Sample records for forest based land

  1. Land-Base Changes in the United States: Long-Term Assessments of Forest Land Condition

    Treesearch

    Ralph J. Alig

    2006-01-01

    Forest land conditions affect the potential of U.S. forests to sustain a wide array of forest goods and environmental services (e.g., biodiversity) that society demands. Forest survey data collected by U.S. Department of Agriculture Forest Service Forest Inventory and Analysis (FIA) units are being used in long-term assessments of U.S. forest land conditions at large...

  2. The forest-land owners of Delaware

    Treesearch

    Neal P. Kingsley; James C. Finley

    1975-01-01

    A statistical-analytical report on a mail canvass of the owners of privately owned forest land in Delaware, based on a study made in conjunction with the second forest survey of Delaware by the USDA Forest Service. Statistical findings are based on responses supplied by owners to a questionnaire. Trends in forest-land ownership and the attitudes and intentions of...

  3. Harmonizing estimates of forest land area from national-level forest inventory and satellite imagery

    Treesearch

    Bonnie Ruefenacht; Mark D. Nelson; Mark Finco

    2009-01-01

    Estimates of forest land area are derived both from national-level forest inventories and satellite image-based map products. These estimates can differ substantially within subregional extents (e.g., states or provinces) primarily due to differences in definitions of forest land between inventory- and image-based approaches. We present a geospatial modeling approach...

  4. Pennsylvania's Forests, 2009

    Treesearch

    George L. McCaskill; William H. McWilliams; Carol A. Alerich; Brett J. Butler; Susan J. Crocker; Grant M. Domke; Doug Griffith; Cassandra M. Kurtz; Shawn Lehman; Tonya W. Lister; Randall S. Morin; W. Keith Moser; Paul Roth; Rachel Riemann; James A. Westfall

    2013-01-01

    The second full annual inventory of Pennsylvania's forests reports a stable base of 16.7 million acres of forest land. Northern hardwoods and mixed-oak forest-type groups account for 54 and 32 percent of the forest land, respectively. The State's forest land averages about 61 dry tons of wood per acre and almost 6,500 board feet (International ¼-inch...

  5. National forest economic clusters: a new model for assessing national-forest-based natural resources products and services.

    Treesearch

    Thomas D. Rojas

    2007-01-01

    National forest lands encompass numerous rural and urban communities. Some national-forest-based communities lie embedded within national forests, and others reside just outside the official boundaries of national forests. The urban and rural communities within or near national forest lands include a wide variety of historical traditions and cultural values that affect...

  6. Mapping Martinique's forests and other natural lands for land planning and development

    Treesearch

    Remi Teissier du Cros; Claude Vidal

    2009-01-01

    The Regional Council of Martinique has chosen the French national forest inventory to realize Martinique's forest and other natural lands map. The project is divided into the three following steps: (1) nomenclature proposal and study area delineation; (2) mapping of the vegetation based on 2005 airborne orthophotographs, Geographic Information System-based slope...

  7. Land-use change and new houses on forestland: contrasting trends over 30 years in Oregon and Washington

    Treesearch

    Andrew N. Gray; Joel L. Thompson; Gary J. Lettman

    2015-01-01

    Conversion of forest, range, and agricultural resource lands to residential and commercial uses affects the available land base, management practices on remaining resource lands, habitat quality, and ecosystem services. The Forest Inventory and Analysis program (FIA) mandate includes monitoring changes in the land area in forest use, and this has proved valuable for...

  8. Development of 2010 national land cover database for the Nepal.

    PubMed

    Uddin, Kabir; Shrestha, Him Lal; Murthy, M S R; Bajracharya, Birendra; Shrestha, Basanta; Gilani, Hammad; Pradhan, Sudip; Dangol, Bikash

