Sample records for forest age class

  1. Changes in ground beetle diversity and community composition in age structured forests (Coleoptera, Carabidae).

    PubMed

    Riley, Kathryn N; Browne, Robert A

    2011-01-01

    We examined diversity, community composition, and wing-state of Carabidae as a function of forest age in Piedmont North Carolina. Carabidae were collected monthly from 396 pitfall traps (12×33 sites) from March 2009 through February 2010, representing 5 forest age classes approximately 0, 10, 50, 85, and 150 years old. A total of 2,568 individuals, representing 30 genera and 63 species, were collected. Carabid species diversity, as estimated by six diversity indices, was significantly different between the oldest and youngest forest age classes for four of the six indices. Most carabid species were habitat generalists, occurring in all or most of the forest age classes. Carabid species composition varied across forest age classes. Seventeen carabid species were identified as potential candidates for ecological indicators of forest age. Non-metric multidimensional scaling (NMDS) showed separation among forest age classes in terms of carabid beetle community composition. The proportion of individuals capable of flight decreased significantly with forest age.

  2. Changes in ground beetle diversity and community composition in age structured forests (Coleoptera, Carabidae)

    PubMed Central

    Riley, Kathryn N.; Browne, Robert A.

    2011-01-01

    Abstract We examined diversity, community composition, and wing-state of Carabidae as a function of forest age in Piedmont North Carolina. Carabidae were collected monthly from 396 pitfall traps (12×33 sites) from March 2009 through February 2010, representing 5 forest age classes approximately 0, 10, 50, 85, and 150 years old. A total of 2,568 individuals, representing 30 genera and 63 species, were collected. Carabid species diversity, as estimated by six diversity indices, was significantly different between the oldest and youngest forest age classes for four of the six indices. Most carabid species were habitat generalists, occurring in all or most of the forest age classes. Carabid species composition varied across forest age classes. Seventeen carabid species were identified as potential candidates for ecological indicators of forest age. Non-metric multidimensional scaling (NMDS) showed separation among forest age classes in terms of carabid beetle community composition. The proportion of individuals capable of flight decreased significantly with forest age. PMID:22371677

  3. Estimates of Forest Biomass Carbon Storage in Liaoning Province of Northeast China: A Review and Assessment

    PubMed Central

    Yu, Dapao; Wang, Xiaoyu; Yin, You; Zhan, Jinyu; Lewis, Bernard J.; Tian, Jie; Bao, Ye; Zhou, Wangming; Zhou, Li; Dai, Limin

    2014-01-01

    Accurate estimates of forest carbon storage and changes in storage capacity are critical for scientific assessment of the effects of forest management on the role of forests as carbon sinks. Up to now, several studies reported forest biomass carbon (FBC) in Liaoning Province based on data from China's Continuous Forest Inventory, however, their accuracy were still not known. This study compared estimates of FBC in Liaoning Province derived from different methods. We found substantial variation in estimates of FBC storage for young and middle-age forests. For provincial forests with high proportions in these age classes, the continuous biomass expansion factor method (CBM) by forest type with age class is more accurate and therefore more appropriate for estimating forest biomass. Based on the above approach designed for this study, forests in Liaoning Province were found to be a carbon sink, with carbon stocks increasing from 63.0 TgC in 1980 to 120.9 TgC in 2010, reflecting an annual increase of 1.9 TgC. The average carbon density of forest biomass in the province has increased from 26.2 Mg ha−1 in 1980 to 31.0 Mg ha−1 in 2010. While the largest FBC occurred in middle-age forests, the average carbon density decreased in this age class during these three decades. The increase in forest carbon density resulted primarily from the increased area and carbon storage of mature forests. The relatively long age interval in each age class for slow-growing forest types increased the uncertainty of FBC estimates by CBM-forest type with age class, and further studies should devote more attention to the time span of age classes in establishing biomass expansion factors for use in CBM calculations. PMID:24586881

  4. Estimates of forest biomass carbon storage inLiaoning Province of Northeast China: a review and assessment.

    PubMed

    Yu, Dapao; Wang, Xiaoyu; Yin, You; Zhan, Jinyu; Lewis, Bernard J; Tian, Jie; Bao, Ye; Zhou, Wangming; Zhou, Li; Dai, Limin

    2014-01-01

    Accurate estimates of forest carbon storage and changes in storage capacity are critical for scientific assessment of the effects of forest management on the role of forests as carbon sinks. Up to now, several studies reported forest biomass carbon (FBC) in Liaoning Province based on data from China's Continuous Forest Inventory, however, their accuracy were still not known. This study compared estimates of FBC in Liaoning Province derived from different methods. We found substantial variation in estimates of FBC storage for young and middle-age forests. For provincial forests with high proportions in these age classes, the continuous biomass expansion factor method (CBM) by forest type with age class is more accurate and therefore more appropriate for estimating forest biomass. Based on the above approach designed for this study, forests in Liaoning Province were found to be a carbon sink, with carbon stocks increasing from 63.0 TgC in 1980 to 120.9 TgC in 2010, reflecting an annual increase of 1.9 TgC. The average carbon density of forest biomass in the province has increased from 26.2 Mg ha(-1) in 1980 to 31.0 Mg ha(-1) in 2010. While the largest FBC occurred in middle-age forests, the average carbon density decreased in this age class during these three decades. The increase in forest carbon density resulted primarily from the increased area and carbon storage of mature forests. The relatively long age interval in each age class for slow-growing forest types increased the uncertainty of FBC estimates by CBM-forest type with age class, and further studies should devote more attention to the time span of age classes in establishing biomass expansion factors for use in CBM calculations.

  5. Biotic and abiotic factors regulating forest floor CO2 flux across a range of forest age classes in the southern Appalachians

    Treesearch

    James M. Vose; Paul V. Bolstad

    2007-01-01

    We measured forest floor CO2 flux in three age classes of forest in the southern Appalachians: 20-year-old, 85-year-old, and old-growth. Our objectives were to quantify differences in forest floor CO2 flux among age classes, and determine the relative importance of abiotic and biotic driving variables. Forest floor CO

  6. Tropical forest biomass and successional age class relationships to a vegetation index derived from Landsat TM data

    NASA Technical Reports Server (NTRS)

    Sader, Steven A.; Waide, Robert B.; Lawrence, William T.; Joyce, Armond T.

    1989-01-01

    Forest stand structure and biomass data were collected using conventional forest inventory techniques in tropical, subtropical, and warm temperate forest biomes. The feasibility of detecting tropical forest successional age class and total biomass differences using Landsat-Thematic mapper (TM) data, was evaluated. The Normalized Difference Vegetation Index (NDVI) calculated from Landsat-TM data were not significantly correlated with forest regeneration age classes in the mountain terrain of the Luquillo Experimental Forest, Puerto Rico. The low sun angle and shadows cast on steep north and west facing slopes reduced spectral reflectance values recorded by TM orbital altitude. The NDVI, calculated from low altitude aircraft scanner data, was significatly correlated with forest age classes. However, analysis of variance suggested that NDVI differences were not detectable for successional forests older than approximately 15-20 years. Also, biomass differences in young successional tropical forest were not detectable using the NDVI. The vegetation index does not appear to be a good predictor of stand structure variables (e.g., height, diameter of main stem) or total biomass in uneven age, mixed broadleaf forest. Good correlation between the vegetation index and low biomass in even age pine plantations were achieved for a warm temperate study site. The implications of the study for the use of NDVI for forest structure and biomass estimation are discussed.

  7. Plethodontid salamander response to Silvilcultural Practices in Missouri Ozark forests

    Treesearch

    Laura A. Herbeck; David R. Larsen

    1999-01-01

    There is little information on the effects of tree harvest on salamander populations in the midwestern United States. We present data on plethodontid salamander densities in replicated stands of three forest age classes in the southeastern Ozarks of Missouri. Forest age classes consisted of regeneration-cut sites

  8. Simulating historical variability in the amount of old forests in the Oregon Coast Range.

    Treesearch

    M.C. Wimberly; T.M. Spies; C.J. Long; C. Whitlock

    2000-01-01

    We developed the landscape age-class demographics simulator (LADS) to model historical variability in the amount of old-growth and late-successional forest in the Oregon Coast Range over the past 3,000 years. The model simulated temporal and spatial patterns of forest fires along with the resulting fluctuations in the distribution of forest age classes across the...

  9. Evidence for environmentally enhanced forest growth

    PubMed Central

    Fang, Jingyun; Kato, Tomomichi; Guo, Zhaodi; Yang, Yuanhe; Hu, Huifeng; Shen, Haihua; Zhao, Xia; Kishimoto-Mo, Ayaka W.; Tang, Yanhong; Houghton, Richard A.

    2014-01-01

    Forests in the middle and high latitudes of the northern hemisphere function as a significant sink for atmospheric carbon dioxide (CO2). This carbon (C) sink has been attributed to two processes: age-related growth after land use change and growth enhancement due to environmental changes, such as elevated CO2, nitrogen deposition, and climate change. However, attribution between these two processes is largely controversial. Here, using a unique time series of an age-class dataset from six national forest inventories in Japan and a new approach developed in this study (i.e., examining changes in biomass density at each age class over the inventory periods), we quantify the growth enhancement due to environmental changes and its contribution to biomass C sink in Japan’s forests. We show that the growth enhancement for four major plantations was 4.0∼7.7 Mg C⋅ha−1 from 1980 to 2005, being 8.4–21.6% of biomass C sequestration per hectare and 4.1–35.5% of the country's total net biomass increase of each forest type. The growth enhancement differs among forest types, age classes, and regions. Our results provide, to our knowledge, the first ground-based evidence that global environmental changes can increase C sequestration in forests on a broad geographic scale and imply that both the traits and age of trees regulate the responses of forest growth to environmental changes. These findings should be incorporated into the prediction of forest C cycling under a changing climate. PMID:24979781

  10. Species richness, abundance, and composition of hypogeous and epigeous ectomycorrhizal fungal sporocarps in young, rotation-age, and old-growth stands of Douglas-fir (Pseudotsuga menziesii) in the Cascade Range of Oregon, U.S.A.

    Treesearch

    J.E. Smith; R. Molina; M.M.P. Huso; D.L. Luoma; D. McKay; M.A. Castellano; T. Lebel; Y. Valachovic

    2002-01-01

    Knowledge of the community structure of ectomycorrhizal fungi among successional forest age-classes is critical for conserving fungal species diversity. Hypogeous and epigeous sporocarps were collected from three replicate stands in each of three forest age-classes (young, rotation-age, and old-growth) of Douglas-fir (Pseudotsuga menziesii (Mirb.)...

  11. 77 FR 18997 - Rim Lakes Forest Restoration Project; Apache-Sitgreavese National Forest, Black Mesa Ranger...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-29

    ... uncharacteristicly high-severity wild fires, which can lead to loss of entire stands during one fire event. About 67..., fire, and wind. The purpose of the project is to restore forest health, move forests toward an uneven-aged forest structure with all age classes represented, and restore frequent, periodic surface fire as...

  12. Forest plantations in the Midsouth, U.S.A.

    Treesearch

    James F. Rosson

    1995-01-01

    Timberland that has been artificially regenerated in the seven Midsouth States was analyzed by ownership, forest type, stocking class, age, tree density, basal area, site class, and volume. Growing-stock volumes of natural stands and plantations were compared.

  13. A national scale estimation of soil carbon stocks of Pinus densiflora forests in Korea: a modelling approach

    NASA Astrophysics Data System (ADS)

    Yi, K.; Park, C.; Ryu, S.; Lee, K.; Yi, M.; Kim, C.; Park, G.; Kim, R.; Son, Y.

    2011-12-01

    Soil carbon (C) stocks of Pinus densiflora forests in Korea were estimated using a generic forest soil C dynamics model based on the process of dead organic matter input and decomposition. Annual input of dead organic matter to the soil was determined by stand biomass and turnover rates of tree components (stem, branch, twig, foliage, coarse root, and fine root). The model was designed to have a simplified structure consisting of three dead organic matter C (DOC) pools (aboveground woody debris (AWD), belowground woody debris (BWD), and litter (LTR) pool) and one soil organic C (SOC) pool. C flows in the model were regulated by six turnover rates of stem, branch, twig, foliage, coarse root, and fine root, and four decay rates of AWD, BWD, LTR, and SOC. To simulate the soil C stocks of P. densiflora forests, statistical data of forest land area (1,339,791 ha) and growing stock (191,896,089 m3) sorted by region (nine provinces and seven metropolitan cities) and stand age class (11 to 20- (II), 21 to 30- (III), 31 to 40- (IV), 41 to 50- (V), and 51 to 60-year-old (VI)) were used. The growing stock of each stand age class was calculated for every region and representable site index was also determined by consulting the yield table. Other model parameters related to the stand biomass, annual input of dead organic matter and decomposition were estimated from previous studies conducted on P. densiflora forests in Korea, which were also applied for model validation. As a result of simulation, total soil C stock of P. densiflora forests were estimated as 53.9 MtC and soil C stocks per unit area ranged from 28.71 to 47.81 tC ha-1 within the soil depth of 30 cm. Also, soil C stocks in the P. densiflora forests of age class II, III, IV, V, and VI were 16,780,818, 21,450,812, 12,677,872, 2,366,939, and 578,623 tC, respectively, and highly related to the distribution of age classes. Soil C stocks per unit area initially decreased with stand age class and started to increase after the stand age class of V. Regional soil C stocks ranged from 9,805 to 15,595,802 tC, and were generally proportional to the forest land area. Our results suggest an approach to estimate soil C stock on a national scale by using a computer model and manipulating the existing statistical data.

  14. Cost-effective age structure and geographical distribution of boreal forest reserves.

    PubMed

    Lundström, Johanna; Ohman, Karin; Perhans, Karin; Rönnqvist, Mikael; Gustafsson, Lena; Bugman, Harald

    2011-02-01

    1. Forest reserves are established to preserve biodiversity, and to maintain natural functions and processes. Today there is heightened focus on old-growth stages, with less attention given to early successional stages. The biodiversity potential of younger forests has been overlooked, and the cost-effectiveness of incorporating different age classes in reserve networks has not yet been studied.2. We performed a reserve selection analysis in boreal Sweden using the Swedish National Forest Inventory plots. Seventeen structural variables were used as biodiversity indicators, and the cost of protecting each plot as a reserve was assessed using the Heureka system. A goal programming approach was applied, which allowed inclusion of several objectives and avoided a situation in which common indicators affected the result more than rare ones. The model was limited either by budget or area.3. All biodiversity indicators were found in all age classes, with more than half having the highest values in ages ≥ 100 years. Several large-tree indicators and all deadwood indicators had higher values in forests 0-14 years than in forests 15-69 years.4. It was most cost-effective to protect a large proportion of young forests since they generally have a lower net present value compared to older forests, but still contain structures of importance for biodiversity. However, it was more area-effective to protect a large proportion of old forests since they have a higher biodiversity potential per area.5. The geographical distribution of reserves selected with the budget-constrained model was strongly biassed towards the north-western section of boreal Sweden, with a large proportion of young forest, whereas the area-constrained model focussed on the south-eastern section, with dominance by the oldest age class.6.Synthesis and applications. We show that young forests with large amounts of structures important to biodiversity such as dead wood and remnant trees are cheap and cost-efficient to protect. This suggests that reserve networks should incorporate sites with high habitat quality of different forest ages. Since young forests are generally neglected in conservation, our approach is of interest also to other forest biomes where biodiversity is adapted to disturbance regimes resulting in open, early successional stages.

  15. Forecasting Forest Type and Age Classes in the Appalachian-Cumberland Subregion of the Central Hardwood Region

    Treesearch

    David N. Wear; Robert Huggett

    2011-01-01

    This chapter describes how forest type and age distributions might be expected to change in the Appalachian-Cumberland portions of the Central Hardwood Region over the next 50 years. Forecasting forest conditions requires accounting for a number of biophysical and socioeconomic dynamics within an internally consistent modeling framework. We used the US Forest...

  16. Spatial distribution of young forests and carbon fluxes within recent disturbances in Russia.

    PubMed

    Loboda, Tatiana V; Chen, Dong

    2017-01-01

    Forest stand age plays a major role in regulating carbon fluxes in boreal and temperate ecosystems. Young boreal forests represent a relatively small but persistent source of carbon to the atmosphere over 30 years after disturbance, while temperate forests switch from a substantial source over the first 10 years to a notable sink until they reach maturity. Russian forests are the largest contiguous forest belt in the world that accounts for 17% of the global forest cover; however, despite its critical role in controlling global carbon cycle, little is known about spatial patterns of young forest distribution across Russia as a whole, particularly before the year 2000. Here, we present a map of young (0-27 years of age) forests, where 12- to 27-year-old forests were modeled from the single-date 500 m satellite record and augmented with the 0- to 11-year-old forest map aggregated from the 30 m resolution contemporary record between 2001 and 2012. The map captures the distribution of forests with the overall accuracy exceeding 85% within three largest bioclimatic vegetation zones (northern, middle, and southern taiga), although mapping accuracy for disturbed classes was generally low (the highest of 31% for user's and producer's accuracy for the 12-27 age class and the maximum of 74% for user's and 32% for producer's accuracy for the 0-11 age class). The results show that 75.5 ± 17.6 Mha (roughly 9%) of Russian forests were younger than 30 years of age at the end of 2012. The majority of these 47 ± 4.7 Mha (62%) were distributed across the middle taiga bioclimatic zone. Based on the published estimates of net ecosystem production (NEP) and the produced map of young forests, this study estimates that young Russian forests represent a total sink of carbon at the rate of 1.26 Tg C yr -1 . © 2016 John Wiley & Sons Ltd.

  17. The repeatability of stem exclusion during even-aged development of bigtooth aspen dominated forests

    Treesearch

    Brain J. Palik; Kurt S. Pregitzer

    1993-01-01

    Forest development following major disturbance is thought to follow a fairly repeatable temporal pattern. An initial cohort of trees establishes relatively rapidly (stand initiation), new establishment is precluded for an extended period (stem exclusion), and finally, new individuals again begin to establish, creating new age-classes in the forest understory (...

  18. Vegetative composition in forested areas following application of desired forest condition treatments

    Treesearch

    Trent A. Danley; Andrew W. Ezell; Emily B. Schultz; John D. Hodges

    2015-01-01

    Desired forest conditions, or DFCs, are recently created parameters which strive to create diverse stands of hardwoods of various species and age classes, along with varying densities and canopy gaps, through the use of uneven-aged silvicultural methods and repeated stand entries. Little research has been conducted to examine residual stand composition and hardwood...

  19. SDI-Flex: a new technique of allocating growing stock for developing treatment prescriptions in uneven-aged forest stands

    Treesearch

    Wayne D. Shepperd

    2007-01-01

    One of the difficulties of apportioning growing stock across diameter classes in multi- or uneven-aged forests is estimating how closely the target stocking value compares to the maximum stocking that could occur in a particular forest type and eco-region. Although the BDQ method had been used to develop uneven-aged prescriptions, it is not inherently related to any...

  20. Environmental Change and Disease Dynamics: Effects of Intensive Forest Management on Puumala Hantavirus Infection in Boreal Bank Vole Populations

    PubMed Central

    Voutilainen, Liina; Savola, Sakeri; Kallio, Eva Riikka; Laakkonen, Juha; Vaheri, Antti; Vapalahti, Olli; Henttonen, Heikki

    2012-01-01

    Intensive management of Fennoscandian forests has led to a mosaic of woodlands in different stages of maturity. The main rodent host of the zoonotic Puumala hantavirus (PUUV) is the bank vole (Myodes glareolus), a species that can be found in all woodlands and especially mature forests. We investigated the influence of forest age structure on PUUV infection dynamics in bank voles. Over four years, we trapped small mammals twice a year in a forest network of different succession stages in Northern Finland. Our study sites represented four forest age classes from young (4 to 30 years) to mature (over 100 years) forests. We show that PUUV-infected bank voles occurred commonly in all forest age classes, but peaked in mature forests. The probability of an individual bank vole to be PUUV infected was positively related to concurrent host population density. However, when population density was controlled for, a relatively higher infection rate was observed in voles trapped in younger forests. Furthermore, we found evidence of a “dilution effect” in that the infection probability was negatively associated with the simultaneous density of other small mammals during the breeding season. Our results suggest that younger forests created by intensive management can reduce hantaviral load in the environment, but PUUV is common in woodlands of all ages. As such, the Fennoscandian forest landscape represents a significant reservoir and source of hantaviral infection in humans. PMID:22745755

  1. Cost-effective age structure and geographical distribution of boreal forest reserves

    PubMed Central

    Lundström, Johanna; Öhman, Karin; Perhans, Karin; Rönnqvist, Mikael; Gustafsson, Lena; Bugman, Harald

    2011-01-01

    1. Forest reserves are established to preserve biodiversity, and to maintain natural functions and processes. Today there is heightened focus on old-growth stages, with less attention given to early successional stages. The biodiversity potential of younger forests has been overlooked, and the cost-effectiveness of incorporating different age classes in reserve networks has not yet been studied. 2. We performed a reserve selection analysis in boreal Sweden using the Swedish National Forest Inventory plots. Seventeen structural variables were used as biodiversity indicators, and the cost of protecting each plot as a reserve was assessed using the Heureka system. A goal programming approach was applied, which allowed inclusion of several objectives and avoided a situation in which common indicators affected the result more than rare ones. The model was limited either by budget or area. 3. All biodiversity indicators were found in all age classes, with more than half having the highest values in ages ≥ 100 years. Several large-tree indicators and all deadwood indicators had higher values in forests 0–14 years than in forests 15–69 years. 4. It was most cost-effective to protect a large proportion of young forests since they generally have a lower net present value compared to older forests, but still contain structures of importance for biodiversity. However, it was more area-effective to protect a large proportion of old forests since they have a higher biodiversity potential per area. 5. The geographical distribution of reserves selected with the budget-constrained model was strongly biassed towards the north-western section of boreal Sweden, with a large proportion of young forest, whereas the area-constrained model focussed on the south-eastern section, with dominance by the oldest age class. 6. Synthesis and applications. We show that young forests with large amounts of structures important to biodiversity such as dead wood and remnant trees are cheap and cost-efficient to protect. This suggests that reserve networks should incorporate sites with high habitat quality of different forest ages. Since young forests are generally neglected in conservation, our approach is of interest also to other forest biomes where biodiversity is adapted to disturbance regimes resulting in open, early successional stages. PMID:22879680

  2. The woody biomass resource of Alabama

    Treesearch

    James F. Jr. Rosson; Charles E. Thomas

    1986-01-01

    Presents findings and analysis of woody biomass based on the fifth forest survey of Alabama (1982). The green weights by component-total, merchantable, residual, sapling, and rough and rotten-are presented by various categories such as ownership, forest type, physiographic class, size class, basal area, species, and age. After-harvest residual is also presented and...

  3. Competition and Habitat Quality Influence Age and Sex Distribution in Wintering Rusty Blackbirds

    PubMed Central

    Mettke-Hofmann, Claudia; Hamel, Paul B.; Hofmann, Gerhard; Zenzal Jr., Theodore J.; Pellegrini, Anne; Malpass, Jennifer; Garfinkel, Megan; Schiff, Nathan

    2015-01-01

    Bird habitat quality is often inferred from species abundance measures during the breeding and non-breeding season and used for conservation management decisions. However, during the non-breeding season age and sex classes often occupy different habitats which suggest a need for more habitat-specific data. Rusty Blackbird (Euphagus carolinus) is a forested wetland specialist wintering in bottomland hardwood forests in the south-eastern U. S. and belongs to the most steeply declining songbirds in the U.S. Little information is available to support priority birds such as the Rusty Blackbird wintering in this threatened habitat. We assessed age and sex distribution and body condition of Rusty Blackbirds among the three major habitats used by this species in the Lower Mississippi Alluvial Valley and also measured food availability. Overall, pecan groves had the highest biomass mainly driven by the amount of nuts. Invertebrate biomass was highest in forests but contributed only a small percentage to overall biomass. Age and sex classes were unevenly distributed among habitats with adult males primarily occupying pecan groves containing the highest nut biomass, females being found in forests which had the lowest nut biomass and young males primarily staying in forest fragments along creeks which had intermediate nut biomass. Males were in better body condition than females and were in slightly better condition in pecan groves. The results suggest that adult males occupy the highest quality habitat and may competitively exclude the other age and sex classes. PMID:25946335

  4. Competition and habitat quality influence age and sex distribution in wintering rusty blackbirds.

    PubMed

    Mettke-Hofmann, Claudia; Hamel, Paul B; Hofmann, Gerhard; Zenzal, Theodore J; Pellegrini, Anne; Malpass, Jennifer; Garfinkel, Megan; Schiff, Nathan; Greenberg, Russell

    2015-01-01

    Bird habitat quality is often inferred from species abundance measures during the breeding and non-breeding season and used for conservation management decisions. However, during the non-breeding season age and sex classes often occupy different habitats which suggest a need for more habitat-specific data. Rusty Blackbird (Euphagus carolinus) is a forested wetland specialist wintering in bottomland hardwood forests in the south-eastern U. S. and belongs to the most steeply declining songbirds in the U.S. Little information is available to support priority birds such as the Rusty Blackbird wintering in this threatened habitat. We assessed age and sex distribution and body condition of Rusty Blackbirds among the three major habitats used by this species in the Lower Mississippi Alluvial Valley and also measured food availability. Overall, pecan groves had the highest biomass mainly driven by the amount of nuts. Invertebrate biomass was highest in forests but contributed only a small percentage to overall biomass. Age and sex classes were unevenly distributed among habitats with adult males primarily occupying pecan groves containing the highest nut biomass, females being found in forests which had the lowest nut biomass and young males primarily staying in forest fragments along creeks which had intermediate nut biomass. Males were in better body condition than females and were in slightly better condition in pecan groves. The results suggest that adult males occupy the highest quality habitat and may competitively exclude the other age and sex classes.

  5. Cutting strategies and timber yields for unbalanced even-aged northern hardwood forests

    Treesearch

    William B. Leak; Stanley M. Filip; Stanley M. Filip

    1970-01-01

    The even-aged hardwood forest, with a poorly balanced distribution of age-classes, can cause perplexing problems during the first rotation. What is the best cutting strategy to follow? By using linear programming, we developed some cutting strategies that maximize board-foot production and produce a balanced age distribution by the end of the first rotation. We...

  6. Group opening outcomes, sustainable forest management, and the Menominee Nation lands

    Treesearch

    Christel C. Kern; Manfred Schoelch; Paul Crocker; Dean Fellman; Angela Marsh; Dave Mausel; Marshall Pecore; Joseph Phillippi; Ronald Waukau; Anthony Waupochick

    2017-01-01

    Ideally, variants of single-tree, group, and patch selection create new, spatially aggregated age classes and maintain a diversity of tree species and sizes in multiaged, mixed-species forests. We explored this notion in northern hardwood forests on the Menominee Nation, a forest ecosystem without the exploitive cutting history of most forests in the western Great...

  7. Fragmentation statistics for FIA: designing an approach

    Treesearch

    Rachel Riemann; Andrew Lister; Michael Hoppus; Tonya Lister

    2002-01-01

    The USDA Forest Inventory and Analysis (FIA) program collects data on the amount of forest, as well as on characteristics such as forest type, tree volume, species composition, and size and age classes. However, little data are obtained nationwide on forest fragmentation-how that forest is distributed and in what land use/land cover context-factors that can...

  8. Spatial characteristics of early successional habitat across the Upper Great Lakes states

    Treesearch

    Brian G. Tavernia; Mark D. Nelson; James D. Garner; Charles H. (Hobie) Perry

    2016-01-01

    Creation and management of early successional forest (ESF) is needed to halt and reverse declines of bird species dependent on pioneering plant species or young forests. ESF-dependent bird species require specific structural forest classes and are sensitive to forest age (a surrogate for forest structure), patch size, proximity to patch edges, and the juxtaposition of...

  9. Multi-Cohort Stand Structural Classification: Ground- and LiDAR-based Approaches for Boreal Mixedwood and Black Spruce Forest Types of Northeastern Ontario

    NASA Astrophysics Data System (ADS)

    Kuttner, Benjamin George

    Natural fire return intervals are relatively long in eastern Canadian boreal forests and often allow for the development of stands with multiple, successive cohorts of trees. Multi-cohort forest management (MCM) provides a strategy to maintain such multi-cohort stands that focuses on three broad phases of increasingly complex, post-fire stand development, termed "cohorts", and recommends different silvicultural approaches be applied to emulate different cohort types. Previous research on structural cohort typing has relied upon primarily subjective classification methods; in this thesis, I develop more comprehensive and objective methods for three common boreal mixedwood and black spruce forest types in northeastern Ontario. Additionally, I examine relationships between cohort types and stand age, productivity, and disturbance history and the utility of airborne LiDAR to retrieve ground-based classifications and to extend structural cohort typing from plot- to stand-levels. In both mixedwood and black spruce forest types, stand age and age-related deadwood features varied systematically with cohort classes in support of an age-based interpretation of increasing cohort complexity. However, correlations of stand age with cohort classes were surprisingly weak. Differences in site productivity had a significant effect on the accrual of increasingly complex multi-cohort stand structure in both forest types, especially in black spruce stands. The effects of past harvesting in predictive models of class membership were only significant when considered in isolation of age. As an age-emulation strategy, the three cohort model appeared to be poorly suited to black spruce forests where the accrual of structural complexity appeared to be more a function of site productivity than age. Airborne LiDAR data appear to be particularly useful in recovering plot-based cohort types and extending them to the stand-level. The main gradients of structural variability detected using LiDAR were similar between boreal mixedwood and black spruce forest types; the best LiDAR-based models of cohort type relied upon combinations of tree size, size heterogeneity, and tree density related variables. The methods described here to measure, classify, and predict cohort-related structural complexity assist in translating the conceptual three cohort model to a more precise, measurement-based management system. In addition, the approaches presented here to measure and classify stand structural complexity promise to significantly enhance the detail of structural information in operational forest inventories in support of a wide array of forest management and conservation applications.

  10. The influence of forest cover on landslide occurrence explored with spatio-temporal information

    NASA Astrophysics Data System (ADS)

    Schmaltz, Elmar M.; Steger, Stefan; Glade, Thomas

    2017-08-01

    Multi-temporal landslide inventories in widely forested landscapes are scarce and further studies are required to face the challenges of producing reliable inventories in woodland areas. An elaboration of valuable empirical relationships between shallow landslides and forest cover based on recent remote sensing data alone is often hampered due to constant land cover changes, differing ages of landslides within a landslide inventory and the fact that usage of different data sets for mapping might lead to various systematic mapping biases. Within this study, we attempted to overcome these difficulties in order to explore the effect of forest cover on shallow landslide occurrences. Thus, forest dynamics were examined on the basis of 9 orthophoto series from 1950s to 2015, distinguishing 3 forest classes, based on the wood type. These classes were furthermore distinguished in 12 subclasses, considering stand density and age. A multi-temporal landslide inventory was compiled for the same period based on the aerial photography, 2 airborne LiDAR imageries, 8 field surveys and archive data. We derived topographical parameters (slope, topographical positioning index and convergency index) from the digital elevation model for areal correction and accounting for topographical confounders within a logistic regression model. Empirical relationships were assessed by means of (a) areal changes of forests and logged areas, (b) spatio-temporal distribution of shallow translational landslides, (c) frequency ratios and (d) logistic regression analysis. The findings revealed that forests increased by 16.2% from 1950s to 2015. 311 landslides of 351 in total that where mapped in total could be assigned to the observed time series and were considered for our analyses. Frequency ratios and odds ratios indicated a stabilising effect of all forest classes on landslide occurrences. Odds ratios observed for the models based on aggregated data sets (3 forest classes) indicated provided evidence that forest was constantly estimated to be less prone to slope failure than their non-forested counterparts. The chances for forest classes to be affected by shallow landslides were estimated to be considerably lower whenever topographic predictors were as well included in the model. A detailed inspection of the statistical results suggests that the obtained empirical relationships should be interpreted with care. Challenges in the mapping procedures of forests and landslides, implications of the applied methods and potential pitfalls are discussed.

  11. Ecology of Missouri Forests. Instructional Unit. Conservation Education Series.

    ERIC Educational Resources Information Center

    Jackson, Jim

    This unit is designed to help science, social studies, vocational agriculture, and other teachers incorporate forest ecology concepts into their subject matter. The unit includes: (1) topic outline; (2) unit objectives; (3) background information on climate and soils, levels of a deciduous forest, age classes, food and energy relationships, forest…

  12. Average Stand Age from Forest Inventory Plots Does Not Describe Historical Fire Regimes in Ponderosa Pine and Mixed-Conifer Forests of Western North America.

    PubMed

    Stevens, Jens T; Safford, Hugh D; North, Malcolm P; Fried, Jeremy S; Gray, Andrew N; Brown, Peter M; Dolanc, Christopher R; Dobrowski, Solomon Z; Falk, Donald A; Farris, Calvin A; Franklin, Jerry F; Fulé, Peter Z; Hagmann, R Keala; Knapp, Eric E; Miller, Jay D; Smith, Douglas F; Swetnam, Thomas W; Taylor, Alan H

    Quantifying historical fire regimes provides important information for managing contemporary forests. Historical fire frequency and severity can be estimated using several methods; each method has strengths and weaknesses and presents challenges for interpretation and verification. Recent efforts to quantify the timing of historical high-severity fire events in forests of western North America have assumed that the "stand age" variable from the US Forest Service Forest Inventory and Analysis (FIA) program reflects the timing of historical high-severity (i.e. stand-replacing) fire in ponderosa pine and mixed-conifer forests. To test this assumption, we re-analyze the dataset used in a previous analysis, and compare information from fire history records with information from co-located FIA plots. We demonstrate that 1) the FIA stand age variable does not reflect the large range of individual tree ages in the FIA plots: older trees comprised more than 10% of pre-stand age basal area in 58% of plots analyzed and more than 30% of pre-stand age basal area in 32% of plots, and 2) recruitment events are not necessarily related to high-severity fire occurrence. Because the FIA stand age variable is estimated from a sample of tree ages within the tree size class containing a plurality of canopy trees in the plot, it does not necessarily include the oldest trees, especially in uneven-aged stands. Thus, the FIA stand age variable does not indicate whether the trees in the predominant size class established in response to severe fire, or established during the absence of fire. FIA stand age was not designed to measure the time since a stand-replacing disturbance. Quantification of historical "mixed-severity" fire regimes must be explicit about the spatial scale of high-severity fire effects, which is not possible using FIA stand age data.

  13. Average Stand Age from Forest Inventory Plots Does Not Describe Historical Fire Regimes in Ponderosa Pine and Mixed-Conifer Forests of Western North America

    PubMed Central

    Stevens, Jens T.; Safford, Hugh D.; North, Malcolm P.; Fried, Jeremy S.; Gray, Andrew N.; Brown, Peter M.; Dolanc, Christopher R.; Dobrowski, Solomon Z.; Falk, Donald A.; Farris, Calvin A.; Franklin, Jerry F.; Fulé, Peter Z.; Hagmann, R. Keala; Knapp, Eric E.; Miller, Jay D.; Smith, Douglas F.; Swetnam, Thomas W.; Taylor, Alan H.

    2016-01-01

    Quantifying historical fire regimes provides important information for managing contemporary forests. Historical fire frequency and severity can be estimated using several methods; each method has strengths and weaknesses and presents challenges for interpretation and verification. Recent efforts to quantify the timing of historical high-severity fire events in forests of western North America have assumed that the “stand age” variable from the US Forest Service Forest Inventory and Analysis (FIA) program reflects the timing of historical high-severity (i.e. stand-replacing) fire in ponderosa pine and mixed-conifer forests. To test this assumption, we re-analyze the dataset used in a previous analysis, and compare information from fire history records with information from co-located FIA plots. We demonstrate that 1) the FIA stand age variable does not reflect the large range of individual tree ages in the FIA plots: older trees comprised more than 10% of pre-stand age basal area in 58% of plots analyzed and more than 30% of pre-stand age basal area in 32% of plots, and 2) recruitment events are not necessarily related to high-severity fire occurrence. Because the FIA stand age variable is estimated from a sample of tree ages within the tree size class containing a plurality of canopy trees in the plot, it does not necessarily include the oldest trees, especially in uneven-aged stands. Thus, the FIA stand age variable does not indicate whether the trees in the predominant size class established in response to severe fire, or established during the absence of fire. FIA stand age was not designed to measure the time since a stand-replacing disturbance. Quantification of historical “mixed-severity” fire regimes must be explicit about the spatial scale of high-severity fire effects, which is not possible using FIA stand age data. PMID:27196621

  14. Simulating historical disturbance regimes and stand structures in old-forest ponderosa pine/Douglas-fir forests

    Treesearch

    Mike Hillis; Vick Applegate; Steve Slaughter; Michael G. Harrington; Helen Smith

    2001-01-01

    Forest Service land managers, with the collaborative assistance from research, applied a disturbance based restoration strategy to rehabilitate a greatly-altered, high risk Northern Rocky Mountain old-forest ponderosa pine-Douglas-fir stand. Age-class structure and fire history for the site have been documented in two research papers (Arno and others 1995, 1997)....

  15. Factors associated with long-term species composition in dry tropical forests of Central India

    NASA Astrophysics Data System (ADS)

    Agarwala, M.; DeFries, R. S.; Qureshi, Q.; Jhala, Y. V.

    2016-10-01

    The long-term future of species composition in forests depends on regeneration. Many factors can affect regeneration, including human use, environmental conditions, and species’ traits. This study examines the influence of these factors in a tropical deciduous forest of Central India, which is heavily used by local, forest-dependent residents for livestock grazing, fuel-wood extraction, construction and other livelihood needs. We measure size-class proportions (the ratio of abundance of a species at a site in a higher size class to total abundance in both lower and higher size classes) for 39 tree species across 20 transects at different intensities of human use. The size-class proportions for medium to large trees and for small to medium-sized trees were negatively associated with species that are used for local construction, while size class proportions for saplings to small trees were positively associated with those species that are fire resistant and negatively associated with livestock density. Results indicate that grazing and fire prevent non-fire resistant species from reaching reproductive age, which can alter the long term composition and future availability of species that are important for local use and ecosystem services. Management efforts to reduce fire and forest grazing could reverse these impacts on long-term forest composition.

  16. [Spatial patterns of dominant tree species in sub-alpine Betula-Abies forest in West Sichuan of China].

    PubMed

    Miao, Ning; Liu, Shi-Rong; Shi, Zuo-Min; Yu, Hong; Liu, Xing-Liang

    2009-06-01

    Based on the investigation in a 4 hm2 Betula-Abies forest plot in sub-alpine area in West Sichuan of China, and by using point pattern analysis method in terms of O-ring statistics, the spatial patterns of dominant species Betula albo-sinensis and Abies faxoniana in different age classes in study area were analyzed, and the intra- and inter-species associations between these age classes were studied. B. albo-sinensis had a unimodal distribution of its DBH frequency, indicating a declining population, while A. faxoniana had a reverse J-shaped pattern, showing an increasing population. All the big trees of B. albo-sinensis and A. faxoniana were spatially in random at all scales, while the medium age and small trees were spatially clumped at small scales and tended to be randomly or evenly distributed with increasing spatial scale. The maximum aggregation degree decreased with increasing age class. Spatial association mainly occurred at small scales. A. faxoniana generally showed positive intra-specific association, while B. albo-sinensis generally showed negative intra-specific association. For the two populations, big and small trees had no significant spatial association, but middle age trees had negative spatial association. Negative inter-specific associations of the two populations were commonly found in different age classes. The larger the difference of age class, the stronger the negative inter-specific association.

  17. Bryophyte species associations with coarse woody debris and stand ages in Oregon

    USGS Publications Warehouse

    Rambo, T.; Muir, Patricia S.

    1998-01-01

    We quantified the relationships of 93 forest floor bryophyte species, including epiphytes from incorporated litterfall, to substrate and stand age in Pseudotsuga menziesii-Tsuga heterophylla stands at two sites in western Oregon. We used the method of Dufrêne and Legendre that combines a species' relative abundance and relative frequency, to calculate that species' importance in relation to environmental variables. The resulting "indicator value" describes a species' reliability for indicating the given environmental parameter. Thirty-nine species were indicative of either humus, a decay class of coarse woody debris, or stand age. Bryophyte community composition changed along the continuum of coarse woody debris decomposition from recently fallen trees with intact bark to forest floor humus. Richness of forest floor bryophytes will be enhanced when a full range of coarse woody debris decay classes is present. A suite of bryophytes indicated old-growth forest. These were mainly either epiphytes associated with older conifers or liverworts associated with coarse woody debris. Hardwood-associated epiphytes mainly indicated young stands. Mature conifers, hardwoods, and coarse woody debris are biological legacies that can be protected when thinning managed stands to foster habitat complexity and biodiversity, consistent with an ecosystem approach to forest management.

  18. Evaluating the Suitability of Management Strategies of Pure Norway Spruce Forests in the Black Forest Area of Southwest Germany for Adaptation to or Mitigation of Climate Change

    NASA Astrophysics Data System (ADS)

    Yousefpour, Rasoul; Hanewinkel, Marc; Le Moguédec, Gilles

    2010-02-01

    The study deals with the problem of evaluating management strategies for pure stands of Norway spruce ( Picea abies Karst) to balance adaptation to and mitigation of climate change, taking into account multiple objectives of a forest owner. A simulation and optimization approach was used to evaluate the management of a 1000 ha model Age-Class forest, representing the age-class distribution of an area of 66,000 ha of pure Norway spruce forests in the Black Forest region of Southwest Germany. Eight silvicultural scenarios comprising five forest conversion schemes which were interpreted as “adaptation” strategies which aims at increasing the proportion of Beech, that is expected to better cope with climate change than the existing Norway spruce, and three conventional strategies including a “Do-nothing” alternative classified as “mitigation”, trying to keep rather higher levels of growing stock of spruce, were simulated using the empirical growth simulator BWINPro-S. A linear programming approach was adapted to simultaneously maximize the net present values of carbon sequestration and timber production subject to the two constraints of wood even flow and partial protection of the oldest (nature protection). The optimized plan, with the global utility of 11,687 €/ha in forty years, allocated a combination of silvicultural scenarios to the entire forest area. Overall, strategies classified as “mitigation” were favored, while strategies falling into the “adaptation”-category were limited to the youngest age-classes in the optimal solution. Carbon sequestration of the “Do-nothing” alternative was between 1.72 and 1.85 million tons higher than the other alternatives for the entire forest area while the differences between the adaptation and mitigation approaches were approximately 133,000 tons. Sensitivity analysis showed that a carbon price of 21 €/ t is the threshold at which carbon sequestration is promoted, while an interest rate of above 2% would decrease the amount of carbon.

  19. Changes in habitat use at rainforest edges through succession: A case study of understory birds in the Brazilian Amazon

    Treesearch

    Luke L. Powell; Gustavo Zurita; Jared D.  Wolfe; Erik I.  Johnson; Philip C  Stouffer

    2015-01-01

    Primary tropical rain forests are being rapidly perforated with new edges via roads, logging, and pastures, and vast areas of secondary forest accumulate following abandonment of agricultural lands. To determine how insectivorous Amazonian understory birds respond to edges between primary rain forest and three age classes of secondary forest, we radio-tracked two...

  20. Effects of even-aged management on forest birds at northern hardwood stand interfaces

    Treesearch

    Richard M. DeGraaf

    1992-01-01

    Breeding birds were counted along transects across edges of even-aged northern hardwood stands in the White Mountain National Forest, New Hampshire, U.S.A. Two replicate transects across each of 7 edge types representing 3 classes of contrast (abrupt, intermediate, and subtle) were sampled during June 1983-1985 to define species assemblages at stand edges and estimate...

  1. Time since death and decay rate constants of Norway spruce and European larch deadwood in subalpine forests determined using dendrochronology and radiocarbon dating

    NASA Astrophysics Data System (ADS)

    Petrillo, M.; Cherubini, P.; Fravolini, G.; Ascher, J.; Schärer, M.; Synal, H.-A.; Bertoldi, D.; Camin, F.; Larcher, R.; Egli, M.

    2015-09-01

    Due to the large size and highly heterogeneous spatial distribution of deadwood, the time scales involved in the coarse woody debris (CWD) decay of Picea abies (L.) Karst. and Larix decidua Mill. in Alpine forests have been poorly investigated and are largely unknown. We investigated the CWD decay dynamics in an Alpine valley in Italy using the five-decay class system commonly employed for forest surveys, based on a macromorphological and visual assessment. For the decay classes 1 to 3, most of the dendrochronological samples were cross-dated to assess the time that had elapsed since tree death, but for decay classes 4 and 5 (poorly preserved tree rings) and some others not having enough tree rings, radiocarbon dating was used. In addition, density, cellulose and lignin data were measured for the dated CWD. The decay rate constants for spruce and larch were estimated on the basis of the density loss using a single negative exponential model. In the decay classes 1 to 3, the ages of the CWD were similar varying between 1 and 54 years for spruce and 3 and 40 years for larch with no significant differences between the classes; classes 1-3 are therefore not indicative for deadwood age. We found, however, distinct tree species-specific differences in decay classes 4 and 5, with larch CWD reaching an average age of 210 years in class 5 and spruce only 77 years. The mean CWD rate constants were 0.012 to 0.018 yr-1 for spruce and 0.005 to 0.012 yr-1 for larch. Cellulose and lignin time trends half-lives (using a multiple-exponential model) could be derived on the basis of the ages of the CWD. The half-lives for cellulose were 21 yr for spruce and 50 yr for larch. The half-life of lignin is considerably higher and may be more than 100 years in larch CWD.

  2. Ruffed grouse selection of drumming sites in the Black Hills National Forest

    Treesearch

    Christopher P. Hansen; Mark A. Rumble; Joshua J. Millspaugh

    2011-01-01

    Ruffed grouse (Bonasa umbellus) are important game birds that depend on multiple forest age-classes of aspen (Populus spp.) for food and cover, which makes them an appropriate management indicator species for the condition of quaking aspen (Populus tremuloides) communities in the Black Hills National Forest of western South Dakota and northeastern Wyoming (BHNF)....

  3. Mapping forest canopy disturbance in the Upper Great Lakes, USA

    Treesearch

    James D. Garner; Mark D. Nelson; Brian G. Tavernia; Charles H. (Hobie) Perry; Ian W. Housman

    2015-01-01

    A map of forest canopy disturbance was generated for Michigan, Wisconsin, and most of Minnesota using 42 Landsat time series stacks (LTSS) and a vegetation change tracker (VCTw) algorithm. Corresponding winter imagery was used to reduce commission errors of forest disturbance by identifying areas of persistent snow cover. The resulting disturbance age map was classed...

  4. Anticipating cascading change in forests: Seeking a deeper understanding of the future

    Treesearch

    David N. Bengston; Mike Dockry; Stephen R. Shifley

    2017-01-01

    This study used a participatory group brainstorming process called the Futures Wheel to identify and evaluate the direct and higher-order implications of this trend: Central Hardwood forests lack age-class diversity and will uniformly grow old. Five 1st-order consequences of this trend were identified: continued significant decrease in early-successional forest,...

  5. Secondary Forest Age and Tropical Forest Biomass Estimation Using TM

    NASA Technical Reports Server (NTRS)

    Nelson, R. F.; Kimes, D. S.; Salas, W. A.; Routhier, M.

    1999-01-01

    The age of secondary forests in the Amazon will become more critical with respect to the estimation of biomass and carbon budgets as tropical forest conversion continues. Multitemporal Thematic Mapper data were used to develop land cover histories for a 33,000 Square kM area near Ariquemes, Rondonia over a 7 year period from 1989-1995. The age of the secondary forest, a surrogate for the amount of biomass (or carbon) stored above-ground, was found to be unimportant in terms of biomass budget error rates in a forested TM scene which had undergone a 20% conversion to nonforest/agricultural cover types. In such a situation, the 80% of the scene still covered by primary forest accounted for over 98% of the scene biomass. The difference between secondary forest biomass estimates developed with and without age information were inconsequential relative to the estimate of biomass for the entire scene. However, in futuristic scenarios where all of the primary forest has been converted to agriculture and secondary forest (55% and 42% respectively), the ability to age secondary forest becomes critical. Depending on biomass accumulation rate assumptions, scene biomass budget errors on the order of -10% to +30% are likely if the age of the secondary forests are not taken into account. Single-date TM imagery cannot be used to accurately age secondary forests into single-year classes. A neural network utilizing TM band 2 and three TM spectral-texture measures (bands 3 and 5) predicted secondary forest age over a range of 0-7 years with an RMSE of 1.59 years and an R(Squared) (sub actual vs predicted) = 0.37. A proposal is made, based on a literature review, to use satellite imagery to identify general secondary forest age groups which, within group, exhibit relatively constant biomass accumulation rates.

  6. Effects of the age class distributions of the temperate and boreal forests on the global CO2 source-sink function

    NASA Astrophysics Data System (ADS)

    Kohlmaier, G. H.; Häger, Ch.; Würth, G.; Lüdeke, M. K. B.; Ramge, P.; Badeck, F.-W.; Kindermann, J.; Lang, T.

    1995-02-01

    The rôle of the temperate and boreal forests as a global CO2 source or sink is examined, both for the present time and for the next hundred years. The results of the Forest Resource Assessment for 1990 of the Economic Comission for Europe and the Food and Agricultural Organisation of the United Nations (1992) serve as the main database in this study. Out of the estimated total area of approximately 20106 km2 of forests and wooded lands in the temperate and boreal zone only approximately fifty percent is documented within the category of exploitable forests, which are examined in detail here. In this study, a general formalism of the time evolution of an ensemble of forests within an ecological province is developed using the formalism of the Leslie matrix. This matrix can be formulated if the age class dependent mortalities which arise from the disturbances are known. A distinction is made between the natural disturbances by fire, wind throw and insect infestations and disturbances introduced through harvesting of timber. Through the use of Richards growth function each age class of a given biome is related to the corresponding biomass and annual increment. The data reported on the mean net annual increment and on the mean biomass serve to calibrate the model. The difference of the reported net annual increment and annual fellings of approximately 550 106 m3 roundwood correspond to a sink of 210-330 Mt of carbon per year excluding any changes in the soil balance. It could be shown that the present distribution of forest age classes for the United States, Canada, Europe, or the former Soviet Union does not correspond to a quasi-stationary state, in which biomass is accumulated only due to a stimulated growth under enhanced atmospheric CO2 levels. The present CO2 sink function will not persist in the next century, if harvesting rates increase with 0.5% annually or even less. The future state will also be influenced by the effect of the greenhouse climate, the impact of which may range from a stimulating effect on growth, which is calculated by the Frankfurt biosphere model, up to a transitional negative effect through a shift in vegetation zones.

  7. Bat habitat use in White Mountain National Forest

    Treesearch

    Rachel A. Krusic; Mariko Yamasaki; Christopher D. Neefus; Peter J. Pekins

    1996-01-01

    In 1992 and 1993, we surveyed the foraging and feeding activity of bat species with broadband bat detectors at 2 foliage heights in 4 age classes of northern hardwood and spruce/fir forest stands in White Mountain National Forest, New Hampshire and Maine. The association of bat activity with trails and water bodies and the effect of elevation were measured. Mist nets,...

  8. Variation in carbon storage and its distribution by stand age and forest type in boreal and temperate forests in northeastern China.

    PubMed

    Wei, Yawei; Li, Maihe; Chen, Hua; Lewis, Bernard J; Yu, Dapao; Zhou, Li; Zhou, Wangming; Fang, Xiangmin; Zhao, Wei; Dai, Limin

    2013-01-01

    The northeastern forest region of China is an important component of total temperate and boreal forests in the northern hemisphere. But how carbon (C) pool size and distribution varies among tree, understory, forest floor and soil components, and across stand ages remains unclear. To address this knowledge gap, we selected three major temperate and two major boreal forest types in northeastern (NE) China. Within both forest zones, we focused on four stand age classes (young, mid-aged, mature and over-mature). Results showed that total C storage was greater in temperate than in boreal forests, and greater in older than in younger stands. Tree biomass C was the main C component, and its contribution to the total forest C storage increased with increasing stand age. It ranged from 27.7% in young to 62.8% in over-mature stands in boreal forests and from 26.5% in young to 72.8% in over-mature stands in temperate forests. Results from both forest zones thus confirm the large biomass C storage capacity of old-growth forests. Tree biomass C was influenced by forest zone, stand age, and forest type. Soil C contribution to total forest C storage ranged from 62.5% in young to 30.1% in over-mature stands in boreal and from 70.1% in young to 26.0% in over-mature in temperate forests. Thus soil C storage is a major C pool in forests of NE China. On the other hand, understory and forest floor C jointly contained less than 13% and <5%, in boreal and temperate forests respectively, and thus play a minor role in total forest C storage in NE China.

  9. Variation in Carbon Storage and Its Distribution by Stand Age and Forest Type in Boreal and Temperate Forests in Northeastern China

    PubMed Central

    Wei, Yawei; Li, Maihe; Chen, Hua; Lewis, Bernard J.; Yu, Dapao; Zhou, Li; Zhou, Wangming; Fang, Xiangmin; Zhao, Wei; Dai, Limin

    2013-01-01

    The northeastern forest region of China is an important component of total temperate and boreal forests in the northern hemisphere. But how carbon (C) pool size and distribution varies among tree, understory, forest floor and soil components, and across stand ages remains unclear. To address this knowledge gap, we selected three major temperate and two major boreal forest types in northeastern (NE) China. Within both forest zones, we focused on four stand age classes (young, mid-aged, mature and over-mature). Results showed that total C storage was greater in temperate than in boreal forests, and greater in older than in younger stands. Tree biomass C was the main C component, and its contribution to the total forest C storage increased with increasing stand age. It ranged from 27.7% in young to 62.8% in over-mature stands in boreal forests and from 26.5% in young to 72.8% in over-mature stands in temperate forests. Results from both forest zones thus confirm the large biomass C storage capacity of old-growth forests. Tree biomass C was influenced by forest zone, stand age, and forest type. Soil C contribution to total forest C storage ranged from 62.5% in young to 30.1% in over-mature stands in boreal and from 70.1% in young to 26.0% in over-mature in temperate forests. Thus soil C storage is a major C pool in forests of NE China. On the other hand, understory and forest floor C jointly contained less than 13% and <5%, in boreal and temperate forests respectively, and thus play a minor role in total forest C storage in NE China. PMID:23977252

  10. Uncertainty in accounting for carbon accumulation following forest harvesting

    NASA Astrophysics Data System (ADS)

    Lilly, P.; Yanai, R. D.; Arthur, M. A.; Bae, K.; Hamburg, S.; Levine, C. R.; Vadeboncoeur, M. A.

    2014-12-01

    Tree biomass and forest soils are both difficult to quantify with confidence, for different reasons. Forest biomass is estimated non-destructively using allometric equations, often from other sites; these equations are difficult to validate. Forest soils are destructively sampled, resulting in little measurement error at a point, but with large sampling error in heterogeneous soil environments, such as in soils developed on glacial till. In this study, we report C contents of biomass and soil pools in northern hardwood stands in replicate plots within replicate stands in 3 age classes following clearcut harvesting (14-19 yr, 26-29 yr, and > 100 yr) at the Bartlett Experimental Forest, USA. The rate of C accumulation in aboveground biomass was ~3 Mg/ha/yr between the young and mid-aged stands and <1 Mg/ha/yr between the mid-aged and mature stands. We propagated model uncertainty through allometric equations, and found errors ranging from 3-7%, depending on the stand. The variation in biomass among plots within stands (6-19%) was always larger than the allometric uncertainties. Soils were described by quantitative soil pits in three plots per stand, excavated by depth increment to the C horizon. Variation in soil mass among pits within stands averaged 28% (coefficient of variation); variation among stands within an age class ranged from 9-25%. Variation in carbon concentrations averaged 27%, mainly because the depth increments contained varying proportions of genetic horizons, in the upper part of the soil profile. Differences across age classes in soil C were not significant, because of the high variability. Uncertainty analysis can help direct the design of monitoring schemes to achieve the greatest confidence in C stores per unit of sampling effort. In the system we studied, more extensive sampling would be the best approach to reducing uncertainty, as natural spatial variation was higher than model or measurement uncertainties.

  11. A Matrix Transition Model for an Uneven-Aged, Oak-Hickory Forest in the Missouri Ozark Highlands

    Treesearch

    James R. Lootens; David R. Larsen; Edward F. Loewenstein

    1999-01-01

    We present a matrix growth model for an uneven-aged, oak-hickory forest in the Ozark Highlands of Missouri. The model was developed to predict ingrowth, growth of surviving trees, and mortality by diameter class for a five-year period. Tree removal from management activities is accounted for in the model. We evaluated a progression of models from a static, fixed-...

  12. A matrix transition model for an uneven-aged, oak-hickory forest in the Missouri ozark highlands

    Treesearch

    James R. Lootens; David R. Larsen; Edward F. Loewenstein

    1999-01-01

    We presented a matrix growth model for an uneven-aged, oak-hickory forest in the Ozark Highlands of Missouri. The model was developed to predict ingrowth, growth of surviving trees, and mortality by diameter class for a five-year period. Tree removal from management activities is accounted for in the model. We evaluated a progression of models from a static, fixed...

  13. Factors Affecting Salamander Density and Distribution within Four Forest Types in Southern Appalachian Mountains

    Treesearch

    Craig A. Harper; David C. Guynn

    1999-01-01

    We used a terrestrial vacuum to sample known area plots in order to obtain density estimates of salamanders and their primary prey, invertebrates of the forest floor. We sampled leaf litter and measured various vegetative and topographic parameters within four forest types (oak-pine, oak-hickory, mixed mesophytic and northern hardwoods) and three age classes (0-12,13-...

  14. Effects of timber size-class on predation of artificial nests in extensive forest

    Treesearch

    Richard M. DeGraaf; Per Angelstam

    1993-01-01

    Depredation on artificial ground and cup nests in even-aged seedling/sapling, pole, and mature stands of continuous northern hardwood forest was studied in the White Mountain National Forest in New Hampshire, USA from May to June 1988. Track-board nests were used to identify predators of ground nests; plain ground nests and cup nests were used to investigate the...

  15. Evapotranspiration estimates from eddy covariance towers and hydrologic modeling in managed forests in Northern Wisconsin, USA

    Treesearch

    Ge Sun; A. Noormets; J. Chen; S.G. McNulty

    2008-01-01

    Direct measurement of ecosystem evapotranspiration by the eddy covariance method and simulation modeling were employed to quantify the growing season (May–October) evapotranspiration (ET) of eight forest ecosystems representing a management gradient in dominant forest types and age classes in the Upper Great Lakes Region from 2002 to 2003. We measured net exchange of...

  16. Concluding remarks

    Treesearch

    Stephen F. Arno; Michael G. Harrington

    1999-01-01

    The 88-year photo sequences, descriptions of historical changes, and the initial results from ecosystembased management treatments at Lick Creek portray a dynamic, ever-changing forest. The goals of ecosystem- based management at Lick Creek are to continuously maintain an open forest containing old growth as well as younger age classes of ponderosa pine. Half a century...

  17. Simulated cavity tree dynamics under alternative timber harvest regimes

    Treesearch

    Zhaofei Fan; Stephen R Shifley; Frank R Thompson; David R Larsen

    2004-01-01

    We modeled cavity tree abundance on a landscape as a function of forest stand age classes and as a function of aggregate stand size classes.We explored the impact of five timber harvest regimes on cavity tree abundance on a 3261 ha landscape in southeast Missouri, USA, by linking the stand level cavity tree distribution model to the landscape age structure simulated by...

  18. Species diversity of polyporoid and corticioid fungi in northern hardwood forests with differing management histories.

    PubMed

    Lindner, Daniel L; Burdsall, Harold H; Stanosz, Glen R

    2006-01-01

    Effects of forest management on fungal diversity were investigated by sampling fruit bodies of polyporoid and corticioid fungi in forest stands that have different management histories. Fruit bodies were sampled in 15 northern hardwood stands in northern Wisconsin and the upper peninsula of Michigan. Sampling was conducted in five old-growth stands, five uneven-age stands, three even-age unthinned stands and two even-age thinned stands. Plots 100 m x 60 m were established and 3000 m2 within each plot was sampled during the summers of 1996 and 1997. A total of 255 polyporoid and corticioid morphological species were identified, 46 (18%) of which could not be assigned to a described species. Species accumulation curves for sites and management classes differed from straight lines, although variability from year to year suggests that more than 2 y of sampling are needed to characterize annual variation. Mean species richness and diversity index values did not vary significantly by management class, although mean richness on large diameter wood (> or = 15 cm diam) varied with moderate significance. Richness values on small diameter debris varied significantly by year, indicating that a large part of year-to-year variability in total species richness is due to small diameter debris. Ten species had abundance levels that varied by management class. Two of these species. Changes in the diversity and species composition of the wood-inhabiting fungal community could have significant implications for the diversity, health and productivity of forest ecosystems.

  19. Mapping Successional Stages in a Wet Tropical Forest Using Landsat ETM+ and Forest Inventory Data

    NASA Technical Reports Server (NTRS)

    Goncalves, Fabio G.; Yatskov, Mikhail; dos Santos, Joao Roberto; Treuhaft, Robert N.; Law, Beverly E.

    2010-01-01

    In this study, we test whether an existing classification technique based on the integration of Landsat ETM+ and forest inventory data enables detailed characterization of successional stages in a wet tropical forest site. The specific objectives were: (1) to map forest age classes across the La Selva Biological Station in Costa Rica; and (2) to quantify uncertainties in the proposed approach in relation to field data and existing vegetation maps. Although significant relationships between vegetation height entropy (a surrogate for forest age) and ETM+ data were detected, the classification scheme tested in this study was not suitable for characterizing spatial variation in age at La Selva, as evidenced by the error matrix and the low Kappa coefficient (12.9%). Factors affecting the performance of the classification at this particular study site include the smooth transition in vegetation structure between intermediate and advanced successional stages, and the low sensitivity of NDVI to variations in vertical structure at high biomass levels.

  20. Forest Health Monitoring in Vermont, 1996-1999

    Treesearch

    Northeastern Research Station

    2002-01-01

    Vermont forests vary in size and age class. Trees are distributed evenly between hardwood and softwood species but hardwood dominated the seedling sample. Most of the trees are healthy, with full crowns (low transparency, high density), little dieback and little damage. White and green ash had higher transparencies and lower crown densities possibly explained by the...

  1. Applied chemical ecology of the mountain pine beetle

    Treesearch

    Robert A. Progar; Nancy Gillette; Christopher J. Fettig; Kathryn Hrinkevich

    2014-01-01

    Mountain pine beetle, Dendroctonus ponderosae Hopkins, is a primary agent of forest disturbance in western North America. Episodic outbreaks occur at the convergence of favorable forest age and size class structure and climate patterns. Recent outbreaks have exceeded the historic range of variability of D. ponderosae-caused tree mortality affecting ecosystem goods and...

  2. Breeding chronology and social interactions affect ungulate foraging behavior at a concentrated food resource

    PubMed Central

    Cohen, Bradley S.; Miller, Karl V.

    2017-01-01

    Prey species must balance predator avoidance behavior with other essential activities including foraging, breeding, and social interactions. Anti-predator behaviors such as vigilance can impede resource acquisition rates by altering foraging behavior. However, in addition to predation risk, foraging behavior may also be affected by socio-sexual factors including breeding chronology and social interactions. Therefore, we investigated how time-of-day, distance-to-forest, group size, social interactions (presence of different sex-age class), and breeding chronology (pre-breeding, breeding, post-breeding seasons) affected probability of feeding (hereafter: feeding) for different sex and age-classes (mature males, immature males, adult females, and juveniles) of white-tailed deer at feed sites. We developed a set of candidate models consisting of social, habitat, reproductive, and abiotic factors and combinations of these factors. We then used generalized linear mixed models (GLMMs) to estimate the probability of feeding and used model averaging of competing models for multimodel inference. Each adult sex-age class’ feeding was influenced by breeding chronology. Juveniles were more likely to be feeding than adults in all seasons. Feeding increased with group size for all sex-age classes. The presence of a mature male negatively influenced the feeding of immature males and juveniles were more likely to be feeding when an adult female was present. Feeding decreased with increasing distance-to-forest for mature males but not for other sex-age classes. Our results indicate that each sex-age class modulates vigilance levels in response to socio-sexual factors according to the unique pressures placed upon them by their reproductive status and social rank. PMID:28591136

  3. Stand dynamics of relict red spruce in the Alarka Creek headwaters, North Carolina

    Treesearch

    Beverly Collins; Thomas M. Schuler; W. Mark Ford; Danielle. Hawkins

    2010-01-01

    Disjunct red spruce (Picea rubens Sarg.) forests in the southern Appalachians can serve as models for understanding past and future impacts of climate change and other perturbations for larger areas of high-elevation forests throughout the Appalachians. We conducted a vegetation and dendrochronological survey to determine the age, size class, and...

  4. Improving Post-Hurricane Katrina Forest Management with MODIS Time Series Products

    NASA Technical Reports Server (NTRS)

    Lewis, Mark David; Spruce, Joseph; Evans, David; Anderson, Daniel

    2012-01-01

    Hurricane damage to forests can be severe, causing millions of dollars of timber damage and loss. To help mitigate loss, state agencies require information on location, intensity, and extent of damaged forests. NASA's MODerate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) time series data products offers a potential means for state agencies to monitor hurricane-induced forest damage and recovery across a broad region. In response, a project was conducted to produce and assess 250 meter forest disturbance and recovery maps for areas in southern Mississippi impacted by Hurricane Katrina. The products and capabilities from the project were compiled to aid work of the Mississippi Institute for Forest Inventory (MIFI). A series of NDVI change detection products were computed to assess hurricane induced damage and recovery. Hurricane-induced forest damage maps were derived by computing percent change between MODIS MOD13 16-day composited NDVI pre-hurricane "baseline" products (2003 and 2004) and post-hurricane NDVI products (2005). Recovery products were then computed in which post storm 2006, 2007, 2008 and 2009 NDVI data was each singularly compared to the historical baseline NDVI. All percent NDVI change considered the 16-day composite period of August 29 to September 13 for each year in the study. This provided percent change in the maximum NDVI for the 2 week period just after the hurricane event and for each subsequent anniversary through 2009, resulting in forest disturbance products for 2005 and recovery products for the following 4 years. These disturbance and recovery products were produced for the Mississippi Institute for Forest Inventory's (MIFI) Southeast Inventory District and also for the entire hurricane impact zone. MIFI forest inventory products were used as ground truth information for the project. Each NDVI percent change product was classified into 6 categories of forest disturbance intensity. Stand age and stand type raster data, also provided by MIFI, were used along with the forest disturbance/recovery products to create forest damage stratification products integrating 3 stand type classes, 6 stand age classes, and 6 forest disturbance intensity classes. This stratification product will be used to aid MIFI timber inventory planning and to prepare for damage assessments due to future hurricane events. Validation of MODIS percent NDVI change products was performed by comparing the MODIS percent NDVI change products to those from Landsat data for the same time and MIFI inventory district area.

  5. Estimates of phytomass and net primary productivity in terrestrial ecosystems of the former Soviet Union identified by classified Global Vegetation Index

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaston, G.G.; Kolchugina, T.P.

    1995-12-01

    Forty-two regions with similar vegetation and landcover were identified in the former Soviet Union (FSU) by classifying Global Vegetation Index (GVI) images. Image classes were described in terms of vegetation and landcover. Image classes appear to provide more accurate and precise descriptions for most ecosystems when compared to general thematic maps. The area of forest lands were estimated at 1,330 Mha and the actual area of forest ecosystems at 875 Mha. Arable lands were estimated to be 211 Mha. The area of the tundra biome was estimated at 261 Mha. The areas of the forest-tundra/dwarf forest, taiga, mixed-deciduous forest andmore » forest-steppe biomes were estimated t 153, 882, 196, and 144 Mha, respectively. The areas of desert-semidesert biome and arable land with irrigated land and meadows, were estimated at 126 and 237 Mha, respectively. Vegetation and landcover types were associated with the Bazilevich database of phytomass and NPP for vegetation in the FSU. The phytomass in the FSU was estimated at 97.1 Gt C, with 86.8 in forest vegetation, 9.7 in natural non-forest and 0.6 Gt C in arable lands. The NPP was estimated at 8.6 Gt C/yr, with 3.2, 4.8, and 0.6 Gt C/yr of forest, natural non-forest, and arable ecosystems, respectively. The phytomass estimates for forests were greater than previous assessments which considered the age-class distribution of forest stands in the FSU. The NPP of natural ecosystems estimated in this study was 23% greater than previous estimates which used thematic maps to identify ecosystems. 47 refs., 4 figs., 2 tabs.« less

  6. The influence of spruce on acidity and nutrient content in soils of Northern Taiga dwarf shrub-green moss spruce forests

    NASA Astrophysics Data System (ADS)

    Orlova, M. A.; Lukina, N. V.; Smirnov, V. E.; Artemkina, N. A.

