlooked. We provide systematic experimental evidence of the influence of lubricant viscosity and wetting on lubrication across multiple regimes within a viscoelastic contact. These effects are investigated for comparatively smooth and rough elastomeric contacts (PTFE-PDMS and PDMS-PDMS) lubricated by a series of Newtonian fluids with systematically controlled viscosity and static wetting properties, using a ball-on-disc tribometer. The distinct tribological behaviour, characterised generally by a decrease in the friction coefficient with increasing fluid viscosity and wettability, is explained in terms of lubricant dewetting and squeeze-out dynamics and their impact on multi-scale viscoelastic dissipation mechanisms at the bulk-, asperity-, sub-asperity- and molecular-scale. It is proposed that lubrication within the (non-molecularly) smooth contact is governed by localised fluid entrapment and molecular-scale (interfacial) viscoelastic effects, while additional rubber hysteresis stimulated by fluid-asperity interactions, combined with rapid fluid drainage at low speeds within the rough contact, alter the general shape of the Stribeck curve. This fluid viscosity effect is in some agreement with theoretical predictions. Conventional methods for analysing and interpreting tribological data, which typically involve scaling sliding velocity with lubricant viscosity, need to be revised for viscoelastic contacts with consideration of these indirect viscosity effects.

  17. Argonne News Brief: Self-Healing Diamond-Like Carbon Coating Could Revolutionize Lubrication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Argonne scientists discovered a technique to create a layer of diamond-like carbon on the surfaces between moving parts. This could change the future of lubrication—potentially making engines more efficient, more reliable, and even greener (by reducing heavy metal additives needed in engine oils.)

  18. 46 CFR 56.50-80 - Lubricating-oil systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... coolers on steam driven machinery shall be provided with two separate means of circulating water through the coolers. (d) For internal combustion engine installations, the requirements of paragraphs (b) and... provided for circulating coolant on those engines on which oil coolers are fitted. One of those means must...

  19. 46 CFR 56.50-80 - Lubricating-oil systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... coolers on steam driven machinery shall be provided with two separate means of circulating water through the coolers. (d) For internal combustion engine installations, the requirements of paragraphs (b) and... provided for circulating coolant on those engines on which oil coolers are fitted. One of those means must...

  20. 46 CFR 56.50-80 - Lubricating-oil systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... coolers on steam driven machinery shall be provided with two separate means of circulating water through the coolers. (d) For internal combustion engine installations, the requirements of paragraphs (b) and... provided for circulating coolant on those engines on which oil coolers are fitted. One of those means must...

  1. 46 CFR 56.50-80 - Lubricating-oil systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... coolers on steam driven machinery shall be provided with two separate means of circulating water through the coolers. (d) For internal combustion engine installations, the requirements of paragraphs (b) and... provided for circulating coolant on those engines on which oil coolers are fitted. One of those means must...

  2. 46 CFR 56.50-80 - Lubricating-oil systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... coolers on steam driven machinery shall be provided with two separate means of circulating water through the coolers. (d) For internal combustion engine installations, the requirements of paragraphs (b) and... provided for circulating coolant on those engines on which oil coolers are fitted. One of those means must...

  3. General Mechanical Repair. Minor Automotive Maintenance. Volume 1. Teacher's Guide.

    ERIC Educational Resources Information Center

    East Texas State Univ., Commerce. Occupational Curriculum Lab.

    Fourteen units on minor automotive maintenance are presented in this teacher's guide. The units are the following: introduction to minor automotive maintenance, shop safety, engine principles, fuel system operation and repair, electrical system, ignition system, lubrication system, engine cooling system, exhaust system, wheel bearings and tires,…

  4. Research | Argonne National Laboratory

    Science.gov Websites

    , and Decision Analytics Energy Systems Analysis Engines and Fuels Friction, Wear, and Lubrication Vehicle Technologies Buildings and Climate-Environment Energy, Power, and Decision Analytics Energy

  5. Solar Alpha Rotary Joint (SARJ) Lubrication Interval Test and Evaluation (LITE). Post-Test Grease Analysis

    NASA Technical Reports Server (NTRS)

    Golden, Johnny L.; Martinez, James E.; Devivar, Rodrigo V.

    2015-01-01

    The Solar Alpha Rotary Joint (SARJ) is a mechanism of the International Space Station (ISS) that orients the solar power generating arrays toward the sun as the ISS orbits our planet. The orientation with the sun must be maintained to fully charge the ISS batteries and maintain all the other ISS electrical systems operating properly. In 2007, just a few months after full deployment, the starboard SARJ developed anomalies that warranted a full investigation including ISS Extravehicular Activity (EVA). The EVA uncovered unexpected debris that was due to degradation of a nitride layer on the SARJ bearing race. ISS personnel identified the failure root-cause and applied an aerospace grease to lubricate the area associated with the anomaly. The corrective action allowed the starboard SARJ to continue operating within the specified engineering parameters. The SARJ LITE (Lubrication Interval Test and Evaluation) program was initiated by NASA, Lockheed Martin, and Boeing to simulate the operation of the ISS SARJ for an extended time. The hardware was designed to test and evaluate the exact material components used aboard the ISS SARJ, but in a controlled area where engineers could continuously monitor the performance. After running the SARJ LITE test for an equivalent of 36+ years of continuous use, the test was opened to evaluate the metallography and lubrication. We have sampled the SARJ LITE rollers and plate to fully assess the grease used for lubrication. Chemical and thermal analysis of these samples has generated information that has allowed us to assess the location, migration, and current condition of the grease. The collective information will be key toward understanding and circumventing any performance deviations involving the ISS SARJ in the years to come.

  6. Surface Design and Engineering Toward Wear-Resistant, Self-Lubricating Diamond Films and Coatings

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1999-01-01

    The tribological properties of chemical-vapor-deposited (CVD) diamond films vary with the environment, possessing a Jekyll-and-Hyde character. CVD diamond has low coefficient of friction and high wear resistance in air but high coefficient of friction and low wear resistance in vacuum. Improving the tribological functionality of materials (such as achieving low friction and good wear resistance) was an aim of this investigation. Three studies on the surface design, surface engineering, and tribology of CVD diamond have shown that its friction and wear are significantly reduced in ultrahigh vacuum. The main criteria for judging whether diamond films are an effective wear-resistant, self-lubricating material were coefficient of friction and wear rate, which must be less than 0.1 and on the order of 10(exp 6) cu mm/N(dot)m, respectively. In the first study the presence of a thin film (less than 1 micron thick) of amorphous, nondiamond carbon (hydrogenated carbon, also called diamondlike carbon or DLC) on CVD diamond greatly decreased the coefficient of friction and the wear rate. Therefore, a thin DLC film on CVD diamond can be an effective wear-resistant, lubricating coating in ultrahigh vacuum. In the second study the presence of an amorphous, nondiamond carbon surface layer formed on CVD diamond by ion implantation significantly reduced the coefficient of friction and the wear rate in ultrahigh vacuum. Therefore, such surface layers are acceptable for effective self-lubricating, wear-resistant applications of CVD diamond. In the third study CVD diamond in contact with cubic boron nitride exhibited low coefficient of friction in ultra high vacuum. Therefore, this materials combination can provide an effective self-lubricating, wear-resistant couple in ultrahigh vacuum.

  7. Feasibility of observing small differences in friction mean effective pressure between different lubricating oil formations using small, single-cylinder motored engine rig

    DOE PAGES

    Rohr, William F.; Nguyen, Ke; Bunting, Bruce G.; ...

    2015-09-01

    Here, the feasibility of using a motored single-cylinder 517 cc diesel engine to observe small frictional differences between oil formulations is investigated. Friction mean effective pressure (FMEP) is measured and compared for an SAE 10W-30 and an SAE 5W-20 oil in three stages of production: base oil, commercial oil without a friction and wear reducing additive, and fully formulated commercial oil. In addition, a commercial SAE 5W-30 engine oil is investigated. Friction mean effective pressure is plotted versus oil dynamic viscosity to compare the lubricant FMEP at a given viscosity. Linear regressions and average friction mean effective pressure are usedmore » as a secondary means of comparing FMEP for the various oil formulations. Differences between the oils are observed with the base oil having higher friction at a given viscosity but a lower average FMEP due to the temperature distribution of the test and lower viscosities reached by the base oil. The commercial oil is shown to have both a higher FMEP at a given viscosity and a higher average FMEP than the commercial oil without a friction and wear reducing additive. The increase in friction for the oil without a friction and wear reduction additive indicates that the operational regime of the engine may be out of the bounds of the optimal regime for the additive or that the additive is more optimized for wear reduction. Results show that it is feasible to observe small differences in FMEP between lubricating oil formulations using a small, single-cylinder motored engine.« less

  8. Feasibility of observing small differences in friction mean effective pressure between different lubricating oil formations using small, single-cylinder motored engine rig

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rohr, William F.; Nguyen, Ke; Bunting, Bruce G.

    Here, the feasibility of using a motored single-cylinder 517 cc diesel engine to observe small frictional differences between oil formulations is investigated. Friction mean effective pressure (FMEP) is measured and compared for an SAE 10W-30 and an SAE 5W-20 oil in three stages of production: base oil, commercial oil without a friction and wear reducing additive, and fully formulated commercial oil. In addition, a commercial SAE 5W-30 engine oil is investigated. Friction mean effective pressure is plotted versus oil dynamic viscosity to compare the lubricant FMEP at a given viscosity. Linear regressions and average friction mean effective pressure are usedmore » as a secondary means of comparing FMEP for the various oil formulations. Differences between the oils are observed with the base oil having higher friction at a given viscosity but a lower average FMEP due to the temperature distribution of the test and lower viscosities reached by the base oil. The commercial oil is shown to have both a higher FMEP at a given viscosity and a higher average FMEP than the commercial oil without a friction and wear reducing additive. The increase in friction for the oil without a friction and wear reduction additive indicates that the operational regime of the engine may be out of the bounds of the optimal regime for the additive or that the additive is more optimized for wear reduction. Results show that it is feasible to observe small differences in FMEP between lubricating oil formulations using a small, single-cylinder motored engine.« less

  9. Field Evaluation of All-Season Tactical Engine Oil OE/HDO-15/40 at Ft. Knox, Kentucky and Ft. Bliss, Texas

    DTIC Science & Technology

    1986-07-01

    qualified lubricants were employed in the test, one product at each of the test locations. The test lubricants were used in all equipment components...Overall, the grade 15W-40 products demonstrated satisfactory and equivalent performance to single-graded oils. The oil was well received by both...operators and maintenance personnel who noted that the grade 15W-40 products significantly reduced logistics burden by having only one grade product to

  10. Report on Investigation of Alcohol Combustion Associated Wear in Spark Ignition Engines, Mechanisms and Lubricant Effects.

    DTIC Science & Technology

    1984-12-01

    investigated four - alcohol -containing fuels: pure methanol , pure ethanol, methanol in unleaded gaso- line, and ethanol in unleaded gasoline (gasohol...testing indicated that pure alcohol fuels reduced the buildup of engine .. deposits. Also neat methanol greatly increased engine wear rates at engine...results from reactions between methanol combustion products and the cast-iron cylinder liner, where the presence of liquid methanol in the combustion

  11. Renewable synthetic diesel fuel from triglycerides and organic waste materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hillard, J.C.; Strassburger, R.S.

    1986-03-01

    A renewable, synthetic diesel fuel has been developed that employs ethanol and organic waste materials. These organic materials, such as soybean oil or animal fats, are hydrolized to yield a mixture of solid soap like materials and glycerol. These soaps, now soluble in ethanol, are blended with ethanol; the glycerol is nitrated and added as well as castor oil when necessary. The synthetic fuel is tailored to match petroleum diesel fuel in viscosity, lubricity and cetane quality and, therefore, does not require any engine modifications. Testing in a laboratory engine and in a production Oldsmobile Cutlass has revealed that thismore » synthetic fuel is superior to petroleum diesel fuel in vehicle efficiency, cetane quality, combustion noise, cold start characteristics, exhaust odor and emissions. Performance characteristics are indistinguishable from those of petroleum diesel fuel. These soaps are added to improve the calorific value, lubricity and cetane quality of the ethanol. The glycerol from the hydrolysis process is nitrated and added to the ethanol as an additional cetane quality improver. Caster oil is added to the fuel when necessary to match the viscosity and lubricity of petroleum diesel fuel as well as to act as a corrosion inhibitor, thereby, precluding any engine modifications. The cetane quality of the synthetic fuel is better than that of petroleum diesel as the fuel carries its own oxygen. The synthetic fuel is also completely miscible with petroleum diesel.« less

  12. Oil-Free Turbomachinery Research Enhanced by Thrust Bearing Test Capability

    NASA Technical Reports Server (NTRS)

    Bauman, Steven W.

    2003-01-01

    NASA Glenn Research Center s Oil-Free Turbomachinery research team is developing aircraft turbine engines that will not require an oil lubrication system. Oil systems are required today to lubricate rolling-element bearings used by the turbine and fan shafts. For the Oil-Free Turbomachinery concept, researchers combined the most advanced foil (air) bearings from industry with NASA-developed high-temperature solid lubricant technology. In 1999, the world s first Oil-Free turbocharger was demonstrated using these technologies. Now we are working with industry to demonstrate Oil-Free turbomachinery technology in a small business jet engine, the EJ-22 produced by Williams International and developed during Glenn s recently concluded General Aviation Propulsion (GAP) program. Eliminating the oil system in this engine will make it simpler, lighter (approximately 15 percent), more reliable, and less costly to purchase and maintain. Propulsion gas turbines will place high demands on foil air bearings, especially the thrust bearings. Up until now, the Oil-Free Turbomachinery research team only had the capability to test radial, journal bearings. This research has resulted in major improvements in the bearings performance, but journal bearings are cylindrical, and can only support radial shaft loads. To counteract axial thrust loads, thrust foil bearings, which are disk shaped, are required. Since relatively little research has been conducted on thrust foil air bearings, their performance lags behind that of journal bearings.

  13. Test/QA plan for the verification testing of alternative or reformulated liquid fuels, fuel additives, fuel emulsions, and lubricants for highway and nonroad use heavy-duty diesel engines

    EPA Science Inventory

    This Environmental Technology Verification Program test/QA plan for heavy-duty diesel engine testing at the Southwest Research Institute’s Department of Emissions Research describes how the Federal Test Procedure (FTP), as listed in 40 CFR Part 86 for highway engines and 40 CFR P...

  14. The PM-200 lubrication system

    NASA Technical Reports Server (NTRS)

    Sliney, Harold E.

    1991-01-01

    Plasma sprayed composite coating of metal-bonded chromium carbide with additions of silver and thermochemically stable fluorides were previously reported to be lubricative in pin on desk bench tests from room temperature to 900 C. An early coating formulation of this type, designated as PS-200, was successfully tested as a cylinder coating in a Stirling engine at a TRRT of 760 C in a hydrogen atmosphere, and as a backup lubricant for gas bearings to 650 C. A subsequent optimization program has shown that tribological properties are further improved by increasing the solid lubricant content. The improved coating is designated as PS-212. The same powder formulation was used to make free-standing powder metallurgy (PM-212) parts by sintering or hot isostatic pressing. The process is very attractive for making parts that cannot be readily plasma sprayed such as bushings and cylinders that have small bore diameters and/or high length to diameter ratios. The properties of coatings and free-standing parts fabricated from these powders are reviewed.

  15. Effects of star-shape poly(alkyl methacrylate) arm uniformity on lubricant properties

    DOE PAGES

    Robinson, Joshua W.; Qu, Jun; Erck, Robert; ...

    2016-03-29

    Star-shaped poly(alkyl methacrylate)s (PAMAs) were prepared and blended into an additive-free engine oil to assess the structure property relationship between macromolecular structure and lubricant performance. These additives were designed with a comparable number of repeating units per arm and the number of arms was varied between 3 and 6. Well-defined star-shaped PAMAs were synthesized by atom transfer radical polymerization (ATRP) via a core-first strategy from multi-functional headgroups. Observations of the polymer-oil blends suggest that stars with less than four arms are favorable as a viscosity index improver (VII), and molecular weight dominates viscosity-related effects over other structural features. Star-shaped PAMAs,more » as oil additives, effectively reduce the friction coefficient in both mixed and boundary lubrication regime. Several analogs outperformed commercial VIIs in both viscosity and friction performance. Furthermore, increased wear rates were observed for these star-shaped PAMAs in the boundary lubrication regime suggesting pressure-sensitive conformations may exist.« less

  16. Imidazoline fuel detergents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonazza, B. R.; Holtz, H. D.

    1981-01-27

    A detergent additive imidazoline prepared by reacting carboxylic acid with polyamine is combined into fuel for an internal combustion engine or lubricating oil as a composition suitable for reducing deposits in an internal combustion engine. In an embodiment of the invention, the imidazoline is further combined with a sulfonic acid to obtain a fuel detergent of improved operability.

  17. Single Common Powertrain Lubricant (SCPL) Development. Part 2

    DTIC Science & Technology

    2014-04-01

    stand and connected via steel braided Teflon hose to the engines oil filter outlet port. A remote liquid-liquid heat exchanger was then added in...series with the stainless braided Teflon oil lines (after the oil filter), and its return was plumbed back to the engine via the engine’s front lower

  18. Alternative Fuels Data Center: Natural Gas Vehicle Maintenance and Safety

    Science.gov Websites

    and delivery systems for road vehicles. Oil-Change Intervals Cleaner-burning fuels have a direct impact on extending the useful life of the engine's lubricating oil. In conventionally fueled vehicles , engine oil degrades as a result of soot and other impurities from the combustion process that get

  19. Ceramics Technology Project database: September 1991 summary report. [Materials for piston ring-cylinder liner for advanced heat/diesel engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keyes, B.L.P.

    1992-06-01

    The piston ring-cylinder liner area of the internal combustion engine must withstand very-high-temperature gradients, highly-corrosive environments, and constant friction. Improving the efficiency in the engine requires ring and cylinder liner materials that can survive this abusive environment and lubricants that resist decomposition at elevated temperatures. Wear and friction tests have been done on many material combinations in environments similar to actual use to find the right materials for the situation. This report covers tribology information produced from 1986 through July 1991 by Battelle columbus Laboratories, Caterpillar Inc., and Cummins Engine Company, Inc. for the Ceramic Technology Project (CTP). All datamore » in this report were taken from the project's semiannual and bimonthly progress reports and cover base materials, coatings, and lubricants. The data, including test rig descriptions and material characterizations, are stored in the CTP database and are available to all project participants on request. Objective of this report is to make available the test results from these studies, but not to draw conclusions from these data.« less

  20. Reverse engineering--rapid prototyping of the skull in forensic trauma analysis.

    PubMed

    Kettner, Mattias; Schmidt, Peter; Potente, Stefan; Ramsthaler, Frank; Schrodt, Michael

    2011-07-01

    Rapid prototyping (RP) comprises a variety of automated manufacturing techniques such as selective laser sintering (SLS), stereolithography, and three-dimensional printing (3DP), which use virtual 3D data sets to fabricate solid forms in a layer-by-layer technique. Despite a growing demand for (virtual) reconstruction models in daily forensic casework, maceration of the skull is frequently assigned to ensure haptic evidence presentation in the courtroom. Owing to the progress in the field of forensic radiology, 3D data sets of relevant cases are usually available to the forensic expert. Here, we present a first application of RP in forensic medicine using computed tomography scans for the fabrication of an SLS skull model in a case of fatal hammer impacts to the head. The report is intended to show that this method fully respects the dignity of the deceased and is consistent with medical ethics but nevertheless provides an excellent 3D impression of anatomical structures and injuries. © 2011 American Academy of Forensic Sciences.

  1. Fluorine lubricated bearing technology

    NASA Technical Reports Server (NTRS)

    Mallaire, F. R.

    1973-01-01

    An experimental program was conducted to evaluate and select materials for ball bearings intended for use in liquid fluorine and/or FLOX. The ability of three different ball-separator materials, each containing nickel, to form and transfer a nickel fluoride film to provide effective lubrication at the required areas of a ball bearing operating in liquid fluorine was evaluated. In addition, solid lubrication of a ball bearing operating in liquid fluorine by either a fused fluoride coating applied to all surfaces of the ball separator or by a fluoride impregnation of porous sintered material ball separators was evaluated. Less bearing wear occurred when tests were conducted in the less reactive FLOX. Bearings fabricated from any of the materials tested would have relatively short wear lives and would require frequent replacement in a reusable engine.

  2. Commercialization of NASA PS304 Solid Lubricant Coating Enhanced by Fundamental Powder Flow Research

    NASA Technical Reports Server (NTRS)

    Stanford, Malcolm K.

    2003-01-01

    The NASA Glenn Research Center has developed a patented high-temperature solid lubricant coating, designated PS304, for reducing friction and wear in bearing systems. The material used to produce the coating is initially a blend of metallic and ceramic powders that are deposited on the bearing surface by the plasma spray process. PS304 was developed to lubricate foil air bearings in Oil-Free turbomachinery, where the moving surfaces are coated with a hydrodynamic air film except at the beginning and end of an operation cycle when the air film is not present. The coating has been successful in several applications including turbochargers, land-based turbines, and industrial drying furnace conveyor components, with current development activities directed at implementation in Oil-Free aeropropulsion engines.

  3. Founding editorial--forensics and TheScientificWorld.

    PubMed

    Rowe, W

    2001-10-30

    At the beginning of a new millennium it seems a good idea to stop for a moment and take stock of the current state of forensic science. As a field of scientific research and scientific application, forensic science is a little more than a century old. Forensic science may be said to have begun in 1887 with the simultaneous publication of A. Conan Doyle's A Study in Scarlet and Hans Gross's Handbuch f1/4r Untersuchungsrichter. Conan Doyle's novel introduced to the world the character of Sherlock Holmes, whose literary career would popularize the use of physical evidence in criminal investigations. Gross's manual for examining magistrates suggests ways in which the expertise of chemists, biologists, geologists, and other natural scientists could contribute to investigations. Gross's book was translated into a number of languages and went through various updated editions during the course of the century. The intervening century saw the development and application of fingerprinting, firearm and tool mark identification, forensic chemistry, forensic biology, forensic toxicology, forensic odontology, forensic pathology, and forensic engineering. Increasingly, the judicial systems of the industrial nations of the world have come to rely upon the expertise of scientists in a variety of disciplines. In most advanced countries, virtually all criminal prosecutions now involve the presentation of scientific testimony. This has had the beneficial effect of diminishing the reliance of courts on eyewitness testimony and defendant confessions.

  4. Dedicated Industrial Oilseed Crops as Metabolic Engineering Platforms for Sustainable Industrial Feedstock Production

    PubMed Central

    Zhu, Li-Hua; Krens, Frans; Smith, Mark A.; Li, Xueyuan; Qi, Weicong; van Loo, Eibertus N.; Iven, Tim; Feussner, Ivo; Nazarenus, Tara J.; Huai, Dongxin; Taylor, David C.; Zhou, Xue-Rong; Green, Allan G.; Shockey, Jay; Klasson, K. Thomas; Mullen, Robert T.; Huang, Bangquan; Dyer, John M.; Cahoon, Edgar B.

    2016-01-01

    Feedstocks for industrial applications ranging from polymers to lubricants are largely derived from petroleum, a non-renewable resource. Vegetable oils with fatty acid structures and storage forms tailored for specific industrial uses offer renewable and potentially sustainable sources of petrochemical-type functionalities. A wide array of industrial vegetable oils can be generated through biotechnology, but will likely require non-commodity oilseed platforms dedicated to specialty oil production for commercial acceptance. Here we show the feasibility of three Brassicaceae oilseeds crambe, camelina, and carinata, none of which are widely cultivated for food use, as hosts for complex metabolic engineering of wax esters for lubricant applications. Lines producing wax esters >20% of total seed oil were generated for each crop and further improved for high temperature oxidative stability by down-regulation of fatty acid polyunsaturation. Field cultivation of optimized wax ester-producing crambe demonstrated commercial utility of these engineered crops and a path for sustainable production of other industrial oils in dedicated specialty oilseeds. PMID:26916792

  5. Dedicated Industrial Oilseed Crops as Metabolic Engineering Platforms for Sustainable Industrial Feedstock Production.

    PubMed

    Zhu, Li-Hua; Krens, Frans; Smith, Mark A; Li, Xueyuan; Qi, Weicong; van Loo, Eibertus N; Iven, Tim; Feussner, Ivo; Nazarenus, Tara J; Huai, Dongxin; Taylor, David C; Zhou, Xue-Rong; Green, Allan G; Shockey, Jay; Klasson, K Thomas; Mullen, Robert T; Huang, Bangquan; Dyer, John M; Cahoon, Edgar B

    2016-02-26

    Feedstocks for industrial applications ranging from polymers to lubricants are largely derived from petroleum, a non-renewable resource. Vegetable oils with fatty acid structures and storage forms tailored for specific industrial uses offer renewable and potentially sustainable sources of petrochemical-type functionalities. A wide array of industrial vegetable oils can be generated through biotechnology, but will likely require non-commodity oilseed platforms dedicated to specialty oil production for commercial acceptance. Here we show the feasibility of three Brassicaceae oilseeds crambe, camelina, and carinata, none of which are widely cultivated for food use, as hosts for complex metabolic engineering of wax esters for lubricant applications. Lines producing wax esters >20% of total seed oil were generated for each crop and further improved for high temperature oxidative stability by down-regulation of fatty acid polyunsaturation. Field cultivation of optimized wax ester-producing crambe demonstrated commercial utility of these engineered crops and a path for sustainable production of other industrial oils in dedicated specialty oilseeds.

  6. Direct analysis in real time mass spectrometry for analysis of sexual assault evidence.

    PubMed

    Musah, Rabi A; Cody, Robert B; Dane, A John; Vuong, Angela L; Shepard, Jason R E

    2012-05-15

    Sexual assault crimes are vastly underreported and suffer from alarmingly low prosecution and conviction rates. The key scientific method to aid in prosecution of such cases is forensic DNA analysis, where biological evidence such as semen collected using a rape test kit is used to determine a suspect's DNA profile. However, the growing awareness by criminals of the importance of DNA in the prosecution of sexual assaults has resulted in increased condom use by assailants as a means to avoid leaving behind their DNA. Thus, other types of trace evidence are important to help corroborate victims' accounts, exonerate the innocent, link suspects to the crime, or confirm penetration. Direct Analysis in Real Time Mass Spectrometry (DART-MS) was employed for the comprehensive characterization of non-DNA trace evidence associated with sexual assault. The ambient ionization method associated with DART-MS is extremely rapid and samples are processed instantaneously, without the need for extraction, sample preparation, or other means that might compromise forensic evidence for future analyses. In a single assay, we demonstrated the ability to identify lubricant formulations associated with sexual assault, such as the spermicide nonoxynol-9, compounds used in condom manufacture, and numerous other trace components as probative evidence. In addition, the method can also serve to identify compounds within trace biological residues, such as fatty acids commonly identified in latent fingerprints. Characterization of lubricant residues as probative evidence serves to establish a connection between the victim and the perpetrator, and the availability of these details may lead to higher rates of prosecution and conviction, as well as more severe penalties. The methodology described here opens the way for the adoption of a comprehensive, rapid, and sensitive analysis for use in crime labs, while providing knowledge that can inform and guide criminal justice policy and practice. Copyright © 2012 John Wiley & Sons, Ltd.