    2015-01-15

    Land cover and its change analysis across the Hindu Kush Himalayan (HKH) region is realized as an urgent need to support diverse issues of environmental conservation. This study presents the first and most complete national land cover database of Nepal prepared using public domain Landsat TM data of 2010 and replicable methodology. The study estimated that 39.1% of Nepal is covered by forests and 29.83% by agriculture. Patch and edge forests constituting 23.4% of national forest cover revealed proximate biotic interferences over the forests. Core forests constituted 79.3% of forests of Protected areas where as 63% of area was under core forests in the outside protected area. Physiographic regions wise forest fragmentation analysis revealed specific conservation requirements for productive hill and mid mountain regions. Comparative analysis with Landsat TM based global land cover product showed difference of the order of 30-60% among different land cover classes stressing the need for significant improvements for national level adoption. The online web based land cover validation tool is developed for continual improvement of land cover product. The potential use of the data set for national and regional level sustainable land use planning strategies and meeting several global commitments also highlighted. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. California's forest resources. Preliminary assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-01-01

    This Preliminary Assessment was prepared in response to the California Forest Resources Assessment and Policy Act of 1977 (FRAPA). This Act was passed to improve the information base upon which State resource administrators formulate forest policy. The Act provides for this report and a full assessment by 1987 and at five year intervals thereafter. Information is presented under the following chapter titles: introduction to the forest resources assessment program; the forest area: a general description; classifications of the forest lands; the watersheds; forest lands and the air resource; fish and wildlife resources; the forested rangelands; the wilderness; forest lands asmore » a recreation resource; the timber resource; wood energy; forest lands and the mineral, fossil fuels, and geothermal energy resources; mathematically modeling California's forest lands; vegetation mapping using remote sensing technology; important forest resources legislation; and, State and cooperative State/Federal forestry programs. Twelve indexes, a bibliography, and glossary are included. (JGB)« less

  10. Classification of forest land attributes using multi-source remotely sensed data

    NASA Astrophysics Data System (ADS)

    Pippuri, Inka; Suvanto, Aki; Maltamo, Matti; Korhonen, Kari T.; Pitkänen, Juho; Packalen, Petteri

    2016-02-01

    The aim of the study was to (1) examine the classification of forest land using airborne laser scanning (ALS) data, satellite images and sample plots of the Finnish National Forest Inventory (NFI) as training data and to (2) identify best performing metrics for classifying forest land attributes. Six different schemes of forest land classification were studied: land use/land cover (LU/LC) classification using both national classes and FAO (Food and Agricultural Organization of the United Nations) classes, main type, site type, peat land type and drainage status. Special interest was to test different ALS-based surface metrics in classification of forest land attributes. Field data consisted of 828 NFI plots collected in 2008-2012 in southern Finland and remotely sensed data was from summer 2010. Multinomial logistic regression was used as the classification method. Classification of LU/LC classes were highly accurate (kappa-values 0.90 and 0.91) but also the classification of site type, peat land type and drainage status succeeded moderately well (kappa-values 0.51, 0.69 and 0.52). ALS-based surface metrics were found to be the most important predictor variables in classification of LU/LC class, main type and drainage status. In best classification models of forest site types both spectral metrics from satellite data and point cloud metrics from ALS were used. In turn, in the classification of peat land types ALS point cloud metrics played the most important role. Results indicated that the prediction of site type and forest land category could be incorporated into stand level forest management inventory system in Finland.

  11. Reconstructing the spatial pattern of historical forest land in China in the past 300 years

    NASA Astrophysics Data System (ADS)

    Yang, Xuhong; Jin, Xiaobin; Xiang, Xiaomin; Fan, Yeting; Shan, Wei; Zhou, Yinkang

    2018-06-01

    The reconstruction of the historical forest spatial distribution is of a great significance to understanding land surface cover in historical periods as well as its climate and ecological effects. Based on the maximum scope of historical forest land before human intervention, the characteristics of human behaviors in farmland reclamation and deforestation for heating and timber, we create a spatial evolution model to reconstruct the spatial pattern of historical forest land. The model integrates the land suitability for reclamation, the difficulty of deforestation, the attractiveness of timber trading markets and the abundance of forest resources to calibrate the potential scope of historical forest land with the rationale that the higher the probability of deforestation for reclamation and wood, the greater the likelihood that the forest land will be deforested. Compared to the satellite-based forest land distribution in 2000, about 78.5% of our reconstructed historical forest grids are of the absolute error between 25% and -25% while as many as 95.85% of those grids are of the absolute error between 50% and -50%, which indirectly validates the feasibility of our reconstructed model. Then, we simulate the spatial distribution of forest land in China in 1661, 1724, 1820, 1887, 1933 and 1952 with the grid resolution of 1 km × 1 km. Our result shows that (1) the reconstructed historical forest land in China in the past 300 years concentrates in DaXingAnLing, XiaoXingAnLing, ChangBaiShan, HengDuanShan, DaBaShan, WuYiShan, DaBieShan, XueFengShang and etc.; (2) in terms of the spatial evolution, historical forest land shrank gradually in LiaoHe plains, SongHuaJiang-NenJiang plains and SanJiang plains of eastnorth of China, Sichuan basins and YunNan-GuiZhou Plateaus; and (3) these observations are consistent to the proceeding of agriculture reclamation in China in past 300 years towards Northeast China and Southwest China.