    2016-11-01

    Presently, among the works considering the influence of forest trees on soil properties, the idea that spruce ( Picea abies) promotes the acidification of soils predominates. The aim of this work is to assess the effects of spruce trees of different ages and Kraft classes on the acidity and content of available nutrient compounds in the soils under boreal dwarf shrub-green moss spruce forests by the example of forest soils in the Kola Peninsula. The soils are typical iron-illuvial podzols (Albic Rustic Podzols (Arenic)). Three probable ways of developing soils under spruce forests with the moss-dwarf shrub ground cover are considered. The soils under windfall-soil complexes of flat mesodepressions present the initial status. The acidity of organic soil horizons from the initial stage of mesodepression overgrowth to the formation of adult trees changed nonlinearly: the soil acidity reached its maximum under the 30-40-year-old trees and decreased under the trees older than 100 years. The contents of nitrogen and available nutrients increased. The acidity of the mineral soil horizons under the trees at the ages of 110-135 and 190-220 years was comparable, but higher than that under the 30-40-year-old trees. The differences in the strength and trends of the trees' effect on the soils are explained by the age of spruce trees and their belonging to different Kraft classes.

  7. Timber production assessment of a plantation forest: An integrated framework with field-based inventory, multi-source remote sensing data and forest management history

    NASA Astrophysics Data System (ADS)

    Gao, Tian; Zhu, Jiaojun; Deng, Songqiu; Zheng, Xiao; Zhang, Jinxin; Shang, Guiduo; Huang, Liyan

    2016-10-01

    Timber production is the purpose for managing plantation forests, and its spatial and quantitative information is critical for advising management strategies. Previous studies have focused on growing stock volume (GSV), which represents the current potential of timber production, yet few studies have investigated historical process-harvested timber. This resulted in a gap in a synthetical ecosystem service assessment of timber production. In this paper, we established a Management Process-based Timber production (MPT) framework to integrate the current GSV and the harvested timber derived from historical logging regimes, trying to synthetically assess timber production for a historical period. In the MPT framework, age-class and current GSV determine the times of historical thinning and the corresponding harvested timber, by using a ;space-for-time; substitution. The total timber production can be estimated by the historical harvested timber in each thinning and the current GSV. To test this MPT framework, an empirical study on a larch plantation (LP) with area of 43,946 ha was conducted in North China for a period from 1962 to 2010. Field-based inventory data was integrated with ALOS PALSAR (Advanced Land-Observing Satellite Phased Array L-band Synthetic Aperture Radar) and Landsat-8 OLI (Operational Land Imager) data for estimating the age-class and current GSV of LP. The random forest model with PALSAR backscatter intensity channels and OLI bands as input predictive variables yielded an accuracy of 67.9% with a Kappa coefficient of 0.59 for age-class classification. The regression model using PALSAR data produced a root mean square error (RMSE) of 36.5 m3 ha-1. The total timber production of LP was estimated to be 7.27 × 106 m3, with 4.87 × 106 m3 in current GSV and 2.40 × 106 m3 in harvested timber through historical thinning. The historical process-harvested timber accounts to 33.0% of the total timber production, which component has been neglected in the assessments for current status of plantation forests. Synthetically considering the RMSE for predictive GSV and misclassification of age-class, the error in timber production were supposed to range from -55.2 to 56.3 m3 ha-1. The MPT framework can be used to assess timber production of other tree species at a larger spatial scale, providing crucial information for a better understanding of forest ecosystem service.

  8. Growth and yield of all-aged Douglas-fir -- western hemlock forest stands: a matrix model with stand diversity effects.

    Treesearch

    Jingjing Liang; Joseph Buonglorno; Robert A. Monserud

    2005-01-01

    A density-dependent matrix model was developed for Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) -- western hemlock (Tsuga heterophylla (Raf.) Sarg.) forest stands in the Pacific Northwest of the United States. The model predicted the number and volume of trees for 4 species groups and 19 diameter classes. The parameters...

  9. A Silvicultural Evaluation of Four Methods of Marking Second-growth Northern Hardwood Stands

    Treesearch

    Rodney D. Jacobs

    1966-01-01

    Second-growth northern hardwood stands occupy an important segment of the commercial forest land of Upper Michigan and northern Wisconsin. The size- and age-class distributions and species composition of these stands vary considerably, but under all conditions most of the trees are highly defective or poorly formed or of an undesirable species. Forest managers...

  10. Determining maximum stand density index in mixed species stands for strategic-scale stocking assessments

    Treesearch

    Chris W. Woodall; Patrick D. Miles; John S. Vissage

    2005-01-01

    Stand density index (SDI), although developed for use in even-aged monocultures, has been used for assessing stand density in large-scale forest inventories containing diverse tree species and size distributions. To improve application of SDI in unevenaged, mixed species stands present in large-scale forest inventories, trends in maximum SDI across diameter classes...

  11. Long-term efficacy of diameter-limit cutting to reduce mountain pine beetle-caused tree mortality in a lodgepole pine forest

    Treesearch

    J. C. Vandygriff; E. Hansen; Barbara Bentz; K. K. Allen; G. D. Amman; L. A. Rasmussen

    2015-01-01

    Mountain pine beetle, Dendroctonus ponderosae Hopkins, is the most significant mortality agent in pine forests of western North America. Silvicultural treatments that reduce the number of susceptible host trees, alter age and size class distributions, and diversify species composition are considered viable, long-term options for reducing stand susceptibility...

  12. Improving Oil Palm Classification in the Peruvian Amazon by Combining Active and Passive Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Gutierrez-Velez, V. H.; DeFries, R. S.

    2011-12-01

    Oil palm expansion has led to clearing of extensive forest areas in the tropics. However quantitative assessments of the magnitude of oil palm expansion to deforestation have been challenging due in large part to the limitations presented by conventional optical data sets for discriminating plantations from forests and other tree cover vegetations. Recently available information from active remote sensors has opened the possibility of using these data sources to overcome these limitations. The purpose of this analysis is to evaluate the accuracy of oil palm classification when using ALOS/PALSAR active satellite data in conjunction with Landsat information, compared to the use of Landsat data only. The analysis takes place in a focused region around the city of Pucallpa in the Ucayali province of the Peruvian Amazon for the year 2010. Oil palm plantations were separated in five categories consisting of four age classes (0-3, 3-5, 5-10 and > 10 yrs) and an additional class accounting for degraded plantations older than 15 yr. Other land covers were water bodies, unvegetated land, short and tall grass, fallow, secondary vegetation, and forest. Classifications were performed using random forests. Training points for calibration and validation consisted of 411 polygons measured in areas representative of the land covers of interest and totaled 6,367 ha. Overall classification accuracy increased from 89.9% using only Landsat data sets to 94.3% using both Landast and ALOS/PALSAR. Both user's and producer's accuracy increased in all classes when using both data sets except for producer's accuracy in short grass which decreased by 1%. The largest increase in user's accuracy was obtained in oil palm plantations older than 10 years from 62 to 80% while producer's accuracy improved the most in plantations in age class 3-5 from 63 to 80%. Results demonstrate the suitability of data from ALOS/PALSAR and other active remote sensors to improve classification of oil palm plantations in age classes and discriminate them from other land covers. Results suggest a potential for improving discrimination of other tree cover types using a combination of active and conventional optical remote sensors.

  13. A comparison of selected parametric and imputation methods for estimating snag density and snag quality attributes

    USGS Publications Warehouse

    Eskelson, Bianca N.I.; Hagar, Joan; Temesgen, Hailemariam

    2012-01-01

    Snags (standing dead trees) are an essential structural component of forests. Because wildlife use of snags depends on size and decay stage, snag density estimation without any information about snag quality attributes is of little value for wildlife management decision makers. Little work has been done to develop models that allow multivariate estimation of snag density by snag quality class. Using climate, topography, Landsat TM data, stand age and forest type collected for 2356 forested Forest Inventory and Analysis plots in western Washington and western Oregon, we evaluated two multivariate techniques for their abilities to estimate density of snags by three decay classes. The density of live trees and snags in three decay classes (D1: recently dead, little decay; D2: decay, without top, some branches and bark missing; D3: extensive decay, missing bark and most branches) with diameter at breast height (DBH) ≥ 12.7 cm was estimated using a nonparametric random forest nearest neighbor imputation technique (RF) and a parametric two-stage model (QPORD), for which the number of trees per hectare was estimated with a Quasipoisson model in the first stage and the probability of belonging to a tree status class (live, D1, D2, D3) was estimated with an ordinal regression model in the second stage. The presence of large snags with DBH ≥ 50 cm was predicted using a logistic regression and RF imputation. Because of the more homogenous conditions on private forest lands, snag density by decay class was predicted with higher accuracies on private forest lands than on public lands, while presence of large snags was more accurately predicted on public lands, owing to the higher prevalence of large snags on public lands. RF outperformed the QPORD model in terms of percent accurate predictions, while QPORD provided smaller root mean square errors in predicting snag density by decay class. The logistic regression model achieved more accurate presence/absence classification of large snags than the RF imputation approach. Adjusting the decision threshold to account for unequal size for presence and absence classes is more straightforward for the logistic regression than for the RF imputation approach. Overall, model accuracies were poor in this study, which can be attributed to the poor predictive quality of the explanatory variables and the large range of forest types and geographic conditions observed in the data.

  14. Short- and long-term implications of clearcut and two-age silviculture for conservation of breeding forest birds in the central Appalachians, USA

    USGS Publications Warehouse

    McDermott, M.E.; Wood, P.B.

    2009-01-01

    Two-age (deferment or leave tree) harvesting is used increasingly in even-aged forest management, but long-term responses of breeding avifauna to retention of residual canopy trees have not been investigated. Breeding bird surveys completed in 1994-1996 in two-age and clearcut harvests in the central Appalachian Mountains of West Virginia, USA allowed us to document long-term changes in these stands. In 2005 and 2006, we conducted point counts in mature unharvested forest stands and in 19-26 year-old clearcut and two-age harvests from the original study and in younger clearcut and two-age stands (6-10 years old). We found differences in breeding bird metrics among these five treatments and temporal differences in the original stands. Although early-successional species are typically absent from group selection cuts, they were almost as common in young two-age stands as clearcuts, supporting two-age harvests as an alternative to clearcutting. Although older harvests had lower species richness and diversity, they were beginning to provide habitat for some species of late-successional forest songbirds that were absent or uncommon in young harvests. Overall, late-successional forest-interior species were more flexible in their use of different seral stages; several species used both age classes and harvest types in addition to mature forest, which may reflect the lack of edges in our heavily-forested landscape. Consequently, two-age management provides habitat for a diverse group of species as these stands mature and may be an ecologically sustainable alternative to clearcutting in landscapes where brown-headed cowbirds (Molothrus ater) are uncommon. ?? 2008 Elsevier Ltd.

  15. The legacy of logging--estimating arboreal lichen occurrence in a boreal multiple-use landscape on a two century scale.

    PubMed

    Horstkotte, Tim; Moen, Jon; Lämås, Tomas; Helle, Timo

    2011-01-01

    In northern Sweden, the availability of arboreal lichens (Bryoria fuscescens, Alectoria sarmentosa) as winter grazing resources is an important element in reindeer husbandry. With the industrialization of forestry, forests rich in arboreal lichens have diminished considerably. Here, we analyze how forestry has impacted lichen availability from the 1920's to the present day and model its future development assuming different forest management scenarios.We recorded the current occurrence of B. fuscescens in 144 sampling plots, stratified by forest age class and dominant tree species in a 26,600 ha boreal forest landscape that is used for both reindeer herding and forestry. Lichen abundance was visually estimated in four classes: none, sparse, moderate and abundant. A binary logistic model using forest age as the independent variable was developed to predict the probability of lichens being present. Using this model, we found that lichens were present in stands that are at least 63 years old. Because of the relative paucity of stands rich in arboreal lichens, it was not possible to reliably determine how age affects the variation in abundance of older forest stands. The historical development of forests where arboreal lichens could potentially occur was studied using historic forestry records dating back 80 years. Between 1926 and the present day, forestry has reduced the cover of forests older than 60 years from 84% to 34%. The likely future spatial coverage of these stands over the next 120 years was estimated for two different management scenarios and an unmanaged reference scenario, using the Heureka strategic planning program. Under both the "business as usual" scenario and that involving more intensive forestry, continued decreases in lichen availability are projected. Our results emphasize the importance of alternative forestry practices, such as prolonged rotation periods, to increase the availability of arboreal lichens as a grazing resource for reindeer.

  16. Influence of crown class, diameter, and sprout rank on red maple (Acer rubrum L.) development during forest succession in Connecticut

    Treesearch

    Jeffery S. Ward; George R. Stephens

    1993-01-01

    Crown class, stem diameter, and sprout rank of 2067 red maples on medium quality sites were measured at 10-yr intervals between 1927-1987. Nominal stand age was 25 yrs in 1927. There was a progressive increase in the probability of an individual red maple ascending into the upper canopy and persisting in the upper canopy from suppressed through dominant crown classes...

  17. Soil surface CO2 flux in a boreal black spruce fire chronosequence

    NASA Astrophysics Data System (ADS)

    Wang, Chuankuan; Bond-Lamberty, Ben; Gower, Stith T.

    2003-02-01

    Understanding the effects of wildfire on the carbon (C) cycle of boreal forests is essential to quantifying the role of boreal forests in the global carbon cycle. Soil surface CO2 flux (Rs), the second largest C flux in boreal forests, is directly and indirectly affected by fire and is hypothesized to change during forest succession following fire. The overall objective of this study was to measure and model Rs for a black spruce (Picea mariana [Mill.] BSP) postfire chronosequence in northern Manitoba, Canada. The experiment design was a nested factorial that included two soil drainage classes (well and poorly drained) × seven postfire aged stands. Specific objectives were (1) to quantify the relationship between Rs and soil temperature for different aged boreal black spruce forests in well-drained and poorly drained soil conditions, (2) to examine Rs dynamics along postfire successional stands, and (3) to estimate annual soil surface CO2 flux for these ecosystems. Soil surface CO2 flux was significantly affected by soil drainage class (p = 0.014) and stand age (p = 0.006). Soil surface CO2 flux was positively correlated to soil temperature (R2 = 0.78, p < 0.001), but different models were required for each drainage class × aged stand combination. Soil surface CO2 flux was significantly greater at the well-drained than the poorly drained stands (p = 0.007) during growing season. Annual soil surface CO2 flux for the 1998, 1995, 1989, 1981, 1964, 1930, and 1870 burned stands averaged 226, 412, 357, 413, 350, 274, and 244 g C m-2 yr-1 in the well-drained stands and 146, 380, 300, 303, 256, 233, and 264 g C m-2 yr-1 in the poorly drained stands. Soil surface CO2 flux during the winter (from 1 November to 30 April) comprised from 5 to 19% of the total annual Rs. We speculate that the smaller soil surface CO2 flux in the recently burned than the older stands is mainly caused by decreased root respiration.

  18. Soil surface CO2 flux in a boreal black spruce fire chronosequence

    NASA Astrophysics Data System (ADS)

    Wang, Chuankuan; Bond-Lamberty, Ben; Gower, Stith T.

    2002-02-01

    Understanding the effects of wildfire on the carbon (C) cycle of boreal forests is essential to quantifying the role of boreal forests in the global carbon cycle. Soil surface CO2 flux (Rs), the second largest C flux in boreal forests, is directly and indirectly affected by fire and is hypothesized to change during forest succession following fire. The overall objective of this study was to measure and model Rs for a black spruce (Picea mariana [Mill.] BSP) postfire chronosequence in northern Manitoba, Canada. The experiment design was a nested factorial that included two soil drainage classes (well and poorly drained) × seven postfire aged stands. Specific objectives were (1) to quantify the relationship between Rs and soil temperature for different aged boreal black spruce forests in well-drained and poorly drained soil conditions, (2) to examine Rs dynamics along postfire successional stands, and (3) to estimate annual soil surface CO2 flux for these ecosystems. Soil surface CO2 flux was significantly affected by soil drainage class (p = 0.014) and stand age (p = 0.006). Soil surface CO2 flux was positively correlated to soil temperature (R2 = 0.78, p < 0.001), but different models were required for each drainage class × aged stand combination. Soil surface CO2 flux was significantly greater at the well-drained than the poorly drained stands (p = 0.007) during growing season. Annual soil surface CO2 flux for the 1998, 1995, 1989, 1981, 1964, 1930, and 1870 burned stands averaged 226, 412, 357, 413, 350, 274, and 244 g C m-2 yr-1 in the well-drained stands and 146, 380, 300, 303, 256, 233, and 264 g C m-2 yr-1 in the poorly drained stands. Soil surface CO2 flux during the winter (from 1 November to 30 April) comprised from 5 to 19% of the total annual Rs. We speculate that the smaller soil surface CO2 flux in the recently burned than the older stands is mainly caused by decreased root respiration.

  19. Habitat use by elk (cervus elaphus) within structural stages of a managed forest of the northcentral United States

    Treesearch

    Mark A. Rumble; R. Scott Gamo

    2011-01-01

    Timber management is the most prominent land management activity in the Black Hills National Forest in the northcentral United States. Management units are stands 4-32 ha in size and are described using a hierarchal vegetative description including vegetation type, size class (age), and overstory canopy cover. For the most part, these stands are relatively homogeneous...

  20. Projections of timber harvest in western Oregon and Washington by county, owner, forest type, and age class.

    Treesearch

    Xiaoping Zhou; Richard W. Haynes; R. James. Barbour

    2005-01-01

    The Pacific Northwest forest resource is highly dynamic. Expected changes over the next 50 years will greatly challenge some current perceptions of resource managers and various stakeholders. This report describes the current and expected future timberland conditions of western Oregon and Washington and presents the results at the county level. About 50 percent of the...

  1. Growth of ponderosa pine by keen tree class.

    Treesearch

    Philip A. Briegleb

    1943-01-01

    Every forester who works in the ponderosa pine woods is impressed by the tremendous range in size, quality, age, and thrift of the trees found in the virgin forest. So great is this variation from tree to tree that stand averages mean little to the timber marker trying to select trees of high value and insect risk for cutting, and at the same time reserve for future...

  2. [Impacts of forest and precipitation on runoff and sediment in Tianshui watershed and GM models].

    PubMed

    Ouyang, H

    2000-12-01

    This paper analyzed the impacts of foret stand volume and precipitation on annual erosion modulus, mean sediment, maximum sediment, mean runoff, maximum runoff, minimum runoff, mean water level, maximum water level and minimum water level in Tianshui watershed, and also analyzed the effect of the variation of forest stand volume on monthly mean runoff, minimum runoff and mean water level. The dynamic models of grey system GM(1, N) were constructed to simulate the changes of these hydrological elements. The dynamic GM models on the impact of stand volumes of different forest types(Chinese fir, masson pine and broad-leaved forests) with different age classes(young, middle-aged, mature and over-mature) and that of precipitation on the hydrological elements were also constructed, and their changes with time were analyzed.

  3. Avian species richness in relation to intensive forest management practices in early seral tree plantations.

    PubMed

    Jones, Jay E; Kroll, Andrew J; Giovanini, Jack; Duke, Steven D; Ellis, Tana M; Betts, Matthew G

    2012-01-01

    Managers of landscapes dedicated to forest commodity production require information about how practices influence biological diversity. Individual species and communities may be threatened if management practices truncate or simplify forest age classes that are essential for reproduction and survival. For instance, the degradation and loss of complex diverse forest in young age classes have been associated with declines in forest-associated Neotropical migrant bird populations in the Pacific Northwest, USA. These declines may be exacerbated by intensive forest management practices that reduce hardwood and broadleaf shrub cover in order to promote growth of economically valuable tree species in plantations. We used a Bayesian hierarchical model to evaluate relationships between avian species richness and vegetation variables that reflect stand management intensity (primarily via herbicide application) on 212 tree plantations in the Coast Range, Oregon, USA. Specifically, we estimated the influence of broadleaf hardwood vegetation cover, which is reduced through herbicide applications, on bird species richness and individual species occupancy. Our model accounted for imperfect detection. We used average predictive comparisons to quantify the degree of association between vegetation variables and species richness. Both conifer and hardwood cover were positively associated with total species richness, suggesting that these components of forest stand composition may be important predictors of alpha diversity. Estimates of species richness were 35-80% lower when imperfect detection was ignored (depending on covariate values), a result that has critical implications for previous efforts that have examined relationships between forest composition and species richness. Our results revealed that individual and community responses were positively associated with both conifer and hardwood cover. In our system, patterns of bird community assembly appear to be associated with stand management strategies that retain or increase hardwood vegetation while simultaneously regenerating the conifer cover in commercial tree plantations.

  4. Diet of the Del Norte Salamander (Plethodon elongatus): Differences by age, gender, and season.

    Treesearch

    Clara A. Wheeler; Nancy E. Karraker; Hartwell H. Welsh; Lisa M. Ollivier

    2007-01-01

    Terrestrial salamanders are integral components of forest ecosystems and the examination of their feeding habits may provide useful information regarding various ecosystem processes. We studied the diet of the Del Norte Salamander (Plethodon elongatus) and assessed diet differences between age classes, genders, and seasons. The stomachs of 309...

  5. What does modern technology portend for uneven-aged southern pine silviculture?

    Treesearch

    Don C. Bragg; Michael G. Shelton; James M. Guldin; Ernest Lovett

    2004-01-01

    Recent changes in forest technology and market influences may impede the practice of uneven-aged (LEA) silviculture. For example, the use of tree-length systems with mechanized harvesters can unacceptably reduce the density of advanced regeneration, making it difficult to maintain the desired size class distribution. Changes to tree utilization standards, limited...

  6. Effects of climate change on forest vegetation in the northern Rockies

    USGS Publications Warehouse

    Keane, Robert E.; Mahalovich, Mary Frances; Bollenbacher, Barry L.; Manning, Mary E.; Loehman, Rachel A.; Jain, Terrie B.; Holsinger, Lisa M.; Larson, Andrew J.; Halofsky, Jessica E.; Peterson, David L.

    2018-01-01

    Increasing air temperature, through its influence on soil moisture, is expected to cause gradual changes in the abundance and distribution of tree, shrub, and grass species throughout the Northern Rockies, with drought tolerant species becoming more competitive. The earliest changes will be at ecotones between lifeforms (e.g., upper and lower treelines). Ecological disturbance, including wildfire and insect outbreaks, will be the primary facilitator of vegetation change, and future forest landscapes may be dominated by younger age classes and smaller trees. High-elevation forests will be especially vulnerable if disturbance frequency

  7. [Structural recovering in Andean successional forests from Porce (Antioquia, Colombia)].

    PubMed

    Yepes, Adriana P; del Valle, Jorge I; Jaramillo, Sandra L; Orrego, Sergio A

    2010-03-01

    Places subjected to natural or human disturbance can recover forest through an ecological process called secondary succession. Tropical succession is affected by factors such as disturbances, distance from original forest, surface configuration and local climate. These factors determine the composition of species and the time trend of the succession itself. We studied succession in soils used for cattle ranching over various decades in the Porce Region of Colombia (Andean Colombian forests). A set of twenty five permanent plots was measured, including nine plots (20 x 50 m) in primary forests and sixteen (20 x 25 m) in secondary forests. All trees with diameter > or =1.0 cm were measured. We analyzed stem density, basal area, above-ground biomass and species richness, in a successional process of ca. 43 years, and in primary forests. The secondary forests' age was estimated in previous studies, using radiocarbon dating, aerial photographs and a high-resolution satellite image analysis (7 to >43 years). In total, 1,143 and 1,766 stems were measured in primary and secondary forests, respectively. Basal area (5.7 to 85.4 m2 ha(-1)), above-ground biomass (19.1 to 1,011.5 t ha(-1)) and species richness (4 to 69) directly increased with site age, while steam density decreased (3,180 to 590). Diametric distributions were "J-inverted" for primary forests and even-aged size-class structures for secondary forests. Three species of palms were abundant and exclusive in old secondary forests and primary forests: Oenocarpus mapora, Euterpe precatoria and Oenocarpus bataua. These palms happened in cohorts after forest disturbances. Secondary forest structure was 40% in more than 43 years of forest succession and indicate that many factors are interacting and affecting the forests succession in the area (e.g. agriculture, cattle ranching, mining, etc.).

  8. Age classes of western white pine planting stock in relation to aspect of planting site in northern Idaho

    Treesearch

    W. G. Wahlenberg

    1926-01-01

    In the northern Rocky Mountain region there are vast areas of forest land denuded by fire, which will remain virtually unproductive for generations to come unless planted by hand with nursery-grown trees. After the first sweep of fire through the original stands of western white pine timber (Pinus monticola) on these lands, the forest in most instances started to come...

  9. Higher stability in forest-atmosphere exchange observed in a structurally diverse forest.

    NASA Astrophysics Data System (ADS)

    Tamrakar, R.; Rayment, M.; Moyano, F.; Herbst, M.; Mund, M.; Knohl, A.

    2016-12-01

    We tested the hypothesis that structurally diverse forests have greater stability on exchange processes with the atmosphere compared to forests with less diverse structure. In a case study, we assessed how net ecosystem exchange (NEE) and normalized maximum assimilation (Amax) varied over time in two forests in Germany based on 11 years of continuous eddy flux measurements. The two sites differ in structure as well as in species composition: one (Hainich) is an unmanaged, uneven-aged and heterogeneous mixed beech forest (65% beech), the other (Leinefelde) is a managed, even-aged and homogeneous pure beech stand. The two selected forests are of similar mean ages (about 130 years old) and exposed to similar air temperatures and vapour pressure deficits. Even though Hainich (the unmanaged forest) received higher rainfall (720 ± 134 mm vs 599±166 mm), the soil water availability showed no significant difference between both sites. Based on detailed biomass inventory, trees in Hainich are well distributed in all diameter at breast height (dbh) classes (10 to 90cm dbh) whereas in Leinefelde (the managed forest) trees are mostly confined to dbh classes of 40 to 55 cm. Our results showed a strong difference in inter-annual variability of NEE, which was lower in the unmanaged than in the managed site (coefficient of variation (CV) of 0.13 and 0.27, respectively). The lowest NEE was observed in both sites in 2004, a mast year and a year after the strong summer drought of 2003. The variation in the inter-annual normalized maximum assimilation (Amax) was lower in Hainich (standard deviation of 2.5 compared to 3.9 µmol m-2 s-1). Also, the seasonal course of Amax differed between the two forests which could explain why the mixed forest was more affected by the late summer drought of 2003, despite showing a more conservative carbon budget than the pure stand in the long term. The interannual anomaly in Amax was correlated with fruit production, the latter being larger in Leinefelde (CV of 1.37 vs. 1.18). Our data provide evidence from a case study that exchange processes with the atmosphere are more stable in structurally diverse forests, yet a confirmation covering multiple sites is still pending.

  10. 77 FR 49399 - Proposed Amendment of Class E Airspace; Forest City, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-16

    ...-0654; Airspace Docket No. 12-ACE-3] Proposed Amendment of Class E Airspace; Forest City, IA AGENCY... action proposes to amend Class E airspace at Forest City, IA. Additional controlled airspace is necessary... accommodate new standard instrument approach procedures at Forest City Municipal Airport, Forest City, IA. The...

  11. Assessing age- and silt index-independent diameter growth models of individual-tree Southern Appalachian hardwoods

    Treesearch

    Henry W. Mcnab; Thomas F. Lloyd

    1999-01-01

    Models of forest vegetation dynamics based on characteristics of individual trees are more suitable to predicting growth of multiple species and age classes than those based on stands. The objective of this study was to assess age- and site index-independent relationships between periodic diameter increment and tree and site effects for 11 major hardwood tree species....

  12. Estimating structural attributes of Douglas-fir/western hemlock forest stands from Landsat and SPOT imagery

    NASA Technical Reports Server (NTRS)

    Cohen, Warren B.; Spies, Thomas A.

    1992-01-01

    Relationships between spectral and texture variables derived from SPOT HRV 10 m panchromatic and Landsat TM 30 m multispectral data and 16 forest stand structural attributes is evaluated to determine the utility of satellite data for analysis of hemlock forests west of the Cascade Mountains crest in Oregon and Washington, USA. Texture of the HRV data was found to be strongly related to many of the stand attributes evaluated, whereas TM texture was weakly related to all attributes. Data analysis based on regression models indicates that both TM and HRV imagery should yield equally accurate estimates of forest age class and stand structure. It is concluded that the satellite data are a valuable source for estimation of the standard deviation of tree sizes, mean size and density of trees in the upper canopy layers, a structural complexity index, and stand age.

  13. Changes in very fine root respiration and morphology with time since last fire in a boreal forest

    NASA Astrophysics Data System (ADS)

    Makita, Naoki; Pumpanen, Jukka; Köster, Kajar; Berninger, Frank

    2016-04-01

    We examined the physiological and morphological responses of individual fine root segments in boreal forests stands with different age since the last fire to determine changes in specific fine root respiration and morphological traits during forest succession. We investigated the respiration of fine roots divided into three diameter classes (<0.5, 0.5-1.0, and 1.0-2.0 mm) in a Finnish boreal Pinus sylvestris L. in forest stands with 5, 45, 63, and 155 years since the last fire. Specific respiration rates of <0.5 mm roots in 155-year-old stands were 74%, 38%, and 31% higher than in 5-, 45-, and 63-year-old stands, respectively. However, the respiration rates of thicker diameter roots did not significantly change among stands with respect to time after fire. Similarly, fire disturbance had a strong impact on morphological traits of <0.5 mm roots, but not on thicker roots. Root respiration rates correlated positively with specific root length (length per unit mass) and negatively with root tissue density (mass per unit volume) in all stand ages. The linear regression lines fitted to the relationships between root respiration and specific root length or root tissue density showed significantly higher intercepts in 63- and 155-year-old than in 5-year-old stands. Significant shifts in the intercept of the common slope of respiration vs. morphology indicate the different magnitude of the changes in physiological performance among the fire age class. Despite a specific small geographic area, we suggest that the recovery of boreal forests following wildfire induces a strategy that favors carbon investment in nutrient and water exploitation efficiency with consequences for higher respiration, length, and lower tissue density of very fine roots.

  14. Inclusion of climatic variables in longleaf pine growth models

    Treesearch

    Jyoti N. Rayamajhi; John S. Kush

    2006-01-01

    The Regional Longleaf Growth Study was established by the USDA Forest Service to study the dynamics of naturally regenerated, even-aged longleaf pine (Pinus palustris Mill.) stands. The study accounts for growth change over time by adding new sets of plots in the youngest age class every 10 years. To detect possible changes in productivity with time...

  15. Forest fuels and potential fire behaviour 12 years after variable-retention harvest in lodgepole pine

    Treesearch

    Justin S. Crotteau; Christopher R. Keyes; Elaine K. Sutherland; David K. Wright; Joel M. Egan

    2016-01-01

    Variable-retention harvesting in lodgepole pine offers an alternative to conventional, even-aged management. This harvesting technique promotes structural complexity and age-class diversity in residual stands and promotes resilience to disturbance. We examined fuel loads and potential fire behaviour 12 years after two modes of variable-retention harvesting (...

  16. Growth process and model simulation of three different classes of Schima superba in a natural subtropical forest in China

    NASA Astrophysics Data System (ADS)

    Wei, Hui; Deng, Xiangwen; Ouyang, Shuai; Chen, Lijun; Chu, Yonghe

    2017-01-01

    Schima superba is an important fire-resistant, high-quality timber species in southern China. Growth in height, diameter at breast height (DBH), and volume of the three different classes (overtopped, average and dominant) of S. superba were examined in a natural subtropical forest. Four growth models (Richards, edited Weibull, Logistic and Gompertz) were selected to fit the growth of the three different classes of trees. The results showed that there was a fluctuation phenomenon in height and DBH current annual growth process of all three classes. Multiple intersections were found between current annual increment (CAI) and mean annual increment (MAI) curves of both height and DBH, but there was no intersection between volume CAI and MAI curves. All selected models could be used to fit the growth of the three classes of S. superba, with determinant coefficients above 0.9637. However, the edited Weibull model performed best with the highest R2 and the lowest root of mean square error (RMSE). S. superba is a fast-growing tree with a higher growth rate during youth. The height and DBH CAIs of overtopped, average and dominant trees reached growth peaks at ages 5-10, 10-15 and 15-20 years, respectively. According to model simulation, the volume CAIs of overtopped, average and dominant trees reached growth peaks at ages 17, 55 and 76 years, respectively. The biological rotation ages of the overtopped, average and dominant trees of S. superba were 29, 85 and 128 years, respectively.

  17. Time since death and decay rate constants of Norway spruce and European larch deadwood in subalpine forests determined using dendrochronology and radiocarbon dating

    NASA Astrophysics Data System (ADS)

    Petrillo, Marta; Cherubini, Paolo; Fravolini, Giulia; Marchetti, Marco; Ascher-Jenull, Judith; Schärer, Michael; Synal, Hans-Arno; Bertoldi, Daniela; Camin, Federica; Larcher, Roberto; Egli, Markus

    2016-03-01

    Due to the large size (e.g. sections of tree trunks) and highly heterogeneous spatial distribution of deadwood, the timescales involved in the coarse woody debris (CWD) decay of Picea abies (L.) Karst. and Larix decidua Mill. in Alpine forests are largely unknown. We investigated the CWD decay dynamics in an Alpine valley in Italy using the chronosequence approach and the five-decay class system that is based on a macromorphological assessment. For the decay classes 1-3, most of the dendrochronological samples were cross-dated to assess the time that had elapsed since tree death, but for decay classes 4 and 5 (poorly preserved tree rings) radiocarbon dating was used. In addition, density, cellulose, and lignin data were measured for the dated CWD. The decay rate constants for spruce and larch were estimated on the basis of the density loss using a single negative exponential model, a regression approach, and the stage-based matrix model. In the decay classes 1-3, the ages of the CWD were similar and varied between 1 and 54 years for spruce and 3 and 40 years for larch, with no significant differences between the classes; classes 1-3 are therefore not indicative of deadwood age. This seems to be due to a time lag between the death of a standing tree and its contact with the soil. We found distinct tree-species-specific differences in decay classes 4 and 5, with larch CWD reaching an average age of 210 years in class 5 and spruce only 77 years. The mean CWD rate constants were estimated to be in the range 0.018 to 0.022 y-1 for spruce and to about 0.012 y-1 for larch. Snapshot sampling (chronosequences) may overestimate the age and mean residence time of CWD. No sampling bias was, however, detectable using the stage-based matrix model. Cellulose and lignin time trends could be derived on the basis of the ages of the CWD. The half-lives for cellulose were 21 years for spruce and 50 years for larch. The half-life of lignin is considerably higher and may be more than 100 years in larch CWD. Consequently, the decay of Picea abies and Larix decidua is very low. Several uncertainties, however, remain: 14C dating of CWD from decay classes 4 and 5 and having a pre-bomb age is often difficult (large age range due to methodological constraints) and fall rates of both European larch and Norway spruce are missing.

  18. Leaf phenology as one important driver of seasonal changes in isoprene emission in central Amazonia

    DOE PAGES

    Alves, Eliane G.; Tota, Julio; Turnipseed, Andrew; ...

    2018-03-06

    Isoprene fluxes vary seasonally with changes in environmental factors (e.g., solar radiation and temperature) and biological factors (e.g., leaf phenology). However, our understanding of seasonal patterns of isoprene fluxes and associated mechanistic controls are still limited, especially in Amazonian evergreen forests. Here in this article, we aim to connect intensive, field-based measurements of canopy isoprene flux over a central Amazonian evergreen forest with meteorological observations and with tower-camera leaf phenology to improve understanding of patterns and causes of isoprene flux seasonality. Our results demonstrate that the highest isoprene emissions are observed during the dry and dry-to-wet transition seasons, whereas themore » lowest emissions were found during the wet-to-dry transition season. Our results also indicate that light and temperature can not totally explain the isoprene flux seasonality. Instead, the camera-derived leaf area index (LAI) of recently mature leaf-age class (e.g. leaf ages of 3–5 months) exhibits the highest correlation with observed isoprene flux seasonality (R 2=0.59, p<0.05). Attempting to better represent leaf phenology in the Model of Emissions of Gases and Aerosols from Nature (MEGAN 2.1), we improved the leaf age algorithm utilizing results from the camera-derived leaf phenology that provided LAI categorized in three different leaf ages. The model results show that the observations of age-dependent isoprene emission capacity, in conjunction with camera-derived leaf age demography, significantly improved simulations in terms of seasonal variations of isoprene fluxes (R 2=0.52, p<0.05). This study highlights the importance of accounting for differences in isoprene emission capacity across canopy leaf age classes and of identifying forest adaptive mechanisms that underlie seasonal variation of isoprene emissions in Amazonia.« less

  19. Leaf phenology as one important driver of seasonal changes in isoprene emission in central Amazonia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alves, Eliane G.; Tota, Julio; Turnipseed, Andrew

    Isoprene fluxes vary seasonally with changes in environmental factors (e.g., solar radiation and temperature) and biological factors (e.g., leaf phenology). However, our understanding of seasonal patterns of isoprene fluxes and associated mechanistic controls are still limited, especially in Amazonian evergreen forests. Here in this article, we aim to connect intensive, field-based measurements of canopy isoprene flux over a central Amazonian evergreen forest with meteorological observations and with tower-camera leaf phenology to improve understanding of patterns and causes of isoprene flux seasonality. Our results demonstrate that the highest isoprene emissions are observed during the dry and dry-to-wet transition seasons, whereas themore » lowest emissions were found during the wet-to-dry transition season. Our results also indicate that light and temperature can not totally explain the isoprene flux seasonality. Instead, the camera-derived leaf area index (LAI) of recently mature leaf-age class (e.g. leaf ages of 3–5 months) exhibits the highest correlation with observed isoprene flux seasonality (R 2=0.59, p<0.05). Attempting to better represent leaf phenology in the Model of Emissions of Gases and Aerosols from Nature (MEGAN 2.1), we improved the leaf age algorithm utilizing results from the camera-derived leaf phenology that provided LAI categorized in three different leaf ages. The model results show that the observations of age-dependent isoprene emission capacity, in conjunction with camera-derived leaf age demography, significantly improved simulations in terms of seasonal variations of isoprene fluxes (R 2=0.52, p<0.05). This study highlights the importance of accounting for differences in isoprene emission capacity across canopy leaf age classes and of identifying forest adaptive mechanisms that underlie seasonal variation of isoprene emissions in Amazonia.« less

  20. [Succession of Larix olgensis and Betula platyphlla-marsh ecotone communities in Changbai Mountain].

    PubMed

    Mu, Changcheng

    2003-11-01

    The succession of communities within the ecotone between forest and marsh in Changbai Mountain was studied to identify the interrelation between the succession of ecotone communities and the mesophytization of the ecotone. The succession regime of the ecotone communities was studies by patch size (the volume of each mound) and age class of different tree species, water transmission from soil to atmosphere through the transpiration of different tree species, and regional climate warming and community succession. The results demonstrated that both patch size and water loss through transpiration were increased with age class. The increased volume of mounds and water loss through transpiration of trees were converted to the raised ground surface level and the lowered ground surface water level. Within 60 years, the ground surface level would be raised by 0.405-0.590 m, depending on the distance to the marsh, and the aboveground water level would be lowered by 1.050-1.442 m. Climate had a great effect on the community dynamics. Community succession and regional climate warming intensified the mesophytization process of forest-marsh ecotone, and the ecotone communities would eventually change into forest communities within a relatively short period.

  1. Soil C02 efflux across four age classes of plantation loblolly pine (Pinus taeda L.) on the Virginia Piedmont

    Treesearch

    P. Eric Wiseman; John R. Seiler

    2004-01-01

    Soil CO2 efflux resulting from microbial and root respiration is a major component of the forest C cycle. In this investigation, we examined in detail how soil CO2 efflux differs both spatially and temporally with respect to stand age for loblolly pine (Pinus taeda L.) plantations on the Virginia Piedmont...

  2. Oak management for wood products

    Treesearch

    Roger Barlow

    1971-01-01

    A method is presented for analyzing oak management alternatives through comparisons of the present value of the net cash flow produced. Even-aged management without age-class regulation returned $72.60 of present value over a 40-year period. In the next 40 years the only expenses reduce the present value to $72.43. To regulate this stand into a forest with an equal...

  3. 77 FR 68683 - Amendment of Class E Airspace; Forest City, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-16

    ...-0654; Airspace Docket No. 12-ACE-3] Amendment of Class E Airspace; Forest City, IA AGENCY: Federal... Forest City, IA. Additional controlled airspace is necessary to accommodate new Area Navigation (RNAV... Federal Register a notice of proposed rulemaking (NPRM) to amend Class E airspace for the Forest City, IA...

  4. Timber type separability in Southeastern United States on LANDSAT-1 MSS data

    NASA Technical Reports Server (NTRS)

    Kan, E. P.; Dillman, R. D.

    1975-01-01

    A quantitative, computer-aided study was made on the spectral separability of timber types and condition classes in the Southeastern United States, using LANDSAT-1 multispectral scanner data. It was concluded that LANDSAT-1 could be used effectively to discriminate the gross forest features of softwood, hardwood, and regeneration. The only significant detectable age difference would be between an established forest versus a young (or denuded) forest. The red or near infrared bands would be better for discrimination; phenological early and late spring data would be better than winter. And a temporal analysis would be superior to single-season analysis. Lastly, two spectral bands would be most cost effective for computer analysis. The study site was Sam Houston National Forest of East Texas, a typical forest in the Flatwoods Zone, Southern Region, U. S. Forest Service.

  5. On the decline of ground lichen forests in the Swedish boreal landscape: Implications for reindeer husbandry and sustainable forest management.

    PubMed

    Sandström, Per; Cory, Neil; Svensson, Johan; Hedenås, Henrik; Jougda, Leif; Borchert, Nanna

    2016-05-01

    Lichens are a bottleneck resource for circumpolar populations of reindeer, and as such, for reindeer husbandry as an indigenous Sami land-use tradition in northern Sweden. This study uses ground lichen data and forest information collected within the Swedish National Forest Inventory since 1953, on the scale of northern Sweden. We found a 71 % decline in the area of lichen-abundant forests over the last 60 years. A decline was observed in all regions and age classes and especially coincided with a decrease of >60 year old, open pine forests, which was the primary explanatory factor in our model. The effects of reindeer numbers were inconclusive in explaining the decrease in lichen-abundant forest. The role that forestry has played in causing this decline can be debated, but forestry can have a significant role in reversing the trend and improving ground lichen conditions.

  6. Avian Species Richness in Relation to Intensive Forest Management Practices in Early Seral Tree Plantations

    PubMed Central

    Jones, Jay E.; Kroll, Andrew J.; Giovanini, Jack; Duke, Steven D.; Ellis, Tana M.; Betts, Matthew G.

    2012-01-01

    Background Managers of landscapes dedicated to forest commodity production require information about how practices influence biological diversity. Individual species and communities may be threatened if management practices truncate or simplify forest age classes that are essential for reproduction and survival. For instance, the degradation and loss of complex diverse forest in young age classes have been associated with declines in forest-associated Neotropical migrant bird populations in the Pacific Northwest, USA. These declines may be exacerbated by intensive forest management practices that reduce hardwood and broadleaf shrub cover in order to promote growth of economically valuable tree species in plantations. Methodology and Principal Findings We used a Bayesian hierarchical model to evaluate relationships between avian species richness and vegetation variables that reflect stand management intensity (primarily via herbicide application) on 212 tree plantations in the Coast Range, Oregon, USA. Specifically, we estimated the influence of broadleaf hardwood vegetation cover, which is reduced through herbicide applications, on bird species richness and individual species occupancy. Our model accounted for imperfect detection. We used average predictive comparisons to quantify the degree of association between vegetation variables and species richness. Both conifer and hardwood cover were positively associated with total species richness, suggesting that these components of forest stand composition may be important predictors of alpha diversity. Estimates of species richness were 35–80% lower when imperfect detection was ignored (depending on covariate values), a result that has critical implications for previous efforts that have examined relationships between forest composition and species richness. Conclusion and Significance Our results revealed that individual and community responses were positively associated with both conifer and hardwood cover. In our system, patterns of bird community assembly appear to be associated with stand management strategies that retain or increase hardwood vegetation while simultaneously regenerating the conifer cover in commercial tree plantations. PMID:22905249

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenberg, Cathryn H.; Levey, Douglas J.; Kwit, Charles

    ABSTRACT Fleshy fruit is a key food resource for many vertebrates and may be particularly important energy source to birds during fall migration and winter. Hence, land managers should know how fruit availability varies among forest types, seasons, and years. We quantified fleshy fruit abundance monthly for 9 years (1995-2003) in 56 0.1-ha plots in 5 forest types of South Carolina's upper Coastal Plain, USA. Forest types were mature upland hardwood and bottomland hardwood forest, mature closed-canopy loblolly (Pinus taeda) and longleaf pine (P. palustris) plantation, and recent clearcut regeneration harvests planted with longleaf pine seedlings. Mean annual number ofmore » fruits and dry fruit pulp mass were highest in regeneration harvests (264,592 _ 37,444 fruits; 12,009 _ 2,392 g/ha), upland hardwoods (60,769 _ 7,667 fruits; 5,079 _ 529 g/ha), and bottomland hardwoods (65,614 _ 8,351 fruits; 4,621 _ 677 g/ha), and lowest in longleaf pine (44,104 _ 8,301 fruits; 4,102 _ 877 g/ha) and loblolly (39,532 _ 5,034 fruits; 3,261 _ 492 g/ha) plantations. Fruit production was initially high in regeneration harvests and declined with stand development and canopy closure (1995-2003). Fruit availability was highest June-September and lowest in April. More species of fruit-producing plants occurred in upland hardwoods, bottomland hardwoods, and regeneration harvests than in loblolly and longleaf pine plantations. Several species produced fruit only in 1 or 2 forest types. In sum, fruit availability varied temporally and spatially because of differences in species composition among forest types and age classes, patchy distributions of fruiting plants both within and among forest types, fruiting phenology, high inter-annual variation in fruit crop size by some dominant fruit-producing species, and the dynamic process of disturbance-adapted species colonization and decline, or recovery in recently harvested stands. Land managers could enhance fruit availability for wildlife by creating and maintaining diverse forest types and age classes. .« less

  8. Spatially explicit modeling of 1992-2100 land cover and forest stand age for the conterminous United States

    USGS Publications Warehouse

    Sohl, Terry L.; Sayler, Kristi L.; Bouchard, Michelle; Reker, Ryan R.; Friesz, Aaron M.; Bennett, Stacie L.; Sleeter, Benjamin M.; Sleeter, Rachel R.; Wilson, Tamara; Soulard, Christopher E.; Knuppe, Michelle; Van Hofwegen, Travis

    2014-01-01

    Information on future land-use and land-cover (LULC) change is needed to analyze the impact of LULC change on ecological processes. The U.S. Geological Survey has produced spatially explicit, thematically detailed LULC projections for the conterminous United States. Four qualitative and quantitative scenarios of LULC change were developed, with characteristics consistent with the Intergovernmental Panel on Climate Change (IPCC) Special Report on 5 Emission Scenarios (SRES). The four quantified scenarios (A1B, A2, B1, and B2) served as input to the Forecasting Scenarios of Land-use Change (FORE-SCE) model. Four spatially explicit datasets consistent with scenario storylines were produced for the conterminous United States, with annual LULC maps from 1992 through 2100. The future projections are characterized by a loss of natural land covers in most scenarios, with corresponding expansion of 10 anthropogenic land uses. Along with the loss of natural land covers, remaining natural land covers experience increased fragmentation under most scenarios, with only the B2 scenario remaining relatively stable in both proportion of remaining natural land covers and basic fragmentation measures. Forest stand age was also modeled. By 2100, scenarios and ecoregions with heavy forest cutting have relatively lower mean stand ages compared to those with less 15 forest cutting. Stand ages differ substantially between unprotected and protected forest lands, as well as between different forest classes. The modeled data were compared to the National Land Cover Database (NLCD) and other data sources to assess model characteristics. The consistent, spatially explicit, and thematically detailed LULC projections and the associated forest stand age data layers have been used to analyze LULC impacts on carbon and greenhouse gas fluxes, 20 biodiversity, climate and weather variability, hydrologic change, and other ecological processes.

  9. Differential Responses of Herbivores and Herbivory to Management in Temperate European Beech

    PubMed Central

    Gossner, Martin M.; Pašalić, Esther; Lange, Markus; Lange, Patricia; Boch, Steffen; Hessenmöller, Dominik; Müller, Jörg; Socher, Stephanie A.; Fischer, Markus; Schulze, Ernst-Detlef; Weisser, Wolfgang W.

    2014-01-01

    Forest management not only affects biodiversity but also might alter ecosystem processes mediated by the organisms, i.e. herbivory the removal of plant biomass by plant-eating insects and other arthropod groups. Aiming at revealing general relationships between forest management and herbivory we investigated aboveground arthropod herbivory in 105 plots dominated by European beech in three different regions in Germany in the sun-exposed canopy of mature beech trees and on beech saplings in the understorey. We separately assessed damage by different guilds of herbivores, i.e. chewing, sucking and scraping herbivores, gall-forming insects and mites, and leaf-mining insects. We asked whether herbivory differs among different forest management regimes (unmanaged, uneven-aged managed, even-aged managed) and among age-classes within even-aged forests. We further tested for consistency of relationships between regions, strata and herbivore guilds. On average, almost 80% of beech leaves showed herbivory damage, and about 6% of leaf area was consumed. Chewing damage was most common, whereas leaf sucking and scraping damage were very rare. Damage was generally greater in the canopy than in the understorey, in particular for chewing and scraping damage, and the occurrence of mines. There was little difference in herbivory among differently managed forests and the effects of management on damage differed among regions, strata and damage types. Covariates such as wood volume, tree density and plant diversity weakly influenced herbivory, and effects differed between herbivory types. We conclude that despite of the relatively low number of species attacking beech; arthropod herbivory on beech is generally high. We further conclude that responses of herbivory to forest management are multifaceted and environmental factors such as forest structure variables affecting in particular microclimatic conditions are more likely to explain the variability in herbivory among beech forest plots. PMID:25119984

  10. An assessment of residual stand conditions following shelterwood-with-reserves cuts in Appalachian hardwoods

    Treesearch

    James E. Johnson; Gary W. Miller; John E. Baumgras; Cynthia D. West

    1999-01-01

    In recent years foresters managing hardwoods in the Southern Appalachians have been investigating a variety of regeneration methods that lead to the development of a two-aged stand. The reserved trees that make up the older age class usually meet a variety of objectives such as timber, wildlife food and cover, and aesthetic values. A series of 20 operational cuts in...

  11. Reproduction in north American elk Cervus elaphus: paternity of calves sired by males of mixed-age classes

    Treesearch

    John G. Kie; Bruce K. Johnson; James H. Noyes; Christen L. Williams; Brian L. Dick; Olin E. Rhodes; Rosemary J. Stussy; R. Terry Bowyer

    2013-01-01

    Our objective was to examine effects of groups of mixed numbers and ages of male North American elk Cervus elaphus on the reproductive performance of females. We conducted research at the Starkey Experimental Forest and Range in northeastern Oregon, USA, during 1993-2000. Each spring in late March, we released 40 female elk, eight yearling (9-month...

  12. Exploring product supply across age classes and forest types

    Treesearch

    Robert C. Abt; Karen J. Lee; Gerardo Pacheco

    1995-01-01

    Timber supply modeling has evolved from examining inventory sustainability based on growth/drain relationships to sophisticated inventory and supply models. These analyses have consistently recognized regional, ownership (public/private), and species group (hardwood/softwood) differences. Recognition of product differences is fundamental to market analysis which...

  13. Forest Surface Energy Balance and Evapotranspiration Estimated From Four Eddy Covariance Towers

    NASA Astrophysics Data System (ADS)

    Rabbani, G. A.; Adam, J. C.; Elliot, W. J.; Liu, H.

    2016-12-01

    Evapotranspiration (ET), which refers to the combined effect of surface water evaporation and plant transpiration, is one of the vital elements of the global water balance. It is also an important process for plants, providing water, nutrient, and cooling needs, and helping to regulate carbon dioxide entry through open/closure of the plant's stomata. Quantifying ET in forested environments is an ongoing research area. Complex physiological responses with climatic variation, combined with difficulty in making wide-spread measurements, makes ET one of the least understood components of a forest water balance. The objective of this study is to estimate ET and energy balance closure by using flux net data from eddy covariance towers. ET is estimated for different forest types with multiple age classes during the years of 2011, 2012 and 2013. We studied two coniferous forests (F1, F2), one deciduous forest (F3) and one mixed forest (F4) in Washington, Wyoming, Wisconsin and New Jersey, respectively. Label 2 (Data checked and formatted by Carbon Dioxide Information Analysis Center) gap filled flux data were collected from the AmeriFlux database (ameriflux.ornl.gov). Discrepancies between turbulent fluxes and available energy are investigated. Among the studied forests, the highest and lowest average monthly ET are exhibited by the mixed forest (F4) and coniferous forest (F1) in 2012 which are 2,692 and 633 mm/month, respectively. Difference in average monthly ET can be an implication of substantial age difference between these two types of forest. The regression analysis showed significant correlation between turbulent fluxes and available energy (R2=0.91) for mixed forest where the discrepancy varied from 5-11%. Conversely, for coniferous and deciduous forests, the discrepancy varied from 46-49% and 28%, respectively, with almost similar correlation between the fluxes (0.86 and 0.84, respectively). This study will facilitate an improved understanding of how forest type and age pose differences in ET and surface energy components.

  14. An examination of scale of assessment, logging and ENSO-induced fires on butterfly diversity in Borneo.

    PubMed

    Cleary, Daniel F R

    2003-04-01

    The impact of disturbance on species diversity may be related to the spatial scales over which it occurs. Here I assess the impact of logging and ENSO (El Niño Southern Oscillation) -induced burning and forest isolation on the species richness (477 species out of more than 28,000 individuals) and community composition of butterflies and butterfly guilds using small (0.9 ha) plots nested within large (450 ha) landscapes. The landscapes were located in three habitat classes: (1) continuous, unburned forest; (2) unburned isolates surrounded by burned forest; and (3) burned forest. Plots with different logging histories were sampled within the two unburned habitat classes, allowing for independent assessment of the two disturbance factors (logging and burning). Disturbance within habitat classes (logging) had a very different impact on butterfly diversity than disturbance among habitat classes (due to ENSO-induced burning and isolation). Logging increased species richness, increased evenness, and lowered dominance. Among guilds based on larval food plants, the species richness of tree and herb specialists was higher in logged areas but their abundance was lower. Both generalist species richness and abundance was higher in logged areas. Among habitat classes, species richness was lower in burned forest and isolates than continuous forest but there was no overall difference in evenness or dominance. Among guilds, generalist species richness was significantly lower in burned forest and isolates than continuous forest. Generalist abundance was also very low in the isolates. There was no difference among disturbance classes in herb specialist species richness but abundance was significantly higher in the isolates and burned forest than in continuous forest. Tree specialist species richness was lower in burned forest than continuous forest but did not differ between continuous forest and isolates. The scale of assessment proved important in estimating the impact of disturbance on species richness. Within disturbance classes, the difference in species richness between primary and logged forest was more pronounced at the smaller spatial scale. Among disturbance classes, the difference in species richness between continuous forest and isolates or burned forest was more pronounced at the larger spatial scale. The lower levels of species richness in ENSO-affected areas and at the larger (landscape) spatial scale indicate that future severe ENSO events may prove one of the most serious threats to extant biodiversity.

  15. Mapping site index and volume increment from forest inventory, Landsat, and ecological variables in Tahoe National Forest, California, USA

    USGS Publications Warehouse

    Huang, Shengli; Ramirez, Carlos; Conway, Scott; Kennedy, Kama; Kohler, Tanya; Liu, Jinxun

    2016-01-01

    High-resolution site index (SI) and mean annual increment (MAI) maps are desired for local forest management. We integrated field inventory, Landsat, and ecological variables to produce 30 m SI and MAI maps for the Tahoe National Forest (TNF) where different tree species coexist. We converted species-specific SI using adjustment factors. Then, the SI map was produced by (i) intensifying plots to expand the training sets to more climatic, topographic, soil, and forest reflective classes, (ii) using results from a stepwise regression to enable a weighted imputation that minimized the effects of outlier plots within classes, and (iii) local interpolation and strata median filling to assign values to pixels without direct imputations. The SI (reference age is 50 years) map had an R2 of 0.7637, a root-mean-square error (RMSE) of 3.60, and a mean absolute error (MAE) of 3.07 m. The MAI map was similarly produced with an R2 of 0.6882, an RMSE of 1.73, and a MAE of 1.20 m3·ha−1·year−1. Spatial patterns and trends of SI and MAI were analyzed to be related to elevation, aspect, slope, soil productivity, and forest type. The 30 m SI and MAI maps can be used to support decisions on fire, plantation, biodiversity, and carbon.

  16. Determining stocking, forest type and stand-size class from forest inventory data

    Treesearch

    Mark H. Hansen; Jerold T. Hahn

    1992-01-01

    This paper describes the procedures used by North Central Forest Experiment Station's Forest Inventory and Analysis Work Unit (NCFIA) in determining stocking, forest type, and stand-size class. The stocking procedure assigns a portion of the stocking to individual trees measured on NCFIA 10-point field plots. Stand size and forest type are determined as functions...

  17. East Texas forests, 2003

    Treesearch

    Victor A. Rudis; Burl Carraway; Raymond M. [and others] Sheffield

    2008-01-01

    Forest land covers 12.1 million acres in east Texas, or about 57 percent of the land area. The majority of forests, 11.9 million acres, are classed as timberland. The 2003 timberland area is the highest recorded since 1975. Forests classed as softwood forest types were found on 5.2 million acres of the timberland; almost one-half of the softwood forests are pine...

  18. Long-term patterns of fruit production in five forest types of the South Carolina upper coastal plain

    DOE PAGES

    Greenberg, Cathryn H.; Levey, Douglas J.; Kwit, Charles; ...

    2012-02-06

    Fleshy fruit is a key food resource for many vertebrates and may be particularly important energy source to birds during fall migration and winter. Hence, land managers should know how fruit availability varies among forest types, seasons, and years. We quantified fleshy fruit abundance monthly for 9 years (1995–2003) in 56 0.1-ha plots in 5 forest types of South Carolina's upper Coastal Plain, USA. Forest types were mature upland hardwood and bottomland hardwood forest, mature closed-canopy loblolly ( Pinus taeda) and longleaf pine ( P. palustris) plantation, and recent clearcut regeneration harvests planted with longleaf pine seedlings. Mean annual numbermore » of fruits and dry fruit pulp mass were highest in regeneration harvests (264,592 ± 37,444 fruits; 12,009 ± 2,392 g/ha), upland hardwoods (60,769 ± 7,667 fruits; 5,079 ± 529 g/ha), and bottomland hardwoods (65,614 ± 8,351 fruits; 4,621 ± 677 g/ha), and lowest in longleaf pine (44,104 ± 8,301 fruits; 4,102 ± 877 g/ha) and loblolly (39,532 ± 5,034 fruits; 3,261 ± 492 g/ha) plantations. Fruit production was initially high in regeneration harvests and declined with stand development and canopy closure (1995–2003). Fruit availability was highest June–September and lowest in April. More species of fruit-producing plants occurred in upland hardwoods, bottomland hardwoods, and regeneration harvests than in loblolly and longleaf pine plantations. Several species produced fruit only in 1 or 2 forest types. In sum, fruit availability varied temporally and spatially because of differences in species composition among forest types and age classes, patchy distributions of fruiting plants both within and among forest types, fruiting phenology, high inter-annual variation in fruit crop size by some dominant fruit-producing species, and the dynamic process of disturbance-adapted species colonization and decline, or recovery in recently harvested stands. As a result, land managers could enhance fruit availability for wildlife by creating and maintaining diverse forest types and age classes.« less

  19. A finite mixture of two Weibull distributions for modeling the diameter distributions of rotated-sigmoid, uneven-aged stands

    Treesearch

    Lianjun Zhang; Jeffrey H. Gove; Chuangmin Liu; William B. Leak

    2001-01-01

    The rotated-sigmoid form is a characteristic of old-growth, uneven-aged forest stands caused by past disturbances such as cutting, fire, disease, and insect attacks. The diameter frequency distribution of the rotated-sigmoid form is bimodal with the second rounded peak in the midsized classes, rather than a smooth, steeply descending, monotonic curve. In this study a...

  20. White ash (Fraxinus americana L.) survival and growth in unmanaged upland forests

    Treesearch

    Jeffery S. Ward

    1997-01-01

    Crown class and diameter of 704 white ash (Fraxinus americana L.) > 0.5 inches dbh have been monitored at 10-yr intervals since 1927. Nominal stand age was 25 years in 1927. Although the density of white ash in the upper canopy declined from 14/acre to 3/acre between stand ages 25 through 85, the proportion of the upper canopy comprised by white...

  1. Fine-scale habitat use by orang-utans in a disturbed peat swamp forest, central Kalimantan, and implications for conservation management.

    PubMed

    Morrogh-Bernard, Helen C; Husson, Simon J; Harsanto, Fransiskus A; Chivers, David J

    2014-01-01

    This study was conducted to see how orang-utans (Pongo pygmaeus wurmbii) were coping with fine-scale habitat disturbance in a selectively logged peat swamp forest in Central Kalimantan, Borneo. Seven habitat classes were defined, and orang-utans were found to use all of these, but were selective in their preference for certain classes over others. Overall, the tall forest classes (≥20 m) were preferred. They were preferred for feeding, irrespective of canopy connectivity, whereas classes with a connected canopy (canopy cover ≥75%), irrespective of canopy height, were preferred for resting and nesting, suggesting that tall trees are preferred for feeding and connected canopy for security and protection. The smaller forest classes (≤10 m high) were least preferred and were used mainly for travelling from patch to patch. Thus, selective logging is demonstrated here to be compatible with orang-utan survival as long as large food trees and patches of primary forest remain. Logged forest, therefore, should not automatically be designated as 'degraded'. These findings have important implications for forest management, forest classification and the designation of protected areas for orang-utan conservation.

  2. Effects of silvicultural management intensity on fluxes of dissolved and particulate organic matter in 27 forest sites of the Biodiversity Exploratories

    NASA Astrophysics Data System (ADS)

    Michalzik, Beate; Bischoff, Sebastian; Levia, Delphis; Schwarz, Martin; Escher, Peter; Wilcke, Wolfgang; Thieme, Lisa; Kerber, Katja; Kaupenjohann, Martin; Siemens, Jan

    2017-04-01

    In forested ecosystems, throughfall and stemflow function as key components in the cycling of water and associated biogeochemistry. Analysing annual flux data collected from 27 intensively monitored forest sites of the Biodiversity Exploratories, we found throughfall fluxes of DOC (dissolved organic carbon) linearly related (R2 = 0.40, p < 0.001) to the silvicultural management intensity indicator (SMI) developed by Schall and Ammer (2013). The SMI combines tree species, stand age and aboveground living and dead woody biomass, thereby allowing the quantifying of silvicultural management intensities of stands differing in species composition, age, silvicultural system as they convert from one stand type into another. Throughfall fluxes of particulate organic C and N (POC and PN) and dissolved N were, however independent from those forest structural metrics as well as annual C and N stemflow fluxes, which varied greatly among management intensity classes. In this context, we suggest that canopy structure metrics are more important drivers of water and matter stemflow dynamics, than structural metrics on the level of forest stands. On the other hand, leaching losses of DOC and POC from the litter layer of forests increased significantly with increasing forest management intensity. The observed relationships revealed by intensive flux monitoring are important because they allow us to link organic matter fluxes to forest metrics of larger forested areas (e.g. derived from LiDAR imagery), and hence to model and up-scale water-bound OC dynamics to the landscape level.

  3. Capturing Old-Growth Values for Use in Forest Decision-Making

    NASA Astrophysics Data System (ADS)

    Owen, Rochelle J.; Duinker, Peter N.; Beckley, Thomas M.

    2009-02-01

    Old-growth forests have declined significantly across the world. Decisions related to old growth are often mired in challenges of value diversity, conflict, data gaps, and resource pressures. This article describes old-growth values of citizens and groups in Nova Scotia, Canada, for integration in sustainable forest management (SFM) decision-making. The study is based on data from 76 research subjects who participated in nine field trips to forest stands. Research subjects were drawn from Aboriginal groups, environmental organizations, forestry professionals, and rural and urban publics. Diaries, group discussions, and rating sheets were used to elicit information during the field trips. Findings show that different elicitation techniques can influence the articulation of intensity with which some values are held. In addition, certain values are more often associated with old-growth than with other forest-age classes. Some values associated with old-growth are considered more important than others, and some silvicultural treatments are perceived to compromise old-growth values more than others. Demographic characteristics, such as constituency group, gender, and age, are shown to influence value priorities. Ideas on how to incorporate old-growth values into SFM decision-making are highlighted.

  4. A Regional Simulation to Explore Impacts of Resource Use and Constraints

    DTIC Science & Technology

    2007-03-01

    mountaintops. (10) Deciduous Forest - This class is composed of forests, which contain at least 75% deciduous trees in the canopy, deciduous ... trees , pine plantations, and evergreen woodlands. (12) Mixed Forest - This class includes forests with mixed deciduous /coniferous canopies, natural...reflective surfaces. Classification of forested wetlands dominated by deciduous trees is probably more accurate than that in areas with 104

  5. Thinning and underburning effects on productivity and mensurational characteristics of Jeffrey Pine

    Treesearch

    R.M. Fecko; R.F. Walker; W.B. Frederick; W.W. Miller; D.W. Johnson

    2007-01-01

    Thinning utilizing cut-to-length and whole-tree harvesting systems with subsequent underburning were assessed for their influence on stand productivity and mensurational variables in uneven-aged Jeffrey pine (Pinus jeffreyi Grev. & Balf.) on the Tahoe National Forest. Both intermediate and a combination of dominant and codominant crown class...

  6. A method for determining fire history in coniferous forests in the Mountain West

    Treesearch

    Stephen F. Arno; Kathy M. Sneck

    1977-01-01

    Describes a method for determining historic fire frequency, intensity, and size from cross sections collected from fire-scarred trees and tree age classes determined through increment borings. Tells how to interpret the influence of fire in stand composition and structure and how to identify effects of modern fire suppression.

  7. Forests, Trees, and Micronutrient-Rich Food Consumption in Indonesia.

    PubMed

    Ickowitz, Amy; Rowland, Dominic; Powell, Bronwen; Salim, Mohammad Agus; Sunderland, Terry

    2016-01-01

    Micronutrient deficiency remains a serious problem in Indonesia with approximately 100 million people, or 40% of the population, suffering from one or more micronutrient deficiencies. In rural areas with poor market access, forests and trees may provide an essential source of nutritious food. This is especially important to understand at a time when forests and other tree-based systems in Indonesia are being lost at unprecedented rates. We use food consumption data from the 2003 Indonesia Demographic Health Survey for children between the ages of one and five years and data on vegetation cover from the Indonesian Ministry of Forestry to examine whether there is a relationship between different tree-dominated land classes and consumption of micronutrient-rich foods across the archipelago. We run our models on the aggregate sample which includes over 3000 observations from 25 provinces across Indonesia as well as on sub-samples from different provinces chosen to represent the different land classes. The results show that different tree-dominated land classes were associated with the dietary quality of people living within them in the provinces where they were dominant. Areas of swidden/agroforestry, natural forest, timber and agricultural tree crop plantations were all associated with more frequent consumption of food groups rich in micronutrients in the areas where these were important land classes. The swidden/agroforestry land class was the landscape associated with more frequent consumption of the largest number of micronutrient rich food groups. Further research needs to be done to establish what the mechanisms are that underlie these associations. Swidden cultivation in is often viewed as a backward practice that is an impediment to food security in Indonesia and destructive of the environment. If further research corroborates that swidden farming actually results in better nutrition than the practices that replace it, Indonesian policy makers may need to reconsider their views on this land use.

  8. Forests, Trees, and Micronutrient-Rich Food Consumption in Indonesia

    PubMed Central

    Ickowitz, Amy; Rowland, Dominic; Powell, Bronwen; Salim, Mohammad Agus; Sunderland, Terry

    2016-01-01

    Micronutrient deficiency remains a serious problem in Indonesia with approximately 100 million people, or 40% of the population, suffering from one or more micronutrient deficiencies. In rural areas with poor market access, forests and trees may provide an essential source of nutritious food. This is especially important to understand at a time when forests and other tree-based systems in Indonesia are being lost at unprecedented rates. We use food consumption data from the 2003 Indonesia Demographic Health Survey for children between the ages of one and five years and data on vegetation cover from the Indonesian Ministry of Forestry to examine whether there is a relationship between different tree-dominated land classes and consumption of micronutrient-rich foods across the archipelago. We run our models on the aggregate sample which includes over 3000 observations from 25 provinces across Indonesia as well as on sub-samples from different provinces chosen to represent the different land classes. The results show that different tree-dominated land classes were associated with the dietary quality of people living within them in the provinces where they were dominant. Areas of swidden/agroforestry, natural forest, timber and agricultural tree crop plantations were all associated with more frequent consumption of food groups rich in micronutrients in the areas where these were important land classes. The swidden/agroforestry land class was the landscape associated with more frequent consumption of the largest number of micronutrient rich food groups. Further research needs to be done to establish what the mechanisms are that underlie these associations. Swidden cultivation in is often viewed as a backward practice that is an impediment to food security in Indonesia and destructive of the environment. If further research corroborates that swidden farming actually results in better nutrition than the practices that replace it, Indonesian policy makers may need to reconsider their views on this land use. PMID:27186884

  9. Development of state and transition model assumptions used in National Forest Plan revision

    Treesearch

    Eric B. Henderson

    2008-01-01

    State and transition models are being utilized in forest management analysis processes to evaluate assumptions about disturbances and succession. These models assume valid information about seral class successional pathways and timing. The Forest Vegetation Simulator (FVS) was used to evaluate seral class succession assumptions for the Hiawatha National Forest in...