  7. 14 CFR 183.11 - Selection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... forensic pathologists to assist in the medical investigation of aircraft accidents. (b) Any local Flight... Certification Office, or the Manager's designee, may select Designated Engineering Representatives from... Engineering Representative.” (2) The Manager, Aircraft Certification Directorate, or the Manager's designee...

  8. 14 CFR 183.11 - Selection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... forensic pathologists to assist in the medical investigation of aircraft accidents. (b) Any local Flight... Certification Office, or the Manager's designee, may select Designated Engineering Representatives from... Engineering Representative.” (2) The Manager, Aircraft Certification Directorate, or the Manager's designee...

  9. 14 CFR 183.11 - Selection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... forensic pathologists to assist in the medical investigation of aircraft accidents. (b) Any local Flight... Certification Office, or the Manager's designee, may select Designated Engineering Representatives from... Engineering Representative.” (2) The Manager, Aircraft Certification Directorate, or the Manager's designee...

  10. 14 CFR 183.11 - Selection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... forensic pathologists to assist in the medical investigation of aircraft accidents. (b) Any local Flight... Certification Office, or the Manager's designee, may select Designated Engineering Representatives from... Engineering Representative.” (2) The Manager, Aircraft Certification Directorate, or the Manager's designee...

  11. Microfog lubricant application system for advanced turbine engine components, phase 2. Tasks 3, 4 and 5: Wettability and heat transfer of microfog jets impinging on a heated rotating disc, and evaluation of reclassifying nozzles and a vortex mist generator

    NASA Technical Reports Server (NTRS)

    Shim, J.; Leonardi, S. J.

    1972-01-01

    The wettabilities and heat transfer rates of microfog jets (oil-mist nozzle flows) impinging on a heated rotating disc were determined under an inert atmosphere of nitrogen at temperatures ranging from 600 to 800 F. The results are discussed in relation to the various factors involved in the microfog lubricant application systems. Two novel reclassifying nozzles and a vortex mist generator were also studied.

  12. Evaluation of Environmentally Acceptable Lubricants (EALS) for Dams Managed by the U.S. Army Corps of Engineers

    DTIC Science & Technology

    2015-08-01

    power, and seal against dirt, dust, and water. Lubricants work by serving as a lower viscosity material between moving surfaces. The wearing surfaces...aluminum, clay , polyurea, sodium, and calcium are most common. Complex thickeners can be composed of metal soaps mixed with low-molecular-weight organic...Polyalkyl DAE N Polyest Rape Seed Viscosity Temperature Behavior (VI) 4 2 2 2 2 2 Low Temperature Behavior (Pourpoint) 5 1 3 1 2 3 Liquid Range 4 2 3 1 2 3

  13. Literature Review of the State of the Art for Graphical User Interfaces (GUI) for a Series of Oil Quality Monitoring Sensors for Shipboard Equipment

    DTIC Science & Technology

    2011-03-01

    sensors, the hardware may impose amplification and filtering on the input signal prior to the A/D conversion process. The third component in the...Assessment by FTIR – A Case Study on HEMM in Indian Mines”, Industrial Lubrication and Tribology , Vol. 152, pp. 61-66, 2000. [7] KarisAllen, K.J...and Engine Oil Condition”, Industrial Lubrication and Tribology , April 2005. [16] Jakoby, B., Eisenschmid, H., Schatz, O., “On-Board Evaluation of

  14. Evaluation of MIL-L-23699 Lubricant Performance in the TF41-A-2 Engine

    DTIC Science & Technology

    1975-05-01

    provides the necessary signals to the cockpit indicator for the indication of engine oil pressure. The differential pressure switch controls a cockpit...light. If the light is on, it indicates that the differential oil pressure is low. The setting ot the differential pressure switch is 11 t 1 psi. The

  15. Tear Down and Inspection of the Cummins VTA-903 Evaluated Using the Single Common Powertrain Lubricant SCPL

    DTIC Science & Technology

    2013-12-13

    Materials AT Anti-Thrust AVG Average BFV Bradley Fighting Vehicle CAT Caterpillar EOT End Of Test GEP General Engine Products HMMWV High...Vehicle ( BFV ), is a 14.8 liter, V8, turbocharged after-cooled diesel engine, producing approximately 600 hp, and 1225 lb-ft of torque at their respective

  16. Renewable Fuels and Lubricants Laboratory | Transportation Research | NREL

    Science.gov Websites

    delivery vans to full-size buses and Class 8 tractors. Heavy-Duty and Light-Duty Engine Dynamometer Test Cells The ReFUEL Laboratory features two engine dynamometer test cells-one for heavy-duty (up to 600 hp the Heavy-Duty Federal Test Procedures (HD-FTP), are highly standardized, and results can be readily

  17. Laboratory Test of Reciprocating Internal Combustion Engines

    DTIC Science & Technology

    2016-02-04

    testing require extremely accurate fuel consumption measurement, and the ability to temperature condition the fuel. Most dynamometer manufacturers...include, but are not limited to, differences in fuels, lubrication, temperatures , engine control module parameters, component wear, exhaust, and air...exhaust gas recirculation (EGR) fuel consumption 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18. NUMBER OF PAGES 38

  18. Programs at Wright-patterson Air Force Base

    NASA Technical Reports Server (NTRS)

    Dayton, Ron

    1991-01-01

    The Lubrication Branch has two active programs that are developing gas turbine engine mainshaft air/oil seals. Both of these programs, one of which is with General Electric Aircraft Engines and the other with Pratt & Whitney Aircraft, are addressing counter-rotating intershaft applications which involve very high rubbing velocities. The objectives and requirements of these efforts are briefly addressed.

  19. Study on the engine oil's wear based on the flash point

    NASA Astrophysics Data System (ADS)

    Niculescu, R.; Iorga-Simăn, V.; Trică, A.; Clenci, A.

    2016-08-01

    Increasing energy performance of internal combustion engines is largely influenced by frictional forces that arise between moving parts. Thus, in this respect, the nature and quality of the engine oil used is an important factor. Equally important is the effect of various engine injection strategies upon the oil quality. In other words, it's of utmost importance to maintain the quality of engine oil during engine's operation. Oil dilution is one of the most common causes that lead to its wear, creating lubrication problems. Moreover, at low temperatures operating conditions, the oil dilution with diesel fuel produces wax. When starting the engine, this may lead to lubrication deficiencies and even oil starvation with negative consequences on the engine mechanism parts wear (piston, rings and cylinders) but also crankcase bearings wear.Engine oil dilution with diesel fuel have several causes: wear of rings and/or injectors, late post-injection strategy for the sake of particulate filter regeneration, etc.This paper presents a study on the degree of deterioration of engine oils as a result of dilution with diesel fuel. The analysed oils used for this study were taken from various models of engines equipped with diesel particulate filter. The assessment is based on the determination of oil flash point and dilution degree using the apparatus Eraflash produced by Eralytics, Austria. Eraflash measurement is directly under the latest and safest standards ASTM D6450 & D7094), which are in excellent correlation with ASTM D93 Pensky - Martens ASTM D56 TAG methods; it uses the Continuous Closed Cup method for finding the Flash Point (CCCFP).

  20. Experience with synthetic fluorinated fluid lubricants

    NASA Technical Reports Server (NTRS)

    Conley, Peter L.; Bohner, John J.

    1990-01-01

    Since the late 1970's, the wet lubricant of choice for space mechanisms has been one of the family of synthetic perfluoro polyalkylether (PFPE) compounds, namely Fomblin Z-25 (Bray-815Z) or DuPont's Krytox 143xx series. While offering the advantages of extremely low vapor pressures and wide temperature ranges, these oils and derived greases have a complex chemistry compared to the more familiar natural and synthetic hydrocarbons. Many aerospace companies have conducted test programs to characterize the behavior of these compounds in a space environment, resulting in a large body of hard knowledge as well as considerable space lore concerning the suitability of the lubricants for particular applications and techniques for successful application. The facts are summarized and a few myths about the compounds are dispelled, and some performance guidelines for the mechanism design engineer are provided.

  1. Laser irradiation-induced laminated graphene/MoS2 composites with synergistically improved tribological properties.

    PubMed

    Luo, Ting; Chen, Xinchun; Li, Peisheng; Wang, Ping; Li, Cuncheng; Cao, Bingqiang; Luo, Jianbin; Yang, Shikuan

    2018-06-29

    Engineering lubricant additives that have extraordinary friction reduction and anti-wear performance is critical to almost any modern mechanical machines. Here, we demonstrate the fabrication of laminated lubricant additives that can combine the advantages of zero-dimensional nanospheres and two-dimensional nanosheets. A simple in situ laser irradiation method is developed to prepare the laminated composite structure composed of ideally ultrasmooth MoS 2 sub-microspheres embedded within multiple layers of graphene. These ultrasmooth MoS 2 spheres within the laminated structure can change sliding friction into rolling friction under strong shear force created by moving contact surfaces to significantly reduce the friction. Meantime, the graphene layers can behave as 'protection pads' to efficiently avoid the formation of scars on the metal-to-metal contact surfaces. Overall, the laminated composites as lubricant additives synergistically improve the friction reduction and anti-wear properties. Additionally, due to the unique loosely packed laminated structure, the composites can stably disperse in the lubricant for more than 15 d and work under high temperatures without being oxidized. Such constructed laminated composites with outstanding tribological properties by an in situ laser irradiation method supply a new concept in designing lubricant additives that can combine the advantages of 0D and 2D structures.

  2. Anti-Wear Performance and Mechanism of an Oil-Miscible Ionic Liquid as a Lubricant Additive

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qu, Jun; Bansal, Dinesh G; Yu, Bo

    2012-01-01

    An ionic liquid (IL) trihexyltetradecylphosphonium bis(2-ethylhexyl) phosphate has been investigated as a potential anti-wear lubricant additive. Unlike most other ILs that have very low solubility in non-polar fluids, this IL is fully miscible with various hydrocarbon oils. In addition, it is thermally stable up to 347 oC, showed no corrosive attack to cast iron in ambient environment, and has excellent wettability on solid surfaces (e.g., contact angle on cast iron <8o). Most importantly, this phosphonium-based IL has demonstrated effective anti-scuffing and anti-wear characteristics when blended with lubricating oils. For example, a 5 wt.% addition into a synthetic base oil eliminatedmore » the scuffing failure experienced by the neat oil and, as a result, reduced the friction coefficient by 60% and the wear rate by three orders of magnitude. A synergistic effect on wear protection was observed with the current anti-wear additive when added into a fully-formulated engine oil. Nanostructure examination and composition analysis revealed a tribo-boundary film and subsurface plastic deformation zone for the metallic surface lubricated by the IL-containing lubricants. This protective boundary film is believed to be responsible for the IL s anti-scuffing and anti-wear functionality.« less

  3. Numerical study on the lubrication performance of compression ring-cylinder liner system with spherical dimples

    PubMed Central

    Liu, Cheng; Zhang, Yong-Fang; Li, Sha; Müller, Norbert

    2017-01-01

    The effects of surface texture on the lubrication performance of a compression ring-cylinder liner system are studied in this paper. By considering the surface roughness of the compression ring and cylinder liner, a mixed lubrication model is presented to investigate the tribological behaviors of a barrel-shaped compression ring-cylinder liner system with spherical dimples on the liner. In order to determine the rupture and reformulation positions of fluid film accurately, the Jacoboson-Floberg-Olsson (JFO) cavitation boundary condition is applied to the mixed lubrication model for ensuring the mass-conservative law. On this basis, the minimum oil film thickness and average friction forces in the compression ring-cylinder liner system are investigated under the engine-like conditions by changing the dimple area density, radius, and depth. The wear load, average friction forces, and power loss of the compression ring-cylinder liner system with and without dimples are also compared for different compression ring face profiles. The results show that the spherical dimples can produce a larger reduction of friction in mixed lubrication region, and reduce power loss significantly in the middle of the strokes. In addition, higher reduction percentages of average friction forces and wear are obtained for smaller crown height or larger axial width. PMID:28732042

  4. Laser irradiation-induced laminated graphene/MoS2 composites with synergistically improved tribological properties

    NASA Astrophysics Data System (ADS)

    Luo, Ting; Chen, Xinchun; Li, Peisheng; Wang, Ping; Li, Cuncheng; Cao, Bingqiang; Luo, Jianbin; Yang, Shikuan

    2018-06-01

    Engineering lubricant additives that have extraordinary friction reduction and anti-wear performance is critical to almost any modern mechanical machines. Here, we demonstrate the fabrication of laminated lubricant additives that can combine the advantages of zero-dimensional nanospheres and two-dimensional nanosheets. A simple in situ laser irradiation method is developed to prepare the laminated composite structure composed of ideally ultrasmooth MoS2 sub-microspheres embedded within multiple layers of graphene. These ultrasmooth MoS2 spheres within the laminated structure can change sliding friction into rolling friction under strong shear force created by moving contact surfaces to significantly reduce the friction. Meantime, the graphene layers can behave as ‘protection pads’ to efficiently avoid the formation of scars on the metal-to-metal contact surfaces. Overall, the laminated composites as lubricant additives synergistically improve the friction reduction and anti-wear properties. Additionally, due to the unique loosely packed laminated structure, the composites can stably disperse in the lubricant for more than 15 d and work under high temperatures without being oxidized. Such constructed laminated composites with outstanding tribological properties by an in situ laser irradiation method supply a new concept in designing lubricant additives that can combine the advantages of 0D and 2D structures.

  5. Are UK undergraduate Forensic Science degrees fit for purpose?

    PubMed

    Welsh, Charles; Hannis, Marc

    2011-09-01

    In October 2009 Skills for Justice published the social research paper 'Fit for purpose?: Research into the provision of Forensic Science degree programmes in UK Higher Education Institutions.' The research engaged employers representing 95% of UK Forensic Science providers and 79% of UK universities offering Forensic Science or Crime Scene degree programmes. In addition to this, the research collected the views of 430 students studying these degrees. In 2008 there were approximately 9000 people working in the Forensic Science sector in the UK. The research found that the numbers of students studying Forensic Science or Crime Scene degrees in the UK have more than doubled since 2002-03, from 2191 in to 5664 in 2007-08. Over the same period there were twice as many females as males studying for these degrees. The research concluded that Forensic Science degree programmes offered by UK universities were of a good quality and they provided the student with a positive learning experience but the content was not relevant for Forensic Science employers. This echoed similar research by the former Government Department for Innovation, Universities and Skills on graduates from wider science, technology, engineering and mathematics degree programmes. The research also found that 75% of students studying Forensic Science or Crime Scene degrees expected to have a career in the Forensic Science sector, meaning that ensuring these courses are relevant for employers is a key challenge for universities. This paper reflects on the original research and discusses the implications in light of recent government policy. Copyright © 2011 Forensic Science Society. Published by Elsevier Ireland Ltd. All rights reserved.

  6. The 300 H.P. Benz Aircraft Engine

    NASA Technical Reports Server (NTRS)

    Heller, A

    1921-01-01

    A description is given of the Benz 12-cylinder aircraft engine. The 300 H.P. engine, with the cylinders placed at an angle of 60 degrees not only realizes a long-cherished conception, but has received refinement in detail. It may be described as a perfect example of modern German aircraft engine construction. Here, a detailed description is given of the construction of this engine. Emphasis is placed on the design and construction of the cylinders, pistons, and connecting rods. Also discussed are engine fitting, lubrication, oil pumps, bearings, the oil tank, fuel pump, carburetors, and cooling system.

  7. Hypernated supercritical fluid chromatography: potential application for car lubricant analysis.

    PubMed

    Lavison-Bompard, Gwenaelle; Bertoncini, Fabrice; Thiébaut, Didier; Beziau, Jean-François; Carrazé, Bernadette; Valette, Pascale; Duteurtre, Xavier

    2012-12-28

    Car lubricant additives are added to mineral or synthetic base stocks to improve viscosity and resistance to oxidation of the lubricant and to limit wear of engines. In previous papers related to this purpose, it was demonstrated that SFC allows the elution of common low molecular weight additives. Since their total resolution could not be achieved owing to the limited peak capacity of packed columns, the hyphenation of selective and informative detectors, atomic emission and mass spectrometry, were also carried out for identification. This paper describes the final implementation of a packed column SFC/FID-UV-AED-FTIR-MS system to contribute to the characterisation of both the base stock, mineral or semi-synthetic, and the low molecular weight additives. SFC/FID-UV-FTIR ensures the easy confirmation of the presence of esters in the base stock. Reference additives are used to demonstrate the performances of the multi hyphenated system prior to its implementation for their identification in packages and in formulated lubricants. Identification and partial structure elucidation of additives and families of additives in package and formulated car lubricants are presented: using combined information obtained from AED traces and FTIR chemigrams, chemical families of additives can be deduced. Then, the mass spectra can be interpreted in the elution zone of interest in order to go further in the determination of the additive molecular structure. The hypernated SFC system was also employed to follow the ageing of car lubricants. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Nanofluid as coolant for grinding process: An overview

    NASA Astrophysics Data System (ADS)

    Kananathan, J.; Samykano, M.; Sudhakar, K.; Subramaniam, S. R.; Selavamani, S. K.; Manoj Kumar, Nallapaneni; Keng, Ngui Wai; Kadirgama, K.; Hamzah, W. A. W.; Harun, W. S. W.

    2018-04-01

    This paper reviews the recent progress and applications of nanoparticles in lubricants as a coolant (cutting fluid) for grinding process. The role of grinding machining in manufacturing and the importance of lubrication fluids during material removal are discussed. In grinding process, coolants are used to improve the surface finish, wheel wear, flush the chips and to reduce the work-piece thermal deformation. The conventional cooling technique, i.e., flood cooling delivers a large amount of fluid and mist which hazardous to the environment and humans. Industries are actively looking for possible ways to reduce the volume of coolants used in metal removing operations due to the economical and ecological impacts. Thus as an alternative, an advanced cooling technique known as Minimum Quantity Lubrication (MQL) has been introduced to the enhance the surface finish, minimize the cost, to reduce the environmental impacts and to reduce the metal cutting fluid consumptions. Nanofluid is a new-fangled class of fluids engineered by dispersing nanometre-size solid particles into base fluids such as water, lubrication oils to further improve the properties of the lubricant or coolant. In addition to advanced cooling technique review, this paper also reviews the application of various nanoparticles and their performance in grinding operations. The performance of nanoparticles related to the cutting forces, surface finish, tool wear, and temperature at the cutting zone are briefly reviewed. The study reveals that the excellent properties of the nanofluid can be beneficial in cooling and lubricating application in the manufacturing process.

  9. Wear behavior of electroless Ni-P-W coating under lubricated condition - a Taguchi based approach

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Arkadeb; Duari, Santanu; Barman, Tapan Kumar; Sahoo, Prasanta

    2016-09-01

    The present study aims to investigate the tribological behavior of electroless Ni-P-W coating under engine oil lubricated condition to ascertain its suitability in automotive applications. Coating is deposited onto mild steel specimens by the electroless method. The experiments are carried out on a pin - on - disc type tribo tester under lubrication. Three tribotesting parameters namely the applied normal load, sliding speed and sliding duration are varied at their three levels and their effects on the wear depth of the deposits are studied. The experiments are carried out based on the combinations available in Taguchi's L27 orthogonal array (OA). Optimization of the tribo-testing parameters is carried out using Taguchi's S/N ratio method to minimize the wear depth. Analysis of variance carried out at a confidence level of 99% indicates that the sliding speed is the most significant parameter in controlling the wear behavior of the deposits. Coating characterization is done using scanning electron microscope, energy dispersive X-ray analysis and X-ray diffraction techniques. It is seen that the wear mechanism under lubricated condition is abrasive in nature.

  10. Experimental investigation, model development and sensitivity analysis of rheological behavior of ZnO/10W40 nano-lubricants for automotive applications

    NASA Astrophysics Data System (ADS)

    Hemmat Esfe, Mohammad; Saedodin, Seyfolah; Rejvani, Mousa; Shahram, Jalal

    2017-06-01

    In the present study, rheological behavior of ZnO/10W40 nano-lubricant is investigated by an experimental approach. Firstly, ZnO nanoparticles of 10-30 nm were dispersed in 10W40 engine oil with solid volume fractions of 0.25-2%, then the viscosity of the composed nano-lubricant was measured in temperature ranges of 5-55 °C and in various shear rates. From analyzing the results, it was revealed that both of the base oil and nano-lubricants are non-Newtonian fluids which exhibit shear thinning behavior. Sensitivity of viscosity to the solid volume fraction enhancement was calculated by a new correlation which was proposed in terms of solid volume fraction and temperature. In order to attain an accurate model by which experimental data are predicted, an artificial neural network (ANN) with a hidden layer and 5 neurons was designed. This model was considerably accurate in predicting experimental data of dynamic viscosity as R-squared and average absolute relative deviation (AARD %) were respectively 0.9999 and 0.0502.

  11. An Investigation on the Tribological Performances of the SiO2/MoS2 Hybrid Nanofluids for Magnesium Alloy-Steel Contacts.

    PubMed

    Xie, Hongmei; Jiang, Bin; Liu, Bo; Wang, Qinghang; Xu, Junyao; Pan, Fusheng

    2016-12-01

    Hybrid nano-materials offer potential scope for an increasing numerous novel applications when engineered to deliver availably functional properties. In the present study, the SiO2/MoS2 hybrid nanoparticles with different mass ratios were employed as lubricant additives in the base oil, and their tribological properties were evaluated using a reciprocating ball-on-plate tribometer for magnesium alloy-steel contacts. The results demonstrate that the SiO2/MoS2 hybrid nanoparticles exhibit superior lubrication performances than individual nano-SiO2 or nano-MoS2 even in high load and diverse velocity cases. The optimal SiO2/MoS2 mixing ratio and the concentration of SiO2/MoS2 hybrid nanoparticles in the base oil are 0.25:0.75 and 1.00-1.25 wt%, respectively. The excellent lubrication properties of the SiO2/MoS2 hybrid nanoparticles are attributed to the physical synergistic lubricating actions of nano-SiO2 and nano-MoS2 during the rubbing process.

  12. An Investigation on the Tribological Performances of the SiO2/MoS2 Hybrid Nanofluids for Magnesium Alloy-Steel Contacts

    NASA Astrophysics Data System (ADS)

    Xie, Hongmei; Jiang, Bin; Liu, Bo; Wang, Qinghang; Xu, Junyao; Pan, Fusheng

    2016-07-01

    Hybrid nano-materials offer potential scope for an increasing numerous novel applications when engineered to deliver availably functional properties. In the present study, the SiO2/MoS2 hybrid nanoparticles with different mass ratios were employed as lubricant additives in the base oil, and their tribological properties were evaluated using a reciprocating ball-on-plate tribometer for magnesium alloy-steel contacts. The results demonstrate that the SiO2/MoS2 hybrid nanoparticles exhibit superior lubrication performances than individual nano-SiO2 or nano-MoS2 even in high load and diverse velocity cases. The optimal SiO2/MoS2 mixing ratio and the concentration of SiO2/MoS2 hybrid nanoparticles in the base oil are 0.25:0.75 and 1.00-1.25 wt%, respectively. The excellent lubrication properties of the SiO2/MoS2 hybrid nanoparticles are attributed to the physical synergistic lubricating actions of nano-SiO2 and nano-MoS2 during the rubbing process.

  13. Enhancing the properties of Fischer-Tropsch fuel produced from syngas over Co/SiO2 catalyst: Lubricity and Calorific Value

    NASA Astrophysics Data System (ADS)

    Doustdar, O.; Wyszynski, M. L.; Mahmoudi, H.; Tsolakis, A.

    2016-09-01

    Bio-fuel produced from renewable sources is considered the most viable alternatives for the replacement of mineral diesel fuel in compression ignition engines. There are several options for biomass derived fuels production involving chemical, biological and thermochemical processes. One of the best options is Fischer Tropsch Synthesis, which has an extensive history of gasoline and diesel production from coal and natural gas. FTS fuel could be one of the best solutions to the fuel emission due to its high quality. FTS experiments were carried out in 16 different operation conditions. Mini structured vertical downdraft fixed bed reactor was used for the FTS. Instead of Biomass gasification, a simulated N2 -rich syngas cylinder of, 33% H2 and 50% N2 was used. FT fuels products were analyzed in GCMS to find the hydrocarbon distributions of FT fuel. Calorific value and lubricity of liquid FT product were measured and compared with commercial diesel fuel. Lubricity has become an important quality, particularly for biodiesel, due to higher pressures in new diesel fuel injection (DFI) technology which demands better lubrication from the fuel and calorific value which is amount of energy released in combustion paly very important role in CI engines. Results show that prepared FT fuel has desirable properties and it complies with standard values. FT samples lubricities as measured by ASTM D6079 standard vary from 286μm (HFRR scar diameter) to 417μm which are less than limit of 520μm. Net Calorific value for FT fuels vary from 9.89 MJ/kg to 43.29 MJ/kg, with six of the samples less than EN 14213 limit of 35MJ/kg. Effect of reaction condition on FT fuel properties was investigated which illustrates that in higher pressure Fischer-Tropsch reaction condition liquid product has better properties.

  14. Complete modeling for systems of a marine diesel engine

    NASA Astrophysics Data System (ADS)

    Nahim, Hassan Moussa; Younes, Rafic; Nohra, Chadi; Ouladsine, Mustapha

    2015-03-01

    This paper presents a simulator model of a marine diesel engine based on physical, semi-physical, mathematical and thermodynamic equations, which allows fast predictive simulations. The whole engine system is divided into several functional blocks: cooling, lubrication, air, injection, combustion and emissions. The sub-models and dynamic characteristics of individual blocks are established according to engine working principles equations and experimental data collected from a marine diesel engine test bench for SIMB Company under the reference 6M26SRP1. The overall engine system dynamics is expressed as a set of simultaneous algebraic and differential equations using sub-blocks and S-Functions of Matlab/Simulink. The simulation of this model, implemented on Matlab/Simulink has been validated and can be used to obtain engine performance, pressure, temperature, efficiency, heat release, crank angle, fuel rate, emissions at different sub-blocks. The simulator will be used, in future work, to study the engine performance in faulty conditions, and can be used to assist marine engineers in fault diagnosis and estimation (FDI) as well as designers to predict the behavior of the cooling system, lubrication system, injection system, combustion, emissions, in order to optimize the dimensions of different components. This program is a platform for fault simulator, to investigate the impact on sub-blocks engine's output of changing values for faults parameters such as: faulty fuel injector, leaky cylinder, worn fuel pump, broken piston rings, a dirty turbocharger, dirty air filter, dirty air cooler, air leakage, water leakage, oil leakage and contamination, fouling of heat exchanger, pumps wear, failure of injectors (and many others).