  12. Impacts of incorporating land exchanges between forestry and agriculture in sector models.

    Treesearch

    Ralph J. Alig; Darius M. Adams; Bruce A. McCarl

    1998-01-01

    The forest and agriculture sectors are linked by having a portion of their land bases suitable for use in either sector. A substantial part of the southern land base is suitable for either forestry or agriculture use, with most of forestation on U.S. agriculture land in the South. We examine how land exchanges between forestry and agriculture are influenced by specific...

  13. 25 CFR 163.36 - Tribal forestry program financial support.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... services to carry out forest land management activities and shall be based on levels of funding assistance... carrying out forest land management activities. Such financial support shall be made available through the... of carrying out forest land management activities may apply and qualify for tribal forestry program...

  14. 25 CFR 163.36 - Tribal forestry program financial support.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... services to carry out forest land management activities and shall be based on levels of funding assistance... carrying out forest land management activities. Such financial support shall be made available through the... of carrying out forest land management activities may apply and qualify for tribal forestry program...

  15. Michigan's forests 2004

    Treesearch

    Scott A. Pugh; Mark H. Hansen; Lawrence D. Pedersen; Douglas C. Heym; Brett J. Butler; Susan J. Crocker; Dacia Meneguzzo; Charles H. Perry; David E. Haugen; Christopher Woodall; Ed Jepsen

    2009-01-01

    The first annual inventory of Michigan's forests, completed in 2004, covers more than 19.3 million acres of forest land. The data in this report are based on visits to 10,355 forested plots from 2000 to 2004. In addition to detailed information on forest attributes, this report includes data on forest health, biomass, land-use change, and timber-product outputs....

  16. Michigan forests 2014

    Treesearch

    Scott A. Pugh; Douglas C. Heym; Brett J. Butler; David E. Haugen; Cassandra M. Kurtz; William H. McWilliams; Patrick D. Miles; Randall S. Morin; Mark D. Nelson; Rachel I. Riemann; James E. Smith; James A. Westfall; Christopher W. Woodall

    2017-01-01

    The eighth inventory of Michigan's forests, completed in 2014, describes more than 20.3 million acres of forest land. The data in this report are based on visits to 4,289 forested plots from 2009 to 2014. Timberland accounts for 95 percent of this forest land, and 62 percent is privately owned. The sugar maple/beech/yellow birch forest type accounts for 19 percent...

  17. Michigan's Forests 2009

    Treesearch

    Scott A. Pugh; Lawrence D. Pedersen; Douglas C. Heym; Ronald J. Piva; Christopher W. Woodall; Charles J. Barnett; Cassandra M. Kurtz; W. Keith Moser

    2012-01-01

    The seventh inventory of Michigan's forests, completed in 2009, describes more than 19.9 million acres of forest land. The data in this report are based on visits to 7,516 forested plots from 2005 to 2009. Timberland accounts for 97 percent of this forest land, and 62 percent is privately owned. The sugar maple/beech/yellow birch forest type accounts for 18...

  18. Exploring the relationship between parcelization metrics and natural resource managers' perceptions of forest land parcelization intensity

    Treesearch

    Michael A. Kilgore; Stephanie A. Snyder

    2016-01-01

    A major challenge associated with forest land parcelization, defined as the subdivision of forest land holdings into smaller ownership parcels, is that little information exists on how to measure its severity and judge its impacts across forest landscapes. To address this information gap, an on-line survey presented field-based public natural resource managers in the...