  10. Habitat Preferences of Boros schneideri (Coleoptera: Boridae) in the Natural Tree Stands of the Białowieża Forest

    PubMed Central

    Gutowski, Jerzy M.; Sućko, Krzysztof; Zub, Karol; Bohdan, Adam

    2014-01-01

    Abstract We analyzed habitat requirements of Boros schneideri (Panzer, 1796) (Coleoptera: Boridae) in the natural forests of the continental biogeographical region, using data collected in the Białowieża Forest. This species has been found on the six host trees, but it preferred dead, standing pine trees, characterized by large diameter, moderately moist and moist phloem but avoided trees in sunny locations. It occurred mostly in mesic and wet coniferous forests. This species demonstrated preferences for old tree stands (over 140-yr old), and its occurrence in younger tree-stand age classes (minimum 31–40-yr old) was not significantly different from random distribution. B. schneideri occupied more frequently locations distant from the forest edge, which were less affected by logging. Considering habitat requirements, character of occurrence, and decreasing number of occupied locations in the whole range of distribution, this species can be treated as relict of primeval forests. PMID:25527586

  11. An evaluation of ISOCLS and CLASSY clustering algorithms for forest classification in northern Idaho. [Elk River quadrange of the Clearwater National Forest

    NASA Technical Reports Server (NTRS)

    Werth, L. F. (Principal Investigator)

    1981-01-01

    Both the iterative self-organizing clustering system (ISOCLS) and the CLASSY algorithms were applied to forest and nonforest classes for one 1:24,000 quadrangle map of northern Idaho and the classification and mapping accuracies were evaluated with 1:30,000 color infrared aerial photography. Confusion matrices for the two clustering algorithms were generated and studied to determine which is most applicable to forest and rangeland inventories in future projects. In an unsupervised mode, ISOCLS requires many trial-and-error runs to find the proper parameters to separate desired information classes. CLASSY tells more in a single run concerning the classes that can be separated, shows more promise for forest stratification than ISOCLS, and shows more promise for consistency. One major drawback to CLASSY is that important forest and range classes that are smaller than a minimum cluster size will be combined with other classes. The algorithm requires so much computer storage that only data sets as small as a quadrangle can be used at one time.

  12. [Estimation of VOC emission from forests in China based on the volume of tree species].

    PubMed

    Zhang, Gang-feng; Xie, Shao-dong

    2009-10-15

    Applying the volume data of dominant trees from statistics on the national forest resources, volatile organic compounds (VOC) emissions of each main tree species in China were estimated based on the light-temperature model put forward by Guenther. China's VOC emission inventory for forest was established, and the space-time and age-class distributions of VOC emission were analyzed. The results show that the total VOC emissions from forests in China are 8565.76 Gg, of which isoprene is 5689.38 Gg (66.42%), monoterpenes is 1343.95 Gg (15.69%), and other VOC is 1532.43 Gg (17.89%). VOC emissions have significant species variation. Quercus is the main species responsible for emission, contributing 45.22% of the total, followed by Picea and Pinus massoniana with 6.34% and 5.22%, respectively. Southwest and Northeast China are the major emission regions. In specific, Yunnan, Sichuan, Heilongjiang, Jilin and Shaanxi are the top five provinces producing the most VOC emissions from forests, and their contributions to the total are 15.09%, 12.58%, 10.35%, 7.49% and 7.37%, respectively. Emissions from these five provinces occupy more than half (52.88%) of the national emissions. Besides, VOC emissions show remarkable seasonal variation. Emissions in summer are the largest, accounting for 56.66% of the annual. Forests of different ages have different emission contribution. Half-mature forests play a key role and contribute 38.84% of the total emission from forests.

  13. Predicting mosaics and wildlife diversity resulting from fire disturbance to a forest ecosystem

    NASA Astrophysics Data System (ADS)

    Potter, Meredith W.; Kessell, Stephen R.

    1980-05-01

    A model for predicting community mosaics and wildlife diversity resulting from fire disturbance to a forest ecosystem is presented. It applies an algorithm that delineates the size and shape of each patch from grid-based input data and calculates standard diversity measures for the entire mosaic of community patches and their included animal species. The user can print these diversity calculations, maps of the current community-type-age-class mosaic, and maps of habitat utilization by each animal species. Furthermore, the user can print estimates of changes in each resulting from natural disturbance. Although data and resolution level independent, the model is demonstrated and tested with data from the Lewis and Clark National Forest in Montana.

  14. Microscale photo interpretation of forest and nonforest land classes

    NASA Technical Reports Server (NTRS)

    Aldrich, R. C.; Greentree, W. J.

    1972-01-01

    Remote sensing of forest and nonforest land classes are discussed, using microscale photointerpretation. Results include: (1.) Microscale IR color photography can be interpreted within reasonable limits of error to estimate forest area. (2.) Forest interpretation is best on winter photography with 97 percent or better accuracy. (3.) Broad forest types can be classified on microscale photography. (4.) Active agricultural land is classified most accurately on early summer photography. (5.) Six percent of all nonforest observations were misclassified as forest.

  15. Global forest cover mapping for the United Nations Food and Agriculture Organization forest resources assessment 2000 program

    USGS Publications Warehouse

    Zhu, Z.; Waller, E.

    2003-01-01

    Many countries periodically produce national reports on the status and changes of forest resources, using statistical surveys and spatial mapping of remotely sensed data. At the global level, the Food and Agriculture Organization (FAO) of the United Nations has conducted a Forest Resources Assessment (FRA) program every 10 yr since 1980, producing statistics and analysis that give a global synopsis of forest resources in the world. For the year 2000 of the FRA program (FRA2000), a global forest cover map was produced to provide spatial context to the extensive survey. The forest cover map, produced at the U.S. Geological Survey (USGS) EROS Data Center (EDC), has five classes: closed forest, open or fragmented forest, other wooded land, other land cover, and water. The first two forested classes at the global scale were delineated using combinations of temporal compositing, modified mixture analysis, geographic stratification, and other classification techniques. The remaining three FAO classes were derived primarily from the USGS global land cover characteristics database (Loveland et al. 1999). Validated on the basis of existing reference data sets, the map is estimated to be 77% accurate for the first four classes (no reference data were available for water), and 86% accurate for the forest and nonforest classification. The final map will be published as an insert to the FAO FRA2000 report.

  16. Effectiveness of forest management strategies to mitigate effects of global change in south-central Siberia

    Treesearch

    Eric J. Gustafson; Anatoly Z. Shvidenko; Robert M. Scheller

    2011-01-01

    We investigated questions about the ability of broad silvicultural strategies to achieve multiple objectives (reduce disturbance losses, maintain the abundance of preferred species, mitigate fragmentation and loss of age-class diversity, and sequester aboveground carbon) under future climate conditions in Siberia. We conducted a factorial experiment using the LANDIS-II...

  17. A generalized ingrowth model for the northeastern United States

    Treesearch

    Linda S. Gribko; Donald E. Hilt; Mary Ann Fajvan

    1995-01-01

    Ingrowth, the number of trees that periodically grow into the smallest inventoried diameter class, has long been recognized as a basic element of multicohort or, uneven-aged, stand development. However, very little information is available to aid forest managers in the estimation of ingrowth. The purpose of this study was to develop a generalized ingrowth model for the...

  18. How Do Plants and Animals Prepare for Winter?

    ERIC Educational Resources Information Center

    Larm, Brooke

    2017-01-01

    This article describes how a farm-based class in the Great Lakes region investigated how plants and animals prepare for winter. Two groups of children, ranging in ages from three to five years old, had a farm, pasture, gardens, forest, and a pond available for exploration. A low teacher-to-child ratio was maintained, with one teacher to…

  19. Patterns of Mineral Soil Nitrate Retention with Forest Age

    NASA Astrophysics Data System (ADS)

    Fuss, C. B.; Lovett, G. M.; Goodale, C. L.; Ollinger, S. V.; Lang, A.; Ouimette, A.

    2016-12-01

    Atmospheric deposition of nitrogen (N) has been elevated in the northeastern U.S. for decades and many of the region's forests have reached mature biomass and no longer have net N demands, leading biogeochemical models to predict increasing nitrate (NO3-) losses from forested watersheds. However, long-term monitoring at the Hubbard Brook Experimental Forest in New Hampshire shows an unexpected decline in stream NO3- concentrations in recent years, and suggests that poorly understood processes of retention in mineral soils may contribute to this pattern. The mineral soil is a large and heterogeneous pool of N, making changes with time difficult to quantify. We hypothesized that a reaccumulation of N in mineral soil organic matter in successional and recently matured forests is in part leading to current low NO3- losses. We used a chronosequence of four replicated forest age classes, ranging from young ( 25 y) to old growth (>200 y since disturbance) in the White Mountain region of New Hampshire to study how site age affects NO3- retention in mineral soil. We applied a 15NO3- tracer to the surface of the mineral soil beneath the forest floor and tracked the total recovery of 15N, as well as its distribution between particulate and mineral-associated (<53 mm) organic matter fractions, in the top 10 cm of mineral soil over the course of five weeks. We found the highest retention of 15N in the recently matured forests ( 100 y old), consistent with our hypothesis. Retention in the soil pool was lower in younger forests, likely due to greater root uptake to supply growth demands. The soils of the old growth forests retained low amounts of the tracer, suggesting that they are closer to N saturation. We found 15N in the mineral-associated fraction after 2 days, indicating that some NO3- is either abiotically incorporated into stabilized organic matter, or immobilized by microbes associated with mineral surfaces. We seek to combine these results with more detailed organic matter analyses to better understand these processes. Overall, our results indicate that retention of N in mineral soil layers is an important process dependent on forest age and can better inform biogeochemical models and consequently our ability to predict nutrient retention and water quality in forested watersheds.

  20. A Pine Is a Pine and a Spruce Is a Spruce--The Effect of Tree Species and Stand Age on Epiphytic Lichen Communities.

    PubMed

    Bäcklund, Sofia; Jönsson, Mari; Strengbom, Joachim; Frisch, Andreas; Thor, Göran

    2016-01-01

    With an increasing demand for forest-based products, there is a growing interest in introducing fast-growing non-native tree species in forest management. Such introductions often have unknown consequences for native forest biodiversity. In this study, we examine epiphytic lichen species richness and species composition on the trunks of non-native Pinus contorta and compare these to the native Pinus sylvestris and Picea abies in managed boreal forests in northern Sweden across a chronosequence of age classes. Overall, we recorded a total of 66,209 lichen occurrences belonging to 57 species in the 96 studied forest stands. We found no difference in species richness of lichens between stands of P. contorta and P. sylvestris, but stands of P. abies had higher total species richness. However, species richness of lichens in stands of P. abies decreased with increasing stand age, while no such age effect was detected for P. contorta and P. sylvestris. Lichen species composition progressively diverged with increasing stand age, and in 30-year-old stands all three tree species showed species-specific assemblages. Epiphytic lichen assemblages in stands of 30-year-old P. contorta were influenced by greater basal area, canopy closure, and average diameter at breast height, P. abies stands by higher branch density and canopy closure, and stands of P. sylvestris by greater bark crevice depth. Differences in lichen species richness and composition were mainly explained by canopy closure and habitat availability, and the greater canopy closure in mature P. abies stands promoted the colonization and growth of calicioid lichen species. Our results indicate that the non-native P. contorta have similar species richness as the native P. sylvestris. The main difference in lichen species richness and composition is between P. abies and Pinus spp. in managed forests of boreal Sweden.

  1. A Pine Is a Pine and a Spruce Is a Spruce – The Effect of Tree Species and Stand Age on Epiphytic Lichen Communities

    PubMed Central

    Bäcklund, Sofia; Jönsson, Mari; Strengbom, Joachim; Frisch, Andreas; Thor, Göran

    2016-01-01

    With an increasing demand for forest-based products, there is a growing interest in introducing fast-growing non-native tree species in forest management. Such introductions often have unknown consequences for native forest biodiversity. In this study, we examine epiphytic lichen species richness and species composition on the trunks of non-native Pinus contorta and compare these to the native Pinus sylvestris and Picea abies in managed boreal forests in northern Sweden across a chronosequence of age classes. Overall, we recorded a total of 66,209 lichen occurrences belonging to 57 species in the 96 studied forest stands. We found no difference in species richness of lichens between stands of P. contorta and P. sylvestris, but stands of P. abies had higher total species richness. However, species richness of lichens in stands of P. abies decreased with increasing stand age, while no such age effect was detected for P. contorta and P. sylvestris. Lichen species composition progressively diverged with increasing stand age, and in 30-year-old stands all three tree species showed species-specific assemblages. Epiphytic lichen assemblages in stands of 30-year-old P. contorta were influenced by greater basal area, canopy closure, and average diameter at breast height, P. abies stands by higher branch density and canopy closure, and stands of P. sylvestris by greater bark crevice depth. Differences in lichen species richness and composition were mainly explained by canopy closure and habitat availability, and the greater canopy closure in mature P. abies stands promoted the colonization and growth of calicioid lichen species. Our results indicate that the non-native P. contorta have similar species richness as the native P. sylvestris. The main difference in lichen species richness and composition is between P. abies and Pinus spp. in managed forests of boreal Sweden. PMID:26799558

  2. Growth of Secondary Forest in Puerto Rico Between 1980 and 1985.

    Treesearch

    P. L. Weaver; R. A. Birdsey

    1990-01-01

    Successive inventories in Puerto Rico provided the first estimates of secondary forest growth on a regional basis. The volume of growing stock trees increased by 32%, and timber volume by nearly 36%, on all classes of forest land between 1980 and 198.5. Timber volume growth rates (in m’ha-’ yr-’ ) varied by forest class and averaged 2.0 in young secondary forest, 6.9...

  3. Biomass expansion factor and root-to-shoot ratio for Pinus in Brazil.

    PubMed

    Sanquetta, Carlos R; Corte, Ana Pd; da Silva, Fernando

    2011-09-24

    The Biomass Expansion Factor (BEF) and the Root-to-Shoot Ratio (R) are variables used to quantify carbon stock in forests. They are often considered as constant or species/area specific values in most studies. This study aimed at showing tree size and age dependence upon BEF and R and proposed equations to improve forest biomass and carbon stock. Data from 70 sample Pinus spp. grown in southern Brazil trees in different diameter classes and ages were used to demonstrate the correlation between BEF and R, and forest inventory data, such as DBH, tree height and age. Total dry biomass, carbon stock and CO2 equivalent were simulated using the IPCC default values of BEF and R, corresponding average calculated from data used in this study, as well as the values estimated by regression equations. The mean values of BEF and R calculated in this study were 1.47 and 0.17, respectively. The relationship between BEF and R and the tree measurement variables were inversely related with negative exponential behavior. Simulations indicated that use of fixed values of BEF and R, either IPCC default or current average data, may lead to unreliable estimates of carbon stock inventories and CDM projects. It was concluded that accounting for the variations in BEF and R and using regression equations to relate them to DBH, tree height and age, is fundamental in obtaining reliable estimates of forest tree biomass, carbon sink and CO2 equivalent.

  4. Debris flows through different forest age classes in the central Oregon Coast Range

    Treesearch

    C. L. May

    2002-01-01

    Abstract - Debris flows in the Pacific Northwest can play a major role in routing sediment and wood stored on hillslopes and in first- through third-order channels and delivering it to higher-order channels. Field surveys following a large regional storm event investigated 53 debris flows in the central Oregon Coast Range to determine relationships among debris flow...

  5. NTFPs in Scotland: Changing attitudes to access rights in a reforesting land

    Treesearch

    Alison Dyke; Marla R. Emery

    2010-01-01

    Nearly one-quarter of the Scottish population gathers non-timber forest products (NTFPs), according to recent surveys (Heggie, 2001; TNS Global, 2003; West and Smith, 2003; Snowley and Daley, 2005). The practice of gathering wild plant materials and fungi crosses age, class, ethnicity and socio-economic status. It provides a suite of benefits that contribute to health...

  6. Physical condition, sex, and age-class of eastern red-backed salamanders (Plethodon cinereus) in forested and open habitats of West Virginia, USA

    Treesearch

    Breanna L. Riedel; Kevin R. Russell; W. Mark Ford

    2012-01-01

    Nonforested habitats such as open fields and pastures have been considered unsuitable for desiccation-prone woodland salamanders such as the Eastern Red-backed Salamander (Plethodon cinereus). Recent research has suggested that Plethodon cinereus may not only disperse across but also reside within open habitats including fields,...

  7. Age-class differences in shoot photosynthesis and water relations of Fraser fir (Abies fraseri), southern Appalachian Mountains, USA

    Treesearch

    Keith Reinhardt; Daniel M. Johnson; William K. Smith

    2009-01-01

    Fraser fir (Abies fraseri (Pursh) Poir.) is an endemic tree species found only in refugial mountain-top forests in the southern Appalachian Mountains, USA. Very few studies have investigated the ecophysiology of this species in its natural environment. We measured and compared photosynthetic gas exchange and water relations of understory germinant...

  8. Viewing forests from below: fine root mass declines relative to leaf area in aging lodgepole pine stands.

    PubMed

    Schoonmaker, A S; Lieffers, V J; Landhäusser, S M

    2016-07-01

    In the continued quest to explain the decline in productivity and vigor with aging forest stands, the most poorly studied area relates to root system change in time. This paper measures the wood production, root and leaf area (and mass) in a chronosequence of fire-origin lodgepole pine (Pinus contorta Loudon) stands consisting of four age classes (12, 21, 53, and ≥100 years), each replicated ~ five times. Wood productivity was greatest in the 53-year-old stands and then declined in the ≥100-year-old stands. Growth efficiency, the quantity of wood produced per unit leaf mass, steadily declined with age. Leaf mass and fine root mass plateaued between the 53- and ≥100-year-old stands, but leaf area index actually increased in the older stands. An increase in the leaf area index:fine root area ratio supports the idea that older stand are potentially limited by soil resources. Other factors contributing to slower growth in older stands might be lower soil temperatures and increased self-shading due to the clumped nature of crowns. Collectively, the proportionally greater reduction in fine roots in older stands might be the variable that predisposes these forests to be at a potentially greater risk of stress-induced mortality.

  9. Habitat preferences of Boros schneideri (Coleoptera: Boridae) in the natural tree stands of the Białowieża Forest.

    PubMed

    Gutowski, Jerzy M; Sućko, Krzysztof; Zub, Karol; Bohdan, Adam

    2014-01-01

    We analyzed habitat requirements of Boros schneideri (Panzer, 1796) (Coleoptera: Boridae) in the natural forests of the continental biogeographical region, using data collected in the Białowieża Forest. This species has been found on the six host trees, but it preferred dead, standing pine trees, characterized by large diameter, moderately moist and moist phloem but avoided trees in sunny locations. It occurred mostly in mesic and wet coniferous forests. This species demonstrated preferences for old tree stands (over 140-yr old), and its occurrence in younger tree-stand age classes (minimum 31-40-yr old) was not significantly different from random distribution. B. schneideri occupied more frequently locations distant from the forest edge, which were less affected by logging. Considering habitat requirements, character of occurrence, and decreasing number of occupied locations in the whole range of distribution, this species can be treated as relict of primeval forests. © The Author 2014. Published by Oxford University Press on behalf of the Entomological Society of America.

  10. Stocking, Forest Type, and Stand Size Class - The Southern Forest Inventory and Analysis Unit's Calculation of Three Important Stand Descriptors

    Treesearch

    Dennis M. May

    1990-01-01

    The procedures by which the Southern Forest Inventory and Analysis unit calculates stocking from tree data collected on inventory sample plots are described in this report. Stocking is then used to ascertain two other important stand descriptors: forest type and stand size class. Inventory data for three plots from the recently completed 1989 Tennessee survey are used...

  11. A strategic assessment of crown fire hazard in Montana: potential effectiveness and costs of hazard reduction treatments.

    Treesearch

    Carl E. Fiedler; Charles E. Keegan; Christopher W. Woodall; Todd A. Morgan

    2004-01-01

    Estimates of crown fire hazard are presented for existing forest conditions in Montana by density class, structural class, forest type, and landownership. Three hazard reduction treatments were evaluated for their effectiveness in treating historically fire-adapted forests (ponderosa pine (Pinus ponderosa Dougl. ex Laws.), Douglas-fir (...

  12. Satellite inventory of Minnesota forest resources

    NASA Technical Reports Server (NTRS)

    Bauer, Marvin E.; Burk, Thomas E.; Ek, Alan R.; Coppin, Pol R.; Lime, Stephen D.; Walsh, Terese A.; Walters, David K.; Befort, William; Heinzen, David F.

    1993-01-01

    The methods and results of using Landsat Thematic Mapper (TM) data to classify and estimate the acreage of forest covertypes in northeastern Minnesota are described. Portions of six TM scenes covering five counties with a total area of 14,679 square miles were classified into six forest and five nonforest classes. The approach involved the integration of cluster sampling, image processing, and estimation. Using cluster sampling, 343 plots, each 88 acres in size, were photo interpreted and field mapped as a source of reference data for classifier training and calibration of the TM data classifications. Classification accuracies of up to 75 percent were achieved; most misclassification was between similar or related classes. An inverse method of calibration, based on the error rates obtained from the classifications of the cluster plots, was used to adjust the classification class proportions for classification errors. The resulting area estimates for total forest land in the five-county area were within 3 percent of the estimate made independently by the USDA Forest Service. Area estimates for conifer and hardwood forest types were within 0.8 and 6.0 percent respectively, of the Forest Service estimates. A trial of a second method of estimating the same classes as the Forest Service resulted in standard errors of 0.002 to 0.015. A study of the use of multidate TM data for change detection showed that forest canopy depletion, canopy increment, and no change could be identified with greater than 90 percent accuracy. The project results have been the basis for the Minnesota Department of Natural Resources and the Forest Service to define and begin to implement an annual system of forest inventory which utilizes Landsat TM data to detect changes in forest cover.

  13. 75 FR 3442 - Tahoe National Forest, California, Tahoe National Forest Motorized Travel Management Supplemental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-21

    ... Forest Transportation System (NFTS) roads, NFTS motorized trails, and areas by the public except as... roads and trails to the NFTS by vehicle class and season of use. 3. Establishment of Motorized ``Open... the NFTS: Changes to the NFTS including Vehicle Class, Season of Use and/Reopening Maintenance Level 1...

  14. A key to arboreal spiders of Douglas-fir and true fir forests of the Pacific Northwest.

    Treesearch

    A.R. Moldenke; B.L. Fichter; W.P. Stephen; C.E. Griswold

    1987-01-01

    This illustrated key for identifying spiders inhabiting true fir and Douglas-fir is based on extensive collections from throughout the three North American Pacific Coast States. Details of the age classes present at budburst and the season in which to expect adults are presented for all species. This paper is written for people unfamiliar as well as familiar with...

  15. Tree voles: an evaluation of their distribution and habitat relationships based on recent and historical studies, habitat models, and vegetation change

    Treesearch

    Eric D. Forsman; James K. Swingle; Raymond J. Davis; Brian L. Biswell; Lawrence S. Andrews

    2016-01-01

    We describe the historical and current distribution of tree voles (Arborimus longicaudus; A. pomo) and compare the minimum density of trees with tree vole nests in different forest age-classes based on museum records, field notes of previous collectors, tree vole nest surveys conducted by federal agencies, and our field studies in Oregon and...

  16. Relation of Crown Width to Tree Diameter In Some Upland Hardwood Stands of Southern Illinois

    Treesearch

    Leon S. Minckler; Samuel F. Gingrich

    1970-01-01

    Crown width-d.b.h. relationships in well stocked, uneven-aged stands of oak and hickory were similar to those for open-grown trees and were independent of site, crown class, and species. The irregular crowns of forest grown trees interface and overlap, however, and measuring crown extensions to the branch tips tended to overestimate effective crown area

  17. Comparison of estimators for rolling samples using Forest Inventory and Analysis data

    Treesearch

    Devin S. Johnson; Michael S. Williams; Raymond L. Czaplewski

    2003-01-01

    The performance of three classes of weighted average estimators is studied for an annual inventory design similar to the Forest Inventory and Analysis program of the United States. The first class is based on an ARIMA(0,1,1) time series model. The equal weight, simple moving average is a member of this class. The second class is based on an ARIMA(0,2,2) time series...

  18. MASSACHUSETTS MRLC FOREST

    EPA Science Inventory

    The MRLC Forest datalayer is a derivative of the National Land Cover Datalayer (NLCD) developed from Thematic Mapper satellite data acquired by the Multi-Resoultion Land Characterization (MRLC) Consortium. The following landcover classes (with class numbers in parentheses) were...

  19. Quantifying spatial patterns in the Yakama Nation Tribal Forest and Okanogan-Wenatchee National Forest to assess forest health

    NASA Astrophysics Data System (ADS)

    Wilder, T. F.

    2013-05-01

    Over the past century western United States have experienced drastic anthropogenic land use change from practices such as agriculture, fire exclusion, and timber harvesting. These changes have complex social, cultural, economic, and ecological interactions and consequences. This research studied landscapes patterns of watersheds with similar LANDFIRE potential vegetation in the Southern Washington Cascades physiographic province, within the Yakama Nation Tribal Forest (YTF) and Okanogan-Wenatchee National Forest, Naches Ranger District (NRD). In the selected watersheds, vegetation-mapping units were delineated and populated based on physiognomy of homogeneous areas of vegetative composition and structure using high-resolution aerial photos. Cover types and structural classes were derived from the raw, photo-interpreted vegetation attributes for individual vegetation mapping units and served as individual and composite response variables to quantify and assess spatial patterns and forest health conditions between the two ownerships. Structural classes in both the NRD and YTF were spatially clustered (Z-score 3.1, p-value 0.01; Z-score 2.3, p-value 0.02, respectively), however, ownership and logging type both explained a significant amount of variance in structural class composition. Based on FRAGSTATS landscape metrics, structural classes in the NRD displayed greater clustering and fragmentation with lower interspersion relative to the YTF. The NRD landscape was comprised of 47.4% understory reinitiation structural class type and associated high FRAGASTAT class metrics demonstrated high aggregation with moderate interspersion. Stem exclusion open canopy displayed the greatest dispersal of structural class types throughout the NRD, but adjacencies were correlated to other class types. In the YTF, stem exclusion open canopy comprised 37.7% of the landscape and displayed a high degree of aggregation and interspersion about clusters throughout the YTF. Composite cover type-structural class spatial autocorrelation was clustered in the NRD (Z-score 5.1, p-value 0.01), while the YTF exhibited a random spatial pattern. After accounting for location effects, logging type was the most significant factor explaining variation in composite cover-structure composition. FRAGSTATS landscape metrics identified composite cover-structure classes in the NRD displayed greater aggregation and fragmentation with lower interspersion relative to the YTF. The NRD landscape was comprised of 30.5% Pinus ponderosa-understory reinitiation and associated class metrics demonstrated a high degree of aggregation and fragmentation with low interspersion. Pinus ponderosa-stem exclusion open canopy comprised 24.6% of the YTF landscape and associated class metrics displayed moderate aggregation and fragmentation with high interspersion. A discussion integrating the results and existing relevant literature was indited to assess management regime influences on landscape patterns and, in turn, forest health attributes. This dialog is in provision of enhancing collaboration to optimize forest-health restoration activities across ownerships throughout the study area.

  20. Channel unit use by Smallmouth Bass: Do land-use constraints or quantity of habitat matter?

    USGS Publications Warehouse

    Brewer, Shannon K.

    2013-01-01

    I examined how land use influenced the distribution of Smallmouth Bass Micropterus dolomieu in channel units (discrete morphological features—e.g., pools) of streams in the Midwestern USA. Stream segments (n = 36), from four clusters of different soil and runoff conditions, were identified that had the highest percent of forest (n = 12), pasture (n = 12), and urban land use (n = 12) within each cluster. Channel units within each stream were delineated and independently sampled once using multiple gears in summer 2006. Data were analyzed using a generalized linear mixed model procedure with a binomial distribution and odds ratio statistics. Land use and channel unit were strong predictors of age-0, age-1, and age->1 Smallmouth Bass presence. Each age-class was more likely to be present in streams within watersheds dominated by forest land use than in those with pasture or urban land uses. The interaction between land use and channel unit was not significant in any of the models, indicating channel unit use by Smallmouth Bass did not depend on watershed land use. Each of the three age-classes was more likely to use pools than other channel units. However, streams with high densities of Smallmouth Bass age >1 had lower proportions of pools suggesting a variety of channel units is important even though habitat needs exist at the channel-unit scale. Management may benefit from future research addressing the significance of channel-unit quality as a possible mechanism for how land use impacts Smallmouth Bass populations. Further, management efforts aimed at improving stream habitat would likely be more beneficial if focused at the stream segment or landscape scale, where a variety of quality habitats might be supported.

  1. SEGMA: An Automatic SEGMentation Approach for Human Brain MRI Using Sliding Window and Random Forests

    PubMed Central

    Serag, Ahmed; Wilkinson, Alastair G.; Telford, Emma J.; Pataky, Rozalia; Sparrow, Sarah A.; Anblagan, Devasuda; Macnaught, Gillian; Semple, Scott I.; Boardman, James P.

    2017-01-01

    Quantitative volumes from brain magnetic resonance imaging (MRI) acquired across the life course may be useful for investigating long term effects of risk and resilience factors for brain development and healthy aging, and for understanding early life determinants of adult brain structure. Therefore, there is an increasing need for automated segmentation tools that can be applied to images acquired at different life stages. We developed an automatic segmentation method for human brain MRI, where a sliding window approach and a multi-class random forest classifier were applied to high-dimensional feature vectors for accurate segmentation. The method performed well on brain MRI data acquired from 179 individuals, analyzed in three age groups: newborns (38–42 weeks gestational age), children and adolescents (4–17 years) and adults (35–71 years). As the method can learn from partially labeled datasets, it can be used to segment large-scale datasets efficiently. It could also be applied to different populations and imaging modalities across the life course. PMID:28163680

  2. Analysis of forest disturbance using TM and AVHRR data

    NASA Technical Reports Server (NTRS)

    Spanner, Michael A.; Hlavka, Christine A.; Pierce, Lars L.

    1989-01-01

    A methodology that will be used to determine the proportions of undisturbed, successional vegetation and recently disturbed land cover within coniferous forests using remotely sensed data from the advanced very high resolution radiometer (AVHRR) is presented. The method uses thematic mapper (TM) data to determine the proportions of the three stages of forest disturbance and regrowth for each AVHRR pixel in the sample areas, and is then applied to interpret all AVHRR imagery. Preliminary results indicate that there are predictable relationships between TM spectral response and the disturbance classes. Analysis of ellipse plots from a TM classification of the disturbed forested landscape indicates that the forest classes are separable in the red (0.63-0.69 micron) and near-infrared (0.76-0.90 micron) bands, providing evidence that the proportion of disturbance classes may be determined from AVHRR data.

  3. Seventy years of understory development by elevation class in a New Hampshire mixed forest: management implications

    Treesearch

    William B. Leak

    2009-01-01

    New England forest managers are faced with numerous environmental issues, such as global warming, nutrient depletion, and species declines that could influence the choice of appropriate silvicultural techniques and objectives. On the Bartlett Experimental Forest, New Hampshire, 70 years of change on more than 400 remeasured cruise plots by elevation classes ranging...

  4. Can't See the Wood for the Litter: Evaluation of Litter Behavior Modification in a Forest

    ERIC Educational Resources Information Center

    Lindemann-Matthies, Petra; Bonigk, Isabel; Benkowitz, Dorothee

    2012-01-01

    This study investigated elementary school children's (n = 171) litter behavior during guided forest tours following two different treatments. Four classes received a verbal appeal not to litter in the forest, while another four classes received both a verbal appeal and a demonstration of the desired litter behavior (picking up litter, putting it…

  5. Nutrient Budgets in Successional Northern Hardwood Forests: Uncertainty in soil, root, and tree concentrations and pools (Invited)

    NASA Astrophysics Data System (ADS)

    Yanai, R. D.; Bae, K.; Levine, C. R.; Lilly, P.; Vadeboncoeur, M. A.; Fatemi, F. R.; Blum, J. D.; Arthur, M.; Hamburg, S.

    2013-12-01

    Ecosystem nutrient budgets are difficult to construct and even more difficult to replicate. As a result, uncertainty in the estimates of pools and fluxes are rarely reported, and opportunities to assess confidence through replicated measurements are rare. In this study, we report nutrient concentrations and contents of soil and biomass pools in northern hardwood stands in replicate plots within replicate stands in 3 age classes (14-19 yr, 26-29 yr, and > 100 yr) at the Bartlett Experimental Forest, USA. Soils were described by quantitative soil pits in three plots per stand, excavated by depth increment to the C horizon and analyzed by a sequential extraction procedure. Variation in soil mass among pits within stands averaged 28% (coefficient of variation); variation among stands within an age class ranged from 9-25%. Variation in nutrient concentrations were higher still (averaging 38%, within element, depth increment, and extraction type), perhaps because the depth increments contained varying proportions of genetic horizons. To estimate nutrient contents of aboveground biomass, we propagated model uncertainty through allometric equations, and found errors ranging from 3-7%, depending on the stand. The variation in biomass among plots within stands (6-19%) was always larger than the allometric uncertainties. Variability in measured nutrient concentrations of tree tissues were more variable than the uncertainty in biomass. Foliage had the lowest variability (averaging 16% for Ca, Mg, K, N and P within age class and species), and wood had the highest (averaging 30%), when reported in proportion to the mean, because concentrations in wood are low. For Ca content of aboveground biomass, sampling variation was the greatest source of uncertainty. Coefficients of variation among plots within a stand averaged 16%; stands within an age class ranged from 5-25% CV, including uncertainties in tree allometry and tissue chemistry. Uncertainty analysis can help direct research effort to areas most in need of improvement. In systems such as the one we studied, more intensive sampling would be the best approach to reducing uncertainty, as natural spatial variation was higher than model or measurement uncertainties.

  6. [Effects of forest gap size on the growth and form quality of Taxus wallichina var. mairei in Cunninghamia lanceolata forests].

    PubMed

    Ou, Jian de; Wu, Zhi Zhuang; Luo, Ning

    2016-10-01

    In order to clarify the effects of forest gap size on the growth and stem form quality of Taxus wallichina var. mairei and effectiveness of the precious timbers cultivation, 25 sample plots in Cunninghamia lanceolata forest gaps were established in Mingxi County, Fujian Province, China to determine the indices of the growth, stem form and branching indices of T. wallichina var. mairei seedlings. The relationships between the gap size and growth, stem form and branching were investigated. The 25 sample plots were located at five microhabitats which were classified based on gap size as follows: Class1, 2, 3, 4 and 5, which had a gap size of 25-50 m 2 , 50-75 m 2 , 75-100 m 2 , 100-125 m 2 and 125-150 m 2 , respectively. The evaluation index system of precious timbers was built by using hierarchical analysis. The 5 classes of forest gaps were evaluated comprehensively by using the multiobjective decision making method. The results showed that gap size significantly affected 11 indices, i.e., height, DBH, crown width, forking rate, stem straightness, stem fullness, taperingness, diameter height ratio, height under living branch, interval between branches, and max-branch base diameter. Class1and 2 both significantly promoted the growth of height, DBH and crown width, and both significantly inhibited forking rate and taperingness, and improved stem straightness. Class2 significantly improved stem fullness and diameter height ratio. Class1and 2 significantly improved height under living branch and reduced max-branch base diameter. Class 1 significantly increased interval between branches. Class1and2 significantly improved the comprehensive evaluation score of precious timbers. This study suggested that controlled cutting intensity could be used to create forest gaps of 25-75 m 2 , which improved the precious timber cultivating process of T. wallichina var. mairei in C. lanceolata forests.

  7. Assessing habitat selection in Spring by male American Woodcock in Maine with a geographic information system

    USGS Publications Warehouse

    Sprankle, K.E.; Sepik, G.F.; McAuley, D.G.; Longcore, J.R.; McAuley, Daniel G.; Bruggink, John G.; Sepik, Greg F.

    2000-01-01

    Geographic information system (GIS) technology was used to identify habitats available to and used by male American woodcock (Scolopax minor) equipped with radio transmitters--54 in 1987, 51 in 1988, 46 in 1989 at Moosehorn National Wildlife Refuge, Maine. Woodcock were monitored from time of capture (25 March-15 April) to 15 June each year. To determine habitat selection by male woodcock, the following habitat characteristics were measured: land cover, age and stocking density of the forest overstory, soil drainage and texture, aspect, and percent slope. Habitat selection was examined as affected by the covariates weather and age-class of woodcock, and among years for diurnal and crepuscular periods of the breeding period. Multivariate techniques that compare use and availability of habitats were not available, so a statistical model was developed to rate importance of multiple habitat characteristics selected by woodcock. The most critical period for woodcock in terms of survival was from arrival to: mid-April. Second-year and after-second-year woodcock did not select different (P > 0.05) habitat types, but they did select different types among years and within breeding intervals (P < 0.05). In years when weather was moderate, woodcock selected young, dense stands of speckled alder (Alnus rugosa) and hardwoods, interspersed with forest openings. Suitable habitat can be maintained by creating an uneven-aged forest managed in even-aged blocks composed of several hardwood species. Managers can now quantify suitable woodcock habitat in a GIS and plan large-scale forest-harvesting strategies using data on several habitat characteristics (e.g., land cover, stand age, stocking density, soil drainage and texture, and aspect).

  8. Statewide land cover derived from multiseasonal Landsat TM data: A retrospective of the WISCLAND project

    USGS Publications Warehouse

    Reese, H.M.; Lillesand, T.M.; Nagel, D.E.; Stewart, J.S.; Goldmann, R.A.; Simmons, T.E.; Chipman, J.W.; Tessar, P.A.

    2002-01-01

    Landsat Thematic Mapper (TM) data were the basis in production of a statewide land cover data set for Wisconsin, undertaken in partnership with U.S. Geological Survey's (USGS) Gap Analysis Program (GAP). The data set contained seven classes comparable to Anderson Level I and 24 classes comparable to Anderson Level II/III. Twelve scenes of dual-date TM data were processed with methods that included principal components analysis, stratification into spectrally consistent units, separate classification of upland, wetland, and urban areas, and a hybrid supervised/unsupervised classification called "guided clustering." The final data had overall accuracies of 94% for Anderson Level I upland classes, 77% for Level II/III upland classes, and 84% for Level II/III wetland classes. Classification accuracies for deciduous and coniferous forest were 95% and 93%, respectively, and forest species' overall accuracies ranged from 70% to 84%. Limited availability of acceptable imagery necessitated use of an early May date in a majority of scene pairs, perhaps contributing to lower accuracy for upland deciduous forest species. The mixed deciduous/coniferous forest class had the lowest accuracy, most likely due to distinctly classifying a purely mixed class. Mixed forest signatures containing oak were often confused with pure oak. Guided clustering was seen as an efficient classification method, especially at the tree species level, although its success relied in part on image dates, accurate ground troth, and some analyst intervention. ?? 2002 Elsevier Science Inc. All rights reserved.

  9. Quantifying the Implications of Different Land Users' Priorities in the Management of Boreal Multiple-Use Forests

    NASA Astrophysics Data System (ADS)

    Horstkotte, Tim; Lind, Torgny; Moen, Jon

    2016-04-01

    In the management of natural resources, conflicting interests and objectives among different stakeholders often need to be considered. Here, we examine how two contrasting management scenarios of boreal forests in northern Sweden differ in their consequences on forest structural composition and the economic gains at harvest. Management strategies prioritize either (i) forest characteristics that promote grazing resources for reindeer herded by the indigenous Sámi, or (ii) timber production as practiced in Sweden today. When prioritizing reindeer grazing, forest stands develop a higher abundance of older age classes with larger trees and lower stem density, which reduces harvest and revenue levels by approximately 20 % over a 100-year period. The differences between these strategies illustrate the complexity in finding a trade-off for coexistence between industrial land users and other livelihoods that share the same landscape. Political support and institutional solutions are necessary to initiate changes in policy in finding such trade-offs in the management of environmental resources and thereby influence the optimal distribution of costs and benefits between different actors.

  10. Quantifying the Implications of Different Land Users' Priorities in the Management of Boreal Multiple-Use Forests.

    PubMed

    Horstkotte, Tim; Lind, Torgny; Moen, Jon

    2016-04-01

    In the management of natural resources, conflicting interests and objectives among different stakeholders often need to be considered. Here, we examine how two contrasting management scenarios of boreal forests in northern Sweden differ in their consequences on forest structural composition and the economic gains at harvest. Management strategies prioritize either (i) forest characteristics that promote grazing resources for reindeer herded by the indigenous Sámi, or (ii) timber production as practiced in Sweden today. When prioritizing reindeer grazing, forest stands develop a higher abundance of older age classes with larger trees and lower stem density, which reduces harvest and revenue levels by approximately 20% over a 100-year period. The differences between these strategies illustrate the complexity in finding a trade-off for coexistence between industrial land users and other livelihoods that share the same landscape. Political support and institutional solutions are necessary to initiate changes in policy in finding such trade-offs in the management of environmental resources and thereby influence the optimal distribution of costs and benefits between different actors.

  11. Importance of disturbance history on net primary productivity in the world's most productive forests and implications for the global carbon cycle.

    PubMed

    Volkova, Liubov; Roxburgh, Stephen H; Weston, Christopher J; Benyon, Richard G; Sullivan, Andrew L; Polglase, Philip J

    2018-05-14

    Analysis of growth and biomass turnover in natural forests of Eucalyptus regnans, the world's tallest angiosperm, reveals it is also the world's most productive forest type, with fire disturbance an important mediator of net primary productivity (NPP). A comprehensive empirical database was used to calculate the averaged temporal pattern of NPP from regeneration to 250 years age. NPP peaks at 23.1 ± 3.8 (95% interquantile range) Mg C ha -1  year -1 at age 14 years, and declines gradually to about 9.2 ± 0.8 Mg C ha -1  year -1 at 130 years, with an average NPP over 250 years of 11.4 ± 1.1 Mg C ha -1  year -1 , a value similar to the most productive temperate and tropical forests around the world. We then applied the age-class distribution of E. regnans resulting from relatively recent historical fires to estimate current NPP for the forest estate. Values of NPP were 40% higher (13 Mg C ha -1  year -1 ) than if forests were assumed to be at maturity (9.2 Mg C ha -1  year -1 ). The empirically derived NPP time series for the E. regnans estate was then compared against predictions from 21 global circulation models, showing that none of them had the capacity to simulate a post-disturbance peak in NPP, as found in E. regnans. The potential importance of disturbance impacts on NPP was further tested by applying a similar approach to the temperate forests of conterminous United States and of China. Allowing for the effects of disturbance, NPP summed across both regions was on average 11% (or 194 Tg C/year) greater than if all forests were assumed to be in a mature state. The results illustrate the importance of accounting for past disturbance history and growth stage when estimating forest primary productivity, with implications for carbon balance modelling at local to global scales. © 2018 John Wiley & Sons Ltd.

  12. Comparing Basal Area Growth Rates in Repeated Inventories: Simpson's Paradox in Forestry

    Treesearch

    Charles E. Thomas; Bernard R. Parresol

    1989-01-01

    Recent analyses of radial growth rates in southern commercial forests have shown that current rates are lower than past rates when compared diameter class by diameter class. These results have been interpreted as an indication that the growth rate of the forest is declining. In this paper, growth rates of forest populations in Alabama are studied. Basal area growth (a...

  13. Classification of forest land attributes using multi-source remotely sensed data

    NASA Astrophysics Data System (ADS)

    Pippuri, Inka; Suvanto, Aki; Maltamo, Matti; Korhonen, Kari T.; Pitkänen, Juho; Packalen, Petteri

    2016-02-01

    The aim of the study was to (1) examine the classification of forest land using airborne laser scanning (ALS) data, satellite images and sample plots of the Finnish National Forest Inventory (NFI) as training data and to (2) identify best performing metrics for classifying forest land attributes. Six different schemes of forest land classification were studied: land use/land cover (LU/LC) classification using both national classes and FAO (Food and Agricultural Organization of the United Nations) classes, main type, site type, peat land type and drainage status. Special interest was to test different ALS-based surface metrics in classification of forest land attributes. Field data consisted of 828 NFI plots collected in 2008-2012 in southern Finland and remotely sensed data was from summer 2010. Multinomial logistic regression was used as the classification method. Classification of LU/LC classes were highly accurate (kappa-values 0.90 and 0.91) but also the classification of site type, peat land type and drainage status succeeded moderately well (kappa-values 0.51, 0.69 and 0.52). ALS-based surface metrics were found to be the most important predictor variables in classification of LU/LC class, main type and drainage status. In best classification models of forest site types both spectral metrics from satellite data and point cloud metrics from ALS were used. In turn, in the classification of peat land types ALS point cloud metrics played the most important role. Results indicated that the prediction of site type and forest land category could be incorporated into stand level forest management inventory system in Finland.

  14. A hybrid Land Cover Dataset for Russia: a new methodology for merging statistics, remote sensing and in-situ information

    NASA Astrophysics Data System (ADS)

    Schepaschenko, D.; McCallum, I.; Shvidenko, A.; Kraxner, F.; Fritz, S.

    2009-04-01

    There is a critical need for accurate land cover information for resource assessment, biophysical modeling, greenhouse gas studies, and for estimating possible terrestrial responses and feedbacks to climate change. However, practically all existing land cover datasets have quite a high level of uncertainty and suffer from a lack of important details that does not allow for relevant parameterization, e.g., data derived from different forest inventories. The objective of this study is to develop a methodology in order to create a hybrid land cover dataset at the level which would satisfy requirements of the verified terrestrial biota full greenhouse gas account (Shvidenko et al., 2008) for large regions i.e. Russia. Such requirements necessitate a detailed quantification of land classes (e.g., for forests - dominant species, age, growing stock, net primary production, etc.) with additional information on uncertainties of the major biometric and ecological parameters in the range of 10-20% and a confidence interval of around 0.9. The approach taken here allows the integration of different datasets to explore synergies and in particular the merging and harmonization of land and forest inventories, ecological monitoring, remote sensing data and in-situ information. The following datasets have been integrated: Remote sensing: Global Land Cover 2000 (Fritz et al., 2003), Vegetation Continuous Fields (Hansen et al., 2002), Vegetation Fire (Sukhinin, 2007), Regional land cover (Schmullius et al., 2005); GIS: Soil 1:2.5 Mio (Dokuchaev Soil Science Institute, 1996), Administrative Regions 1:2.5 Mio, Vegetation 1:4 Mio, Bioclimatic Zones 1:4 Mio (Stolbovoi & McCallum, 2002), Forest Enterprises 1:2.5 Mio, Rivers/Lakes and Roads/Railways 1:1 Mio (IIASA's data base); Inventories and statistics: State Land Account (FARSC RF, 2006), State Forest Account - SFA (FFS RF, 2003), Disturbances in forests (FFS RF, 2006). The resulting hybrid land cover dataset at 1-km resolution comprises the following classes: Forest (each grid links to the SFA database, which contains 86,613 records); Agriculture (5 classes, parameterized by 89 administrative units); Wetlands (8 classes, parameterized by 83 zone/region units); Open Woodland, Burnt area; Shrub/grassland (50 classes, parameterized by 300 zone/region units); Water; Unproductive area. This study has demonstrated the ability to produce a highly detailed (both spatially and thematically) land cover dataset over Russia. Future efforts include further validation of the hybrid land cover dataset for Russia, and its use for assessment of the terrestrial biota full greenhouse gas budget across Russia. The methodology proposed in this study could be applied at the global level. Results of such an undertaking would however be highly dependent upon the quality of the available ground data. The implementation of the hybrid land cover dataset was undertaken in a way that it can be regularly updated based on new ground data and remote sensing products (ie. MODIS).

  15. Hydrologic response to forest cover changes following a Mountain Pine Beetle outbreak in the context of a changing climate

    NASA Astrophysics Data System (ADS)

    Moore, Dan; Jost, Georg; Nelson, Harry; Smith, Russell

    2013-04-01

    Over the last 15 years, there has been extensive mortality of pine forests in western North America associated with an outbreak of Mountain Pine Beetle, often followed by salvage logging. The objective of this study was to quantify the separate and combined effects of forest recovery and climate change over the 21st century on catchment hydrology in the San Jose watershed, located in the semi-arid Interior Plateau of British Columbia. Forest cover changes were simulated using a dynamic spatial model that uses a decentralized planning approach. We implemented management strategies representing current timber management objectives around achieving targeted harvest levels and incorporating existing management constraints under two different scenarios, one with no climate change and one under climate change, using climate-adjusted growth and yield curves. In addition, higher rates of fire disturbance were modelled under climate change. Under climate change, while productivity improves for some species (mainly Douglas-fir on better quality sites), on drier and poorer quality sites most species, especially Lodgepole Pine, become significantly less productive, and stocking is reduced to the point that those sites transition into grasslands. The combined effect of initial age classes (where the forest has been severely impacted by MPB), increased fire, and reduced stocking results in a greater proportion of the forest in younger age classes compared to a "Business As Usual" scenario with no climate change. The hydrologic responses to changes in vegetation cover and climate were evaluated with the flexible Hydrology Emulator and Modelling Platform (HEMP) developed at the University of British Columbia. HEMP allows a flexible discretization of the landscape. Water is moved vertically within landscape units by processes such as precipitation, canopy interception and soil infiltration, and routed laterally between units as a function of local soil and groundwater storage. The model was calibrated and tested on three stream gauges and on snow course data. A 'guided' GLUE approach was used to address the effects of parameter uncertainty and uncertainty in streamflow data on the uncertainty in future projections. Overall, the establishment and growth of post-disturbance forest stands result in a substantial reduction in snow accumulation and melt rates, and an increase in evapotranspiration, together resulting in a reduction in streamflow. The influence of projected climate warming was to advance the timing of spring melt, exacerbating the reductions in late-summer streamflow associated with forest recovery. In some climate scenarios, increases in precipitation helped to offset reductions in streamflow associated with forest recovery. Some challenges associated with linking output from the forest dynamics simulations and the hydrologic model are identified and potential solutions discussed.

  16. Drying of Floodplain Forests Associated with Water-Level Decline in the Apalachicola River, Florida - Interim Results, 2006

    USGS Publications Warehouse

    Darst, Melanie R.; Light, Helen M.

    2007-01-01

    Floodplain forests of the Apalachicola River, Florida, are drier in composition today (2006) than they were before 1954, and drying is expected to continue for at least the next 50 years. Drier forest composition is probably caused by water-level declines that occurred as a result of physical changes in the main channel after 1954 and decreased flows in spring and summer months since the 1970s. Forest plots sampled from 2004 to 2006 were compared to forests sampled in the late 1970s (1976-79) using a Floodplain Index (FI) based on species dominance weighted by the Floodplain Species Category, a value that represents the tolerance of tree species to inundation and saturation in the floodplain and consequently, the typical historic floodplain habitat for that species. Two types of analyses were used to determine forest changes over time: replicate plot analysis comparing present (2004-06) canopy composition to late 1970s canopy composition at the same locations, and analyses comparing the composition of size classes of trees on plots in late 1970s and in present forests. An example of a size class analysis would be a comparison of the composition of the entire canopy (all trees greater than 7.5 cm (centimeter) diameter at breast height (dbh)) to the composition of the large canopy tree size class (greater than or equal to 25 cm dbh) at one location. The entire canopy, which has a mixture of both young and old trees, is probably indicative of more recent hydrologic conditions than the large canopy, which is assumed to have fewer young trees. Change in forest composition from the pre-1954 period to approximately 2050 was estimated by combining results from three analyses. The composition of pre-1954 forests was represented by the large canopy size class sampled in the late 1970s. The average FI for canopy trees was 3.0 percent drier than the average FI for the large canopy tree size class, indicating that the late 1970s forests were 3.0 percent drier than pre-1954 forests. The change from the late 1970s to the present was based on replicate plot analysis. The composition of 71 replicate plots sampled from 2004 to 2006 averaged 4.4 percent drier than forests sampled in the late 1970s. The potential composition of future forests (2050 or later) was estimated from the composition of the present subcanopy tree size class (less than 7.5 cm and greater than or equal to 2.5 cm dbh), which contains the greatest percentage of young trees and is indicative of recent hydrologic conditions. Subcanopy trees are the driest size class in present forests, with FIs averaging 31.0 percent drier than FIs for all canopy trees. Based on results from all three sets of data, present floodplain forests average 7.4 percent drier in composition than pre-1954 forests and have the potential to become at least 31.0 percent drier in the future. An overall total change in floodplain forests to an average composition 38.4 percent drier than pre-1954 forests is expected within approximately 50 years. The greatest effects of water-level decline have occurred in tupelo-cypress swamps where forest composition has become at least 8.8 percent drier in 2004-06 than in pre-1954 years. This change indicates that a net loss of swamps has already occurred in the Apalachicola River floodplain, and further losses are expected to continue over the next 50 years. Drying of floodplain forests will result in some low bottomland hardwood forests changing in composition to high bottomland hardwood forests. The composition of high bottomland hardwoods will also change, although periodic flooding is still occurring and will continue to limit most of the floodplain to bottomland hardwood species that are adapted to at least short periods of inundation and saturation.

  17. Increasing the efficiency of airphoto forest surveys by better definition of classes

    Treesearch

    C. Allen Bickford

    1953-01-01

    Aerial photographs are now commonly used in forest-inventory work. In the forest-survey work of the Northeastern Forest Experiment Station we are interested most in using them to estimate total volume of a forested area.

  18. Using classified Landsat Thematic Mapper data for stratification in a statewide forest inventory

    Treesearch

    Mark H. Hansen; Daniel G. Wendt

    2000-01-01

    The 1998 Indiana/Illinois forest inventory (USDA Forest Service, Forest Inventory and Analysis (FIA)) used Landsat Thematic Mapper (TM) data for stratification. Classified images made by the National Gap Analysis Program (GAP) stratified FIA plots into four classes (nonforest, nonforest/ forest, forest/nonforest, and forest) based on a two pixel forest edge buffer zone...

  19. Using Classified Landsat Thematic Mapper Data for Stratification in a Statewide Forest Inventory

    Treesearch

    Mark H. Hansen; Daniel G. Wendt

    2000-01-01

    The 1998 Indiana/Illinois forest inventory (USDA Forest Service, Forest Inventory and Analysis (FIA)) used Landsat Thematic Mapper (TM} data for stratification. Classified images made by the National Gap Analysis Program (GAP) stratified FIA plots into four classes (nonforest, nonforest/forest, forest/nonforest, and forest) based on a two pixel forest edge buffer zone...

  20. Recreating a functioning forest soil in reclaimed oil sands in northern alberta: an approach for measuring success in ecological restoration.

    PubMed

    Rowland, S M; Prescott, C E; Grayston, S J; Quideau, S A; Bradfield, G E

    2009-01-01

    During oil-sands mining all vegetation, soil, overburden, and oil sand is removed, leaving pits several kilometers wide and up to 100 m deep. These pits are reclaimed through a variety of treatments using subsoil or a mixed peat-mineral soil cap. Using nonmetric multidimensional scaling and cluster analysis of measurements of ecosystem function, reclamation treatments of several age classes were compared with a range of natural forest ecotypes to discover which treatments had created ecosystems similar to natural forest ecotypes and at what age this occurred. Ecosystem function was estimated from bioavailable nutrients, plant community composition, litter decomposition rate, and development of a surface organic layer. On the reclamation treatments, availability of nitrate, calcium, magnesium, and sulfur were generally higher than in the natural forest ecotypes, while ammonium, P, K, and Mn were generally lower. Reclamation treatments tended to have more bare ground, grasses, and forbs but less moss, lichen, shrubs, trees, or woody debris than natural forests. Rates of litter decomposition were lower on all reclamation treatments. Development of an organic layer appeared to be facilitated by the presence of shrubs. With repeated applications of fertilizers, measured variables for the peat-mineral amendments fell within the range of natural variability at about 20 yr. An intermediate subsoil layer reduced the need for fertilizer and conditions resembling natural forests were reached about 15 yr after a single fertilizer application. Treatments over tailings sand receiving only one application of fertilizer appeared to be on a different trajectory to a novel ecosystem.

  1. Analysis of data acquired by Shuttle Imaging Radar SIR-A and Landsat Thematic Mapper over Baldwin County, Alabama

    NASA Technical Reports Server (NTRS)

    Wu, S.-T.

    1985-01-01

    Seasonally compatible data collected by SIR-A and by Landsat 4 TM over the lower coastal plain in Alabama were coregistered, forming a SIR-A/TM multichannel data set with 30 m x 30 m pixel size. Spectral signature plots and histogram analysis of the data were used to observe data characteristics. Radar returns from pine forest classes correlated highly with the tree ages, suggesting the potential utility of microwave remote sensing for forest biomass estimation. As compared with the TM-only data set, the use of SIR-A/TM data set improved classification accuracy of the seven land cover types studied. In addition, the SIR-A/TM classified data support previous finding by Engheta and Elachi (1982) that microwave data appear to be correlated with differing bottomland hardwood forest vegetation as associated with varying water regimens (i.e., wet versus dry).

  2. Simulating Carbon cycle and phenology in complex forests using a multi-layer process based ecosystem model; evaluation and use of 3D-CMCC-Forest Ecosystem Model in a deciduous and an evergreen neighboring forests, within the area of Brasschaat (Be)

    NASA Astrophysics Data System (ADS)

    Marconi, S.; Collalti, A.; Santini, M.; Valentini, R.

    2013-12-01

    3D-CMCC-Forest Ecosystem Model is a process based model formerly developed for complex forest ecosystems to estimate growth, water and carbon cycles, phenology and competition processes on a daily/monthly time scale. The Model integrates some characteristics of the functional-structural tree models with the robustness of the light use efficiency approach. It treats different heights, ages and species as discrete classes, in competition for light (vertical structure) and space (horizontal structure). The present work evaluates the results of the recently developed daily version of 3D-CMCC-FEM for two neighboring different even aged and mono specific study cases. The former is a heterogeneous Pedunculate oak forest (Quercus robur L. ), the latter a more homogeneous Scot pine forest (Pinus sylvestris L.). The multi-layer approach has been evaluated against a series of simplified versions to determine whether the improved model complexity in canopy structure definition increases its predictive ability. Results show that a more complex structure (three height layers) should be preferable to simulate heterogeneous scenarios (Pedunculate oak stand), where heights distribution within the canopy justify the distinction in dominant, dominated and sub-dominated layers. On the contrary, it seems that using a multi-layer approach for more homogeneous stands (Scot pine stand) may be disadvantageous. Forcing the structure of an homogeneous stand to a multi-layer approach may in fact increase sources of uncertainty. On the other hand forcing complex forests to a mono layer simplified model, may cause an increase in mortality and a reduction in average DBH and Height. Compared with measured CO2 flux data, model results show good ability in estimating carbon sequestration trends, on both a monthly/seasonal and daily time scales. Moreover the model simulates quite well leaf phenology and the combined effects of the two different forest stands on CO2 fluxes.

  3. Understory vegetation as an indicator for floodplain forest restoration in the Mississippi River Alluvial Valley, U.S.A.

    USGS Publications Warehouse

    De Steven, Diane; Faulkner, Stephen; Keeland, Bobby D.; Baldwin, Michael; McCoy, John W.; Hughes, Steven C.

    2015-01-01

    In the Mississippi River Alluvial Valley (MAV), complete alteration of river-floodplain hydrology allowed for widespreadconversion of forested bottomlands to intensive agriculture, resulting in nearly 80% forest loss. Governmental programs haveattempted to restore forest habitat and functions within this altered landscape by the methods of tree planting (afforestation)and local hydrologic enhancement on reclaimed croplands. Early assessments identified factors that influenced whetherplanting plus tree colonization could establish an overstory community similar to natural bottomland forests. The extentto which afforested sites develop typical understory vegetation has not been evaluated, yet understory composition may beindicative of restored site conditions. As part of a broad study quantifying the ecosystem services gained from restorationefforts, understory vegetation was compared between 37 afforested sites and 26 mature forest sites. Differences in vegetationattributes for species growth forms, wetland indicator classes, and native status were tested with univariate analyses;floristic composition data were analyzed by multivariate techniques. Understory vegetation of restoration sites was generallyhydrophytic, but species composition differed from that of mature bottomland forest because of young successional age anddiffering responses of plant growth forms. Attribute and floristic variation among restoration sites was related to variationin canopy development and local wetness conditions, which in turn reflected both intrinsic site features and outcomes ofrestoration practices. Thus, understory vegetation is a useful indicator of functional progress in floodplain forest restoration.

  4. Relation of quantity of seed sown and density of seedlings to the development and survival of forest planting stock

    Treesearch

    W. G. Wahlenberg

    1929-01-01

    It is obvious that seedlings grown in dense stands can not develop so well as those grown without crowding. Nurserymen naturally wish to avoid injury to their stock from crowding, but they also desire to utilize their soil space as fully as possible. The optimum density of stand for each species and age class of nursery stock can be determined within reasonably close...

  5. Mississippi's forests, 2006

    Treesearch

    Sonja N. Oswalt; Tony G. Johnson; John W. Coulston; Christopher M. Oswalt

    2009-01-01

    Forest land covers 19.6 million acres in Mississippi, or about 65 percent of the land area. The majority of forests are classed as timberland. One hundred and thirty-seven tree species were measured on Mississippi forests in the 2006 inventory. Thirty six percent of Mississippi's forest land is classified as loblolly-shortleaf pine forest, 27 percent is classified...

  6. Forest condition in Latvia

    Treesearch

    Madis Sipols

    1998-01-01

    Systematic assessment and observation (survey, inventory) of forests in Latvia has been underway since the 1700's. Latvia's forests are in the boreal/temperate forest zone and cover 44 percent of the country. Forest growing conditions are subdivided into five site class types: forests on dry mineral, wet mineral, wet peat, drained mineral, drained peat soils...

  7. Louisiana forests: Status and outlook

    Treesearch

    Paul A. Murphy

    1975-01-01

    Between 1964 and 1974, forest area in Louisiana declined 9 percent to 14.5 million acres. Softwood volume increased 31 percent to 9 billion cubic feet, and hardwood declined 7 percent to 7.7 billion. All softwood size classes had increases in volume, and all hardwood size classes had decreases.

  8. Vegetation dynamics under fire exclusion and logging in a Rocky Mountain watershed, 1856-1996

    USGS Publications Warehouse

    Gallant, Alisa L.; Hansen, A.J.; Councilman, J.S.; Monte, D.K.; Betz, D.W.

    2003-01-01

    How have changes in land management practices affected vegetation patterns in the greater Yellowstone ecosystem? This question led us to develop a deterministic, successional, vegetation model to “turn back the clock” on a study area and assess how patterns in vegetation cover type and structure have changed through different periods of management. Our modeling spanned the closing decades of use by Native Americans, subsequent Euro-American settlement, and associated indirect methods of fire suppression, and more recent practices of fire exclusion and timber harvest. Model results were striking, indicating that the primary forest dynamic in the study area is not fragmentation of conifer forest by logging, but the transition from a fire-driven mosaic of grassland, shrubland, broadleaf forest, and mixed forest communities to a conifer-dominated landscape. Projections for conifer-dominated stands showed an increase in areal coverage from 15% of the study area in the mid-1800s to ∼50% by the mid-1990s. During the same period, projections for aspen-dominated stands showed a decline in coverage from 37% to 8%. Substantial acreage previously occupied by a variety of age classes has given way to extensive tracts of mature forest. Only 4% of the study area is currently covered by young stands, all of which are coniferous. While logging has replaced wildfire as a mechanism for cycling younger stands into the landscape, the locations, species constituents, patch sizes, and ecosystem dynamics associated with logging do not mimic those associated with fire. It is also apparent that the nature of these differences varies among biophysical settings, and that land managers might consider a biophysical class strategy for tailoring management goals and restoration efforts.

  9. Multiresource forest statistics for Molokai, Hawaii.

    Treesearch

    Michael G. Buck; Patrick G. Costales; Katharine. McDuffie

    1986-01-01

    This report summarizes a 1983 multiresource forest inventory of the island of Molokai, Hawaii. Tables of forest area, timber volume, vegetation type, ownership, land class, and wildlife are presented.

  10. Forest structure and light regimes following moderate wind storms: implications for multi-cohort management.

    PubMed

    Hanson, Jacob J; Lorimer, Craig G

    2007-07-01

    Moderate-severity disturbances appear to be common throughout much of North America, but they have received relatively little detailed study compared to catastrophic disturbances and small gap dynamics. In this study, we examined the immediate impact of moderate-intensity wind storms on stand structure, opening sizes, and light regimes in three hemlock-hardwood forests of northeastern Wisconsin. These were compared to three stands managed by single-tree and group selection, the predominant forest management system for northern hardwoods in the region. Wind storms removed an average of 41% of the stand basal area, compared to 27% removed by uneven-aged harvests, but both disturbances removed trees from a wide range of size classes. The removal of nearly half of the large trees by wind in two old-growth stands caused partial retrogression to mature forest structure, which has been hypothesized to be a major disturbance pathway in the region. Wind storms resulted in residual stand conditions that were much more heterogeneous than in managed stands. Gap sizes ranged from less than 10 m2 up to 5000 m2 in wind-disturbed stands, whereas the largest opening observed in managed stands was only 200 m2. Wind-disturbed stands had, on average, double the available solar radiation at the forest floor compared to managed stands. Solar radiation levels were also more heterogeneous in wind-disturbed stands, with six times more variability at small scales (0.1225 ha) and 15 times more variability at the whole-stand level. Modification of uneven-aged management regimes to include occasional harvests of variable intensity and spatial pattern may help avoid the decline in species diversity that tends to occur after many decades of conventional uneven-aged management. At the same time, a multi-cohort system with these properties would retain a high degree of average crown cover, promote structural heterogeneity typical of old-growth forests, and maintain dominance by late-successional species.

  11. Assessment of vegetation change in a fire-altered forest landscape

    NASA Technical Reports Server (NTRS)

    Jakubauskas, Mark E.; Lulla, Kamlesh P.; Mausel, Paul W.

    1990-01-01

    This research focused on determining the degree to which differences in burn severity relate to postfire vegetative cover within a Michigan pine forest. Landsat MSS data from June 1973 and TM data from October 1982 were classified using an unsupervised approach to create prefire and postfire cover maps of the study area. Using a raster-based geographic information system (GIS), the maps were compared, and a map of vegetation change was created. An IR/red band ratio from a June 1980 Landsat scene was classified to create a map of three degres of burn severity, which was then compared with the vegetation change map using a GIS. Classification comparisons of pine and deciduous forest classes (1973 to 1982) revealed that the most change in vegetation occurred in areas subjected to the most intense burn. Two classes of regenerating forest comprised the majority of the change, while the remaining change was associated with shrub vegetation or another forest class.

  12. North Dakota's Forests 2010

    Treesearch

    David E. Haugen; Robert Harsel; Aaron Bergdahl; Tom Claeys; Christopher W. Woodall; Barry T. Wilson; Susan J. Crocker; Brett J. Butler; Cassandra M. Kurtz; Mark A. Hatfield; Charles H. Barnett; Grant Domke; Dan Kaisershot; W. Keith Moser; Andrew J. Lister; Dale D. Gormanson

    2013-01-01

    The second annual inventory of North Dakota's forests reports more than 772,000 acres of forest land with an average volume of more than 921 cubic feet per acre. Forest land is dominated by the bur oak forest type, which occupies more than a third of the total forest land area. The poletimber stand-size class represents 39 percent of forest land, followed by...

  13. The importance of forest structure to biodiversity–productivity relationships

    PubMed Central

    Huth, Andreas

    2017-01-01

    While various relationships between productivity and biodiversity are found in forests, the processes underlying these relationships remain unclear and theory struggles to coherently explain them. In this work, we analyse diversity–productivity relationships through an examination of forest structure (described by basal area and tree height heterogeneity). We use a new modelling approach, called ‘forest factory’, which generates various forest stands and calculates their annual productivity (above-ground wood increment). Analysing approximately 300 000 forest stands, we find that mean forest productivity does not increase with species diversity. Instead forest structure emerges as the key variable. Similar patterns can be observed by analysing 5054 forest plots of the German National Forest Inventory. Furthermore, we group the forest stands into nine forest structure classes, in which we find increasing, decreasing, invariant and even bell-shaped relationships between productivity and diversity. In addition, we introduce a new index, called optimal species distribution, which describes the ratio of realized to the maximal possible productivity (by shuffling species identities). The optimal species distribution and forest structure indices explain the obtained productivity values quite well (R2 between 0.7 and 0.95), whereby the influence of these attributes varies within the nine forest structure classes. PMID:28280550

  14. Predicting the recruitment of established regeneration into the sapling size class following partial cutting in the Acadian Forest Region: Using long-term observations to assess the performance of FVS-NE

    Treesearch

    David Ray; Chad Keyser; Robert Seymour; John Brissette

    2008-01-01

    Forest managers are increasingly called upon to provide long-term predictions of forest development. The dynamics of regeneration establishment, survival and subsequent recruitment of established seedlings to larger size classes is a critical component of these forecasts, yet remains a weak link in available models. To test the reliability of FVS-NE for simulating...