  15. Engineering Design Handbook: Maintenance Engineering Techniques

    DTIC Science & Technology

    1975-06-30

    resistance and lustrous appearance. Relatively expensive. Spec- ify hard chrome plate for exceptionally hard abrasion-resistant surface . Has low...36 Bearing Seals 3-36 Derating 3-37 Lubrication 3-37 Fixed Joints 3-37 Self-adjusting Components ." 3-38 Corrosion Aspects 3-38 Material...Troubleshooting Considerations by Army Command Category •■■ Fixed Plant/Defense Communications and USASA Equipment Army Aircraft Automotive and

  16. Evaluation of scanning earth sensor mechanism on engineering test satellite 4

    NASA Technical Reports Server (NTRS)

    Ikeuchi, M.; Wakabayashi, Y.; Ohkami, Y.; Kida, T.; Ishigaki, T.; Matsumoto, M.

    1983-01-01

    The results of the analysis and the evaluation of flight data obtained from the horizon sensor test project are described. The rotary mechanism of the scanning earth sensor composed of direct drive motor and bearings using solid lubricant is operated satisfactorily. The transmitted flight data from Engineering Test Satellite IV was evaluated in comparison with the design value.

  17. TEST/QA PLAN FOR THE VERIFICATION TESTING OF ALTERNATIVES OR REFORMULATED LIQUID FUELS, FUEL ADDITIVES, FUEL EMULSONS, AND LUBRICANTS FOR HIGHWAY AND NONROAD USE HEAVY DUTY DIESEL ENGINES AND LIGHT DUTY GASOLINE ENGINES AND VEHICLES

    EPA Science Inventory

    The U.S. Environmental Protection Agency established the Environmental Technology Verification Program to accelerate the development and commercialization of improved environmental technology through third party verification and reporting of product performance. Research Triangl...

  18. BOOK REVIEW: Tribology on the Small Scale: A Bottom Up Approach to Friction, Lubrication, and Wear Tribology on the Small Scale: A Bottom Up Approach to Friction, Lubrication, and Wear

    NASA Astrophysics Data System (ADS)

    Hainsworth, S.

    2008-11-01

    Friction, lubrication and wear interactions between materials make considerable differences to how efficient our engines are, whether or not we ski downhill faster than others, or whether the shoes that we are wearing give us sufficient grip to successfully navigate the marble floors of buildings. Traditionally, tribologists have focussed on the macroscopic issues of tribological problems, looking at the design of components, the viscosity of oils and the mechanical properties of surfaces to understand how components interact to give the desired friction and wear properties. However, in the last twenty years there has been an increasing realization that the processes that are controlling these macroscopic interactions are determined by what happens on the atomic and microscopic scale. Further, with the advent of nano- and micro-electro mechanical systems (NEMs and MEMs), macroscopic scale tribological interactions do not influence the tribology of these devices in the same way, and capillary forces and van der Waal's forces play an increased role in determining whether these devices function successfully. This book aims to fill a gap in the area of tribology textbooks by addressing the important advances that have been made in our understanding of the science of nano- and micro-scale tribological interactions. The book is aimed at advanced undergraduate and graduate level students on engineering programmes, academics and scientists interested in atomic and microscopic scale tribological interactions, and engineers and scientists who are not tribologists per se but work in technologies (such as NEMs/MEMs) where tribology is of importance. Whilst the target audience appears to be largely engineers, the book should have wider appeal to physicists, chemists and modellers with interests in tribological interactions. The book consists of twelve chapters with an introduction to the general significance of tribology and a brief history of modern tribology, followed by more detailed coverage of characterization and quantification of surface roughness. There is then a discussion of the mechanical properties of surfaces, and an introduction to contact mechanics. This follows a similar structure to traditional tribology textbooks but there are some nice examples and illustrations of how this relates to small scale tribology, with reference to recording heads on laser textured disk surfaces for example. The origins of friction are then discussed, with a detailed section on stick-slip interactions which are particularly significant in tribological interactions at the small scale. Chapters 5-8 then deviate from the more traditional tribology textbooks and cover surface energies and capillary forces, surface forces and their physical origins, and the measurement of these forces by the surface force apparatus and atomic force microscope. Surface forces at the small scale and capillary forces are extremely important in the successful functioning of small scale nano- or micro-electro mechanical systems, and there is a good discussion of the origin of these forces and how they can be understood, measured and controlled. The final chapters are devoted to lubrication, and atomistic origins of friction and wear. Traditional lubrication theories are initially outlined followed by detailed examples of boundary lubrication and capillary forces in tribology at the micro-scale. There are some nice examples of the importance of lubricant chemistry on sliding forces. Overall I found this book to be well-written and very readable with some very nice examples of why all this fundamental background is of importance in practical applications. The book is well-presented and it should be accessible to its target audience, particularly since the cost is reasonable. Each chapter ends with a set of selected references to allow more detailed study of particular topics if desired. There is a comprehensive index at the end of the book. I will recommend it to my students on courses on tribology and surface engineering.

  19. Lubrication contributes to improved landfill cogeneration plant operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-10-01

    The Prince George`s county, Maryland, cogeneration plant consists of three lean-burn, 12-cylinder, Waukesha 5790GL turbocharged gas engines, each powering an 850 kW Kato generator. Four Waukesha F1197G engines run gas compressors that draw and compress gas from the landfill, pumping an average of 28000 m{sup 3}/day at 6.2 bar from 29 wells. Landfill gas is 50% methane, 30% carbon dioxide, 10% nitrogen and 10% other gas constituents. These other gas constituents consist of 160 chemical compounds, many of which are very destructive to engines and other equipment. Probably the worst of these are the total organic halide expressed as chloridemore » (TOH/CL), formed from the decomposition of household cleaning preparations and other materials containing chlorides. Landfill gas also contains an abundance of water, which combines not only with the TOH/CLs but with oxides of nitrogen, which are by-products of the combustion process, to form acids. To handle the highly contaminated landfill gas, the Waukesha Engine Division and people from Curtis Engine and Equipment modified the equipment and maintenance practices. One of the first changes was in lubrication. Curtis switched from a standard gas engine oil to Mobile Pegasus 446 oil, an SAE 40 oil that has a total base number (TBN) of 9.5, because of its extended acid-neutralizing capabilities.« less

  20. Engineered soy oils for new value added applications

    NASA Astrophysics Data System (ADS)

    Tran, Phuong T.

    Soybean oil is an abundant annually renewable resource. It is composed of triglycerides with long chain saturated and unsaturated fatty acids. The presence of unsaturated fatty acids allows for chemical modification to introduce new functionalities to soybean oil. A portfolio of chemically modified soy oil with suitable functional groups has been designed and engineered to serve as the starting material in applications such as polyamides, polyesters, polyurethanes, composites, and lubricants. Anhydride, hydroxyl, and silicone functionalities were introduced to soy oil. Anhydride functionality was introduced using a single-step free radical initiated process, and the chemically modified soy oils were evaluated for potential applications as a composite and lubricant. Hydroxyl functionalities were introduced in a single-step catalytic ozonolysis process recently developed in our labs, which proceeds rapidly and efficiently at room temperature without solvent. The transformed soy oil was used to successfully prepare bio-lubricants with good thermal/oxidative stability and bio-plastics such as polyamides, polyesters, and polyurethanes. A new class of organic-inorganic hybrid materials was prepared by curing vinyltrimethoxysilane functionalized soy oil. This hybrid material could have potential as biobased sealant through a moisture initiated room temperature cure. These new classes of soy-based materials are competitive both in cost and performance to petroleum based materials, but offer the advantage of being biobased.

  1. Wear resistance evaluation of palm fatty acid distillate using four-ball tribotester

    NASA Astrophysics Data System (ADS)

    Golshokouh, Iman; Ani, Farid Nasir; Syahrullail, S.

    2012-06-01

    Petroleum reserves are declining nowadays while ironically petroleum is a major source of pollution despite many uses. Researchers are in effort to find an alternative to replace petroleum as a lubricant. One of the best replace sources for petroleum is bio-oil. In this paper, a comparative study of friction and wear was carried out using a fourball tester. In this research, Palm Fatty Acid Distillate (PFAD) and Jatropha oil, two well-known oils from the vegetable family oils were compared with Hydraulic mineral oil and commercial mineral Engine oil. All investigated oils in this study are used in industries as lubricants. PFAD is a product from refined crude palm oil. It exists as a light brown solid at room temperature and Jatropa oil is produced from the seeds of the Jatropha cruces, a plant that grows in marginal lands. For the wear test, the experimental research condition was comparing four kind of oils with ASTM condition in which the load applied was 392N. The sliding speed was 1200rpm under the lubricant temperature of 75 degree Celsius. The experiment was run for 3600 seconds. The experimental results demonstrated that the PFAD and Jatropha oils exhibited better performance in term of friction and wear compared to Hydraulic and Engine mineral oils.

  2. Potential of Diesel Engines, Fuels and Lubrication Technology

    DOT National Transportation Integrated Search

    1980-03-01

    The chemical and physical properties of diesel fuel are reviewed along with their relationships to the fuel economy and emissions of diesel powered automobiles and light trucks. The fuels considered include both conventional and alternative diesel fu...

  3. Propulsion and Power Rapid Response R&D Support. Task Order 0006: Engineering Research, Testing, and Technical Analyses of Advanced Propulsion Combustion Concepts, Mechanical Systems, Lubricants and Fuels: Mechanical Systems

    DTIC Science & Technology

    2009-02-01

    element state data are provided. (3) The objective of the third study conducted by PKG, Inc. was to conduct geometric modeling of race defects...A., (1995), “The effect of test machine on the failure mode in lubricated rolling contact of silicon nitride,” Tribology International, Vol. 28, pp...A192. (10) Crook, A. W. (1952), A study of some impacts between metal bodies by a piezoelectric method, Proceedings of Royal Society, A212. (11

  4. Status of Understanding for Seal Materials

    NASA Technical Reports Server (NTRS)

    Brown, P. F.

    1984-01-01

    Material selection for mainshaft face and ring seals, labyrinth seals, accessory gearbox face seals, and lip seals are discussed in light of tribology requirements and a given seal application. Carbon graphite has been found to be one of the best sealing materials and it is widely used in current gas turbine mainshaft and accessory gearbox seals. Its popularity is due to its unique combination of properties which consists of dimensional stability, corrosion resistance, low friction, good self lubricating characteristics, high thermal conductivity and low thermal expansion, the latter two properties combining to provide good thermal shock resistance. A brief description of the seals and the requirements they must meet are discussed to provide insight into the limitations and advantages of the seals in containing the lubricant. A forecast is made of the operational requirements of main shaft and gearbox seals for advanced engines and candidate materials and coatings that may satisfy these advanced engine requirements.

  5. Conductometric Sensors for Monitoring Degradation of Automotive Engine Oil†

    PubMed Central

    Latif, Usman; Dickert, Franz L.

    2011-01-01

    Conductometric sensors have been fabricated by applying imprinted polymers as receptors for monitoring engine oil quality. Titania and silica layers are synthesized via the sol-gel technique and used as recognition materials for acidic components present in used lubricating oil. Thin-film gold electrodes forming an interdigitated structure are used as transducers to measure the conductance of polymer coatings. Optimization of layer composition is carried out by varying the precursors, e.g., dimethylaminopropyltrimethoxysilane (DMAPTMS), and aminopropyl-triethoxysilane (APTES). Characterization of these sensitive materials is performed by testing against oil oxidation products, e.g., carbonic acids. The results depict that imprinted aminopropyltriethoxysilane (APTES) polymer is a promising candidate for detecting the age of used lubricating oil. In the next strategy, polyurethane-nanotubes composite as sensitive material is synthesized, producing appreciable differentiation pattern between fresh and used oils at elevated temperature with enhanced sensitivity. PMID:22164094

  6. Behaviors of Polymer Additives Under EHL and Influences of Interactions Between Additives on Friction Modification

    NASA Technical Reports Server (NTRS)

    Sakurai, T.

    1984-01-01

    Polymer additives have become requisite for the formulation of multigrade engine oils. The behavior of polymethacrylate (PMA)-thickened oils as lubricants in concentrated contacts under nominal rolling and pure sliding conditions was investigated by conventional optical interferometry. The PMA thickened oils behaved differently from the base oil in the formation of elastohydrodynamic (EHL) films. The higher the elastohydrodynamic molecular weight of the PMA contained in the lubricant, the thinner was the oil film under EHL conditions. The film thickness of shear-degraded PMA-thickened oils was also investigated. The behavior of graphite particles dispersed in both the base oil and the PMA-thickened oil was studied under pure sliding by taking photomicrographs. Many kinds of additives are contained in lubricating oil and the interactions between additives are considered. The interactions of zinc-organodithiophosphates (ZDP) with other additives is discussed.

  7. Lubricant additive concentrate containing isomerized jojoba oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arndt, G.

    1987-05-12

    This patent describes a crankcase motor oil additive concentrate intended to be added to a conventional crankcase motor oil to improve its ability to lubricate and protect the engine. The additive concentrate comprises the following components: A petroleum base stock of lubricating quality and viscosity. The base stock comprises from about 13.5 to 90 weight percent of the additive concentrate; a detergent-inhibitor package. The package is present at from about 7 to about 40 weight percent of the concentrate; a supplemental antiwear additive selected from the salts of dialkyl dithiophosporic acids. The additive is present at a level of frommore » about 1 to about 10 weight percent of the concentrate; and a supplemental antiwear additive selected from the class of sulfurized olefins. The additive is present at a level of from about 1 to about 10 weight percent of the concentrate.« less

  8. Wettability and friction coefficient of micro-magnet arrayed surface

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Liao, Sijie; Wang, Xiaolei

    2012-01-01

    Surface coating is an important part of surface engineering and it has been successfully used in many applications to improve the performance of surfaces. In this paper, magnetic arrayed films with different thicknesses were fabricated on the surface of 316 stainless steel disks. Controllable colloid - ferrofluids (FF) was chosen as lubricant, which can be adsorbed on the magnetic surface. The wettability of the micro-magnet arrayed surface was evaluated by measuring the contract angle of FF drops on surface. Tribological experiments were carried out to investigate the effects of magnetic film thickness on frictional properties when lubricated by FF under plane contact condition. It was found that the magnetic arrayed surface with thicker magnetic films presented larger contract angle. The frictional test results showed that samples with thicker magnetic films could reduce friction and wear more efficiently at higher sliding velocity under the lubrication of FF.

  9. Ceramics Technology Project database: September 1991 summary report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keyes, B.L.P.

    1992-06-01

    The piston ring-cylinder liner area of the internal combustion engine must withstand very-high-temperature gradients, highly-corrosive environments, and constant friction. Improving the efficiency in the engine requires ring and cylinder liner materials that can survive this abusive environment and lubricants that resist decomposition at elevated temperatures. Wear and friction tests have been done on many material combinations in environments similar to actual use to find the right materials for the situation. This report covers tribology information produced from 1986 through July 1991 by Battelle columbus Laboratories, Caterpillar Inc., and Cummins Engine Company, Inc. for the Ceramic Technology Project (CTP). All datamore » in this report were taken from the project`s semiannual and bimonthly progress reports and cover base materials, coatings, and lubricants. The data, including test rig descriptions and material characterizations, are stored in the CTP database and are available to all project participants on request. Objective of this report is to make available the test results from these studies, but not to draw conclusions from these data.« less

  10. Justification of Estimates for Fiscal Year 1983 Submitted to Congress.

    DTIC Science & Technology

    1982-02-01

    hierarchies to aid software production; completion of the components of an adaptive suspension vehicle including a storage energy unit, hydraulics, laser...and corrosion (long storage times), and radiation-induced breakdown. Solid- lubricated main engine bearings for cruise missile engines would offer...environments will cause "soft error" (computational and memory storage errors) in advanced microelectronic circuits. Research on high-speed, low-power

  11. Mystery of Foil Air Bearings for Oil-free Turbomachinery Unlocked: Load Capacity Rule-of-thumb Allows Simple Estimation of Performance

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Valco, Mark J.

    2002-01-01

    The Oil-Free Turbomachinery team at the NASA Glenn Research Center has unlocked one of the mysteries surrounding foil air bearing performance. Foil air bearings are self-acting hydrodynamic bearings that use ambient air, or any fluid, as their lubricant. In operation, the motion of the shaft's surface drags fluid into the bearing by viscous action, creating a pressurized lubricant film. This lubricating film separates the stationary foil bearing surface from the moving shaft and supports load. Foil bearings have been around for decades and are widely employed in the air cycle machines used for cabin pressurization and cooling aboard commercial jetliners. The Oil-Free Turbomachinery team is fostering the maturation of this technology for integration into advanced Oil-Free aircraft engines. Elimination of the engine oil system can significantly reduce weight and cost and could enable revolutionary new engine designs. Foil bearings, however, have complex elastic support structures (spring packs) that make the prediction of bearing performance, such as load capacity, difficult if not impossible. Researchers at Glenn recently found a link between foil bearing design and load capacity performance. The results have led to a simple rule-of-thumb that relates a bearing's size, speed, and design to its load capacity. Early simple designs (Generation I) had simple elastic (spring) support elements, and performance was limited. More advanced bearings (Generation III) with elastic supports, in which the stiffness is varied locally to optimize gas film pressures, exhibit load capacities that are more than double those of the best previous designs. This is shown graphically in the figure. These more advanced bearings have enabled industry to introduce commercial Oil-Free gas-turbine-based electrical generators and are allowing the aeropropulsion industry to incorporate the technology into aircraft engines. The rule-of-thumb enables engine and bearing designers to easily size and select bearing technology for a new application and determine the level of complexity required in the bearings. This new understanding enables industry to assess the feasibility of new engine designs and provides critical guidance toward the future development of Oil-Free turbomachinery propulsion systems.

  12. Feasibility of magnetic bearings for advanced gas turbine engines

    NASA Technical Reports Server (NTRS)

    Hibner, David; Rosado, Lewis

    1992-01-01

    The application of active magnetic bearings to advanced gas turbine engines will provide a product with major improvements compared to current oil lubricated bearing designs. A rethinking of the engine rotating and static structure design is necessary and will provide the designer with significantly more freedom to meet the demanding goals of improved performance, increased durability, higher reliability, and increased thrust to weight ratio via engine weight reduction. The product specific technology necessary for this high speed, high temperature, dynamically complex application has been defined. The resulting benefits from this approach to aircraft engine rotor support and the complementary engine changes and improvements have been assessed.

  13. A Survey of Aircraft Ground Support Equipment Utilization and Oil Condition at the Mandatory Six Month Inspection

    DTIC Science & Technology

    2016-09-30

    In parallel with the oil change interval study an engineering evaluation of a handheld oil condition analyzer was conducted. Within the limitations...of the study of diesel engine powered AGE assets at two U.S. Air Force locations, assets monitored were not impacted by eliminating the 6-month oil...limitations of the study , conclusions can be made from the cumulative knowledge of analyzing crankcase lubricants of diesel engine powered AGE assets

  14. Motor vehicle technology:Mobility for prosperity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1985-01-01

    This book presents the papers given at a conference on internal combustion engines for vehicles. Topics considered at the conference included combustion chambers, the lubrication of turbocharged engines, oil filters, fuel consumption, traffic control, crashworthiness, brakes, acceleration, unleaded gasoline, methanol fuels, pressure drop, safety regulations, tire vibration, detergents, fuel economy, ceramics in engines, steels, catalytic converters, fuel additives, heat exchangers, pump systems, emissions control, fuel injection systems, noise pollution control, natural gas fuels, assembly plant productivity, aerodynamics, torsion, electronics, and automatic transmissions.

  15. Modified Thermoresponsive Hyperbranched Polymers for Improved Viscosity and Enhanced Lubricity of Engine Oils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cosimbescu, Lelia; Robinson, Joshua W.; Bays, John Timothy

    The manuscript captures the chronological succession of the molecular design progression through multiple architectures and topologies of the polymeric viscosity index improvers and their rheology bench test performance. Tribology testing was also performed on selected analogs and their friction and wear was evaluated. Finally, a top performing polymer was selected for engine testing, scaled-up, and its rheological performance in a complete formulation was assessed. The engine performance of the viscosity index improver was examined against an industry-established baseline.

  16. Tribological Performance of M50-Ag-TiC Self-Lubricating Composites at Elevated Temperature

    NASA Astrophysics Data System (ADS)

    Zhou, Hongyan; Shi, Xiaoliang; Huang, Yuchun; Liu, Xiyao; Li, Ben

    2018-05-01

    M50 steel is widely used in aero-engine bearings and other high-temperature bearings. However, the poor wear of M50 steel resistance restrains its further applications. In this paper, the sliding tribological behaviors of M50 steel, M50-Ag composites (MAC) and M50-Ag-TiC composites (MATC) against Si3N4 ball were investigated from 150 to 600 °C at 15 N-0.2 m/s. MATC showed better tribological properties in comparison with M50 and MAC. Especially at 450 °C, MATC obtained the lowest friction coefficient of 0.15 and smallest wear rate of 1.3 × 10-5 mm3 N-1 m-1. The excellent tribological performance of MATC during the friction test was attributed to the continuous lubricating film containing lubricant Ag and reinforcement TiC, as well as the subsurface compacted layer that could well support the lubricating film to prevent it from being destroyed. At 600 °C, because of the tribo-chemical reaction between Ag and Mo oxide during sliding process, the newly formed Ag2MoO4 lubricating film was well spread out on the friction surface, which could continuously improve the tribological behavior of MATC. This investigation was meaningful to improve the anti-friction and wear resistance of M50 matrix bearing over a wide temperature range.

  17. Effect of Ti3SiC2 on Tribological Properties of M50 Matrix Self-Lubricating Composites from 25 to 450 °C

    NASA Astrophysics Data System (ADS)

    Deng, Xiaobin; Shi, Xiaoliang; Liu, Xiyao; Huang, Yuchun; Yan, Zhao; Yang, Kang; Wang, Yufu

    2017-09-01

    The tribological performance is a key factor for M50 steel that is widely used in aero-engine main-shaft bearings. In this study, the tribological properties of M50 matrix self-lubricating composites with different contents of Ti3SiC2 against Si3N4 ceramic counterpart are investigated at 15 N-0.2 m/s from 25 to 450 °C. The results showed that M50 with 10 wt.% Ti3SiC2 (MT10) exhibits the lower friction coefficients (0.21-0.78) and less wear rates (1.78-3.14 × 10-6 mm3 N-1 m-1) at 25-450 °C. Especially at 350 °C, MT10 shows the lowest friction coefficient and wear rate owing to the formation of smooth lubricating layer containing Ti3SiC2 and oxides. Ti3SiC2 and compacted Ti-Si-oxides are uniformly distributed in the lubricating layer, which can well improve the anti-friction and anti-wear performance of MT10. The mechanically mixed layer containing massive Ti3SiC2 can sustain the lubricating layer, resulting in the increase of anti-wear performance of MT10. MT10 could be applied under the practical conditions of friction and wear for its outstanding anti-friction and anti-wear performance.

  18. The analysis of quantitative methods for renewable fuel processes and lubricant of materials derived from plastic waste

    NASA Astrophysics Data System (ADS)

    Rajagukguk, J. R.

    2018-01-01

    Plastic has become an important component in modern life today. Its role has replaced wood and metal, given its advantages such as light and strong, corrosion resistant, transparent and easy to color and good insulation properties. The research method is used with quantitative and engineering research methods. Research objective is to convert plastic waste into something more economical and to preserve the environment surrounding. Renewable fuel and lubricant variables are simultaneously influenced significantly to the sustainable environment. This is based on Fh> Ft of 62.101> 4.737) and its significance is 0.000 < 0.05. Then Ho concluded rejected Ha accepted which means that the variable of renewable fuels and lubricants or very large effect on the environment sustainable, the value of correlation coefficient 0.941 or 94.1% which means there is a very strong relationship between renewable fuel variables and lubricants to the sustainable environment. And utilizing plastic waste after being processed by pyrolysis method produces liquid hydrocarbons having elements of compounds such as crude oil and renewable fuels obtained from calculations are CO2 + H2O + C1-C4 + Residual substances. Then the plastic waste can be processed by isomerization process + catalyst to lubricating oil and the result of chemical calculation obtained is CO2, H2O, C18H21 and the rest.

  19. Hybrid Nanoparticles as Oil Lubricant Additives for Friction and Wear Reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Bin; Dai, Sheng; Qu, Jun

    A new class of organic-inorganic/metallic hybrid nanoparticles (NPs), including oil-soluble polymer brush-grafted metal oxide NPs and organic-modified metallic NPs, was developed and used as oil lubricant additives for friction and wear reduction to improve engine energy efficiency. The tribological properties of these hybrid NPs in polyalphaolefin (PAO) base oil were investigated by high contact stress ball-on-flat reciprocating sliding tribological tests at 100 oC. Using surface-initiated “living”/controlled radical polymerization from initiator- or chain transfer agent-functionalized metal oxide (silica and titania) NPs, we synthesized a series of hairy NPs and systematically studied the effects of molecular weight and chemical composition of graftedmore » polymer brushes on oil dispersibility, stability, and lubrication properties of hairy NPs in PAO. In addition, several types of organic-modified metallic NPs, including silver and palladium NPs, were synthesized by using thiol compounds and ionic liquids (ILs) as ligands. Significant reductions in friction (up to 40%) and wear volume (up to 90%) were achieved by using PAO mixed with hairy NPs or organic-modified metal NPs compared to PAO base oil. Moreover, a positive effect on lubricating performance was observed when oil-soluble hairy silica NPs and an IL were used simultaneously as additives for PAO for friction reduction. The lubrication mechanisms of these hybrid NPs were elucidated by both experimental and simulation studies.« less

  20. The Effects of Cylinder Head Gasket Opening on Engine Temperature Distribution for a Water-Cooled Engine

    NASA Astrophysics Data System (ADS)

    Jang, J. Y.; Chi, G. X.

    2017-02-01

    In a liquid-cooled engine, coolant is pumped throughout the water jacket of the engine, drawing heat from the cylinder head, pistons, combustion chambers, cylinder walls, and valves, etc. If the engine temperature is too high or too low, various problems will occur. These include overheating of the lubricating oil and engine parts, excessive stresses between engine parts, loss of power, incomplete burning of fuel, etc. Thus, the engine should be maintained at the proper operating temperature. This study investigated the effects of different cylinder head gasket opening on the engine temperature distributions in a water-cooled motorcycle engine. The numerical predictions for the temperature distribution are in good agreement with the experimental data within 20%.