  19. Ground-based photographic monitoring.

    Treesearch

    Frederick C. Hall

    2001-01-01

    Land management professionals (foresters, wildlife biologists, range managers, and land managers such as ranchers and forest land owners) often have need to evaluate their management activities. Photographic monitoring is a fast, simple, and effective way to determine if changes made to an area have been successful. Ground-based photo monitoring means using photographs...

  20. Mapping forested wetlands in the Great Zhan River Basin through integrating optical, radar, and topographical data classification techniques.

    PubMed

    Na, X D; Zang, S Y; Wu, C S; Li, W L

    2015-11-01

    Knowledge of the spatial extent of forested wetlands is essential to many studies including wetland functioning assessment, greenhouse gas flux estimation, and wildlife suitable habitat identification. For discriminating forested wetlands from their adjacent land cover types, researchers have resorted to image analysis techniques applied to numerous remotely sensed data. While with some success, there is still no consensus on the optimal approaches for mapping forested wetlands. To address this problem, we examined two machine learning approaches, random forest (RF) and K-nearest neighbor (KNN) algorithms, and applied these two approaches to the framework of pixel-based and object-based classifications. The RF and KNN algorithms were constructed using predictors derived from Landsat 8 imagery, Radarsat-2 advanced synthetic aperture radar (SAR), and topographical indices. The results show that the objected-based classifications performed better than per-pixel classifications using the same algorithm (RF) in terms of overall accuracy and the difference of their kappa coefficients are statistically significant (p<0.01). There were noticeably omissions for forested and herbaceous wetlands based on the per-pixel classifications using the RF algorithm. As for the object-based image analysis, there were also statistically significant differences (p<0.01) of Kappa coefficient between results performed based on RF and KNN algorithms. The object-based classification using RF provided a more visually adequate distribution of interested land cover types, while the object classifications based on the KNN algorithm showed noticeably commissions for forested wetlands and omissions for agriculture land. This research proves that the object-based classification with RF using optical, radar, and topographical data improved the mapping accuracy of land covers and provided a feasible approach to discriminate the forested wetlands from the other land cover types in forestry area.

  1. Forest resources of the Umatilla National Forest.

    Treesearch

    Glenn A. Christensen; Paul Dunham; David C. Powell; Bruce. Hiserote

    2007-01-01

    Current resource statistics for the Umatilla National Forest, based on two separate inventories conducted in 1993–96 and in 1997–2002, are presented in this report. Currently on the Umatilla National Forest, 89 percent of the land area is classified as forest land. The predominant forest type is grand fir (26 percent of forested acres) followed by the interior Douglas-...

  2. West Virginia Forests 2013

    Treesearch

    Randall S. Morin; Gregory W. Cook; Charles J. Barnett; Brett J. Butler; Susan J. Crocker; Mark A. Hatfield; Cassandra M. Kurtz; Tonya W. Lister; William G. Luppold; William H. McWilliams; Patrick D. Miles; Mark D. Nelson; Charles H. (Hobie) Perry; Ronald J. Piva; James E. Smith; Jim Westfall; Richard H. Widmann; Christopher W. Woodall

    2016-01-01

    The annual inventory of West Virginia's forests, completed in 2013, covers nearly 12.2 million acres of forest land with an average volume of more than 2,300 cubic feet per acre. This report is based data collected from 2,808 plots located across the State. Forest land is dominated by the oak/hickory forest-type group, which occupies 74 percent of total forest...

  3. Combining forest inventory, satellite remote sensing, and geospatial data for mapping forest attributes of the conterminous United States

    Treesearch

    Mark Nelson; Greg Liknes; Charles H. Perry

    2009-01-01

    Analysis and display of forest composition, structure, and pattern provides information for a variety of assessments and management decision support. The objective of this study was to produce geospatial datasets and maps of conterminous United States forest land ownership, forest site productivity, timberland, and reserved forest land. Satellite image-based maps of...

  4. US forest carbon calculation tool: forest-land carbon stocks and net annual stock change

    Treesearch

    James E. Smith; Linda S. Heath; Michael C. Nichols

    2007-01-01

    The Carbon Calculation Tool 4.0, CCTv40.exe, is a computer application that reads publicly available forest inventory data collected by the U.S. Forest Service's Forest Inventory and Analysis Program (FIA) and generates state-level annualized estimates of carbon stocks on forest land based on FORCARB2 estimators. Estimates can be recalculated as...