  15. Structural and compositional controls on transpiration in 40- and 450-year-old riparian forests in western Oregon, USA.

    PubMed

    Moore, Georgianne W; Bond, Barbara J; Jones, Julia A; Phillips, Nathan; Meinzer, Federick C

    2004-05-01

    Large areas of forests in the Pacific Northwest are being transformed to younger forests, yet little is known about the impact this may have on hydrological cycles. Previous work suggests that old trees use less water per unit leaf area or sapwood area than young mature trees of the same species in similar environments. Do old forests, therefore, use less water than young mature forests in similar environments, or are there other structural or compositional components in the forests that compensate for tree-level differences? We investigated the impacts of tree age, species composition and sapwood basal area on stand-level transpiration in adjacent watersheds at the H.J. Andrews Forest in the western Cascades of Oregon, one containing a young, mature (about 40 years since disturbance) conifer forest and the other an old growth (about 450 years since disturbance) forest. Sap flow measurements were used to evaluate the degree to which differences in age and species composition affect water use. Stand sapwood basal area was evaluated based on a vegetation survey for species, basal area and sapwood basal area in the riparian area of two watersheds. A simple scaling exercise derived from estimated differences in water use as a result of differences in age, species composition and stand sapwood area was used to estimate transpiration from late June through October within the entire riparian area of these watersheds. Transpiration was higher in the young stand because of greater sap flux density (sap flow per unit sapwood area) by age class and species, and greater total stand sapwood area. During the measurement period, mean daily sap flux density was 2.30 times higher in young compared with old Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) trees. Sap flux density was 1.41 times higher in young red alder (Alnus rubra Bong.) compared with young P. menziesii trees, and was 1.45 times higher in old P. menziesii compared with old western hemlock (Tsuga heterophylla (Raf.) Sarg.) trees. Overall, sapwood basal area was 21% higher in the young stand than in the old stand. In the old forest, T. heterophylla is an important co-dominant, accounting for 58% of total sapwood basal area, whereas P. menziesii is the only dominant conifer in the young stand. Angiosperms accounted for 36% of total sapwood basal area in the young stand, but only 7% in the old stand. For all factors combined, we estimated 3.27 times more water use by vegetation in the riparian area of the young stand over the measurement period. Tree age had the greatest effect on stand differences in water use, followed by differences in sapwood basal area, and finally species composition. The large differences in transpiration provide further evidence that forest management alters site water balance via elevated transpiration in vigorous young stands.

  16. Prediction of body mass index status from voice signals based on machine learning for automated medical applications.

    PubMed

    Lee, Bum Ju; Kim, Keun Ho; Ku, Boncho; Jang, Jun-Su; Kim, Jong Yeol

    2013-05-01

    The body mass index (BMI) provides essential medical information related to body weight for the treatment and prognosis prediction of diseases such as cardiovascular disease, diabetes, and stroke. We propose a method for the prediction of normal, overweight, and obese classes based only on the combination of voice features that are associated with BMI status, independently of weight and height measurements. A total of 1568 subjects were divided into 4 groups according to age and gender differences. We performed statistical analyses by analysis of variance (ANOVA) and Scheffe test to find significant features in each group. We predicted BMI status (normal, overweight, and obese) by a logistic regression algorithm and two ensemble classification algorithms (bagging and random forests) based on statistically significant features. In the Female-2030 group (females aged 20-40 years), classification experiments using an imbalanced (original) data set gave area under the receiver operating characteristic curve (AUC) values of 0.569-0.731 by logistic regression, whereas experiments using a balanced data set gave AUC values of 0.893-0.994 by random forests. AUC values in Female-4050 (females aged 41-60 years), Male-2030 (males aged 20-40 years), and Male-4050 (males aged 41-60 years) groups by logistic regression in imbalanced data were 0.585-0.654, 0.581-0.614, and 0.557-0.653, respectively. AUC values in Female-4050, Male-2030, and Male-4050 groups in balanced data were 0.629-0.893 by bagging, 0.707-0.916 by random forests, and 0.695-0.854 by bagging, respectively. In each group, we found discriminatory features showing statistical differences among normal, overweight, and obese classes. The results showed that the classification models built by logistic regression in imbalanced data were better than those built by the other two algorithms, and significant features differed according to age and gender groups. Our results could support the development of BMI diagnosis tools for real-time monitoring; such tools are considered helpful in improving automated BMI status diagnosis in remote healthcare or telemedicine and are expected to have applications in forensic and medical science. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Forest area and distribution in the Mississippi alluvial valley: Implications for breeding bird conservation

    USGS Publications Warehouse

    Twedt, D.J.; Loesch, C.R.

    1999-01-01

    Knowing the current forest distribution and patch size characteristics is integral to the development of geographically defined, habitat-based conservation objectives for breeding birds. Towards this end, we classified 2.6 million ha of forest cover within the Mississippi Alluvial Valley using 1992 thematic mapper satellite imagery. Although historically this area, from southern Illinois to southern Louisiana, was dominated by forested wetlands, forest cover remains on less than 25% of the floodplain. Remaining forest cover is comprised of > 38,000 discrete forest patches > 2 ha. Mean patch area (64.1?5.2 ha; 0 ?SE) was highly skewed towards small fragment size. Larger patches had a higher proportion of more hydric forest cover classes than did smaller patches which had a higher proportion of less hydric forest cover classes. Public lands accounted for 16% of remaining forested wetlands. Fewer than 100 forest patches exceeded our hypothesized habitat objective (4000 ha minimum contiguous forest area) intended to support self-sustaining populations of forest breeding birds. To increase the number of forest patches exceeding 4000 ha contiguous area, and thereby increase the likelihood of successful forest bird conservation, we recommend afforestation adjoining existing forest fragments ?1012 ha and focused within designated Forest Bird Conservation Regions.

  18. The private forest landowners of Michigan.

    Treesearch

    Eugene M. Carpenter; Mark H. Hansen

    1985-01-01

    Estimates the number and distribution of nonindustrial private forest landowners in Michigan by size class and owner attitudes and objectives concerning forest ownership, management, and use. Provides 57 tables relating to owner and property characteristics for the state and its Forest Survey Units.

  19. Forest thinnings for integrated lumber and paper production

    Treesearch

    J.Y. Zhu; C.T. Scott; R. Gleisner; D. Mann; D.W. Vahey; D.P. Dykstra; G.H. Quinn; L.L. Edwards

    2007-01-01

    Integrated lumber and paper productions using forest thinning materials from U.S. national forests can significantly reduce the cost of prescriptive thinning operations. Many of the trees removed during forest thinnings are in small-diameter classes (diameter at breast height

  20. Nutritional ecology of wild Bornean orangutans (Pongo pygmaeus wurmbii) in a peat swamp habitat: Effects of age, sex, and season.

    PubMed

    Vogel, Erin R; Alavi, Shauhin E; Utami-Atmoko, Sri Suci; van Noordwijk, Maria A; Bransford, Timothy D; Erb, Wendy M; Zulfa, Astri; Sulistyo, Fransiska; Farida, Wartika Rosa; Rothman, Jessica M

    2017-04-01

    The spatial and temporal variation in food abundance has strong effects on wildlife feeding and nutrition. This variation is exemplified by the peatland forests of Central Kalimantan, which are characterized by unpredictable fruiting fluctuations, relatively low levels of fruit availability, and low fruit periods (<3% of trees fruiting) that can last nearly a year. Challenged by these environments, large, arboreal frugivores like orangutans must periodically rely on non-preferred, lower-quality foods to meet their nutritional needs. We examined variation in nutrient intake among age-sex classes and seasons over a 7-year period at the Tuanan Orangutan Research Station in Central Kalimantan. We conducted 2,316 full-day focal follows on 62 habituated orangutans (Pongo pygmaeus wurmbii). We found differences in total energy and macronutrient intake across age-sex classes, controlling for metabolic body mass. Intake of both total energy and macronutrients varied with fruit availability, and preference of dietary items increased with their nutritional quality. Foraging-related variables, such as day journey length, travel time, and feeding time, also varied among age-sex classes and with fruit availability. Our results add to the growing body of literature suggesting that great variation in foraging strategies exists among species, populations, and age-sex classes and in response to periods of resource scarcity. The spatial and temporal variation in food abundance has strong effects on wildlife feeding and nutrition. Here we present the first long term study of the effects of variation in fruit availability and age/sex class on nutritional ecology of wild Bornean orangutans. We examined variation in nutrient intake of wild orangutans in living in a peat swamp habitat over a 7-year period at the Tuanan Orangutan Research Station in Central Kalimantan. We conducted 2,316 full-day focal follows on 62 habituated orangutans (Pongo pygmaeus wurmbii). We found differences in total energy and macronutrient intake across age-sex classes, controlling for metabolic body mass. Intake of both total energy and macronutrients varied with fruit availability, and preference of dietary items increased with their nutritional quality. Foraging-related variables, such as day journey length, travel time, and feeding time, also varied among age-sex classes and with fruit availability. Our results add to the growing body of literature suggesting that great variation in foraging strategies exists among species, populations, and age-sex classes and in response to periods of resource scarcity. © 2016 Wiley Periodicals, Inc.

  1. Coming down from the trees: Is terrestrial activity in Bornean orangutans natural or disturbance driven?

    PubMed Central

    Ancrenaz, Marc; Sollmann, Rahel; Meijaard, Erik; Hearn, Andrew J.; Ross, Joanna; Samejima, Hiromitsu; Loken, Brent; Cheyne, Susan M.; Stark, Danica J.; Gardner, Penny C.; Goossens, Benoit; Mohamed, Azlan; Bohm, Torsten; Matsuda, Ikki; Nakabayasi, Miyabi; Lee, Shan Khee; Bernard, Henry; Brodie, Jedediah; Wich, Serge; Fredriksson, Gabriella; Hanya, Goro; Harrison, Mark E.; Kanamori, Tomoko; Kretzschmar, Petra; Macdonald, David W.; Riger, Peter; Spehar, Stephanie; Ambu, Laurentius N.; Wilting, Andreas

    2014-01-01

    The orangutan is the world's largest arboreal mammal, and images of the red ape moving through the tropical forest canopy symbolise its typical arboreal behaviour. Records of terrestrial behaviour are scarce and often associated with habitat disturbance. We conducted a large-scale species-level analysis of ground-based camera-trapping data to evaluate the extent to which Bornean orangutans Pongo pygmaeus come down from the trees to travel terrestrially, and whether they are indeed forced to the ground primarily by anthropogenic forest disturbances. Although the degree of forest disturbance and canopy gap size influenced terrestriality, orangutans were recorded on the ground as frequently in heavily degraded habitats as in primary forests. Furthermore, all age-sex classes were recorded on the ground (flanged males more often). This suggests that terrestrial locomotion is part of the Bornean orangutan's natural behavioural repertoire to a much greater extent than previously thought, and is only modified by habitat disturbance. The capacity of orangutans to come down from the trees may increase their ability to cope with at least smaller-scale forest fragmentation, and to cross moderately open spaces in mosaic landscapes, although the extent of this versatility remains to be investigated. PMID:24526001

  2. An enquiry on forest areas reported to the global forest resources assessment—is harmonization needed?

    Treesearch

    Karl ​Gabler; Klemens Schadauer; Erkki Tomppo; Claude Vidal; Camille Bonhomme; Ronald E. McRoberts; Thomas Gschwantner

    2012-01-01

    For international reporting purposes, information on forest resources often has to be supplied according to international definitions. Nevertheless, the country reports of the Food and Agriculture Organization (FAO) Global Forest Resources Assessment 2005 indicate that countries either prefer to use their own forest definitions or use national classes of forest and...

  3. AmeriFlux CA-Gro Ontario - Groundhog River, Boreal Mixedwood Forest.

    DOE Data Explorer

    McCaughey, Harry [Queen's University

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site CA-Gro Ontario - Groundhog River, Boreal Mixedwood Forest.. Site Description - Groundhog River (FCRN or CCP site "ON-OMW") is situated in a typical boreal mixedwood forest in northeastern Ontario (48.217 degrees north and 82.156 degrees west) about 80 km southwest of Timmins in Reeves Twp. near the Groundhog River. Rowe (1972) places the site in the Missinaibi-Cabonga Section of the Boreal Forest Region. In terms of ecoregion and ecozone, the site is in the Lake Timiskaming Lowlands of the Boreal Shield. The forest developed after high-grade logging in the 1930's. The average age in 2013 is estimated at beteen 75 and 80 years. The forest is dominated by five species characteristic of Ontario boreal mixedwoods: trembling aspen (Populus tremuloides Michx.), black spruce (Picea mariana (Mill.) B.S.P.), white spruce (Picea glauca (Moench.) Voss.), white birch (Betula papyrifera Marsh.), and balsam fir (Abies balsamea (L.) Mill.). The surficial geology is a lacustrine deposit of varved or massive clays, silts and silty sands. The soil is an orthic gleysol with a soil moisture regime classified as fresh to very fresh. Plonski (1974) rates it as a site class 1. The topography is simple and flat with an overall elevation of 340 m ASL.

  4. The multiresource forest inventory for Kauai, Hawaii.

    Treesearch

    Michael G. Buck; Jeanine M. Branam; William T. Stormont

    1988-01-01

    This report summarizes a 1986 multiresource forest inventory for Kauai, Hawaii. Tables and figures of forest acreage, timber volume, vegetation types, ownership, land classes, bird counts, and introduced plants are presented.

  5. The multiresource forest inventory for Oahu, Hawaii.

    Treesearch

    Michael G. Buck; Jeanine M. Branam; Wllliam T. Stormont; Patrick G. Costales

    1988-01-01

    This report summarizes a 1986 multiresource forest inventory for Oahu, Hawaii. Tables and figures of forest area, timber volume, vegetation types, ownership, land classes, bird counts, and introduced plants are presented.

  6. Analyzing remote sensing geobotanical trends in Quetico Provincial Park, Ontario, Canada, using digital elevation data

    NASA Technical Reports Server (NTRS)

    Warner, Timothy A.; Campagna, David J.; Levandowski, Don W.; Cetin, Haluk; Evans, Carla S.

    1991-01-01

    A 10 x 13-km area in Quetico Provincial Park, Canada has been studied using a digital elevation model to separate different drainage classes and to examine the influence of site factors and lithology on vegetation. Landsat Thematic Mapper data have been classified into six forest classes of varying deciduous-coniferous cover through nPDF, a procedure based on probability density functions. It is shown that forests growing on mafic lithologies are enriched in deciduous species, compared to those growing on granites. Of the forest classes found on mafics, the highest coniferous component was on north facing slopes, and the highest deciduous component on south facing slopes. Granites showed no substantial variation between site classes. The digital elevation derived site data is considered to be an important tool in geobotanical investigations.

  7. Influence of Different Forest System Management Practices on Leaf Litter Decomposition Rates, Nutrient Dynamics and the Activity of Ligninolytic Enzymes: A Case Study from Central European Forests

    PubMed Central

    Schulz, Elke; Schloter, Michael; Buscot, François; Hofrichter, Martin; Krüger, Dirk

    2014-01-01

    Leaf litter decomposition is the key ecological process that determines the sustainability of managed forest ecosystems, however very few studies hitherto have investigated this process with respect to silvicultural management practices. The aims of the present study were to investigate the effects of forest management practices on leaf litter decomposition rates, nutrient dynamics (C, N, Mg, K, Ca, P) and the activity of ligninolytic enzymes. We approached these questions using a 473 day long litterbag experiment. We found that age-class beech and spruce forests (high forest management intensity) had significantly higher decomposition rates and nutrient release (most nutrients) than unmanaged deciduous forest reserves (P<0.05). The site with near-to-nature forest management (low forest management intensity) exhibited no significant differences in litter decomposition rate, C release, lignin decomposition, and C/N, lignin/N and ligninolytic enzyme patterns compared to the unmanaged deciduous forest reserves, but most nutrient dynamics examined in this study were significantly faster under such near-to-nature forest management practices. Analyzing the activities of ligninolytic enzymes provided evidence that different forest system management practices affect litter decomposition by changing microbial enzyme activities, at least over the investigated time frame of 473 days (laccase, P<0.0001; manganese peroxidase (MnP), P = 0.0260). Our results also indicate that lignin decomposition is the rate limiting step in leaf litter decomposition and that MnP is one of the key oxidative enzymes of litter degradation. We demonstrate here that forest system management practices can significantly affect important ecological processes and services such as decomposition and nutrient cycling. PMID:24699676

  8. Influence of different forest system management practices on leaf litter decomposition rates, nutrient dynamics and the activity of ligninolytic enzymes: a case study from central European forests.

    PubMed

    Purahong, Witoon; Kapturska, Danuta; Pecyna, Marek J; Schulz, Elke; Schloter, Michael; Buscot, François; Hofrichter, Martin; Krüger, Dirk

    2014-01-01

    Leaf litter decomposition is the key ecological process that determines the sustainability of managed forest ecosystems, however very few studies hitherto have investigated this process with respect to silvicultural management practices. The aims of the present study were to investigate the effects of forest management practices on leaf litter decomposition rates, nutrient dynamics (C, N, Mg, K, Ca, P) and the activity of ligninolytic enzymes. We approached these questions using a 473 day long litterbag experiment. We found that age-class beech and spruce forests (high forest management intensity) had significantly higher decomposition rates and nutrient release (most nutrients) than unmanaged deciduous forest reserves (P<0.05). The site with near-to-nature forest management (low forest management intensity) exhibited no significant differences in litter decomposition rate, C release, lignin decomposition, and C/N, lignin/N and ligninolytic enzyme patterns compared to the unmanaged deciduous forest reserves, but most nutrient dynamics examined in this study were significantly faster under such near-to-nature forest management practices. Analyzing the activities of ligninolytic enzymes provided evidence that different forest system management practices affect litter decomposition by changing microbial enzyme activities, at least over the investigated time frame of 473 days (laccase, P<0.0001; manganese peroxidase (MnP), P = 0.0260). Our results also indicate that lignin decomposition is the rate limiting step in leaf litter decomposition and that MnP is one of the key oxidative enzymes of litter degradation. We demonstrate here that forest system management practices can significantly affect important ecological processes and services such as decomposition and nutrient cycling.

  9. Trait variations along a regenerative chronosequence in the herb layer of submediterranean forests

    NASA Astrophysics Data System (ADS)

    Catorci, Andrea; Vitanzi, Alessandra; Tardella, Federico Maria; Hršak, Vladimir

    2012-08-01

    The aim of this paper is to assess the functional shifts of the herb layer in the submediterranean Ostrya carpinifolia coppiced forests (central Italy) along a coppicing rotation cycle. More specifically, the following questions were addressed: i) is there a pattern in functional trait composition of the herb layer along a regeneration chronosequence?; ii) which traits states differentiate each regeneration stage?; iii) are patterns of trait state variation related to the change of the environmental conditions? Species cover percentage was recorded in 54 plots (20 m × 20 m) with homogeneous ecological conditions. Relevés, ordered on the basis of the time since the last coppicing event and grouped into three age classes, were analysed with regard to trait variation, based on species absolute and relative abundance. Differences in light, temperature, soil moisture, and nutrients bioindicator values between consecutive regeneration stages were tested using the non-parametric Mann-Whitney U-test. Multi-response permutation procedures (MRPP) revealed statistically significant separation between young and intermediate-aged stands with regard to most traits. Indicator species analysis (ISA) highlighted indicator trait states, which were filtered, along the chronosequence, by changes in environmental conditions. Redundancy analysis (RDA) revealed that light intensity had the greatest effect on traits states variation from the first to the second regeneration stage, while variation from the second to the third age classes was affected by temperature. Young stands were differentiated by short cycle species with acquisitive strategies that only propagated by sexual reproduction, with light seeds, summer green and overwintering green leaves, and a long flowering duration. Intermediate-aged and mature stands were characterized by traits associated with early leaf and flower production, high persistence in time, and showing retentive strategies aimed at resource storage (e.g., geophytes, spring green leaves, rhizomes, and mesomorphic/hygromorphic leaves).

  10. Landscape-level variation in forest structure and biogeochemistry across a substrate age gradient in Hawaii.

    PubMed

    Vitousek, Peter; Asner, Gregory P; Chadwick, Oliver A; Hotchkiss, Sara

    2009-11-01

    We compared forest canopy heights and nitrogen concentrations in long-term research sites and in 2 x 2 km landscapes surrounding these sites along a substrate age gradient in the Hawaiian Islands. Both remote airborne and ground-based measurements were used to characterize processes that control landscape-level variation in canopy properties. We integrated a waveform light detection and ranging (LiDAR) system, a high-resolution imaging spectrometer, and a global positioning system/inertial measurement unit to provide highly resolved images of ground topography, canopy heights, and canopy nitrogen concentrations (1) within a circle 50 m in radius focused on a long-term study site in the center of each landscape; (2) for the entire 2 x 2 km landscape regardless of land cover; and (3) after stratification, for our target cover class, native-dominated vegetation on constructional geomorphic surfaces throughout each landscape. Remote measurements at all scales yielded the same overall patterns as did ground-based measurements in the long-term sites. The two younger landscapes supported taller trees than did older landscapes, while the two intermediate-aged landscapes had higher canopy nitrogen (N) concentrations than did either young or old landscapes. However, aircraft-based analyses detected substantial variability in canopy characteristics on the landscape level, even within the target cover class. Canopy heights were more heterogeneous on the older landscapes, with coefficients of variation increasing from 23-41% to 69-78% with increasing substrate age. This increasing heterogeneity was associated with a larger patch size of canopy turnover and with dominance of most secondary successional stands by the mat-forming fern Dicranopteris linearis in the older landscapes.

  11. Midsouth timber statistics

    Treesearch

    William H. McWilliams; Richard A. Birdsey

    1986-01-01

    The forest inventory and analysis unit of the southern forest experiment station (Forest Survey) conducts periodic inventories about every 10 years covering forest resource inventories of Alabama, Arkansas, Louisiana, Mississippi, East Oklahoma, Tennessee, and East Texas. Appendix tables present summaries of timberland area, growing-stock volume, ownership class,...

  12. Comparing five modelling techniques for predicting forest characteristics

    Treesearch

    Gretchen G. Moisen; Tracey S. Frescino

    2002-01-01

    Broad-scale maps of forest characteristics are needed throughout the United States for a wide variety of forest land management applications. Inexpensive maps can be produced by modelling forest class and structure variables collected in nationwide forest inventories as functions of satellite-based information. But little work has been directed at comparing modelling...

  13. Physiographic position, disturbance and species composition in North Carolina coastal plain forests

    Treesearch

    James G. Wyant; Ralph J. Alig; William A. Bechtold

    1991-01-01

    Relations among physiographic heterogeneity, disturbance and temporal change in forest composition were analyzed on 765 forest stands in the southern coastal plain of North Carolina. Physiographic position strongly restricted the species composition of forest stands, though broad overlap of some physiographic classes was noted. Forest stands in different physiographic...

  14. A hierarchical approach to forest landscape pattern characterization.

    PubMed

    Wang, Jialing; Yang, Xiaojun

    2012-01-01

    Landscape spatial patterns have increasingly been considered to be essential for environmental planning and resources management. In this study, we proposed a hierarchical approach for landscape classification and evaluation by characterizing landscape spatial patterns across different hierarchical levels. The case study site is the Red Hills region of northern Florida and southwestern Georgia, well known for its biodiversity, historic resources, and scenic beauty. We used one Landsat Enhanced Thematic Mapper image to extract land-use/-cover information. Then, we employed principal-component analysis to help identify key class-level landscape metrics for forests at different hierarchical levels, namely, open pine, upland pine, and forest as a whole. We found that the key class-level landscape metrics varied across different hierarchical levels. Compared with forest as a whole, open pine forest is much more fragmented. The landscape metric, such as CONTIG_MN, which measures whether pine patches are contiguous or not, is more important to characterize the spatial pattern of pine forest than to forest as a whole. This suggests that different metric sets should be used to characterize landscape patterns at different hierarchical levels. We further used these key metrics, along with the total class area, to classify and evaluate subwatersheds through cluster analysis. This study demonstrates a promising approach that can be used to integrate spatial patterns and processes for hierarchical forest landscape planning and management.

  15. Validating visual disturbance types and classes used for forest soil monitoring protocols

    Treesearch

    D. S. Page-Dumroese; A. M. Abbott; M. P. Curran; M. F. Jurgensen

    2012-01-01

    We describe several methods for validating visual soil disturbance classes used during forest soil monitoring after specific management operations. Site-specific vegetative, soil, and hydrologic responses to soil disturbance are needed to identify sensitive and resilient soil properties and processes; therefore, validation of ecosystem responses can provide information...

  16. Forest fragmentation of southern U.S. bottomland hardwoods

    Treesearch

    Victor A. Rudis

    1993-01-01

    The magnitude and character of forest fragmentation are evaluated for bottomland hardwoods in the southern United States.Fragment size class is significantly associated with the frequency of bottomland hardwood species, stand size and ownership classes, and land use attributes.Differences in the frequency of indicators of multiple values are apparent. Two diverse...

  17. The causes of fires on northeastern national forests.

    Treesearch

    William A. Main; Donald A. Haines

    1974-01-01

    Presents cross-tabulations of classes of people, activities, and causes responsible for forest fires on national forests. The data combinations indicate that greater prevention efforts might be directed toward hunters and fishermen.

  18. Object-based class modelling for multi-scale riparian forest habitat mapping

    NASA Astrophysics Data System (ADS)

    Strasser, Thomas; Lang, Stefan

    2015-05-01

    Object-based class modelling allows for mapping complex, hierarchical habitat systems. The riparian zone, including forests, represents such a complex ecosystem. Forests within riparian zones are biologically high productive and characterized by a rich biodiversity; thus considered of high community interest with an imperative to be protected and regularly monitored. Satellite earth observation (EO) provides tools for capturing the current state of forest habitats such as forest composition including intermixture of non-native tree species. Here we present a semi-automated object based image analysis (OBIA) approach for the mapping of riparian forests by applying class modelling of habitats based on the European Nature Information System (EUNIS) habitat classifications and the European Habitats Directive (HabDir) Annex 1. A very high resolution (VHR) WorldView-2 satellite image provided the required spatial and spectral details for a multi-scale image segmentation and rule-base composition to generate a six-level hierarchical representation of riparian forest habitats. Thereby habitats were hierarchically represented within an image object hierarchy as forest stands, stands of homogenous tree species and single trees represented by sunlit tree crowns. 522 EUNIS level 3 (EUNIS-3) habitat patches with a mean patch size (MPS) of 12,349.64 m2 were modelled from 938 forest stand patches (MPS = 6868.20 m2) and 43,742 tree stand patches (MPS = 140.79 m2). The delineation quality of the modelled EUNIS-3 habitats (focal level) was quantitatively assessed to an expert-based visual interpretation showing a mean deviation of 11.71%.

  19. Discriminant forest classification method and system

    DOEpatents

    Chen, Barry Y.; Hanley, William G.; Lemmond, Tracy D.; Hiller, Lawrence J.; Knapp, David A.; Mugge, Marshall J.

    2012-11-06

    A hybrid machine learning methodology and system for classification that combines classical random forest (RF) methodology with discriminant analysis (DA) techniques to provide enhanced classification capability. A DA technique which uses feature measurements of an object to predict its class membership, such as linear discriminant analysis (LDA) or Andersen-Bahadur linear discriminant technique (AB), is used to split the data at each node in each of its classification trees to train and grow the trees and the forest. When training is finished, a set of n DA-based decision trees of a discriminant forest is produced for use in predicting the classification of new samples of unknown class.

  20. Tree age, disturbance history, and carbon stocks and fluxes in subalpine Rocky Mountain forests

    Treesearch

    J.B. Bradford; R.A. Birdsey; L.A. Joyce; M.G. Ryan

    2008-01-01

    Forest carbon stocks and fluxes vary with forest age, and relationships with forest age are often used to estimate fluxes for regional or national carbon inventories. Two methods are commonly used to estimate forest age: observed tree age or time since a known disturbance. To clarify the relationships between tree age, time since disturbance and forest carbon storage...

  1. Coastal change analysis program implemented in Louisiana

    USGS Publications Warehouse

    Ramsey, Elijah W.; Nelson, G.A.; Sapkota, S.K.

    2001-01-01

    Landsat Thematic Mapper images from 1990 to 1996 and collateral data sources were used to classify the land cover of the Mermentau River Basin (MRB) within the Chenier Plain of coastal Louisiana. Landcover classes followed the definition of the National Oceanic and Atmospheric Administration's Coastal Change Analysis Program; however, classification methods had to be developed as part of this study for attainment of these national classification standards. Classification method developments were especially important when classes were spectrally inseparable, when classes were part of spatial and spectral continuums, when the spatial resolution of the sensor included more than one landcover type, and when human activities caused abnormal transitions in the landscape. Most classification problems were overcome by using one or a combination of techniques, such as separating the MRB into subregions of commonality, applying masks to specific land mixtures, and highlighting class transitions between years that were highly unlikely. Overall, 1990, 1993, and 1996 classification accuracy percentages (associated kappa statistics) were 80% (0.79), 78% (0.76), and 86% (0.84), respectively. Most classification errors were associated with confusion between managed (cultivated land) and unmanaged grassland classes; scrub shrub, grasslands and forest classes; water, unconsolidated shore and bare land classes; and especially in 1993, between water and floating vegetation classes. Combining cultivated land and grassland classes and water and floating vegetation classes into single classes accuracies for 1990, 1993, and 1996 increased to 82%, 83%, and 90%, respectively. To improve the interpretation of landcover change, three indicators of landcover class stability were formulated. Location stability was defined as the percentage of a landcover class that remained as the same class in the same location at the beginning and the end of the monitoring period. Residence stability was defined as the percent change in each class within the entire MRB during the monitoring period. Turnover was defined as the addition of other landcover classes to the target landcover class during the defined monitoring period. These indicators allowed quick assessment of the dynamic nature of landcover classes, both in reference to a spatial location and to retaining their presence throughout the MRB. Examining the landcover changes between 1990 to 1993 and 1993 to 1996, led us to five principal findings: (1) Landcover turnover is maintaining a near stable logging cycle, although the locations of grassland, scrub shrub, and forest areas involved in the cycle appeared to change. (2) Planting of seedlings is critical to maintaining cycle stability. (3) Logging activities tend to replace woody land mixed forests with woody land evergreen forests. (4) Wetland estuarine marshes are expanding slightly. (5) Wetland palustrine marshes and mature forested wetlands in the MRB are relatively stable.

  2. Age- and size-related changes in physiological characteristics and chemical composition of Acer pseudoplatanus and Fraxinus excelsior trees.

    PubMed

    Abdul-Hamid, Hazandy; Mencuccini, Maurizio

    2009-01-01

    Forest growth is an important factor both economically and ecologically, and it follows a predictable trend with age. Generally, growth accelerates as canopies develop in young forests and declines substantially soon after maximum leaf area is attained. The causes of this decline are multiple and may be linked to age- or size-related processes, or both. Our objective was to determine the relative effects of tree age and tree size on the physiological attributes of two broadleaf species. As age and size are normally coupled during growth, an approach based on grafting techniques to separate the effects of size from those of age was adopted. Genetically identical grafted seedlings were produced from scions taken from trees of four age classes, ranging from 4 to 162 years. We found that leaf-level net photosynthetic rate per unit of leaf mass and some other leaf structural and biochemical characteristics had decreased substantially with increasing size of the donor trees in the field, whereas other gas exchange parameters expressed on a leaf area basis did not. In contrast, these parameters remained almost constant in grafted seedlings, i.e., scions taken from donor trees with different meristematic ages show no age-related trend after they were grafted onto young rootstocks. In general, the results suggested that size-related limitations triggered the declines in photosynthate production and tree growth, whereas less evidence was found to support a role of meristematic age.

  3. Using indigenous knowledge to link hyper-temporal land cover mapping with land use in the Venezuelan Amazon: "The Forest Pulse".

    PubMed

    Olivero, Jesús; Ferri, Francisco; Acevedo, Pelayo; Lobo, Jorge M; Fa, John E; Farfán, Miguel Á; Romero, David; Real, Raimundo

    2016-12-01

    Remote sensing and traditional ecological knowledge (TEK) can be combined to advance conservation of remote tropical regions, e.g. Amazonia, where intensive in situ surveys are often not possible. Integrating TEK into monitoring and management of these areas allows for community participation, as well as for offering novel insights into sustainable resource use. In this study, we developed a 250 m resolution land-cover map of the Western Guyana Shield (Venezuela) based on remote sensing, and used TEK to validate its relevance for indigenous livelihoods and land uses. We first employed a hyper-temporal remotely sensed vegetation index to derive a land classification system. During a 1 300 km, eight day fluvial expedition in roadless areas in the Amazonas State (Venezuela), we visited six indigenous communities who provided geo-referenced data on hunting, fishing and farming activities. We overlaid these TEK data onto the land classification map, to link land classes with indigenous use. We characterized land classes using patterns of greenness temporal change and topo-hydrological information, and proposed 12 land-cover types, grouped into five main landscapes: 1) water bodies; 2) open lands/forest edges; 3) evergreen forests; 4) submontane semideciduous forests, and 5) cloud forests. Each land cover class was identified with a pulsating profile describing temporal changes in greenness, hence we labelled our map as "The Forest Pulse". These greenness profiles showed a slightly increasing trend, for the period 2000 to 2009, in the land classes representing grassland and scrubland, and a slightly decreasing trend in the classes representing forests. This finding is consistent with a gain in carbon in grassland as a consequence of climate warming, and also with some loss of vegetation in the forests. Thus, our classification shows potential to assess future effects of climate change on landscape. Several classes were significantly connected with agriculture, fishing, overall hunting, and more specifically the hunting of primates, Mazama americana, Dasyprocta fuliginosa, and Tayassu pecari. Our results showed that TEK-based approaches can serve as a basis for validating the livelihood relevance of landscapes in high-value conservation areas, which can form the basis for furthering the management of natural resources in these regions.

  4. Can we set a global threshold age to define mature forests?

    PubMed

    Martin, Philip; Jung, Martin; Brearley, Francis Q; Ribbons, Relena R; Lines, Emily R; Jacob, Aerin L

    2016-01-01

    Globally, mature forests appear to be increasing in biomass density (BD). There is disagreement whether these increases are the result of increases in atmospheric CO2 concentrations or a legacy effect of previous land-use. Recently, it was suggested that a threshold of 450 years should be used to define mature forests and that many forests increasing in BD may be younger than this. However, the study making these suggestions failed to account for the interactions between forest age and climate. Here we revisit the issue to identify: (1) how climate and forest age control global forest BD and (2) whether we can set a threshold age for mature forests. Using data from previously published studies we modelled the impacts of forest age and climate on BD using linear mixed effects models. We examined the potential biases in the dataset by comparing how representative it was of global mature forests in terms of its distribution, the climate space it occupied, and the ages of the forests used. BD increased with forest age, mean annual temperature and annual precipitation. Importantly, the effect of forest age increased with increasing temperature, but the effect of precipitation decreased with increasing temperatures. The dataset was biased towards northern hemisphere forests in relatively dry, cold climates. The dataset was also clearly biased towards forests <250 years of age. Our analysis suggests that there is not a single threshold age for forest maturity. Since climate interacts with forest age to determine BD, a threshold age at which they reach equilibrium can only be determined locally. We caution against using BD as the only determinant of forest maturity since this ignores forest biodiversity and tree size structure which may take longer to recover. Future research should address the utility and cost-effectiveness of different methods for determining whether forests should be classified as mature.

  5. Carbon balance of the Alaskan boreal forest

    Treesearch

    John Yarie; Tim Hammond

    1996-01-01

    Determination of the carbon balance in a broad forest region like the Alaskan boreal forest requires the development of a number of important environmental (state factors) classes to allow for the development of carbon balance estimates.

  6. Inventory of forest and rangeland and detection of forest stress. [Black Hills, Manitou, Colorado, and Atlanta, Georgia test sites

    NASA Technical Reports Server (NTRS)

    Heller, R. C.; Aldrich, R. C.; Driscoll, R. S.; Weber, F. P. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. Controlled visual interpretation of one ERTS-1 scene taken at the peak of the growing season has indicated that classification to the ECOCLASS Series level is not entirely satisfactory. For five forest classes, aspen, Douglas-fir, lodgepole pine, ponderosa pine, and Spruce/fir, correct identification ranged from 60 to 70 percent. With the exception of shortgrass and wet shrubby meadow classes in the nonforest categories (81 and 100 percent correct, respectively), correct identification of the nonforest classes is so far unacceptable. The low accuracies are believed due to: (1) edge effects due to ecotones between plant community classes with apparent similar image characteristics; (2) confounding effects of amount of plant crown cover and ground surface material in the scene; and (3) variable land slope degree and aspect as it affects the image signature.

  7. Information system of forest growth and productivity by site quality type and elements of forest

    NASA Astrophysics Data System (ADS)

    Khlyustov, V.

    2012-04-01

    Information system of forest growth and productivity by site quality type and elements of forest V.K. Khlustov Head of the Forestry Department of Russian State Agrarian University named after K.A.Timiryazev doctor of agricultural sciences, professor The efficiency of forest management can be improved substantially by development and introduction of principally new models of forest growth and productivity dynamics based on regionalized site specific parameters. Therefore an innovative information system was developed. It describes the current state and gives a forecast for forest stand parameters: growth, structure, commercial and biological productivity depend on type of site quality. In contrast to existing yield tables, the new system has environmental basis: site quality type. The information system contains set of multivariate statistical models and can work at the level of individual trees or at the stand level. The system provides a graphical visualization, as well as export of the emulation results. The System is able to calculate detailed description of any forest stand based on five initial indicators: site quality type, site index, stocking, composition, and tree age by elements of the forest. The results of the model run are following parameters: average diameter and height, top height, number of trees, basal area, growing stock (total, commercial with distribution by size, firewood and residuals), live biomass (stem, bark, branches, foliage). The system also provides the distribution of mentioned above forest stand parameters by tree diameter classes. To predict the future forest stand dynamics the system require in addition the time slot only. Full set of forest parameters mention above will be provided by the System. The most conservative initial parameters (site quality type and site index) can be kept in the form of geo referenced polygons. In this case the system would need only 3 dynamic initial parameters (stocking, composition and age) to simulate forest parameters and their dynamics. The system can substitute traditional processing of forest inventory field data and provide users with detailed information on the current state of forest and give a prediction. Implementation of the proposed system in combination with high resolution remote sensing is able to increase significantly the quality of forest inventory and at the same time reduce the costs. The system is a contribution to site oriented forest management. The System is registered in the Russian State Register of Computer Programs 12.07.2011, No 2011615418.

  8. Spatial impact assessment of conifer stands in the Hoosier National Forest

    Treesearch

    Richard Thurau; Craig Wayson; Dale Weigel; Jeff Ehman

    2011-01-01

    Forest management decisions on Federal lands must be administered at many spatial and temporal scales. Forest condition, size class, and cover type at the stand level determine how silvicultural practices today will impact management area and overall forest goals in the future. The Hoosier National Forest (HNF) Land Resource Management Plan lists eight goals for...

  9. Law on the Forests of the DPRK [11 December 1992].

    PubMed

    1992-12-16

    This 1992 law implements the state policy of the Democratic People's Republic of Korea on forests by establishing rules for the creation, management, and protection of all classes of forests and forest resources. The Law includes provisions on plans for the planting of trees, forest-fire prevention, soil erosion control, and proper management of commercial logging.

  10. ERTS-1 data applications to Minnesota forest land use classification

    NASA Technical Reports Server (NTRS)

    Sizer, J. E. (Principal Investigator); Eller, R. G.; Meyer, M. P.; Ulliman, J. J.

    1973-01-01

    The author has identified the following significant results. Color-combined ERTS-1 MSS spectral slices were analyzed to determine the maximum (repeatable) level of meaningful forest resource classification data visually attainable by skilled forest photointerpreters for the following purposes: (1) periodic updating of the Minnesota Land Management Information System (MLMIS) statewide computerized land use data bank, and (2) to provide first-stage forest resources survey data for large area forest land management planning. Controlled tests were made of two forest classification schemes by experienced professional foresters with special photointerpretation training and experience. The test results indicate it is possible to discriminate the MLMIS forest class from the MLMIS nonforest classes, but that it is not possible, under average circumstances, to further stratify the forest classification into species components with any degree of reliability with ERTS-1 imagery. An ongoing test of the resulting classification scheme involves the interpretation, and mapping, of the south half of Itasca County, Minnesota, with ERTS-1 imagery. This map is undergoing field checking by on the ground field cooperators, whose evaluation will be completed in the fall of 1973.

  11. Mapping spatial distribution of forest age in China

    NASA Astrophysics Data System (ADS)

    Zhang, Yuan; Yao, Yitong; Wang, Xuhui; Liu, Yongwen; Piao, Shilong

    2017-03-01

    Forest stand age is a meaningful metric, which reflects the past disturbance legacy, provides guidelines for forest management practices, and is an important factor in qualifying forest carbon cycles and carbon sequestration potential. Reliable large-scale forest stand age information with high spatial resolutions, however, is difficult to obtain. In this study, we developed a top-down method to downscale the provincial statistics of national forest inventory data into 1 km stand age map using climate data and light detection and ranging-derived forest height. We find that the distribution of forest stand age in China is highly heterogeneous across the country, with a mean value of 42.6 years old. The relatively young stand age for Chinese forests is mostly due to the large proportion of newly planted forests (0-40 years old), which are more prevailing in south China. Older forests (stand age > 60 years old) are more frequently found in east Qinghai-Tibetan Plateau and the central mountain areas of west and northeast China, where human activities are less intensive. Among the 15 forest types, forests dominated by species of Taxodiaceae, with the exception of Cunninghamia lanceolata stands, have the oldest mean stand age (136 years), whereas Pinus massoniana forests are the youngest (18 years). We further identified uncertainties associated with our forest age map, which are high in west and northeast China. Our work documents the distribution of forest stand age in China at a high resolution which is useful for carbon cycle modeling and the sustainable use of China's forest resources.

  12. Empirical yield tables for Michigan.

    Treesearch

    Jerold T. Hahn; Joan M. Stelman

    1984-01-01

    Describes the tables derived from the 1980 Forest Survey of Michigan and presents ways the tables can be used. These tables are broken down according to Michigan's four Forest Survey Units, 14 forest types, and 5 site-index classes.

  13. [Carbon storage of forest stands in Shandong Province estimated by forestry inventory data].

    PubMed

    Li, Shi-Mei; Yang, Chuan-Qiang; Wang, Hong-Nian; Ge, Li-Qiang

    2014-08-01

    Based on the 7th forestry inventory data of Shandong Province, this paper estimated the carbon storage and carbon density of forest stands, and analyzed their distribution characteristics according to dominant tree species, age groups and forest category using the volume-derived biomass method and average-biomass method. In 2007, the total carbon storage of the forest stands was 25. 27 Tg, of which the coniferous forests, mixed conifer broad-leaved forests, and broad-leaved forests accounted for 8.6%, 2.0% and 89.4%, respectively. The carbon storage of forest age groups followed the sequence of young forests > middle-aged forests > mature forests > near-mature forests > over-mature forests. The carbon storage of young forests and middle-aged forests accounted for 69.3% of the total carbon storage. Timber forest, non-timber product forest and protection forests accounted for 37.1%, 36.3% and 24.8% of the total carbon storage, respectively. The average carbon density of forest stands in Shandong Province was 10.59 t x hm(-2), which was lower than the national average level. This phenomenon was attributed to the imperfect structure of forest types and age groups, i. e., the notably higher percentage of timber forests and non-timber product forest and the excessively higher percentage of young forests and middle-aged forest than mature forests.

  14. Forest Dragon-3: Decadal Trends of Northeastern Forests in China from Earth Observation Synergy

    NASA Astrophysics Data System (ADS)

    Schmullius, C.; Balling, J.; Schratz, P.; Thiel, C.; Santoro, M.; Wegmuller, U.; Li, Z.; Yong, P.

    2016-08-01

    In Forest DRAGON 3, synergy of Earth Observation products to derive information of decadal trends of forest in northeast China was investigated. Following up the results of Forest-DRAGON 1 and 2, Growing Stock Volume (GSV) products from different years were investigated to derive information on vegetational in north- east China. The BIOMASAR maps of 2005 and 2010, produced within the previous DRAGON projects, set the base for all analyses. We took a closer look at scale problems regarding GSV derivation, which are introduced by differing landcover within one pixel, to investigate differences throughout pixel classes with varying landcover class percentages. We developed an approach to select pixels containing forest only with the aim of undertaking a detailed analysis on retrieved GSV values for such pixels for the years 2005 and 2010. Using existing land cover products at different scales, the plausibility of changes in the BIOMASAR maps were checked.

  15. Multi-aged Forest: an Optimal Management Strategy for Carbon Sequestration

    NASA Astrophysics Data System (ADS)

    Yao, L.; Tang, X.; Ma, M.

    2017-12-01

    Disturbances and climatic changes significantly affect forest ecosystem productivity, water use efficiency (WUE) and carbon (C) flux dynamics. A deep understanding of terrestrial feedbacks to such effects and recovery mechanisms in forests across contrasting climatic regimes is essential to predict future regional/global C and water budgets, which are also closely related to the potential forest management decisions. However, the resilience of multi-aged and even-aged forests to disturbances has been debated for more than 60 years because of technical measurement constraints. Here we evaluated 62 site-years of eddy covariance measurements of net ecosystem production (NEP), evapotranspiration (ET), the estimates of gross primary productivity (GPP), ecosystem respiration (Re) and ecosystem-level WUE, as well as the relationships with environmental controls in three chronosequences of multi- and even-aged coniferous forests covering the Mediterranean, temperate and boreal regions. Age-specific dynamics in multi-year mean annual NEP and WUE revealed that forest age is a key variable that determines the sign and magnitude of recovering forest C source-sink strength from disturbances. However, the trends of annual NEP and WUE across succession stages between two stand structures differed substantially. The successional patterns of NEP exhibited an inverted-U trend with age at the two even-aged chronosequences, whereas NEP of the multi-aged chronosequence increased steadily through time. Meanwhile, site-level WUE of even-aged forests decreased gradually from young to mature, whereas an apparent increase occurred for the same forest age in multi-aged stands. Compared with even-aged forests, multi-aged forests sequestered more CO2 with forest age and maintained a relatively higher WUE in the later succession periods. With regard to the available flux measurements in this study, these behaviors are independent of tree species, stand ages and climate conditions . We also found that distinctly different environmental factors controlled forest C and water fluxes under three climatic regimes.These findings will provide important implications for forest management strategies to mitigate global climate change.

  16. AmeriFlux US-Me6 Metolius Young Pine Burn

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Law, Bev

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Me6 Metolius Young Pine Burn. Site Description - The study site is located east of the Cascade mountains, near Sisters, Central Oregon and is part of the Metolius cluster sites with different age and disturbance classes within the AmeriFlux network. After a severe fire in 1979, the site was salvage logged, was acquired by the US Forest Service land and re-forested in 1990. The dominant overstory vegetation are 20-year old ponderosa pine trees with an average height of 5.2 +/- 1.1 m. The season maximum overstory half-sidedmore » LAI was 0.6 m2 m-2 in 2010. Tree density is low, with ca. 162 trees ha-1.« less

  17. Forestry inventory based on multistage sampling with probability proportional to size

    NASA Technical Reports Server (NTRS)

    Lee, D. C. L.; Hernandez, P., Jr.; Shimabukuro, Y. E.

    1983-01-01

    A multistage sampling technique, with probability proportional to size, is developed for a forest volume inventory using remote sensing data. The LANDSAT data, Panchromatic aerial photographs, and field data are collected. Based on age and homogeneity, pine and eucalyptus classes are identified. Selection of tertiary sampling units is made through aerial photographs to minimize field work. The sampling errors for eucalyptus and pine ranged from 8.34 to 21.89 percent and from 7.18 to 8.60 percent, respectively.

  18. Smaller global and regional carbon emissions from gross land use change when considering sub-grid secondary land cohorts in a global dynamic vegetation model

    NASA Astrophysics Data System (ADS)

    Yue, Chao; Ciais, Philippe; Li, Wei

    2018-02-01

    Several modelling studies reported elevated carbon emissions from historical land use change (ELUC) by including bidirectional transitions on the sub-grid scale (termed gross land use change), dominated by shifting cultivation and other land turnover processes. However, most dynamic global vegetation models (DGVMs) that have implemented gross land use change either do not account for sub-grid secondary lands, or often have only one single secondary land tile over a model grid cell and thus cannot account for various rotation lengths in shifting cultivation and associated secondary forest age dynamics. Therefore, it remains uncertain how realistic the past ELUC estimations are and how estimated ELUC will differ between the two modelling approaches with and without multiple sub-grid secondary land cohorts - in particular secondary forest cohorts. Here we investigated historical ELUC over 1501-2005 by including sub-grid forest age dynamics in a DGVM. We run two simulations, one with no secondary forests (Sageless) and the other with sub-grid secondary forests of six age classes whose demography is driven by historical land use change (Sage). Estimated global ELUC for 1501-2005 is 176 Pg C in Sage compared to 197 Pg C in Sageless. The lower ELUC values in Sage arise mainly from shifting cultivation in the tropics under an assumed constant rotation length of 15 years, being 27 Pg C in Sage in contrast to 46 Pg C in Sageless. Estimated cumulative ELUC values from wood harvest in the Sage simulation (31 Pg C) are however slightly higher than Sageless (27 Pg C) when the model is forced by reconstructed harvested areas because secondary forests targeted in Sage for harvest priority are insufficient to meet the prescribed harvest area, leading to wood harvest being dominated by old primary forests. An alternative approach to quantify wood harvest ELUC, i.e. always harvesting the close-to-mature forests in both Sageless and Sage, yields similar values of 33 Pg C by both simulations. The lower ELUC from shifting cultivation in Sage simulations depends on the predefined forest clearing priority rules in the model and the assumed rotation length. A set of sensitivity model runs over Africa reveal that a longer rotation length over the historical period likely results in higher emissions. Our results highlight that although gross land use change as a former missing emission component is included by a growing number of DGVMs, its contribution to overall ELUC remains uncertain and tends to be overestimated when models ignore sub-grid secondary forests.

  19. Forest resources of Puerto Rico, 1990. Forest Service Resource Bulletin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franco, P.A.; Weaver, P.L.; Eggen-McIntosh, S.

    1997-10-01

    The prinicipal findings of the second forest survey of Puerto Rico (1990) and changes that have occurred since the survey was established in 1980 are presented. The forest inventory estimates describe the timber resource found within the potential commercial region designated in the first survey. The timber resource addressed consists primarily of regrown areas on abandoned pastures and cropland, including coffee production areas. The status and trends of the timber resource are presented for the two Life Zones occurring in the commercial region, as well as for various forest classes, which are based on stand history and origin. Topics dicussedmore » include forest area, timberland area, basal area, species composition, timber volume, growing-stock volume, and sawtimber volume. results of the 1990 survey are promising, showing inceases in numbers of trees across all diamater classes and substantial increases in volume. These trends offer evidence that Puerto Rico`s forests are continuing to recover following a dramatic decline of the late 19th and early 20th centuries.« less

  20. Vegetation Analysis and Land Use Land Cover Classification of Forest in Uttara Kannada District India Through Geo-Informatics Approach

    NASA Astrophysics Data System (ADS)

    Koppad, A. G.; Janagoudar, B. S.

    2017-05-01

    The study was conducted in Uttara Kannada districts during the year 2012-2014. The study area lies between 13.92° N to 15.52° N latitude and 74.08° E to 75.09° E longitude with an area of 10,215 km2. The Indian satellite IRS P6 LISS-III imageries were used to classify the land use land cover classes with ground truth data collected with GPS through supervised classification in ERDAS software. The land use and land cover classes identified were dense forest, horticulture plantation, sparse forest, forest plantation, open land and agriculture land. The dense forest covered an area of 63.32 % (6468.70 sq km) followed by agriculture 12.88 % (1315.31 sq. km), sparse forest 10.59 % (1081.37 sq. km), open land 6.09 % (622.37 sq. km), horticulture plantation and least was forest plantation (1.07 %). Settlement, stony land and water body together cover about 4.26 percent of the area. The study indicated that the aspect and altitude influenced the forest types and vegetation pattern. The NDVI map was prepared which indicated that healthy vegetation is represented by high NDVI values between 0.1 and 1. The non-vegetated features such as water bodies, settlement, and stony land indicated less than 0.1 values. The decrease in forest area in some places was due to anthropogenic activities. The thematic map of land use land cover classes was prepared using Arc GIS Software.

  1. Identifying baldcypress-water tupelo regeneration classes in forested wetlands of the Atchafalaya Basin, Louisiana

    USGS Publications Warehouse

    Faulkner, Stephen P.; Bhattarai, Prajwol; Allen, Yvonne C.; Barras, John A.; Constant, Glenn C.

    2009-01-01

    Baldcypress-water tupelo (cypress-tupelo) swamps are critically important coastal forested wetlands found throughout the southeastern U.S. The long-term survival and sustainability of these swamp forests is unknown due to large-scale changes in hydrologic regimes that prevent natural regeneration following logging or mortality. We used NWI wetland maps and remotely sensed hydrologic data to map cypress-tupelo communities, surface water, and the extent and location of proposed regeneration condition classes for cypress-tupelo swamps in the Atchafalaya Basin, LA. Only 6,175 ha (5.8%) of the 106,227 ha of cypress-tupelo forest in the Lower Atchafalaya Basin Floodway was classified as capable of naturally regenerating. Over 23% (24,525 ha) of the forest area was mapped as unable to regenerate either naturally or artificially. The loss and conversion of nearly 25,000 ha of cypress-tupelo forest would have significant and long-lasting impacts on ecosystem services such as wildlife habitat for birds and Louisiana black bears. Given the landscape-scale changes in surface elevations and flooding depths and durations throughout southern Louisiana, similar conditions and impacts are likely applicable to all coastal cypress-tupelo forests in Louisiana. Better data on flooding during the growing season are needed to more accurately identify and refine the location and spatial extent of the regeneration condition classes.

  2. Methods used to parameterize the spatially-explicit components of a state-and-transition simulation model

    USGS Publications Warehouse

    Sleeter, Rachel; Acevedo, William; Soulard, Christopher E.; Sleeter, Benjamin M.

    2015-01-01

    Spatially-explicit state-and-transition simulation models of land use and land cover (LULC) increase our ability to assess regional landscape characteristics and associated carbon dynamics across multiple scenarios. By characterizing appropriate spatial attributes such as forest age and land-use distribution, a state-and-transition model can more effectively simulate the pattern and spread of LULC changes. This manuscript describes the methods and input parameters of the Land Use and Carbon Scenario Simulator (LUCAS), a customized state-and-transition simulation model utilized to assess the relative impacts of LULC on carbon stocks for the conterminous U.S. The methods and input parameters are spatially explicit and describe initial conditions (strata, state classes and forest age), spatial multipliers, and carbon stock density. Initial conditions were derived from harmonization of multi-temporal data characterizing changes in land use as well as land cover. Harmonization combines numerous national-level datasets through a cell-based data fusion process to generate maps of primary LULC categories. Forest age was parameterized using data from the North American Carbon Program and spatially-explicit maps showing the locations of past disturbances (i.e. wildfire and harvest). Spatial multipliers were developed to spatially constrain the location of future LULC transitions. Based on distance-decay theory, maps were generated to guide the placement of changes related to forest harvest, agricultural intensification/extensification, and urbanization. We analyze the spatially-explicit input parameters with a sensitivity analysis, by showing how LUCAS responds to variations in the model input. This manuscript uses Mediterranean California as a regional subset to highlight local to regional aspects of land change, which demonstrates the utility of LUCAS at many scales and applications.

  3. Scale-dependent effects of landscape structure and composition on diurnal roost selection by forest bats

    Treesearch

    Roger W. Perry; Ronald E. Thill; David M. Leslie

    2008-01-01

    Forest management affects the quality and availability of roost sites for forest-dwelling bats, but information on roost selection beyond the scale of individual forest stands is limited. We evaluated effects of topography (elevation, slope, and proximity of roads and streams), forest habitat class, and landscape patch configuration on selection of summer diurnal oosts...

  4. Changes in forest soils as the result of exotic diseases, timber harvest, and fire exclusion and their implications on forest restoration

    Treesearch

    Russell T. Graham; Theresa B. Jain

    2007-01-01

    In the western United States and throughout the world, three general classes of coniferous forests can be identified with each having similar vegetative complexes, native disturbances, and climate (Daubenmire and Daubenmire 1968, Hann et al. 1997). Dry forests, often dominated by pines (Pinus), cold forests often dominated by spruces (Picea...

  5. Does increasing rotation length lead to greater forest carbon storage?

    NASA Astrophysics Data System (ADS)

    Ter-Mikaelian, M. T.; Colombo, S. J.; Chen, J.

    2016-12-01

    Forest management is a key factor affecting climate change mitigation by forests. Increasing the age of harvesting (also referred to as rotation length) is a management practice that has been proposed as a means of increasing forest carbon sequestration and storage. However, studies of the effects of increasing harvest age on forest carbon stocks have mostly been limited to forest plantations. In contrast, this study assesses the effects of increased harvest age of managed natural forests of Ontario (Canada) at two scales. At the stand level, we assess merchantable volume yield curves to differentiate those for which increasing the age of harvest results in an increase in total forest carbon stocks versus those for which increased harvest age reduces carbon stocks. The stand level results are then applied to forest landscapes to demonstrate that the effect of increasing the age of harvest on forest carbon storage is specific to the forest growth rates for a given forest landscape and depends on the average age at which forests are harvested under current (business-as-usual) management practice. We discuss the implications of these results for forest management aimed at mitigating climate change.

  6. An enhanced forest classification scheme for modeling vegetation-climate interactions based on national forest inventory data

    NASA Astrophysics Data System (ADS)

    Majasalmi, Titta; Eisner, Stephanie; Astrup, Rasmus; Fridman, Jonas; Bright, Ryan M.

    2018-01-01

    Forest management affects the distribution of tree species and the age class of a forest, shaping its overall structure and functioning and in turn the surface-atmosphere exchanges of mass, energy, and momentum. In order to attribute climate effects to anthropogenic activities like forest management, good accounts of forest structure are necessary. Here, using Fennoscandia as a case study, we make use of Fennoscandic National Forest Inventory (NFI) data to systematically classify forest cover into groups of similar aboveground forest structure. An enhanced forest classification scheme and related lookup table (LUT) of key forest structural attributes (i.e., maximum growing season leaf area index (LAImax), basal-area-weighted mean tree height, tree crown length, and total stem volume) was developed, and the classification was applied for multisource NFI (MS-NFI) maps from Norway, Sweden, and Finland. To provide a complete surface representation, our product was integrated with the European Space Agency Climate Change Initiative Land Cover (ESA CCI LC) map of present day land cover (v.2.0.7). Comparison of the ESA LC and our enhanced LC products (https://doi.org/10.21350/7zZEy5w3) showed that forest extent notably (κ = 0.55, accuracy 0.64) differed between the two products. To demonstrate the potential of our enhanced LC product to improve the description of the maximum growing season LAI (LAImax) of managed forests in Fennoscandia, we compared our LAImax map with reference LAImax maps created using the ESA LC product (and related cross-walking table) and PFT-dependent LAImax values used in three leading land models. Comparison of the LAImax maps showed that our product provides a spatially more realistic description of LAImax in managed Fennoscandian forests compared to reference maps. This study presents an approach to account for the transient nature of forest structural attributes due to human intervention in different land models.

  7. Wood-inhabiting, polyporoid fungi in aspen-dominated forests managed for biomass in the U.S. Lake States

    Treesearch

    Nicholas J. Brazee; Daniel L. Lindner; Shawn Fraver; Anthony W. D' Amato; Amy M. Milo

    2012-01-01

    To better understand the potential long-term effects of biomass harvesting on biodiversity, the polyporoid fungi community was characterized from 120 plots in four aspen-dominated forests in Minnesota. Four deadwood variables (substratum species, substratum type, decay class and diameter class) were recorded for each polyporoid species occurrence. A total of 2358...

  8. A statistically valid method for using FIA plots to guide spectral class rejection in producing stratification maps

    Treesearch

    Michael L. Hoppus; Andrew J. Lister

    2002-01-01

    A Landsat TM classification method (iterative guided spectral class rejection) produced a forest cover map of southern West Virginia that provided the stratification layer for producing estimates of timberland area from Forest Service FIA ground plots using a stratified sampling technique. These same high quality and expensive FIA ground plots provided ground reference...

  9. Mortality patterns following spruce budworm infestation in unprotected spruce-fir forests in Maine

    Treesearch

    Dale S. Solomon; Lianjun Zhang; Thomas B. Brann; David S. Larrick

    2003-01-01

    Cumulative and annual mortality of red spruce (Picea rubens Sarg.) and balsam fir [Abies balsamea (L) Mill.] were examined over a 10 yr period to follow the mortality patterns in unprotected spruce-fir forests in northern Maine. Different mortality patterns were determined based on stand composition classes and merchantability classes. In general, balsam fir was more...

  10. Forest cover dynamics in the Pacific Northwest west side: regional trends and predictions.

    Treesearch

    Ralph J. Alig; Daolan Zheng; Thomas A. Spies; Brett J. Butler

    2000-01-01

    The objectives of this paper were to (1) analyze recent rates of transitions among forest cover types on private timberland, (2) identify differences by ownership class, and (3) project future changes under different scenarios related to current policy issues in the Pacific Northwest. Timber harvests are the dominant class of disturbance on private timberland in...

  11. Agro-forest landscape and the 'fringe' city: a multivariate assessment of land-use changes in a sprawling region and implications for planning.

    PubMed

    Salvati, Luca

    2014-08-15

    The present study evaluates the impact of urban expansion on landscape transformations in Rome's metropolitan area (1500 km(2)) during the last sixty years. Landscape composition, structure and dynamics were assessed for 1949 and 2008 by analyzing the distribution of 26 metrics for nine land-use classes. Changes in landscape structure are analysed by way of a multivariate statistical approach providing a summary measure of rapidity-to-change for each metric and class. Land fragmentation increased during the study period due to urban expansion. Poorly protected or medium-low value added classes (vineyards, arable land, olive groves and pastures) experienced fragmentation processes compared with protected or high-value added classes (e.g. forests, olive groves) showing larger 'core' areas and lower fragmentation. The relationship observed between class area and mean patch size indicates increased fragmentation for all uses of land (both expanding and declining) except for urban areas and forests. Reducing the impact of urban expansion for specific land-use classes is an effective planning strategy to contrast the simplification of Mediterranean landscape in peri-urban areas. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Diverse habitat use during two life stages of the critically endangered Bahama Oriole (Icterus northropi): community structure, foraging, and social interactions

    PubMed Central

    Hayes, William K.

    2017-01-01

    Our ability to prevent extinction in declining populations often depends on effective management of habitats that are disturbed through wildfire, logging, agriculture, or development. In these disturbed landscapes, the juxtaposition of multiple habitat types can be especially important to fledglings and young birds, which may leave breeding grounds in human-altered habitat for different habitats nearby that provide increased foraging opportunities, reduced competition, and higher protection from predators. In this study, we evaluated the importance of three habitat types to two life stages of the critically endangered Bahama Oriole (Icterus northropi), a synanthropic songbird endemic to Andros, The Bahamas. First, we determined the avian species composition and relative abundance of I. northropi among three major vegetation types on Andros: Caribbean pine (Pinus caribaea) forest, coppice (broadleaf dry forest), and anthropogenic areas, dominated by nonnative vegetation (farmland and developed land). We then compared the foraging strategies and social interactions of two age classes of adult Bahama Orioles in relation to differential habitat use. Bird surveys late in the Bahama Oriole’s breeding season indicated the number of avian species and Bahama Oriole density were highest in coppice. Some bird species occurring in the coppice and pine forest were never observed in agricultural or residential areas, and may be at risk if human disturbance of pine forest and coppice increases, as is occurring at a rapid pace on Andros. During the breeding season, second-year (SY) adult Bahama Orioles foraged in all vegetation types, whereas after-second-year (ASY) adults were observed foraging only in anthropogenic areas, where the species nested largely in introduced coconut palms (Cocos nucifera). Additionally, SY adults foraging in anthropogenic areas were often observed with an ASY adult, suggesting divergent habitat use for younger, unpaired birds. Other aspects of foraging (vegetation features, food-gleaning behavior, and food items) were similar for the two age classes. Older Bahama Orioles exhibited relatively higher rates of social interactions (intraspecific and interspecific pooled) in anthropogenic areas, and won more interaction outcomes compared to younger adults. Our findings concur with those of other studies indicating dry broadleaf forest is vitally important to migrating, wintering, and resident birds, including the critically endangered Bahama Oriole, which appears to depend heavily on this vegetation type during certain life stages. PMID:28652943

  13. Create a Rain Forest in the Gym.

    ERIC Educational Resources Information Center

    Kane, Karen

    1995-01-01

    Describes a creative interdisciplinary program for K-3 students that involves setting up a rain forest in the gymnasium to teach students gymnastic skills in the context of the Amazon rain forest. The paper describes how to set up the rain forest and teach a variety of classes. Rainforest resources are included. (SM)

  14. How do disturbances and climate effects on carbon and water fluxes differ between multi-aged and even-aged coniferous forests?

    PubMed

    Tang, Xuguang; Li, Hengpeng; Ma, Mingguo; Yao, Li; Peichl, Matthias; Arain, Altaf; Xu, Xibao; Goulden, Michael

    2017-12-01

    Disturbances and climatic changes significantly affect forest ecosystem productivity, water use efficiency (WUE) and carbon (C) flux dynamics. A deep understanding of terrestrial feedbacks to such effects and recovery mechanisms in forests across contrasting climatic regimes is essential to predict future regional/global C and water budgets, which are also closely related to the potential forest management decisions. However, the resilience of multi-aged and even-aged forests to disturbances has been debated for >60years because of technical measurement constraints. Here we evaluated 62site-years of eddy covariance measurements of net ecosystem production (NEP), evapotranspiration (ET), the estimates of gross primary productivity (GPP), ecosystem respiration (R e ) and ecosystem-level WUE, as well as the relationships with environmental controls in three chronosequences of multi- and even-aged coniferous forests covering the Mediterranean, temperate and boreal regions. Age-specific dynamics in multi-year mean annual NEP and WUE revealed that forest age is a key variable that determines the sign and magnitude of recovering forest C source-sink strength from disturbances. However, the trends of annual NEP and WUE across succession stages between two stand structures differed substantially. The successional patterns of NEP exhibited an inverted-U trend with age at the two even-aged chronosequences, whereas NEP of the multi-aged chronosequence increased steadily through time. Meanwhile, site-level WUE of even-aged forests decreased gradually from young to mature, whereas an apparent increase occurred for the same forest age in multi-aged stands. Compared with even-aged forests, multi-aged forests sequestered more CO 2 with forest age and maintained a relatively higher WUE in the later succession periods. With regard to the available flux measurements in this study, these behaviors are independent of tree species, stand ages and climate conditions. We also found that distinctly different environmental factors controlled forest C and water fluxes under three climatic regimes. Typical weather events such as temperature anomalies or drying-wetting cycles severely affected forest functions. Particularly, a summer drought in the boreal forest resulted in an increased NEP owing to a considerable decrease in R e , but at the cost of greater water loss from deeper groundwater resources. These findings will provide important implications for forest management strategies to mitigate global climate change. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Investigating the Capability of IRS-P6-LISS IV Satellite Image for Pistachio Forests Density Mapping (case Study: Northeast of Iran)

    NASA Astrophysics Data System (ADS)

    Hoseini, F.; Darvishsefat, A. A.; Zargham, N.

    2012-07-01

    In order to investigate the capability of satellite images for Pistachio forests density mapping, IRS-P6-LISS IV data were analyzed in an area of 500 ha in Iran. After geometric correction, suitable training areas were determined based on fieldwork. Suitable spectral transformations like NDVI, PVI and PCA were performed. A ground truth map included of 34 plots (each plot 1 ha) were prepared. Hard and soft supervised classifications were performed with 5 density classes (0-5%, 5-10%, 10-15%, 15-20% and > 20%). Because of low separability of classes, some classes were merged and classifications were repeated with 3 classes. Finally, the highest overall accuracy and kappa coefficient of 70% and 0.44, respectively, were obtained with three classes (0-5%, 5-20%, and > 20%) by fuzzy classifier. Considering the low kappa value obtained, it could be concluded that the result of the classification was not desirable. Therefore, this approach is not appropriate for operational mapping of these valuable Pistachio forests.

  16. Effects of stand age on the demography of a temperate forest herb in post-agricultural forests.

    PubMed

    Jacquemyn, Hans; Brys, Rein

    2008-12-01

    Changes in land use have been shown to have profound effects on forest plant community structure and diversity. Dispersal limitation has been invoked as a major factor hampering colonization of forest plant species, while seed-sowing experiments and performance observations have provided some evidence for recruitment limitation determining forest plant distribution in post-agricultural forests. However, most of these studies were relatively short-term, and very few studies have investigated long-term growth rates of populations occurring in recent and ancient forests. In this study, matrix models using demographic data collected for four consecutive years were used to study the effect of forest age on population dynamics of the temperate forest herb Primula elatior. A life table response experiment (LTRE) and elasticity analysis were used to analyze the effect of forest age on population growth rate (lambda) and to decompose the effect of forest age on lambda into contributions from each matrix element. Population growth increased logarithmically with increasing forest age. Bootstrap analyses showed that populations located in very recent forests (< 50-years-old) had growth rates that were significantly < 1, whereas populations located in forests > 150-years-old had growth rates that were significantly > 1. Summed elasticities for individual growth significantly decreased with increasing forest age, whereas summed elasticities for survival and fertility significantly increased with increasing forest age. The LTRE analysis showed that the increase in lambda with increasing forest age was mainly due to increased seedling and juvenile growth and increased juvenile and adult survival. Our results indicate that past agricultural land use has long-lasting effects on the demography of forest herbs and may provide an additional mechanistic explanation for the poor colonization capacity of many forest herbs in post-agricultural forests.