  1. Capacitive sensor for engine oil deterioration measurement

    NASA Astrophysics Data System (ADS)

    Shinde, Harish; Bewoor, Anand

    2018-04-01

    A simple system or mechanism for engine Oil (lubricating oil) deterioration monitoring is a need. As engine oil is an important element in I C engines and it is exposed to various strains depending on the operating conditions. If it becomes contaminated with dirt and metal particles, it can become too thick or thin and loses its protective properties, leads to unwanted friction. In turn, to avoid an engine failure, the oil must be changed before it loses its protective properties, which may be harmful to engine which deteriorates vehicle performance. At the same time, changing the lubricant too early, cause inefficient use of already depleting resources, also unwanted impact on the environment and economic reasons. Hence, it will be always helpful to know the quality of the oil under use. With this objective, the research work had been undertaken to develop a simple capacitance sensor for quantification of the quality of oil under use. One of the investigated parameter to quantify oil degradation is Viscosity (as per standard testing procedure: DIN 51562-1). In this research work, an alternative method proposed which analyzing change in capacitance of oil, to quantify the quality of oil underuse and compared to a conventional standard method. The experimental results reported in this paper shows trend for the same. Engine oil of grade SAE 15W40 used for light-duty vehicle, vans and passenger cars is used for experimentation. Suggested method can form a base for further research to develop a cost-effective method for indicating the time to change in engine oil quality have been presented.

  2. The role of forensic anthropology in mass disaster resolution.

    PubMed

    Hinkes, M J

    1989-07-01

    On Dec.12, 1985, a military charter DC-8 crashed shortly after takeoff at Gander, Nfld., Canada. All 256 aboard were killed, making this the deadliest U.S. military aircraft accident in history. The investigation team (consisting of forensic pathologists, odontologists, radiologists, anthropologists, graves registration personnel, and systems engineers) succeeded in identifying the remains of all 248 manifested passengers and 8 crewmembers. The unique contribution of anthropology necessitates that a forensic anthropologist be included in all phases of casualty resolution from recovery and initial processing to final evaluation, rather than being summoned as a last resort. This approach would yield immediate information on "unknowns" and would eliminate subsequent duplication of effort.

  3. Experimental study and analysis of lubricants dispersed with nano Cu and TiO2 in a four-stroke two wheeler

    NASA Astrophysics Data System (ADS)

    Sarma, Pullela K.; Srinivas, Vadapalli; Rao, Vedula Dharma; Kumar, Ayyagari Kiran

    2011-12-01

    The present investigation summarizes detailed experimental studies with standard lubricants of commercial quality known as Racer-4 of Hindustan Petroleum Corporation (India) dispersed with different mass concentrations of nanoparticles of Cu and TiO2. The test bench is fabricated with a four-stroke Hero-Honda motorbike hydraulically loaded at the rear wheel with proper instrumentation to record the fuel consumption, the load on the rear wheel, and the linear velocity. The whole range of data obtained on a stationery bike is subjected to regression analysis to arrive at various relationships between fuel consumption as a function of brake power, linear velocity, and percentage mass concentration of nanoparticles in the lubricant. The empirical relation correlates with the observed data with reasonable accuracy. Further, extension of the analysis by developing a mathematical model has revealed a definite improvement in brake thermal efficiency which ultimately affects the fuel economy by diminishing frictional power in the system with the introduction of nanoparticles into the lubricant. The performance of the engine seems to be better with nano Cu-Racer-4 combination than the one with nano TiO2.

  4. Experimental study and analysis of lubricants dispersed with nano Cu and TiO2 in a four-stroke two wheeler

    PubMed Central

    2011-01-01

    The present investigation summarizes detailed experimental studies with standard lubricants of commercial quality known as Racer-4 of Hindustan Petroleum Corporation (India) dispersed with different mass concentrations of nanoparticles of Cu and TiO2. The test bench is fabricated with a four-stroke Hero-Honda motorbike hydraulically loaded at the rear wheel with proper instrumentation to record the fuel consumption, the load on the rear wheel, and the linear velocity. The whole range of data obtained on a stationery bike is subjected to regression analysis to arrive at various relationships between fuel consumption as a function of brake power, linear velocity, and percentage mass concentration of nanoparticles in the lubricant. The empirical relation correlates with the observed data with reasonable accuracy. Further, extension of the analysis by developing a mathematical model has revealed a definite improvement in brake thermal efficiency which ultimately affects the fuel economy by diminishing frictional power in the system with the introduction of nanoparticles into the lubricant. The performance of the engine seems to be better with nano Cu-Racer-4 combination than the one with nano TiO2. PMID:21711765

  5. Experimental study and analysis of lubricants dispersed with nano Cu and TiO2 in a four-stroke two wheeler.

    PubMed

    Sarma, Pullela K; Srinivas, Vadapalli; Rao, Vedula Dharma; Kumar, Ayyagari Kiran

    2011-03-17

    The present investigation summarizes detailed experimental studies with standard lubricants of commercial quality known as Racer-4 of Hindustan Petroleum Corporation (India) dispersed with different mass concentrations of nanoparticles of Cu and TiO2. The test bench is fabricated with a four-stroke Hero-Honda motorbike hydraulically loaded at the rear wheel with proper instrumentation to record the fuel consumption, the load on the rear wheel, and the linear velocity. The whole range of data obtained on a stationery bike is subjected to regression analysis to arrive at various relationships between fuel consumption as a function of brake power, linear velocity, and percentage mass concentration of nanoparticles in the lubricant. The empirical relation correlates with the observed data with reasonable accuracy. Further, extension of the analysis by developing a mathematical model has revealed a definite improvement in brake thermal efficiency which ultimately affects the fuel economy by diminishing frictional power in the system with the introduction of nanoparticles into the lubricant. The performance of the engine seems to be better with nano Cu-Racer-4 combination than the one with nano TiO2.

  6. Graphene Coating via Chemical Vapor Deposition for Improving Friction and Wear of Gray Cast Iron at Interfaces.

    PubMed

    Tripathi, Khagendra; Gyawali, Gobinda; Lee, Soo Wohn

    2017-09-20

    This study reports the influence of CVD-graphene on the tribological performance of gray cast iron (GCI) from the internal combustion engine (ICE) cylinder liners by performing a ball-on-disk friction tests. The graphene-coated specimen exhibited a significant reduction (∼53%) of friction as compared to that of the uncoated specimen, whereas wear resistance increased by 2- and 5-fold regarding the wear of specimen and ball, respectively. Extremely low shear strength and highly lubricating nature of graphene contribute to the formation of a lubricative film between the sliding surfaces and decreases the interaction between surfaces in the dry environment. Under the applied load, a uniform film of iron oxides such as Fe 2 O 3 , Fe 3 O 4 , and FeOOH is found to be formed between the surfaces. It is proposed that the graphene encapsulation with the metal debris and oxides formed between the specimens increases the lubricity and decreases the shear force. The transformation of graphene/graphite into nanocrystalline graphites across the contact interfaces following the amorphization trajectory further increases the lubricity of the film that ultimately reduces friction and wear of the material.

  7. Biobased extreme pressure additives: Structure-property considerations

    USDA-ARS?s Scientific Manuscript database

    Extreme pressure additives are widely used in lubricant formulations for engine oils, hydraulic fluids, gear oils, metalworking fluids, and many others. Extreme pressure additives contain selected elements such as sulfur, phosphorus, and halogens in their structures. These elements, under extreme tr...

  8. Current issues in natural gas lubrication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reber, J.

    1997-10-01

    Because of the ability of natural gas to burn completely relatively easily, supplying excess oxygen to promote complete reactions is a viable alternative to catalysts. Hence, lean burn technology has a natural fit for this industry. Lube oil is not adversely affected by lean burn operation. There is a slight tendency to cause more oil nitration than oxidation, but the real difference is not significant. Operators may notice somewhat more varnish (caramel color) and less sludge (black) as a result. Because the fuel is burned more completely, there is less problem with fuel-derived oil contamination. Also because of the excessmore » air in the combustion chamber, overall cylinder temperature is lower, causing less stress on the oil. Oil life is generally lengthened. One common misconception that lean burn engines require different lubricants may stem from a change at Waukesha Engine Division--Dresser Industries. Waukesha has changed its lube oil requirements for VHP 3521, 5115, 7042, 9390 GL turbocharged and lean burn model engines. The lube oil specification for these engines is 1% to 1.7% ash with the same 0.10% zinc maximum. This change is not because of the lean burn nature of these engines, rather it is because of drastically decreased lube oil consumption. With less oil consumption, less ash is carried to the critical exhaust valve seat area to prevent valve recession.« less

  9. Managing a Standards Collection in an Engineering Consulting Firm.

    ERIC Educational Resources Information Center

    Hamilton, Beth A.

    1983-01-01

    Summarizes efforts to identify, acquire, and organize a standards collection, with emphasis on provision of information services to staff and clientele of the Forensic Engineering and Science Center, Triodyne, Inc., who provide expert testimony in court cases involving accidents caused by defective products and equipment failures. References are…

  10. STEM Leader from the Roeper School: An Interview with Nuclear Engineer Clair J. Sullivan

    ERIC Educational Resources Information Center

    Ambrose, Don

    2016-01-01

    Clair J. Sullivan is an assistant professor in the Department of Nuclear, Plasma and Radiological Engineering at the University of Illinois at Urbana-Champaign (UIUC). Her research interests include radiation detection and measurements; gamma-ray spectroscopy; automated isotope identification algorithms; nuclear forensics; nuclear security;…

  11. DI Diesel Performance and Emissions Models

    DTIC Science & Technology

    2003-06-11

    Skeletal mechanism for NOx chemistry in diesel engines ,” SAE Paper 981450, 1998 SAE Transactions, Vol. 107, Sect. 4, J. Fuels and... mechanism for NOx chemistry proposed by Mellor et al. (1998a) is incorporated in an engine simulation code. The two-zone model, also proposed by Mellor et...34Dynamic Application of a Skeletal Mechanism for DI Diesel NOx Emissions," SAE Paper 2001-01-1984, SAE Trans., J. Fuels & Lubricants,

  12. Hydrodynamic air lubricated compliant surface bearing for an automotive gas turbine engine. 1: Journal bearing performance

    NASA Technical Reports Server (NTRS)

    Ruscitto, D.; Mccormick, J.; Gray, S.

    1978-01-01

    A 38.1 mm (1.5 inch) diameter Hydresil Compliant Surface Air Lubricated Journal Bearing was designed and tested to obtain bearing performance characteristics at both room temperature and 315 C (600 F). Testing was performed at various speeds up to 60,000 rpm with varying loads. Rotating sensors provided an opportunity to examine the film characteristics of the compliant surface bearing. In addition to providing minimum film thickness values and profiles, many other insights into bearing operation were gained such as the influence of bearing fabrication accuracy and the influence of smooth foil deflection between the bumps.

  13. Heat Treatment Used to Strengthen Enabling Coating Technology for Oil-Free Turbomachinery

    NASA Technical Reports Server (NTRS)

    Edmonds, Brian J.; DellaCorte, Christopher

    2002-01-01

    The PS304 high-temperature solid lubricant coating is a key enabling technology for Oil- Free turbomachinery propulsion and power systems. Breakthroughs in the performance of advanced foil air bearings and improvements in computer-based finite element modeling techniques are the key technologies enabling the development of Oil-Free aircraft engines being pursued by the Oil-Free Turbomachinery team at the NASA Glenn Research Center. PS304 is a plasma spray coating applied to the surface of shafts operating against foil air bearings or in any other component requiring solid lubrication at high temperatures, where conventional materials such as graphite cannot function.

  14. Influence of nanodispersed modifications of magnetite powders on spray nozzle efficiency of diesel engine injector

    NASA Astrophysics Data System (ADS)

    Saidov, M. A.; Perekrestov, A. P.

    2017-10-01

    The paper presents data on the impact of new environmental requirements relating to the quality of diesel fuel on the anti-wear properties of fuel. Anti-wear additive is proposed as a material for increasing the tribotechnical characteristics of diesel fuel. This additive consists of diesel fuel with micelles contained in it, formed on the basis of molecules of solid plasticity lubrication of iron oxide (Fe3O4) - magnetite, and with surrounding molecules of oleic acid (C18H34O2). The additive has low shear resistance and increased lubricity of diesel fuel when this additive is introduced into it.

  15. A thin film degradation study of a fluorinated polyether liquid lubricant using an HPLC method

    NASA Technical Reports Server (NTRS)

    Morales, W.

    1986-01-01

    A High Pressure Liquid Chromatography (HPLC) separation method was developed to study and analyze a fluorinated polyether fluid which is promising liquid lubricant for future applications. This HPLC separation method was used in a preliminary study investigating the catalytic effect of various metal, metal alloy, and ceramic engineering materials on the degradation of this fluid in a dry air atmosphere at 345 C. Using a 440 C stainless steel as a reference catalytic material it was found that a titanium alloy and a chromium plated material degraded the fluorinated polyether fluid substantially more than the reference material.

  16. Evaluation of Thermal Barrier and PS-200 Self-Lubricating Coatings in an Air-Cooled Rotary Engine

    NASA Technical Reports Server (NTRS)

    Moller, Paul S.

    1995-01-01

    This project provides an evaluation of the feasibility and desirability of applying a thermal barrier coating overlaid with a wear coating on the internal surfaces of the combustion area of rotary engines. Many experiments were conducted with different combinations of coatings applied to engine components of aluminum, iron and titanium, and the engines were run on a well-instrumented test stand. Significant improvements in specific fuel consumption were achieved and the wear coating, PS-200, which was invented at NASA's Lewis Research Center, held up well under severe test conditions.

  17. Engineered silica nanoparticles as additives in lubricant oils

    PubMed Central

    López, Teresa Díaz-Faes; González, Alfonso Fernández; Del Reguero, Ángel; Matos, María; Díaz-García, Marta E; Badía-Laíño, Rosana

    2015-01-01

    Silica nanoparticles (SiO2 NPs) synthesized by the sol–gel approach were engineered for size and surface properties by grafting hydrophobic chains to prevent their aggregation and facilitate their contact with the phase boundary, thus improving their dispersibility in lubricant base oils. The surface modification was performed by covalent binding of long chain alkyl functionalities using lauric acid and decanoyl chloride to the SiO2 NP surface. The hybrid SiO2 NPs were characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, simultaneous differential thermal analysis, nuclear magnetic resonance and dynamic light scattering, while their dispersion in two base oils was studied by static multiple light scattering at low (0.01% w/v) and high (0.50%w/v) concentrations. The nature of the functional layer and the functionalization degree seemed to be directly involved in the stability of the suspensions. The potential use of the functional SiO2 NPs as lubricant additives in base oils, specially designed for being used in hydraulic circuits, has been outlined by analyzing the tribological properties of the dispersions. The dendritic structure of the external layer played a key role in the tribological characteristics of the material by reducing the friction coefficient and wear. These nanoparticles reduce drastically the waste of energy in friction processes and are more environmentally friendly than other additives. PMID:27877840

  18. Improving the cold flow properties of biodiesel by fractionation

    USDA-ARS?s Scientific Manuscript database

    Production of biodiesel is increasing world-wide and contributing to the growing development of renewable alternative fuels. Biodiesel has many fuel properties such as density, viscosity, lubricity, and cetane number that make it compatible for combustion in compression-ignition (diesel) engines. ...

  19. Axle Lubricant Efficiency

    DTIC Science & Technology

    2014-05-09

    state or reflect those of the United States Government or the DoA, and shall not be used for advertising or product endorsement purposes...Engine Control Module FMTV Family of Medium Tactical Vehicles GO Gear Oil GPS Global Positioning System GVW Gross Vehicle Weight HDO Heavy Duty Oil

  20. Impact for the 80's: Proceedings of a Conference on Selected Technology for Business and Industry

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Various aspects of advanced energy technology are discussed. Specific emphasis is given to: aircraft propulsion; wind power commercialization; materials and structures, lubrication and bearings; Stirling and gas turbine engines; and electric and hybrid vehicles.

  1. Using GC×GC-ToF-MS to characterise SVOC from diesel exhaust emissions

    NASA Astrophysics Data System (ADS)

    Alam, M. S.; Ramadhas, A. S.; Stark, C. P.; Liu, D.; Xu, H.; Harrison, R. M.

    2014-12-01

    Despite intensive research over the last 20 years, a number of major research questions remain concerning the sources and properties of road traffic-generated particulate matter. There are major knowledge gaps concerning the composition of primary vehicle exhaust aerosol, and its contribution to secondary organic aerosol (SOA) formation. These uncertainties relate especially to the semi-volatile component of the particles. Semi-Volatile Organic Compounds (SVOC) are compounds which partition directly between the gas and aerosol phases under ambient conditions, and include compounds with saturation concentrations roughly between 0.1 and 104 μg m-3. The SVOC in engine exhaust are typically hydrocarbons in the C15-C35 range. They are largely uncharacterised, other than the n-alkanes, because they are unresolved by traditional gas chromatography and form a large hump in the chromatogram referred to as Unresolved Complex Mixture (UCM). In this study, samples were collected from the exhaust of a diesel engine with and without abatement devices fitted. Engine exhaust was diluted with air and collected using both filter and impaction (MOUDI), to resolve total mass and size resolved mass respectively. Particle size distribution was evaluated by sampling simultaneously with a Scanning Mobility Particle Sizer (SMPS). 2D Gas-Chromatography Time-of-Flight Mass-Spectrometry (GC×GC-ToF-MS) was exploited to characterise and quantify the composition of SVOC from the exhaust emission. The SVOC was observed to contain predominantly n-alkanes, alkyl-cyclohexanes and aromatics; similar to both fresh lubricating oil and fuel. Preliminary results indicate that the contribution of diesel fuel to the exhaust SVOC composition is dominant at high speeds, and a more pronounced contribution from lubricating oil is observed at low speeds. Differences were also observed in the SVOC composition when using different fuel types, engine lubricants, starting temperatures and collecting samples with and without abatement devices fitted. The wealth of compounds identified and quantified in the C15-C35 range included PAH, esters, carboxylic acids, alkanes, alkenes, alcohols and hopanes.

  2. Numerical predictions and measurements in the lubrication of aeronautical engine and transmission components

    NASA Astrophysics Data System (ADS)

    Moraru, Laurentiu Eugen

    2005-11-01

    This dissertation treats a variety of aspects of the lubrication of mechanical components encountered in aeronautical engines and transmissions. The study covers dual clearance squeeze film dampers, mixed elastohydrodynamic lubrication (EHL) cases and thermal elastohydrodynamic contacts. The dual clearance squeeze film damper (SFD) invented by Fleming is investigated both theoretically and experimentally for cases when the sleeve that separates the two oil films is free to float and for cases when the separating sleeve is supported by a squirrel cage. The Reynolds equation is developed to handle each of these cases and it is solved analytically for short bearings. A rotordynamic model of a test rig is developed, for both the single and dual SFD cases. A computer code is written to calculate the motion of the test rig rotor. Experiments are performed in order to validate the theoretical results. Rotordynamics computations are found to favorably agree with measured data. A probabilistic model for mixed EHL is developed and implemented. Surface roughness of gears are measured and processed. The mixed EHL model incorporates the average flow model of Patir and Cheng and the elasto-plastic contact mechanics model of Chang Etsion and Bogy. The current algorithm allows for the computation of the load supported by an oil film and for the load supported by the elasto-plastically deformed asperities. This work also presents a way to incorporate the effect of the fluid induced roughness deformation by utilizing the "amplitude reduction" results provided by the deterministic analyses. The Lobatto point Gaussian integration algorithm of Elrod and Brewe was extended for thermal lubrication problems involving compressible lubricants and it was implemented in thermal elastohydrodynamic cases. The unknown variables across the film are written in series of Legendre polynomials. The thermal Reynolds equation is obtained in terms of the series coefficients and it is proven that it can only explicitly contain the information from the first three Legendre polynomials. A computer code was written to implement the Lobatto point algorithm for a EHL line contact. Use of the Labatto point calculation method has resulted in greater accuracy without the use of a larger number of grid points.

  3. Viscous Flow Behaviour of Karanja Oil Based Bio-lubricant Base Oil.

    PubMed

    Sharma, Umesh Chandra; Sachan, Sadhana; Trivedi, Rakesh Kumar

    2018-01-01

    Karanja oil (KO) is widely used for synthesis of bio-fuel karanja oil methyl ester (KOME) due to its competitive price, good energy values and environmentally friendly combustion properties. Bio-lubricant is another value added product that can be synthesized from KO via chemical modification. In this work karanja oil trimethylolpropane ester (KOTMPE) bio-lubricant was synthesized and evaluated for its viscous flow behaviour. A comparison of viscous flow behaviours of natural KO and synthesized bio-fuel KOME and bio-lubricant KOTMPE was also made. The aim of this comparison was to validate the superiority of KOTMPE bio-lubricant over its precursors KO and KOME in terms of stable viscous flow at high temperature and high shear rate conditions usually encountered in engine operations and industrial processes. The free fatty acid (FFA) content of KO was 5.76%. KOME was synthesized from KO in a two-step, acid catalyzed esterification followed by base catalyzed transesterification, process at 65°C for 5 hours with oil-methanol ratio 1:6, catalysts H 2 SO 4 and KOH (1 and 1.25% w/w KO, respectively). In the final step, KOTMPE was prepared from KOME via transesterification with trimethylolpropane (TMP) at 150°C for 3 hours with KOME-TMP ratio 4:1 and H 2 SO 4 (2% w/w KOME) as catalyst. The viscosity versus temperature studies were made at 0-80°C temperatures in shear rate ranges of 10-1000 s -1 using a Discovery Hybrid Rheometer, model HR-3 (TA instruments, USA). The study found that viscosities of all three samples decreased with increase in temperature, though KOTMPE was able to maintain a good enough viscosity at elevated temperatures due to chemical modifications in its molecular structure. The viscosity index (VI) value for KOTMPE was 206.72. The study confirmed that the synthesized bio-lubricant KOTMPE can be used at high temperatures as a good lubricant, though some additives may be required to improve properties other than viscosity.

  4. Rheology and tribology of lubricants with polymeric viscosity modifiers

    NASA Astrophysics Data System (ADS)

    Babak, LotfizadehDehkordi

    Elastohydrodynamic lubrication (EHL) theory has been used to model the lubrication state of antifriction machine elements, where initial viscosity and pressure viscosity coefficients are essential parameters in film thickness modeling. Since the pressures of lubricants in the contact zone can be very high, it is important to know the rheological properties of lubricants in these pressure and temperature regimes. The characteristics of viscosity behavior as a function of pressure are also essential for a universal definition of the pressure viscosity coefficient in order to estimate film thickness in an EHL regime. In this study, viscosities and pressure-viscosity coefficients of ten commercial engine and gear oils and seventeen laboratory-produced oil/polymer viscosity modifiers (VM) additives are measured up to 1.3 GPa at 40, 75 and 100 °C. For the first time, a sharp increase in the viscosity and piezoviscous factor is observed in both mineral-based and synthetic-based oils with different VMs. Analysis of the experimental results indicates that sharp increase in viscosity observed in these experiments are believed to arise from physical changes in the VMs, that is liquid-solid phase transition. Evidence is offered that polymer properties such as molecular weight, concentration and structure influence the onset of the phase transitions. A modified Yasutomi model, which normally describes the pressure dependence of the viscosity of lubricants very well, fails to predict the viscosity of the specimens above the onset of sharp increase in viscosity. A design of experiment (DOE) analysis using Design-Expert software indicates that pressure and temperature are the most critical parameters in the viscosity variation. Tribological tests demonstrate that wear in the contact, zone occurs at temperatures and stresses that coincides with the VM phase transitions in both commercial and laboratory synthesized oil/VMs. Tribological results also indicate that the onset of the sharp increase in viscosity can have significant and unanticipated consequences on the elastohydrodynamic contact and can adversely affect EHL theory. The onset of the steep rise in viscosity may also affect the torque and power losses in a mechanical system. Hence, this previously unknown behavior of the lubricant with VMs should be seriously considered in the application of lubricant in mechanical system.

  5. Demonstration of the Feasibility of High Temperature Bearing Lubrication From Carbonaceous Gases

    NASA Technical Reports Server (NTRS)

    Blanchet, Thierry A.; Sawyer, W. Gregory

    1996-01-01

    Research has been conducted on silicon nitride pin-on-disk sliding contacts at temperatures of up to 520 C, and four-ball rolling contacts with silicon nitride balls and 52100 steel or silicon nitride races at 590 C. These tests were conducted in a variety of gaseous environments in order to determine the effects of simulated engine exhaust gas on the carbonaceous gas decomposition lubrication scheme. In rolling tests with steel races and exhaust gas the wear track depth was roughly half that of tests run in nitrogen gas alone. The deposition of lubricous microcrystalline graphitic carbon on the rolling surfaces, generated from the carbon monoxide within the exhaust gas mixture, was verified by microfocused Raman spectroscopy. Ten-fold reductions in rolling wear could be achieved by the exhaust gas atmosphere in cases where water vapor was removed or not present. The exhaust gas mixture alone was not found to provide any lubricating effect on silicon nitride sliding contacts, where the rate of wear greatly exceeds the rate of carbon deposition. Directed admixture of acetylene (as low as 5% of the exhaust gas flow rates), has provided reductions in both wear volume and coefficient of friction by factors of 60X and 20X respectively for sliding contacts during the initial 80 m of sliding distance. Exhaust gas atmosphere with the acetylene admixture provided 65OX reductions in steady state wear rate compared to that measured for sliding contacts in dry N2. Such acetylene admixture also augments the ability of the exhaust gas atmosphere to lubricate high-temperature rolling contacts, with up to 25-fold reductions in wear track depth compared to those measured in the presence of N2 alone. In addition to providing some lubricating benefit itself, an important potential role of the exhaust gas from rich mixtures would be to shield bearings from 02. Such shielding enables surface deposition of lubricous pyrolytic carbon from the acetylene admixture, instead of combustion, rendering feasible the continuously replenished solid lubrication of high-temperature bearing surfaces.

  6. DHS National Technical Nuclear Forensics Program FY 10 Summary Report: Graduate Mentoring Assistance Program (GMAP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martha R. Finck Ph.D.

    2011-10-01

    This program provides practical training to DHS graduate fellows in the DOE laboratory complex. It involves coordinating students, their thesis advisors, and their laboratory project mentors in establishing a meaningful program of research which contributes to the graduate student's formation as a member of the nuclear forensics community. The summary report details the student/mentor experience and future plans after the first summer practicum. This program provides practical training to DHS graduate fellows in the DOE laboratory complex. It involves coordinating students, their thesis advisors, and their laboratory project mentors in establishing a meaningful program of research which contributes to themore » graduate student's formation as a member of the nuclear forensics community. This final written report includes information concerning the overall mentoring experience, including benefits (to the lab, the mentors, and the students), challenges, student research contributions, and lab mentor interactions with students home universities. Idaho National Laboratory hosted two DHS Nuclear Forensics graduate Fellows (nuclear engineering) in summer 2011. Two more Fellows (radiochemistry) are expected to conduct research at the INL under this program starting in 2012. An undergraduate Fellow (nuclear engineering) who worked in summer 2011 at the laboratory is keenly interested in applying for the NF Graduate Fellowship this winter with the aim of returning to INL. In summary, this program appears to have great potential for success in supporting graduate level students who pursue careers in nuclear forensics. This relatively specialized field may not have been an obvious choice for some who have already shown talent in the traditional areas of chemistry or nuclear engineering. The active recruiting for this scholarship program for candidates at universities across the U.S. brings needed visibility to this field. Not only does this program offer critical practical training to these students, it brings attention to a very attractive field of work where young professionals are urgently required in order for the future. The effectiveness of retaining such talent remains to be seen and may be primarily controlled by the availability of DOE laboratory research funding in this field in the years to come.« less

  7. Hot piston ring/cylinder liner materials: Selection and evaluation

    NASA Technical Reports Server (NTRS)

    Sliney, Harold E.