  5. Carbon dioxide emissions from forestry and peat land using land-use/land-cover changes in North Sumatra, Indonesia

    NASA Astrophysics Data System (ADS)

    Basyuni, M.; Sulistyono, N.; Slamet, B.; Wati, R.

    2018-03-01

    Forestry and peat land including land-based is one of the critical sectors in the inventory of CO2 emissions and mitigation efforts of climate change. The present study analyzed the land-use and land-cover changes between 2006 and 2012 in North Sumatra, Indonesia with emphasis to CO2 emissions. The land-use/land-cover consists of twenty-one classes. Redd Abacus software version 1.1.7 was used to measure carbon emission source as well as the predicted 2carbon dioxide emissions from 2006-2024. Results showed that historical emission (2006-2012) in this province, significant increases in the intensive land use namely dry land agriculture (109.65%), paddy field (16.23%) and estate plantation (15.11%). On the other hand, land-cover for forest decreased significantly: secondary dry land forest (7.60%), secondary mangrove forest (9.03%), secondary swamp forest (33.98%), and the largest one in the mixed dry land agriculture (79.96%). The results indicated that North Sumatra province is still a CO2 emitter, and the most important driver of emissions mostly derived from agricultural lands that contributed 2carbon dioxide emissions by 48.8%, changing from forest areas into degraded lands (classified as barren land and shrub) shared 30.6% and estate plantation of 22.4%. Mitigation actions to reduce carbon emissions was proposed such as strengthening the forest land, rehabilitation of degraded area, development and plantation forest, forest protection and forest fire control, and reforestation and conservation activity. These mitigation actions have been simulated to reduce 15% for forestry and 18% for peat land, respectively. This data is likely to contribute to the low emission development in North Sumatra.

  6. The private forest-land owners of the United States

    Treesearch

    Thomas W. Birch; Douglas G. Lewis; H. Fred Kaiser

    1982-01-01

    A report on a 1978 survey of private forest-land owners, based on 11,076 questionnaires. About 7.8 million ownership units hold 333 million acres of privately owned forest land in the United States. Regional and subregional breakdowns are included for such important variables as form of ownership; owner's occupation, age, sex, race, residence, and education; size...

  7. Pennsylvania's Forest 2004

    Treesearch

    William H. McWilliams; Seth P. Cassell; Carol L. Alerich; Brett J. Butler; Michael L. Hoppus; Stephen B. Horsley; Andrew J. Lister; Tonya W. Lister; Randall S. Morin; Charles H. Perry; James A. Westfall; Eric H. Wharton; Christopher W. Woodall

    2007-01-01

    Pennsylvania's forest-land base is stable, covering 16.6 million acres or 58 percent of the land area. Sawtimber volume totals 88.9 billion board feet, an average of about 5,000 board feet per acre. Currently, only half of the forest land that should have advance tree seedling and sapling regeneration is adequately stocked with high-canopy species, and only one-...

  8. A GIS-based tool for estimating tree canopy cover on fixed-radius plots using high-resolution aerial imagery

    Treesearch

    Sara A. Goeking; Greg C. Liknes; Erik Lindblom; John Chase; Dennis M. Jacobs; Robert. Benton

    2012-01-01

    Recent changes to the Forest Inventory and Analysis (FIA) Program's definition of forest land precipitated the development of a geographic information system (GIS)-based tool for efficiently estimating tree canopy cover for all FIA plots. The FIA definition of forest land has shifted from a density-related criterion based on stocking to a 10 percent tree canopy...