  17. Soil losses in rural watersheds with environmental land use conflicts.

    PubMed

    Pacheco, F A L; Varandas, S G P; Sanches Fernandes, L F; Valle Junior, R F

    2014-07-01

    Soil losses were calculated in a rural watershed where environmental land use conflicts developed in the course of a progressive invasion of forest and pasture/forest lands by agriculture, especially vineyards. The hydrographic basin is located in the Douro region where the famous Port wine is produced (northern Portugal) and the soil losses were estimated by the Universal Soil Loss Equation (USLE) in combination with a Geographic Information System (GIS). Environmental land use conflicts were set up on the basis of land use and land capability maps, coded as follows: 1-agriculture, 2-pasture, 3-pasture/forest, and 4-forest. The difference between the codes of capability and use defines a conflict class, where a negative or nil value means no conflict and a positive i value means class i conflict. The reliability of soil loss estimates was tested by a check of these values against the frequency of stone wall instabilities in vineyard terraces, with good results. Using the USLE, the average soil loss (A) was estimated in A=12.2 t·ha(-1)·yr(-1) and potential erosion risk areas were found to occupy 28.3% of the basin, defined where soil losses are larger than soil loss tolerances. Soil losses in no conflict regions (11.2 t·ha(-1)·yr(-1)) were significantly different from those in class 2 (6.8 t·ha(-1)·yr(-1)) and class 3 regions (21.3 t·ha(-1)·yr(-1)) that in total occupy 2.62 km(2) (14.3% of the basin). When simulating a scenario of no conflict across the entire basin, whereby land use in class 2 conflict regions is set up to permanent pastures and in class 3 conflict regions to pine forests, it was concluded that A=0.95 t·ha(-1)·yr(-1) (class 2) or A=9.8 t·ha(-1)·yr(-1) (class 3), which correspond to drops of 86% and 54% in soil loss relative to the actual values. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Minnesota Land Ownership Trends, 1962-1977

    Treesearch

    Pamela J. Jakes; Alexander Vasilevsky

    1980-01-01

    The distribution of Minnesota's commercial forest land among ownership classes has remained stable between 1962 and 1977. This note summarizes commercial forest ownership data by Forest Survey Unit for 1962 and 1977 and presents more detailed area statistics for Minnesota's 17 northern countries.

  19. Optimization of spectral bands for hyperspectral remote sensing of forest vegetation

    NASA Astrophysics Data System (ADS)

    Dmitriev, Egor V.; Kozoderov, Vladimir V.

    2013-10-01

    Optimization principles of accounting for the most informative spectral channels in hyperspectral remote sensing data processing serve to enhance the efficiency of the employed high-productive computers. The problem of pattern recognition of the remotely sensed land surface objects with the accent on the forests is outlined from the point of view of the spectral channels optimization on the processed hyperspectral images. The relevant computational procedures are tested using the images obtained by the produced in Russia hyperspectral camera that was installed on a gyro-stabilized platform to conduct the airborne flight campaigns. The Bayesian classifier is used for the pattern recognition of the forests with different tree species and age. The probabilistically optimal algorithm constructed on the basis of the maximum likelihood principle is described to minimize the probability of misclassification given by this classifier. The classification error is the major category to estimate the accuracy of the applied algorithm by the known holdout cross-validation method. Details of the related techniques are presented. Results are shown of selecting the spectral channels of the camera while processing the images having in mind radiometric distortions that diminish the classification accuracy. The spectral channels are selected of the obtained subclasses extracted from the proposed validation techniques and the confusion matrices are constructed that characterize the age composition of the classified pine species as well as the broad age-class recognition for the pine and birch species with the fully illuminated parts of their crowns.

  20. The Habitat Susceptibility of Bali Starling (Leucopsar rothschildi Stresemann> 1912) Based on Forest Fire Vulnerability Mappin in West Bali National Park

    NASA Astrophysics Data System (ADS)

    Pramatana, F.; Prasetyo, L. B.; Rushayati, S. B.

    2017-10-01

    Bali starling is an endemic and endangered species which tend to decrease of its population in the wild. West Bali National Park (WBNP) is the only habitat of bali starling, however it is threatened nowadays by forest fire. Understanding the sensitivity of habitat to forest & land fire is urgently needed. Geographic Information System (GIS) can be used for mapping the vulnerability of forest fire. This study aims to analyze the contributed factor of forest fire, to develop vulnerability level map of forest fire in WBNP, to estimate habitat vulnerability of bali starling. The variable for mapping forest fire in WBNP were road distance, village distance, land cover, NDVI, NDMI, surface temperature, and slope. Forest fire map in WBNP was created by scoring from each variable, and classified into four classes of forest fire vulnerability which are very low (9 821 ha), low (5 015.718 ha), middle (6 778.656 ha), and high (2 126.006 ha). Bali starling existence in the middle and high vulnerability forest fire class in WBNP, consequently the population and habitat of bali starling is a very vulnerable. Management of population and habitat of bali starling in WBNP must be implemented focus on forest fire impact.

  1. Tropical forest heterogeneity from TanDEM-X InSAR and lidar observations in Indonesia

    NASA Astrophysics Data System (ADS)

    De Grandi, Elsa Carla; Mitchard, Edward

    2016-10-01

    Fires exacerbated during El Niño Southern Oscillation are a serious threat in Indonesia leading to the destruction and degradation of tropical forests and emissions of CO2 in the atmosphere. Forest structural changes which occurred due to the 1997-1998 El Niño Southern Oscillation in the Sungai Wain Protection Forest (East Kalimantan, Indonesia), a previously intact forest reserve have led to the development of a range of landcover from secondary forest to areas dominated by grassland. These structural differences can be appreciated over large areas by remote sensing instruments such as TanDEM-X and LiDAR that provide information that are sensitive to vegetation vertical and horizontal structure. One-point statistics of TanDEM-X coherence (mean and CV) and LiDAR CHM (mean, CV) and derived metrics such as vegetation volume and canopy cover were tested for the discrimination between 4 landcover classes. Jeffries-Matusita (JM) separability was high between forest classes (primary or secondary forest) and non-forest (grassland) while, primary and secondary forest were not separable. The study tests the potential and the importance of potential of TanDEM-X coherence and LiDAR observations to characterize structural heterogeneity based on one-point statistics in tropical forest but requires improved characterization using two-point statistical measures.

  2. Upland Hardwood Forests and Related Communities of the Arkansas Ozarks in the Early 19th Century

    Treesearch

    Thomas L. Foti

    2004-01-01

    Historic accounts of the 19 th Century Arkansas Ozarks mention such communities as oak forests, pine forests, barrens and prairies. I document the region-wide distribution of these types based on data from the first land survey conducted by the General Land Office (GLO). Structural classes used here include closed forest, open forest, woodland, savanna, open savanna...

  3. Empirical analysis of the influence of forest extent on annual and seasonal surface temperatures for the Continental United States

    Treesearch

    James D. Wickham; Timothy G. Wade; Kurt H. Riitters

    2013-01-01

    Aim Because of the low albedo of forests and other biophysical factors, most scenario-based climate modelling studies indicate that removal of temperate forest will promote cooling, indicating that temperate forests are a source of heat relative to other classes of land cover. Our objective was to test the hypothesis that US temperate forests reduce...

  4. Interaction between forest biodiversity and people's use of forest resources in Roviana, Solomon Islands: implications for biocultural conservation under socioeconomic changes.

    PubMed

    Furusawa, Takuro; Sirikolo, Myknee Qusa; Sasaoka, Masatoshi; Ohtsuka, Ryutaro

    2014-01-27

    In Solomon Islands, forests have provided people with ecological services while being affected by human use and protection. This study used a quantitative ethnobotanical analysis to explore the society-forest interaction and its transformation in Roviana, Solomon Islands. We compared local plant and land uses between a rural village and urbanized village. Special attention was paid to how local people depend on biodiversity and how traditional human modifications of forest contribute to biodiversity conservation. After defining locally recognized land-use classes, vegetation surveys were conducted in seven forest classes. For detailed observations of daily plant uses, 15 and 17 households were randomly selected in the rural and urban villages, respectively. We quantitatively documented the plant species that were used as food, medicine, building materials, and tools. The vegetation survey revealed that each local forest class represented a different vegetative community with relatively low similarity between communities. Although commercial logging operations and agriculture were both prohibited in the customary nature reserve, local people were allowed to cut down trees for their personal use and to take several types of non-timber forest products. Useful trees were found at high frequencies in the barrier island's primary forest (68.4%) and the main island's reserve (68.3%). Various useful tree species were found only in the reserve forest and seldom available in the urban village. In the rural village, customary governance and control over the use of forest resources by the local people still functioned. Human modifications of the forest created unique vegetation communities, thus increasing biodiversity overall. Each type of forest had different species that varied in their levels of importance to the local subsistence lifestyle, and the villagers' behaviors, such as respect for forest reserves and the semidomestication of some species, contributed to conserving diversity. Urbanization threatened this human-forest interaction. Although the status of biodiversity in human-modified landscapes is not fully understood, this study suggested that traditional human modifications can positively affect biodiversity and that conservation programs should incorporate traditional uses of landscapes to be successful.

  5. Use of multi-frequency, multi-polarization, multi-angle airborne radars for class discrimination in a southern temperature forest

    NASA Technical Reports Server (NTRS)

    Mehta, N. C.

    1984-01-01

    The utility of radar scatterometers for discrimination and characterization of natural vegetation was investigated. Backscatter measurements were acquired with airborne multi-frequency, multi-polarization, multi-angle radar scatterometers over a test site in a southern temperate forest. Separability between ground cover classes was studied using a two-class separability measure. Very good separability is achieved between most classes. Longer wavelength is useful in separating trees from non-tree classes, while shorter wavelength and cross polarization are helpful for discrimination among tree classes. Using the maximum likelihood classifier, 50% overall classification accuracy is achieved using a single, short-wavelength scatterometer channel. Addition of multiple incidence angles and another radar band improves classification accuracy by 20% and 50%, respectively, over the single channel accuracy. Incorporation of a third radar band seems redundant for vegetation classification. Vertical transmit polarization is critically important for all classes.

  6. Statewide LANDSAT inventory of California forests

    NASA Technical Reports Server (NTRS)

    Likens, W.; Peterson, D. (Principal Investigator)

    1981-01-01

    Six forest cover categories were mapped, along with 10 general land cover classes. To map the state's 100 million acres, 1.6 acre mapping units were utilized. Map products were created. Standing forest acreage for the state was computed to be 26.8 million acres.

  7. Little effects of reduced-impact logging on insect communities in eastern Amazonia.

    PubMed

    Nogueira, Denis Silva; Calvão, Lenize Batista; de Assis Montag, Luciano Fogaça; Juen, Leandro; De Marco, Paulo

    2016-07-01

    Selective logging has become a major source of threats to tropical forest, bringing challenges for both ecologists and managers to develop low-impact forestry. Reduced-impact logging (RIL) is a prominent activity accounting for such forestry practices to prevent strong forest disturbances. Our aims were to evaluate the effects of RIL on insect communities of forested streams from Eastern Amazon and to test the hypothesis of negative effects of RIL on species richness, abundance, and functional feeding groups of aquatic insect assemblages. Neither of the evaluated metrics of the studied assemblages were negatively affected by RIL. Environmental metrics, such as substrate heterogeneity, woody canopy cover, and hill slope height, varied more among RIL streams than in reference streams, indicating a gradient according to logging impacts, and are suitable candidates to monitor RIL impacts in Amazonian streams. In addition, the PHI index also varied among REF and RIL, according to age class and year of logging, which could reflect trends to recover the forest structure after logging in a time frame of only 10 years. We conclude that RIL impacts have not had detrimental impacts on insect communities, but have changed little of the environmental conditions, especially of the riparian vegetation around streams.

  8. Improving Estimates of Acceptable Growiing Stock in Young Upland Oak Forests in the Missouri Ozarks

    Treesearch

    Daniel C. Dey; Paul S. Johnson; H.E. Garrett

    1998-01-01

    Estimates of regeneration or growing stock in young oak forests may be too high unless criteria are established that define explicitly acceptable growing stock. In young hardwood stands, crown class can be used to identify acceptable growing stock because it is related to the future growth and survival of reproduction. A method is presented for assigning crown class...

  9. A stand-alone tree demography and landscape structure module for Earth system models: integration with global forest data

    NASA Astrophysics Data System (ADS)

    Haverd, V.; Smith, B.; Nieradzik, L. P.; Briggs, P. R.

    2014-02-01

    Poorly constrained rates of biomass turnover are a key limitation of Earth system models (ESM). In light of this, we recently proposed a new approach encoded in a model called Populations-Order-Physiology (POP), for the simulation of woody ecosystem stand dynamics, demography and disturbance-mediated heterogeneity. POP is suitable for continental to global applications and designed for coupling to the terrestrial ecosystem component of any ESM. POP bridges the gap between first generation Dynamic Vegetation Models (DVMs) with simple large-area parameterisations of woody biomass (typically used in current ESMs) and complex second generation DVMs, that explicitly simulate demographic processes and landscape heterogeneity of forests. The key simplification in the POP approach, compared with second-generation DVMs, is to compute physiological processes such as assimilation at grid-scale (with CABLE or a similar land surface model), but to partition the grid-scale biomass increment among age classes defined at sub grid-scale, each subject to its own dynamics. POP was successfully demonstrated along a savanna transect in northern Australia, replicating the effects of strong rainfall and fire disturbance gradients on observed stand productivity and structure. Here, we extend the application of POP to a range of forest types around the globe, employing paired observations of stem biomass and density from forest inventory data to calibrate model parameters governing stand demography and biomass evolution. The calibrated POP model is then coupled to the CABLE land surface model and the combined model (CABLE-POP) is evaluated against leaf-stem allometry observations from forest stands ranging in age from 3 to 200 yr. Results indicate that simulated biomass pools conform well with observed allometry. We conclude that POP represents a preferable alternative to large-area parameterisations of woody biomass turnover, typically used in current ESMs.

  10. Fungi and wind strongly influence the temporal availability of logs in an old-growth spruce forest.

    PubMed

    Edman, Mattias; Jönsson, Mari; Jonsson, Bengt Gunnar

    2007-03-01

    Coarse woody debris (CWD) is a key habitat for many species in forest ecosystems. To ensure the long-term survival of such species, forest management regimes must include measures that promote dead wood dynamics similar to those of natural forests. Thus, information on CWD dynamics under natural conditions is required, including data pertaining to the underlying agents of disturbance. This study examines modes of mortality, decay rates, and temporal patterns in the availability of Picea abies logs in a Swedish old-growth forest affected by internal, small-scale disturbance. All 684 logs in a 6.6-ha plot were mapped and classified into one of six decay classes. Logs in the early stages of decay were examined for the presence of heart-rot fungi. Six years later all logs were re-inventoried, including newly formed logs. Matrix models based on the transition rates between decay classes showed that it took about 60 years for 90% of the logs to decay beyond class 6 (a deformed trunk with soft wood). Large logs (> 26 cm) decayed 40% more slowly than small logs (< 25 cm). The initial volume of logs was 37.6 m3/ha but increased to 44.8 m3/ha after six years. In addition, there was a large shift in the decay-class distribution. The volume of logs in early and late decay classes increased by 71% and 45%, respectively, while the volume of logs in the intermediate decay classes decreased by 32%. The fluctuations appear to result from pulses in mortality, driven by a combination of strong winds and the heart-rot fungus, Phellinus chrysoloma, which was present in more than 30% of all logs at an early stage of decay. These results show that large temporal fluctuations in dead wood also occur in the absence of large-scale disturbance, and that heart-rot fungi are important factors driving the overall dynamics of dead wood. Since many wood-inhabiting species are naturally rare and have very specific substrate demands, such temporal variability in dead wood availability may have effects on biodiversity and should be taken into account when designing small, protected forest areas.

  11. Diverse responses of different structured forest to drought in Southwest China through remotely sensed data

    NASA Astrophysics Data System (ADS)

    Xu, Peipei; Zhou, Tao; Zhao, Xiang; Luo, Hui; Gao, Shan; Li, Zheng; Cao, Leyao

    2018-07-01

    Global climate change leads to gradual increases in the frequency, intensity, and duration of extreme drought events. Human activities such as afforestation and deforestation have led to spatial variation in forest structure, causing forests to exhibit an age-spatial structure relationship. Thus, it is of great importance to accurately evaluate the effects of drought stress on forest ecosystems with different forest age structures. Because the spatial heterogeneity varies with drought stress intensity, forest age, there are still a lot of uncertainties in current studies. In this study, based on the field measurement, and the proxy index of stand age (based on forest canopy height from LiDAR and stock volume from inventory) at the regional scale, we analyzed the different drought responses of forest ecosystems with various forest ages across different scales in Yunnan province, southwest China from 2001 to 2014. At the local scale, significant differences in the effects of drought stress were found among forests with various ages, suggesting that older forests suffer more under drought stress than younger forests. At the regional scale, the investigation statistics of forest damage indicated a maximum damage ratio in the forest with tall trees (>32 m), whereas damage was minimal in the forest with short trees (<25 m). The stock volume of the forest exhibited the same pattern, that is, the forest damage ratio increased as the stock volume increased. These data demonstrate that the responses of forest drought could be affected by forest age. Under drought stress, older forests show greater vulnerability and risk of damage, which will require special attention for forest managers, as well as improved risk assessments, in the context of future climate change.

  12. Population density of red langurs in Sabangau tropical peat-swamp forest, Central Kalimantan, Indonesia.

    PubMed

    Ehlers Smith, David A; Ehlers Smith, Yvette C

    2013-08-01

    Because of the large-scale destruction of Borneo's rainforests on mineral soils, tropical peat-swamp forests (TPSFs) are increasingly essential for conserving remnant biodiversity, particularly in the lowlands where the majority of habitat conversion has occurred. Consequently, effective strategies for biodiversity conservation are required, which rely on accurate population density and distribution estimates as a baseline. We sought to establish the first population density estimates of the endemic red langur (Presbytis rubicunda) in Sabangau TPSF, the largest remaining contiguous lowland forest-block on Borneo. Using Distance sampling principles, we conducted line transect surveys in two of Sabangau's three principle habitat sub-classes and calculated group density at 2.52 groups km⁻² (95% CI 1.56-4.08) in the mixed-swamp forest sub-class. Based on an average recorded group size of 6.95 individuals, population density was 17.51 ind km⁻², the second highest density recorded in this species. The accessible area of the tall-interior forest, however, was too disturbed to yield density estimates representative of the entire sub-class, and P. rubicunda was absent from the low-pole forest, likely as a result of the low availability of the species' preferred foods. This absence in 30% of Sabangau's total area indicates the importance of in situ population surveys at the habitat-specific level for accurately informing conservation strategies. We highlight the conservation value of TPSFs for P. rubicunda given the high population density and large areas remaining, and recommend 1) quantifying the response of P. rubicunda to the logging and burning of its habitats; 2) surveying degraded TPSFs for viable populations, and 3) effectively delineating TPSF sub-class boundaries from remote imagery to facilitate population estimates across the wider peat landscape, given the stark contrast in densities found across the habitat sub-classes of Sabangau. © 2013 Wiley Periodicals, Inc.

  13. Utah's forest resources, 2003-2012

    Treesearch

    Charles E. Werstak; John D. Shaw; Sara A. Goeking; Christopher Witt; James Menlove; Mike T. Thompson; R. Justin DeRose; Michael C. Amacher; Sarah Jovan; Todd A. Morgan; Colin B. Sorenson; Steven W. Hayes; Chelsea P. McIver

    2016-01-01

    This report presents a summary of the most recent inventory of Utah’s forests based on field data collected from 2003 through 2012. The report includes descriptive highlights and tables of area, numbers of trees, biomass, volume, growth, mortality, and removals. Most sections and tables are organized by forest type or forest-type group, species group, diameter class,...

  14. Forest survey results for higher grade hardwood sawtimber

    Treesearch

    Roy C. Beltz

    1991-01-01

    The 1987 Forest Survey of Mississippi shows a slight increase in forest area and a substantial gain in hardwood inventory. Hardwood gains, appearing in all diameter classes, suggest an increase in quality but hardwood users generally believe quality is declining. By our analysis, volume of top quality hardwood declined while volume in other grades increased. Forest...

  15. Integration of lidar and Landsat ETM+ data for estimating and mapping forest canopy height.

    Treesearch

    Andrew T. Hudak; Michael A. Lefsky; Warren B. Cohen; Mercedes Berterretche

    2002-01-01

    Light detection and ranging (LIDAR) data provide accurate measurements of forest canopy structure in the vertical plane; however, current LIDAR sensors have limited coverage in the horizontal plane. Landsat data provide extensive coverage of generalized forest structural classes in the horizontal plane but are relatively insensitive to variation in forest canopy height...

  16. The causes of spatial patterning of mounds of a fungus-cultivating termite: results from nearest-neighbour analysis and ecological studies.

    PubMed

    Korb, Judith; Linsenmair, Karl Eduard

    2001-05-01

    Little is known about processes regulating population dynamics in termites. We investigated the distribution of mound-colonies of the fungus-cultivating termite Macrotermes bellicosus (Smeathman) in two habitats in the Comoé National Park (Côte d'Ivoire) with nearest-neighbour analysis differentiating between different age classes. These results were compared with ecological data on processes influencing population dynamics. High mound densities were recorded in shrub savannah while only a few mounds were found in gallery forest. Mounds were distributed randomly in both habitats when all mounds were considered together, and when inhabited and uninhabited mounds were treated separately. However, distinctive non-random patterns were revealed in the savannah when we distinguished between different age classes. Small, young colonies were aggregated when they coexisted with larger, older colonies, which were more regularly distributed. This indicates that the distribution of older colonies is influenced by intraspecific competition whereas that of younger colonies is influenced by opposing factors that lead to aggregation. This is in accordance with ecological data. Food is a limiting resource for large colonies, while patchily distributed appropriate microclimatic conditions seem to be more important for young colonies. Colonies that had formerly coexisted (i.e. living colonies and recently dead colonies) showed aggregated, random and regular distribution patterns, suggesting several causes of mortality. Colonies that had never had contact with each other were randomly distributed and no specific regulation mechanism was implicated. These results show that different age classes seem to be regulated by different processes and that separation between age classes is necessary to reveal indicative spatial patterns in nearest-neighbour analysis.

  17. Smoke aerosol properties and ageing effects for Northern temperate and boreal regions derived from AERONET source and age attribution

    NASA Astrophysics Data System (ADS)

    Nikonovas, Tadas; North, Peter; Doerr, Stefan H.

    2015-04-01

    Particulate emissions from wildfires impact human health and have a large but uncertain effect on climate. Modelling schemes depend on information about emission factors, emitted particle microphysical and optical properties and ageing effects, while satellite retrieval algorithms make use of characteristic aerosol models to improve retrieval. Ground based remote sensing provides detailed aerosol characterisation, but does not contain information on source. A new method is presented to estimate plume origin land cover type and age for AERONET aerosol observations, employing trajectory modelling using the HYSPLIT model, and satellite active fire and aerosol optical thickness (AOT) observations from MODIS and AATSR. It is applied to AERONET stations located in or near Northern temperate and boreal forests, for the period 2002-2013. The results from 629 fire attributions indicate significant differences insize distributions and particle optical properties between different land cover types. Smallest fine mode median radius are attributed to plumes from cropland/natural vegetation mosaic (0.143 μm) and grasslands (0.147 μm) fires. Evergreen needleleaf forest emissions show a significantly smaller fine mode median radius (0.164 μm) than plumes from woody savannas (0.184 μm) and mixed forest (0.193 μm) fires. Smoke plumes are predominantly scattering for all of the classes with median single scattering albedo at 440 nm (SSA(440)) values close to 0.95 except the cropland emissions which have SSA(440) value of 0.9. Overall fine mode volume median radius increase rate is 0.0095μm per day for the first 4 days of ageing and 0.0084 μm per day for seven days of ageing. Changes in size were consistent with a decrease in Angstrom Exponent and increase in Asymmetry parameter. No significant changes in SSA(λ) with ageing were found. The implications of this work for improved modeling of aerosol radiative effects, which are relevant to both climate modelling and satellite aerosol retrieval schemes, are also discussed.

  18. Vegetation Analysis and Land Use Land Cover Classification of Forest in Uttara Kannada District India Using Remote Sensign and GIS Techniques

    NASA Astrophysics Data System (ADS)

    Koppad, A. G.; Janagoudar, B. S.

    2017-10-01

    The study was conducted in Uttara Kannada districts during the year 2012-2014. The study area lies between 13.92° N to 15.52° N latitude and 74.08° E to 75.09° E longitude with an area of 10,215 km2. The Indian satellite IRS P6 LISS-III imageries were used to classify the land use land cover classes with ground truth data collected with GPS through supervised classification in ERDAS software. The land use and land cover classes identified were dense forest, horticulture plantation, sparse forest, forest plantation, open land and agriculture land. The dense forest covered an area of 63.32 % (6468.70 sq km) followed by agriculture 12.88 % (1315.31 sq. km), sparse forest 10.59 % (1081.37 sq. km), open land 6.09 % (622.37 sq. km), horticulture plantation and least was forest plantation (1.07 %). Settlement, stony land and water body together cover about 4.26 percent of the area. The study indicated that the aspect and altitude influenced the forest types and vegetation pattern. The NDVI map was prepared which indicated that healthy vegetation is represented by high NDVI values between 0.1 and 1. The non- vegetated features such as water bodies, settlement, and stony land indicated less than 0.1 values. The decrease in forest area in some places was due to anthropogenic activities. The thematic map of land use land cover classes was prepared using Arc GIS Software.

  19. Comparison of NASA OMI and MLS Ozone Products with US Forest Service Ground-based Ozone Monitoring Data for US Forest Service Air Quality / Forest Management Decision Support

    NASA Astrophysics Data System (ADS)

    Barrett, S.; Brooks, A.; Moussa, Y.; Spencer, T.; Thompson, J.

    2013-12-01

    Tropospheric ozone, formed when nitrogen oxides (NOx) and volatile organic compounds (VOCs) react with sunlight, is a significant threat to the health of US National Forests. Approximately one third of ozone is absorbed by plants during the uptake of carbon dioxide. This increases the vegetation's susceptibility to drought, beetle infestation, and wildfire. Currently the US Forest Service has ground monitoring stations sparsely located across the country. This project looks specifically at the area surrounding several Class I Wilderness Areas in the Appalachian region. These areas are the highest priority for protection from air pollutants. The Forest Service must interpolate ozone concentrations for areas between these monitoring stations. Class I Wilderness Areas are designated by the Forest Service and are defined as a total 5000 acres or greater when the Clean Air Act was passed in 1977. This Act mandated that the EPA create national ambient air quality standards (NAAQS) for six major air pollutants including ground-level ozone. This project assessed the feasibility of incorporating NASA ozone data into Forest Service ozone monitoring in an effort to enhance the accuracy and precision of ozone exposure measurements in Class I Wilderness Areas and other federally managed lands in order to aid in complying with the Clean Air Act of 1977. This was accomplished by establishing a method of comparison between a preliminary data product produced at the Goddard Space Flight Center that uses OMI/MLS data to derive global tropospheric ozone measurements and Forest Service ozone monitoring station measurements. Once a methodology for comparison was established, statistical comparisons of these data were performed to assess the quantitative differences.

  20. Sensitivity of ALOS/PALSAR imagery to forest degradation by fire in northern Amazon

    NASA Astrophysics Data System (ADS)

    Martins, Flora da Silva Ramos Vieira; dos Santos, João Roberto; Galvão, Lênio Soares; Xaud, Haron Abrahim Magalhães

    2016-07-01

    We evaluated the sensitivity of the full polarimetric Phased Array type L-band Synthetic Aperture Radar (PALSAR), onboard the Advanced Land Observing Satellite (ALOS), to forest degradation caused by fires in northern Amazon, Brazil. We searched for changes in PALSAR signal and tri-dimensional polarimetric responses for different classes of fire disturbance defined by fire frequency and severity. Since the aboveground biomass (AGB) is affected by fire, multiple regression models to estimate AGB were obtained for the whole set of coherent and incoherent attributes (general model) and for each set separately (specific models). The results showed that the polarimetric L-band PALSAR attributes were sensitive to variations in canopy structure and AGB caused by forest fire. However, except for the unburned and thrice burned classes, no single PALSAR attribute was able to discriminate between the intermediate classes of forest degradation by fire. Both the coherent and incoherent polarimetric attributes were important to explain AGB variations in tropical forests affected by fire. The HV backscattering coefficient, anisotropy, double-bounce component, orientation angle, volume index and HH-VV phase difference were PALSAR attributes selected from multiple regression analysis to estimate AGB. The general regression model, combining phase and power radar metrics, presented better results than specific models using coherent or incoherent attributes. The polarimetric responses indicated the dominance of VV-oriented backscattering in primary forest and lightly burned forests. The HH-oriented backscattering predominated in heavily and frequently burned forests. The results suggested a greater contribution of horizontally arranged constituents such as fallen trunks or branches in areas severely affected by fire.

  1. Relationships between net primary productivity and stand age for several forest types and their influence on China's carbon balance.

    PubMed

    Wang, Shaoqiang; Zhou, Lei; Chen, Jingming; Ju, Weimin; Feng, Xianfeng; Wu, Weixing

    2011-06-01

    Affected by natural and anthropogenic disturbances such as forest fires, insect-induced mortality and harvesting, forest stand age plays an important role in determining the distribution of carbon pools and fluxes in a variety of forest ecosystems. An improved understanding of the relationship between net primary productivity (NPP) and stand age (i.e., age-related increase and decline in forest productivity) is essential for the simulation and prediction of the global carbon cycle at annual, decadal, centurial, or even longer temporal scales. In this paper, we developed functions describing the relationship between national mean NPP and stand age using stand age information derived from forest inventory data and NPP simulated by the BEPS (Boreal Ecosystem Productivity Simulator) model in 2001. Due to differences in ecobiophysical characteristics of different forest types, NPP-age equations were developed for five typical forest ecosystems in China (deciduous needleleaf forest (DNF), evergreen needleleaf forest in tropic and subtropical zones (ENF-S), deciduous broadleaf forest (DBF), evergreen broadleaf forest (EBF), and mixed broadleaf forest (MBF)). For DNF, ENF-S, EBF, and MBF, changes in NPP with age were well fitted with a common non-linear function, with R(2) values equal to 0.90, 0.75, 0.66, and 0.67, respectively. In contrast, a second order polynomial was best suitable for simulating the change of NPP for DBF, with an R(2) value of 0.79. The timing and magnitude of the maximum NPP varied with forest types. DNF, EBF, and MBF reached the peak NPP at the age of 54, 40, and 32 years, respectively, while the NPP of ENF-S maximizes at the age of 13 years. The highest NPP of DBF appeared at 122 years. NPP was generally lower in older stands with the exception of DBF, and this particular finding runs counter to the paradigm of age-related decline in forest growth. Evaluation based on measurements of NPP and stand age at the plot-level demonstrates the reliability and applicability of the fitted NPP-age relationships. These relationships were used to replace the normalized NPP-age relationship used in the original InTEC (Integrated Terrestrial Ecosystem Carbon) model, to improve the accuracy of estimated carbon balance for China's forest ecosystems. With the revised NPP-age relationship, the InTEC model simulated a larger carbon source from 1950-1980 and a larger carbon sink from 1985-2001 for China's forests than the original InTEC model did because of the modification to the age-related carbon dynamics in forests. This finding confirms the importance of considering the dynamics of NPP related to forest age in estimating regional and global terrestrial carbon budgets. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Mapping post-fire forest regeneration and vegetation recovery using a combination of very high spatial resolution and hyperspectral satellite imagery

    NASA Astrophysics Data System (ADS)

    Mitri, George H.; Gitas, Ioannis Z.

    2013-02-01

    Careful evaluation of forest regeneration and vegetation recovery after a fire event provides vital information useful in land management. The use of remotely sensed data is considered to be especially suitable for monitoring ecosystem dynamics after fire. The aim of this work was to map post-fire forest regeneration and vegetation recovery on the Mediterranean island of Thasos by using a combination of very high spatial (VHS) resolution (QuickBird) and hyperspectral (EO-1 Hyperion) imagery and by employing object-based image analysis. More specifically, the work focused on (1) the separation and mapping of three major post-fire classes (forest regeneration, other vegetation recovery, unburned vegetation) existing within the fire perimeter, and (2) the differentiation and mapping of the two main forest regeneration classes, namely, Pinus brutia regeneration, and Pinus nigra regeneration. The data used in this study consisted of satellite images and field observations of homogeneous regenerated and revegetated areas. The methodology followed two main steps: a three-level image segmentation, and, a classification of the segmented images. The process resulted in the separation of classes related to the aforementioned objectives. The overall accuracy assessment revealed very promising results (approximately 83.7% overall accuracy, with a Kappa Index of Agreement of 0.79). The achieved accuracy was 8% higher when compared to the results reported in a previous work in which only the EO-1 Hyperion image was employed in order to map the same classes. Some classification confusions involving the classes of P. brutia regeneration and P. nigra regeneration were observed. This could be attributed to the absence of large and dense homogeneous areas of regenerated pine trees in the study area.

  3. The effect of wildfire and clear-cutting on above-ground biomass, foliar C to N ratios and fiber content throughout succession: Implications for forage quality in woodland caribou (Rangifer tarandus caribou)

    NASA Astrophysics Data System (ADS)

    Mallon, E. E.; Turetsky, M.; Thompson, I.; Noland, T. L.; Wiebe, P.

    2013-12-01

    Disturbance is known to play an important role in maintaining the productivity and biodiversity of boreal forest ecosystems. Moderate to low frequency disturbance is responsible for regeneration opportunities creating a mosaic of habitats and successional trajectories. However, large-scale deforestation and increasing wildfire frequencies exacerbate habitat loss and influence biogeochemical cycles. This has raised concern about the quality of the under-story vegetation post-disturbance and whether this may impact herbivores, especially those vulnerable to change. Forest-dwelling caribou (Rangifer tarandus caribou) are declining in several regions of Canada and are currently listed as a species at risk by COSEWIC. Predation and landscape alteration are viewed as the two main threats to woodland caribou. This has resulted in caribou utilizing low productivity peatlands as refuge and the impact of this habitat selection on their diet quality is not well understood. Therefore there are two themes in the study, 1) Forage quantity: above-ground biomass and productivity and 2) Forage quality: foliar N and C to N ratios and % fiber. The themes are addressed in three questions: 1) How does forage quantity and quality vary between upland forests and peatlands? 2) How does wildfire affect the availability and nutritional quality of forage items? 3) How does forage quality vary between sites recovering from wildfire versus timber harvest? Research sites were located in the Auden region north of Geraldton, ON. This landscape was chosen because it is known woodland caribou habitat and has thorough wildfire and silviculture data from the past 7 decades. Plant diversity, above-ground biomass, vascular green area and seasonal foliar fiber and C to N ratios were collected across a matrix of sites representing a chronosequence of time since disturbance in upland forests and peatlands. Preliminary findings revealed productivity peaked in early age stands (0-30 yrs) and biomass peaked in late age stands (71+ yrs). Furthermore the peatlands were found to have greater overall biomass and productivity than the uplands. C to N ratios from summer foliar samples varied across plant functional type with lichen and mosses had the highest C to N ratios and deciduous trees, shrubs and forbs had the lowest ratios. C to N ratios from spring foliar samples also varied across plant functional type in a similar manner and also varied between uplands and peatlands and by age class. This suggests drainage class and stand age but not disturbance type affects the amount and quality of forage within terrestrial ecosystems. Our intention is to assess forage value of abundant species to help understand diet choices, possibly attributable to acquisition of forage low in C and high in N. This, in combination with biomass availability and productivity data, will be important for understanding the mechanisms contributing to caribou decline and for assessing adaptive forest management options under North American conservation initiatives.

  4. Predicting a roadkill hotspots based on spatial distribution of Korean water deer (Hydropotes inermis argyropus) using Maxent model in South Korea Expressway : In Case of Cheongju-Sangju Expressway

    NASA Astrophysics Data System (ADS)

    Park, Hyomin; Lee, Sangdon

    2016-04-01

    Road construction has direct and indirect effects on ecosystems. Especially wildlife-vehicle conflicts (roadkills) caused by roads are a considerable threat for population of many species. This study aims to identify the effects of topographic characteristics and spatial distribution of Korean water deer (Hydropotes inermis). Korean water deer is indigenous and native species in Korea that listed LC (least concern) by IUCN redlist categories. Korean water deer population is growing every year occupying for most of roadkills (>70%) in Korean express highway. In order to predict a distribution of the Korean water deer, we selected factors that most affected water deer's habitat. Major habitats of waterdeer are known as agricultural area, forest area and water. Based on this result, eight factors were selected (land cover map, vegetation map, age class of forest, diameter class of tree, population, slope of study site, elevation of study site, distance of river), and made a thematic map by using GIS program (ESRI, Arc GIS 10.3.1 ver.). To analyze the affected factors of waterdeer distribution, GPS data and thematic map of study area were entered into Maxent model (Maxent 3.3.3.k.). Results of analysis were verified by the AUC (Area Unit Curve) of ROC (Receiver Operating Characteristic). The ROC curve used the sensitivity and specificity as a reference for determining the prediction efficiency of the model and AUC area of ROC curve was higher prediction efficiency closer to '1.' Selecting factors that affected the distribution of waterdeer were land cover map, diameter class of tree and elevation of study site. The value of AUC was 0.623. To predict the water deer's roadkills hot spot on Cheongju-Sangju Expressway, the thematic map was prepared based on GPS data of roadkill spots. As a result, the topographic factors that affected waterdeer roadkill were land cover map, actual vegetation map and age class of forest and the value of AUC was 0.854. Through this study, we could identify the site and hot spots that water deer frequently expected to use based on quantitative data on the spatial and topographic factors. Therefore, we can suggest ways to minimize roadkills by selecting the hot spots and by suggesting construction of eco-corridors. This study will significantly enhance human-wildlife conflicts by identifying key habitat areas for wild mammals.

  5. Higher climate warming sensitivity of Siberian larch in small than large forest islands in the fragmented Mongolian forest steppe.

    PubMed

    Khansaritoreh, Elmira; Dulamsuren, Choimaa; Klinge, Michael; Ariunbaatar, Tumurbaatar; Bat-Enerel, Banzragch; Batsaikhan, Ganbaatar; Ganbaatar, Kherlenchimeg; Saindovdon, Davaadorj; Yeruult, Yolk; Tsogtbaatar, Jamsran; Tuya, Daramragchaa; Leuschner, Christoph; Hauck, Markus

    2017-09-01

    Forest fragmentation has been found to affect biodiversity and ecosystem functioning in multiple ways. We asked whether forest size and isolation in fragmented woodlands influences the climate warming sensitivity of tree growth in the southern boreal forest of the Mongolian Larix sibirica forest steppe, a naturally fragmented woodland embedded in grassland, which is highly affected by warming, drought, and increasing anthropogenic forest destruction in recent time. We examined the influence of stand size and stand isolation on the growth performance of larch in forests of four different size classes located in a woodland-dominated forest-steppe area and small forest patches in a grassland-dominated area. We found increasing climate sensitivity and decreasing first-order autocorrelation of annual stemwood increment with decreasing stand size. Stemwood increment increased with previous year's June and August precipitation in the three smallest forest size classes, but not in the largest forests. In the grassland-dominated area, the tree growth dependence on summer rainfall was highest. Missing ring frequency has strongly increased since the 1970s in small, but not in large forests. In the grassland-dominated area, the increase was much greater than in the forest-dominated landscape. Forest regeneration decreased with decreasing stand size and was scarce or absent in the smallest forests. Our results suggest that the larch trees in small and isolated forest patches are far more susceptible to climate warming than in large continuous forests pointing to a grim future for the forests in this strongly warming region of the boreal forest that is also under high land use pressure. © 2017 John Wiley & Sons Ltd.

  6. A biomass representative land cover classification for the Democratic Republic of Congo derived from the Forets D'Afrique Central Evaluee par Teledetection (FACET) data set

    NASA Astrophysics Data System (ADS)

    Molinario, G.; Hansen, M.; Potapov, P.; Altstatt, A. L.; Justice, C. O.

    2012-12-01

    The FACET forest cover and forest cover loss 2000-2005-2010 data set has been produced by South Dakota State University, the University of Maryland and the Kinshasa-based Observatoire Satellital des Forets D'Afrique Central (OSFAC) with funding from the USAID Central African Regional Program for the Environment (CARPE). The product is now available or being finalized for the DRC, the ROC and Gabon with plans to complete all Congo Basin countries. While FACET provides unprecedented synoptic detail in the extent of Congo Basin forest and the forest cover loss, additional information is required to stratify land cover into types indicative of biomass content. Analysis of the FACET patterns of deforestation, more detailed remote sensing analysis of biophysical attributes within the FACET land cover classes and GIS-derived classes of degradation obtained through variable distance buffers based on relevant literature and ground truth data are combined with the existing FACET classes to produce a ranking of land cover from low biomass to high biomass for the Democratic Republic of Congo. The resulting classification can be used in all Reduced Emissions from Degradation and Deforestation (REDD) pre-inventory phases when baseline forest cover needs to be known and the location and amount of forest biomass inventory plots needs to be designed. FACET cover loss classes were kept in the classification and can provide the Monitoring, Reporting and Verification tools needed for REDD projects. The project will be demonstrated for the Maringa Lopori Wamba Landscape of the DRC where this work was funded by the African Wildlife Foundation to support the design of a REDD pilot project.

  7. Analyzing riparian forest cover changes along the Firniz River in the Mediterranean City of Kahramanmaras in Turkey.

    PubMed

    Akay, Abdullah E; Sivrikaya, Fatih; Gulci, Sercan

    2014-05-01

    Riparian forests adjacent to surface water are important transitional zones which maintain and enrich biodiversity and ensure the sustainability in a forest ecosystem. Also, riparian forests maintain water quality, reduce sediment delivery, enhance habitat areas for aquatic life and wildlife, and provide ecological corridors between the upland and the downstream. However, the riparian ecosystems have been degraded mainly due to human development, forest operations, and agricultural activities. In order to evaluate the impacts of these factors on riparian forests, it is necessary to estimate trends in forest cover changes. This study aims to analyze riparian forest cover changes along the Firniz River located in Mediterranean city of Kahramanmaras in Turkey. Changes in riparian forest cover from 1989 to 2010 have been determined by implementing supervised classification method on a series of Landsat TM imagery of the study area. The results indicated that the classification process applied on 1989 and 2010 images provided overall accuracy of 80.08 and 75 %, respectively. It was found that the most common land use class within the riparian zone was productive forest, followed by degraded forest, agricultural areas, and other land use classes. The results also indicated that the areas of degraded forest and forest openings increased, while productive forest and agricultural areas decreased between the years of 1989 and 2010. The amount of agricultural areas decreased due to the reduction in the population of rural people. According to these results, it can be concluded that special forest management and operation techniques should be implemented to restore the forest ecosystem in riparian areas.

  8. Abundance and Size Distribution of Cavity Trees in Second-Growth and Old-Growth Central Hardwood Forests

    Treesearch

    Zhaofei Fan; Stephen R. Shifley; Martin A. Spetich; Frank R. Thompson III; David R. Larsen

    2005-01-01

    In central hardwood forests, mean cavity-tree abundance increases with increasing standsize class (seedling/sapling, pole, sawtimber, old-growth). However, within a size class, the number of cavity trees is highly variable among 0.1-ha inventory plots. Plots in young stands are most likely to have no cavity trees, but some plots may have more than 50 cavity trees/ha....

  9. Abundance and size distribution of cavity trees in second-growth and old-growth central hardwood forests

    Treesearch

    Zhaofei Fan; Stephen R. Shifley; Martin A. Spetich; Frank R. Thompson; David R. Larsen

    2005-01-01

    In central hardwood forests, mean cavity-tree abundance increases with increasing standsize class (seedling/sapling, pole, sawtimber, old-growth). However, within a size class, the number of cavity trees is highly variable among 0.1-ha inventory plots. Plots in young stands are most likely to have no cavity trees, but some plots may have more than 50 cavity trees/ha....

  10. Estimating the quadratic mean diameters of fine woody debris in forests of the United States

    Treesearch

    Christopher W. Woodall; Vicente J. Monleon

    2010-01-01

    Most fine woody debris (FWD) line-intersect sampling protocols and associated estimators require an approximation of the quadratic mean diameter (QMD) of each individual FWD size class. There is a lack of empirically derived QMDs by FWD size class and species/forest type across the U.S. The objective of this study is to evaluate a technique known as the graphical...

  11. Changes in forest habitat classes under alternative climate and land-use change scenarios in the northeast and midwest, USA

    Treesearch

    Brian G. Tavernia; Mark D. Nelson; Michael E. Goerndt; Brian F. Walters; Chris Toney

    2013-01-01

    Large-scale and long-term habitat management plans are needed to maintain the diversity of habitat classes required by wildlife species. Planning efforts would benefit from assessments of potential climate and land-use change effects on habitats. We assessed climate and land-use driven changes in areas of closed- and open-canopy forest across the Northeast and Midwest...

  12. East Oklahoma forests: trends and outlook

    Treesearch

    Paul A. Murphy

    1977-01-01

    Forests cover 4.9 million acres or 49 percent of the land in the 18 counties that comprise east Oklahoma (figure 1). Of this total forest area, about 4.3 million acres are classed as commercial forest land. The remaining 600,000 acres are either too low in productivity to be considered commercial or occur on public land reserved for nontimber use.

  13. Improving Lidar-based Aboveground Biomass Estimation with Site Productivity for Central Hardwood Forests, USA

    NASA Astrophysics Data System (ADS)

    Shao, G.; Gallion, J.; Fei, S.

    2016-12-01

    Sound forest aboveground biomass estimation is required to monitor diverse forest ecosystems and their impacts on the changing climate. Lidar-based regression models provided promised biomass estimations in most forest ecosystems. However, considerable uncertainties of biomass estimations have been reported in the temperate hardwood and hardwood-dominated mixed forests. Varied site productivities in temperate hardwood forests largely diversified height and diameter growth rates, which significantly reduced the correlation between tree height and diameter at breast height (DBH) in mature and complex forests. It is, therefore, difficult to utilize height-based lidar metrics to predict DBH-based field-measured biomass through a simple regression model regardless the variation of site productivity. In this study, we established a multi-dimension nonlinear regression model incorporating lidar metrics and site productivity classes derived from soil features. In the regression model, lidar metrics provided horizontal and vertical structural information and productivity classes differentiated good and poor forest sites. The selection and combination of lidar metrics were discussed. Multiple regression models were employed and compared. Uncertainty analysis was applied to the best fit model. The effects of site productivity on the lidar-based biomass model were addressed.

  14. Combining global land cover datasets to quantify agricultural expansion into forests in Latin America: Limitations and challenges

    PubMed Central

    Persson, U. Martin

    2017-01-01

    While we know that deforestation in the tropics is increasingly driven by commercial agriculture, most tropical countries still lack recent and spatially-explicit assessments of the relative importance of pasture and cropland expansion in causing forest loss. Here we present a spatially explicit quantification of the extent to which cultivated land and grassland expanded at the expense of forests across Latin America in 2001–2011, by combining two “state-of-the-art” global datasets (Global Forest Change forest loss and GlobeLand30-2010 land cover). We further evaluate some of the limitations and challenges in doing this. We find that this approach does capture some of the major patterns of land cover following deforestation, with GlobeLand30-2010’s Grassland class (which we interpret as pasture) being the most common land cover replacing forests across Latin America. However, our analysis also reveals some major limitations to combining these land cover datasets for quantifying pasture and cropland expansion into forest. First, a simple one-to-one translation between GlobeLand30-2010’s Cultivated land and Grassland classes into cropland and pasture respectively, should not be made without caution, as GlobeLand30-2010 defines its Cultivated land to include some pastures. Comparisons with the TerraClass dataset over the Brazilian Amazon and with previous literature indicates that Cultivated land in GlobeLand30-2010 includes notable amounts of pasture and other vegetation (e.g. in Paraguay and the Brazilian Amazon). This further suggests that the approach taken here generally leads to an underestimation (of up to ~60%) of the role of pasture in replacing forest. Second, a large share (~33%) of the Global Forest Change forest loss is found to still be forest according to GlobeLand30-2010 and our analysis suggests that the accuracy of the combined datasets, especially for areas with heterogeneous land cover and/or small-scale forest loss, is still too poor for deriving accurate quantifications of land cover following forest loss. PMID:28704510

  15. Combining global land cover datasets to quantify agricultural expansion into forests in Latin America: Limitations and challenges.

    PubMed

    Pendrill, Florence; Persson, U Martin

    2017-01-01

    While we know that deforestation in the tropics is increasingly driven by commercial agriculture, most tropical countries still lack recent and spatially-explicit assessments of the relative importance of pasture and cropland expansion in causing forest loss. Here we present a spatially explicit quantification of the extent to which cultivated land and grassland expanded at the expense of forests across Latin America in 2001-2011, by combining two "state-of-the-art" global datasets (Global Forest Change forest loss and GlobeLand30-2010 land cover). We further evaluate some of the limitations and challenges in doing this. We find that this approach does capture some of the major patterns of land cover following deforestation, with GlobeLand30-2010's Grassland class (which we interpret as pasture) being the most common land cover replacing forests across Latin America. However, our analysis also reveals some major limitations to combining these land cover datasets for quantifying pasture and cropland expansion into forest. First, a simple one-to-one translation between GlobeLand30-2010's Cultivated land and Grassland classes into cropland and pasture respectively, should not be made without caution, as GlobeLand30-2010 defines its Cultivated land to include some pastures. Comparisons with the TerraClass dataset over the Brazilian Amazon and with previous literature indicates that Cultivated land in GlobeLand30-2010 includes notable amounts of pasture and other vegetation (e.g. in Paraguay and the Brazilian Amazon). This further suggests that the approach taken here generally leads to an underestimation (of up to ~60%) of the role of pasture in replacing forest. Second, a large share (~33%) of the Global Forest Change forest loss is found to still be forest according to GlobeLand30-2010 and our analysis suggests that the accuracy of the combined datasets, especially for areas with heterogeneous land cover and/or small-scale forest loss, is still too poor for deriving accurate quantifications of land cover following forest loss.

  16. An Assessment of Worldview-2 Imagery for the Classification Of a Mixed Deciduous Forest

    NASA Astrophysics Data System (ADS)

    Carter, Nahid

    Remote sensing provides a variety of methods for classifying forest communities and can be a valuable tool for the impact assessment of invasive species. The emerald ash borer (Agrilus planipennis) infestation of ash trees (Fraxinus) in the United States has resulted in the mortality of large stands of ash throughout the Northeast. This study assessed the suitability of multi-temporal Worldview-2 multispectral satellite imagery for classifying a mixed deciduous forest in Upstate New York. Training sites were collected using a Global Positioning System (GPS) receiver, with each training site consisting of a single tree of a corresponding class. Six classes were collected; Ash, Maple, Oak, Beech, Evergreen, and Other. Three different classifications were investigated on four data sets. A six class classification (6C), a two class classification consisting of ash and all other classes combined (2C), and a merging of the ash and maple classes for a five class classification (5C). The four data sets included Worldview-2 multispectral data collection from June 2010 (J-WV2) and September 2010 (S-WV2), a layer stacked data set using J-WV2 and S-WV2 (LS-WV2), and a reduced data set (RD-WV2). RD-WV2 was created using a statistical analysis of the processed and unprocessed imagery. Statistical analysis was used to reduce the dimensionality of the data and identify key bands to create a fourth data set (RD-WV2). Overall accuracy varied considerably depending upon the classification type, but results indicated that ash was confused with maple in a majority of the classifications. Ash was most accurately identified using the 2C classification and RD-WV2 data set (81.48%). A combination of the ash and maple classes yielded an accuracy of 89.41%. Future work should focus on separating the ash and maple classifiers by using data sources such as hyperspectral imagery, LiDAR, or extensive forest surveys.

  17. Forest investigations by polarimetric AIRSAR data in the Harz mountains

    NASA Technical Reports Server (NTRS)

    Keil, M.; Poll, D.; Raupenstrauch, J.; Tares, T.; Winter, R.

    1993-01-01

    The Harz Mountains in the North of Germany have been a study site for several remote sensing investigations since 1985, as the mountainous area is one of the forest regions in Germany heavily affected by forest decline, especially in the high altitudes above 800 m. In a research program at the University of Berlin, methods are developed for improving remote sensing assessment of forest structure and forest state by additional GIS information, using several datasets for establishing a forest information system. The Harz has been defined as a test site for the SIR-C/X-SAR mission which is going to deliver multifrequency and multipolarizational SAR data from orbit. In a pilot project let by DLR-DFD, these data are to be investigated for forestry and ecology purposes. In preparing a flight campaign to the SIR-C / X-SAR mission, 'MAC EUROPE 1991', performed by NASA/JPL, an area of about 12 km in the Northern Harz was covered with multipolarizational AIRSAR data in the C-, L- and P-band, including the Brocken, the highest mountain of the Harz, with an altitude of 1142 m. The multiparameter AIRSAR data are investigated for their information content on the forest state, regarding the following questions: (1) information on forest stand parameters like forest types, age classes and crown density, especially for the separation of deciduous and coniferous forest; (2) information on the storm damages (since 1972) and the status of regeneration; (3) information on the status of forest destruction because of forest decline; and (4) influence of topography, local incidence angle and soil moisture on the SAR data. Within the project various methods and tools have been developed for the investigation of multipolarimetric radar backscatter responses and for discrimination purposes, in order to use the multipolarization information of the compressed Stokes matrix delivered by JPL.

  18. Disparate effects of global-change drivers on mountain conifer forests: warming-induced growth enhancement in young trees vs. CO2 fertilization in old trees from wet sites.

    PubMed

    Camarero, J Julio; Gazol, Antonio; Galván, Juan Diego; Sangüesa-Barreda, Gabriel; Gutiérrez, Emilia

    2015-02-01

    Theory predicts that the postindustrial rise in the concentration of CO2 in the atmosphere (c(a)) should enhance tree growth either through a direct fertilization effect or indirectly by improving water use efficiency in dry areas. However, this hypothesis has received little support in cold-limited and subalpine forests where positive growth responses to either rising ca or warmer temperatures are still under debate. In this study, we address this issue by analyzing an extensive dendrochronological network of high-elevation Pinus uncinata forests in Spain (28 sites, 544 trees) encompassing the whole biogeographical extent of the species. We determine if the basal area increment (BAI) trends are linked to climate warming and increased c(a) by focusing on region- and age-dependent responses. The largest improvement in BAI over the past six centuries occurred during the last 150 years affecting young trees and being driven by recent warming. Indeed, most studied regions and age classes presented BAI patterns mainly controlled by temperature trends, while growing-season precipitation was only relevant in the driest sites. Growth enhancement was linked to rising ca in mature (151-300 year-old trees) and old-mature trees (301-450 year-old trees) from the wettest sites only. This finding implies that any potential fertilization effect of elevated c(a) on forest growth is contingent on tree features that vary with ontogeny and it depends on site conditions (for instance water availability). Furthermore, we found widespread growth decline in drought-prone sites probably indicating that the rise in ca did not compensate for the reduction in water availability. Thus, warming-triggered drought stress may become a more important direct driver of growth than rising ca in similar subalpine forests. We argue that broad approaches in biogeographical and temporal terms are required to adequately evaluate any effect of rising c(a) on forest growth. © 2014 John Wiley & Sons Ltd.

  19. The Role of Remote Sensing in Assessing Forest Biomass in Appalachian South Carolina

    NASA Technical Reports Server (NTRS)

    Shain, W.; Nix, L.

    1982-01-01

    Information is presented on the use of color infrared aerial photographs and ground sampling methods to quantify standing forest biomass in Appalachian South Carolina. Local tree biomass equations are given and subsequent evaluation of stand density and size classes using remote sensing methods is presented. Methods of terrain analysis, environmental hazard rating, and subsequent determination of accessibility of forest biomass are discussed. Computer-based statistical analyses are used to expand individual cover-type specific ground sample data to area-wide cover type inventory figures based on aerial photographic interpretation and area measurement. Forest biomass data are presented for the study area in terms of discriminant size classes, merchantability limits, accessibility (as related to terrain and yield/harvest constraints), and potential environmental impact of harvest.

  20. How does tree age influence damage and recovery in forests impacted by freezing rain and snow?

    PubMed

    Zhu, LiRong; Zhou, Ting; Chen, BaoMing; Peng, ShaoLin

    2015-05-01

    The response and recovery mechanisms of forests to damage from freezing rain and snow events are a key topic in forest research and management. However, the relationship between the degree of damage and tree age, i.e., whether seedlings, young trees, or adult trees are most vulnerable, remains unclear and is rarely reported. We investigated the effect of tree age on the degrees of vegetation damage and subsequent recovery in three subtropical forest types-coniferous, mixed, and broad-leaved-in the Tianjing Mountains, South China, after a series of rare icy rain and freezing snow events in 2008. The results showed that damage and recovery rates were both dependent on tree age, with the proportion of damaged vegetation increasing with age (estimated by diameter at breast height, DBH) in all three forest types and gradually plateauing. Significant variation occurred among forest types. Young trees in the coniferous forest were more vulnerable than those in the broad-leaved forest. The type of damage also varied with tree age in different ways in the three forest types. The proportion of young seedlings that were uprooted (the most severe type of damage) was highest in the coniferous forest. In the mixed forest, young trees were significantly more likely to be uprooted than seedlings and adult trees, while in the broad-leaved forest, the proportion of uprooted adult trees was significantly higher than that of seedlings and young trees. There were also differences among forest types in how tree age affected damage recovery. In the coniferous forest, the recovery rate of trees with broken trunks or crowns (DBH > 2.5 cm) increased with tree age. However, in the mixed and broad-leaved forests, no obvious correlation between the recovery rate of trees with broken trunks or crowns and tree age was observed. Trees with severe root damage did not recover; they were uprooted and died. In these forests, vegetation damage and recovery showed tree age dependencies, which varied with tree shape, forest type, and damage type. Understanding this dependency will guide restoration after freezing rain and snow disturbances.

  1. Montana's forest resources, 2003-2009

    Treesearch

    Jim Menlove; John D. Shaw; Michael T. Thompson; Chris Witt; Michael C. Amacher; Todd A. Morgan; Colin Sorenson; Chelsea McIver; Charles Werstak

    2012-01-01

    This report presents a summary of the most recent inventory information for Montana's forest lands. The report includes descriptive highlights and tables of area, number of trees, biomass, volume, growth, mortality, and removals. Most of the tables are organized by forest type group, species group, diameter class, or owner group. The report also describes...

  2. Empirical yield tables for Wisconsin.

    Treesearch

    Burton L. Essex; Jerold T. Hahn

    1976-01-01

    Describes the tables derived from the 1968 forest survey of Wisconsin. These tables are broken down according to Wisconsin's 5 Forest Survey Units, 12 forest types, and 5 site index classes. Presents 18 tables as examples of the more than 500 that can be ordered by using the order form enclosed in the publication.

  3. Idaho's Forest Resources, 2004-2009

    Treesearch

    Chris Witt; John D. Shaw; Michael T. Thompson; Sara A. Goeking; Jim Menlove; Michael C. Amacher; Todd A. Morgan; Charles Werstak

    2012-01-01

    This report presents a summary of the most recent inventory information for Idaho's forest lands. The report includes descriptive highlights and tables of area, number of trees, biomass, volume, growth, mortality, and removals. Most of the tables are organized by forest type, species, diameter class, or owner group. The report also describes inventory design,...

  4. Thinning Guidelines For Southern Bottomland Hardwood Forests

    Treesearch

    James S. Meadows

    1996-01-01

    Thinnings, improvement cuttings, and other partial cuttings in southern bottomland hardwood forests are generally designed to enhance the growth and development of those species favored for management objectives. Hardwood tree classes and stocking guides can be used as tools to aid in planning and conducting partial cuttings in hardwood forests. Two disadvantages...

  5. Wyoming's Forests, 2002

    Treesearch

    Michael T. Thompson; Larry T. DeBlander; Jock A. Blackard

    2005-01-01

    This report presents a summary of the most recent inventory information for Wyoming's forest lands. The report includes descriptive highlights and tables of area, number of trees, biomass, volume, growth, mortality, removals, and net change. Most of the tables are organized by forest type, species, diameter class, or owner group. The report also describes...

  6. Locomotor behavior of wild orangutans (Pongo pygmaeus wurmbii) in disturbed peat swamp forest, Sabangau, Central Kalimantan, Indonesia.

    PubMed

    Manduell, Kirsten L; Morrogh-Bernard, Helen C; Thorpe, Susannah K S

    2011-07-01

    This study examined the locomotor behavior of wild Bornean orangutans (P. p. wurmbii) in an area of disturbed peat swamp forest (Sabangau Catchment, Indonesia) in relation to the height in the canopy, age-sex class, behavior (feeding or traveling), and the number of supports used to bear body mass. Backward elimination log-linear modeling was employed to expose the main influences on orangutan locomotion. Our results showed that the most important distinctions with regard to locomotion were between suspensory and compressive, or, orthograde (vertical trunk) and pronograde (horizontal trunk) behavior. Whether orangutans were traveling or feeding had the most important influence on locomotion whereby compressive locomotion had a strong association with feeding, suspensory locomotion had a strong association with travel in the peripheral strata using multiple supports, whereas vertical climb/descent and oscillation showed a strong association with travel on single supports in the core stratum. In contrast to theoretical predictions on positional behavior and body size, age-sex category had a limited influence on locomotion. The study revealed that torso orthograde suspension dominates orangutan locomotion, concurring with previous studies in dipterocarp forest. But, orangutans in the Sabangau exhibited substantially higher frequencies of oscillatory locomotion than observed at other sites, suggesting this behavior confers particular benefits for traversing the highly compliant arboreal environment typical of disturbed peat swamp forest. In addition, torso pronograde suspensory locomotion was observed at much lower levels than in the Sumatran species. Together these results highlight the necessity for further examination of differences between species, which control for habitat. Copyright © 2011 Wiley-Liss, Inc.

  7. Local-scale drivers of tree survival in a temperate forest.

    PubMed

    Wang, Xugao; Comita, Liza S; Hao, Zhanqing; Davies, Stuart J; Ye, Ji; Lin, Fei; Yuan, Zuoqiang

    2012-01-01

    Tree survival plays a central role in forest ecosystems. Although many factors such as tree size, abiotic and biotic neighborhoods have been proposed as being important in explaining patterns of tree survival, their contributions are still subject to debate. We used generalized linear mixed models to examine the relative importance of tree size, local abiotic conditions and the density and identity of neighbors on tree survival in an old-growth temperate forest in northeastern China at three levels (community, guild and species). Tree size and both abiotic and biotic neighborhood variables influenced tree survival under current forest conditions, but their relative importance varied dramatically within and among the community, guild and species levels. Of the variables tested, tree size was typically the most important predictor of tree survival, followed by biotic and then abiotic variables. The effect of tree size on survival varied from strongly positive for small trees (1-20 cm dbh) and medium trees (20-40 cm dbh), to slightly negative for large trees (>40 cm dbh). Among the biotic factors, we found strong evidence for negative density and frequency dependence in this temperate forest, as indicated by negative effects of both total basal area of neighbors and the frequency of conspecific neighbors. Among the abiotic factors tested, soil nutrients tended to be more important in affecting tree survival than topographic variables. Abiotic factors generally influenced survival for species with relatively high abundance, for individuals in smaller size classes and for shade-tolerant species. Our study demonstrates that the relative importance of variables driving patterns of tree survival differs greatly among size classes, species guilds and abundance classes in temperate forest, which can further understanding of forest dynamics and offer important insights into forest management.

  8. Local-Scale Drivers of Tree Survival in a Temperate Forest

    PubMed Central

    Wang, Xugao; Comita, Liza S.; Hao, Zhanqing; Davies, Stuart J.; Ye, Ji; Lin, Fei; Yuan, Zuoqiang

    2012-01-01

    Tree survival plays a central role in forest ecosystems. Although many factors such as tree size, abiotic and biotic neighborhoods have been proposed as being important in explaining patterns of tree survival, their contributions are still subject to debate. We used generalized linear mixed models to examine the relative importance of tree size, local abiotic conditions and the density and identity of neighbors on tree survival in an old-growth temperate forest in northeastern China at three levels (community, guild and species). Tree size and both abiotic and biotic neighborhood variables influenced tree survival under current forest conditions, but their relative importance varied dramatically within and among the community, guild and species levels. Of the variables tested, tree size was typically the most important predictor of tree survival, followed by biotic and then abiotic variables. The effect of tree size on survival varied from strongly positive for small trees (1–20 cm dbh) and medium trees (20–40 cm dbh), to slightly negative for large trees (>40 cm dbh). Among the biotic factors, we found strong evidence for negative density and frequency dependence in this temperate forest, as indicated by negative effects of both total basal area of neighbors and the frequency of conspecific neighbors. Among the abiotic factors tested, soil nutrients tended to be more important in affecting tree survival than topographic variables. Abiotic factors generally influenced survival for species with relatively high abundance, for individuals in smaller size classes and for shade-tolerant species. Our study demonstrates that the relative importance of variables driving patterns of tree survival differs greatly among size classes, species guilds and abundance classes in temperate forest, which can further understanding of forest dynamics and offer important insights into forest management. PMID:22347996

  9. A Machine Learning and Cross-Validation Approach for the Discrimination of Vegetation Physiognomic Types Using Satellite Based Multispectral and Multitemporal Data.

    PubMed

    Sharma, Ram C; Hara, Keitarou; Hirayama, Hidetake

    2017-01-01

    This paper presents the performance and evaluation of a number of machine learning classifiers for the discrimination between the vegetation physiognomic classes using the satellite based time-series of the surface reflectance data. Discrimination of six vegetation physiognomic classes, Evergreen Coniferous Forest, Evergreen Broadleaf Forest, Deciduous Coniferous Forest, Deciduous Broadleaf Forest, Shrubs, and Herbs, was dealt with in the research. Rich-feature data were prepared from time-series of the satellite data for the discrimination and cross-validation of the vegetation physiognomic types using machine learning approach. A set of machine learning experiments comprised of a number of supervised classifiers with different model parameters was conducted to assess how the discrimination of vegetation physiognomic classes varies with classifiers, input features, and ground truth data size. The performance of each experiment was evaluated by using the 10-fold cross-validation method. Experiment using the Random Forests classifier provided highest overall accuracy (0.81) and kappa coefficient (0.78). However, accuracy metrics did not vary much with experiments. Accuracy metrics were found to be very sensitive to input features and size of ground truth data. The results obtained in the research are expected to be useful for improving the vegetation physiognomic mapping in Japan.

  10. Linear Subpixel Learning Algorithm for Land Cover Classification from WELD using High Performance Computing

    NASA Technical Reports Server (NTRS)

    Kumar, Uttam; Nemani, Ramakrishna R.; Ganguly, Sangram; Kalia, Subodh; Michaelis, Andrew

    2017-01-01

    In this work, we use a Fully Constrained Least Squares Subpixel Learning Algorithm to unmix global WELD (Web Enabled Landsat Data) to obtain fractions or abundances of substrate (S), vegetation (V) and dark objects (D) classes. Because of the sheer nature of data and compute needs, we leveraged the NASA Earth Exchange (NEX) high performance computing architecture to optimize and scale our algorithm for large-scale processing. Subsequently, the S-V-D abundance maps were characterized into 4 classes namely, forest, farmland, water and urban areas (with NPP-VIIRS-national polar orbiting partnership visible infrared imaging radiometer suite nighttime lights data) over California, USA using Random Forest classifier. Validation of these land cover maps with NLCD (National Land Cover Database) 2011 products and NAFD (North American Forest Dynamics) static forest cover maps showed that an overall classification accuracy of over 91 percent was achieved, which is a 6 percent improvement in unmixing based classification relative to per-pixel-based classification. As such, abundance maps continue to offer an useful alternative to high-spatial resolution data derived classification maps for forest inventory analysis, multi-class mapping for eco-climatic models and applications, fast multi-temporal trend analysis and for societal and policy-relevant applications needed at the watershed scale.

  11. Linear Subpixel Learning Algorithm for Land Cover Classification from WELD using High Performance Computing

    NASA Astrophysics Data System (ADS)

    Ganguly, S.; Kumar, U.; Nemani, R. R.; Kalia, S.; Michaelis, A.