    1988-01-01

    In current designs of the automotive (kinematic) Stirling engine, the piston rings are made of a reinforced polymer and are located below the pistons because they cannot withstand the high temperatures in the upper cylinder area. Theoretically, efficiency could be improved if hot piston rings were located near the top of the pistons. Described is a program to select piston ring and cylinder coating materials to test this theory. Candidate materials were screened, then subjected to a pin or disk friction and wear test machine. Tests were performed in hydrogen at specimen temperatures up to 760 C to simulate environmental conditions in the region of the hot piston ring reversal. Based on the results of these tests, a cobalt based alloy, Stellite 6B, was chosen for the piston rings and PS200, which consists of a metal-bonded chromium carbide matrix with dispersed solid lubricants, was chosen as the cylinder coating. Tests of a modified engine and a baseline engine showed that the hot ring reduced specific fuel consumption by up to 7 percent for some operating conditions and averaged about 3 percent for all conditions evaluated. Related applications of high-temperature coatings for shaft seals and as back-up lubricants are also described.

  8. Feasibility of Using Full Synthetic Low Viscosity Engine Oil at High Ambient Temperatures in U.S. Army Engines

    DTIC Science & Technology

    2011-06-01

    Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Advancements in lubricant technology over the last two decades...in particular, the availability of high quality synthetic base oils, has set the stage for the development of a new fuel efficient, multifunctional...were conducted following two standard military testing cycles; the 210 h Tactical Wheeled Vehicle Cycle, and the 400 h NATO Hardware Endurance

  9. Dedicated industrial oilseed crops as metabolic engineering platforms for sustainable industrial feedstock production

    USDA-ARS?s Scientific Manuscript database

    Feedstocks for industrial applications ranging from polymers to lubricants are largely derived from petroleum, a non-renewable resource. Vegetable oils with fatty acid structures and storage forms tailored for specific industrial uses offer renewable and potentially sustainable sources of petrochemi...

  10. A review on application of nanofluid MQL in machining

    NASA Astrophysics Data System (ADS)

    Rifat, Mustafa; Rahman, Md. Habibor; Das, Debashish

    2017-12-01

    Heat generation is an inevitable phenomenon during machining. To eradicate heat oriented detrimental effects like surface burning, tool wear and so on-different types of cooling system are being used. Traditional flood cooling method is the most widely used technique; however the consumption rate of coolant is very high. Moreover, if it is not deposited or recycled properly, it may also cause environmental hazard. Minimum Quantity Lubrication (MQL), on the other hand, sprays lubricant which decreases the frictional force and heat produced during machining. Nanofluid MQL is the incorporation of especially engineered nanoparticles into the lubricant that increases the heat carrying capacity. In this paper, four manufacturing processes (grinding, turning, milling, and drilling) and the effect of using nanofluid MQL in them are studied and summarized. Parameters that are considered in this study are cutting force, surface roughness, machining temperature, tool wear and environmental aspects. It can be observed that using nanofluids in an optimized manner can be beneficial to the machining processes because of their superior characteristics.

  11. Effects of Ultra-Clean and centrifugal filtration on rolling-element bearing life

    NASA Technical Reports Server (NTRS)

    Loewenthal, S. H.; Moyer, D. W.; Needelman, W. M.

    1981-01-01

    Fatigue tests were conducted on groups of 65-millimeter bore diameter deep-groove ball bearings in a MIL-L-23699 lubricant under two levels of filtration. In one test series, the oil cleanliness was maintained at an exceptionally high level (better than a class "000" per NAS 1638) with a 3 micron absolute barrier filter. These tests were intended to determine the "upper limit" in bearing life under the strictest possible lubricant cleanliness conditions. In the tests using a centrifugal oil filter, contaminants of the type found in aircraft engine filters were injected into the filters' supply line at 125 milligrams per bearing-hour. "Ultra-clean" lubrication produced bearing fatigue lives that were approximately twice that obtained in previous tests with contaminated oil using 3 micron absolute filtration and approximately three times that obtained with 49 micron filtration. It was also observed that the centrifugal oil filter had approximately the same effectiveness as a 30 micron absolute filter in preventing bearing surface damage.

  12. Performance of hybrid ball bearings in oil and jet fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schrader, S.M.; Pfaffenberger, E.E.

    1992-07-01

    A 308-size hybrid ball bearing, with ceramic balls and steel rings, was tested using a diester oil and gas turbine fuel as lubricants at several speeds and loads. Heat generation data from this test work was then correlated with the heat generation model from a widely used computer code. The ability of this hybrid split inner ring bearing design to endure thrust reversals, which are expected in many turbine applications, was demonstrated. Finally, the bearing was successfully endurance tested in JP-10 fuel for 25 hours at 7560 N axial load and 36,000 rpm. This work has successfully demonstrated the technologymore » necessary to use fuel-lubricated hybrid bearings in limited-life gas turbine engine applications such as missiles, drones, and other unmanned air vehicles (UAVs). In addition, it has provided guidance for use in designing such bearing systems. As a result, the benefits of removing the conventional oil lubricant system, i.e., design simplification and reduced maintenance, can be realized. 6 refs.« less

  13. Tribological study of novel metal-doped carbon-based coatings with enhanced thermal stability

    NASA Astrophysics Data System (ADS)

    Mandal, Paranjayee

    Low friction and high temperature wear resistant PVD coatings are in high demand for use on engine components, which operate in extreme environment. Diamond-like-carbon (DLC) coatings are extensively used for this purpose due to their excellent tribological properties. However, DLC degrades at high temperature and pressure conditions leading to significant increase in friction and wear rate even in the presence of lubricant. To withstand high working temperature and simultaneously maintain improved tribological properties in lubricated condition at ambient and at high temperature, both the transitional metals Mo and W are simultaneously introduced in a carbon-based coating (Mo-W-C) for the first time utilising the benefits of smart material combination and High Power Impulse Magnetron Sputtering (HIPIMS).This research includes development of Mo-W-C coating and investigation of thermal stability and tribological properties at ambient and high temperatures. The as-deposited Mo-W-C coating contains nanocrystalline almost X-ray amorphous structure and show dense microstructure, good adhesion with substrate (Lc -80 N) and high hardness (-17 GPa). During boundary lubricated sliding (commercially available engine oil without friction modifier used as lubricant) at ambient temperature, Mo-W-C coating outperforms commercially available state-of-the-art DLC coatings by providing significantly low friction (u- 0.03 - 0.05) and excellent wear resistance (no measurable wear). When lubricated sliding tests are carried out at 200°C, Mo-W-C coating provides low friction similar to ambient temperature, whereas degradation of DLC coating properties fails to maintain low friction coefficient.A range of surface analyses techniques reveal "in-situ" formation of solid lubricants (WS2 and M0S2) at the tribo-contacts due to tribochemically reactive wear mechanism at ambient and high temperature. Mo-W-C coating reacts with EP additives present in the engine oil during sliding to form WS2 and M0S2. This mechanism is believed to be the key-factor for low friction properties of Mo-W-C coating and presence of graphitic carbon particles further benefits the friction behaviour. It is observed that low friction is achieved mostly due to formation of WS2 at ambient temperature, whereas formation of both WS2 and M0S2 significantly decreases the friction of Mo-W-C coating at high temperature. This further indicates importance of combined Mo and W doping over single-metal doping into carbon-based coatings.Isothermal oxidation tests indicate that Mo-W-C coating preserves it's as-deposited graphitic nature up to 500°C, whereas local delamination of DLC coating leads to substrate exposure and loss of its diamond-like structure at the same temperature. Further, thermo-gravimetric tests confirm excellent thermal stability of Mo-W-C coating compared to DLC. Mo-W-C coating resists oxidation up to 800°C and no coating delamination is observed due to retained coating integrity and its strong adhesion with substrate. On the other hand, state-of-the-art DLC coating starts to delaminate beyond 380°C.The test results confirm that Mo-W-C coating sustains high working temperature and simultaneously maintains improved tribological properties during boundary lubricated condition at ambient and high temperature. Thus Mo-W-C coating is a suitable candidate for low friction and high temperature wear resistant applications compared to commercially available state-of-the-art DLC coatings.

  14. Quiet Clean Short-haul Experimental Engine (QCSEE) main reduction gears detailed design report

    NASA Technical Reports Server (NTRS)

    Defeo, A.; Kulina, M.

    1977-01-01

    Lightweight turbine engines with geared slower speed fans are considered. The design of two similar but different gear ratio, minimum weight, epicyclic star configuration main reduction gears for the under the wing (UTW) and over the wing (OTW) engines is discussed. The UTW engine reduction gear has a ratio of 2.465:1 and a 100% power design rating of 9885 kW (13,256 hp) at 3143 rpm fan speed. The OTW engine reduction gear has a ratio of 2.062:1 and a 100% power design rating of 12813 kW (17183 hp) at 3861 rpm fan speed. Details of configuration, stresses, deflections, and lubrication are presented.

  15. Automobile Course. Progress Record and Theory Outline.

    ERIC Educational Resources Information Center

    Connecticut State Dept. of Education, Hartford. Div. of Vocational-Technical Schools.

    This combination progress record and course outline is designed for use by individuals teaching a course in automobile repair. Included among the topics addressed in the course are the following: shop safety, engines, fuel and exhaust systems, electrical systems, crankcase lubrication systems, cooling systems, power transmission systems, steering…

  16. Tribology. LC Science Tracer Bullet.

    ERIC Educational Resources Information Center

    Havas, George D., Comp.

    Tribology is the science and technology of interacting surfaces in relative motion. It incorporates a number of scientific fields, including friction, wear, lubrication, materials science, and various branches of surface physics and surface chemistry. Tribology forms a vital part of engineering science. The interacting surfaces may be on machinery…

  17. Inorganic Fullerenes, Onions, and Tubes

    ERIC Educational Resources Information Center

    York, Andrew P. E.

    2004-01-01

    Buckminsterfullerene, which is in the shape of a soccer-ball was first discovered in 1985, has many applications as a good lubricant, or as a new superconductor. The synthesis of these inorganic fullerenes involves a great deal of interdisciplinary research between physicists, material scientists, engineers and chemists from various fields.

  18. Evaluation of castor oil samples for potential toxin contamination

    USDA-ARS?s Scientific Manuscript database

    Castor oil and its derivatives are widely used as a chemical feedstock for production of lubricants and greases, and for engineering plastics, plasticizers and surfactants. They also have wide application in consumer goods such as lipstick, deodorants and medicinal products. Due to concerns about th...

  19. Application of genomic tools for lesquerella crop improvement

    USDA-ARS?s Scientific Manuscript database

    Lesquerella, a potential new industrial oilseed crop, is valued for its unusual hydroxy fatty acid (20:1OH) which can be used as raw materials for numerous industrial products, such as lubricants, plasticizers and surfactants. As a step towards genetic engineering of lesquerella, we explored a lesqu...

  20. Metabolic Engineering for Improved Hydroxy Fatty Acid Production in Lesquerella

    USDA-ARS?s Scientific Manuscript database

    Hydroxy fatty acids (HFA) from plant seed triacylglycerols (TAGs, oil molecule) are wildly used in manufacturing industrial products, such as lubricants, plasticizers and surfactants. Castor oil has 90% HFA which occupies all three sn positions of most TAGs, while lesquerella oil contains 60% HFA mo...

  1. Organic contamination analysis: High resolution mass spectrometric analysis of surface organics on selected areas of Surveyor 3

    NASA Technical Reports Server (NTRS)

    Simoneit, B. R.; Burlingame, A. L.

    1972-01-01

    The mirror and middle shroud were extracted for organics by washing the surfaces with solvents. The techniques are discussed. Ion microprobe analyses of the primarily atomic species are presented. The sources of the organic contaminants are: (1) hydrocarbons from lubricating oils and general terrestrial contamination, (2) dioctyl phthalate, probably from polyethylene bagging material (the plasticizer), (3) carboxylic acids from decomposition of grease and general terrestrial contamination, (4) silicones from sources such as lubricating oil, (5) outgassing of electronics and plasticizer, (6) vinyl alcohol and styrene copolymer, probably from electronic insulation, and (7) nitrogenous compounds from the lunar module and possibly Surveyor 3 engine exhaust.

  2. Role of Engine and Driveline Lubricants in Fuel Efficiency - Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bansal, Jai G.; Fenske, George; Adkins, Mark

    A virtual workshop was held on May 10, 2017, to obtain input from stakeholders on the role that lubricants can contribute to improving the fuel economy of on-road vehicles – with a focus on legacy vehicles. A ThinkTank collaboration tool was used to facilitate collection and real-time analysis of input provided by the participants. Input was in the form of numeric responses on the amount of fuel economy gains that the respondents felt are possible for light duty (LD) and heavy duty (HD) vehicles, the sources of the gains, and the barriers that will need to be addressed to achievemore » the fuel economy (FE) gains.« less

  3. An Assessment of Gas Foil Bearing Scalability and the Potential Benefits to Civilian Turbofan Engines

    NASA Technical Reports Server (NTRS)

    Bruckner, Robert J.

    2010-01-01

    Over the past several years the term oil-free turbomachinery has been used to describe a rotor support system for high speed turbomachinery that does not require oil for lubrication, damping, or cooling. The foundation technology for oil-free turbomachinery is the compliant foil bearing. This technology can replace the conventional rolling element bearings found in current engines. Two major benefits are realized with this technology. The primary benefit is the elimination of the oil lubrication system, accessory gearbox, tower shaft, and one turbine frame. These components account for 8 to 13 percent of the turbofan engine weight. The second benefit that compliant foil bearings offer to turbofan engines is the capability to operate at higher rotational speeds and shaft diameters. While traditional rolling element bearings have diminished life, reliability, and load capacity with increasing speeds, the foil bearing has a load capacity proportional to speed. The traditional applications for foil bearings have been in small, lightweight machines. However, recent advancements in the design and manufacturing of foil bearings have increased their potential size. An analysis, grounded in experimentally proven operation, is performed to assess the scalability of the modern foil bearing. This analysis was coupled to the requirements of civilian turbofan engines. The application of the foil bearing to larger, high bypass ratio engines nominally at the 120 kN (approx.25000 lb) thrust class has been examined. The application of this advanced technology to this system was found to reduce mission fuel burn by 3.05 percent.

  4. Forensic geomorphology

    NASA Astrophysics Data System (ADS)

    Ruffell, Alastair; McKinley, Jennifer

    2014-02-01

    Geomorphology plays a critical role in two areas of geoforensics: searching the land for surface or buried objects and sampling scenes of crime and control locations as evidence. Associated geoscience disciplines have substantial bodies of work dedicated to their relevance in forensic investigations, yet geomorphology (specifically landforms, their mapping and evolution, soils and relationship to geology and biogeography) have not had similar public exposure. This is strange considering how fundamental to legal enquiries the location of a crime and its evolution are, as this article will demonstrate. This work aims to redress the balance by showing how geomorphology featured in one of the earliest works on forensic science methods, and has continued to play a role in the sociology, archaeology, criminalistics and geoforensics of crime. Traditional landscape interpretation from aerial photography is used to demonstrate how a geomorphological approach saved police time in the search for a clandestine grave. The application geomorphology has in military/humanitarian geography and environmental/engineering forensics is briefly discussed as these are also regularly reviewed in courts of law.

  5. Analysis of a MIL-L-27502 lubricant from a gas-turbine engine test by size-exclusion chromatography

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.; Morales, W.

    1983-01-01

    Size exclusion chromatography was used to determine the chemical degradation of MIL-L-27502 oil samples from a gas turbine engine test run at a bulk oil temperature of 216 C. Results revealed a progressive loss of primary ester and additive depletion and the formation of higher molecular weight products with time. The high molecular weight products absorbed strongly in the ultraviolet indicating the presence of chromophoric groups.

  6. Development of the Automated AFAPL Engine Simulator Test for Lubricant Evaluation.

    DTIC Science & Technology

    1981-05-01

    including foreign nations. This technical report has been reviewed and is approved for publication. LEON 4JDEBROtUN R.D. DAYTO,*tighief Project Engineer...flow is jetted into the front and rear of the simulator gearbox to provide additional cooling to the gearbox. A heat exchanger is used to cool the oil...flow to the gearbox. Additional heat exchangers are used in the simulator and gearbox oil return lines to the external sump. The simulator test

  7. A Blast of Cool Air

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Unable to solve their engineering problem with a rotor in their Orbital Vane product, DynEco Corporation turned to Kennedy Space Center for help. KSC engineers determined that the compressor rotor was causing a large concentration of stress, which led to cracking and instant rotor failure. NASA redesigned the lubrication system, which allowed the company to move forward with its compressor that has no rubbing parts. The Orbital Vane is a refrigerant compressor suitable for mobile air conditioning and refrigeration.

  8. V-TECS Guide for Tractor Mechanic.

    ERIC Educational Resources Information Center

    Benson, Robert T.

    This guide contains a course outline for a tractor mechanic course. The outline is organized by 15 duties: performing general skills and maintaining and servicing storage battery, ignition circuit, the cooling system, the charging circuit, the starting circuit, gasoline fuel system, diesel fuel system, basic engine, lubrication system, clutches,…

  9. 49 CFR 192.171 - Compressor stations: Additional safety equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Design of... must have adequate fire protection facilities. If fire pumps are a part of these facilities, their... event of inadequate cooling or lubrication of the unit. (d) Each compressor station gas engine that...

  10. Assessment of lube oil management and self-cleaning oil filter feasibility in WSF vessels phases II and III : part 1 report.

    DOT National Transportation Integrated Search

    2014-10-01

    Washington State Ferries (WSF) has proposed an alternative of the propulsion engine lubricating oil (lube oil) filtration systems on : some vessels in their fleet. Currently, WSF uses disposable cartridge filters for oil filtration on most vessels. S...

  11. Assessment of lube oil management and self-cleaning oil filter feasibility in WSF vessels, phases II and III : part 1 report.

    DOT National Transportation Integrated Search

    2014-10-01

    Washington State Ferries (WSF) has proposed an alternative of the propulsion engine lubricating oil (lube oil) filtration systems on : some vessels in their fleet. Currently, WSF uses disposable cartridge filters for oil filtration on most vessels. S...

  12. 14 CFR 33.71 - Lubrication system.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... in which an aircraft is expected to operate. (b) Oil strainer or filter. There must be an oil strainer or filter through which all of the engine oil flows. In addition: (1) Each strainer or filter... normal rate through the rest of the system with the strainer or filter element completely blocked. (2...

  13. 22. VIEW LOOKING FROM FRONT LEFT OF DREDGE TOWARDS GEAR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. VIEW LOOKING FROM FRONT LEFT OF DREDGE TOWARDS GEAR DRIVE OF MAIN (HOISTING) ENGINE. ARM ON RIGHT IS PART OF VALVE LINKAGE. BOX ABOVE THAT IS THE CYLINDER OIL LUBRICATOR. - Dredge CINCINNATI, Docked on Ohio River at foot of Lighthill Street, Pittsburgh, Allegheny County, PA

  14. Engineer Analysis of the Light Infantry Division (ELID). Volume 1

    DTIC Science & Technology

    1986-12-01

    m 5. Forward logistics protection a. FARP b. Brigade petroleum, oil , and lubricant (POL) berms P P *Positlon may not be dug in if...battalion in order to complete all of the squad and equipment corabat- essencial requirements. With Che adrittion of the EAD force, there is a large

  15. Advanced Gas Turbine (AGT) technology report

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Engine testing, ceramic component fabrication and evaluation, component performance rig testing, and producibility experiments at Pontiac comprised AGT 100 activities of this period, January to December 1984. Two experimental engines were available and allowed the evaluation of eight experimental assemblies. Operating time accumulated was 115 hr of burning and 156 hr total. Total cumulative engine operating time is now 225 hr. Build number 11 and 12 of engine S/N 1 totaled 28 burning hours and constituted a single assembly of the engine core--the compressor, both turbines, and the gearbox. Build number 11 of engine S/N 1 included a 1:07 hr continuous test at 100% gasifier speed (86,000 rpm). Build number 8 of engine S/N 2 was the first engine test with a ceramic turbine rotor. A mechanical loss test of an engine assembly revealed the actual losses to be near the original design allowance. Component development activity included rig testing of the compressor, combustor, and regenerator. Compressor testing was initiated on a rig modified to control the transfer of heat between flow path, lubricating oil, and structure. Results show successful thermal decoupling of the rig and lubricating/cooling oil. Rig evaluation of a reduced-friction compressor was initiated. Combustor testing covered qualification of ceramic parts for engine use, mapping of operating range limits, and evaluation of a relocated igniter plug. Several seal refinements were tested on the hot regenerator rig. An alternate regenerator disk, extruded MAS, was examined and found to be currently inadequate for the AGT 100 application. Also, a new technique for measuring leakage was explored on the regenerator rig. Ceramic component activity has focused on the development of state-of-the-art material strength characteristics in full-scale hardware. Injection-molded sintered alpha-SiC rotors were produced at Carborundum in an extensive process and tool optimization study.

  16. n-alkane profiles of engine lubricating oil and particulate matter by molecular sieve extraction.

    PubMed

    Caravaggio, Gianni A; Charland, Jean-Pierre; Macdonald, Penny; Graham, Lisa

    2007-05-15

    As part of the Canadian Atmospheric Fine Particle Research Program to obtain reliable primary source emission profiles, a molecular sieve method was developed to reliably determine n-alkanes in lubricating oils, vehicle emissions, and mobile source dominated ambient particulate matter (PM). This work was also initiated to better calculate carbon preference index values (CPI: the ratio of the sums of odd over even n-alkanes), a parameter for estimating anthropogenic versus biogenic contributions in PM. n-Alkanes in lubricating oil and mobile source dominated PM are difficult to identify and quantify by gas chromatography due to the presence of similar components that cannot be fully resolved. This results in a hump, the unresolved complex mixture (UCM) that leads to incorrect n-alkane concentrations and CPI values. The sieve method yielded better chromatography, unambiguous identification of n-alkanes and allowed examination of differences between n-alkane profiles in light (LDV) and heavy duty vehicle (HDV) lubricating oils that would have been otherwise difficult. These profile differences made it possible to relate the LDV profile to that of the PM samples collected during a tunnel study in August 2001 near Vancouver (British Columbia, Canada). The n-alkane PM data revealed that longer sampling times result in a negative artifact, i.e., the desorption of the more volatile n-alkanes from the filters. Furthermore, the sieve procedure yielded n-alkane data that allowed calculation of accurate CPI values for lubricating oils and PM samples. Finally, this method may prove helpful in estimating the respective diesel and gasoline contributions to ambient PM.

  17. United States Air Force 611th Civil Engineer Squadron, Elmendorf AFB, Alaska. Final engineering evaluation/cost analysis: Petroleum, oil, and lubricants area, Galena Airport, Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-02-05

    This decision document presents the selected removal action for the Installation Restoration Program (IRP) site ST005, otherwise known as the POL Tank Farm, at Galena Airport, Alaska. This decision is based on the administrative record for this site, specifically the draft Remedial Investigation Report (March 1995) and the Treatability Study Report (January 1995) (PB95-225314). The information from these documents is summarized, along with an analysis of potential removal action alternatives in the Engineering Evaluation/Cost Analysis (EE/CA).

  18. Cold-Weather Engineering, Chapters 1 to 5

    DTIC Science & Technology

    1949-01-01

    adäquate^, except under- extreme con~ ditiOns. of heat loss.. Milkr-Qrie ’pint or mo:re daily;. Eva-? poiiated or powdered milk is- $xistr äs good...as fi;esh milk . Egga^One or two, per day. Dehydrated ¥ggs are- äs good as- fresh eggs.-. Meat-One serving per day> ._ Äth some fat/ Liver...it.i Material for building, maintaining/ and lubricating the human engine is -obtained’ from proteins’ %ae.at;, fish, - milk ,, eggs), and

  19. Self-lubricating Al-WS2 composites for efficient and greener tribological parts.

    PubMed

    Niste, Vlad Bogdan; Ratoi, Monica; Tanaka, Hiroyoshi; Xu, Fang; Zhu, Yanqiu; Sugimura, Joichi

    2017-11-07

    Due to their mechanical and physical properties, aluminium alloys possess wide potential in the automotive industry, particularly in hot reciprocating applications such as pistons for diesel and petrol engines. WS 2 particle-reinforced composites could bring further improvements by reducing friction and wear between moving parts. Reducing friction improves efficiency by lowering energy/fuel use, ultimately leading to lower greenhouse gas emissions, while antiwear properties can prolong component life. This study compares for the first time the tribological performance of powder metallurgy-consolidated Al composites reinforced with either IF- or 2H-WS 2 particles, so as to elucidate their mechanism of action in test conditions similar to those encountered in engine applications. The composites were tested in lubricated reciprocating contacts against AISI52100 steel balls and the impact of WS 2 could be seen at both 25 and 100 °C. The reduced friction and wear at ambient temperature is due to the predominantly physical mechanism of action of WS 2 , while the best antiwear performance is measured at elevated (standard operating engine) temperatures that promote the chemical reaction of WS 2 with the aluminium matrix. The investigation focused on studying the wear tracks/scars and the tribofilms generated on the composite and ball with optical profilometry, SEM, XPS and Auger spectroscopy.

  20. Bearing development program for a 25 kWe solar-powered organic Rankine-cycle engine

    NASA Technical Reports Server (NTRS)

    Nesmith, B.

    1985-01-01

    The bearing development program is summarized for a 25-kWe power conversion subsystem (PCS) consisting of an organic Rankine-cycle engine, and permanent magnetic alternator (PMA) and rectifier to be used in a 100-kWe point-focusing distributed receiver solar power plant. The engine and alternator were hermetically sealed and used toluene as the working fluid. The turbine, alternator, and feed pump (TAP) were mounted on a single shaft operating at speeds up to 60,000 rev/min. Net thermal-to-electric efficiencies in the range of 21 to 23% were demonstrated at the maximum working fluid temperature of 400 C (750 F). A chronological summary of the bearing development program is presented. The primary causes of bearing wear problems were traced to a combination of rotordynamic instability and electrodynamic discharge across the bearing surfaces caused by recirculating currents from the PMA. These problems were resolved by implementing an externally supplied, flooded-bearing lubrication system and by electrically insulating all bearings from the TAP housing. This program resulted in the successful development of a stable, high-speed, toluene-lubricated five-pad tilting-pad journal bearing and Rayleigh step thrust bearing system capable of operating at all inclinations between horizontal and vertical.