  9. Simulation of regional temperature change effect of land cover change in agroforestry ecotone of Nenjiang River Basin in China

    NASA Astrophysics Data System (ADS)

    Liu, Tingxiang; Zhang, Shuwen; Yu, Lingxue; Bu, Kun; Yang, Jiuchun; Chang, Liping

    2017-05-01

    The Northeast China is one of typical regions experiencing intensive human activities within short time worldwide. Particularly, as the significant changes of agriculture land and forest, typical characteristics of pattern and process of agroforestry ecotone change formed in recent decades. The intensive land use change of agroforestry ecotone has made significant change for regional land cover, which had significant impact on the regional climate system elements and the interactions among them. This paper took agroforestry ecotone of Nenjiang River Basin in China as study region and simulated temperature change based on land cover change from 1950s to 1978 and from 1978 to 2010. The analysis of temperature difference sensitivity to land cover change based on Weather Research and Forecasting (WRF) model showed that the land cover change from 1950s to 1978 induced warming effect over all the study area, including the change of grassland to agriculture land, grassland to deciduous broad-leaved forest, and deciduous broad-leaved forest to shrub land. The land cover change from 1978 to 2010 induced cooling effect over all the study area, including the change of deciduous broad-leaved forest to agriculture land, grassland to agriculture land, shrub land to agriculture land, and deciduous broad-leaved forest to grassland. In addition, the warming and cooling effect of land cover change was more significant in the region scale than specific land cover change area.

  10. Simultaneous comparison and assessment of eight remotely sensed maps of Philippine forests

    NASA Astrophysics Data System (ADS)

    Estoque, Ronald C.; Pontius, Robert G.; Murayama, Yuji; Hou, Hao; Thapa, Rajesh B.; Lasco, Rodel D.; Villar, Merlito A.

    2018-05-01

    This article compares and assesses eight remotely sensed maps of Philippine forest cover in the year 2010. We examined eight Forest versus Non-Forest maps reclassified from eight land cover products: the Philippine Land Cover, the Climate Change Initiative (CCI) Land Cover, the Landsat Vegetation Continuous Fields (VCF), the MODIS VCF, the MODIS Land Cover Type product (MCD12Q1), the Global Tree Canopy Cover, the ALOS-PALSAR Forest/Non-Forest Map, and the GlobeLand30. The reference data consisted of 9852 randomly distributed sample points interpreted from Google Earth. We created methods to assess the maps and their combinations. Results show that the percentage of the Philippines covered by forest ranges among the maps from a low of 23% for the Philippine Land Cover to a high of 67% for GlobeLand30. Landsat VCF estimates 36% forest cover, which is closest to the 37% estimate based on the reference data. The eight maps plus the reference data agree unanimously on 30% of the sample points, of which 11% are attributable to forest and 19% to non-forest. The overall disagreement between the reference data and Philippine Land Cover is 21%, which is the least among the eight Forest versus Non-Forest maps. About half of the 9852 points have a nested structure such that the forest in a given dataset is a subset of the forest in the datasets that have more forest than the given dataset. The variation among the maps regarding forest quantity and allocation relates to the combined effects of the various definitions of forest and classification errors. Scientists and policy makers must consider these insights when producing future forest cover maps and when establishing benchmarks for forest cover monitoring.

  11. Land Cover Change Monitoring of Typical Functional Communities of Sichuan Province Based on ZY-3 Data

    NASA Astrophysics Data System (ADS)

    Li, G. M.; Li, S.; Ying, G. W.; Wu, X. P.

    2018-04-01

    According to the function, land space types are divided into key development areas, restricted development areas and forbidden development areas in Sichuan Province. This paper monitors and analyses the changes of land cover in different typical functional areas from 2010 to 2017, which based on ZY-3 high-score images data and combined with statistical yearbook and thematic data of Sichuan Province. The results show that: The land cover types of typical key development zones are mainly composed of cultivated land, forest land, garden land, and housing construction land, which accounts for the total area of land cover 87 %. The land cover types of typical restricted development zone mainly consists of forest land and grassland, which occupy 97.71 % of the total area of the surface coverage. The land cover types of the typical prohibition development zone mainly consist of forest land, grassland, desert and bared earth, which accounts for the total area of land cover 99.31 %.

  12. Factors influencing spatial pattern in tropical forest clearance and stand age: Implications for carbon storage and species diversity.

    Treesearch

    E. H. Helmer; Thomas J. Brandeis; Ariel E. Lugo; Todd Kennaway

    2008-01-01

    Little is known about the tropical forests that undergo clearing as urban/built-up and other developed lands spread. This study uses remote sensing-based maps of Puerto Rico, multinomial logit models and forest inventory data to explain patterns of forest age and the age of forests cleared for land development and assess their implications for forest carbon storage and...