    2017-12-01

    In this work, we use a Fully Constrained Least Squares Subpixel Learning Algorithm to unmix global WELD (Web Enabled Landsat Data) to obtain fractions or abundances of substrate (S), vegetation (V) and dark objects (D) classes. Because of the sheer nature of data and compute needs, we leveraged the NASA Earth Exchange (NEX) high performance computing architecture to optimize and scale our algorithm for large-scale processing. Subsequently, the S-V-D abundance maps were characterized into 4 classes namely, forest, farmland, water and urban areas (with NPP-VIIRS - national polar orbiting partnership visible infrared imaging radiometer suite nighttime lights data) over California, USA using Random Forest classifier. Validation of these land cover maps with NLCD (National Land Cover Database) 2011 products and NAFD (North American Forest Dynamics) static forest cover maps showed that an overall classification accuracy of over 91% was achieved, which is a 6% improvement in unmixing based classification relative to per-pixel based classification. As such, abundance maps continue to offer an useful alternative to high-spatial resolution data derived classification maps for forest inventory analysis, multi-class mapping for eco-climatic models and applications, fast multi-temporal trend analysis and for societal and policy-relevant applications needed at the watershed scale.

  12. Evaluating the Effectiveness of Flood Control Strategies in Contrasting Urban Watersheds and Implications for Houston's Future Flood Vulnerability

    NASA Astrophysics Data System (ADS)

    Ganguly, S.; Kumar, U.; Nemani, R. R.; Kalia, S.; Michaelis, A.

    2016-12-01

    In this work, we use a Fully Constrained Least Squares Subpixel Learning Algorithm to unmix global WELD (Web Enabled Landsat Data) to obtain fractions or abundances of substrate (S), vegetation (V) and dark objects (D) classes. Because of the sheer nature of data and compute needs, we leveraged the NASA Earth Exchange (NEX) high performance computing architecture to optimize and scale our algorithm for large-scale processing. Subsequently, the S-V-D abundance maps were characterized into 4 classes namely, forest, farmland, water and urban areas (with NPP-VIIRS - national polar orbiting partnership visible infrared imaging radiometer suite nighttime lights data) over California, USA using Random Forest classifier. Validation of these land cover maps with NLCD (National Land Cover Database) 2011 products and NAFD (North American Forest Dynamics) static forest cover maps showed that an overall classification accuracy of over 91% was achieved, which is a 6% improvement in unmixing based classification relative to per-pixel based classification. As such, abundance maps continue to offer an useful alternative to high-spatial resolution data derived classification maps for forest inventory analysis, multi-class mapping for eco-climatic models and applications, fast multi-temporal trend analysis and for societal and policy-relevant applications needed at the watershed scale.

  13. Differences between standing and downed dead tree wood density reduction factors: A comparison across decay classes and tree species

    Treesearch

    Mark E. Harmon; Christopher W. Woodall; Becky Fasth; Jay Sexton; Misha Yatkov

    2011-01-01

    Woody detritus or dead wood is an important part of forest ecosystems and has become a routine facet of forest monitoring and inventory. Biomass and carbon estimates of dead wood depend on knowledge of species- and decay class-specifi c density or density reduction factors. While some progress has been made in determining these parameters for dead and downed trees (DD...

  14. Multiple baseline radar interferometry applied to coastal land cover classification and change analyses

    USGS Publications Warehouse

    Ramsey, Elijah W.; Lu, Z.; Rangoonwala, A.; Rykhus, Russ

    2006-01-01

    ERS-1 and ERS-2 SAR data were collected in tandem over a four-month period and used to generate interferometric coherence, phase, and intensity products that we compared to a classified land cover coastal map of Big Bend, Florida. Forests displayed the highest intensity, and marshes the lowest. The intensity for fresh marsh and forests progressively shifted while saline marsh intensity variance distribution changed with the season. Intensity variability suggested instability between temporal comparisons. Forests, especially hardwoods, displayed lower coherences and marshes higher. Only marshes retained coherence after 70 days. Coherence was more responsive to land cover class than intensity and provided discrimination in winter. Phase distributions helped reveal variation in vegetation structure, identify broad land cover classes and unique within-class variations, and estimate water-level changes. Copyright ?? 2006 by V. H. Winston & Son, Inc. All rights reserved.

  15. Vegetation types, dominant compositions, woody plant diversity and stand structure in Trishna Wildlife Sanctuary of Northeast India.

    PubMed

    Majumdar, Koushik; Datta, B K

    2015-03-01

    Present study was carried out to assess the vegetation types, diversity and phytosociological status of woody plants in Trishna Wildlife Sanctuary of Tripura, Northeast India. Vegetation data was derived by 25 line transects (10 m wide and 500 m length, each 0.5 ha size). All woody species at >10 cm gbh (Girth at Breast Height) within each plots were measured and counted. A total of six forest types were classified by cluster analysis using Importance Value Index (IVI) of 289 woody species. Species diversity, forest structure and woody community associations were evaluated and discussed. One way ANOVA revealed significant differences in all species diversity measures and stand structure along the forest types. Distribution of stem density at ten different gbh classes showed reverse J-shaped curves. Population status of woody plants was also examined through grouping of all individuals into four population age stages viz. sapling (<30 cm gbh), adult (> or = 30 - <120 cm gbh), mature (>120 - 210 cm gbh) and old (> or =210 cm). To observe dominant composition and species population trend, IVI of top ten dominant species from all forest types were tabulated. The present study suggested that Trishna Wildlife Sanctuary is an important habitat in Tripura from floristic point of view and it should be conserved on priority basis for remaining wildlife endurances and monitor for forest livelihoods products for sustainable biodiversity conservation in this region.

  16. Recent Changes in the Riparian Forest of a Large Regulated Mediterranean River: Implications for Management

    NASA Astrophysics Data System (ADS)

    González, Eduardo; González-Sanchis, María; Cabezas, Álvaro; Comín, Francisco A.; Muller, Etienne

    2010-04-01

    The structure of the floodplain forests of the Middle Ebro River (NE Spain) was examined at patch and landscape scales along a three-step chronosequence defined according to the extent of flow regulation-induced hydrogeomorphic changes, with the ultimate purpose of producing baseline information to guide through management and restoration plans. At patch scale, a total of 6,891 stems within 39 plots were registered for species, diameter and health status. The stem density, size class distribution, canopy dieback and mortality were further compared by means of non-parametric tests. At landscape scale, the temporal evolution of the area occupied by forest stands of different ages in the floodplain along the chronosequence was evaluated using four sets of aerial photographs dated in 1927, 1957, 1981 and 2003. The within-patch structure of pioneer forests (<25-30 years old) was characterized by dense and healthy populations of pioneer species ( Populus nigra, Salix alba and Tamarix spp.), but the area occupied by these forest types has progressively decreased (up to 37%) since the intensification of river regulation (ca. 1957). In contrast, non-pioneer forests (>25-30 years old) were characterized by declining and sparse P. nigra- S. alba- Tamarix spp. stands, where late-seral species such as Ulmus minor and Fraxinus angustifolia were frequent, but only as small-size stems. At landscape scale, these type of senescent forests have doubled their surface after river regulation was intensified. Populus alba only appeared in the oldest plots recorded (colonized before 1957), suggesting sexual regeneration failure during the last five decades, but usually as healthy and dense stands. Based on these findings, measures principally aimed at recovering some hydrogeomorphic dynamism are recommended to guarantee the self-sustainability of the floodplain forest ecosystem.

  17. Recent changes in the riparian forest of a large regulated Mediterranean river: implications for management.

    PubMed

    González, Eduardo; González-Sanchis, María; Cabezas, Alvaro; Comín, Francisco A; Muller, Etienne

    2010-04-01

    The structure of the floodplain forests of the Middle Ebro River (NE Spain) was examined at patch and landscape scales along a three-step chronosequence defined according to the extent of flow regulation-induced hydrogeomorphic changes, with the ultimate purpose of producing baseline information to guide through management and restoration plans. At patch scale, a total of 6,891 stems within 39 plots were registered for species, diameter and health status. The stem density, size class distribution, canopy dieback and mortality were further compared by means of non-parametric tests. At landscape scale, the temporal evolution of the area occupied by forest stands of different ages in the floodplain along the chronosequence was evaluated using four sets of aerial photographs dated in 1927, 1957, 1981 and 2003. The within-patch structure of pioneer forests (<25-30 years old) was characterized by dense and healthy populations of pioneer species (Populus nigra, Salix alba and Tamarix spp.), but the area occupied by these forest types has progressively decreased (up to 37%) since the intensification of river regulation (ca. 1957). In contrast, non-pioneer forests (>25-30 years old) were characterized by declining and sparse P. nigra-S. alba-Tamarix spp. stands, where late-seral species such as Ulmus minor and Fraxinus angustifolia were frequent, but only as small-size stems. At landscape scale, these type of senescent forests have doubled their surface after river regulation was intensified. Populus alba only appeared in the oldest plots recorded (colonized before 1957), suggesting sexual regeneration failure during the last five decades, but usually as healthy and dense stands. Based on these findings, measures principally aimed at recovering some hydrogeomorphic dynamism are recommended to guarantee the self-sustainability of the floodplain forest ecosystem.

  18. Climate change-associated trends in net biomass change are age dependent in western boreal forests of Canada.

    PubMed

    Chen, Han Y H; Luo, Yong; Reich, Peter B; Searle, Eric B; Biswas, Shekhar R

    2016-09-01

    The impacts of climate change on forest net biomass change are poorly understood but critical for predicting forest's contribution to the global carbon cycle. Recent studies show climate change-associated net biomass declines in mature forest plots. The representativeness of these plots for regional forests, however, remains uncertain because we lack an assessment of whether climate change impacts differ with forest age. Using data from plots of varying ages from 17 to 210 years, monitored from 1958 to 2011 in western Canada, we found that climate change has little effect on net biomass change in forests ≤ 40 years of age due to increased growth offsetting increased mortality, but has led to large decreases in older forests due to increased mortality accompanying little growth gain. Our analysis highlights the need to incorporate forest age profiles in examining past and projecting future forest responses to climate change. © 2016 John Wiley & Sons Ltd/CNRS.

  19. Forest Health Monitoring in Pennsylvania 1998-1999

    Treesearch

    Northeastern Research Station

    2002-01-01

    Pennsylvania has mature forests dominated by hardwood species. Red maple was common in all size classes. Most trees are healthy, with full crowns (low transparency, high density), little dieback, and little damage.

  20. Factors influencing spatial pattern in tropical forest clearance and stand age: Implications for carbon storage and species diversity.

    Treesearch

    E. H. Helmer; Thomas J. Brandeis; Ariel E. Lugo; Todd Kennaway

    2008-01-01

    Little is known about the tropical forests that undergo clearing as urban/built-up and other developed lands spread. This study uses remote sensing-based maps of Puerto Rico, multinomial logit models and forest inventory data to explain patterns of forest age and the age of forests cleared for land development and assess their implications for forest carbon storage and...

  1. Nevada's forest resources, 2004-2013

    Treesearch

    James Menlove; John D. Shaw; Christopher Witt; Charles Werstak; R. Justin DeRose; Sara A. Goeking; Michael C. Amacher; Todd A. Morgan; Colin B. Sorenson

    2016-01-01

    This report presents a summary of the most recent inventory information for Nevada’s forest lands. The report includes descriptive highlights and tables of area, number of trees, biomass, volume, growth, mortality, and removals. Most of the tables are organized by forest-type group, species group, diameter class, or ownership. The report also describes...

  2. Characteristics of forest fuels, fire and emissions

    Treesearch

    Charles K. McMahon

    1983-01-01

    Introduction Forest fires can be divided into two broad classes--wildfires and prescribed fires. Wildfires, whether caused by nature (lightning, etc.) or by the accidental or malicious acts of man, are not planned by forest managers and do not occur under controlled conditions. They can be relatively tame, covering only a few hectares and burning...

  3. Empirical yield tables for Minnesota.

    Treesearch

    Jerold T. Hahn; Gerhard K. Raile

    1982-01-01

    Describes the tables derived from the 1977 Forest Survey of Minnesota and presents examples of how the tables can be used. These tables are broken down according to Minnesota's four Forest Survey Units, 14 forest types, and 5 site index classes. Presents 210 of the 350 possible tables that contained sufficient data to justify publication.

  4. Forest/non-forest stratification in Georgia with Landsat Thematic Mapper data

    Treesearch

    William H. Cooke

    2000-01-01

    Geographically accurate Forest Inventory and Analysis (FIA) data may be useful for training, classification, and accuracy assessment of Landsat Thematic Mapper (TM) data. Minimum expectation for maps derived from Landsat data is accurate discrimination of several land cover classes. Landsat TM costs have decreased dramatically, but acquiring cloud-free scenes at...

  5. Area change reporting using the desktop FIADB

    Treesearch

    Patrick D. Miles; Mark H. Hansen

    2012-01-01

    The estimation of area change between two FIA inventories is complicated by the "mapping" of subplots. Subplots can be subdivided or mapped into forest and nonforest conditions, and forest conditions can be further mapped based on distinct changes in reserved status, owner group, forest type, stand-size class, regeneration status, and stand density. The...

  6. Visually Determined Soil Disturbance Classes Used as Indices of Forest Harvesting Disturbance

    Treesearch

    W. Michael Aust; James A. Burger; Emily A. Carter; David P. Preston; Steven C. Patterson

    1998-01-01

    Visual estimates of soil and site disturbances are used by foresters, soil scientists, logging supervisors. and machinery operators to minimize harvest disturbances to forest sites, to evaluate compliance with forestry Best Management Practices (BMPs), and to determine the need for ameliorative practices such as tnechanical site preparation. Although estimates are...

  7. Forest Insect and Disease Tally System (FINDIT) user manual

    Treesearch

    Barbara J. Bentz

    2000-01-01

    FINDIT, the Forest Insect and Disease Tally System, is an easy-to-use tool for analyzing insect and disease population information taken during stand surveys. Incidence of insects, pathogens, and other biotic and abiotic influences on forest ecosystems are summarized using traditional mensurational measurements. Information is summarized by diameter class, tree species...

  8. Landscape risk factors for Lyme disease in the eastern broadleaf forest province of the Hudson River valley and the effect of explanatory data classification resolution.

    PubMed

    Messier, Kyle P; Jackson, Laura E; White, Jennifer L; Hilborn, Elizabeth D

    2015-01-01

    This study assessed how landcover classification affects associations between landscape characteristics and Lyme disease rate. Landscape variables were derived from the National Land Cover Database (NLCD), including native classes (e.g., deciduous forest, developed low intensity) and aggregate classes (e.g., forest, developed). Percent of each landcover type, median income, and centroid coordinates were calculated by census tract. Regression results from individual and aggregate variable models were compared with the dispersion parameter-based R(2) (Rα(2)) and AIC. The maximum Rα(2) was 0.82 and 0.83 for the best aggregate and individual model, respectively. The AICs for the best models differed by less than 0.5%. The aggregate model variables included forest, developed, agriculture, agriculture-squared, y-coordinate, y-coordinate-squared, income and income-squared. The individual model variables included deciduous forest, deciduous forest-squared, developed low intensity, pasture, y-coordinate, y-coordinate-squared, income, and income-squared. Results indicate that regional landscape models for Lyme disease rate are robust to NLCD landcover classification resolution. Published by Elsevier Ltd.

  9. Impacts of changes in land use and fragmentation patterns on Atlantic coastal forests in northern Spain.

    PubMed

    Teixido, Alberto L; Quintanilla, Luis G; Carreño, Francisco; Gutiérrez, David

    2010-01-01

    Changes in forested landscapes may have important consequences for ecosystem services and biodiversity conservation. In northern Spain, major changes in land use occurred during the second half of the 20th century, but their impacts on forests have not been quantified. We evaluated the dynamics of landscape and forest distribution patterns between 1957 and 2003 in Fragas do Eume Natural Park (northwestern Spain). We used orthoimages and a set of standard landscape metrics to determine transitions between land cover classes and to examine forest distribution patterns. Eucalypt plantations showed the greatest increase in area (197%) over time. Furthermore, transitions to eucalypt plantations were found in all major land cover classes. Forest showed a net decline of 20% in total area and represented 30% of the landscape area in 2003. Forest losses were mainly due to eucalypt plantations and the building of a water reservoir, while forest gains were due to increases in shrubland, meadows and cultivated fields which had been recolonised. Forest patch size and core area decreased, and edge length increased over time. In turn, increases were obtained in mean distance between forest patches, and in adjacency to eucalypt plantations and to a water reservoir. These results suggest an increase in forest fragmentation from 1957 to 2003, as well as a change in the nature of the habitat surrounding forest patches. This study shows that land use changes, mostly from eucalypt plantation intensification, negatively affected forested habitats, although some regeneration was ongoing through ecological succession from land abandonment. Copyright 2009 Elsevier Ltd. All rights reserved.

  10. The use of space and high altitude aerial photography to classify forest land and to detect forest disturbances

    NASA Technical Reports Server (NTRS)

    Aldrich, R. C.; Greentree, W. J.; Heller, R. C.; Norick, N. X.

    1970-01-01

    In October 1969, an investigation was begun near Atlanta, Georgia, to explore the possibilities of developing predictors for forest land and stand condition classifications using space photography. It has been found that forest area can be predicted with reasonable accuracy on space photographs using ocular techniques. Infrared color film is the best single multiband sensor for this purpose. Using the Apollo 9 infrared color photographs taken in March 1969 photointerpreters were able to predict forest area for small units consistently within 5 to 10 percent of ground truth. Approximately 5,000 density data points were recorded for 14 scan lines selected at random from five study blocks. The mean densities and standard deviations were computed for 13 separate land use classes. The results indicate that forest area cannot be separated from other land uses with a high degree of accuracy using optical film density alone. If, however, densities derived by introducing red, green, and blue cutoff filters in the optical system of the microdensitometer are combined with their differences and their ratios in regression analysis techniques, there is a good possibility of discriminating forest from all other classes.

  11. The ERTS-1 investigation (ER-600). Volume 3: ERTS-1 forest analysis

    NASA Technical Reports Server (NTRS)

    Erb, R. B.

    1974-01-01

    The Forest Analysis Team of the Lyndon B. Johnson Space Center Earth Observations Division conducted a year's investigation of LANDSAT 1 multispectral data to determine the size of forest features that could be detected and to determine the suitability for making forest classification maps. The Sam Houston National Forest of Texas was used as the test site. Using conventional interpretation and computer aided techniques, the team was able to differentiate up to 14 classes of forest features to an accuracy ranging between 55 and 84 percent.

  12. [Evaluation of view points in forest park based on landscape sensitivity].

    PubMed

    Zhou, Rui; Li, Yue-hui; Hu, Yuan-man; Liu, Miao

    2008-11-01

    Based on topographical characteristics, five factors including comparative slope, comparative distance, mutual visibility, vision probability, and striking degree were chosen to assess the landscape sensitivity of major view points in Houshi National Forest Park. Spatial analysis in GIS was used for exploring the theory and method of landscape sensitivity of view points. The results showed that in the Park, there were totally 23 view points, but none of them reached up to class I. Among the 23 points, 10 were of class II , accounting for 43.5% of the total, 8 were of class III, accounting for 34.8%, and 5 were of classes IV and V, accounting for 21.7%. Around the view points of class II, the landscape should be strictly protected to maintain their natural feature; around the view points of class III, human-made landscape points should be developed according to the natural landscape feature, and wide tourism roads and small-size buildings could be constructed but the style of the buildings should be harmonious with surrounding nature landscape; while around the view points of classes IV and V, large-size multifunctional items and roads could be built to perfect the natural landscape. Through the multi-perspective and quantitative evaluation of landscape sensitivity, this study enriched the theory of landscape visual assessment and landscape apperception, and provided scientific base and direction for the planning and management of forest parks and other tourism areas.

  13. Restoring Sustainable Forests on Appalachian Mined Lands for Wood Products, Renewable Energy, Carbon Sequestration, and Other Ecosystem Services

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burger, James A

    2005-07-20

    The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. We are currently estimating the acreage of lands in Virginia, West Virginia, Kentucky, Ohio, and Pennsylvania mined under SMCRA and reclaimed to non-forested post-mining land uses that are not currently under active management, and therefore can be considered as available for carbon sequestration. To determine actual sequestration under different forest management scenarios, a field study was installed as a 3 x 3 factorial in a random complete block design with three replications at each of three locations, one each in Ohio, West Virginia, and Virginia. The treatments included three forest types (white pine, hybrid poplar, mixed hardwood) and three silvicultural regimes (competition control, competition control plus tillage, competition control plus tillage plus fertilization). Each individual treatment plot is 0.5 acres. Each block of nine plots is 4.5 acres, and the complete installation at each site is 13.5 acres. During the reporting period we determined that by grinding the soil samples to a finer particle size of less than 250 μm (sieve No. 60), the effect of mine soil coal particle size on the extent to which these particles will be oxidized during the thermal treatment of the carbon partitioning procedure will be eliminated, thus making the procedure more accurate and precise. In the second phase of the carbon sequestration project, we focused our attention on determining the sample size required for carbon accounting on grassland mined fields in order to achieve a desired accuracy and precision of the final soil organic carbon (SOC) estimate. A mine land site quality classification scheme was developed and some field-testing of the methods of implementation was completed. The classification model has been validated for softwoods (white pine) on several reclaimed mine sites in the southern Appalachian coal region. The classification model is a viable method for classifying post-SMCRA abandoned mined lands into productivity classes for white pine. A thinning study was established as a random complete block design to evaluate the response to thinning of a 26-year-old white pine stand growing on a reclaimed surface mine in southwest Virginia. Stand parameters were projected to age 30 using a stand table projection. Site index of the stand was found to be 32.3 m at base age 50 years. Thinning rapidly increased the diameter growth of the residual trees to 0.84 cm yr{sup -1} compared to 0.58 cm yr{sup -1} for the unthinned treatment; however, at age 26, there was no difference in volume or value per hectare. At age 30, the unthinned treatment had a volume of 457.1 m{sup 3} ha{sup -1} but was only worthmore » $$8807 ha{sup -1}, while the thinned treatment was projected to have 465.8 m{sup 3} ha{sup -1}, which was worth $$11265 ha{sup -1} due to a larger percentage of the volume being in sawtimber size classes.« less

  14. Long-term effects of a lock and dam and greentree reservoir management on a bottomland hardwood forest

    USGS Publications Warehouse

    King, S.L.; Allen, J.A.; McCoy, J.W.

    1998-01-01

    We investigated the long-term effects of a lock and dam and greentree reservoir management on a riparian bottomland hardwood forest in southern Arkansas, USA, by monitoring stress, mortality, and regeneration of bottomland hardwood trees in 53 permanent sampling plots from 1987-1995. The lock and dam and greentree reservoir management have altered the timing, depth, and duration of flooding within the wetland forest. Evaluation of daily river stage data indicates that November overbank flooding (i.e. 0.3 m above normal pool) of 1 week duration occurred only 10 times from 1950 to 1995 and four of these occurrences were the result of artificial flooding of the greentree reservoir. Results of the vegetation study indicate that the five most common dominant and co-dominant species were overcup oak, water hickory, Nuttall oak, willow oak, and sweetgum. Mortality of willow oak exceeded that of all other species except Nuttall oak. Nuttall oak, willow oak, and water hickory had much higher percentages of dead trees concentrated within the dominant and co-dominant crown classes. Probit analysis indicated that differences in stress and mortality were due to a combination of flooding and stand competition. Overcup oak appears to exhibit very little stress regardless of crown class and elevation and, with few exceptions, had a significantly greater probability of occurring within lower stress classes than any other species. Only 22 new stems were recruited into the 5 cm diameter-at-breast height size class between 1990-1995 and of these, three were Nuttall oak, three were water hickory, and one was sweetgum. No recruitment into the 5 cm diameter-at-breast height size class occurred for overcup oak or willow oak. The results of the study suggest that the forest is progressing to a more water-tolerant community dominated by overcup oak. A conservative flooding strategy would minimize tree stress and maintain quality wildlife habitat within the forested wetland.The long-term effects of a lock and dam and greentree reservoir management on a riparian bottomland hardwood forest in southern Arkansas, USA, were investigated by monitoring stress, mortality, and regeneration of bottomland hardwood trees in 53 permanent sampling plots from 1987-1995. Results of the study suggest that the forest is progressing to a more water-tolerant community dominated by overcup oak.

  15. Coupling a distributed hydrological model with detailed forest structural information for large-scale global change impact assessment

    NASA Astrophysics Data System (ADS)

    Eisner, Stephanie; Huang, Shaochun; Majasalmi, Titta; Bright, Ryan; Astrup, Rasmus; Beldring, Stein

    2017-04-01

    Forests are recognized for their decisive effect on landscape water balance with structural forest characteristics as stand density or species composition determining energy partitioning and dominant flow paths. However, spatial and temporal variability in forest structure is often poorly represented in hydrological modeling frameworks, in particular in regional to large scale hydrological modeling and impact analysis. As a common practice, prescribed land cover classes (including different generic forest types) are linked to parameter values derived from literature, or parameters are determined by calibration. While national forest inventory (NFI) data provide comprehensive, detailed information on hydrologically relevant forest characteristics, their potential to inform hydrological simulation over larger spatial domains is rarely exploited. In this study we present a modeling framework that couples the distributed hydrological model HBV with forest structural information derived from the Norwegian NFI and multi-source remote sensing data. The modeling framework, set up for the entire of continental Norway at 1 km spatial resolution, is explicitly designed to study the combined and isolated impacts of climate change, forest management and land use change on hydrological fluxes. We use a forest classification system based on forest structure rather than biomes which allows to implicitly account for impacts of forest management on forest structural attributes. In the hydrological model, different forest classes are represented by three parameters: leaf area index (LAI), mean tree height and surface albedo. Seasonal cycles of LAI and surface albedo are dynamically simulated to make the framework applicable under climate change conditions. Based on a hindcast for the pilot regions Nord-Trøndelag and Sør-Trøndelag, we show how forest management has affected regional hydrological fluxes during the second half of the 20th century as contrasted to climate variability.

  16. Changes in the forest landscape of the Charles C. Deam wilderness, Southern Indiana, 1939-1990

    Treesearch

    MIchael A. Jenkins; George R. Parker

    2000-01-01

    We used aerial photographs from 1939, 1974, and 1990 to examine how land cover has changed on the 5,286-ha Charles C. Deam Wilderness of Hoosier National Forest over this time span. Digital elevation models were used to examine changes in land-cover class (closed-canopy forest, open forest, agriculture/old-field, clearcut, and pine plantation) within each land type (...

  17. Relationships between net primary productivity and forest stand age in U.S. forests

    Treesearch

    Liming He; Jing M. Chen; Yude Pan; Richard Birdsey; Jens Kattge

    2012-01-01

    Net primary productivity (NPP) is a key flux in the terrestrial ecosystem carbon balance, as it summarizes the autotrophic input into the system. Forest NPP varies predictably with stand age, and quantitative information on the NPP-age relationship for different regions and forest types is therefore fundamentally important for forest carbon cycle modeling. We used four...

  18. An experimental test of the causes of forest growth decline with stand age.

    Treesearch

    Michael G. Ryan; Dan Binkley; James H. Fownes; Christian Giardina; Randy S. Senock

    2004-01-01

    The decline in aboveground wood production after canopy closure in even-aged forest stands is a common pattern in forests, but clear evidence for the mechanism causing the decline is lacking. The problem is fundamental to forest biology, commercial forestry (the decline sets the rotation age), and to carbon storage in forests. We tested three hypotheses...

  19. Application of satellite data and LARS's data processing techniques to mapping vegetation of the Dismal Swamp. M.S. Thesis - Old Dominion Univ.

    NASA Technical Reports Server (NTRS)

    Messmore, J. A.

    1976-01-01

    The feasibility of using digital satellite imagery and automatic data processing techniques as a means of mapping swamp forest vegetation was considered, using multispectral scanner data acquired by the LANDSAT-1 satellite. The site for this investigation was the Dismal Swamp, a 210,000 acre swamp forest located south of Suffolk, Va. on the Virginia-North Carolina border. Two basic classification strategies were employed. The initial classification utilized unsupervised techniques which produced a map of the swamp indicating the distribution of thirteen forest spectral classes. These classes were later combined into three informational categories: Atlantic white cedar (Chamaecyparis thyoides), Loblolly pine (Pinus taeda), and deciduous forest. The subsequent classification employed supervised techniques which mapped Atlantic white cedar, Loblolly pine, deciduous forest, water and agriculture within the study site. A classification accuracy of 82.5% was produced by unsupervised techniques compared with 89% accuracy using supervised techniques.

  20. Effects of local biotic neighbors and habitat heterogeneity on tree and shrub seedling survival in an old-growth temperate forest.

    PubMed

    Bai, Xuejiao; Queenborough, Simon A; Wang, Xugao; Zhang, Jian; Li, Buhang; Yuan, Zuoqiang; Xing, Dingliang; Lin, Fei; Ye, Ji; Hao, Zhanqing

    2012-11-01

    Seedling dynamics play a crucial role in determining species distributions and coexistence. Exploring causes of variation in seedling dynamics can therefore provide key insights into the factors affecting these phenomena. We examined the relative importance of biotic neighborhood processes and habitat heterogeneity using survival data for 5,827 seedlings in 39 tree and shrub species over 2 years from an old-growth temperate forest in northeastern China. We found significant negative density-dependence effects on survival of tree seedlings, and limited effects of habitat heterogeneity (edaphic and topographic variables) on survival of shrub seedlings. The importance of negative density dependence on young tree seedling survival was replaced by habitat in tree seedlings ≥ 4 years old. As expected, negative density dependence was more apparent in gravity-dispersed species compared to wind-dispersed and animal-dispersed species. Moreover, we found that a community compensatory trend existed for trees. Therefore, although negative density dependence was not as pervasive as in other forest communities, it is an important mechanism for the maintenance of community diversity in this temperate forest. We conclude that both negative density dependence and habitat heterogeneity drive seedling survival, but their relative importance varies with seedling age classes and species traits.

  1. Data Base Design with GIS in Ecosystem Based Multiple Use Forest Management in Artvin, Turkey: A Case Study in Balcı Forest Management Planning Unit.

    PubMed

    Yolasığmaz, Hacı Ahmet; Keleş, Sedat

    2009-01-01

    In Turkey, the understanding of planning focused on timber production has given its place on Multiple Use Management (MUM). Because the whole infrastructure of forestry with inventory system leading the way depends on timber production, some cases of bottle neck are expected during the transition period. Database design, probably the most important stage during the transition to MUM, together with the digital basic maps making up the basis of this infrastructure constitute the main point of this article. Firstly, the forest management philosophy of Turkey in the past was shortly touched upon in the article. Ecosystem Based Multiple Use Forest Management (EBMUFM) approaches was briefly introduced. The second stage of the process of EBMUFM, database design was described by examining the classical planning infrastructure and the coverage to be produced and consumed were suggested in the form of lists. At the application stage, two different geographical databases were established with GIS in Balcı Planning Unit of the years 1984 and 2006. Following that the related basic maps are produced. Timely diversity of the planning unit of 20 years is put forward comparatively with regard to the stand parameters such as tree types, age class, development stage, canopy closure, mixture, volume and increment.

  2. Old-growth Montane Longleaf Pine Forest Age Structure: A Preliminary Assessment

    Treesearch

    J. Morgan Varner; John S. Kush; Ralph S. Meldahl

    1998-01-01

    Presettlement longleaf pine forests of the Southeast have been described as uneven-aged forests comprised of even-aged patches. Less than 4000 ha of old-growth longleaf forest remains. From these few sites remaining, a limited volume of age related literature has evolved, and these studies have been limited to the Lower Coastal Plain physiographic province. This study...

  3. Factors affecting spruce establishment and recruitment near western treeline, Alaska

    NASA Astrophysics Data System (ADS)

    Miller, A. E.; Sherriff, R.; Wilson, T. L.

    2015-12-01

    Regional warming and increases in tree growth are contributing to increased productivity near the western forest margin in Alaska. The effects of warming on seedling recruitment has received little attention, in spite of forecasted forest expansion near western treeline. Here, we used stand structure and environmental data from white spruce (Picea glauca) stands (n = 95) sampled across a longitudinal gradient to explore factors influencing white spruce growth, establishment and recruitment in southwest Alaska. Using tree-ring chronologies developed from a subset of the plots (n = 30), we estimated establishment dates and basal area increment (BAI) for trees of all age classes across a range of site conditions. We used GLMs (generalized linear models) to explore the relationship between tree growth and temperature in undisturbed, low elevation sites along the gradient, using BAI averaged over the years 1975-2000. In addition, we examined the relationship between growing degree days (GDD) and seedling establishment over the previous three decades. We used total counts of live seedlings, saplings and live and dead trees, representing four cohorts, to evaluate whether geospatial, climate, and measured plot covariates predicted abundance of the different size classes. We hypothesized that the relationship between abundance and longitude would vary by size class, and that this relationship would be mediated by growing season temperature. We found that mean BAI for trees in undisturbed, low elevation sites increased with July maximum temperature, and that the slope of the relationship with temperature changed with longitude (interaction significant with 90% confidence). White spruce establishment was positively associated with longer summers and/or greater heat accumulation, as inferred from GDD. Seedling, sapling and tree abundance were also positively correlated with temperature across the study area. The response to longitude was mixed, with smaller size classes (seedlings, small saplings) most abundant at the western end of the gradient, and larger size classes (trees) most abundant to the east, suggesting a moving front of white spruce establishment near western treeline.

  4. Forest Fire Ecology.

    ERIC Educational Resources Information Center

    Zucca, Carol; And Others

    1995-01-01

    Presents a model that integrates high school science with the needs of the local scientific community. Describes how a high school ecology class conducted scientific research in fire ecology that benefited the students and a state park forest ecologist. (MKR)

  5. The potential for LiDAR technology to map fire fuel hazard over large areas of Australian forest.

    PubMed

    Price, Owen F; Gordon, Christopher E

    2016-10-01

    Fuel load is a primary determinant of fire spread in Australian forests. In east Australian forests, litter and canopy fuel loads and hence fire hazard are thought to be highest at and beyond steady-state fuel loads 15-20 years post-fire. Current methods used to predict fuel loads often rely on course-scale vegetation maps and simple time-since-fire relationships which mask fine-scale processes influencing fuel loads. Here we use Light Detecting and Remote Sensing technology (LiDAR) and field surveys to quantify post-fire mid-story and crown canopy fuel accumulation and fire hazard in Dry Sclerophyll Forests of the Sydney Basin (Australia) at fine spatial-scales (20 × 20 m cell resolution). Fuel cover was quantified in three strata important for crown fire propagation (0.5-4 m, 4-15 m, >15 m) over a 144 km(2) area subject to varying fire fuel ages. Our results show that 1) LiDAR provided a precise measurement of fuel cover in each strata and a less precise but still useful predictor of surface fuels, 2) cover varied greatly within a mapped vegetation class of the same fuel age, particularly for elevated fuel, 3) time-since-fire was a poor predictor of fuel cover and crown fire hazard because fuel loads important for crown fire propagation were variable over a range of fire fuel ages between 2 and 38 years post-fire, and 4) fuel loads and fire hazard can be high in the years immediately following fire. Our results show the benefits of spatially and temporally specific in situ fuel sampling methods such as LiDAR, and are widely applicable for fire management actions which aim to decrease human and environmental losses due to wildfire. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Analysing land and vegetation cover dynamics during last three decades in Katerniaghat wildlife sanctuary, India

    NASA Astrophysics Data System (ADS)

    Chitale, V. S.; Behera, M. D.

    2014-10-01

    The change in the tropical forests could be clearly linked to the expansion of the human population and economies. An understanding of the anthropogenic forcing plays an important role in analyzing the impacts of climate change and the fate of tropical forests in the present and future scenario. In the present study, we analyze the impact of natural and anthropogenic factors in forest dynamics in Katerniaghat wildlife sanctuary situated along the Indo-Nepal border in Uttar Pradesh state, India. The study site is under tremendous pressure due to anthropogenic factors from surrounding areas since last three decades. The vegetation cover of the sanctuary primarily comprised of Shorea robusta forests, Tectona grandis plantation, and mixed deciduous forest; while the land cover comprised of agriculture, barren land, and water bodies. The classification accuracy was 83.5%, 91.5%, and 95.2% with MSS, IKONOS, and Quickbird datasets, respectively. Shorea robusta forests showed an increase of 16 km2; while Tectona grandis increased by 63.01 km2 during 1975-2010. The spatial heterogeneity in these tropical vegetation classes surrounded by the human dominated agricultural lands could not be addressed using Landsat MSS data due to coarse spatial resolution; whereas the IKONOS and Quickbird satellite datasets proved to advantageous, thus being able to precisely address the variations within the vegetation classes as well as in the land cover classes and along the edge areas. Massive deforestation during 1970s along the adjoining international boundary with Nepal has led to destruction of the wildlife corridor and has exposed the wildlife sanctuary to human interference like grazing and poaching. Higher rates of forest dynamics during the 25-year period indicate the vulnerability of the ecosystem to the natural and anthropogenic disturbances in the proximity of the sanctuary.

  7. Growth of Secondary Forest in Puerto Rico Between 1980 and 1985

    Treesearch

    P.L. Weaver; R.A. Birdsey

    1990-01-01

    Successive inventories in Puerto Rico provided the first estimates of secondary forest growth on a regional basis. The volume of growing stock trees increased by 32%, and timber volume by nearly 36%, on all classes of forest land between 1980 and 198.5. Timber volume growth rates (in m3ha-1yr-1 )...

  8. Remnant Bottomland Forests near the Terminus of the Mississippi River in Southeastern Louisiana

    Treesearch

    David A. White; Stephanie A. Skojac

    2002-01-01

    The woody communities of seven of the most intact bottomland hardwood forests of southeastern Louisiana are described. The seven forests are on old levee ridges associated with past distributaries of the Mississippi River. The communities were divided by diameter size class into overstory (>10.0 cm dbh) and understory (3.0 cm >...

  9. Starkey experimental forest and range.

    Treesearch

    Valerie. Rapp

    2004-01-01

    The Starkey Experimental Forest and Range. (Starkey) is a one-of-a-kind, world class research facility, located in the Blue Mountains of northeastern Oregon. Starkey is the primary field location for scientific study of the effects of deer, elk, and cattle on ecosystems. Most of the 28,000-acre forest and range is enclosed by a game-proof fence.The research...

  10. Regional forest fragmentation effects on bottomland hardwood community types and resource values

    Treesearch

    Victor A. Rudis

    1995-01-01

    In human-dominated regions, forest vegetation removal impacts remaining ecosystems but regional-scale biological consequences and resource value changes are not well known. Using forest resource survey data, I examined current bottomland hardwood community types and a range of fragment size classes in the south central United States. Analyses examined resource value...

  11. Diameter growth of trees in an uneven-aged oak forest in the Missouri Ozarks

    Treesearch

    Edward F. Loewenstein; Paul S. Johnson; Harold E. Garrett

    1997-01-01

    We tested the efficacy of even-aged stand tables for predicting diameter growth of trees in uneven-aged oak stands. The study was based on the age- and diameter-structure of the Pioneer Forest, a 156,000-acre, privately owned oak forest in the Ozark Highlands of Missouri. The forest has been managed by single-tree selection since 1954.

  12. Immediate, landscape-scale impacts of even-aged and uneven-aged forest management on herpetofaunal communities of the Missouri Ozark Forest Ecosystem Project

    Treesearch

    Rochelle B. Renken; Debby K. Frantz

    2002-01-01

    We examined the immediate, landscape-scale impacts of even-aged and uneven-aged forest management on the species composition, species richness, and relative abundance of herpetofaunal communities and selected focal groups of species during the second and third years following initial tree harvest on Missouri Ozark Forest Ecosystem Project (MOFEP) sites in southern...

  13. Steeper declines in forest photosynthesis than respiration explain age-driven decreases in forest growth.

    PubMed

    Tang, Jianwu; Luyssaert, Sebastiaan; Richardson, Andrew D; Kutsch, Werner; Janssens, Ivan A

    2014-06-17

    The traditional view of forest dynamics originated by Kira and Shidei [Kira T, Shidei T (1967) Jap J Ecol 17:70-87] and Odum [Odum EP (1969) Science 164(3877):262-270] suggests a decline in net primary productivity (NPP) in aging forests due to stabilized gross primary productivity (GPP) and continuously increased autotrophic respiration (Ra). The validity of these trends in GPP and Ra is, however, very difficult to test because of the lack of long-term ecosystem-scale field observations of both GPP and Ra. Ryan and colleagues [Ryan MG, Binkley D, Fownes JH (1997) Ad Ecol Res 27:213-262] have proposed an alternative hypothesis drawn from site-specific results that aboveground respiration and belowground allocation decreased in aging forests. Here, we analyzed data from a recently assembled global database of carbon fluxes and show that the classical view of the mechanisms underlying the age-driven decline in forest NPP is incorrect and thus support Ryan's alternative hypothesis. Our results substantiate the age-driven decline in NPP, but in contrast to the traditional view, both GPP and Ra decline in aging boreal and temperate forests. We find that the decline in NPP in aging forests is primarily driven by GPP, which decreases more rapidly with increasing age than Ra does, but the ratio of NPP/GPP remains approximately constant within a biome. Our analytical models describing forest succession suggest that dynamic forest ecosystem models that follow the traditional paradigm need to be revisited.

  14. Alabama forests: Trends and prospects

    Treesearch

    Paul A. Murphy

    1973-01-01

    Between 1963 and 1972, forest area in Alabama declined 2 percent to 21.3 million acres. Softwood volume increased 30 percent and hardwood 15 percent. Volumes increased in all tree-size classes, but increases were greatest in small trees.

  15. Urban forest topographical mapping using UAV LIDAR

    NASA Astrophysics Data System (ADS)

    Putut Ash Shidiq, Iqbal; Wibowo, Adi; Kusratmoko, Eko; Indratmoko, Satria; Ardhianto, Ronni; Prasetyo Nugroho, Budi

    2017-12-01

    Topographical data is highly needed by many parties, such as government institution, mining companies and agricultural sectors. It is not just about the precision, the acquisition time and data processing are also carefully considered. In relation with forest management, a high accuracy topographic map is necessary for planning, close monitoring and evaluating forest changes. One of the solution to quickly and precisely mapped topography is using remote sensing system. In this study, we test high-resolution data using Light Detection and Ranging (LiDAR) collected from unmanned aerial vehicles (UAV) to map topography and differentiate vegetation classes based on height in urban forest area of University of Indonesia (UI). The semi-automatic and manual classifications were applied to divide point clouds into two main classes, namely ground and vegetation. There were 15,806,380 point clouds obtained during the post-process, in which 2.39% of it were detected as ground.

  16. Impacts of Present and Future Climate Variability on Forest Ecosystem in Mediterranean Region

    NASA Astrophysics Data System (ADS)

    Ozcan, O.; Musaoglu, N.; Türkeş, M.

    2017-12-01

    The concept of `climate change vulnerability' helps us to better comprehend the cause/effect relationships behind climate change and its impact on human societies, socioeconomic sectors, physiographical and ecological systems. Herein, multifactorial spatial modeling was applied to evaluate the vulnerability of a Mediterranean forest ecosystem to climate change. Thus, the geographical distribution of the final Environmental Vulnerability Areas (EVAs) of the forest ecosystem are based on the estimated final Environmental Vulnerability Index (EVI) values. This revealed that at current levels of environmental degradation, physical, geographical, policy enforcement and socioeconomic conditions, the area with a "very low" vulnerability degree covered mainly the town, its surrounding settlements and the agricultural lands found mainly over the low and flat travertine plateau and the plains at the east and southeast of the district. The spatial magnitude of the EVAs over the forest ecosystem under the current environmental degradation was also determined. This revealed that the EVAs classed as "very low" account for 21% of the total area of the forest ecosystem, those classed as "low" account for 36%, those classed as "medium" account for 20%, and those classed as "high" account for 24%. Based on regionally averaged future climate assessments and projected future climate indicators, both the study site and the western Mediterranean sub-region of Turkey will probably become associated with a drier, hotter, more continental and more water-deficient climate. This analysis holds true for all future scenarios, with the exception of RCP4.5 for the period from 2015 to 2030. However, the present dry-sub humid climate dominating this sub-region and the study area shows a potential for change towards more dry climatology and for it to become a semiarid climate in the period between 2031 and 2050 according to the RCP8.5 high emission scenario. All the observed and estimated results show clearly that the densest forest ecosystem in the southern part of the study site, which is characterized by mainly Mediterranean coniferous and some mixed forest and the maquis vegetation, will very likely be influenced by medium and high degrees of vulnerability to future environmental degradation, climate change and variability.

  17. Modeling the recovery and degradation of mangroves at the global scale

    NASA Astrophysics Data System (ADS)

    Lagomasino, D.; Fatoyinbo, T.; Lee, S. K.; Feliciano, E. A.; Trettin, C.

    2017-12-01

    Forest growth and reforestation rates are crucial information for sustainable forest management practices and decision-making for restoration projects. There has been a recent increase in mangrove blue carbon restoration projects because of their extremely high carbon density, globally can reach over 1000 Mg ha-1 of carbon. If ecosystem projects do plan to facilitate mangrove restoration or deter land cover changes as a climate change mitigation strategy or in other carbon inventory strategies, unbiased field inventories need to become the norm. It is known that mangrove carbon can be extremely high in certain geographic settings, but that is not the case for many other regions. Remotely sensed canopy height has recently been incorporated into mangrove field inventories which provides an unbiased, readily accessible, and spatially-explicit model that was used to stratify the inventory design into discrete height classes. Combining the forest canopy height distribution captured from space and the field inventory data, biomass and carbon density were determined for each height class. Here, we present mangrove vertical growth rates and global carbon stock changes modeled through the combination of remotely sensed land cover change and canopy height class models using Landsat-derived vegetation index anomalies and synthetic aperture radar interferometry, respectively. Average growth rates ( 1-1.5m yr-1) were determined for four mangrove forests in the Zambezi, Rufiji, Ganges, and Mekong Deltas. An average global net productivity (9-10 Mg C ha-1 yr-1) was then derived using the four sites which represent young, fast-growing mangrove forests. Global mangrove carbon change was calculated using the average productivity estimates and land cover change from 2000 to 2015. Losses were categorized based on canopy height derived biomass classes in 2000 using Shuttle Radar Topography Mission data, while gained carbon stocks were assessed by using the study-derived mean productivity estimates. The vertical growth rates, forest structure, and biomass changes presented here will be useful in the implementation of forest management plans and refining primary production estimates, carbon sequestration potential, and identifying critical areas that are capable of being measured at regular intervals from space.

  18. Vulnerability of tropical forest ecosystems and forest dependent communities to droughts.

    PubMed

    Vogt, D J; Vogt, K A; Gmur, S J; Scullion, J J; Suntana, A S; Daryanto, S; Sigurðardóttir, R

    2016-01-01

    Energy captured by and flowing through a forest ecosystem can be indexed by its total Net Primary Productivity (NPP). This forest NPP can also be a reflection of its sensitivity to, and its ability to adapt to, any climate change while also being harvested by humans. However detecting and identifying the vulnerability of forest and human ecosystems to climate change requires information on whether these coupled social and ecological systems are able to maintain functionality while responding to environmental variability. To better understand what parameters might be representative of environmental variability, we compiled a metadata analysis of 96 tropical forest sites. We found that three soil textural classes (i.e., sand, sandy loam and clay) had significant but different relationships between NPP and precipitation levels. Therefore, assessing the vulnerability of forests and forest dependent communities to drought was carried out using data from those sites that had one of those three soil textural classes. For example, forests growing on soil textures of sand and clay had NPP levels decreasing as precipitation levels increased, in contrast to those forest sites that had sandy loam soils where NPP levels increased. Also, forests growing on sandy loam soil textures appeared better adapted to grow at lower precipitation levels compared to the sand and clay textured soils. In fact in our tropical database the lowest precipitation level found for the sandy loam soils was 821 mm yr(-1) compared to sand at 1739 mm yr(-1) and clay at 1771 mm yr(-1). Soil texture also determined the level of NPP reached by a forest, i.e., forest growing on sandy loam and clay reached low-medium NPP levels while higher NPP levels (i.e., medium, high) were found on sand-textured soils. Intermediate precipitation levels (>1800-3000 mm yr(-1)) were needed to grow forests at the medium and high NPP levels. Low thresholds of NPP were identified at both low (∼750 mm) and high precipitation (>3500 mm) levels. By combining data on the ratios of precipitation to the amount of biomass produced in a year with how much less precipitation input occurs during a drought year, it is possible to estimate whether productivity levels are sufficient to support forest growth and forest dependent communities following a drought. In this study, the ratios of annual precipitation inputs required to produce 1 Mg ha(-1) yr(-1) biomass by soil texture class varied across the three soil textural classes. By using a conservative estimate of 20% of productivity collected or harvested by people and 30% precipitation reduction level as triggering a drought, it was possible to estimate a potential loss of annual productivity due to a drought. In this study, the total NPP unavailable due to drought and harvest by forest dependent communities per year was 10.2 Mg ha(-1) yr(-1) for the sandy textured soils (64% of NPP still available), 8.4 Mg ha(-1) yr(-1) for the sandy loam textured soils (60% available) and 12.7 Mg ha(-1) yr(-1) for the clay textured soils (29% available). Forests growing on clay textured soils would be most vulnerable to drought triggered reductions in productivity so NPP levels would be inadequate to maintain ecosystem functions and would potentially cause a forest-to-savanna shift. Further, these forests would not be able to provide sufficient NPP to satisfy the requirements of forest dependent communities. By predicting the productivity responses of different tropical forest ecosystems to changes in precipitation patterns coupled with edaphic data, it could be possible to spatially identify where tropical forests are most vulnerable to climate change impacts and where mitigation efforts should be concentrated. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Uneven-aged management after a half-century of research on the Forest Service Fernow Experimental Forest in West Virgina

    Treesearch

    Thomas M. Schuler

    2014-01-01

    Uneven-age management in forestry refers to a system of management that periodically selects individual trees or small groups of trees for harvest. In general, the concept of uneven-age management entails the sustained yield of forest products while maintaining continuous forest cover. In North America, interest in uneven-age management grew in the second half of the...

  20. Forest and wildlife habitat analysis using remote sensing and geographic information systems. M.S. Thesis, 26 May 1992 Abstract Only

    NASA Technical Reports Server (NTRS)

    Fiorella, Maria

    1995-01-01

    Forest and wildlife habitat analyses were conducted at the H.J. Andrews Experimental Forest in the Central Cascade Mountains of Oregon using remotely sensed data and a geographic information system (GIS). Landsat Thematic Mapper (TM) data were used to determine forest successional stages, and to analyze the structure of both old and young conifer forests. Two successional stage maps were developed. One was developed from six TM spectral bands alone, and the second was developed from six TM spectral bands and a relative sun incidence band. Including the sun incidence band in the classification improved the mapping accuracy in the two youngest successional stages, but did not improve overall accuracy or accuracy of the two oldest successional stages. Mean spectral values for old-growth and mature stands were compared in seven TM bands and seven band transformations. Differences between mature and old-growth successional stages were greatest for the band ratio of TM 4/5 (P = 0.00005) and the multiband transformation of wetness (P = 0.00003). The age of young conifer stands had the highest correlation to TM 4/5 values (r = 0.9559) of any of the TM band or band transformations used. TM 4/5 ratio values of poorly regenerated conifer stands were significantly different from well regenerated conifer stands after age 15 (P = 0.0000). TM 4/5 was named a 'Successional Stage Index' (SSI) because of its ability to distinguish forest successional stages. The forest successional stage map was used as input into a vertebrate richness model using GIS. The three variables of (1) successional stage, (2) elevation, and (3) site moisture were used in the GIS to predict the spatial occurrence of small mammal, amphibian, and reptile species based on primary and secondary habitat requirements. These occurrence or habitat maps were overlayed to tally the predicted number of vertebrate at any given point in the study area. Overall, sixty-three and sixty-seven percent of the model predictions for vertebrate occurrence matched the vertebrates that were trapped in the field in eight forested stands. Of the three model variables, site moisture appeared to have the greatest influence on the pattern of high vertebrate richness in all vertebrate classes.

  1. Forest edge burning in the Brazilian Amazon promoted by escaping fires from managed pastures

    NASA Astrophysics Data System (ADS)

    Cano-Crespo, Ana; Oliveira, Paulo J. C.; Boit, Alice; Cardoso, Manoel; Thonicke, Kirsten

    2015-10-01

    Understanding to what extent different land uses influence fire occurrence in the Amazonian forest is particularly relevant for its conservation. We evaluate the relationship between forest fires and different anthropogenic activities linked to a variety of land uses in the Brazilian states of Mato Grosso, Pará, and Rondônia. We combine the new high-resolution (30 m) TerraClass land use database with Moderate Resolution Imaging Spectroradiometer burned area data for 2008 and the extreme dry year of 2010. Excluding the non-forest class, most of the burned area was found in pastures, primary and secondary forests, and agricultural lands across all three states, while only around 1% of the total was located in deforested areas. The trend in burned area did not follow the declining deforestation rates from 2001 to 2010, and the spatial overlap between deforested and burned areas was only 8% on average. This supports the claim of deforestation being disconnected from burning since 2005. Forest degradation showed an even lower correlation with burned area. We found that fires used in managing pastoral and agricultural lands that escape into the neighboring forests largely contribute to forest fires. Such escaping fires are responsible for up to 52% of the burned forest edges adjacent to burned pastures and up to 22% of the burned forest edges adjacent to burned agricultural fields, respectively. Our findings call for the development of control and monitoring plans to prevent fires from escaping from managed lands into forests to support effective land use and ecosystem management.

  2. Predicting temperate forest stand types using only structural profiles from discrete return airborne lidar

    NASA Astrophysics Data System (ADS)

    Fedrigo, Melissa; Newnham, Glenn J.; Coops, Nicholas C.; Culvenor, Darius S.; Bolton, Douglas K.; Nitschke, Craig R.

    2018-02-01

    Light detection and ranging (lidar) data have been increasingly used for forest classification due to its ability to penetrate the forest canopy and provide detail about the structure of the lower strata. In this study we demonstrate forest classification approaches using airborne lidar data as inputs to random forest and linear unmixing classification algorithms. Our results demonstrated that both random forest and linear unmixing models identified a distribution of rainforest and eucalypt stands that was comparable to existing ecological vegetation class (EVC) maps based primarily on manual interpretation of high resolution aerial imagery. Rainforest stands were also identified in the region that have not previously been identified in the EVC maps. The transition between stand types was better characterised by the random forest modelling approach. In contrast, the linear unmixing model placed greater emphasis on field plots selected as endmembers which may not have captured the variability in stand structure within a single stand type. The random forest model had the highest overall accuracy (84%) and Cohen's kappa coefficient (0.62). However, the classification accuracy was only marginally better than linear unmixing. The random forest model was applied to a region in the Central Highlands of south-eastern Australia to produce maps of stand type probability, including areas of transition (the 'ecotone') between rainforest and eucalypt forest. The resulting map provided a detailed delineation of forest classes, which specifically recognised the coalescing of stand types at the landscape scale. This represents a key step towards mapping the structural and spatial complexity of these ecosystems, which is important for both their management and conservation.

  3. Smoke aerosol properties and ageing effects for Northern temperate and boreal regions derived from AERONET source and age attribution

    NASA Astrophysics Data System (ADS)

    Nikonovas, T.; North, P. R. J.; Doerr, S. H.

    2015-03-01

    Particulate emissions from wildfires impact human health and have a large but uncertain effect on climate. Modelling schemes depend on information about emission factors, emitted particle microphysical and optical properties and ageing effects, while satellite retrieval algorithms make use of characteristic aerosol models to improve retrieval. Ground based remote sensing provides detailed aerosol characterisation, but does not contain information on source. Here, a method is presented to estimate plume origin land cover type and age for AERONET aerosol observations, employing trajectory modelling using the HYSPLIT model, and satellite active fire and aerosol optical thickness (AOT) observations from MODIS and AATSR. It is applied to AERONET stations located in or near Northern temperate and boreal forests, for the period 2002-2013. The results from 629 fire attributions indicate significant differences in size distributions and particle optical properties between different land cover types. Smallest fine mode median radius are attributed to plumes from cropland - natural vegetation mosaic (0.143 μm) and grasslands (0.147 μm) fires. Evergreen needleleaf forest emissions show a significantly smaller fine mode median radius (0.164 μm) than plumes from woody savannas (0.184 μm) and mixed forest (0.193 μm) fires. Smoke plumes are predominantly scattering for all of the classes with median single scattering albedo at 440 nm (SSA(440)) values close to 0.95 except the cropland emissions which have a SSA(440) value of 0.9. Overall fine mode volume median radius increase rate is 0.0095 μm per day for the first 4 days of ageing and 0.0084 μm per day for seven days of ageing. Changes in size were consistent with a decrease in Angstrom Exponent and increase in Asymmetry parameter. No significant changes in SSA(λ) with ageing were found. These estimates have implications for improved modelling of aerosol radiative effects, relevant to both climate modelling and satellite aerosol retrieval schemes.

  4. A stand-alone tree demography and landscape structure module for Earth system models: integration with inventory data from temperate and boreal forests

    NASA Astrophysics Data System (ADS)

    Haverd, V.; Smith, B.; Nieradzik, L. P.; Briggs, P. R.

    2014-08-01

    Poorly constrained rates of biomass turnover are a key limitation of Earth system models (ESMs). In light of this, we recently proposed a new approach encoded in a model called Populations-Order-Physiology (POP), for the simulation of woody ecosystem stand dynamics, demography and disturbance-mediated heterogeneity. POP is suitable for continental to global applications and designed for coupling to the terrestrial ecosystem component of any ESM. POP bridges the gap between first-generation dynamic vegetation models (DVMs) with simple large-area parameterisations of woody biomass (typically used in current ESMs) and complex second-generation DVMs that explicitly simulate demographic processes and landscape heterogeneity of forests. The key simplification in the POP approach, compared with second-generation DVMs, is to compute physiological processes such as assimilation at grid-scale (with CABLE (Community Atmosphere Biosphere Land Exchange) or a similar land surface model), but to partition the grid-scale biomass increment among age classes defined at sub-grid-scale, each subject to its own dynamics. POP was successfully demonstrated along a savanna transect in northern Australia, replicating the effects of strong rainfall and fire disturbance gradients on observed stand productivity and structure. Here, we extend the application of POP to wide-ranging temporal and boreal forests, employing paired observations of stem biomass and density from forest inventory data to calibrate model parameters governing stand demography and biomass evolution. The calibrated POP model is then coupled to the CABLE land surface model, and the combined model (CABLE-POP) is evaluated against leaf-stem allometry observations from forest stands ranging in age from 3 to 200 year. Results indicate that simulated biomass pools conform well with observed allometry. We conclude that POP represents an ecologically plausible and efficient alternative to large-area parameterisations of woody biomass turnover, typically used in current ESMs.

  5. Forest dynamics and its driving forces of sub-tropical forest in South China.

    PubMed

    Ma, Lei; Lian, Juyu; Lin, Guojun; Cao, Honglin; Huang, Zhongliang; Guan, Dongsheng

    2016-03-04

    Tree mortality and recruitment are key factors influencing forest dynamics, but the driving mechanisms of these processes remain unclear. To better understand these driving mechanisms, we studied forest dynamics over a 5-year period in a 20-ha sub-tropical forest in the Dinghushan Nature Reserve, South China. The goal was to identify determinants of tree mortality/recruitment at the local scale using neighborhood analyses on some locally dominant tree species. Results show that the study plot was more dynamic than some temperate and tropical forests in a comparison to large, long-term forest dynamics plots. Over the 5-year period, mortality rates ranged from 1.67 to 12.33% per year while recruitment rates ranged from 0 to 20.26% per year. Tree size had the most consistent effect on mortality across species. Recruitment into the ≥1-cm size class consistently occurred where local con-specific density was high. This suggests that recruitment may be limited by seed dispersal. Hetero-specific individuals also influenced recruitment significantly for some species. Canopy species had low recruitment into the ≥1-cm size class over the 5-year period. In conclusion, tree mortality and recruitment for sixteen species in this plot was likely limited by seed dispersal and density-dependence.

  6. 76 FR 58461 - Information Collection; Qualified Products List for Class A Foams for Wildland Firefighting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-21

    ... A Foams for Wildland Firefighting AGENCY: Forest Service, USDA. ACTION: Notice; request for comment... approved information collection, Qualified Products List for Class A Foams for Wildland Firefighting. DATES... year, including holidays. SUPPLEMENTARY INFORMATION: Title: Qualified Products List for Class A Foam...

  7. 76 FR 70920 - Proposed Amendment of Class E Airspace; Colorado Springs, CO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-16

    ...-1191; Airspace Docket No. 11-ANM-21] Proposed Amendment of Class E Airspace; Colorado Springs, CO...: This action proposes to amend Class E airspace at City of Colorado Springs Municipal Airport, Colorado Springs, CO. Decommissioning of the Black Forest Tactical Air Navigation System (TACAN) has made this...

  8. Thematic accuracy assessment of the 2011 National Land Cover Database (NLCD)

    USGS Publications Warehouse

    Wickham, James; Stehman, Stephen V.; Gass, Leila; Dewitz, Jon; Sorenson, Daniel G.; Granneman, Brian J.; Poss, Richard V.; Baer, Lori Anne

    2017-01-01

    Accuracy assessment is a standard protocol of National Land Cover Database (NLCD) mapping. Here we report agreement statistics between map and reference labels for NLCD 2011, which includes land cover for ca. 2001, ca. 2006, and ca. 2011. The two main objectives were assessment of agreement between map and reference labels for the three, single-date NLCD land cover products at Level II and Level I of the classification hierarchy, and agreement for 17 land cover change reporting themes based on Level I classes (e.g., forest loss; forest gain; forest, no change) for three change periods (2001–2006, 2006–2011, and 2001–2011). The single-date overall accuracies were 82%, 83%, and 83% at Level II and 88%, 89%, and 89% at Level I for 2011, 2006, and 2001, respectively. Many class-specific user's accuracies met or exceeded a previously established nominal accuracy benchmark of 85%. Overall accuracies for 2006 and 2001 land cover components of NLCD 2011 were approximately 4% higher (at Level II and Level I) than the overall accuracies for the same components of NLCD 2006. The high Level I overall, user's, and producer's accuracies for the single-date eras in NLCD 2011 did not translate into high class-specific user's and producer's accuracies for many of the 17 change reporting themes. User's accuracies were high for the no change reporting themes, commonly exceeding 85%, but were typically much lower for the reporting themes that represented change. Only forest loss, forest gain, and urban gain had user's accuracies that exceeded 70%. Lower user's accuracies for the other change reporting themes may be attributable to the difficulty in determining the context of grass (e.g., open urban, grassland, agriculture) and between the components of the forest-shrubland-grassland gradient at either the mapping phase, reference label assignment phase, or both. NLCD 2011 user's accuracies for forest loss, forest gain, and urban gain compare favorably with results from other land cover change accuracy assessments.

  9. Impact of feral herbivores on mamane forests of Mauna Kea, Hawaii: bark stripping and diameter class structure

    Treesearch

    Paul G. Scowcroft; Howard F. Sakai

    1983-01-01

    Management of feral and Mouflon sheep and feral goats within the Mauna Kea Forest Reserve/Game Management area has been criticized as inadequate to prevent the adverse environmental impact which these introduced herbivores have on native components of the scrub forest ecosystem. This study determined the intensity of bark stripping of mamane (Sophora...

  10. Forest composition of Maine: an analysis using number of trees

    Treesearch

    Douglas S. Powell

    1985-01-01

    Number-of-trees data compiled by the USDA Forest Service from three periodic statewide inventories of Maine's forest resources are used to analyze the composition of the state's timberland in terms of species, tree class, and size. Conditions are compared and contrasted for periods from 1959 to 1971 to 1982 across different regions and counties of the state....

  11. Stereo photo series for quantifying natural fuels. Volume XII: Post-hurricane fuels in forests of the Southeast United States.

    Treesearch

    Robert E. Vihnanek; Cameron S. Balog; Clinton S. Wright; Roger D. Ottmar; Jeffrey W. Kelly

    2009-01-01

    Two series of single and stereo photographs display a range of natural conditions and fuel loadings in post-hurricane forests in the southeastern United States. Each group of photos includes inventory information summarizing vegetation composition, structure and loading, woody material loading and density by size class, forest floor loading, and various site...

  12. A site classification for the mixed-conifer selection forests of the Sierra Nevada

    Treesearch

    Duncan Dunning

    1942-01-01

    The site-class curves presented . . . for the irregular pine-fir forests of California, were first prepared in connection with a yield-predicting procedure . . . developed in 1933. The original curves were designed principally for administrative use of the Forest Service in Region 5. Since they have now come to be accepted by other agencies and for general purposes,...

  13. A two-step nearest neighbors algorithm using satellite imagery for predicting forest structure within species composition classes

    Treesearch

    Ronald E. McRoberts

    2009-01-01

    Nearest neighbors techniques have been shown to be useful for predicting multiple forest attributes from forest inventory and Landsat satellite image data. However, in regions lacking good digital land cover information, nearest neighbors selected to predict continuous variables such as tree volume must be selected without regard to relevant categorical variables such...

  14. Rill erosion in natural and disturbed forests: 2. Modeling approaches

    Treesearch

    J. W. Wagenbrenner; P. R. Robichaud; W. J. Elliot

    2010-01-01

    As forest management scenarios become more complex, the ability to more accurately predict erosion from those scenarios becomes more important. In this second part of a two-part study we report model parameters based on 66 simulated runoff experiments in two disturbed forests in the northwestern U.S. The 5 disturbance classes were natural, 10-month old and 2-week old...

  15. Post-fire surface fuel dynamics in California forests across three burn severity classes

    Treesearch

    Bianca N. I. Eskelson; Vicente J. Monleon

    2018-01-01

    Forest wildfires consume fuel and are followed by post-fire fuel accumulation. This study examines post-fire surface fuel dynamics over 9 years across a wide range of conditions characteristic of California fires in dry conifer and hardwood forests. We estimated post-fire surface fuel loadings (Mg ha _1) from 191 repeatedly measured United States...

  16. Status and trends of bottomland hardwood forests in the mid-Atlantic Region

    Treesearch

    Anita Rose; Steve Meadows

    2016-01-01

    Bottomland hardwood forests cover approximately 2.9 million acres of the Coastal Plain and Piedmont region of Virginia and North Carolina. As of 2014, 59 percent of bottomland hardwood forests were in the large-diameter stand-size class. Between 2002 and 2014, area of large-diameter sized stands increased, while that of medium- and small-diameter stands decreased,...

  17. Soil microbiological composition and its evolution along with forest succession in West Siberia

    NASA Astrophysics Data System (ADS)

    Naplekova, Nadezhda N.; Malakhova, Nataliya A.; Maksyutov, Shamil

    2015-04-01

    Natural forest succession process in West Siberia is mostly initiated by fire disturbance and involves changing tree species composition from pioneer species to late succession trees. Along with forest aging, litter and forest biomass accumulate. Changes of the soil nitrogen cycle between succession stages, important for plant functioning, have been reported in a number of studies. To help understanding the mechanism of the changes in the soil nitrogen cycle we analyzed soil microbiological composition for soil profiles (0-160 cm) taken at sites corresponding to three forest succession stages: (1) young pine, age 18-20 years, (2) mid age, dark coniferous, age 50-70 years, (3) mature, fir-spruce, age 170-180 years. Soil samples were taken from each soil horizon and analyzed in the laboratory for quantity and species composition of algae and other microorganisms. Algae community at all stages of succession is dominated by species typical for forest (pp. Chlorhormidium, Chlamydomonas, Chloroccocum, Pleurochloris, Stichococcus). Algae species composition is summarized by formulas: young forest C14X10Ch9H2P4Cf1B2amph4, mid age X16C15Ch10H4P4Cf1B2amph4, mature X24C22Ch17H10P2amph5Cf1, with designations C -- Cyanophyta, X -- Xantophyta, Ch -- Chlorophyta, B -- Bacillariophyta. Diversity is highest in upper two horizons and declines with depth. Microorganism composition on upper 20 cm was analyzed in three types of forests separately for consumers of protein (ammonifiers) and mineral nitrogen, fungi, azotobacter, Clostridium pasteurianum, oligonitrophylic (eg diazotrophs), nitrifiers and denitrifiers. Nitrogen biologic fixation in the mature forest soils is done mostly by oligonitrophyls and microorganisms of the genus Clostridium as well as сyanobacteria of sp. Nostoc, but the production rate appears low. Concentrations (count in gram soil) of nitrogen consumers (eg ammonifiers), oligonitrophyls, Clostridium and denitrifiers increase several fold from young forest to mid age, and from mid age to mature forest. On the contrary, azotobacter disappears in mature forest while nitrifiers decline by several times from young to mid age forest. Large variation in microbiological activity was observed between sites reaching different succession stage, however further studies are needed to discriminate between effects of the site productivity and forest age.

  18. Characterizing stand-level forest canopy cover and height using Landsat time series, samples of airborne LiDAR, and the Random Forest algorithm

    NASA Astrophysics Data System (ADS)

    Ahmed, Oumer S.; Franklin, Steven E.; Wulder, Michael A.; White, Joanne C.