  1. Ion beam-based studies for tribological phenomena

    NASA Astrophysics Data System (ADS)

    Racolta, P. M.; Popa-Simil, L.; Alexandreanu, B.

    1996-06-01

    Custom-designed experiments based on the Thin Layer Activation technique (TLA) were completed, providing information on the wear level of some engine components with additional data on transfer and adhesion of material between metallic friction couples using the RBS method. RBS experimental results concerning material transfer for a steel-brass friction couple are presented and discussed in the paper. Also, the types and concentrations of the wear products in used lubricant oils were determined by in-air PIXE. A sequential lubricant filtering-based procedure for determining the dimension distribution of the resulting radioactive wear particles by low level γ-spectrometry is presented. Experimental XRF spectra showing the non-homogeneous distribution of the retained waste particles on the filtering paper are shown.

  2. Dual functional star polymers for lubricants

    DOE PAGES

    Cosimbescu, Lelia; Robinson, Joshua W.; Zhou, Yan; ...

    2016-09-12

    Star-shaped poly(alkyl methacrylate)s (PAMAs) with a three arm architecturewere designed, prepared and their performance as a dual additive (viscosity index improver and friction modifier) for engine oils was evaluated. Furthermore, the structure property relationships between the macromolecular structure and lubricant performance were studied, such as molecular weight and polarity effects on the viscosity index. Several copolymers of dodecylmethacrylate with polar methacrylates in various amounts and various topologies, were synthesized as model compounds. Star polymers with a polar content of at least 10% in a block or tapered block topology effectively reduced the friction coefficient in both mixed and boundary lubricationmore » regimes. Furthermore, a polar content of 20% was efficient in reducing friction in both random and block topologies.« less

  3. The GSFC Combined Approach of ODC Stockpiling and Tribological Testing to Mitigate the Risks of ODC Elimination

    NASA Technical Reports Server (NTRS)

    Predmore, Roamer; LeBoeuf, Claudia; Hovanec, Andrew

    1997-01-01

    In response to the elimination of production of several Ozone Depleting Chemicals (ODC's) which have been widely used in successful space flight mechanism cleaning and lubricating procedures, GSFC developed and implemented an overall philosophy of mitigating the risks to flight hardware during the transition phase to ODC-free cleaning procedures. The short term leg of the philosophy was the stockpiling of an appropriate amount of ODC solvents such that all short term GSFC missions will be able to stay with or revert to heritage cleaning and lubricating procedures in the face of life issues. The long-term leg of that philosophy was the initiation of a several tier testing program that will deliver increasing amounts of information over the next few years, starting with accelerated lubricant life tests that compare lubricant life on surfaces cleaned with ODC solvents with lubricant life on surfaces cleaned with ODC-free solvents. While tribological testing, mechanism life testing and space-flight experience will ultimately bring us into the 21st century with environmentally friendly means of cleaning long-life precision mechanism components, many satellites will be launched over the next few years before a number of important tribological questions can be answered. In order to prepare for this challenge, the Materials Engineering Branch in cooperation with the Electromechanical Branch launched an intensive review of all ongoing missions. The failure risk was determined for each long-life lubricated mechanism based on a number of parameters, including 4 comparison of flight solvents used to clean the heritage/life test hardware. Also studied was the ability of the mechanism manufacturers to stockpile ODC's based on state laws and company policies. A stockpiling strategy was constructed based on this information and subsequently implemented. This paper provides an overview of the GSFC ODC elimination risk mitigation philosophy as well as a detailed examination of the development of the ODC stockpiling plan.

  4. Effect of filtration on rolling-element-bearing life in contaminated lubricant environment

    NASA Technical Reports Server (NTRS)

    Loewenthal, S. H.; Moyer, D. W.; Sherlock, J. J.

    1978-01-01

    Fatigue tests were conducted on groups of 65 millimeter-bore ball bearings under four levels of filtration with and without a contaminated MIL-L-23699 lubricant. The baseline series used noncontaminated oil with 49 micron absolute filtration. In the remaining tests contaminants of the composition found in aircraft engine filters were injected into the filter's supply line at a constant rate of 125 milligrams per bearing-hour. The test filters had absolute particle removal ratings of 3, 30, 49, and 105 microns (0.45, 10, 30, and 70 microns nominal), respectively. Bearings were tested at 15,000 rpm under 4580 newtons radial load. Bearing life and running tract condition generally improved with finer filtration. The 3 and 30 micron filter bearings in a contaminated lubricant had statistically equivalent lives, approaching those from the baseline tests. The experimental lives of 49 micron bearings were approximately half the baseline bearing's lives. Bearings tested with the 105 micron filter experienced wear failures. The degree of surface distress, weight loss, and probable failure mode were found to be dependent on filtration level, with finer filtration being clearly beneficial.

  5. Dynamics of face seals for high speed turbomachinery

    NASA Technical Reports Server (NTRS)

    Leefe, Simon

    1993-01-01

    Face seals in rocket engine fuel and oxidizer turbopumps have been the subject of intense investigation for over 25 years. While advances have been made in the understanding of thin film lubrication between seal faces, valuable data has been produced on the friction and wear of material pairs in cryogenic environments; pioneering work has been done on the effect of lubricant phase change in seals, and many improvements have been made in mechanical seal design. Relatively superficial attention has been given to the vibrational dynamics of face seals in high-speed turbomachinery. BHR Group Ltd. (formerly BHRA) has recently completed the first stage of a study, commissioned by the European Space Agency, to investigate this area. This has involved the development of a two-dimensional adiabatic, turbulent lubrication model for thick gas film applications, the production of an integrated mathematical model of gas seal vibrational dynamics for thin film applications, implementation in software, the undertaking of an experimental program to validate software against variations in operating conditions and design variables, and suggestions for improved seal design.

  6. Experimental evaluation of chromium-carbide-based solid lubricant coatings for use to 760 C

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher

    1987-01-01

    A research program is described which further developed and investigated chromium carbide based self-lubricating coatings for use to 760 C. A bonded chromium carbide was used as the base stock because of the known excellent wear resistance and the chemical stability of chromium carbide. Additives were silver and barium fluoride/calcium fluoride eutectic. The three coating components were blended in powder form, applied to stainless steel substrates by plasma spraying and then diamond ground to the desired coating thickness. A variety of coating compositions was tested to determine the coating composition which gave optimum tribological results. Coatings were tested in air, helium, and hydrogen at temperatures from 25 to 760 C. Several counterface materials were evaluated with the objective of discovering a satisfactory metal/coating sliding combination for potential applications, such as piston ring/cylinder liner couples for Stirling engines. In general, silver and fluoride additions to chromium carbide reduced the friction coefficient and increased the wear resistance relative to the unmodified coating. The lubricant additives acted synergistically in reducing friction and wear.

  7. Bearing fatigue investigation 3

    NASA Technical Reports Server (NTRS)

    Nahm, A. H.; Bamberger, E. N.; Signer, H. R.

    1982-01-01

    The operating characteristics of large diameter rolling-element bearings in the ultra high speed regimes expected in advanced turbine engines for high performance aircraft were investigated. A high temperature lubricant, DuPont Krytox 143 AC, was evaluated at bearing speeds to 3 million DN. Compared to the results of earlier, similar tests using a MIL-L-23699 (Type II) lubricant, bearings lubricated with the high density Krytox fluid showed significantly higher power requirements. Additionally, short bearing lives were observed when this fluid was used with AISI M50 bearings in an air atmosphere. The primary mode of failure was corrosion initiated surface distress (fatigue) on the raceways. The potential of a case-carburized bearing to sustain a combination of high-tangential and hertzian stresses without experiencing race fracture was also investigated. Limited full scale bearing tests of a 120 mm bore ball bearing at a speed of 25,000 rpm (3 million DN) indicated that a carburized material could sustain spalling fatigue without subsequent propagation to fracture. Planned life tests of the carburized material had to be aborted, however, because of apparent processing-induced material defects.

  8. Lens-free imaging-based low-cost microsensor for in-line wear debris detection in lube oils

    NASA Astrophysics Data System (ADS)

    Mabe, Jon; Zubia, Joseba; Gorritxategi, Eneko

    2017-02-01

    The current paper describes the application of lens-free imaging principles for the detection and classification of wear debris in lubricant oils. The potential benefits brought by the lens-free microscopy techniques in terms of resolution, deep of field and active areas have been tailored to develop a micro sensor for the in-line monitoring of wear debris in oils used in lubricated or hydraulic machines as gearboxes, actuators, engines, etc. The current work presents a laboratory test-bench used for evaluating the optical performance of the lens-free approach applied to the wear particle detection in oil samples. Additionally, the current prototype sensor is presented, which integrates a LED light source, CMOS imager, embedded CPU, the measurement cell and the appropriate optical components for setting up the lens-free system. The imaging performance is quantified using micro structured samples, as well as by imaging real used lubricant oils. Probing a large volume with a decent 2D spatial resolution, this lens-free micro sensor can provide a powerful tool at very low cost for inline wear debris monitoring.

  9. Optimal placement of water-lubricated rubber bearings for vibration reduction of flexible multistage rotor systems

    NASA Astrophysics Data System (ADS)

    Liu, Shibing; Yang, Bingen

    2017-10-01

    Flexible multistage rotor systems with water-lubricated rubber bearings (WLRBs) have a variety of engineering applications. Filling a technical gap in the literature, this effort proposes a method of optimal bearing placement that minimizes the vibration amplitude of a WLRB-supported flexible rotor system with a minimum number of bearings. In the development, a new model of WLRBs and a distributed transfer function formulation are used to define a mixed continuous-and-discrete optimization problem. To deal with the case of uncertain number of WLRBs in rotor design, a virtual bearing method is devised. Solution of the optimization problem by a real-coded genetic algorithm yields the locations and lengths of water-lubricated rubber bearings, by which the prescribed operational requirements for the rotor system are satisfied. The proposed method is applicable either to preliminary design of a new rotor system with the number of bearings unforeknown or to redesign of an existing rotor system with a given number of bearings. Numerical examples show that the proposed optimal bearing placement is efficient, accurate and versatile in different design cases.

  10. Ionic Liquids as Multi-Functional Lubricant Additives to Enhance Engine Efficiency (final report NFE-12-03876)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qu, Jun; Luo, Huimin; Toops, Todd J.

    This ORNL-Shell CRADA developed and investigated ionic liquids (ILs) as multifunctional additives for next-generation low-viscosity engine oils. Several groups of oil-miscible ILs were successfully designed and synthesized with high thermal stability, non-corrosiveness, excellent wettability, and most importantly effective anti-scuffing/anti-wear and friction reduction characteristics. Synergistic effects between the common anti-wear additive zinc dialkyldithiophosphate (ZDDP) and a particular group of ILs were discovered with > 30% friction reduction and 70% wear reduction compared with using ZDDP or IL alone. The IL+ZDDP tribofilm distinguishes itself from the IL or ZDDP tribofilms with substantially higher contents of metal phosphates but less metal oxides andmore » sulfur compounds. Notably, it was revealed that the actual concentrations of functional elements on the droplet surface of the oil containing IL+ZDDP are one order magnitude higher than their nominal values. Such significantly increased concentrations of anti-wear agents are presumably expected for the oilsolid interface and believed to be responsible for the superior lubricating performance. A prototype SAE 0W-16 engine oil using a synergistic IL+ZDDP pair as the anti-wear additive has been formulated based on the compatibility between the IL and other additives. Sequence VIE full-scale engine dynamometer tests demonstrated fuel economy improvement (FEI) for this prototype oil and revealed the individual contributions from the lower oil viscosity and reduced boundary friction. The impact of IL and IL+ZDDP on exhaust emission catalyst was investigated using an accelerated small engine aging test and results were benchmarked against ZDDP.« less

  11. Tribology.

    PubMed

    Spencer, Nicholas D

    2012-01-01

    The 156th Faraday Discussion covered the field of tribology, focussing on the subtopics of biotribology, predictive modelling, smart surfaces, and future lubricated systems. The papers themselves covered topics that drew on the fields of biology, medicine, chemistry, physics, materials science and mechanical engineering, providing a challenging and fascinating insight into the current state of the field of tribology.

  12. Equipment Operator 3 and 2. NAVTRA 10640-G. Rate Training Manual.

    ERIC Educational Resources Information Center

    Bureau of Naval Personnel, Washington, DC.

    A guide for advancement and training in the Equipment Operator 3 and 2 ratings for Navy personnel is provided in this manual. The chapters outline the duties and responsibilities of the equipment operators involved with engines, fuels, lubricants, pollution control, automotive power trains and chassis, automotive vehicles, materials-handling…

  13. Liquid-phase penetration under unsteady in-cylinder conditions: Soy- and Cuphea-derived biodiesel fuels vs. conventional diesel

    USDA-ARS?s Scientific Manuscript database

    Accelerated dilution of engine-lubrication oil is a significant potential issue when fueling with biodiesel. Biodiesel produced from some feedstocks is less volatile than conventional diesel, which makes wall-impingement of liquid fuel more likely, a problem that could be exacerbated by advanced in...

  14. Somnophilia and Sexual Abuse through the Administration of GHB and GBL.

    PubMed

    Pettigrew, Mark

    2018-05-21

    Somnophilia, the desire to have sex with an unconscious, sleeping, or comatose person who is unable to respond, is a sexual paraphilia that is seldom reported. The underlying desire is often overshadowed by the act of sexual violation and when using GHB or GBL to induce unconsciousness, as in the case presented here, the victim might not even be able to recall, for certain, that they have been sexually violated. A case study is offered of a somnophile who adulterated drinks to render young men unconscious, so he could rape them in that state, before progressing to administering drugs anally on the pretext of applying lubrication to the anus to facilitate sexual intercourse. The offender's fetishistic compulsion to have sex with unconscious men propelled him to experiment with the means by which he surreptitiously administered drugs to his victims in order to deepen their comatose state. © 2018 American Academy of Forensic Sciences.

  15. Active learning in forensic science using Brownfield Action in a traditional or hybrid course in earth, environmental, or engineering sciences

    NASA Astrophysics Data System (ADS)

    Bower, P.; Liddicoat (2), J.

    2009-04-01

    Brownfield Action (BA - http://www.brownfieldaction.org) is a web-based, interactive, three-dimensional digital space and learning simulation in which students form geotechnical consulting companies and work collaboratively to explore and solve problems in environmental forensics. BA is being used in the United States at 10 colleges and universities in earth, environmental, or engineering sciences undergraduate and graduate courses. As a semester-long activity or done in modular form for specific topics, BA encourages active learning that requires attention to detail, intuition, and positive interaction between peers that results in Phase 1 and Phase 2 Environmental Site Assessments. Besides use in higher education courses, BA also can be adapted for instruction to local, state, and federal governmental employees, and employees in industry where brownfields need to be investigated or require remediation.

  16. Design and Operating Characteristics of High-Speed, Small-Bore, Angular-Contact Ball Bearings

    NASA Technical Reports Server (NTRS)

    Pinel, Stanley I.; Signer, Hans R.; Zaretsky, Erwin V.

    1998-01-01

    The computer program SHABERTH was used to analyze 35-mm-bore, angular-contact ball bearings designed and manufactured for high-speed turbomachinery applications. Parametric tests of the bearings were conducted on a high-speed, high-temperature bearing tester and were compared with the computer predictions. Four bearing and cage designs were studied. The bearings were lubricated either by jet lubrication or through the split inner ring with and without outer-ring cooling. The predicted bearing life decreased with increasing speed because of increased operating contact stresses caused by changes in contact angle and centrifugal load. For thrust loads only, the difference in calculated life for the 24 deg. and 30 deg. contact-angle bearings was insignificant. However, for combined loading, the 24 deg. contact-angle bearing gave longer life. For split-inner-ring bearings, optimal operating conditions were obtained with a 24 deg. contact angle and an inner-ring, land-guided cage, using outer-ring cooling in conjunction with low lubricant flow rates. Lower temperature and power losses were obtained with a single-outer-ring, land-guided cage for the 24 deg. contact-angle bearing having a relieved inner ring and partially relieved outer ring. Inner-ring temperatures were independent of lubrication mode and cage design. In comparison with measured values, reasonably good engineering correlation was obtained using the computer program SHABERTH for predicted bearing power loss and for inner- and outer-ring temperatures. The Parker formula for XCAV (used in SHABERTH, a measure of oil volume in the bearing cavity) may need to be refined to reflect bearing lubrication mode, cage design, and location of cage-controlling land.

  17. Sound Guard

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Lubrication technology originally developed for a series of NASA satellites has produced a commercial product for protecting the sound fidelity of phonograph records. Called Sound Guard, the preservative is a spray-on fluid that deposits a microscopically thin protective coating which reduces friction and prevents the hard diamond stylus from wearing away the softer vinyl material of the disc. It is marketed by the Consumer Products Division of Ball Corporation, Muncie, Indiana. The lubricant technology on which Sound Guard is based originated with NASA's Orbiting Solar Observatory (OSO), an Earth-orbiting satellite designed and built by Ball Brothers Research Corporation, Boulder, Colorado, also a division of Ball Corporation. Ball Brothers engineers found a problem early in the OSO program: known lubricants were unsuitable for use on satellite moving parts that would be exposed to the vacuum of space for several months. So the company conducted research on the properties of materials needed for long life in space and developed new lubricants. They worked successfully on seven OSO flights and attracted considerable attention among other aerospace contractors. Ball Brothers now supplies its "Vac Kote" lubricants and coatings to both aerospace and non-aerospace industries and the company has produced several hundred variations of the original technology. Ball Corporation expanded its product line to include consumer products, of which Sound Guard is one of the most recent. In addition to protecting record grooves, Sound Guard's anti-static quality also retards particle accumulation on the stylus. During comparison study by a leading U.S. electronic laboratory, a record not treated by Sound Guard had to be cleaned after 50 plays and the stylus had collected a considerable number of small vinyl particles. The Sound Guard-treated disc was still clean after 100 plays, as was its stylus.

  18. Out-of-plane piezoelectric microresonator and oscillator circuit for monitoring engine oil contamination with diesel

    NASA Astrophysics Data System (ADS)

    Toledo, J.; Manzaneque, T.; Ruiz-Díez, V.; Jiménez-Márquez, F.; Kucera, M.; Pfusterschmied, G.; Wistrela, E.; Schmid, U.; Sánchez-Rojas, J. L.

    2015-05-01

    Real-time monitoring of the physical properties of liquids is an important subject in the automotive industry. Contamination of lubricating oil by diesel soot has a significant impact on engine wear. Resonant microstructures are regarded to be a precise and compact solution for tracking the viscosity and density of lubricant oils. Since the measurement of pure shear forces do not allow an independent determination of the density and viscosity, two out-of-plane modes for the monitoring of oil dilution with diesel have been selected. The first one (12-mode) is working at 51 kHz and the second mode (14-mode) at 340 kHz. Two parameters were measured: the quality factor and the resonance frequency from which the viscosity and density of the fluids under test can be determined, requiring only a small amount of test liquid. A PLL-based oscillator circuit was implemented based on each resonator. Our results demonstrate the performance of the resonator in oils with viscosity up to 90 mPa·s. The quality factor measured at 25°C was 7 for the 12-mode and 19 for the 14-mode. A better resolution in density and viscosity was obtained for the 14-mode, showing a resolution of 3.92·10-5 g/ml for the density and 1.27·10-1 mPa·s for the viscosity, in pure lubricant oil SAE 0W30. An alternative tracking system, based on a discrete oscillator circuit, was tested with the same resonator, showing a comparable stability and supporting our approach.

  19. Engineering microbial fatty acid metabolism for biofuels and biochemicals.

    PubMed

    Marella, Eko Roy; Holkenbrink, Carina; Siewers, Verena; Borodina, Irina

    2018-04-01

    Traditional oleochemical industry chemically processes animal fats and plant oils to produce detergents, lubricants, biodiesel, plastics, coatings, and other products. Biotechnology offers an alternative process, where the same oleochemicals can be produced from abundant biomass feedstocks using microbial catalysis. This review summarizes the recent advances in the engineering of microbial metabolism for production of fatty acid-derived products. We highlight the efforts in engineering the central carbon metabolism, redox metabolism, controlling the chain length of the products, and obtaining metabolites with different functionalities. The prospects of commercializing microbial oleochemicals are also discussed. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Study on Waste Heat Utilization Device of High-Temperature Freshwater in the Modern Marine Diesel Engine

    NASA Astrophysics Data System (ADS)

    Wang, Shuaijun; Liu, Chentao; Zhou, Yao

    2018-01-01

    Based on using the waste heat recycling from high temperature freshwater in marine diesel engine to heat fuel oil tank, lubrication oil tank and settling tank and so on to achieve energy saving, improve fuel efficiency as the goal, study on waste heat utilization device of high-temperature freshwater in the modern marine diesel engine to make the combustion chamber effectively cooled by high-temperature freshwater and the inner liner freshwater temperature heat is effectively utilized and so on to improve the overall efficiency of the power plant of the ship and the diesel optimum working condition.

  1. Short term endurance results on a single cylinder diesel engine fueled with upgraded bio oil biodiesel emulsion

    NASA Astrophysics Data System (ADS)

    Prakash, R.; Murugan, S.

    2017-11-01

    This paper deliberates the endurance test outcomes obtained from a single cylinder, diesel engine fueled with an upgraded bio oil biodiesel emulsion. In this investigation a bio oil obtained by pyrolysis of woody biomass was upgraded with acid treatment. The resulted bio oil was emulsified with addition of biodiesel and suitable surfactant which is termed as ATJOE15. The main objective of the endurance test was to evaluate the wear characteristics of the engine components and lubrication oil properties, when the engine is fueled with the ATJOE15 emulsion. The photographic views taken before and after the end of 100 hrs endurance test, and visual inspection of the engine components, wear and carbon deposit results, are discussed in this paper.

  2. Thermal barrier coatings for gas-turbine engine applications.

    PubMed

    Padture, Nitin P; Gell, Maurice; Jordan, Eric H

    2002-04-12

    Hundreds of different types of coatings are used to protect a variety of structural engineering materials from corrosion, wear, and erosion, and to provide lubrication and thermal insulation. Of all these, thermal barrier coatings (TBCs) have the most complex structure and must operate in the most demanding high-temperature environment of aircraft and industrial gas-turbine engines. TBCs, which comprise metal and ceramic multilayers, insulate turbine and combustor engine components from the hot gas stream, and improve the durability and energy efficiency of these engines. Improvements in TBCs will require a better understanding of the complex changes in their structure and properties that occur under operating conditions that lead to their failure. The structure, properties, and failure mechanisms of TBCs are herein reviewed, together with a discussion of current limitations and future opportunities.

  3. Ferrographic and spectrographic analysis of oil sampled before and after failure of a jet engine

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.

    1980-01-01

    An experimental gas turbine engine was destroyed as a result of the combustion of its titanium components. Several engine oil samples (before and after the failure) were analyzed with a Ferrograph as well as plasma, atomic absorption, and emission spectrometers. The analyses indicated that a lubrication system failure was not a causative factor in the engine failure. Neither an abnormal wear mechanism, nor a high level of wear debris was detected in the oil sample from the engine just prior to the test in which the failure occurred. However, low concentrations of titanium were evident in this sample and samples taken earlier. After the failure, higher titanium concentrations were detected in oil samples taken from different engine locations. Ferrographic analysis indicated that most of the titanium was contained in spherical metallic debris after the failure.

  4. 76 FR 2605 - Airworthiness Directives; Rolls-Royce plc RB211-Trent 800 Series Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-14

    ... blade root lubrication coating system may be reduced dependant on the extent of previous running with... Trent 895 powered Boeing 777-200 aircraft experienced release of a low pressure (LP) compressor blade which failed due to fatigue cracking in the root section of the blade. The released blade (undercut root...

  5. Wear simulation of apex seal in rotary engine under mixed lubrication

    NASA Astrophysics Data System (ADS)

    Jiang, Hanying; Zuo, Zhengxing; Liu, Jinxiang

    2018-05-01

    In this work, the wear of apex seal's running face under mixed lubrication is studied. Numerical simulation is carried out by employing the couple model of Reynolds equation, Greenwood and Tripp model and Archard's wear law. The simulation is performed both for one circle and multi circle. In the multi circle simulation, the change of contact position due to wear is considered. A method that is able to find the new contact position based on the updated apex seal's contour profile is proposed, validated and used. The result of multi circle simulation indicates that contact position changes obviously around the maximum swing angles both on leading and trailing sides with the increase number of circles. The wear depth distribution becomes more uniform with the increase of operation circle number.

  6. Interfaces - Weak Links, Yet Great Opportunities

    NASA Technical Reports Server (NTRS)

    Hendricks, Robert C.; Dimofte, Florin; Chupp, Raymond E.; Steinetz, Bruce M.

    2011-01-01

    Inadequate turbomachine interface design can rapidly degrade system performance, yet provide great opportunity for improvements. Engineered coatings of seals and bearing interfaces are major issues in the operational life of power systems. Coatings, films, and combined use of both metals and ceramics play a major role in maintaining component life. Interface coatings, like lubricants, are sacrificial for the benefit of the component. Bearing and sealing surfaces are routinely protected by tribologically paired coatings such as silicon diamond like coatings (SiDLC) in combination with an oil lubricated wave bearing that prolongs bearing operational life. Likewise, of several methods used or researched for detecting interface failures, dopants within coatings show failures in functionally graded ceramic coatings. The Bozzolo-Ferrante-Smith (BFS) materials models and quantum mechanical tools, employed in interface design, are discussed.

  7. Effect of cage design on characteristics of high-speed-jet-lubricated 35-millimeter-bore ball bearing. [turbojet engines

    NASA Technical Reports Server (NTRS)

    Schuller, F. T.; Pinel, S. I.; Signer, H. R.

    1980-01-01

    Parametric tests were conducted with a 35 mm bore angular contact ball bearing with a double outer land guided cage. Provisions were made for jet lubrication and outer-ring cooling of the bearing. Test conditions included a combined thrust and radial load at nominal shaft speeds of 48,000 rpm, and an oil-in temperature of 394 K (250 F). Successful operation of the test bearing was accomplished up to 2.5 million DN. Test results were compared with those obtained with similar bearing having a single outer land guided cage. Higher temperatures were generated with the double outer land guided cage bearing, and bearing power loss and cage slip were greater. Cooling the outer ring resulted in a decrease in overall bearing operating temperature.