  13. Coronado National Forest Draft Land and Resource Management Plan: Cochise, Graham, Pima, Pinal, and Santa Cruz Counties, Arizona, and Hidalgo County, New Mexico

    Treesearch

    Terry Austin; Yolynda Begay; Sharon Biedenbender; Rachael Biggs; Erin Boyle; Eli Curiel; Sarah Davis; Sara Dechter; Tami Emmett; Mary Farrell; Richard Gerhart; William Gillespie; Polly Haessig; Ed Holloway; Melissa Jenkins; Larry Jones; Debby Kriegel; Robert Lefevre; Mark Stamer; Mindi Lehew; Ann Lynch; George McKay; Linda Peery; Albert Peralta; Jennifer Ruyle; Jeremy Sautter; Kenna Schoenle; Salek Shafiqullah; Christopher Stetson; Mindi Sue Vogel; Laura White; Craig Wilcox; Judy York

    2013-01-01

    The Coronado National Forest is an administrative component of the National Forest System. It administers 1,783,639 acres of National Forest System lands. National forests across the United States were established to provide natural resource-based goods and services to American citizens, and to protect timber and watershed resources. Management of national forests is...

  14. Upland Hardwood Forests and Related Communities of the Arkansas Ozarks in the Early 19th Century

    Treesearch

    Thomas L. Foti

    2004-01-01

    Historic accounts of the 19 th Century Arkansas Ozarks mention such communities as oak forests, pine forests, barrens and prairies. I document the region-wide distribution of these types based on data from the first land survey conducted by the General Land Office (GLO). Structural classes used here include closed forest, open forest, woodland, savanna, open savanna...

  15. Science Consistency Reviews A Primer for Application

    Treesearch

    James M. Guldin; David Cawrse; Russell Graham; Miles Hemstrom; Linda Joyce; Steve Kessler; Ranotta McNair; George Peterson; Charles G. Shaw; Peter Stine; Mark Twery; Jeffrey Walter

    2003-01-01

    Concern over Federal land management decisions has grown in recent years. Public debates over activities on Federal land have been contentious, especially regarding management of national forests. Decisions on the management and use of national forest lands are based on many different considerations and values. Although Federal land managers can make choices concerning...

  16. Forests and competing land uses in Kenya

    NASA Astrophysics Data System (ADS)

    Allaway, James; Cox, Pamela M. J.

    1989-03-01

    Indigenous forests in Kenya, as in other developing countries, are under heavy pressure from competing agricultural land uses and from unsustainable cutting. The problem in Kenya is compounded by high population growth rates and an agriculturally based economy, which, even with efforts to control birth rates and industrialize, will persist into the next century. Both ecological and economic consequences of these pressures need to be considered in land-use decision making for land and forest management to be effective. This paper presents one way to combine ecological and economic considerations. The status of principal forest areas in Kenya is summarized and competing land uses compared on the basis of ecological functions and economic analysis. Replacement uses do not match the ecological functions of forest, although established stands of tree crops (forest plantations, fuel wood, tea) can have roughly comparable effects on soil and water resources. Indigenous forests have high, although difficult to estimate, economic benefits from tourism and protection of downstream agricultural productivity. Economic returns from competing land uses range widely, with tea having the highest and fuel wood plantations having returns comparable to some annual crops and dairying. Consideration of ecological and economic factors together suggests some trade-offs for improving land allocation decisions and several management opportunities for increasing benefits or reducing costs from particular land uses. The evaluation also suggests a general strategy for forest land management in Kenya.

  17. Area changes in U.S. forests and other major land uses, 1982 to 2002, with projections to 2062.

    Treesearch

    Ralph J. Alig; Andrew J. Plantinga; David Haim; Maribeth Todd

    2010-01-01

    This study updates an earlier assessment of the past, current, and prospective situation for the Nation’s land base. We describe area changes among major land uses on the U.S. land base for historical trends from 1982 to 2002 and projections out to 2062. Historically, 11 million acres of forest, cropland, and open space were converted to urban and other developed uses...

  18. Invasive Species as Ecological Threat: Is Restoration an Alternative to Fear-based Resource Management?

    Treesearch

    Paul H. Gobster

    2005-01-01

    Invasive species is a hot topic in the USDA Forest Service these days. Along with wildfire, land conversion and unmanaged recreation, Chief Dale Bosworth has called invasive species one of the `Four Threats` needing the attention of Forest Service land managers and researchers (USDA Forest Service 2004). My unit of the Forest Service, the North Central Research...