    2015-03-01

    Many forest management activities, including the development of forest inventories, require spatially detailed forest canopy cover and height data. Among the various remote sensing technologies, LiDAR (Light Detection and Ranging) offers the most accurate and consistent means for obtaining reliable canopy structure measurements. A potential solution to reduce the cost of LiDAR data, is to integrate transects (samples) of LiDAR data with frequently acquired and spatially comprehensive optical remotely sensed data. Although multiple regression is commonly used for such modeling, often it does not fully capture the complex relationships between forest structure variables. This study investigates the potential of Random Forest (RF), a machine learning technique, to estimate LiDAR measured canopy structure using a time series of Landsat imagery. The study is implemented over a 2600 ha area of industrially managed coastal temperate forests on Vancouver Island, British Columbia, Canada. We implemented a trajectory-based approach to time series analysis that generates time since disturbance (TSD) and disturbance intensity information for each pixel and we used this information to stratify the forest land base into two strata: mature forests and young forests. Canopy cover and height for three forest classes (i.e. mature, young and mature and young (combined)) were modeled separately using multiple regression and Random Forest (RF) techniques. For all forest classes, the RF models provided improved estimates relative to the multiple regression models. The lowest validation error was obtained for the mature forest strata in a RF model (R2 = 0.88, RMSE = 2.39 m and bias = -0.16 for canopy height; R2 = 0.72, RMSE = 0.068% and bias = -0.0049 for canopy cover). This study demonstrates the value of using disturbance and successional history to inform estimates of canopy structure and obtain improved estimates of forest canopy cover and height using the RF algorithm.

  19. Carbon fluxes in ecosystems of Yellowstone National Park predicted from remote sensing data and simulation modeling

    PubMed Central

    2011-01-01

    Background A simulation model based on remote sensing data for spatial vegetation properties has been used to estimate ecosystem carbon fluxes across Yellowstone National Park (YNP). The CASA (Carnegie Ames Stanford Approach) model was applied at a regional scale to estimate seasonal and annual carbon fluxes as net primary production (NPP) and soil respiration components. Predicted net ecosystem production (NEP) flux of CO2 is estimated from the model for carbon sinks and sources over multi-year periods that varied in climate and (wildfire) disturbance histories. Monthly Enhanced Vegetation Index (EVI) image coverages from the NASA Moderate Resolution Imaging Spectroradiometer (MODIS) instrument (from 2000 to 2006) were direct inputs to the model. New map products have been added to CASA from airborne remote sensing of coarse woody debris (CWD) in areas burned by wildfires over the past two decades. Results Model results indicated that relatively cooler and wetter summer growing seasons were the most favorable for annual plant production and net ecosystem carbon gains in representative landscapes of YNP. When summed across vegetation class areas, the predominance of evergreen forest and shrubland (sagebrush) cover was evident, with these two classes together accounting for 88% of the total annual NPP flux of 2.5 Tg C yr-1 (1 Tg = 1012 g) for the entire Yellowstone study area from 2000-2006. Most vegetation classes were estimated as net ecosystem sinks of atmospheric CO2 on annual basis, making the entire study area a moderate net sink of about +0.13 Tg C yr-1. This average sink value for forested lands nonetheless masks the contribution of areas burned during the 1988 wildfires, which were estimated as net sources of CO2 to the atmosphere, totaling to a NEP flux of -0.04 Tg C yr-1 for the entire burned area. Several areas burned in the 1988 wildfires were estimated to be among the lowest in overall yearly NPP, namely the Hellroaring Fire, Mink Fire, and Falls Fire areas. Conclusions Rates of recovery for burned forest areas to pre-1988 biomass levels were estimated from a unique combination of remote sensing and CASA model predictions. Ecosystem production and carbon fluxes in the Greater Yellowstone Ecosystem (GYE) result from complex interactions between climate, forest age structure, and disturbance-recovery patterns of the landscape. PMID:21835025

  20. Carbon fluxes in ecosystems of Yellowstone National Park predicted from remote sensing data and simulation modeling.

    PubMed

    Potter, Christopher; Klooster, Steven; Crabtree, Robert; Huang, Shengli; Gross, Peggy; Genovese, Vanessa

    2011-08-11

    A simulation model based on remote sensing data for spatial vegetation properties has been used to estimate ecosystem carbon fluxes across Yellowstone National Park (YNP). The CASA (Carnegie Ames Stanford Approach) model was applied at a regional scale to estimate seasonal and annual carbon fluxes as net primary production (NPP) and soil respiration components. Predicted net ecosystem production (NEP) flux of CO2 is estimated from the model for carbon sinks and sources over multi-year periods that varied in climate and (wildfire) disturbance histories. Monthly Enhanced Vegetation Index (EVI) image coverages from the NASA Moderate Resolution Imaging Spectroradiometer (MODIS) instrument (from 2000 to 2006) were direct inputs to the model. New map products have been added to CASA from airborne remote sensing of coarse woody debris (CWD) in areas burned by wildfires over the past two decades. Model results indicated that relatively cooler and wetter summer growing seasons were the most favorable for annual plant production and net ecosystem carbon gains in representative landscapes of YNP. When summed across vegetation class areas, the predominance of evergreen forest and shrubland (sagebrush) cover was evident, with these two classes together accounting for 88% of the total annual NPP flux of 2.5 Tg C yr-1 (1 Tg = 1012 g) for the entire Yellowstone study area from 2000-2006. Most vegetation classes were estimated as net ecosystem sinks of atmospheric CO2 on annual basis, making the entire study area a moderate net sink of about +0.13 Tg C yr-1. This average sink value for forested lands nonetheless masks the contribution of areas burned during the 1988 wildfires, which were estimated as net sources of CO2 to the atmosphere, totaling to a NEP flux of -0.04 Tg C yr-1 for the entire burned area. Several areas burned in the 1988 wildfires were estimated to be among the lowest in overall yearly NPP, namely the Hellroaring Fire, Mink Fire, and Falls Fire areas. Rates of recovery for burned forest areas to pre-1988 biomass levels were estimated from a unique combination of remote sensing and CASA model predictions. Ecosystem production and carbon fluxes in the Greater Yellowstone Ecosystem (GYE) result from complex interactions between climate, forest age structure, and disturbance-recovery patterns of the landscape.

  1. Biomass accumulation rates of Amazonian secondary forest and biomass of old-growth forests from Landsat time series and the Geoscience Laser Altimeter System

    Treesearch

    E. H. Helmer; M. A. Lefsky; D. A. Roberts

    2009-01-01

    We estimate the age of humid lowland tropical forests in Rondônia, Brazil, from a somewhat densely spaced time series of Landsat images (1975–2003) with an automated procedure, the Threshold Age Mapping Algorithm (TAMA), first described here. We then estimate a landscape-level rate of aboveground woody biomass accumulation of secondary forest by combining forest age...

  2. Evaluation of Skylab (EREP) data for forest and rangeland surveys. [Georgia, South Dakota, Colorado, and California

    NASA Technical Reports Server (NTRS)

    Aldrich, R. C. (Principal Investigator); Dana, R. W.; Greentree, W. J.; Roberts, E. H.; Norick, N. X.; Waite, T. H.; Francis, R. E.; Driscoll, R. S.; Weber, F. P.

    1975-01-01

    The author has identified the following significant results. Four widely separated sites (near Augusta, Georgia; Lead, South Dakota; Manitou, Colorado; and Redding, California) were selected as typical sites for forest inventory, forest stress, rangeland inventory, and atmospheric and solar measurements, respectively. Results indicated that Skylab S190B color photography is good for classification of Level 1 forest and nonforest land (90 to 95 percent correct) and could be used as a data base for sampling by small and medium scale photography using regression techniques. The accuracy of Level 2 forest and nonforest classes, however, varied from fair to poor. Results of plant community classification tests indicate that both visual and microdensitometric techniques can separate deciduous, conifirous, and grassland classes to the region level in the Ecoclass hierarchical classification system. There was no consistency in classifying tree categories at the series level by visual photointerpretation. The relationship between ground measurements and large scale photo measurements of foliar cover had a correlation coefficient of greater than 0.75. Some of the relationships, however, were site dependent.

  3. Species richness and community composition of mat-forming ectomycorrhizal fungi in old- and second-growth Douglas-fir forests of the HJ Andrews Experimental Forest, Oregon, USA.

    PubMed

    Dunham, Susie M; Larsson, Karl-Henrik; Spatafora, Joseph W

    2007-11-01

    We investigated the species identity of mat-forming ectomycorrhizal (EM) fungi associated with old- and second-growth Douglas-fir stands. Using molecular analyses of rhizomorphs and EM root tips, we characterized 28 unique internal transcribed spacer sequences and considered them proxies for mat-forming EM species. In both stand age classes, one Athelioid species in the genus Piloderma dominated our sample of the mat-forming fungal community. In second-growth stands, the second most frequently encountered mat-forming EM species belonged to the genus Hysterangium. In old-growth stands, several Ramaria species were associated with a frequently encountered mat morphology but no species dominated the community. After using rarefaction analysis to standardize sampling effort, the total species richness did not differ statistically between old- and second-growth habitats. Both an abundance of infrequently encountered species and incomplete sampling of the mat-forming EM community may have limited our ability to detect potential differences in species richness. Several frequently encountered Piloderma species appear to have broad (holarctic) distributions and diverse host associations and their potential importance in forest ecosystems warrants further study.

  4. Missouri Ozark Forest Ecosystem Project: the experiment

    Treesearch

    Steven L. Sheriff

    2002-01-01

    Missouri Ozark Forest Ecosystem Project (MOFEP) is a unique experiment to learn about the impacts of management practices on a forest system. Three forest management practices (uneven-aged management, even-aged management, and no-harvest management) as practiced by the Missouri Department of Conservation were randomly assigned to nine forest management sites using a...

  5. A twelve-year comparison of stand changes in a mahogany plantation and a paired natural forest of similar ages.

    Treesearch

    S. Fu; C. Rodr¡guez Pedraza; A. E. Lugo

    1996-01-01

    we compared forest structure over a 12 yr period. 1982-1994 that include measurements before and after a servere hurricaine in two forests: a 64 yr old swietenia macrophylla tree plantantion and a paired natural forest of similar age in a subtropical wet forests

  6. Automatic interpretation of ERTS data for forest management

    NASA Technical Reports Server (NTRS)

    Kirvida, L.; Johnson, G. R.

    1973-01-01

    Automatic stratification of forested land from ERTS-1 data provides a valuable tool for resource management. The results are useful for wood product yield estimates, recreation and wild life management, forest inventory and forest condition monitoring. Automatic procedures based on both multi-spectral and spatial features are evaluated. With five classes, training and testing on the same samples, classification accuracy of 74% was achieved using the MSS multispectral features. When adding texture computed from 8 x 8 arrays, classification accuracy of 99% was obtained.

  7. Back to the Future: Building resilience in Colorado Front Range forests using research findings and a new guide for restoration of ponderosa and dry-mixed conifer landscapes

    Treesearch

    Sue Miller; Rob Addington; Greg Aplet; Mike Battaglia; Tony Cheng; Jonas Feinstein; Jeff Underhill

    2018-01-01

    Historically, the ponderosa and dry mixed-conifer forests of the Colorado Front Range were more open and grassy, and trees of all size classes were found in a grouped arrangement with sizable openings between the clumps. As a legacy of fire suppression, today’s forests are denser, with smaller trees. Proactive restoration of this forest type will help to reduce fuel...

  8. Short-Term Effects of Understory and Overstory Management on Breeding Birds in Arkansas Oak-Hickory Forests

    Treesearch

    Paul G. Rodewald; Kimberly G. Smith

    1998-01-01

    Relatively little is known about the effects of uneven-aged forest management practices on eastern forest birds, despite the fact that such methods are now commonly practiced. In 1993-94, we studied the short-term effects of uneven-aged forest management on bird communities in oak-hickory forests of north-western Arkansas. We estimated bird abundance in mature forests...

  9. Beyond edge effects: landscape controls on forest structure in the southeastern US

    NASA Astrophysics Data System (ADS)

    Fagan, M. E.; Morton, D. C.; Cook, B.; Masek, J. G.; Zhao, F. A.; Nelson, R.; Huang, C.

    2016-12-01

    The structure of forest canopies (i.e., their height and complexity) is known to be influenced by a variety of factors, including forest age, species composition, disturbance, edaphic and topographical conditions, and exposure to edge environments. The combined impact of each of these factors on canopy structure is not well characterized for most forest ecosystems, however, which limits our ability to predict the regional impacts of forest fragmentation. The objective of this study was to elucidate the main biophysical drivers of canopy structure across two dominant ecosystems in the southeastern U.S: natural mixed deciduous forests, and industrial conifer plantations. We analyzed spatial changes in canopy structure along aerial transects of LiDAR data ( 3,000 km in all). High-resolution (1 m) LiDAR data from Goddard's LiDAR, Hyperspectral, and Thermal Airborne Imager (G-LiHT) were combined with time series of Landsat imagery to quantify forest type, age, composition, and fragmentation. Forest structural metrics (height, gap fraction, and canopy roughness) were examined across forest types, ages, topography, and decreasing edge exposure. We hypothesized that 1) structural edge effects would be weak in both natural and plantation forest types, and 2) age, composition, and topography would be the dominant influences on natural forest structure. We analyzed all large (>4 ha) fragments from the 8562 distinct forests measured during G-LiHT data collections in 2011 across the southeastern U.S. In general, the relationship between forest structural metrics and edge exposure was highly variable in both natural forests and plantations. However, variability in all structural metrics decreased with distance from an edge. Forest age and topography were strong predictors of canopy structure in natural forests. However plantations tended to be located in sites with limited topographical variation, and thinning disturbances of conifer plantations decreased the strength of the age-structure relationship. We found that canopy structure in our region is influenced by edge effects, but other factors played a larger role in determining forest characteristics. Our results highlight the importance of endogenous, stand-specific processes for forest structure, biomass, and biodiversity in the southeastern U.S.

  10. The 2013 FLEX-US Airborne Campaign at the Parker Tract Loblolly Pine Plantation in North Carolina, USA

    NASA Technical Reports Server (NTRS)

    Middleton, Elizabeth M.; Rascher, Uwe; Corp, Lawrence A.; Huemmrich, K. Fred; Cook, Bruce D.; Noormets, Asko; Schickling, Anke; Pinto, Francisco; Alonso, Luis; Damm, Alexander; hide

    2017-01-01

    The first European Space Agency (ESA) and NASA collaboration in an airborne campaign to support ESA's FLuorescence EXplorer (FLEX) mission was conducted in North Carolina, USA during September-October 2013 (FLEX-US 2013) at the Parker Tract Loblolly Pine (LP) Plantation (Plymouth, NC, USA). This campaign combined two unique airborne instrument packages to obtain simultaneous observations of solar-induced fluorescence (SIF), LiDAR-based canopy structural information, visible through shortwave infrared (VSWIR) reflectance spectra, and surface temperature, to advance vegetation studies of carbon cycle dynamics and ecosystem health. We obtained statistically significant results for fluorescence, canopy temperature, and tower fluxes from data collected at four times of day over two consecutive autumn days across an age class chronosequence. Both the red fluorescence (F685) and far-red fluorescence (F740) radiances had highest values at mid-day, but their fluorescence yields exhibited different diurnal responses across LP age classes. The diurnal trends for F685 varied with forest canopy temperature difference (canopy minus air), having a stronger daily amplitude change for young vs. old canopies. The Photochemical Reflectance Index (PRI) was positively correlated with this temperature variable over the diurnal cycle. Tower measurements from mature loblolly stand showed the red/far-red fluorescence ratio was linearly related to canopy light use efficiency (LUE) over the diurnal cycle, but performed even better for the combined morning/afternoon (without midday) observations. This study demonstrates the importance of diurnal observations for interpretation of fluorescence dynamics, the need for red fluorescence to understand canopy physiological processes, and the benefits of combining fluorescence, reflectance, and structure information to clarify canopy function versus structure characteristics for a coniferous forest.

  11. Predicting tree species presence and basal area in Utah: A comparison of stochastic gradient boosting, generalized additive models, and tree-based methods

    Treesearch

    Gretchen G. Moisen; Elizabeth A. Freeman; Jock A. Blackard; Tracey S. Frescino; Niklaus E. Zimmermann; Thomas C. Edwards

    2006-01-01

    Many efforts are underway to produce broad-scale forest attribute maps by modelling forest class and structure variables collected in forest inventories as functions of satellite-based and biophysical information. Typically, variants of classification and regression trees implemented in Rulequest's© See5 and Cubist (for binary and continuous responses,...

  12. Stereo photo series for quantifying forest residues in the Douglas-Fir-Hemlock type of the Willamette National Forest.

    Treesearch

    Roger D. Ottmar; Colin C. Hardy; Robert E. Vihnanek

    1990-01-01

    A series of stereo photographs displays a range of residue loadings for harvested units in the Douglas-fir-western hemlock cover type common to the Willamette National Forest. Postburn residue levels are also represented for the Douglas-fir-western hemlock types. Information with each photo includes measured quadratic means and weights for various size classes, woody...

  13. The effects of stream crossings on total suspended sediment in North Carolina Piedmont forests

    Treesearch

    Johnny Boggs; Ge Sun; Steve McNulty

    2017-01-01

    This study determined total suspended sediment (TSS) at six stream crossings that represented a range of site conditions and forest operations in the Piedmont of North Carolina. Two wood and three steel bridgemats and one culvert were installed to cross the streams. The road classes for the crossings included four temporary skid trails and two permanent forest haul...

  14. Estimating the quadratic mean diameter of fine woody debris for forest type groups of the United States

    Treesearch

    Christopher W. Woodall; Vicente J. Monleon

    2009-01-01

    The Forest Inventory and Analysis program of the Forest Service, U.S. Department of Agriculture conducts a national inventory of fine woody debris (FWD); however, the sampling protocols involve tallying only the number of FWD pieces by size class that intersect a sampling transect with no measure of actual size. The line intersect estimator used with those samples...

  15. Come Rain or Shine: A Whole School Approach to Forest School

    ERIC Educational Resources Information Center

    Vandewalle, Martyn

    2010-01-01

    This article begins by describing a typical Forest School session that takes place in every class every week at The Wroxham School in Potters Bar. It goes on to outline a brief history of Forest School from its inception, its aims and ethos, and how it has been adapted for the ethos and needs of the children at Wroxham. The article also looks at…

  16. Phase I Forest Area Estimation Using Landsat TM and Iterative Guided Spectral Class Rejection: Assessment of Possible Training Data Protocols

    Treesearch

    John A. Scrivani; Randolph H. Wynne; Christine E. Blinn; Rebecca F. Musy

    2001-01-01

    Two methods of training data collection for automated image classification were tested in Virginia as part of a larger effort to develop an objective, repeatable, and low-cost method to provide forest area classification from satellite imagery. The derived forest area estimates were compared to estimates derived from a traditional photo-interpreted, double sample. One...

  17. Assessing Oak Decline Incidence and Distribution in the Southern U.S. Using Forest Inventory and Analysis Data

    Treesearch

    Steven W. Oak; James R. Steinman; Dale A. Starkey; Edwin K. Yockey

    2004-01-01

    Forest Inventory and Analysis data for twelve southern states were used to evaluate regional oak decline status. Total host type, vulnerable host type, and affected areas were determined. The attributes used for classification were forest type, predominant stem size class, oak basal area percent, and dieback damage coding. Host type totaled 104.7 million acres in the...

  18. Southwestern Oregon's Biscuit Fire: An Analysis of Forest Resources, Fire Severity, and Fire Hazard

    Treesearch

    David L. Azuma; Glenn A. Christensen

    2005-01-01

    This study compares pre-fire field inventory data (collected from 1993 to 1997) in relation to post-fire mapped fire severity classes and the Fire and Fuels Extension of the Forest Vegetation Simulator growth and yield model measures of fire hazard for the portion of the Siskiyou National Forest in the 2002 Biscuit fire perimeter of southwestern Oregon. Post-fire...

  19. Red Pine in the Northern Lake States

    Treesearch

    Thomas L. Schmidt

    2003-01-01

    Red pine is an important tree species for the Northern Lake States. About 4 percent of the total area of timberland is dominated by red pine but most other forest types also have red pine as a component. The red pine forest type in the region has dramatically increased in area since the 1930s. Stand-size class distribution of the red pine forest type has changed over...

  20.  Invasibility of three major non-native invasive shrubs and associated factors in Upper Midwest U.S. forest lands

    Treesearch

    W. Keith Moser; Zhaofei Fan; Mark H. Hansen; Michael K. Crosby; Shirley X. Fan

    2016-01-01

    We used non-native invasive plant data from the US Forest Service’s Forest Inventory and Analysis (FIA) program, spatial statistical methods, and the space (cover class)-for-time approach to quantify the invasion potential and success ("invasibility") of three major invasive shrubs (multiflora rose, non-native bush honeysuckles, and common buckthorn...

  1. Estimating and mapping forest biomass using regression models and Spot-6 images (case study: Hyrcanian forests of north of Iran).

    PubMed

    Motlagh, Mohadeseh Ghanbari; Kafaky, Sasan Babaie; Mataji, Asadollah; Akhavan, Reza

    2018-05-21

    Hyrcanian forests of North of Iran are of great importance in terms of various economic and environmental aspects. In this study, Spot-6 satellite images and regression models were applied to estimate above-ground biomass in these forests. This research was carried out in six compartments in three climatic (semi-arid to humid) types and two altitude classes. In the first step, ground sampling methods at the compartment level were used to estimate aboveground biomass (Mg/ha). Then, by reviewing the results of other studies, the most appropriate vegetation indices were selected. In this study, three indices of NDVI, RVI, and TVI were calculated. We investigated the relationship between the vegetation indices and aboveground biomass measured at sample-plot level. Based on the results, the relationship between aboveground biomass values and vegetation indices was a linear regression with the highest level of significance for NDVI in all compartments. Since at the compartment level the correlation coefficient between NDVI and aboveground biomass was the highest, NDVI was used for mapping aboveground biomass. According to the results of this study, biomass values were highly different in various climatic and altitudinal classes with the highest biomass value observed in humid climate and high-altitude class.

  2. Mapping of land cover in northern California with simulated hyperspectral satellite imagery

    NASA Astrophysics Data System (ADS)

    Clark, Matthew L.; Kilham, Nina E.

    2016-09-01

    Land-cover maps are important science products needed for natural resource and ecosystem service management, biodiversity conservation planning, and assessing human-induced and natural drivers of land change. Analysis of hyperspectral, or imaging spectrometer, imagery has shown an impressive capacity to map a wide range of natural and anthropogenic land cover. Applications have been mostly with single-date imagery from relatively small spatial extents. Future hyperspectral satellites will provide imagery at greater spatial and temporal scales, and there is a need to assess techniques for mapping land cover with these data. Here we used simulated multi-temporal HyspIRI satellite imagery over a 30,000 km2 area in the San Francisco Bay Area, California to assess its capabilities for mapping classes defined by the international Land Cover Classification System (LCCS). We employed a mapping methodology and analysis framework that is applicable to regional and global scales. We used the Random Forests classifier with three sets of predictor variables (reflectance, MNF, hyperspectral metrics), two temporal resolutions (summer, spring-summer-fall), two sample scales (pixel, polygon) and two levels of classification complexity (12, 20 classes). Hyperspectral metrics provided a 16.4-21.8% and 3.1-6.7% increase in overall accuracy relative to MNF and reflectance bands, respectively, depending on pixel or polygon scales of analysis. Multi-temporal metrics improved overall accuracy by 0.9-3.1% over summer metrics, yet increases were only significant at the pixel scale of analysis. Overall accuracy at pixel scales was 72.2% (Kappa 0.70) with three seasons of metrics. Anthropogenic and homogenous natural vegetation classes had relatively high confidence and producer and user accuracies were over 70%; in comparison, woodland and forest classes had considerable confusion. We next focused on plant functional types with relatively pure spectra by removing open-canopy shrublands, woodlands and mixed forests from the classification. This 12-class map had significantly improved accuracy of 85.1% (Kappa 0.83) and most classes had over 70% producer and user accuracies. Finally, we summarized important metrics from the multi-temporal Random Forests to infer the underlying chemical and structural properties that best discriminated our land-cover classes across seasons.

  3. Crown Position and Light Exposure Classification-An Alternative to Field-Assigned Crown Class

    Treesearch

    William A. Bechtold

    2003-01-01

    Crown class, an ordinal tree-level mensuration attribute used extensively by foresters, is difficult to assign in the field because definitions of individual classes are confounded by ambiguous references to the position the tree in the canopy and amount of light received by its crown. When crown class is decomposed into its two elements-crown position and crown light...

  4. Survival of captive-reared Puerto Rican Parrots released in the Caribbean National Forest

    USGS Publications Warehouse

    White, T.H.; Collazo, J.A.; Vilella, F.J.

    2005-01-01

    We report first-year survival for 34 captive-reared Puerto Rican Parrots (Amazona vittata) released in the Caribbean National Forest, Puerto Rico between 2000 and 2002. The purpose of the releases were to increase population size and the potential number of breeding individuals of the sole extant wild population, and to refine release protocols for eventual reintroduction of a second wild population elsewhere on the island. After extensive prerelease training, we released 10 parrots in 2000, 16 parrots in 2001, and eight parrots in 2002 ranging in age from 1-4 years old. All birds were equipped with radio-transmitters to monitor survival. The overall first-year survival estimate for the 34 parrots was 41% (CI = 22%-61%). Only one parrot died within the first week postrelease, with most (94%) surviving for at least eight weeks after release. Most (54%) documented mortalities were due to raptor predation, which claimed 21% of all released parrots. A captive-reared bird (male, age one), released in 2001, paired with a wild female and fledged two young in 2004. We also calculated survival based on 0% and 50% of observed predation losses and found hypothetical survival rates of 72% and 54%, respectively. Rigorous prerelease training and acclimation was believed to have improved initial postrelease parrot survival, and releasing mixed age-class groups suggests the potential for shortening the time to recruitment. ?? The Cooper Ornithological Society 2005.

  5. The importance of age-related decline in forest NPP for modeling regional carbon balances.

    PubMed

    Zaehle, Sönke; Sitch, Stephen; Prentice, I Colin; Liski, Jari; Cramer, Wolfgang; Erhard, Markus; Hickler, Thomas; Smith, Benjamin

    2006-08-01

    We show the implications of the commonly observed age-related decline in aboveground productivity of forests, and hence forest age structure, on the carbon dynamics of European forests in response to historical changes in environmental conditions. Size-dependent carbon allocation in trees to counteract increasing hydraulic resistance with tree height has been hypothesized to be responsible for this decline. Incorporated into a global terrestrial biosphere model (the Lund-Potsdam-Jena model, LPJ), this hypothesis improves the simulated increase in biomass with stand age. Application of the advanced model, including a generic representation of forest management in even-aged stands, for 77 European provinces shows that model-based estimates of biomass development with age compare favorably with inventory-based estimates for different tree species. Model estimates of biomass densities on province and country levels, and trends in growth increment along an annual mean temperature gradient are in broad agreement with inventory data. However, the level of agreement between modeled and inventory-based estimates varies markedly between countries and provinces. The model is able to reproduce the present-day age structure of forests and the ratio of biomass removals to increment on a European scale based on observed changes in climate, atmospheric CO2 concentration, forest area, and wood demand between 1948 and 2000. Vegetation in European forests is modeled to sequester carbon at a rate of 100 Tg C/yr, which corresponds well to forest inventory-based estimates.

  6. The microbial community in decaying fallen logs varies with critical period in an alpine forest.

    PubMed

    Chang, Chenhui; Wu, Fuzhong; Yang, Wanqin; Xu, Zhenfeng; Cao, Rui; He, Wei; Tan, Bo; Justine, Meta Francis

    2017-01-01

    Little information has been available on the shifts in the microbial community in decaying fallen logs during critical periods in cold forests. Minjiang fir (Abies faxoniana) fallen logs in decay classes I-V were in situ incubated on the forest floor of an alpine forest in the eastern Tibet Plateau. The microbial community was investigated during the seasonal snow cover period (SP), snow thawing period (TP), early growing season (EG) and late growing season (LG) using Phosphorous Lipid Fatty Acid (PLFA) analysis. Total microbial biomass and microbial diversity in fallen logs were much more affected by critical period than decay class, whereas decay class had a stronger effect on microbial diversity than on microbial biomass. Abundant microbial biomass and microbial diversity in logs even without the cover of snow were observed in winter, which could not be linked to thermal insulation by snow cover. The freshly decayed logs functioned as an excellent buffer of environmental variation for microbial organisms during the sharp fluctuations in temperature in winter. We also found distinct decay patterns along with seasonality for heartwood, sapwood and bark, which requires further detailed research. Gram- bacteria mainly dominated the shifts in microbial community composition from SP to EG, while fungi and Gram+ bacteria mainly dominated it from SP to TP. Based on previous work and the present study, we conclude that fallen logs on the forest floor alter ecological processes by influencing microbial communities on woody debris and beneath the soil and litter. Our study also emphasizes the need to maintain a number of fallen logs, especially fresh ones, on the forest floor.

  7. Monitoring of reforestation on burnt areas in Western Russia using Landsat time series

    NASA Astrophysics Data System (ADS)

    Vorobev, Oleg; Kurbanov, Eldar

    2017-04-01

    Forest fires are main disturbance factor for the natural ecosystems, especially in boreal forests. Monitoring for the dynamic of forest cover regeneration in the post-fire period of ecosystem recovery is crucial to both estimation of forest stands and forest management. In this study, on the example of burnt areas of 2010 wildfires in Republic Mari El of Russian Federation we estimated post-fire dynamic of different classes of vegetation cover between 2011-2016 years with the use of time series Landsat satellite images. To validate the newly obtained thematic maps we used 80 test sites with independent field data, as well Canopus-B images of high spatial resolution. For the analysis of the satellite images we referred to Normalized Differenced Vegetation Index (NDVI) and Tasseled Cap transformation. The research revealed that at the post-fire period the area of thematic classes "Reforestation of the middle and low density" has maximum cover (44%) on the investigated burnt area. On the burnt areas of 2010 there is ongoing active process of grass overgrowing (up to 20%), also there are thematic classes of deadwood (15%) and open spaces (10%). The results indicate that there is mostly natural regeneration of tree species pattern corresponding to the pre-fire condition. Forest plantations cover only 2% of the overall burnt area. By the 2016 year the NDVI parameters of young vegetation cover were recovered to the pre-fire level as well. The overall unsupervised classification accuracy of more than 70% shows high degree of agreement between the thematic map and the ground truth data. The research results can be applied for the long term succession monitoring and management plan development for the reforestation activities on the lands disturbed by fire.

  8. The microbial community in decaying fallen logs varies with critical period in an alpine forest

    PubMed Central

    Chang, Chenhui; Wu, Fuzhong; Xu, Zhenfeng; Cao, Rui; He, Wei; Tan, Bo; Justine, Meta Francis

    2017-01-01

    Little information has been available on the shifts in the microbial community in decaying fallen logs during critical periods in cold forests. Minjiang fir (Abies faxoniana) fallen logs in decay classes I-V were in situ incubated on the forest floor of an alpine forest in the eastern Tibet Plateau. The microbial community was investigated during the seasonal snow cover period (SP), snow thawing period (TP), early growing season (EG) and late growing season (LG) using Phosphorous Lipid Fatty Acid (PLFA) analysis. Total microbial biomass and microbial diversity in fallen logs were much more affected by critical period than decay class, whereas decay class had a stronger effect on microbial diversity than on microbial biomass. Abundant microbial biomass and microbial diversity in logs even without the cover of snow were observed in winter, which could not be linked to thermal insulation by snow cover. The freshly decayed logs functioned as an excellent buffer of environmental variation for microbial organisms during the sharp fluctuations in temperature in winter. We also found distinct decay patterns along with seasonality for heartwood, sapwood and bark, which requires further detailed research. Gram- bacteria mainly dominated the shifts in microbial community composition from SP to EG, while fungi and Gram+ bacteria mainly dominated it from SP to TP. Based on previous work and the present study, we conclude that fallen logs on the forest floor alter ecological processes by influencing microbial communities on woody debris and beneath the soil and litter. Our study also emphasizes the need to maintain a number of fallen logs, especially fresh ones, on the forest floor. PMID:28787465

  9. Effects of Management on the Composition and Structure of Northern Hardwood Forests in Upper Michigan

    Treesearch

    Thomas R. Crow; David S. Buckley; Elizabeth A. Nauertz; John C. Zasada

    2002-01-01

    To improve our understanding of how management affects the composition and structure of northern hardwood forests, we compared managed with unmanaged sugar maple (Acer saccharum Marsh.) dominated forests. Unmanaged old-growth and unmanaged second-growth forests provided baselines for comparing the effects of even-aged and uneven-aged forest...

  10. β-Diversity of Functional Groups of Woody Plants in a Tropical Dry Forest in Yucatan

    PubMed Central

    López-Martínez, Jorge Omar; Sanaphre-Villanueva, Lucía; Dupuy, Juan Manuel; Hernández-Stefanoni, José Luis; Meave, Jorge Arturo; Gallardo-Cruz, José Alberto

    2013-01-01

    Two main theories have attempted to explain variation in plant species composition (β-diversity). Niche theory proposes that most of the variation is related to environment (environmental filtering), whereas neutral theory posits that dispersal limitation is the main driver of β-diversity. In this study, we first explored how α- and β-diversity of plant functional groups defined by growth form (trees, shrubs and lianas, which represent different strategies of resource partitioning), and dispersal syndrome (autochory, anemochory and zoochory, which represent differences in dispersal limitation) vary with successional age and topographic position in a tropical dry forest. Second, we examined the effects of environmental, spatial, and spatially-structured environmental factors on β-diversity of functional groups; we used the spatial structure of sampling sites as a proxy for dispersal limitation, and elevation, soil properties and forest stand age as indicators of environmental filtering. We recorded 200 species and 22,245 individuals in 276 plots; 120 species were trees, 41 shrubs and 39 lianas. We found that β-diversity was highest for shrubs, intermediate for lianas and lowest for trees, and was slightly higher for zoochorous than for autochorous and anemochorous species. All three dispersal syndromes, trees and shrubs varied in composition among vegetation classes (successional age and topographic position), whilst lianas did not. β-diversity was influenced mostly by proxies of environmental filtering, except for shrubs, for which the influence of dispersal limitation was more important. Stand age and topography significantly influenced α-diversity across functional groups, but showed a low influence on β-diversity –possibly due to the counterbalancing effect of resprouting on plant distribution and composition. Our results show that considering different plant functional groups reveals important differences in both α- and β-diversity patterns and correlates that are not apparent when focusing on overall woody plant diversity, and that have important implications for ecological theory and biodiversity conservation. PMID:24040014

  11. Carbon Consequences of Forest Disturbance and Recovery Across the Conterminous United States

    NASA Technical Reports Server (NTRS)

    Williams, Christopher A.; Collatz, G. James; Masek, Jeffrey; Goward, Samuel N.

    2012-01-01

    Forests of North America are thought to constitute a significant long term sink for atmospheric carbon. The United States Forest Service Forest Inventory and Analysis (FIA) program has developed a large data base of stock changes derived from consecutive estimates of growing stock volume in the US. These data reveal a large and relatively stable increase in forest carbon stocks over the last two decades or more. The mechanisms underlying this national increase in forest stocks may include recovery of forests from past disturbances, net increases in forest area, and growth enhancement driven by climate or fertilization by CO2 and Nitrogen. Here we estimate the forest recovery component of the observed stock changes using FIA data on the age structure of US forests and carbon stocks as a function of age. The latter are used to parameterize forest disturbance and recovery processes in a carbon cycle model. We then apply resulting disturbance/recovery dynamics to landscapes and regions based on the forest age distributions. The analysis centers on 28 representative climate settings spread about forested regions of the conterminous US. We estimate carbon fluxes for each region and propagate uncertainties in calibration data through to the predicted fluxes. The largest recovery-driven carbon sinks are found in the South central, Pacific Northwest, and Pacific Southwest regions, with spatially averaged net ecosystem productivity (NEP) of about 100 g C / square m / a driven by forest age structure. Carbon sinks from recovery in the Northeast and Northern Lake States remain moderate to large owing to the legacy of historical clearing and relatively low modern disturbance rates from harvest and fire. At the continental scale, we find a conterminous U.S. forest NEP of only 0.16 Pg C/a from age structure in 2005, or only 0.047 Pg C/a of forest stock change after accounting for fire emissions and harvest transfers. Recent estimates of NEP derived from inventory stock change, harvest, and fire data show twice the NEP sink we derive from forest age distributions. We discuss possible reasons for the discrepancies including modeling errors and the possibility of climate and/or fertilization (CO2 or N) growth enhancements.

  12. Forest aging, disturbance and the carbon cycle.

    PubMed

    Curtis, Peter S; Gough, Christopher M

    2018-05-16

    Contents Summary I. Introduction II. Forest aging and carbon storage III. Successional trends of NEP in northern deciduous forests IV. Mechanisms sustaining NEP in aging deciduous forests Acknowledgements References SUMMARY: Large areas of forestland in temperate North America, as well as in other parts of the world, are growing older and will soon transition into middle and then late successional stages exceeding 100 yr in age. These ecosystems have been important regional carbon sinks as they recovered from prior anthropogenic and natural disturbance, but their future sink strength, or annual rate of carbon storage, is in question. Ecosystem development theory predicts a steady decline in annual carbon storage as forests age, but newly available, direct measurements of forest net CO 2 exchange challenge that prediction. In temperate deciduous forests, where moderate severity disturbance regimes now often prevail, there is little evidence for any marked decline in carbon storage rate during mid-succession. Rather, an increase in physical and biological complexity under these disturbance regimes may drive increases in resource-use efficiency and resource availability that help to maintain significant carbon storage in these forests well past the century mark. Conservation of aging deciduous forests may therefore sustain the terrestrial carbon sink, whilst providing other goods and services afforded by these biologically and structurally complex ecosystems. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  13. Physical maturation, life-history classes and age estimates of free-ranging western gorillas--insights from Mbeli Bai, Republic of Congo.

    PubMed

    Breuer, Thomas; Hockemba, Mireille Breuer-Ndoundou; Olejniczak, Claudia; Parnell, Richard J; Stokes, Emma J

    2009-02-01

    Physical maturation and life-history parameters are seen as evolutionary adaptations to different ecological and social conditions. Comparison of life-history patterns of closely related species living in diverse environments helps to evaluate the validity of these assumptions but empirical data are lacking. The two gorilla species exhibit substantial differences in their environment, which allows investigation into the role of increased frugivory in shaping western gorilla life histories. We present behavioral and morphological data on western gorilla physical maturation and life-history parameters from a 12.5-year study at Mbeli Bai, a forest clearing in the Nouabalé-Ndoki National Park in northern Congo. We assign photographs of known individuals to different life-history classes and propose new age boundaries for life-history classes in western gorillas, which can be used and tested at other western gorilla research sites. Our results show that western gorillas are weaned at a later age compared with mountain gorillas and indicate slower physical maturation of immatures. These findings support the risk-aversion hypothesis for more frugivorous species. However, our methods need to be applied and tested with other gorilla populations. The slow life histories of western gorillas could have major consequences for social structure, mortality patterns and population growth rates that will affect recovery from population crashes of this critically endangered species. We emphasize that long-term studies can provide crucial demographic and life-history data that improve our understanding of life-history evolution and adaptation and help to refine conservation strategies. (c) 2008 Wiley-Liss, Inc.

  14. Roosevelt elk selection of temperate rain forest seral stages in western Washington

    USGS Publications Warehouse

    Schroer, Greg L.; Jenkins, Kurt J.; Moorhead, Bruce B.

    1993-01-01

    We studied habitat selection by Roosevelt elk (Cervus elaphus roosevelti) in a temperate rain forest in the lower Queets River Valley of the western Olympic Peninsula, Washington from June 1986-July 1987. Elk annual home ranges included predominantly unlogged forests protected within Olympic National Park and logged, regenerating forests adjacent to the park. Radio-collared elk selected valley floors during all seasons except winter, when elk frequently used an adjoining plateau 60 m above the floodplain. In winder, radio-collared elk selected 6-15 year-old clearcuts, which were available on the plateau. Elk selected mature deciduous forests of the valley floor during spring, summer, and autumn, and generally they selected old-age Sitka spruce forests during autumn and winter. Young clearcuts (1-5 years old) and even-aged, regenerating stands (16-150 years old) generally were avoided during all seasons. Management practices that retain preferred habitat of elk, such as deciduous forests, 6-15 yr-old coniferous stands, and old-age coniferous bottomland forests will benefit elk, particularly on elk ranges managed for short-rotation, even-aged stands. Silvicultural alternatives to typical even-aged stand management, such as uneven-aged management and commercial thinning, should also be considered for improving and maintaining interspersion of forage and cover.

  15. Spatio-temporal change in forest cover and carbon storage considering actual and potential forest cover in South Korea.

    PubMed

    Nam, Kijun; Lee, Woo-Kyun; Kim, Moonil; Kwak, Doo-Ahn; Byun, Woo-Hyuk; Yu, Hangnan; Kwak, Hanbin; Kwon, Taesung; Sung, Joohan; Chung, Dong-Jun; Lee, Seung-Ho

    2015-07-01

    This study analyzes change in carbon storage by applying forest growth models and final cutting age to actual and potential forest cover for six major tree species in South Korea. Using National Forest Inventory data, the growth models were developed to estimate mean diameter at breast height, tree height, and number of trees for Pinus densiflora, Pinus koraiensis, Pinus rigida, Larix kaempferi, Castanea crenata and Quercus spp. stands. We assumed that actual forest cover in a forest type map will change into potential forest covers according to the Hydrological and Thermal Analogy Groups model. When actual forest cover reaches the final cutting age, forest volume and carbon storage are estimated by changed forest cover and its growth model. Forest volume between 2010 and 2110 would increase from 126.73 to 157.33 m(3) hm(-2). Our results also show that forest cover, volume, and carbon storage could abruptly change by 2060. This is attributed to the fact that most forests are presumed to reach final cutting age. To avoid such dramatic change, a regeneration and yield control scheme should be prepared and implemented in a way that ensures balance in forest practice and yield.

  16. Potential increases in natural disturbance rates could offset forest management impacts on ecosystem carbon stocks

    USGS Publications Warehouse

    Bradford, John B.; Jensen, Nicholas R.; Domke, Grant M.; D’Amato, Anthony W.

    2013-01-01

    Forested ecosystems contain the majority of the world’s terrestrial carbon, and forest management has implications for regional and global carbon cycling. Carbon stored in forests changes with stand age and is affected by natural disturbance and timber harvesting. We examined how harvesting and disturbance interact to influence forest carbon stocks over the Superior National Forest, in northern Minnesota. Forest inventory data from the USDA Forest Service, Forest Inventory and Analysis program were used to characterize current forest age structure and quantify the relationship between age and carbon stocks for eight forest types. Using these findings, we simulated the impact of alternative management scenarios and natural disturbance rates on forest-wide terrestrial carbon stocks over a 100-year horizon. Under low natural mortality, forest-wide total ecosystem carbon stocks increased when 0% or 40% of planned harvests were implemented; however, the majority of forest-wide carbon stocks decreased with greater harvest levels and elevated disturbance rates. Our results suggest that natural disturbance has the potential to exert stronger influence on forest carbon stocks than timber harvesting activities and that maintaining carbon stocks over the long-term may prove difficult if disturbance frequency increases in response to climate change.

  17. Saproxylic and non-saproxylic beetle assemblages in boreal spruce forests of different age and forestry intensity.

    PubMed

    Stenbacka, Fredrik; Hjältén, Joakim; Hilszczański, Jacek; Dynesius, Mats

    2010-12-01

    Current clear-cutting forestry practices affect many boreal organisms negatively, and those dependent on dead wood (saproxylics) are considered as particularly vulnerable. The succession of species assemblages in managed forest habitats regenerating after clear-cutting is, however, poorly known. We compared beetle assemblages in three successional stages of managed boreal spruce forests established after clear-cutting and two types of older spruce forests that had not been clear-cut. We also assessed whether saproxylic and non-saproxylic beetle assemblages show similar biodiversity patterns among these forest types. Beetles were collected in window traps in nine study areas, each encompassing a protected old-growth forest (mean forest age approximately 160 years, mean dead wood volume 34 m3/ha), an unprotected mature forest (approximately 120 years old, 15 m3/ha), a middle-aged commercially thinned forest (53 years old, 3 m3/ha), a young unthinned forest (30 years old, 4 m3/ha), and a clearcut (5-7 years after harvest, 11 m3/ha). Saproxylic beetles, in particular red-listed species, were more abundant and more species rich in older forest types, whereas no significant differences among forest types in these variables were detected for non-saproxylics. The saproxylic assemblages were clearly differentiated; with increasing forest age, assemblage compositions gradually became more similar to those of protected old-growth forests, but the assemblage composition in thinned forests could not be statistically distinguished from those of the two oldest forest types. Many saproxylic beetles adapted to late-successional stages were present in thinned middle-aged forests but absent from younger unthinned forests. In contrast, non-saproxylics were generally more evenly distributed among the five forest types, and the assemblages were mainly differentiated between clearcuts and forested habitats. The saproxylic beetle assemblages of unprotected mature forests were very similar to those of protected old-growth forests. This indicates a relatively high conservation value of mature boreal forests currently subjected to clear-cutting and raises the question of whether future mature forests will have the same qualities. Our results suggest a high beetle conservation potential of developing managed forests, provided that sufficient amounts and qualities of dead wood are made available (e.g., during thinning operations). Confirming studies of beetle reproduction in dead wood introduced during thinning are, however, lacking.

  18. Surface albedo in relation to disturbance and early stand dynamics in the boreal forest: Implications for climate models

    NASA Astrophysics Data System (ADS)

    Halim, M. A.; Thomas, S. C.

    2017-12-01

    Surface albedo is the most important biophysical radiative forcing in the boreal forest. General Circulation Model studies have suggested that harvesting of boreal forest has a net cooling effect, in contrast to other terrestrial biomes, by increasing surface albedo. However, albedo estimation in these models has been achieved by simplifying processes governing albedo at a coarse scale (both spatial and temporal). Biophysical processes that determine albedo likely operate on small spatial and temporal scales, requiring more direct estimates of effects of landcover change on net radiation. We established a chronosequence study in post-fire and post-clearcut sites (2013, 2006, 1998), logging data from July 2013 to July 2017 in boreal forest sites in northwestern Ontario, Canada. Each age-class X disturbance had 3 three replicates, matched to 18 permanent circular plots (10-m radius) each with an instrumented tower measuring surface albedo, air and soil temperature, and soil moisture. We also measured leaf area index, species composition and soil organic matter content at each site. BRDF-corrected surface albedo was calculated from daily 30m x 30m reflectance data fused from the MODIS MOD09GA product and Landsat 7 reflectance data. Calculated albedo was verified using ground-based measurements. Results show that fire sites generally had lower (15-25%) albedo than clearcut sites in all seasons. Because of rapid forest regrowth, large perturbations of clearcut harvests on forest albedo started to fade out within a year. Albedo differences between fire and clearcut sites also declined sharply with stand age. Younger stands generally had higher albedo than older stands mainly due to the presence of broadleaf species (for example, Populus tremuloides). In spring, snow melted 10-12 days earlier in recent (2013) clearcut sites compared to closed-canopy sites, causing a sharp reduction in surface albedo in comparison to old clearcut/fire sites (2006 and 1998). Snow melted faster in post-fire sites than in clearcut sites, with concomitant effects on albedo associated with snow. Findings of this study strongly suggest that harvests in boreal forest do not have as strong a radiative cooling effect as previously inferred from GCM experiments based on coarse-resolution data or "biome substitution" approaches.

  19. Trade-offs between forest carbon stocks and harvests in a steady state - A multi-criteria analysis.

    PubMed

    Pingoud, Kim; Ekholm, Tommi; Sievänen, Risto; Huuskonen, Saija; Hynynen, Jari

    2018-03-15

    This paper provides a perspective for comparing trade-offs between harvested wood flows and forest carbon stocks with different forest management regimes. A constant management regime applied to a forest area with an even age-class distribution leads to a steady state, in which the annual harvest and carbon stocks remain constant over time. As both are desirable - carbon stocks for mitigating climate change and harvests for the economic use of wood and displacing fossil fuels - an ideal strategy should be chosen from a set of management regimes that are Pareto-optimal in the sense of multi-criteria decision-making. When choosing between Pareto-optimal alternatives, the trade-off between carbon stock and harvests is unavoidable. This trade-off can be described e.g. in terms of carbon payback times or carbon returns. As numerical examples, we present steady-state harvest levels and carbon stocks in a Finnish boreal forest region for different rotation periods, thinning intensities and collection patterns for harvest residues. In the set of simulated management practices, harvest residue collection presents the most favorable trade-off with payback times around 30-40 years; while Pareto-optimal changes in rotation or thinnings exhibited payback times over 100 years, or alternatively carbon returns below 1%. By extending the rotation period and using less-intensive thinnings compared to current practices, the steady-state carbon stocks could be increased by half while maintaining current harvest levels. Additional cases with longer rotation periods should be also considered, but were here excluded due to the lack of reliable data on older forest stands. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Triangulating the Sociohydrology of Water Supply, Quality and Forests in the Triangle

    NASA Astrophysics Data System (ADS)

    Band, L. E.

    2016-12-01

    The North Carolina Research Triangle is among the most rapidly growing metropolitan areas in the United States, with decentralized governance split among several different municipalities, counties and water utilities. Historically smaller populations, plentiful rainfall, and riparian rights based water law provided both a sense of security for water resources and influenced the development of separate infrastructure systems across the region. The growth of water demand with rising populations with typical suburban sprawl, the development of multi-use reservoirs immediately downstream of urban areas, and increased hydroclimate variability have raised the potential for periodic water scarcity coupled with increasing eutrophication of water supplies. We discuss the interactions and tradeoffs between management of emerging water scarcity, quality and forest biodiversity in the Triangle as a model for the US Southeast. Institutional stakeholders include water supply and stormwater utilities, environmental NGOs, federal, state, county and municipal governments, developers and home owner associations. We emphasize principles of ecohydrologic resilience learned in heavily instrumented research watersheds, adapted to rapidly developing urban systems, and including socioeconomic and policy dynamics. Significant 20th century reforestation of central North Carolina landscapes have altered regional water balances, while providing both flood and water quality mitigation. The regrowth forest is dynamic and heterogeneous in water use based on age class and species distribution, with substantial plantation and natural regeneration. Forecasts of land use and forest structural and compositional change are based on scenario socioeconomic development, climate change and forecast wood product markets. Urban forest and green infrastructure has the potential to mediate the trade-offs and synergies of these goals, but is in a very nascent state. Computational tools to assess policy alternatives impacts on water quality, quantity and forest biodiversity are developed to serve information to multiple stakeholders, and communicate and visualize outcomes.

  1. River recreation experience opportunities in two recreation opportunity spectrum (ROS) classes

    Treesearch

    Duane C. Wollmuth; John H. Schomaker; Lawrence C. Merriam

    1985-01-01

    The Recreation Opportunity Spectrum (ROS) system is used by the USDA Forest Service and USDI Bureau of Land Management for inventorying, classifying, and managing wildlands for recreation. Different ROS classes from the Colorado and Arkansas Rivers in Colorado were compared, using visitor survey data collected in 1979 and 1981, to see if the different classes offered...

  2. Harvest impacts in uneven-aged and even-aged Missouri Ozark forests

    Treesearch

    John P. Dwyer; Daniel C. Dey; William D. Walter; Randy G. Jensen

    2004-01-01

    Forest managers are concerned about the potential damage to residual trees and site from cyclic harvest re-entries into the same forest stand. This study summarizes logging and felling damage resulting from the harvesting of silvicultural treatments on a large landscape experiment in southern Missouri that is designed to compare impacts of even-aged, uneven-aged and no...

  3. Forest management strategy affects saproxylic beetle assemblages: A comparison of even and uneven-aged silviculture using direct and indirect sampling.

    PubMed

    Joelsson, Klara; Hjältén, Joakim; Gibb, Heloise

    2018-01-01

    Management of forest for wood production has altered ecosystem structures and processes and led to habitat loss and species extinctions, worldwide. Deadwood is a key resource supporting forest biodiversity, and commonly declines following forest management. However, different forest management methods affect dead wood differently. For example, uneven-aged silviculture maintains an age-stratified forest with ongoing dead wood production, while even-aged silviculture breaks forest continuity, leading to long periods without large trees. We asked how deadwood-dependent beetles respond to different silvicultural practices and if their responses depend on deadwood volume, and beetles preference for decay stages of deadwood. We compared beetle assemblages in five boreal forest types with different management strategies: clearcutting and thinning (both representing even-aged silviculture), selective felling (representing uneven-aged silviculture), reference and old growth forest (both uneven-aged controls without a recent history [~50 years] of management, but the latter with high conservation values). We collected beetles using window traps and by sieving the bark from experimental logs (bolts). Beetle assemblages on clear-cuts differed from all other stand types, regardless of trapping method or decay stage preference. Thinning differed from reference stands, indicating incomplete recovery after clear-cutting, while selective felling differed only from clear-cuts. In contrast to our predictions, early and late successional species responded similarly to different silvicultural practices. However, there were indications of marginal assemblage differences both between thinned stands and selective felling and between thinned and old growth stands (p = 0.10). The stand volume of early decay stage wood influenced assemblage composition of early, but not late successional species. Uneven-aged silviculture maintained species assemblages similar to those of the reference and old growth stands and might therefore be a better management option when considering biodiversity conservation.

  4. How applicable is even-aged silviculture in the northeast?

    Treesearch

    Ralph H. Griffin

    1977-01-01

    The applicability of even-aged silviculture in the management of forest stands in the Northeast is examined through consideration of the forest stand, stand development, intermediate cuttings, and regeneration methods. It is concluded that even-aged silviculture is quite applicable in the management of forest stands in the Northeast.

  5. Mite communities (Acari: Mesostigmata) in young and mature coniferous forests after surface wildfire.

    PubMed

    Kamczyc, Jacek; Urbanowski, Cezary; Pers-Kamczyc, Emilia

    2017-06-01

    Density, diversity and assemblage structure of Mesostigmata (cohorts Gamasina and Uropodina) were investigated in Scots pine forests differing in forest age (young: 9-40 years and mature: 83-101 years) in which wildfire occurred. This animal group belongs to the dominant acarine predators playing a crucial role in soil food webs and being important as biological control agents. In total, six forests (three within young and three within mature stands) were inspected in Puszcza Knyszyńska Forest Complex in May 2015. At each forest area, sampling was done from burned and adjacent control sites with steel cylinders for heat extraction of soil fauna. Data were analyzed statistically with nested ANOVA. We found a significant effect on mite density of both fire and forest age, with more mites in mature forests and control plots. In total, 36 mite taxa were identified. Mite diversity differed significantly between forest ages but not between burned versus control. Our study indicated that all studied forests are characterized by unique mite species and that the mite communities are dominated by different mite species depending on age forest and surface wildfire occurrence. Finally, canonical correspondence analysis ranked the mite assemblages from control mature, through burned young and burned mature, away from the control young.

  6. Monitoring forest land from high altitude and from space

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Forest inventory, forest stress, and standardization and calibration studies are presented. These include microscale photointerpretation of forest and nonforest land classes, multiseasonal film densities for automated forest and nonforest land classification, trend and spread of bark beetle infestations from 1968 through 1971, aerial photography for determining optimum levels of stand density to reduce such infestations, use of airborne spectrometers and multispectral scanners for previsual detection of Ponderosa pine trees under stress from insects and diseases, establishment of an earth resources technology satellite test site in the Black Hills and the identification of natural resolution targets, detection of root disease impact on forest stands by sequential orbital and suborbital multispectral photography, and calibration of color aerial photography.

  7. Holocene Vegetation and Fire Dynamics for Ecosystem Management in the Spruce-Moss Domain in Northwestern Québec

    NASA Astrophysics Data System (ADS)

    Andy, H.; Blarquez, O.; Grondin, P.

    2017-12-01

    Facing the depletion of the wood resource in Québec and possible threats such as climate change, actors of the forest sector urge the need for a scientific frame to the forest management. A set of reference conditions has been developed for defining management targets that will help to keep forests within their natural range of variability according to the preindustrial period (XIX-XX centuries). Those reference conditions are based on the stands age-class distribution under a given fire regime that enable to define the percentage of old-growth forest (>100 years) to be maintained in a landscape. For the western spruce-moss domain in Québec, the fire return interval (FRI) is equal to 150 years resulting in a target of 48% of old-growth forests. Yet, this target supposes that the environment and the ecosystem processes are homogeneous for an entire bioclimatic domain of 175 000 km2. By using a Redundancy Analysis (RDA) on modern inventories data on natural and human disturbances; climate and physical variables and forest composition, we were able to distinguish 5 main zones where interactions between stands and their environment are homogeneous and where local management targets could be developed. We then used 10 published sedimentary pollens and charcoal series in order to reconstruct the holocene fire and vegetation dynamics for those zones. Vegetation deduced from the analysis of the pollen diagrams showed that the long-term vegetation dynamics are zone specific indicating that the modern forest composition is a result of the Holocene trajectories occurring within each zone. Charcoals series were statistically analyzed for past fire detection and long-term FRI reconstruction. They suggest that for the entire territory the holocene FRI range from 174 to 265 years resulting in old-growth forests percentage within 44 and 65% depending on the zone. Hence, we conclude that current management targets should be revised to fit more with local forests ecosystem variability at the landscape scale and that reference condition should be supplemented with data on the long-term fire dynamics and forest composition variability.

  8. An Artful Forest

    ERIC Educational Resources Information Center

    Possick, Jennifer

    2007-01-01

    In this article, the authors' kindergarteners and a fellow first-grade class turned their hallway into a forest! Not just any mural, this culmination of a month-long project was based on observing, questioning, taking field trips, conducting library research (including the internet) and asking experts. The students developed skills in forming…

  9. Improving artificial forest biomass estimates using afforestation age information from time series Landsat stacks.

    PubMed

    Liu, Liangyun; Peng, Dailiang; Wang, Zhihui; Hu, Yong

    2014-11-01

    China maintains the largest artificial forest area in the world. Studying the dynamic variation of forest biomass and carbon stock is important to the sustainable use of forest resources and understanding of the artificial forest carbon budget in China. In this study, we investigated the potential of Landsat time series stacks for aboveground biomass (AGB) estimation in Yulin District, a key region of the Three-North Shelter region of China. Firstly, the afforestation age was successfully retrieved from the Landsat time series stacks in the last 40 years (from 1974 to 2013) and shown to be consistent with the surveyed tree ages, with a root-mean-square error (RMSE) value of 4.32 years and a determination coefficient (R (2)) of 0.824. Then, the AGB regression models were successfully developed by integrating vegetation indices and tree age. The simple ratio vegetation index (SR) is the best candidate of the commonly used vegetation indices for estimating forest AGB, and the forest AGB model was significantly improved using the combination of SR and tree age, with R (2) values from 0.50 to 0.727. Finally, the forest AGB images were mapped at eight epochs from 1985 to 2013 using SR and afforestation age. The total forest AGB in seven counties of Yulin District increased by 20.8 G kg, from 5.8 G kg in 1986 to 26.6 G kg in 2013, a total increase of 360 %. For the persistent forest area since 1974, the forest AGB density increased from 15.72 t/ha in 1986 to 44.53 t/ha in 2013, with an annual rate of about 0.98 t/ha. For the artificial forest planted after 1974, the AGB density increased about 1.03 t/ha a year from 1974 to 2013. The results present a noticeable carbon increment for the planted artificial forest in Yulin District over the last four decades.

  10. Biomass carbon stocks in China's forests between 2000 and 2050: a prediction based on forest biomass-age relationships.

    PubMed

    Xu, Bing; Guo, ZhaoDi; Piao, ShiLong; Fang, JingYun

    2010-07-01

    China's forests are characterized by young forest age, low carbon density and a large area of planted forests, and thus have high potential to act as carbon sinks in the future. Using China's national forest inventory data during 1994-1998 and 1999-2003, and direct field measurements, we investigated the relationships between forest biomass density and forest age for 36 major forest types. Statistical approaches and the predicted future forest area from the national forestry development plan were applied to estimate the potential of forest biomass carbon storage in China during 2000-2050. Under an assumption of continuous natural forest growth, China's existing forest biomass carbon (C) stock would increase from 5.86 Pg C (1 Pg=10(15) g) in 1999-2003 to 10.23 Pg C in 2050, resulting in a total increase of 4.37 Pg C. Newly planted forests through afforestation and reforestation will sequestrate an additional 2.86 Pg C in biomass. Overall, China's forests will potentially act as a carbon sink for 7.23 Pg C during the period 2000-2050, with an average carbon sink of 0.14 Pg C yr(-1). This suggests that China's forests will be a significant carbon sink in the next 50 years.

  11. Effects of Selected Timber Management Practices on Forest Birds in Missouri Oak-Hickory Forests: Pre-treatment Results

    Treesearch

    Rich L. Clawson; John Faaborg; Elena Seon

    1997-01-01

    Our goal is to understand the repercussions of two different forest management techniques on Neotropical migrant birds in the heavily forested landscape of the Missouri Ozarks. Our objectives are to determine breeding densities of forest birds under even-aged and uneven-aged management regimes and to determine the effects of these practices on songbird demographics....

  12. Modeling demographic performance of northern spotted owls relative to forest habitat in Oregon

    USGS Publications Warehouse

    Olson, Gail S.; Glenn, Elizabeth M.; Anthony, Robert G.; Forsman, Eric D.; Reid, Janice A.; Loschl, Peter J.; Ripple, William J.

    2004-01-01

    Northern spotted owls (Strix occidentalis caurina) are known to be associated with late-successional forests in the Pacific Northwest of the United States, but the effects of habitat on their demographic performance are relatively unknown. We developed statistical models relating owl survival and productivity to forest cover types within the Roseburg Study Area in the Oregon Coast Range of Oregon, USA. We further combined these demographic parameters using a Leslie-type matrix to obtain an estimate of habitat fitness potential for each owl territory (n = 94). We used mark–recapture methods to develop models for survival and linear mixed models for productivity. We measured forest composition and landscape patterns at 3 landscape scales centered on nest and activity sites within owl territories using an aerial photo-based map and a Geographic Information System (GIS). We also considered additional covariates such as age, sex, and presence of barred owls (Strix varia), and seasonal climate variables (temperature and precipitation) in our models. We used Akaike's Information Criterion (AIC) to rank and compare models. Survival had a quadratic relationship with the amount of late- and mid-seral forests within 1,500 m of nesting centers. Survival also was influenced by the amount of precipitation during the nesting season. Only 16% of the variability in survival was accounted for by our best model, but 85% of this was due to the habitat variable. Reproductive rates fluctuated biennially and were positively related to the amount of edge between late- and mid-seral forests and other habitat classes. Reproductive rates also were influenced by parent age, amount of precipitation during nesting season, and presence of barred owls. Our best model accounted for 84% of the variability in productivity, but only 3% of that was due to the habitat variable. Estimates of habitat fitness potential (which may range from 0 to infinity) for the 94 territories ranged from 0.74 to 1.15 (x̄ = 1.05, SE = 0.07). All but 1 territory had 95% confidence intervals overlapping 1.0, indicating a potentially stable population based on habitat pattern. Our results seem to indicate that while mid- and late-seral forests are important to owls, a mixture of these forest types with younger forest and nonforest may be best for owl survival and reproduction. Our results are consistent with those of researchers in northern California, USA, who used similar methods in their analyses. However, we believe that given the low variability in survival and productivity attributed to habitat, further study is needed to confirm our conclusions before they can be used to guide forest management actions for spotted owls.

  13. Turnover of Species and Guilds in Shrub Spider Communities in a 100-Year Postlogging Forest Chronosequence.

    PubMed

    Haraguchi, Takashi F; Tayasu, Ichiro

    2016-02-01

    Disturbance of forests by logging and subsequent forest succession causes marked changes in arthropod communities. Although vegetation cover provides important habitat for arthropods, studies of the changes in their community structure associated with forest succession have been conducted mostly at ground level. To evaluate how forests of different ages contribute to arthropod biodiversity in shrub habitat, spiders were collected from shrubs in 12 forests ranging in age from 1 to 107 yr after logging. We found marked changes in spider community structure about 10 yr after logging: the number of species and individuals declined rapidly after this time. These changes were likely caused by a decrease in shrub cover in association with forest succession. Changes in spider species composition associated with stand age were small in forests at least 11 yr old and were not clustered by forest age. After the exclusion of species of which we sampled only one or two individuals incidentally, just 0.9 ± 0.5 (mean ± SD) species were unique to these older forests. The other 41.2 ± 4.3 species found in these forests were common to both older and young forests, although some of these species in common were found mainly in forests at least 11 yr old. These results suggest that preservation of old-growth forests contributes to the abundance of these common species, although old-growth forests contribute little to species diversity. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Land cover mapping, fire regeneration, and scaling studies in the Canadian boreal forest with 1 km AVHRR and Landsat TM data

    NASA Astrophysics Data System (ADS)

    Steyaert, L. T.; Hall, F. G.; Loveland, T. R.

    1997-12-01

    A multitemporal 1 km advanced very high resolution radiometer (AVHRR) land cover analysis approach was used as the basis for regional land cover mapping, fire disturbance-regeneration, and multiresolution land cover scaling studies in the boreal forest ecosystem of central Canada. The land cover classification was developed by using regional field observations from ground and low-level aircraft transits to analyze spectral-temporal clusters that were derived from an unsupervised cluster analysis of monthly normalized difference vegetation index (NDVI) image composites (April-September 1992). Quantitative areal proportions of the major boreal forest components were determined for a 821 km × 619 km region, ranging from the southern grasslands-boreal forest ecotone to the northern boreal transitional forest. The boreal wetlands (mostly lowland black spruce, tamarack, mosses, fens, and bogs) occupied approximately 33% of the region, while lakes accounted for another 13%. Upland mixed coniferous-deciduous forests represented 23% of the ecosystem. A SW-NE productivity gradient across the region is manifested by three levels of tree stand density for both the boreal wetland conifer and the mixed forest classes, which are generally aligned with isopleths of regional growing degree days. Approximately 30% of the region was directly affected by fire disturbance within the preceding 30-35 years, especially in the Canadian Shield Zone where large fire-regeneration patterns contribute to the heterogeneous boreal landscape. Intercomparisons with land cover classifications derived from 30-m Landsat Thematic Mapper (TM) data provided important insights into the relative accuracy of the 1 km AVHRR land cover classification. Primarily due to the multitemporal NDVI image compositing process, the 1 km AVHRR land cover classes have an effective spatial resolution in the 3-4 km range; therefore fens, bogs, small water bodies, and small patches of dry jack pine cannot be resolved within the wet conifer mosaic. Major differences in the 1-km AVHRR and 30-m Landsat TM-derived land cover classes are most likely due to differences in the spatial resolution of the data sets. In general, the 1 km AVHRR land cover classes are vegetation mosaics consisting of mixed combinations of the Landsat classes. Detailed mapping of the global boreal forest with this approach will benefit from algorithms for cloud screening and to atmospherically correct reflectance data for both aerosol and water vapor effects. We believe that this 1 km AVHRR land cover analysis provides new and useful information for regional water, energy, carbon, and trace gases studies in BOREAS, especially given the significant spatial variability in land cover type and associated biophysical land cover parameters (e.g., albedo, leaf area index, FPAR, and surface roughness). Multiresolution land cover comparisons (30 m, l km, and 100 km grid cells) also illustrated how heterogeneous landscape patterns are represented in land cover maps with differing spatial scales and provided insights on the requirements and challenges for parameterizing landscape heterogeneity as part of land surface process research.

  15. Land cover mapping, fire regeneration, and scaling studies in the Canadian boreal forest with 1 km AVHRR and Landsat TM data

    USGS Publications Warehouse

    Steyaert, L.T.; Hall, F.G.; Loveland, Thomas R.

    1997-01-01

    A multitemporal 1 km advanced very high resolution radiometer (AVHRR) land cover analysis approach was used as the basis for regional land cover mapping, fire disturbance-regeneration, and multiresolution land cover scaling studies in the boreal forest ecosystem of central Canada. The land cover classification was developed by using regional field observations from ground and low-level aircraft transits to analyze spectral-temporal clusters that were derived from an unsupervised cluster analysis of monthly normalized difference vegetation index (NDVI) image composites (April-September 1992). Quantitative areal proportions of the major boreal forest components were determined for a 821 km ?? 619 km region, ranging from the southern grasslands-boreal forest ecotone to the northern boreal transitional forest. The boreal wetlands (mostly lowland black spruce, tamarack, mosses, fens, and bogs) occupied approximately 33% of the region, while lakes accounted for another 13%. Upland mixed coniferous-deciduous forests represented 23% of the ecosystem. A SW-NE productivity gradient across the region is manifested by three levels of tree stand density for both the boreal wetland conifer and the mixed forest classes, which are generally aligned with isopleths of regional growing degree days. Approximately 30% of the region was directly affected by fire disturbance within the preceding 30-35 years, especially in the Canadian Shield Zone where large fire-regeneration patterns contribute to the heterogeneous boreal landscape. Intercomparisons with land cover classifications derived from 30-m Landsat Thematic Mapper (TM) data provided important insights into the relative accuracy of the 1 km AVHRR land cover classification. Primarily due to the multitemporal NDVI image compositing process, the 1 km AVHRR land cover classes have an effective spatial resolution in the 3-4 km range; therefore fens, bogs, small water bodies, and small patches of dry jack pine cannot be resolved within the wet conifer mosaic. Major differences in the 1-km AVHRR and 30-m Landsat TM-derived land cover classes are most likely due to differences in the spatial resolution of the data sets. In general, the 1 km AVHRR land cover classes are vegetation mosaics consisting of mixed combinations of the Landsat classes. Detailed mapping of the global boreal forest with this approach will benefit from algorithms for cloud screening and to atmospherically correct reflectance data for both aerosol and water vapor effects. We believe that this 1 km AVHRR land cover analysis provides new and useful information for regional water, energy, carbon, and trace gases studies in BOREAS, especially given the significant spatial variability in land cover type and associated biophysical land cover parameters (e.g., albedo, leaf area index, FPAR, and surface roughness). Multiresolution land cover comparisons (30 m, 1 km, and 100 km grid cells) also illustrated how heterogeneous landscape patterns are represented in land cover maps with differing spatial scales and provided insights on the requirements and challenges for parameterizing landscape heterogeneity as part of land surface process research.