  8. Recommended Practice: Creating Cyber Forensics Plans for Control Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eric Cornelius; Mark Fabro

    Cyber forensics has been in the popular mainstream for some time, and has matured into an information-technology capability that is very common among modern information security programs. The goal of cyber forensics is to support the elements of troubleshooting, monitoring, recovery, and the protection of sensitive data. Moreover, in the event of a crime being committed, cyber forensics is also the approach to collecting, analyzing, and archiving data as evidence in a court of law. Although scalable to many information technology domains, especially modern corporate architectures, cyber forensics can be challenging when being applied to non-traditional environments, which are notmore » comprised of current information technologies or are designed with technologies that do not provide adequate data storage or audit capabilities. In addition, further complexity is introduced if the environments are designed using proprietary solutions and protocols, thus limiting the ease of which modern forensic methods can be utilized. The legacy nature and somewhat diverse or disparate component aspects of control systems environments can often prohibit the smooth translation of modern forensics analysis into the control systems domain. Compounded by a wide variety of proprietary technologies and protocols, as well as critical system technologies with no capability to store significant amounts of event information, the task of creating a ubiquitous and unified strategy for technical cyber forensics on a control systems device or computing resource is far from trivial. To date, no direction regarding cyber forensics as it relates to control systems has been produced other than what might be privately available from commercial vendors. Current materials have been designed to support event recreation (event-based), and although important, these requirements do not always satisfy the needs associated with incident response or forensics that are driven by cyber incidents. To address these issues and to accommodate for the diversity in both system and architecture types, a framework based in recommended practices to address forensics in the control systems domain is required. This framework must be fully flexible to allow for deployment into any control systems environment regardless of technologies used. Moreover, the framework and practices must provide for direction on the integration of modern network security technologies with traditionally closed systems, the result being a true defense-in-depth strategy for control systems architectures. This document takes the traditional concepts of cyber forensics and forensics engineering and provides direction regarding augmentation for control systems operational environments. The goal is to provide guidance to the reader with specifics relating to the complexity of cyber forensics for control systems, guidance to allow organizations to create a self-sustaining cyber forensics program, and guidance to support the maintenance and evolution of such programs. As the current control systems cyber security community of interest is without any specific direction on how to proceed with forensics in control systems environments, this information product is intended to be a first step.« less

  9. Development of advanced high temperature in-cylinder components and tribological systems for low heat rejection diesel engines, phase 1

    NASA Astrophysics Data System (ADS)

    Kroeger, C. A.; Larson, H. J.

    1992-03-01

    Analysis and concept design work completed in Phase 1 have identified a low heat rejection engine configuration with the potential to meet the Heavy Duty Transport Technology program specific fuel consumption goal of 152 g/kW-hr. The proposed engine configuration incorporates low heat rejection, in-cylinder components designed for operation at 24 MPa peak cylinder pressure. Water cooling is eliminated by selective oil cooling of the components. A high temperature lubricant will be required due to increased in-cylinder operating temperatures. A two-stage turbocharger air system with intercooling and aftercooling was selected to meet engine boost and BMEP requirements. A turbocompound turbine stage is incorporated for exhaust energy recovery. The concept engine cost was estimated to be 43 percent higher compared to a Caterpillar 3176 engine. The higher initial engine cost is predicted to be offset by reduced operating costs due the lower fuel consumption.

  10. Development of advanced high temperature in-cylinder components and tribological systems for low heat rejection diesel engines, phase 1

    NASA Technical Reports Server (NTRS)

    Kroeger, C. A.; Larson, H. J.

    1992-01-01

    Analysis and concept design work completed in Phase 1 have identified a low heat rejection engine configuration with the potential to meet the Heavy Duty Transport Technology program specific fuel consumption goal of 152 g/kW-hr. The proposed engine configuration incorporates low heat rejection, in-cylinder components designed for operation at 24 MPa peak cylinder pressure. Water cooling is eliminated by selective oil cooling of the components. A high temperature lubricant will be required due to increased in-cylinder operating temperatures. A two-stage turbocharger air system with intercooling and aftercooling was selected to meet engine boost and BMEP requirements. A turbocompound turbine stage is incorporated for exhaust energy recovery. The concept engine cost was estimated to be 43 percent higher compared to a Caterpillar 3176 engine. The higher initial engine cost is predicted to be offset by reduced operating costs due the lower fuel consumption.

  11. Bearings working group

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The service life of the Space Shuttle Main Engine (SSME) turbomachinery bearings was a predominant factor in engine durability and maintenance problems. Recent data has indicated that bearing life is about one order of magnitude lower than the goal of seven and one-half hours particularly those in the High Pressure Oxidizer Turbopump (HPOTP). Bearing technology, primarily cryogenic turbomachinery bearing technology, is expanded by exploring the life and performance effects of design changes; design concept changes; materials changes; manufacturing technique changes; and lubrication system changes. Each variation is assessed against the current bearing design in full scale cryogenic tests.

  12. Coordinating Support of Fuels and Lubricant Research and Development (R&D) 2. Delivery Order 0002: Handbook of Aviation Fuel Properties - 2004 Third Edition

    DTIC Science & Technology

    2004-12-01

    interim, a de Havilland Comet with Ghost engines began service for the British Overseas Airways Corporation (BOAC) in 1952. Both aircraft flew on the... Havilland Comet aircraft. Meanwhile, from 1950 through 1958, most U.S. and British air carriers used piston-powered aircraft such as the Douglas DC-6, DC...and a BOAC de Havilland Comet 4B with Rolls-Royce Avon engines. Both aircraft used kerosine per DERD 2482. As these aircraft did not have extremely

  13. Liquid lubrication for space applications

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L.; Khonsari, Michael M.

    1992-01-01

    Reviewed here is the state of the art of liquid lubrication for space applications. The areas discussed are types of liquid lubrication mechanisms, space environmental effects on lubrication, classification of lubricants, liquid lubricant additives, grease lubrication, mechanism materials, bearing anomalies and failures, lubricant supply techniques, and application types and lubricant needs for those applications.

  14. Liquid lubrication for space applications

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L.; Khonsari, Michael M.

    1993-01-01

    Reviewed here is the state of the art of liquid lubrication for space applications. The areas discussed are types of liquid lubrication mechanisms, space environmental effects on lubrication, classification of lubricants, liquid lubricant additives, grease lubrication, mechanism materials, bearing anomalies and failures, lubricant supply techniques, and application types and lubricant needs for those applications.

  15. High-Temperature Magnetic Bearings for Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Magnetic bearings are the subject of a new NASA Lewis Research Center and U.S. Army thrust with significant industry participation, and coordination with other Government agencies. The NASA/Army emphasis is on high-temperature applications for future gas turbine engines. Magnetic bearings could increase the reliability and reduce the weight of these engines by eliminating the lubrication system. They could also increase the DN (diameter of the bearing times rpm) limit on engine speed and allow active vibration cancellation systems to be used--resulting in a more efficient, "more electric" engine. Finally, the Integrated High-Performance Turbine Engine Technology (IHPTET) Program, a joint Department of Defense/industry program, identified a need for a hightemperature (as high as 1200 F) magnetic bearing that could be demonstrated in a phase III engine. This magnetic bearing is similar to an electric motor. It has a laminated rotor and stator made of cobalt steel. Wound around the stator are a series of electrical wire coils that form a series of electric magnets around the circumference. The magnets exert a force on the rotor. A probe senses the position of the rotor, and a feedback controller keeps it in the center of the cavity. The engine rotor, bearings, and case form a flexible structure that contains a large number of modes. The bearing feedback controller, which could cause some of these modes to become unstable, could be adapted to varying flight conditions to minimize seal clearances and monitor the health of the system. Cobalt steel has a curie point greater than 1700 F, and copper wire has a melting point beyond that. Therefore, practical limitations associated with the maximum magnetic field strength in the cobalt steel and the stress in the rotating components limit the temperature to about 1200 F. The objective of this effort is to determine the limits in temperature and speed of a magnetic bearing operating in an engine. Our approach is to use our in-house experience in magnets, mechanical components, high-temperature materials, and surface lubrication to build and test a magnetic bearing in both a rig and an engine. Testing will be done at Lewis or through cooperative programs in industrial facilities.

  16. Friction Reduction in Powertrain Materials: Role of Tribolayers

    NASA Astrophysics Data System (ADS)

    Banerji, Anindya

    This study aims at understanding the micromechanisms responsible for reduction in friction and wear in the engine cylinder bore/liner materials when tested under lubricated and unlubricated conditions. The tribolayers formed in-situ during sliding contact are unique to each tribosystem and a detailed study of these tribolayers will shed light on the friction reduction mechanisms in powertrain materials. Boundary lubricated tribological performance of grey cast iron (CI) tested against non-hydrogenated diamond-like carbon coating (NH-DLC) resulted in 21% lower coefficient of friction (COF) and an order of magnitude lower volumetric wear compared to CI and steel counterfaces. Dilution of the engine oil by ethanol containing E85 biofuel, consisting of 85% ethanol and 15% gasoline, was beneficial as COF and volumetric wear losses were further reduced. TEM/EELS studies of the NH-DLC counterface provided evidence for OH adsorption of the dangling carbon bonds at the coating surface leading to low friction. Advantage of E85/engine oil blend was also evident during boundary lubricated sliding of eutectic Al-12.6% Si alloy against AISI 52100 steel. The oil residue layer (ORL) formed during boundary lubricated sliding incorporated nanocrystalline regions of Al, Si, ZnS, AlPO4 and ZnO surrounded by amorphous carbon regions. Higher proportions of Zn, S, and P antiwear compounds formed in the ORL when tested using the E85/oil (1:1) blend compared to the unmixed engine oil as the hydroxyl groups in ethanol molecules facilitated ZDDP degradation. Mico-Raman spectroscopy indicated two types of tribolayers formed during unlubricated sliding of thermally sprayed low carbon steel 1010 coating deposited on linerless Al 380 cylinder bore: i) Fe2O3 layer transformed from FeO during dry sliding and ii) Fe2O3 layer with a top amorphous carbon transfer layer when run against H-DLC coated TCR with COF of 0.18. The NH- and H-DLC coatings, that provide low friction under room temperature conditions, fail at temperatures > 200 °C. It was shown that W containing DLC (W-DLC) coatings offered low and stable COF of 0.07 at 400 °C while a Ti incorporated multilayer MoS2 (Ti-MoS2) coating maintained COF between 0.11 at 25 °C to 0.13 at 350 °C. The low friction provided by these coatings was attributed to formation of high temperature lubricious oxides: tungsten trioxide (WO3) in case of W-DLC and MoO3 in case of MoS2, as revealed by Raman analyses of the tribolayers formed on counterface surfaces. Tribolayer formation during sliding friction of multuilayered graphene (MLG), a potential lubricant, depended on the material transfer and relative humidity (RH). Sliding friction tests performed on MLG in air (10- 45% RH) and under a dry N2 atmosphere showed that progressively lower friction values were observed when the RH was increased, with maximum COF of 0.52 in dry N2 and lowest COF of about 0.10 at 45% RH. Microstructural studies including cross-sectional FIB/HR-TEM determined that sliding induced defects which comprised of edge fracture, fragmented/bent graphene stacks compared to pristine graphene and disordered regions between them. In summary, this work shows that delineating the micromechanisms responsible for reduction in friction and wear is critical for development of appropriate materials and coatings for powertrain components.

  17. Tribological Properties of CrN Coating Under Lubrication Conditions

    NASA Astrophysics Data System (ADS)

    Lubas, Janusz

    2012-08-01

    The paper presents research results of the influence of CrN coating on the friction parameters in friction pairs under lubricated friction conditions. The formed CrN homogeneous coating and CrN-steel 46Cr2 "ring" structure coating was matched under test conditions with a counterpart made from SAE-48 and SAE-783 bearing alloys. Tested sliding pairs were lubricated with 5W/40 Lotos synthetic engine oil. The tribological test was conducted on block-on-ring tester. The applied modification technologies of the surface layer of steel allowed for obtaining construction materials with pre-determined tribological characteristics required for the elements of friction pairs in lubricated contact. The results of the tests proved the possibility of implementing CrN coating in friction pairs, which work under mixed friction conditions. The results showed differences in the wear of bearing alloy, as the effect of the interaction between the co-operating surface layers and of the physiochemical changes of their surfaces, induced by external forces. The smallest wear of the bearing alloy occurs during the cooperation with the nitrided layer, whereas the largest wear occurs during the cooperation with the homogenous CrN coating. The CrN coating-46Cr2 steel "ring structure" decreases friction resistance during the start-up of the sliding pair, as well as lowers the level of the friction force and temperature in the friction area during co-operation with SAE-783 bearing alloys.

  18. Liquid Superlubricity of Polyethylene Glycol Aqueous Solution Achieved with Boric Acid Additive.

    PubMed

    Ge, Xiangyu; Li, Jinjin; Zhang, Chenhui; Luo, Jianbin

    2018-03-27

    Boric acid is a weak acid and has been used as a lubrication additive because of its special structure. In this study, we report that boric acid could achieve a robust superlubricity (μ < 0.01) as an additive in polyethylene glycol (PEG) aqueous solution at the Si 3 N 4 /SiO 2 interfaces. The superlow and steady friction coefficient of approximately 0.004-0.006 could be achieved with boric acid under neutral conditions (pH of approximately 6.4), which is different from the acidic conditions leading to superlubricity. The influence of various factors, including boric acid concentration, sliding speed, applied load, PEG molecular weight, and the volume of lubricant on the superlubricity, were investigated. The results reveal that the PEG aqueous solution with the boric acid additive could achieve superlubricity under a wide range of conditions. The surface composition analysis shows that the synergy effect between boric acid and PEG provides sufficient H + ions to realize the running-in process. Moreover, a composite tribochemical film composed of silica and ammonia-containing compounds were formed on the ball surface, contributing to the superlubricity. The film thickness calculation shows that superlubricity was achieved in a mixed lubrication region, and therefore, the superlubricity state was dominated by both the composite tribochemical film formed via the tribochemical reaction on the contact surfaces and the hydrodynamic lubricating film between the contact surfaces. Such a liquid superlubricity achieved under neutral conditions is of importance for both scientific understanding and engineering applications.

  19. Nanocrystal Additives for Advanced Lubricants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, Gregory; Lohuis, James; Demas, Nicholaos

    The innovations in engine and drivetrain lubricants are mainly driven by ever more stringent regulations, which demand better fuel economy, lower carbon emission, and less pollution. Many technologies are being developed for the next generations of vehicles to achieve these goals. Even if these technologies can be adopted, there still is a significant need for a “drop-in” lubricant solution for the existing ground vehicle fleet to reap immediate fuel savings at the same time reduce the pollution. Dramatic improvements were observed when Pixelligent’s proprietary, mono-dispersed, and highly scalable metal oxide nanocrystals were added to the base oils. The dispersions inmore » base and formulated oils are clear and without any change of appearance and viscosity. However, the benefits provided by the nanocrystals were limited to the base oils due to the interference of exiting additives in the fully formulated oils. Developing a prototype formulation including the nanocrystals that can demonstrate the same improvements observed in the base oils is a critical step toward the commercialization of these advanced nano-additives. A ‘bottom-up’ approach was adopted to develop a prototype lubricant formulation to avoid the complicated interactions with the multitude of additives, only minimal numbers of most essential additives are added, step by step, into the formulation, to ensure that they are compatible with the nanocrystals and do not compromise their tribological performance. Tribological performance are characterized to come up with the best formulations that can demonstrate the commercial potential of the nano-additives.« less

  20. PS300 Tribomaterials Evaluated at 6500C by Bushing Test Rig

    NASA Technical Reports Server (NTRS)

    Striebing, Donald R.; DellaCorte, Christopher

    2004-01-01

    A new facility has been developed to test the tribological behavior (friction and wear) of PS300 solid lubricant bushings at high temperatures. PS300 is a commercially available solid lubricant invented at the NASA Glenn Research Center. It can be prepared as a plasma spray coating or as a free-standing powder metallurgy component, designated PM300. PS300 and PM300 composites are designed to lubricate sliding components at temperatures above the capability of today's best oils, greases, and solid lubricants. One of the primary applications being pursued for PM300 is the development of bushings for use in high-temperature machinery. Examples include inlet guide vane bushings for gas turbines and conveyors, and bearings for industrial furnaces and ovens. Encouraging preliminary field trials indicate that PS300 and PM300 lubricant materials have been commercialized successfully in several industrial applications. However, the lack of laboratory performance data has hindered further commercialization especially for new applications that differ significantly from the established experience base. The purpose of the newly developed bushing test rig will be to determine the performance characteristics of PM300, and other materials, under conditions closely matching intended applications. The data will be used to determine engineering friction and wear rates and to estimate the life expectancy of bushings for new applications. In the new rig, the bushing is loaded against a rotating shaft inside a furnace enclosure (see the preceding photograph). Loads can vary from 5 to 200 N, speeds from 1 to 400 rpm, and temperatures from 25 to 800 C. Furnace temperature, bushing temperature, shaft speed, and torque are monitored during the test, and wear of both the bushing and the shaft is measured after testing is completed. Initially, PM300 bushings will be evaluated and compared with lower temperature, traditional bushing materials like graphite and porous bronze. The baseline PM304 composition is 60 wt% NiCr (a binder), 20 wt% Cr2O3 (a hardener), 10 wt% BaF2/CaF2 (a high-temperature lubricant), and 10 wt% Ag (a low-temperature lubricant). Future research efforts will include determining the effects of load, sliding speed, and temperature on tribological performance and, possibly, tailoring composition for specific applications. We expect that the availability of measured performance data will enhance the market penetration of PM300 technology.

  1. Artificial Hip Simulator with Crystal Models

    NASA Image and Video Library

    1966-06-21

    Robert Johnson, top, sets the lubricant flow while Donald Buckley adjusts the bearing specimen on an artificial hip simulator at the National Aeronautics and Space Administration (NASA) Lewis Research Center. The simulator was supplemented by large crystal lattice models to demonstrate the composition of different bearing alloys. This this image by NASA photographer Paul Riedel was used for the cover of the August 15, 1966 edition of McGraw-Hill Product Engineering. Johnson was chief of Lubrication Branch and Buckley head of the Space Environment Lubrication Section in the Fluid System Components Division. In 1962 they began studying the molecular structure of metals. Their friction and wear testing revealed that the optimal structure for metal bearings was a hexagonal crystal structure with proper molecular space. Bearing manufacturers traditionally preferred cubic structures over hexagonal arrangements. Buckley and Johnson found that even though the hexagonal structural was not as inherently strong as its cubic counterpart, it was less likely to cause a catastrophic failure. The Lewis researchers concentrated their efforts on cobalt-molybdenum and titanium alloys for high temperatures applications. The alloys had a number of possible uses, included prosthetics. The alloys were similar in composition to the commercial alloys used for prosthetics, but employed the longer lasting hexagonal structure.

  2. A patterned microtexture to reduce friction and increase longevity of prosthetic hip joints

    PubMed Central

    Chyr, Anthony; Qiu, Mingfeng; Speltz, Jared; Jacobsen, Ronald L.; Sanders, Anthony P.; Raeymaekers, Bart

    2014-01-01

    More than 285,000 total hip replacement surgeries are performed in the US each year. Most prosthetic hip joints consist of a cobalt-chromium (CoCr) femoral head that articulates with a polyethylene acetabular component, lubricated with synovial fluid. The statistical survivorship of these metal-on-polyethylene prosthetic hip joints declines significantly after 10 to 15 years of use, primarily as a result of polyethylene wear and wear debris incited disease. The current engineering paradigm to increase the longevity of prosthetic hip joints is to improve the mechanical properties of the polyethylene component, and to manufacture ultra-smooth articulating surfaces. In contrast, we show that adding a patterned microtexture to the ultra-smooth CoCr femoral head reduces friction when articulating with the polyethylene acetabular liner. The microtexture increases the load-carrying capacity and the thickness of the joint lubricant film, which reduces contact between the articulating surfaces. As a result, friction and wear is reduced. We have used a lubrication model to design the geometry of the patterned microtexture, and experimentally demonstrate reduced friction for the microtextured compared to conventional smooth surrogate prosthetic hip joints. PMID:25013240

  3. Bio-inspired scale-like surface textures and their tribological properties.

    PubMed

    Greiner, Christian; Schäfer, Michael

    2015-06-30

    Friction, wear and the associated energy dissipation are major challenges in all systems containing moving parts. Examples range from nanoelectromechanical systems over hip prosthesis to off-shore wind turbines. Bionic approaches have proven to be very successful in many engineering problems, while investigating the potential of a bio-inspired approach in creating morphological surface textures is a relatively new field of research. Here, we developed laser-created textures inspired by the scales found on the skin of snakes and certain lizards. We show that this bio-inspired surface morphology reduced dry sliding friction forces by more than 40%. In lubricated contacts the same morphology increased friction by a factor of three. Two different kinds of morphologies, one with completely overlapping scales and one with the scales arranged in individual rows, were chosen. In lubricated as well as unlubricated contacts, the surface texture with the scales in rows showed lower friction forces than the completely overlapping ones. We anticipate that these results could have significant impact in all dry sliding contacts, ranging from nanoelectromechanical and micro-positioning systems up to large-scale tribological contacts which cannot be lubricated, e.g. because they are employed in a vacuum environment.

  4. Automotive Stirling Engine Mod 1 Design Review, volume 2

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The auxiliaries and the control system for the ASE MOD I: (1) provide the required fuel and air flows for a well controlled combustion process, generating heat to the Stirling cycle; (2) provide a driver acceptable method for controlling the power output of the engine; (3) provide adequate lubrication and cooling water circulation; (4) generate the electric energy required for engine and vehicle operation; (5) provide a driver acceptable method for starting, stopping and monitoring the engine; and (6) provide a guard system, that protects the engine at component or system malfunction. The control principles and the way the different components and sub-systems interact are described as well as the different auxiliaries, the air fuel system, the power control systems and the electronics. The arrangement and location of auxiliaries and other major components are also examined.

  5. Development of high-speed rolling-element bearings. A historical and technical perspective

    NASA Technical Reports Server (NTRS)

    Zaretsky, E. V.

    1982-01-01

    Research on large-bore ball and roller bearings for aircraft engines is described. Tapered roller bearings and small-bore bearings are discussed. Temperature capabilities of rolling element bearings for aircraft engines have moved from 450 to 589 K (350 to 600 F) with increased reliability. High bearing speeds to 3 million DN can be achieved with a reliability exceeding that which was common in commercial aircraft. Capabilities of available bearing steels and lubricants were defined and established. Computer programs for the analysis and design of rolling element bearings were developed and experimentally verified. The reported work is a summary of NASA contributions to high performance engine and transmission bearing capabilities.

  6. [Aerotoxic syndrome: fact or fiction?].

    PubMed

    de Graaf, Leroy J; Hageman, Gerard; Gouders, Bernie C M; Mulder, Michel F A

    2014-01-01

    Although the air from the turbine engines of commercial jet aircraft is used chiefly for propulsion some is also used to refresh and replenish air in the cabin. As a result of oil-seal leakage, pyrolysed engine oil or lubricating oil can contaminate cabin air via the aircraft's ventilation system, and flight crew and passengers can then inhale the combusted fumes. Exposure to emissions from cabin air, whether polluted or not, is associated with certain health risks. This phenomenon is known as the aerotoxic syndrome or 'cabin contamination'. The symptoms are non-specific, consisting predominantly of fatigue and mild cognitive impairment. Possible adverse health effects are attributed factors including organophosphate tricresyl phosphate, a component of aircraft engine oil that is potently neurotoxic.

  7. Fastener Design Course [Workbook

    NASA Technical Reports Server (NTRS)

    Barrett, Richart T.

    1997-01-01

    Richard T. Barrett, Senior Aerospace Engineer of NASA Lewis Research Center presents a comprehensive course on fastener design. A recognized expert in the field of fastener technology Mr. Barrett combines lecture, charts, illustrations with real-world experiences. Topics covered include: materials, plantings and coatings, locking methods threads, joint stiffness, rivets, inserts, nut plates, thread lubricants, design criteria, etc. These presentation slides accompany the DVD.

  8. Pendulum Underwater--An Approach for Quantifying Viscosity

    ERIC Educational Resources Information Center

    Leme, José Costa; Oliveira, Agostinho

    2017-01-01

    The purpose of the experiment presented in this paper is to quantify the viscosity of a liquid. Viscous effects are important in the flow of fluids in pipes, in the bloodstream, in the lubrication of engine parts, and in many other situations. In the present paper, the authors explore the oscillations of a physical pendulum in the form of a long…

  9. A low-friction high-load thrust bearing and the human hip joint.

    PubMed

    McIlraith, A H

    2010-06-01

    A hydrostatic thrust bearing operating at a pressure of 130 MPa and with a coefficient of friction rising to 0.004 in 6 days is described. It consists of interleaved oil-coated Mylar and brass sheets, each 0.1 mm thick. At this pressure, the Mylar deforms to reveal a pool of lubricant bounded by contacting layers at its edges where the pressure tapers off to zero. Thus, most of the load is borne by the oil so its effective Coulomb (slip-stick) friction is very low. Expressions for the effective coefficient of friction, the area of the solid-to-solid contact and the torque needed to rotate the bearing are given in terms of its geometry, the viscosity of the lubricant and elapsed time. The mechanism of a bearing with similar geometry and properties, the human hip joint, is compared with this plastic bearing. While their low friction properties arise from the same basic cause, the different natures of their soft deformable materials lead to the hip joint having a much wider range of action. This work is an example of new engineering leading to a fresh insight into an action of Nature, which in turn suggests an improvement in engineering.

  10. An economical route to high quality lubricants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andre, J.P.; Hahn, S.K.; Kwon, S.H.

    1996-12-01

    The current rends in the automotive and industrial markets toward more efficient engines, longer drain intervals, and lower emissions all contribute to placing increasingly stringent performance requirements on lubricants. The demand for higher quality synthetic and non-conventional basestocks is expected to grow at a much faster rate than that of conventional lube basestocks to meet these higher performance standards. Yukong Limited has developed a novel technology (the Yukong UCO Lube Process) for the economic production of high quality, high-viscosity-index lube basestocks from a fuels hydrocracker unconverted oil stream. A pilot plant based on this process has been producing oils formore » testing purposes since May 1994. A commercial facility designed to produce 3,500 BPD of VHVI lube basestocks cane on-stream at Yukong`s Ulsan refinery in October 1995. The Badger Technology Center of Raytheon Engineers and Constructors assisted Yukong during the development of the technology and prepared the basic process design package for the commercial facility. This paper presents process aspects of the technology and comparative data on investment and operating costs. Yukong lube basestock product properties and performance data are compared to basestocks produced by conventional means and by lube hydrocracking.« less

  11. Hydrodynamic air lubricated compliant surface bearing for an automotive gas turbine engine. 2: Materials and coatings

    NASA Technical Reports Server (NTRS)

    Bhushan, B.; Ruscitto, D.; Gray, S.

    1978-01-01

    Material coatings for an air-lubricated, compliant journal bearing for an automotive gas turbine engine were exposed to service test temperatures of 540 C or 650 C for 300 hours, and to 10 temperature cycles from room temperatures to the service test temperatures. Selected coatings were then put on journal and partial-arc foils and tested in start-stop cycle tests at 14 kPa (2 psi) loading for 2000 cycles. Half of the test cycles were performed at a test chamber service temperature of 540 C (1000 F) or 650 C (1200 F); the other half were performed at room temperature. Based on test results, the following combinations and their service temperature limitations are recommended: HL-800 TM (CdO and graphite) on foil versus chrome carbide on journal up to 370 C (700 F); NASA PS 120 (Tribaloy 400, silver and CaF2 on journal versus uncoated foil up to 540 C (1000 F); and Kaman DES on journal and foil up to 640 C (1200 F). Kaman DES coating system was further tested successfully at 35 kPa (5 psi) loading for 2000 start-stop cycles.