  16. Structure and regrowth of longleaf pine forests following uneven-aged silviculture and hurricane disturbance at the Escambia Experimental Forest

    Treesearch

    Kimberly Bohn; Christel Chancy; Dale Brockway

    2015-01-01

    In recent decades, considerable attention has been placed on restoring and managing longleaf pine (Pinus palustris Mill.) ecosystems across the southeastern United States. Although, historically, these forests have been successfully regenerated following even-aged shelterwood reproduction methods, uneven-aged silviculture has received increasing...

  17. 36 CFR 212.50 - Purpose, scope, and definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AGRICULTURE TRAVEL MANAGEMENT Designation of Roads, Trails, and Areas for Motor Vehicle Use § 212.50 Purpose..., National Forest System trails, and areas on National Forest System lands that are designated for motor vehicle use. After these roads, trails, and areas are designated, motor vehicle use, including the class...

  18. A classification of forest environments in the south Umpqua Basin.

    Treesearch

    Don Minore

    1972-01-01

    Forest environments are classified by elevation, temperature, moisture, potential solar radiation, and soil type. Broad elevation classes are derived from topographic maps or altimeter measurements, measured temperature and moisture conditions are related to vegetation by using plant indicator species (illustrated), and tabular values are employed in estimating...

  19. Projecting Timber Inventory at the Product Level

    Treesearch

    Lawrence Teeter; Xiaoping Zhou

    1999-01-01

    Current timber inventory projections generally lack information on inventory by product classes. Most models available for inventory projection and linked to supply analyses are limited to projecting aggregate softwood and hardwood. The research presented describes a methodology for distributing the volume on each FIA (USDA Forest Service Forest Inventory and Analysis...

  20. New England wildlife: management forested habitats

    Treesearch

    Richard M. DeGraaf; Mariko Yamasaki; William B. Leak; John W. Lanier

    1992-01-01

    Presents silvicultural treatments for six major cover-type groups in New England to produce stand conditions that provide habitat opportunities for a wide range of wildlife species. Includes matrices for species occurrence and utilization by forested and nonforested habitats, habitat breadth and size class, and structural habitat features for the 338 wildlife species...

  1. Karst landscapes and associated resources: a resource assessment.

    Treesearch

    James F. Baichtal; Douglas N. Swanston

    1996-01-01

    The Tongass National Forest contains world-class karst features and the largest concentration of associated dissolved caves known in the state of Alaska. This paper describes the dominant karst formation processes operating in southeast Alaska, the controlling geologic and hydrologic characteristics, and the influence of karst landscapes on associated forest resources...

  2. Mapping aboveground woody biomass using forest inventory, remote sensing and geostatistical techniques.

    PubMed

    Yadav, Bechu K V; Nandy, S

    2015-05-01

    Mapping forest biomass is fundamental for estimating CO₂ emissions, and planning and monitoring of forests and ecosystem productivity. The present study attempted to map aboveground woody biomass (AGWB) integrating forest inventory, remote sensing and geostatistical techniques, viz., direct radiometric relationships (DRR), k-nearest neighbours (k-NN) and cokriging (CoK) and to evaluate their accuracy. A part of the Timli Forest Range of Kalsi Soil and Water Conservation Division, Uttarakhand, India was selected for the present study. Stratified random sampling was used to collect biophysical data from 36 sample plots of 0.1 ha (31.62 m × 31.62 m) size. Species-specific volumetric equations were used for calculating volume and multiplied by specific gravity to get biomass. Three forest-type density classes, viz. 10-40, 40-70 and >70% of Shorea robusta forest and four non-forest classes were delineated using on-screen visual interpretation of IRS P6 LISS-III data of December 2012. The volume in different strata of forest-type density ranged from 189.84 to 484.36 m(3) ha(-1). The total growing stock of the forest was found to be 2,024,652.88 m(3). The AGWB ranged from 143 to 421 Mgha(-1). Spectral bands and vegetation indices were used as independent variables and biomass as dependent variable for DRR, k-NN and CoK. After validation and comparison, k-NN method of Mahalanobis distance (root mean square error (RMSE) = 42.25 Mgha(-1)) was found to be the best method followed by fuzzy distance and Euclidean distance with RMSE of 44.23 and 45.13 Mgha(-1) respectively. DRR was found to be the least accurate method with RMSE of 67.17 Mgha(-1). The study highlighted the potential of integrating of forest inventory, remote sensing and geostatistical techniques for forest biomass mapping.

  3. Disturbance severity and canopy position control the radial growth response of maple trees (Acer spp.) in forests of northwest Ohio impacted by emerald ash borer (Agrilus planipennis)

    Treesearch

    K.C. Costilow; Kathleen Knight; Charles Flower

    2017-01-01

    Key message. Radial growth of silver and red maples was investigated across three forests in northwest Ohio following the outbreak of the invasive emerald ash borer. The growth response of maples was driven by an advancement in canopy class and disturbance severity. Context. Forest disturbances resulting in species-specific diffuse mortality cause shifts in aboveground...

  4. Land use changes involving forestry in the United States: 1952 to 1997, with projections to 2050.

    Treesearch

    Ralph J. Alig; Andrew J. Plantinga; SoEun Ahn; Jeffrey D. Kline

    2003-01-01

    About two-thirds (504 million acres) of the Nation’s forests are classed as timberland, productive forests capable of producing 20 cubic feet per acre of industrial wood annually and not legally reserved from timber harvest. The USDA’s 1997 National Resource Inventory shows that, nationally, 11 million acres of forest, cropland, and open space were converted to urban...

  5. Combining satellite lidar, airborne lidar, and ground plots to estimate the amount and distribution of aboveground biomass in the boreal forest of North America 1

    Treesearch

    Hank A. Margolis; Ross F. Nelson; Paul M. Montesano; André Beaudoin; Guoqing Sun; Hans-Erik Andersen; Michael A. Wulder

    2015-01-01

    We report estimates of the amount, distribution, and uncertainty of aboveground biomass (AGB) of the different ecoregions and forest land cover classes within the North American boreal forest, analyze the factors driving the error estimates, and compare our estimates with other reported values. A three-phase sampling strategy was used (i) to tie ground plot AGB to...

  6. Hydrological and biogeochemical variation of stemflow from live, stressed, and dead codominant deciduous canopy trees

    NASA Astrophysics Data System (ADS)

    Frost, E. E.; Levia, D. F.

    2011-12-01

    Stemflow, a critical localized point source of both water and nutrients in forested ecosystems, was examined as a function of species and mortality in a mid-Atlantic deciduous forest. Thirty trees across two species, Fagus grandifolia [American beech] and Liriodendron tulipifera [yellow poplar], and three mortality classes, live, stressed, and dead, were sampled and analyzed on an event basis for one year. Significant interspecific differences in volume and nutrient content of stemflow were found that were attributable to differences in canopy structure between the species. Funneling ratios across all three mortality classes were significantly different for F. grandifolia and between dead and live/stressed classes for L. tulipifera. Stemflow volumes from the dead trees of both species were a fraction of that from live and stressed trees. This was attributable to increased relative water storage capacities, canopy crown position, and the lack of surface area contributing to stemflow generation in upper canopy. Concentrations of nutrients in stemflow from dead trees were significantly higher than those found in both live and stressed stems for most nutrients analyzed. Enrichment ratios from dead stems were generally lower given the reduced volumes observed. Given the multi-decadal impact of standing dead trees in forest ecosystems and the uncertainty of changes in morality patterns in forests, additional research is warranted to further quantify the hydrobiochemical impact of stemflow from dying stems over their entire lifecycle.

  7. 1983-84 Student Handbook.

    ERIC Educational Resources Information Center

    Saint Louis Community Coll. at Forest Park, MO.

    This handbook for incoming students describes procedures, services, programs, and opportunities at St. Louis Community College at Forest Park. First, the handbook outlines procedures for enrolling in classes, covering admissions, placement tests, registration, fee payment, and adding, dropping, or changing classes. A section on new student…

  8. Using FORSEE and continuous forest inventory information to evaluate implementation of uneven-aged management in Santa Cruz County coast redwood forests

    Treesearch

    Douglas D. Piirto; Scott Sink; Dominic Ali; Steve Auten; Christopher Hipkin; Reid. Cody

    2012-01-01

    Swanton Pacific Ranch in northern Santa Cruz County has been owned and managed by California Polytechnic State University (Cal Poly) Foundation since 1987. The California Forest Practice Rules specific to Santa Cruz County limit harvest rate and opening size. Cal Poly forest managers are implementing uneven-aged forest management on 1,182 acres of 80 to 110...

  9. Guidelines for evaluating air pollution impacts on class I wilderness areas in the Pacific Northwest.

    Treesearch

    J. Peterson; D. Schmoldt; D. Peterson; J. Eilers; R. Fisher; R. Bachman

    1992-01-01

    Forest Service air resource managers in the Pacific Northwest are responsible for protecting class 1 wilderness areas from air pollution. To do this, they need scientifically defensible information to determine critical concentrations of air pollution having the potential to impact class 1 wilderness values. This report documents the results of a workshop where current...

  10. Changes in land use in western Oregon between 1971-74 and 1982.

    Treesearch

    Donald R. Gedney; Bruce A. Hiserote

    1989-01-01

    Statistics are presented by county for western Oregon for four dominant land use classes on non-Federally owned land. The classes were primary forest, primary agriculture, low-density urban, and urban. Classes were determined from aerial photographs taken in 1971-74 and in 1982; by using these data, estimates of change for the period between photography were developed...

  11. Guidelines for evaluating air pollution impacts on class I wilderness areas in the Pacific Northwest.

    Treesearch

    Janice Peterson; Daniel L. Schmoldt; David Peterson; Joseph Eilers; Richard Fisher; Robert Bachman

    1992-01-01

    Forest Service air resource managers in the Pacific Northwest are responsible for protecting class I wilderness areas from air pollution. To do this, they need scientifically defensible information to determine critical concentrations of air pollution having the potential to impact class I wilderness values. This report documents the results of a workshop where current...

  12. Characterization of Forested Landscapes From Remotely Sensed Data Using Fractals and Spatial Autocorrelation

    NASA Technical Reports Server (NTRS)

    Al-Hamdan, Mohammad Z.; Cruise, James F.; Rickman, Douglas L.; Quattrochi, Dale A.

    2007-01-01

    The characterization of forested areas is frequently required in resource management practice. Passive remotely sensed data, which are much more accessible and cost effective than are active data, have rarely, if ever, been used to characterize forest structure directly, but rather they usually focus on the estimation of indirect measurement of biomass or canopy coverage. In this study, some spatial analysis techniques are presented that might be employed with Landsat TM data to analyze forest structure characteristics. A case study is presented wherein fractal dimensions, along with a simple spatial autocorrelation technique (Moran s I), were related to stand density parameters of the Oakmulgee National Forest located in the southeastern United States (Alabama). The results of the case study presented herein have shown that as the percentage of smaller diameter trees becomes greater, and particularly if it exceeds 50%, then the canopy image obtained from Landsat TM data becomes sufficiently homogeneous so that the spatial indices reach their lower limits and thus are no longer determinative. It also appears, at least for the Oakmulgee forest, that the relationships between the spatial indices and forest class percentages within the boundaries can reasonably be considered linear. The linear relationship is much more pronounced in the sawtimber and saplings cases than in samples dominated by medium sized trees (poletimber). In addition, it also appears that, at least for the Oakmulgee forest, the relationships between the spatial indices and forest species groups (Hardwood and Softwood) percentages can reasonably be considered linear. The linear relationship is more pronounced in the forest species groups cases than in the forest classes cases. These results appear to indicate that both fractal dimensions and spatial autocorrelation indices hold promise as means of estimating forest stand characteristics from remotely sensed images. However, additional work is needed to confirm that the boundaries identified for Oakmulgee forest and the linear nature of the relationship between image complexity indices and forest characteristics are generally evident in other forests. In addition, the effects of other parameters such ,as topographic relief and image distortion due to sun angle and cloud cover, for example, need to be examined.

  13. Stump sprouting potential of oaks in Missouri Ozark forests managed by even- and uneven-aged silviculture

    Treesearch

    Daniel C. Dey; Randy G. Jensen

    2002-01-01

    We evaluated the stump sprouting potential of white oak, black oak, and scarlet oak in relation to tree age, stem diameter, and overstory density in Ozark forests managed by even-aged and uneven-aged silvicultural systems. In eastern North America, few studies have evaluated the influence of a forest canopy on the potential of hardwood stumps to sprout and contribute...

  14. Woody vegetation following even-aged, uneven-aged, and no-harvest treatments on the Missouri Ozark Forest Ecosystem Project Sites

    Treesearch

    John M. Kabrick; Randy G. Jensen; Stephen R. Shifley; David R. Larsen

    2002-01-01

    The Missouri Ozark Forest Ecosystem Project (MOFEP) experimentally tests forest ecosystem response to (a) even-aged management with clearcutting, (b) uneven-aged management with single-tree and group selection, and (c) no-harvesting. The nine MOFEP experimental sites in the southeast Missouri Ozarks are small landscapes ranging from 772 ac (312 ha) to 1,271 ac (514 ha...

  15. An AUC-based permutation variable importance measure for random forests

    PubMed Central

    2013-01-01

    Background The random forest (RF) method is a commonly used tool for classification with high dimensional data as well as for ranking candidate predictors based on the so-called random forest variable importance measures (VIMs). However the classification performance of RF is known to be suboptimal in case of strongly unbalanced data, i.e. data where response class sizes differ considerably. Suggestions were made to obtain better classification performance based either on sampling procedures or on cost sensitivity analyses. However to our knowledge the performance of the VIMs has not yet been examined in the case of unbalanced response classes. In this paper we explore the performance of the permutation VIM for unbalanced data settings and introduce an alternative permutation VIM based on the area under the curve (AUC) that is expected to be more robust towards class imbalance. Results We investigated the performance of the standard permutation VIM and of our novel AUC-based permutation VIM for different class imbalance levels using simulated data and real data. The results suggest that the new AUC-based permutation VIM outperforms the standard permutation VIM for unbalanced data settings while both permutation VIMs have equal performance for balanced data settings. Conclusions The standard permutation VIM loses its ability to discriminate between associated predictors and predictors not associated with the response for increasing class imbalance. It is outperformed by our new AUC-based permutation VIM for unbalanced data settings, while the performance of both VIMs is very similar in the case of balanced classes. The new AUC-based VIM is implemented in the R package party for the unbiased RF variant based on conditional inference trees. The codes implementing our study are available from the companion website: http://www.ibe.med.uni-muenchen.de/organisation/mitarbeiter/070_drittmittel/janitza/index.html. PMID:23560875

  16. An AUC-based permutation variable importance measure for random forests.

    PubMed

    Janitza, Silke; Strobl, Carolin; Boulesteix, Anne-Laure

    2013-04-05

    The random forest (RF) method is a commonly used tool for classification with high dimensional data as well as for ranking candidate predictors based on the so-called random forest variable importance measures (VIMs). However the classification performance of RF is known to be suboptimal in case of strongly unbalanced data, i.e. data where response class sizes differ considerably. Suggestions were made to obtain better classification performance based either on sampling procedures or on cost sensitivity analyses. However to our knowledge the performance of the VIMs has not yet been examined in the case of unbalanced response classes. In this paper we explore the performance of the permutation VIM for unbalanced data settings and introduce an alternative permutation VIM based on the area under the curve (AUC) that is expected to be more robust towards class imbalance. We investigated the performance of the standard permutation VIM and of our novel AUC-based permutation VIM for different class imbalance levels using simulated data and real data. The results suggest that the new AUC-based permutation VIM outperforms the standard permutation VIM for unbalanced data settings while both permutation VIMs have equal performance for balanced data settings. The standard permutation VIM loses its ability to discriminate between associated predictors and predictors not associated with the response for increasing class imbalance. It is outperformed by our new AUC-based permutation VIM for unbalanced data settings, while the performance of both VIMs is very similar in the case of balanced classes. The new AUC-based VIM is implemented in the R package party for the unbiased RF variant based on conditional inference trees. The codes implementing our study are available from the companion website: http://www.ibe.med.uni-muenchen.de/organisation/mitarbeiter/070_drittmittel/janitza/index.html.

  17. Efficacy of feral pig removals at Hakalau Forest National Wildlife Refuge

    USGS Publications Warehouse

    Hess, Steven C.; Jeffrey, John J.; Ball, Donna; Babich, Lev

    2006-01-01

    We compiled and analyzed data from 1987–2004 on feral pig (Sus scrofa) management and monitoring activities at Hakalau Forest National Wildlife Refuge, a tropical montane rainforest on the island of Hawai`i. These data included annual surveys of feral pig and cattle (Bos taurus) activity, the number of feral ungulates removed from closed management units, age and reproductive status from necropsies, and vegetation surveys repeated 4 times over a 16 year period. We found an essentially even sex ratio within the feral pig population and within age classes, although males lived to 60 months while females lived to only 48 months. The pregnancy rate was 23.5%, and lactation rate was 8.3%, regardless of season and age, but lactation peaked in April-June. Reproductive rates also increased with age, peaking at 2–4 years in females. We reconstructed the standing population within a closed unit to examine demographic processes. We estimated that annual removal in excess of approximately 41–43% would be necessary to affect a population decline. We examined annual feral pig activity surveys and found a strong and sustained decline in pig sign after 1997 relative to unmanaged areas. We related the standing population to feral pig activity surveys to build a predictive model of feral pig density, and then applied this model to other management units. We evaluated control methods and found snaring to be more efficient than staff or public hunting. Vegetation monitoring revealed a strong temporal increase in cover of native ferns, and marginally non-significant decreases in cover of bryophytes and exposed soil.

  18. Diversity of terrestrial mammal seed dispersers along a lowland Amazon forest regrowth gradient

    PubMed Central

    Arévalo-Sandi, Alexander; Bobrowiec, Paulo Estefano D.; Rodriguez Chuma, Victor Juan Ulises

    2018-01-01

    There is increasing interest in the restoration/regeneration of degraded tropical habitats yet the potential role of natural regenerators remains unclear. We test the hypothesis that the richness and functional diversity of terrestrial mammals differs between forest regrowth stages. We quantified the richness and functional diversity of eight terrestrial mammal seed-disperser species across a forest regrowth gradient in the eastern Brazilian Amazon. We installed camera-traps in 15 sites within small-holder properties with forest regrowth stage classified into three groups, with five sites each of: late second-regrowth forest, early second-regrowth forest and abandoned pasture. Species richness and functional dispersion from the regrowth sites were compared with 15 paired forest control sites. Multi model selection showed that regrowth class was more important for explaining patterns in richness and functional diversity than other variables from three non-mutually exclusive hypotheses: hunting (distance to house, distance to river, distance to town, small holder residence), land cover (% forest cover within 50 meters, 1 kilometer and 5 kilometers) and land use (regrowth class, time since last use). Differences in functional diversity were most strongly explained by a loss of body mass. We found that diversity in regrowth sites could be similar to control sites even in some early-second regrowth areas. This finding suggests that when surrounded by large intact forest areas the richness and functional diversity close to human small-holdings can return to pre-degradation values. Yet we also found a significant reduction in richness and functional diversity in more intensely degraded pasture sites. This reduction in richness and functional diversity may limit the potential for regeneration and increase costs for ecological regeneration and restoration actions around more intense regrowth areas. PMID:29547648

  19. Diversity of terrestrial mammal seed dispersers along a lowland Amazon forest regrowth gradient.

    PubMed

    Arévalo-Sandi, Alexander; Bobrowiec, Paulo Estefano D; Rodriguez Chuma, Victor Juan Ulises; Norris, Darren

    2018-01-01

    There is increasing interest in the restoration/regeneration of degraded tropical habitats yet the potential role of natural regenerators remains unclear. We test the hypothesis that the richness and functional diversity of terrestrial mammals differs between forest regrowth stages. We quantified the richness and functional diversity of eight terrestrial mammal seed-disperser species across a forest regrowth gradient in the eastern Brazilian Amazon. We installed camera-traps in 15 sites within small-holder properties with forest regrowth stage classified into three groups, with five sites each of: late second-regrowth forest, early second-regrowth forest and abandoned pasture. Species richness and functional dispersion from the regrowth sites were compared with 15 paired forest control sites. Multi model selection showed that regrowth class was more important for explaining patterns in richness and functional diversity than other variables from three non-mutually exclusive hypotheses: hunting (distance to house, distance to river, distance to town, small holder residence), land cover (% forest cover within 50 meters, 1 kilometer and 5 kilometers) and land use (regrowth class, time since last use). Differences in functional diversity were most strongly explained by a loss of body mass. We found that diversity in regrowth sites could be similar to control sites even in some early-second regrowth areas. This finding suggests that when surrounded by large intact forest areas the richness and functional diversity close to human small-holdings can return to pre-degradation values. Yet we also found a significant reduction in richness and functional diversity in more intensely degraded pasture sites. This reduction in richness and functional diversity may limit the potential for regeneration and increase costs for ecological regeneration and restoration actions around more intense regrowth areas.

  20. [Effects of target tree tending on community structure and diversity in subtropical natural secondary shrubs].

    PubMed

    Zhang, Hui; Zhou, Guo Mo; Bai, Shang Bin; Wang, Yi Xiang; You, Yu Jie; Zhu, Ting Ting; Zhang, Hua Feng

    2017-05-18

    The typical natural secondary shrub community was chosen in Lin'an of Zhejiang Pro-vince to discover its possibility of restoration to arbor forest with three kinds of forest management models being taken, i.e., no care as control, closed forest management and target tree tending. Over four years growth, compared with control, closed forest management significantly increased average DBH and height by 130% and 50%, respectively, while 260% and 110% for target tree tending. In target tree tending plots, larger trees had been emerging with 4.5-8.5 cm diameter class and 4.5-8.5 m height class and formed a new storey of 4 m compared with control. The species biodiversity indexes at shrub layer were significantly increased in closed management plots, and did not decrease in target tree tending plots. Closed forest management did not change the tree species composition, following its previous succession direction. However, target tree tending increased the importance value of target species with the high potential succession direction of mixed coniferous-broadleaved forest. The results revealed that the secondary shrub community with target tree tending achieved more desired goals on DBH and height growth of dominant trees and species composition improvement compared with closed management. If the secondary shrub community could be managed when the operational conditions existed, target tree tending model should be selected to accelerate the restoration of shrub toward arbor forest.

  1. The Development of Even-Aged Plantation Forests: An Exercise in Forest Stand Dynamics

    ERIC Educational Resources Information Center

    Wilson, E. R.; Leslie, A. D.

    2008-01-01

    In this paper we present a field-based practical exercise that allows students in forestry, ecology and natural resources to develop their understanding of forest stand dynamics. The exercise involves measurement of key tree growth parameters in four even-aged, single-species plantation stands of different age but occupying sites with similar soil…

  2. Smoke aerosol properties and ageing effects for northern temperate and boreal regions derived from AERONET source and age attribution

    NASA Astrophysics Data System (ADS)

    Nikonovas, T.; North, P. R. J.; Doerr, S. H.

    2015-07-01

    Particulate emissions from wildfires impact human health and have a large but uncertain effect on climate. Modelling schemes depend on information about emission factors, emitted particle microphysical and optical properties and ageing effects, while satellite retrieval algorithms make use of characteristic aerosol models to improve retrieval. Ground-based remote sensing provides detailed aerosol characterisation, but does not contain information on source. Here, a method is presented to estimate plume origin land cover type and age for AERONET aerosol observations, employing trajectory modelling using the HYSPLIT model, and satellite active fire and aerosol optical thickness (AOT) observations from Moderate Resolution Imaging Spectroradiometer (MODIS) and Along Track Scanning Radiometer (AATSR). It is applied to AERONET stations located in or near northern temperate and boreal forests for the period 2002-2013. The results from 629 fire attributions indicate significant differences in size distributions and particle optical properties between different land cover types and plume age. Smallest fine mode median radius (Rfv) are attributed to plumes from cropland and/or natural vegetation mosaic (0.143 μm) and grassland (0.157 μm) fires. North American evergreen needleleaf forest emissions show a significantly smaller Rfv (0.164 μm) than plumes from Eurasian mixed forests (0.193 μm) and plumes attributed to the land cover types with sparse tree cover - open shrubland (0.185 μm) and woody savannas (0.184 μm). The differences in size distributions are related to inferred variability in plume concentrations between the land cover types. Significant differences are observed between day and night emissions, with daytime emissions showing larger particle sizes. Smoke is predominantly scattering for all of the classes with median single scattering albedo at 440 nm (SSA(440)) values close to 0.95 except the cropland emissions which have an SSA(440) value of 0.9. Plumes aged for 4 days or older have median Rfv larger by ~0.02 μm compared to young smoke. Differences in size were consistent with a decrease in the Ångström Exponent and increase in the asymmetry parameter. Only an insignificant increase in SSA(λ) with ageing was found.

  3. Detecting tree-fall gap disturbances in tropical rain forests with airborne lidar

    NASA Astrophysics Data System (ADS)

    Espirito-Santo, F. D. B.; Saatchi, S.; Keller, M.

    2017-12-01

    Forest inventory studies in the Amazon indicate a large terrestrial carbon sink. However, field plots may fail to represent forest mortality processes at landscape-scales of tropical forests. Here we characterize the frequency distribution of tree-fall gap disturbances in natural forests of tropical forests using a novel combination of forest inventory and airborne lidar data. We quantify gap size frequency distribution along vertical and horizontal dimensions in ten Neotropical forest canopies distributed across gradients of climate and landscapes using airborne lidar measurements. We assessed all canopy openings related to each class of tree height which yields a three dimensional structure of the distribution of canopy gaps. Gap frequency distributions from lidar CHM data vary markedly with minimum gap size thresholds, but we found that natural forest disturbances (tree-fall gaps) follow a power-law distribution with narrow range of power-law exponents (-1.2 to -1.3). These power-law exponents from gap frequency distributions provide insights into how natural forest disturbances are distributed over tropical forest landscape.

  4. Integrating studies in the Missouri Ozark Forest Ecosystem Project: Status and outlook

    Treesearch

    David Gwaze; Stephen Sheriff; John Kabrick; Larry Vangilder

    2011-01-01

    The Missouri Ozark Forest Ecosystem Project (MOFEP), which was started in 1989 by the Missouri Department of Conservation, evaluates the effects of forest management practices (even-aged management, uneven-aged management, and no-harvest management) on upland oak-forest components in southern Missouri. MOFEP is a long-term, landscape-level, fully replicated, and...

  5. Establishment and Data Collection of Vegetation-related Studies on the Missouri Ozark Forest Ecosystem Project Study Sites

    Treesearch

    Brian L. Brookshire; Daniel C. Dey

    2000-01-01

    The Missouri Ozark Forest Ecosystem Project (MOFEP) is an experiment designed to determine the effects of forest management practices on important ecosystem attributes. MOFEP treatments evaluated include even-aged, uneven-aged, and no management treatments. Forest vegetation provides a common ecological link among many organisms and ecological processes, and therefore...

  6. The experimental design of the Missouri Ozark Forest Ecosystem Project

    Treesearch

    Steven L. Sheriff; Shuoqiong He

    1997-01-01

    The Missouri Ozark Forest Ecosystem Project (MOFEP) is an experiment that examines the effects of three forest management practices on the forest community. MOFEP is designed as a randomized complete block design using nine sites divided into three blocks. Treatments of uneven-aged, even-aged, and no-harvest management were randomly assigned to sites within each block...

  7. Using silviculture to influence carbon sequestration in southern Appalachian spruce-fir forests

    Treesearch

    Patrick T. Moore; R. Justin DeRose; James N. Long; Helga van Miegroet

    2012-01-01

    Enhancement of forest growth through silvicultural modification of stand density is one strategy for increasing carbon (C) sequestration. Using the Fire and Fuels Extension of the Forest Vegetation Simulator, the effects of even-aged, uneven-aged and no-action management scenarios on C sequestration in a southern Appalachian red spruce-Fraser fir forest were modeled....

  8. Nitrogen balance along a northern boreal forest fire chronosequence.

    PubMed

    Palviainen, Marjo; Pumpanen, Jukka; Berninger, Frank; Ritala, Kaisa; Duan, Baoli; Heinonsalo, Jussi; Sun, Hui; Köster, Egle; Köster, Kajar

    2017-01-01

    Fire is a major natural disturbance factor in boreal forests, and the frequency of forest fires is predicted to increase due to climate change. Nitrogen (N) is a key determinant of carbon sequestration in boreal forests because the shortage of N limits tree growth. We studied changes in N pools and fluxes, and the overall N balance across a 155-year non stand-replacing fire chronosequence in sub-arctic Pinus sylvestris forests in Finland. Two years after the fire, total ecosystem N pool was 622 kg ha-1 of which 16% was in the vegetation, 8% in the dead biomass and 76% in the soil. 155 years after the fire, total N pool was 960 kg ha-1, with 27% in the vegetation, 3% in the dead biomass and 69% in the soil. This implies an annual accumulation rate of 2.28 kg ha-1 which was distributed equally between soil and biomass. The observed changes in N pools were consistent with the computed N balance +2.11 kg ha-1 yr-1 over the 155-year post-fire period. Nitrogen deposition was an important component of the N balance. The biological N fixation increased with succession and constituted 9% of the total N input during the 155 post-fire years. N2O fluxes were negligible (≤ 0.01 kg ha-1 yr-1) and did not differ among post-fire age classes. The number and intensity of microbial genes involved in N cycling were lower at the site 60 years after fire compared to the youngest and the oldest sites indicating potential differences in soil N cycling processes. The results suggest that in sub-arctic pine forests, the non-stand-replacing, intermediate-severity fires decrease considerably N pools in biomass but changes in soil and total ecosystem N pools are slight. Current fire-return interval does not seem to pose a great threat to ecosystem productivity and N status in these sub-arctic forests.

  9. Nitrogen balance along a northern boreal forest fire chronosequence

    PubMed Central

    Pumpanen, Jukka; Berninger, Frank; Ritala, Kaisa; Duan, Baoli; Heinonsalo, Jussi; Sun, Hui; Köster, Egle; Köster, Kajar

    2017-01-01

    Fire is a major natural disturbance factor in boreal forests, and the frequency of forest fires is predicted to increase due to climate change. Nitrogen (N) is a key determinant of carbon sequestration in boreal forests because the shortage of N limits tree growth. We studied changes in N pools and fluxes, and the overall N balance across a 155-year non stand-replacing fire chronosequence in sub-arctic Pinus sylvestris forests in Finland. Two years after the fire, total ecosystem N pool was 622 kg ha-1 of which 16% was in the vegetation, 8% in the dead biomass and 76% in the soil. 155 years after the fire, total N pool was 960 kg ha-1, with 27% in the vegetation, 3% in the dead biomass and 69% in the soil. This implies an annual accumulation rate of 2.28 kg ha-1 which was distributed equally between soil and biomass. The observed changes in N pools were consistent with the computed N balance +2.11 kg ha-1 yr-1 over the 155-year post-fire period. Nitrogen deposition was an important component of the N balance. The biological N fixation increased with succession and constituted 9% of the total N input during the 155 post-fire years. N2O fluxes were negligible (≤ 0.01 kg ha-1 yr-1) and did not differ among post-fire age classes. The number and intensity of microbial genes involved in N cycling were lower at the site 60 years after fire compared to the youngest and the oldest sites indicating potential differences in soil N cycling processes. The results suggest that in sub-arctic pine forests, the non-stand-replacing, intermediate-severity fires decrease considerably N pools in biomass but changes in soil and total ecosystem N pools are slight. Current fire-return interval does not seem to pose a great threat to ecosystem productivity and N status in these sub-arctic forests. PMID:28358884

  10. [Silvicultural treatments and their selection effects].

    PubMed

    Vincent, G

    1973-01-01

    Selection can be defined in terms of its observable consequences as the non random differential reproduction of genotypes (Lerner 1958). In the forest stands we are selecting during the improvements-fellings and reproduction treatments the individuals surpassing in growth or in production of first-class timber. However the silvicultural treatments taken in forest stands guarantee a permanent increase of forest production only in such cases, if they have been taken with respect to the principles of directional (dynamic) selection. These principles require that the trees determined for further growing and for forest regeneration are selected by their hereditary properties, i.e. by their genotypes.For making this selection feasible, our study deals with the genetic parameters and gives some examples of the application of the response, the selection differential, the heritability in the narrow and in the broad sense, as well as of the genetic and genotypic gain. On the strength of this parameter we have the possibility to estimate the economic success of several silvicultural treatments in forest stands.The mentioned examples demonstrate that the selection measures of a higher intensity will be manifested in a higher selection differential, in a higher genetic and genotypic gain and that the mentioned measures show more distinct effects in the variable populations - in natural forest - than in the population characteristic by a smaller variability, e.g. in many uniform artificially established stands.The examples of influences of different selection on the genotypes composition of population prove that genetics instructs us to differentiate the different genotypes of the same species and gives us at the same time a new criterions for evaluating selectional treatments. These criterions from economic point of view is necessary to consider in silviculture as advantageous even for the reason that we can judge from these criterions the genetical composition of forest stands in the following generation, it means, within the scope of time for more than a human age.

  11. Stand age and climate drive forest carbon balance recovery

    NASA Astrophysics Data System (ADS)

    Besnard, Simon; Carvalhais, Nuno; Clevers, Jan; Herold, Martin; Jung, Martin; Reichstein, Markus

    2016-04-01

    Forests play an essential role in the terrestrial carbon (C) cycle, especially in the C exchanges between the terrestrial biosphere and the atmosphere. Ecological disturbances and forest management are drivers of forest dynamics and strongly impact the forest C budget. However, there is a lack of knowledge on the exogenous and endogenous factors driving forest C recovery. Our analysis includes 68 forest sites in different climate zones to determine the relative influence of stand age and climate conditions on the forest carbon balance recovery. In this study, we only included forest regrowth after clear-cut stand replacement (e.g. harvest, fire), and afforestation/reforestation processes. We synthesized net ecosystem production (NEP), gross primary production (GPP), ecosystem respiration (Re), the photosynthetic respiratory ratio (GPP to Re ratio), the ecosystem carbon use efficiency (CUE), that is NEP to GPP ratio, and CUEclimax, where GPP is derived from the climate conditions. We implemented a non-linear regression analysis in order to identify the best model representing the C flux patterns with stand age. Furthermore, we showed that each C flux have a non-linear relationship with stand age, annual precipitation (P) and mean annual temperature (MAT), therefore, we proposed to use non-linear transformations of the covariates for C fluxes'estimates. Non-linear stand age and climate models were, therefore, used to establish multiple linear regressions for C flux predictions and for determining the contribution of stand age and climate in forest carbon recovery. Our findings depicted that a coupled stand age-climate model explained 33% (44%, average site), 62% (76%, average site), 56% (71%, average site), 41% (59%, average site), 50% (65%, average site) and 36% (50%, average site) of the variance of annual NEP, GPP, Re, photosynthetic respiratory ratio, CUE and CUEclimax across sites, respectively. In addition, we showed that gross fluxes (e.g. GPP and Re) are mainly climatically driven with 54.2% (68.4%, average site) and 54.1% (71.0%, average site) of GPP and Re variability, respectively, explained by the sum of MAT and P. However, annual NEP, GPP to Re ratio and CUEclimax are affected by both forest stand age and climate conditions, in particular MAT. The key result is that forest stand age plays a crucial role in determining CUE (36.4% and 48.2% for all years per site and average site, respectively), while climate conditions have less effect on CUE (13.6% and 15.4% for all years per site and average site, respectively). These findings are relevant for the implementation of Earth system models and imply that information both on forest stand age and climate conditions are critical to improve the accuracy of global terrestrial C models's estimates.

  12. Attitudes toward environmental hazards: Where do toxic wastes fit?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burger, J.; Cooper, K.; Martin, M.

    1997-10-01

    The public is continually faced with making decisions about the risks associated with environmental hazards, and, along with managers and government officials, must make informed decisions concerning possible regulation, mitigation, and restoration of degraded sites or other environmental threats. We explored the attitudes regarding several environmental hazards of six groups of people: undergraduate science majors, undergraduate nonscience majors, and graduate students in environmental health, in ecological risk assessment, and in nonscience disciplines, as well as nonstudents over 35 yr of age. We had predicted that there would be significant differences in attitudes between science and nonscience majors and as amore » function of age. Relative concerns could be divided into three discrete classes (in descending order of concern): (1) general ecological problems (cutting tropical forests, polluting groundwater, trash along the coasts, lead in drinking water, and acid rain), (2) radon and nuclear wastes, and finally (3) specific nuclear waste facilities, chromium, fertilizers and pesticides, and electromagnetic waves. For any hazard, attitudes were consistent across groups with regard to ranking the severity of the environmental problem and willingness to expend funds to solve the problems. Attitudes about spending money to develop methods to evaluate risk fell in the middle level of concern. There were no major differences among classes of college-age students, or between them and older nonstudents. 26 refs., 3 figs., 2 tabs.« less

  13. Impacts of forest age on water use in Mountain ash forests

    USGS Publications Warehouse

    Wood, Stephen A.; Beringer, Jason; Hutley, Lindsay B.; McGuire, A. David; Van Dijk, Albert; Kilinc, Musa

    2008-01-01

    Runoff from mountain ash (Eucalyptus regnans F.Muell.) forested catchments has been shown to decline significantly in the few decades following fire returning to pre-fire levels in the following centuries owing to changes in ecosystem water use with stand age in a relationship known as Kuczera's model. We examined this relationship between catchment runoff and stand age by measuring whole-ecosystem exchanges of water using an eddy covariance system measuring forest evapotranspiration (ET) combined with sap-flow measurements of tree water use, with measurements made across a chronosequence of three sites (24, 80 and 296 years since fire). At the 296-year old site eddy covariance systems were installed above the E. regnans overstorey and above the distinct rainforest understorey. Contrary to predictions from the Kuczera curve, we found that measurements of whole-forest ET decreased by far less across stand age between 24 and 296 years. Although the overstorey tree water use declined by 1.8mmday-1 with increasing forest age (an annual decrease of 657mm) the understorey ET contributed between 1.2 and 1.5mmday-1, 45% of the total ET (3mmday-1) at the old growth forest.

  14. Impacts of fire on forest age and runoff in mountain ash forests

    USGS Publications Warehouse

    Wood, S.A.; Beringer, J.; Hutley, L.B.; McGuire, A.D.; Van Dijk, A.; Kilinc, M.

    2008-01-01

    Runoff from mountain ash (Eucalyptus regnans F.Muell.) forested catchments has been shown to decline significantly in the few decades following fire - returning to pre-fire levels in the following centuries - owing to changes in ecosystem water use with stand age in a relationship known as Kuczera's model. We examined this relationship between catchment runoff and stand age by measuring whole-ecosystem exchanges of water using an eddy covariance system measuring forest evapotranspiration (ET) combined with sap-flow measurements of tree water use, with measurements made across a chronosequence of three sites (24, 80 and 296 years since fire). At the 296-year old site eddy covariance systems were installed above the E. regnans overstorey and above the distinct rainforest understorey. Contrary to predictions from the Kuczera curve, we found that measurements of whole-forest ET decreased by far less across stand age between 24 and 296 years. Although the overstorey tree water use declined by 1.8 mm day-1 with increasing forest age (an annual decrease of 657 mm) the understorey ET contributed between 1.2 and 1.5 mm day-1, 45% of the total ET (3 mm day-1) at the old growth forest. ?? CSIRO 2008.

  15. Seeing the Forest through the Trees: Citizen Scientists Provide Critical Data to Refine Aboveground Carbon Estimates in Restored Riparian Forests

    NASA Astrophysics Data System (ADS)

    Viers, J. H.

    2013-12-01

    Integrating citizen scientists into ecological informatics research can be difficult due to limited opportunities for meaningful engagement given vast data streams. This is particularly true for analysis of remotely sensed data, which are increasingly being used to quantify ecosystem services over space and time, and to understand how land uses deliver differing values to humans and thus inform choices about future human actions. Carbon storage and sequestration are such ecosystem services, and recent environmental policy advances in California (i.e., AB 32) have resulted in a nascent carbon market that is helping fuel the restoration of riparian forests in agricultural landscapes. Methods to inventory and monitor aboveground carbon for market accounting are increasingly relying on hyperspatial remotely sensed data, particularly the use of light detection and ranging (LiDAR) technologies, to estimate biomass. Because airborne discrete return LiDAR can inexpensively capture vegetation structural differences at high spatial resolution (< 1 m) over large areas (> 1000 ha), its use is rapidly increasing, resulting in vast stores of point cloud and derived surface raster data. While established algorithms can quantify forest canopy structure efficiently, the highly complex nature of native riparian forests can result in highly uncertain estimates of biomass due to differences in composition (e.g., species richness, age class) and structure (e.g., stem density). This study presents the comparative results of standing carbon estimates refined with field data collected by citizen scientists at three different sites, each capturing a range of agricultural, remnant forest, and restored forest cover types. These citizen science data resolve uncertainty in composition and structure, and improve allometric scaling models of biomass and thus estimates of aboveground carbon. Results indicate that agricultural land and horticulturally restored riparian forests store similar amounts of aboveground carbon (< 50 Mg/ha), but significantly less than naturally recruiting riparian forests (50 - 200 Mg/ha). Monitoring and assessment of dynamic ecosystem processes and functions will increasingly use data intensive methodologies; however, this research shows the utility of engaging citizen scientists in developing more robust data streams that not only reduces uncertainty, but also provide invaluable opportunities for improved education and outreach.

  16. Unmixing AVHRR Imagery to Assess Clearcuts and Forest Regrowth in Oregon

    NASA Technical Reports Server (NTRS)

    Hlavka, Christine A.; Spanner, Michael A.

    1995-01-01

    Advanced Very High Resolution Radiometer imagery provides frequent and low-cost coverage of the earth, but its coarse spatial resolution (approx. 1.1 km by 1.1 km) does not lend itself to standard techniques of automated categorization of land cover classes because the pixels are generally mixed; that is, the extent of the pixel includes several land use/cover classes. Unmixing procedures were developed to extract land use/cover class signatures from mixed pixels, using Landsat Thematic Mapper data as a source for the training set, and to estimate fractions of class coverage within pixels. Application of these unmixing procedures to mapping forest clearcuts and regrowth in Oregon indicated that unmixing is a promising approach for mapping major trends in land cover with AVHRR bands 1 and 2. Including thermal bands by unmixing AVHRR bands 1-4 did not lead to significant improvements in accuracy, but experiments with unmixing these four bands did indicate that use of weighted least squares techniques might lead to improvements in other applications of unmixing.

  17. Nutrient concentrations in coarse and fine woody debris of Populus tremuloides Michx.-dominated forests, northern Minnesota, USA

    USGS Publications Warehouse

    Klockow, Paul A.; D'Amato, Anthony W.; Bradford, John B.; Fraver, Shawn

    2014-01-01

    Contemporary forest harvesting practices, specifically harvesting woody biomass as a source of bioenergy feedstock, may remove more woody debris from a site than conventional harvesting. Woody debris, particularly smaller diameter woody debris, plays a key role in maintaining ecosystem nutrient stores following disturbance. Understanding nutrient concentrations within woody debris is necessary for assessing the long-term nutrient balance consequences of altered woody debris retention, particularly in forests slated for use as bioenergy feedstocks. Nutrient concentrations in downed woody debris of various sizes, decay classes, and species were characterized within one such forest type, Populus tremuloides Michx.-dominated forests of northern Minnesota, USA. Nutrient concentrations differed significantly between size and decay classes and generally increased as decay progressed. Fine woody debris (≤ 7.5 cm diameter) had higher nutrient concentrations than coarse woody debris (> 7.5 cm diameter) for all nutrients examined except Na and Mn, and nutrient concentrations varied among species. Concentrations of N, Mn, Al, Fe, and Zn in coarse woody debris increased between one and three orders of magnitude, while K decreased by an order of magnitude with progressing decay. The variations in nutrient concentrations observed here underscore the complexity of woody debris nutrient stores in forested ecosystems and suggest that retaining fine woody debris at harvest may provide a potentially important source of nutrients following intensive removals of bioenergy feedstocks.

  18. Response of different-aged black cherry trees to ambient ozone exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fredericksen, T.S.; Joyce, B.J.; Kouterick, K.B.

    1994-06-01

    Black cherry (Prunus serotina Ehrh.) is a valuable commercial timber species which is also highly sensitive to ozone relative to other eastern deciduous tree species. Studies of ozone effects on forest trees have been restricted mostly to experiments using small seedlings under controlled conditions. Yet, mature trees may differ from seedlings in physiology, morphology, and exposure to air pollutants. An experiment was conducted in 1993 to determine differences in ozone uptake and foliar injury symptoms between open-ground seedlings, forest saplings, and mature forest trees of black cherry in northcentral Pennsylvania. Seedlings grew under the highest ozone concentrations and also hadmore » greater seasonal ozone uptake due to higher rates of stomatal conductance. However, because of their indeterminate growth habit, seedlings had lower cumulative ozone uptake per leaf lifespan than saplings or mature trees, both of which had determinate shoot growth. Although greater initially for seedlings, foliar injury was nearly identical between size classes by the end of the growing season. Leaves in the lower crown of larger trees had lower ozone uptake than leaves in the upper crown, but exhibited more foliar injury symptoms. Lower crown leaves received more effective exposure to ozone because of their thinner leaves and had less available photosynthate for repair or replacement of damaged tissue.« less

  19. Hydraulics play an important role in causing low growth rate and dieback of aging Pinus sylvestris var. mongolica trees in plantations of Northeast China.

    PubMed

    Liu, Yan-Yan; Wang, Ai-Ying; An, Yu-Ning; Lian, Pei-Yong; Wu, De-Dong; Zhu, Jiao-Jun; Meinzer, Frederick C; Hao, Guang-You

    2018-07-01

    The frequently observed forest decline in water-limited regions may be associated with impaired tree hydraulics, but the precise physiological mechanisms remain poorly understood. We compared hydraulic architecture of Mongolian pine (Pinus sylvestris var. mongolica) trees of different size classes from a plantation and a natural forest site to test whether greater hydraulic limitation with increasing size plays an important role in tree decline observed in the more water-limited plantation site. We found that trees from plantations overall showed significantly lower stem hydraulic efficiency. More importantly, plantation-grown trees showed significant declines in stem hydraulic conductivity and hydraulic safety margins as well as syndromes of stronger drought stress with increasing size, whereas no such trends were observed at the natural forest site. Most notably, the leaf to sapwood area ratio (LA/SA) showed a strong linear decline with increasing tree size at the plantation site. Although compensatory adjustments in LA/SA may mitigate the effect of increased water stress in larger trees, they may result in greater risk of carbon imbalance, eventually limiting tree growth at the plantation site. Our results provide a potential mechanistic explanation for the widespread decline of Mongolian pine trees in plantations of Northern China. © 2018 John Wiley & Sons Ltd.

  20. Forest inventory using multistage sampling with probability proportional to size. [Brazil

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Lee, D. C. L.; Hernandezfilho, P.; Shimabukuro, Y. E.; Deassis, O. R.; Demedeiros, J. S.

    1984-01-01

    A multistage sampling technique, with probability proportional to size, for forest volume inventory using remote sensing data is developed and evaluated. The study area is located in the Southeastern Brazil. The LANDSAT 4 digital data of the study area are used in the first stage for automatic classification of reforested areas. Four classes of pine and eucalypt with different tree volumes are classified utilizing a maximum likelihood classification algorithm. Color infrared aerial photographs are utilized in the second stage of sampling. In the third state (ground level) the time volume of each class is determined. The total time volume of each class is expanded through a statistical procedure taking into account all the three stages of sampling. This procedure results in an accurate time volume estimate with a smaller number of aerial photographs and reduced time in field work.

  1. Forest biomass carbon stocks and variation in Tibet's carbon-dense forests from 2001 to 2050.

    PubMed

    Sun, Xiangyang; Wang, Genxu; Huang, Mei; Chang, Ruiying; Ran, Fei

    2016-10-05

    Tibet's forests, in contrast to China's other forests, are characterized by primary forests, high carbon (C) density and less anthropogenic disturbance, and they function as an important carbon pool in China. Using the biomass C density data from 413 forest inventory sites and a spatial forest age map, we developed an allometric equation for the forest biomass C density and forest age to assess the spatial biomass C stocks and variation in Tibet's forests from 2001 to 2050. The results indicated that the forest biomass C stock would increase from 831.1 Tg C in 2001 to 969.4 Tg C in 2050, with a net C gain of 3.6 Tg C yr -1 between 2001 and 2010 and a decrease of 1.9 Tg C yr -1 between 2040 and 2050. Carbon tends to allocate more in the roots of fir forests and less in the roots of spruce and pine forests with increasing stand age. The increase of the biomass carbon pool does not promote significant augmentation of the soil carbon pool. Our findings suggest that Tibet's mature forests will remain a persistent C sink until 2050. However, afforestation or reforestation, especially with the larger carbon sink potential forest types, such as fir and spruce, should be carried out to maintain the high C sink capacity.

  2. Forest biomass carbon stocks and variation in Tibet’s carbon-dense forests from 2001 to 2050

    PubMed Central

    Sun, Xiangyang; Wang, Genxu; Huang, Mei; Chang, Ruiying; Ran, Fei

    2016-01-01

    Tibet’s forests, in contrast to China’s other forests, are characterized by primary forests, high carbon (C) density and less anthropogenic disturbance, and they function as an important carbon pool in China. Using the biomass C density data from 413 forest inventory sites and a spatial forest age map, we developed an allometric equation for the forest biomass C density and forest age to assess the spatial biomass C stocks and variation in Tibet’s forests from 2001 to 2050. The results indicated that the forest biomass C stock would increase from 831.1 Tg C in 2001 to 969.4 Tg C in 2050, with a net C gain of 3.6 Tg C yr−1 between 2001 and 2010 and a decrease of 1.9 Tg C yr−1 between 2040 and 2050. Carbon tends to allocate more in the roots of fir forests and less in the roots of spruce and pine forests with increasing stand age. The increase of the biomass carbon pool does not promote significant augmentation of the soil carbon pool. Our findings suggest that Tibet’s mature forests will remain a persistent C sink until 2050. However, afforestation or reforestation, especially with the larger carbon sink potential forest types, such as fir and spruce, should be carried out to maintain the high C sink capacity. PMID:27703215

  3. Tree species diversity and its relationship to stand parameters and geomorphology features in the eastern Black Sea region forests of Turkey.

    PubMed

    Ozcelik, Ramazan; Gul, Altay Ugur; Merganic, Jan; Merganicova, Katarina

    2008-05-01

    We studied the effects of stand parameters (crown closure, basal area, stand volume, age, mean stand diameter number of trees, and heterogeneity index) and geomorphology features (elevation, aspect and slope) on tree species diversity in an example of untreated natural mixed forest stands in the eastern Black Sea region of Turkey. Tree species diversity and basal area heterogeneity in forest ecosystems are quantified using the Shannon-Weaver and Simpson indices. The relationship between tree species diversity basal area heterogeneity stand parameters and geomorphology features are examined using regression analysis. Our work revealed that the relationship between tree species diversity and stand parameters is loose with a correlation coefficient between 0.02 and 0.70. The correlation of basal area heterogeneity with stand parameters fluctuated between 0.004 and 0.77 (R2). According to our results, stands with higher tree species diversity are characterised by higher mean stand diameter number of diameter classes, basal area and lower homogeneity index value. Considering the effect of geomorphology features on tree species or basal area heterogeneity we found that all investigated relationships are loose with R < or = 0.24. A significant correlation was detected only between tree species diversity and aspect. Future work is required to verify the detected trends in behaviour of tree species diversity if it is to estimate from the usual forest stand parameters and topography characteristics.

  4. Landscape Risk Factors for Lyme Disease in the Eastern Broadleaf Forest Province of the Hudson River Valley and the Effect of Explanatory Data Classification Resolution

    EPA Science Inventory

    This study assessed how landcover classification affects associations between landscape characteristics and Lyme disease rate. Landscape variables were derived from the National Land Cover Database (NLCD), including native classes (e.g., deciduous forest, developed low intensity)...

  5. Photo series for quantifying forest residues in the coastal Douglas-fir-hemlock type.

    Treesearch

    W.G. Maxwell; F.R. Ward

    1976-01-01

    Six series of photographs display forest residue loading levels, by size classes, for areas of timber type and cutting practice. Information with each photo includes measured weights, volumes and other residue data, information about the timber stand and harvest or thinning actions and fuel ratings. These photo series provide...

  6. 78 FR 2947 - Manti-La Sal National Forest, Utah; Maverick Point Forest Health Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-15

    ... class structure via use of timber harvesting and prescribed fire. Project activities also seek to.... Over the last 20 years drought conditions have increased; fire size, severity, and total acres burned... fire regimes have been significantly altered from their historical range. The risk of losing key...

  7. Differentiation through Individualisation--An Ethnographic Investigation of How One Swedish School Creates Inequality

    ERIC Educational Resources Information Center

    Gustafsson, Jan

    2018-01-01

    The present article examines the general debate on curriculum differentiation and individualisation. Based on a policy ethnographic case study of class 9a at Forest School, it critically analyses how curriculum differentiation and individualisation are enacted in and interfere with classroom practice. The results show how Forest School's…

  8. Harvest traffic monitoring and soil physical response in a pine plantation

    Treesearch

    Emily A. Carter; Timothy P. McDonald; John L. Torbert

    2000-01-01

    Mechanized forest harvest operations induce changes in soil physical properties, which have the potential to impact soil sustainability and forest productivity. The assessment of soil compaction and its spatial variability has been determined previously through the identification and tabulation of visual soil disturbance classes and soil physical changes associated...

  9. Spatial Patterns of Irradiance and Advanced Reproduction along a Canopy Disturbance Severity Gradient in an Upland Hardwood Stand

    Treesearch

    Amanda Keasberry; Justin Hart; Daniel C. Dey; Callie Schweitzer

    2016-01-01

    Regeneration failure of Quercus in mature Quercus-dominated forests has been reported throughout the temperate zone. Quercus seedlings are often abundant in these forests, yet frequently fail to recruit to larger size classes despite canopy disturbances. To examine intra-stand patterns of advanced...

  10. Complex mountain terrain and disturbance history drive variation in forest aboveground live carbon density in the western Oregon Cascades, USA

    PubMed Central

    Zald, Harold S.J.; Spies, Thomas A.; Seidl, Rupert; Pabst, Robert J.; Olsen, Keith A.; Steel, E. Ashley

    2016-01-01

    Forest carbon (C) density varies tremendously across space due to the inherent heterogeneity of forest ecosystems. Variation of forest C density is especially pronounced in mountainous terrain, where environmental gradients are compressed and vary at multiple spatial scales. Additionally, the influence of environmental gradients may vary with forest age and developmental stage, an important consideration as forest landscapes often have a diversity of stand ages from past management and other disturbance agents. Quantifying forest C density and its underlying environmental determinants in mountain terrain has remained challenging because many available data sources lack the spatial grain and ecological resolution needed at both stand and landscape scales. The objective of this study was to determine if environmental factors influencing aboveground live carbon (ALC) density differed between young versus old forests. We integrated aerial light detection and ranging (lidar) data with 702 field plots to map forest ALC density at a grain of 25 m across the H.J. Andrews Experimental Forest, a 6369 ha watershed in the Cascade Mountains of Oregon, USA. We used linear regressions, random forest ensemble learning (RF) and sequential autoregressive modeling (SAR) to reveal how mapped forest ALC density was related to climate, topography, soils, and past disturbance history (timber harvesting and wildfires). ALC increased with stand age in young managed forests, with much greater variation of ALC in relation to years since wildfire in old unmanaged forests. Timber harvesting was the most important driver of ALC across the entire watershed, despite occurring on only 23% of the landscape. More variation in forest ALC density was explained in models of young managed forests than in models of old unmanaged forests. Besides stand age, ALC density in young managed forests was driven by factors influencing site productivity, whereas variation in ALC density in old unmanaged forests was also affected by finer scale topographic conditions associated with sheltered sites. Past wildfires only had a small influence on current ALC density, which may be a result of long times since fire and/or prevalence of non-stand replacing fire. Our results indicate that forest ALC density depends on a suite of multi-scale environmental drivers mediated by complex mountain topography, and that these relationships are dependent on stand age. The high and context-dependent spatial variability of forest ALC density has implications for quantifying forest carbon stores, establishing upper bounds of potential carbon sequestration, and scaling field data to landscape and regional scales. PMID:27041818

  11. Digital image classification approach for estimating forest clearing and regrowth rates and trends

    NASA Technical Reports Server (NTRS)

    Sader, Steven A.

    1987-01-01

    A technique is presented to monitor vegetation changes for a selected study area in Costa Rica. A normalized difference vegetation index was computed for three dates of Landsat satellite data and a modified parallelipiped classifier was employed to generate a multitemporal greenness image representing all three dates. A second-generation image was created by partitioning the intensity levels at each date into high, medium, and low and thereby reducing the number of classes to 21. A sampling technique was applied to describe forest and other land cover change occurring between time periods based on interpretation of aerial photography that closely matched the dates of satellite acquisition. Comparison of the Landsat-derived classes with the photo-interpreted sample areas can provide a basis for evaluating the satellite monitoring technique and the accuracy of estimating forest clearing and regrowth rates and trends.

  12. Patterns of biomass and carbon distribution across a chronosequence of Chinese pine (Pinus tabulaeformis) forests.

    PubMed

    Zhao, Jinlong; Kang, Fengfeng; Wang, Luoxin; Yu, Xiaowen; Zhao, Weihong; Song, Xiaoshuai; Zhang, Yanlei; Chen, Feng; Sun, Yu; He, Tengfei; Han, Hairong

    2014-01-01

    Patterns of biomass and carbon (C) storage distribution across Chinese pine (Pinus tabulaeformis) natural secondary forests are poorly documented. The objectives of this study were to examine the biomass and C pools of the major ecosystem components in a replicated age sequence of P. tabulaeformis secondary forest stands in Northern China. Within each stand, biomass of above- and belowground tree, understory (shrub and herb), and forest floor were determined from plot-level investigation and destructive sampling. Allometric equations using the diameter at breast height (DBH) were developed to quantify plant biomass. C stocks in the tree and understory biomass, forest floor, and mineral soil (0-100 cm) were estimated by analyzing the C concentration of each component. The results showed that the tree biomass of P. tabulaeformis stands was ranged from 123.8 Mg·ha-1 for the young stand to 344.8 Mg·ha-1 for the mature stand. The understory biomass ranged from 1.8 Mg·ha-1 in the middle-aged stand to 3.5 Mg·ha-1 in the young stand. Forest floor biomass increased steady with stand age, ranging from 14.9 to 23.0 Mg·ha-1. The highest mean C concentration across the chronosequence was found in tree branch while the lowest mean C concentration was found in forest floor. The observed C stock of the aboveground tree, shrub, forest floor, and mineral soil increased with increasing stand age, whereas the herb C stock showed a decreasing trend with a sigmoid pattern. The C stock of forest ecosystem in young, middle-aged, immature, and mature stands were 178.1, 236.3, 297.7, and 359.8 Mg C ha-1, respectively, greater than those under similar aged P. tabulaeformis forests in China. These results are likely to be integrated into further forest management plans and generalized in other contexts to evaluate C stocks at the regional scale.

  13. Patterns of Biomass and Carbon Distribution across a Chronosequence of Chinese Pine (Pinus tabulaeformis) Forests

    PubMed Central

    Wang, Luoxin; Yu, Xiaowen; Zhao, Weihong; Song, Xiaoshuai; Zhang, Yanlei; Chen, Feng; Sun, Yu; He, Tengfei; Han, Hairong

    2014-01-01

    Patterns of biomass and carbon (C) storage distribution across Chinese pine (Pinus tabulaeformis) natural secondary forests are poorly documented. The objectives of this study were to examine the biomass and C pools of the major ecosystem components in a replicated age sequence of P. tabulaeformis secondary forest stands in Northern China. Within each stand, biomass of above- and belowground tree, understory (shrub and herb), and forest floor were determined from plot-level investigation and destructive sampling. Allometric equations using the diameter at breast height (DBH) were developed to quantify plant biomass. C stocks in the tree and understory biomass, forest floor, and mineral soil (0–100 cm) were estimated by analyzing the C concentration of each component. The results showed that the tree biomass of P. tabulaeformis stands was ranged from 123.8 Mg·ha–1 for the young stand to 344.8 Mg·ha–1 for the mature stand. The understory biomass ranged from 1.8 Mg·ha–1 in the middle-aged stand to 3.5 Mg·ha–1 in the young stand. Forest floor biomass increased steady with stand age, ranging from 14.9 to 23.0 Mg·ha–1. The highest mean C concentration across the chronosequence was found in tree branch while the lowest mean C concentration was found in forest floor. The observed C stock of the aboveground tree, shrub, forest floor, and mineral soil increased with increasing stand age, whereas the herb C stock showed a decreasing trend with a sigmoid pattern. The C stock of forest ecosystem in young, middle-aged, immature, and mature stands were 178.1, 236.3, 297.7, and 359.8 Mg C ha–1, respectively, greater than those under similar aged P. tabulaeformis forests in China. These results are likely to be integrated into further forest management plans and generalized in other contexts to evaluate C stocks at the regional scale. PMID:24736660

  14. Estimates of downed woody debris decay class transitions for forests across the eastern United States

    Treesearch

    Matthew B. Russell; Christopher W. Woodall; Shawn Fraver; Anthony W. D' Amato

    2013-01-01

    Large-scale inventories of downed woody debris (DWD; downed dead wood of a minimum size) often record decay status by assigning pieces to classes of decay according to their visual/structural attributes (e.g., presence of branches, log shape, and texture and color of wood). DWD decay classes are not only essential for estimating current DWD biomass and carbon stocks,...

  15. Harvest-associated disturbance in upland Ozark forests of the Missouri Ozark Forest Ecosystem Project

    Treesearch

    Johann N. Bruhn; James J. Wetteroff; Jeanne D. Mihail; Randy G. Jensen; James B. Pickens

    2002-01-01

    The Missouri Ozark Forest Ecosystem Project (MOFEP) is a long-term, multidisciplinary, landscape-based research program studying effects of even-aged (EAM), uneven-aged (UAM), and no-harvest (NHM) management on forest communities. The first MOFEP timber harvests occurred from May through November 1996. Harvest- related disturbance occurred on 69 of 180 permanent 0.2-ha...

  16. Multiple plumage traits convey information about age and within-age-class qualities of a canopy-dwelling songbird, the Cerulean Warbler

    USGS Publications Warehouse

    Boves, Than J.; Buehler, David A.; Wood, Petra Bohall; Rodewald, Amanda D.; Larkin, Jeffrey L.; Keyser, Patrick D.; Wigley, T. Ben

    2014-01-01

    Colorful plumage traits in birds may convey multiple, redundant, or unreliable messages about an individual. Plumage may reliably convey information about disparate qualities such as age, condition, and parental ability because discrete tracts of feathers may cause individuals to incur different intrinsic or extrinsic costs. Few studies have examined the information content of plumage in a species that inhabits forest canopies, a habitat with unique light environments and selective pressures. We investigated the information content of four plumage patches (blue-green crown and rump, tail white, and black breast band) in a canopy-dwelling species, the Cerulean Warbler (Setophaga cerulea), in relation to age, condition, provisioning, and reproduction. We found that older males displayed wider breast bands, greater tail white, and crown and rump feathers with greater blue-green (435–534 nm) chroma and hue than males in their first potential breeding season. In turn, older birds were in better condition (short and long term) and were reproductively superior to younger birds. We propose that these age-related plumage differences (i.e. delayed plumage maturation) were not a consequence of a life history strategy but instead resulted from constraints during early feather molts. Within age classes, we found evidence to support the multiple messages hypothesis. Birds with greater tail white molted tails in faster, those with more exaggerated rump plumage (lower hue, greater blue-green chroma) provisioned more, and those with lower rump blue-green chroma were in better condition. Despite evidence of reliable signaling in this species, we found no strong relationships between plumage and reproductive performance, potentially because factors other than individual differences more strongly influenced fecundity.

  17. Simulating Snow in Canadian Boreal Environments with CLASS for ESM-SnowMIP

    NASA Astrophysics Data System (ADS)

    Wang, L.; Bartlett, P. A.; Derksen, C.; Ireson, A. M.; Essery, R.

    2017-12-01

    The ability of land surface schemes to provide realistic simulations of snow cover is necessary for accurate representation of energy and water balances in climate models. Historically, this has been particularly challenging in boreal forests, where poor treatment of both snow masking by forests and vegetation-snow interaction has resulted in biases in simulated albedo and snowpack properties, with subsequent effects on both regional temperatures and the snow albedo feedback in coupled simulations. The SnowMIP (Snow Model Intercomparison Project) series of experiments or `MIPs' was initiated in order to provide assessments of the performance of various snow- and land-surface-models at selected locations, in order to understand the primary factors affecting model performance. Here we present preliminary results of simulations conducted for the third such MIP, ESM-SnowMIP (Earth System Model - Snow Model Intercomparison Project), using the Canadian Land Surface Scheme (CLASS) at boreal forest sites in central Saskatchewan. We assess the ability of our latest model version (CLASS 3.6.2) to simulate observed snowpack properties (snow water equivalent, density and depth) and above-canopy albedo over 13 winters. We also examine the sensitivity of these simulations to climate forcing at local and regional scales.

  18. Chapter 9: Marking and assessing forest heterogeneity

    Treesearch

    M. North; J. Sherlock

    2012-01-01

    Marking guidelines commonly use stocking level, crown class, and species preferences to meet management objectives. Traditionally, these guidelines were applied across the extent of the stand. Current marking guidelines are more flexible, responding to within-stand variability with different stocking level, crown class, and species preference guidelines in...

  19. How long should the fully hillside-closed forest protection be implemented on the Loess Plateau, Shaanxi, China?

    PubMed

    Hou, Lin; Hou, Sijia

    2017-01-01

    Restoration of degraded forest ecosystem is crucial for regional sustainable development. To protect the country's fragile and fragmented environment, the Chinese government initiated an ecological engineering project, the Natural Forest Protection Program, in seventeen provinces in China beginning in 1998. Fully hillside-closed forest protection (vegetation restoration naturally without any artificial disturbance) was one of vital measures of the Natural Forest Protection Program applied nation wide. Whether plant diversity, biomass and age structure of dominant tree species and soil nutrients in protected stands may become better with increase of protected period are still open problems. We investigated community diversity, biomass of dominant tree species, age structures, and analyzed soil chemical properties of a Pinus tabulaeformis population at protected sites representing different protected ages at Huanglongshan Forest Bureau on the Loess Plateau, Shaanxi, China. Plant species richness of Pinus tabulaeformis community was significantly affected ( p  < 0.05) by forest protection and the effect attenuated with protection age. Shannon evenness index of plant species generally increased with protection age. Stands protected for 45 years had the highest tree biomass and considerable natural regeneration capacity. Contents of organic carbon, available phosphorus and available potassium in top soil increased in protected stands less than 45 years, however decreased significantly thereafter. Long-term forest protection also decreased the content of mineral nitrogen in top soil. We found that the richness of shrubs and herbs was significantly affected by forest protection, and evenness indices of tree, shrub and herb increased inconsistently with protected ages. Forest protection created more complex age structures and tree densities with increasing age of protection. Content of soil mineral nitrogen at 0-20 cm soil depth showed a decreasing trend in stands of up to 30 years. Soil available phosphorus and potassium contents were higher in stands with greater proportions of big and medium trees. Long-term protection (>45 years) of Pinus tabulaeformis stands in southeast Loess Plateau, China, may be associated with decreasing plant species richness, proportion of medium to large trees, dominant biomass of Pinus tabulaeformis and soil nutrients.

  20. Determining successional stage of temperate coniferous forests with Landsat satellite data

    NASA Technical Reports Server (NTRS)

    Fiorella, Maria; Ripple, William J.

    1993-01-01

    Thematic Mapper (TM) digital imagery was used to map forest successional stages and to evaluate spectral differences between old-growth and mature forests in the central Cascade Range of Oregon. Relative sun incidence values were incorporated into the successional stage classification to compensate for topographic induced variation. Relative sun incidence improved the classification accuracy of young successional stages, but did not improve the classification accuracy of older, closed canopy forest classes or overall accuracy. TM bands 1, 2, and 4; the normalized difference vegetation index; and TM 4/3, 4/5, and 4/7 band ratio values for o|d-growth forests were found to be significantly lower than the values of mature forests. The Tasseled Cap features of brightness, greenness, and wetness also had significantly lower old-growth values as compared to mature forest values .

Top