  12. Ambient Pressure Test Rig Developed for Testing Oil-Free Bearings in Alternate Gases and Variable Pressures

    NASA Technical Reports Server (NTRS)

    Bauman, Steven W.

    1990-01-01

    The Oil-Free Turbomachinery research team at the NASA Glenn Research Center is conducting research to develop turbomachinery systems that utilize high-speed, high temperature foil (air) bearings that do not require an oil lubrication system. Such systems combine the most advanced foil bearings from industry with NASA-developed hightemperature solid-lubricant technology. New applications are being pursued, such as Oil- Free turbochargers, auxiliary power units, and turbine propulsion systems for aircraft. An Oil-Free business jet engine, for example, would be simpler, lighter, more reliable, and less costly to purchase and maintain than current engines. Another application is NASA's Prometheus mission, where gas bearings will be required for the closed-cycle turbine based power-conversion system of a nuclear power generator for deep space. To support these applications, Glenn's Oil-Free Turbomachinery research team developed the Ambient Pressure Test Rig. Using this facility, researchers can load and heat a bearing and evaluate its performance with reduced air pressure to simulate high altitude conditions. For the nuclear application, the test chamber can be purged with gases such as helium to study foil gas bearing operation in working fluids other than air.

  13. Questioning the Role of Requirements Engineering in the Causes of Safety-Critical Software Failures

    NASA Technical Reports Server (NTRS)

    Johnson, C. W.; Holloway, C. M.

    2006-01-01

    Many software failures stem from inadequate requirements engineering. This view has been supported both by detailed accident investigations and by a number of empirical studies; however, such investigations can be misleading. It is often difficult to distinguish between failures in requirements engineering and problems elsewhere in the software development lifecycle. Further pitfalls arise from the assumption that inadequate requirements engineering is a cause of all software related accidents for which the system fails to meet its requirements. This paper identifies some of the problems that have arisen from an undue focus on the role of requirements engineering in the causes of major accidents. The intention is to provoke further debate within the emerging field of forensic software engineering.

  14. The MillSOT-A Spiral Orbit Tribometer on a Milling Machine

    NASA Technical Reports Server (NTRS)

    Pepper, Stephen V.

    2014-01-01

    A spiral orbit tribometer (SOT) intended to characterize friction and wear phenomena has been constructed on a milling machine. The instrument, essentially a retainerless thrust bearing with one ball and flat races, is exceedingly simple and inexpensive to construct. The capabilities of the tribometer to measure both the coefficient of friction and contact electrical resistance are demonstrated with clean specimens as well as with well known lubricants such as molybdenum disulphide and Krytox oil. Operation in a purged environment of inert gas is also demonstrated. The results with these lubricants are quite close to what is obtained by other methods. Suggestions for extending the capabilities of the tribometer are given. This arrangement may find use in university mechanical engineering laboratories to introduce and study rolling contact motion as well as for research in contact mechanics and tribology.

  15. Effect of the External Lubrication Method for a Rotary Tablet Press on the Adhesion of the Film Coating Layer.

    PubMed

    Kondo, Hisami; Toyota, Hiroyasu; Kamiya, Takayuki; Yamashita, Kazunari; Hakomori, Tadashi; Imoto, Junko; Kimura, Shin-Ichiro; Iwao, Yasunori; Itai, Shigeru

    2017-01-01

    External lubrication is a useful method which reduces the adhesion of powder to punches and dies by spraying lubricants during the tableting process. However, no information is available on whether the tablets prepared using an external lubrication system can be applicable for a film coating process. In this study, we evaluated the adhesion force of the film coating layer to the surface of tablets prepared using an external lubrication method, compared with those prepared using internal lubrication method. We also evaluated wettability, roughness and lubricant distribution state on the tablet surface before film coating, and investigated the relationship between peeling of the film coating layer and these tablet surface properties. Increasing lubrication through the external lubrication method decreased wettability of the tablet surface. However, no change was observed in the adhesion force of the film coating layer. On the other hand, increasing lubrication through the internal lubrication method, decreased both wettability of the tablet surface and the adhesion force of the film coating layer. The magnesium stearate distribution state on the tablet surface was assessed using an X-ray fluorescent analyzer and lubricant agglomerates were observed in the case of the internal lubrication method. However, the lubricant was uniformly dispersed in the external lubrication samples. These results indicate that the distribution state of the lubricant affects the adhesion force of the film coating layer, and external lubrication maintained sufficient lubricity and adhesion force of the film coating layer with a small amount of lubricant.

  16. Improvement of fuel injection system of locomotive diesel engine.

    PubMed

    Li, Minghai; Cui, Hongjiang; Wang, Juan; Guan, Ying

    2009-01-01

    The traditional locomotive diesels are usually designed for the performance of rated condition and much fuel will be consumed. A new plunger piston matching parts of fuel injection pump and injector nozzle matching parts were designed. The experimental results of fuel injection pump test and diesel engine show that the fuel consumption rate can be decreased a lot in the most of the working conditions. The forced lubrication is adopted for the new injector nozzle matching parts, which can reduce failure rate and increase service life. The design has been patented by Chinese State Patent Office.

  17. Analysis of Piston Slap Motion

    NASA Astrophysics Data System (ADS)

    Narayan, S.

    2015-05-01

    Piston slap is the major force contibuting towards noise levels in combustion engines.This type of noise depends upon a number of factors such as the piston-liner gap, type of lubricant used, number of piston pins as well as geometry of the piston. In this work the lateral and rotary motion of the piston in the gap between the cylinder liner and piston has been analyzed. A model that can predict the forces and response of the engine block due to slap has been dicussed. The parameters such as mass, spring and damping constant have been predicted using a vibrational mobility model.

  18. Correlation Study of Laboratory Physical and Chemical Data with Dynamometer Engine Sequence Performance Testing of Engine Lubricating Oils.

    DTIC Science & Technology

    1978-12-01

    and chemical data and dynamomet er and field perfo rmance. The initial stud y produced internal and group correlations among the data and suggests a...sm all (a corre lation of I .0 i~ ~~r kct cor rela t ion ’, Prin cip al comp onent .iii,il ~ 515 Was enmp lo~ ed to stud ~ lhe iner al l re hi t i...Additive ) K = Potassium (Addit ive) V N = Nitr ogen (Additive ) . V Mg = Magnesium (Additive ) B = Boron (Additive ) Other = To include wear and

  19. Fuel Lubricity Impact on Shipboard Engine and Fuel Systems and Sensitivity of U.S. Navy Diesel Engines to Low-Sulfur Diesel Fuel

    DTIC Science & Technology

    2011-06-30

    load fuel and operated with a dummy injector to make sure the system was clean. The rig was de -fueled and a fresh charge of 2000-gram fuel was added...the rocker arm on the injector. The rocker arm contact was repositioned when it was noted it was hitting the injector off-center, and it was felt...going up. Figure B6. DD 149 Unit Injector with Diesel Fuel and Centered Rocker Arm Figure B7. Wear Rate Deviation Attributed to Head

  20. Forensic Engineering Information Services.

    ERIC Educational Resources Information Center

    Fairbanks, Aline M.

    1984-01-01

    Summarizes historical development of product liability laws which allow an injured party to seek to recover damages for personal injury or loss of property allegedly resulting from defective product and reviews activities of Triodyne Inc. in gathering evidence to be used in product liability lawsuits. Sixteen references are cited. (EJS)

  1. An analytical model to predict interstitial lubrication of cartilage in migrating contact areas.

    PubMed

    Moore, A C; Burris, D L

    2014-01-03

    For nearly a century, articular cartilage has been known for its exceptional tribological properties. For nearly as long, there have been research efforts to elucidate the responsible mechanisms for application toward biomimetic bearing applications. It is now widely accepted that interstitial fluid pressurization is the primary mechanism responsible for the unusual lubrication and load bearing properties of cartilage. Although the biomechanics community has developed elegant mathematical theories describing the coupling of solid and fluid (biphasic) mechanics and its role in interstitial lubrication, quantitative gaps in our understanding of cartilage tribology have inhibited our ability to predict how tribological conditions and material properties impact tissue function. This paper presents an analytical model of the interstitial lubrication of biphasic materials under migrating contact conditions. Although finite element and other numerical models of cartilage mechanics exist, they typically neglect the important role of the collagen network and are limited to a specific set of input conditions, which limits general applicability. The simplified approach taken in this work aims to capture the broader underlying physics as a starting point for further model development. In agreement with existing literature, the model indicates that a large Peclet number, Pe, is necessary for effective interstitial lubrication. It also predicts that the tensile modulus must be large relative to the compressive modulus. This explains why hydrogels and other biphasic materials do not provide significant interstitial pressure under high Pe conditions. The model quantitatively agrees with in-situ measurements of interstitial load support and the results have interesting implications for tissue engineering and osteoarthritis problems. This paper suggests that a low tensile modulus (from chondromalacia or local collagen rupture after impact, for example) may disrupt interstitial pressurization, increase shear stresses, and activate a condition of progressive surface damage as a potential precursor of osteoarthritis. © 2013 Elsevier Ltd. All rights reserved.

  2. Determination of calcium, magnesium and zinc in lubricating oils by flame atomic absorption spectrometry using a three-component solution.

    PubMed

    Zmozinski, Ariane V; de Jesus, Alexandre; Vale, Maria G R; Silva, Márcia M

    2010-12-15

    Lubricating oils are used to decrease wear and friction of movable parts of engines and turbines, being in that way essential for the performance and the increase of that equipment lifespan. The presence of some metals shows the addition of specific additives such as detergents, dispersals and antioxidants that improve the performance of these lubricants. In this work, a method for determination of calcium, magnesium and zinc in lubricating oil by flame atomic absorption spectrometry (F AAS) was developed. The samples were diluted with a small quantity of aviation kerosene (AVK), n-propanol and water to form a three-component solution before its introduction in the F AAS. Aqueous inorganic standards diluted in the same way have been used for calibration. To assess the accuracy of the new method, it was compared with ABNT NBR 14066 standard method, which consists in diluting the sample with AVK and in quantification by F AAS. Two other validating methods have also been used: the acid digestion and the certified reference material NIST (SRM 1084a). The proposed method provides the following advantages in relation to the standard method: significant reduction of the use of AVK, higher stability of the analytes in the medium and application of aqueous inorganic standards for calibration. The limits of detection for calcium, magnesium and zinc were 1.3 μg g(-1), 0.052 μg g(-1) and 0.41 μg g(-1), respectively. Concentrations of calcium, magnesium and zinc in six different samples obtained by the developed method did not differ significantly from the results obtained by the reference methods at the 95% confidence level (Student's t-test and ANOVA). Therefore, the proposed method becomes an efficient alternative for determination of metals in lubricating oil. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Evaluation of tribological properties of selected engine oils during operation of the friction pairs of steel-on-steel

    NASA Astrophysics Data System (ADS)

    Barszcz, Marcin; Józwik, Jerzy; Dziedzic, Krzysztof; Stec, Kamil

    2017-10-01

    The paper includes an assessment of the tribological properties of mineral and synthetic Lotos oil marked SAE 15W/40 and SAE 5W/40 at ambient temperature and 100 °C. The evaluation was based on the analysis of the tribological properties of friction couple consumables. Tribological tests were performed using the Anton Paar THT 1000 high temperature tribotester according to ASTM G133. Tribological properties were investigated using the "ball on disc" method. The change of friction coefficient, friction couple temperature, volume wear of samples and counter-samples and Hertz stresses were evaluated. In addition, hardness tests of the friction couple materials as well as surface roughness before and after friction were performed. On the basis of tribological studies, it was noted that Lotos Synthetic 5W/40 oil has better cooling properties compared. For both oils the coefficient of friction was lower at ambient temperature than at 100 °C. The highest value of volume wear of the sample was noted for the combination lubricated with Mineral Oil 15W/40 at 100 °C (0.0143 mm3) while for counter-sample lubricated with synthetic oil at ambient temperature (0.0039 mm3). The highest sample wear coefficient was recorded for the mineral oil lubricated at temperature of 100 °C (3.585*10-7 mm3/N/m) while for counter-sample lubricated with synthetic oil at ambient temperature (9.8768*10-8 mm3/N/m). The Hertz stress for each test couple had a value of 1.787 GPa.

  4. Smoke Emission Tests on Series II and Series III Allison T56 Turboprop Engines

    DTIC Science & Technology

    1986-12-01

    Buioary ■ (13) available to ARL of aromatic content of AVTUR from Australian sources. The US data was obtained from information contained in Sheldon...Library Flight Standards Division Statutory and State Authorities and Industry Australian Atomic Energy Commiasion, Director Australian Airlines...Ampol Petroleum (Vic) Pty Md, Lubricant Sales & Service Mgr Ansett Airlines of Australia, Library Australian Coal Industry Research Labs

  5. Engineered Joint Lubrication for OA Prevention and Treatment

    DTIC Science & Technology

    2015-09-01

    Williams, C. G., Khan, M., Manson, P. & Elisseeff, J .H. In vivo chondrogenesis of mesenchymal stem cells in photopolymerized hydrogel. Plast...protecting cells from free-radical damage20–22. Coating surfaces with HA may also physically protect the surfaces from cytokines and degrading enzymes...modification provides a biomimetic mechanism to concentrate HA on the surface. Numerous endogenous enzymes and reactive oxygen species can degrade HA

  6. Engine Oils with a New Composition of Additives

    DTIC Science & Technology

    A lubricant additive composition IKhP (2.6% BFK, a Ba salt of a CH2O- alkylphenol condensation product; 1.4% SB-3, a Ba sulfonate; 1.2% IN-KhP-21, a...Ba salt of a CH2O-NH3- alkylphenol condensation product; 0.005% PMS-200A; and 0. 5% AzNII) is discussed in relationship to its use as an automobile oil

  7. Investigation of Deposit Formation Mechanisms for Engine In-cylinder Combustion and Exhaust Systems Using Quantitative Analysis and Sustainability Study

    NASA Astrophysics Data System (ADS)

    Ye, Z.; Meng, Q.; Mohamadian, H. P.; Wang, J. T.; Chen, L.; Zhu, L.

    2007-06-01

    The formation of SI engine combustion deposits is a complex phenomenon which depends on various factors of fuel, oil, additives, and engine. The goal of this study is to examine the effects of operating conditions, gasoline, lubricating oil, and additives on deposit formation. Both an experimental investigation and theoretical analysis are conducted on a single cylinder engine. As a result, the impact of deposits on engine performance and exhaust emissions (HC, NO x ) has been indicated. Using samples from a cylinder head and exhaust pipe as well as switching gases via the dual-gas method (N2, O2), the deposit formation mechanism is thoroughly investigated via the thermogravity analysis approach, where the roles of organic, inorganic, and volatile components of fuel, additives, and oil on deposit formation are identified from thermogravity curves. Sustainable feedback control design is then proposed for potential emission control and performance optimization

  8. Solid lubricants: A survey

    NASA Technical Reports Server (NTRS)

    Campbell, M. E.

    1972-01-01

    A survey is presented of the most recent developments and trends in the field of solid lubrication. Topics discussed include: a history of solid lubrication, lubricating solids, bonded lubricants, new developments, methods of evaluation, environmental effects, application methods, novel materials, and designs for the use of solid lubricants. Excerpts of solid lubricant specifications and a discussion of contact stresses imposed on specimens in three types of test machines used for the evaluation of solid lubricants are presented.

  9. Men's use and perceptions of commercial lubricants: prevalence and characteristics in a nationally representative sample of American adults.

    PubMed

    Reece, Michael; Herbenick, Debby; Schick, Vanessa; Sanders, Stephanie A; Fortenberry, J Dennis

    2014-05-01

    Most research on men's use of commercial lubricants during sexual activities is in the context of condom use and often specifically among men who have sex with men. Less is known about men's use of lubricants associated with a broader range of sexual experiences. The aims of this study are to document the prevalence of commercial lubricant use among adult U.S. men (age 18+), to document men's use of lubricants across solo and partnered sexual behaviors, and to assess men's perceptions of the contributions lubricants have to the sexual experience. Data are from the 2012 National Survey of Sexual Health and Behavior, which involved the administration of an online questionnaire to a nationally representative probability sample of U.S. adults ages 18 and older. Sociodemographic characteristics, recent and lifetime commercial lubricant use, lubricant use during specific sexual behaviors, frequency of lubricant use, and reasons for lubricant use. Most men in the United States (70%, N = 1,014) reported having used a commercial lubricant, with men older than 24 and those in a relationship more likely to report lubricant use. About one in four men had used a lubricant in the past 30 days. Intercourse was the most common behavior during which men used lubricant, though solo masturbation and partnered sexual play were also frequently linked to lubricant use. The most common reasons for lubricant use included "to make sex more comfortable," "for fun," "curiosity," and "my partner wanted to." Most American men have used a lubricant; lubricant use is common across all age groups, and some of the most common reasons why men report using lubricants have to do with sexual enhancement, comfort, and pleasure. Clinicians may find these data helpful to their efforts to educate patients about lubricant use, comfort during sex, and sexual enhancement. © 2014 International Society for Sexual Medicine.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prime, Michael B.; DeWald, Adrian T.; Hill, Michael R.

    Forensic engineering - the scientific examination and analysis of failed structures and parts relating to their failure or cause of damage. Real advances in experimental mechanics require innovative theoretical and analytical thinking to go with innovative capabilities. For example, taking full field data (e.g., DIC) and treating it like discrete data (strain gauge) misses a wonderful opportunity.

  11. 75 FR 17604 - Federal Motor Vehicle Safety Standards; Roof Crush Resistance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-07

    ... Safety Analysis & Forensic Engineering, LLC (SAFE) brought to our attention errors in the preamble that incorrectly attributed to it the comments of another organization, Safety Analysis, Inc. Both of these... Safety Analysis, Inc. SAFE noted that there is no affiliation between SAFE and Safety Analysis, Inc. and...

  12. Review of Electrocution Deaths in Iraq: Part 1 - Electrocution of Staff Sergeant Ryan D. Maseth, U.S. Army

    DTIC Science & Technology

    2009-07-24

    concurrently. Photographs of LSF-1 from before and after June 2006 are consistent with the believed installation date. A forensic engineering...other services such as refuse collection and disposal, entomology , etc. Starting in November 2003, Washington Group International/Black and Veatch

  13. How Linguistic Frames Affect Motivational Profiles and the Roles of Quantitative versus Qualitative Research Strategies

    ERIC Educational Resources Information Center

    Yeager, Joseph; Sommer, Linda

    2005-01-01

    The combined tools of psycholinguistics and systems analysis have produced advances in motivational profiling resulting in numerous applications to behavioral engineering. Knowing the way people frame their motive offers leverage in causing behavior change ranging from persuasive marketing campaigns, forensic profiling, individual psychotherapy,…

  14. Simulated 'On-Line' Wear Metal Analysis of Lubricating Oils by X-Ray Fluorescence Spectroscopy

    NASA Technical Reports Server (NTRS)

    Kelliher, Warren C.; Partos, Richard D.; Nelson, Irina

    1996-01-01

    The objective of this project was to assess the sensitivity of X-ray Fluorescence Spectroscopy (XFS) for quantitative evaluation of metal particle content in engine oil suspensions and the feasibility of real-time, dynamic wear metal analysis. The study was focused on iron as the majority wear metal component. Variable parameters were: particle size, particle concentration and oil velocity. A commercial XFS spectrometer equipped with interchangeable static/dynamic (flow cell) sample chambers was used. XFS spectra were recorded for solutions of Fe-organometallic standard and for a series of DTE oil suspensions of high purity spherical iron particles of 2g, 4g, and 8g diameter, at concentrations from 5 ppm to 5,000 ppm. Real contaminated oil samples from Langley Air Force Base aircraft engines and NASA Langley Research Center wind tunnels were also analyzed. The experimental data conform the reliability of XFS as the analytical method of choice for this project. Intrinsic inadequacies of the instrument for precise analytic work at low metal concentrations were identified as being related to the particular x-ray beam definition, system geometry, and flow-cell materials selection. This work supports a proposal for the design, construction and testing of a conceptually new, miniature XFS spectrometer with superior performance, dedicated to on-line, real-time monitoring of lubricating oils in operating engines. Innovative design solutions include focalization of the incident x-ray beam, non-metal sample chamber, and miniaturization of the overall assembly. The instrument would contribute to prevention of catastrophic engine failures. A proposal for two-year funding has been presented to NASA Langley Research Center Internal Operation Group (IOG) Management, to continue the effort begun by this summer's project.

  15. Friction and wear behaviour of Mo-W doped carbon-based coating during boundary lubricated sliding

    NASA Astrophysics Data System (ADS)

    Hovsepian, Papken Eh.; Mandal, Paranjayee; Ehiasarian, Arutiun P.; Sáfrán, G.; Tietema, R.; Doerwald, D.

    2016-03-01

    A molybdenum and tungsten doped carbon-based coating (Mo-W-C) was developed in order to provide low friction in boundary lubricated sliding condition at ambient and at high temperature. The Mo-W-C coating showed the lowest friction coefficient among a number of commercially available state-of-the-art DLC coatings at ambient temperature. At elevated temperature (200 °C), Mo-W-C coating showed a significant reduction in friction coefficient with sliding distance in contrast to DLC coatings. Raman spectroscopy revealed the importance of combined Mo and W doping for achieving low friction at both ambient and high temperature. The significant decrease in friction and wear rate was attributed to the presence of graphitic carbon debris (from coating) and 'in situ' formed metal sulphides (WS2 and MoS2, where metals were supplied from coating and sulphur from engine oil) in the transfer layer.

  16. Resilient and Corrosion-proof Rolling Element Bearings Made from Ni-ti Alloys for Aerospace Mechanism Applications and the Ultimate Space Technology Development Platform

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher

    2014-01-01

    The International Space Station provides a unique microgravity laboratory environment for research. The ISS also serves as an effective platform for the development of technologies and engineered solutions related to living and working in space. The space environment also challenges our capabilities related to lubrication and tribology. In this seminar, Dr. DellaCorte will review the basics of space mechanism tribology and the challenges of providing good lubrication and long-life in the harsh space environment. He will also discuss recent tribological challenges associated with the Solar Alpha Rotary Joint (SARJ) bearings and life support hardware that must operate under severe conditions that are literally out of this world. Each tribology challenge is unique and their solutions often result in new technologies that benefit the tribology community everywhere, even back on Earth

  17. Intelligent Engine Systems Work Element 1.3: Sub System Health Management

    NASA Technical Reports Server (NTRS)

    Ashby, Malcolm; Simpson, Jeffrey; Singh, Anant; Ferguson, Emily; Frontera, mark

    2005-01-01

    The objectives of this program were to develop health monitoring systems and physics-based fault detection models for engine sub-systems including the start, lubrication, and fuel. These models will ultimately be used to provide more effective sub-system fault identification and isolation to reduce engine maintenance costs and engine down-time. Additionally, the bearing sub-system health is addressed in this program through identification of sensing requirements, a review of available technologies and a demonstration of a demonstration of a conceptual monitoring system for a differential roller bearing. This report is divided into four sections; one for each of the subtasks. The start system subtask is documented in section 2.0, the oil system is covered in section 3.0, bearing in section 4.0, and the fuel system is presented in section 5.0.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Huifang; Lam, William; Remias, Joseph

    Mobile source emissions standards are becoming more stringent and particulate emissions from gasoline direct injection (GDI) engines represent a particular challenge. Gasoline particulate filter (GPF) is deemed as one possible technical solution for particulate emissions reduction. In this work, a study was conducted on eight formulations of lubricants to determine their effect on GDI engine particulate emissions and GPF performance. Accelerated ash loading tests were conducted on a 2.4L GDI engine with engine oil injection in gasoline fuel by 2%. The matrix of eight formulations was designed with changing levels of sulfated ash (SASH) level, Zinc dialkyldithiophosphates (ZDDP) level andmore » detergent type. Comprehensive evaluations of particulates included mass, number, size distribution, composition, morphology and soot oxidation properties. GPF performance was assessed through filtration efficiency, back pressure and morphology. It was determined that oil formulation affects the particulate emission characteristics and subsequent GPF performance.« less

  19. Femtosecond laser full and partial texturing of steel surfaces to reduce friction in lubricated contact

    NASA Astrophysics Data System (ADS)

    Ancona, Antonio; Carbone, Giuseppe; De Filippis, Michele; Volpe, Annalisa; Lugarà, Pietro Mario

    2014-12-01

    Minimizing mechanical losses and friction in vehicle engines would have a great impact on reducing fuel consumption and exhaust emissions, to the benefit of environmental protection. With this scope, laser surface texturing (LST) with femtosecond pulses is an emerging technology, which consists of creating, by laser ablation, an array of high-density microdimples on the surface of a mechanical device. The microtexture decreases the effective contact area and, in case of lubricated contact, acts as oil reservoir and trap for wear debris, leading to an overall friction reduction. Depending on the lubrication regime and on the texture geometry, several mechanisms may concur to modify friction such as the local reduction of the shear stress, the generation of a hydrodynamic lift between the surfaces or the formation of eddy-like flows at the bottom of the dimple cavities. All these effects have been investigated by fabricating and characterizing several LST surfaces by femtosecond laser ablation with different features: partial/full texture, circular/elliptical dimples, variable diameters, and depths but equivalent areal density. More than 85% of friction reduction has been obtained from the circular dimple geometry, but the elliptical texture allows adjusting the friction coefficient by changing its orientation with respect to the sliding direction.

  20. Synthesis and evaluation of C-ether formulations for use as high temperature lubricants and hydraulic fluids

    NASA Technical Reports Server (NTRS)

    Clark, F. S.; Green, R. L.; Miller, D. R.

    1974-01-01

    The formulation and evaluation of C-ether fluids for use in the hydraulic and lubrication systems of the space shuttle and advanced air breathing engines were studied to lower the pour point of a reference C-ether from -29 C to -40 C without changing its evaporation loss. Use of disiloxanes mixed with C-ethers gave a -40 C pour point fluid with little change in the desired evaporation loss or in oxidative stability. A second -40 C pour point fluid containing only C-ethers was also developed. A screening program tested lubrication additives for C-ethers and the new fluids. Six additive packages were chosen for evaluation in 316 C bearing tests, two for evaluation in 260 C pump tests. The goal of the bearing test was a 100 hour run. The rig was a specially designed 80-mm axially loaded ball bearing. The C-ether base fluid ran only one hour at 316 C before cage wear failure occurred. The best additive blends ran 47, 94 and 100 hours. The 96 hour test gave excessive deposits. The 100 hour test had no wear failures; an unexplained loss of cage silver occurred from areas of direct fluid impingement on the cage.

Top