  19. Minnesota's forest resources in 2005

    Treesearch

    Patrick D. Miles; Gary J. Brand

    2007-01-01

    Reports forest statistics for Minnesota based on five annual inventories from 2001 through 2005. Minnesota's total forest area is estimated at 16.3 million acres or 32 percent of the total land area of the State. The estmated total live-tree volume on forest land is 17.7 billion cubic feet or 1,085 cubic feet per acre. The estimated aboveground live-tree biomass...

  20. Human and Nature Interactions: A Dynamic Land Base of Many Goods and Services

    Treesearch

    Ralph J. Alig

    2006-01-01

    Availability of land is fundamental for sustainable forestry, providing the basis for the production of a wide array of goods and services (for example, biodiversity, forest carbon sequestration). This paper summarizes types of land-related data contained in major U.S. data bases, and gives examples of how such data were used in projecting changes in forest area for...

  1. Mapping Forest Inventory and Analysis forest land use: timberland, reserved forest land, and other forest land

    Treesearch

    Mark D. Nelson; John Vissage

    2007-01-01

    The Forest Inventory and Analysis (FIA) program produces area estimates of forest land use within three subcategories: timberland, reserved forest land, and other forest land. Mapping these subcategories of forest land requires the ability to spatially distinguish productive from unproductive land, and reserved from nonreserved land. FIA field data were spatially...

  2. [Carbon emissions and low-carbon regulation countermeasures of land use change in the city and town concentrated area of central Liaoning Province, China].

    PubMed

    Xi, Feng-ming; Liang, Wen-juan; Niu, Ming-fen; Wang, Jiao-yue

    2016-02-01

    Carbon emissions due to land use change have an important impact on global climate change. Adjustment of regional land use patterns has a great scientific significance to adaptation to a changing climate. Based on carbon emission/absorption parameters suitable for Liaoning Province, this paper estimated the carbon emission of land use change in the city and town concentrated area of central Liaoning Province. The results showed that the carbon emission and absorption were separately 308.51 Tg C and 11.64 Tg C from 1997 to 2010. It meant 3.8% of carbon emission. was offset by carbon absorption. Among the 296.87 Tg C net carbon emission of land use change, carbon emission of remaining land use type was 182.24 Tg C, accounting for 61.4% of the net carbon emission, while the carbon emission of land use transformation was 114.63 Tg C, occupying the rest 38.6% of net carbon emission. Through quantifying the mapping relationship between land use change and carbon emission, it was shown that during 1997-2004 the contributions of remaining construction land (40.9%) and cropland transform ation to construction land (40.6%) to carbon emission were larger, but the greater contributions to carbon absorption came from cropland transformation to forest land (38.6%) and remaining forest land (37.5%). During 2004-2010, the land use types for carbon emission and absorption were the same to the period of 1997-2004, but the contribution of remaining construction land to carbon emission increased to 80.6%, and the contribution of remaining forest land to carbon absorption increased to 71.7%. Based on the carbon emission intensity in different land use types, we put forward the low-carbon regulation countermeasures of land use in two aspects. In carbon emission reduction, we should strict control land transformation to construction land, increase the energy efficiency of construction land, and avoid excessive development of forest land and water. In carbon sink increase, we should improve forest coverage rate, implement cropland, grassland transform to forest land, strengthen forest land and water protection, and adjust cropland internal structure and scientifically implement cropland management.

  3. International trade, and land use intensification and spatial reorganization explain Costa Rica’s forest transition

    NASA Astrophysics Data System (ADS)

    Jadin, I.; Meyfroidt, P.; Lambin, E. F.

    2016-03-01

    While tropical deforestation remains widespread, some countries experienced a forest transition—a shift from net deforestation to net reforestation. Costa Rica had one of the highest deforestation rates in the 1980s and is now considered as a model of environmental sustainability, despite being a major producer of bananas and pineapples. We tested three land use processes that are thought to facilitate forest transitions. First, forest transitions may be accompanied by land use displacement through international trade of land-based products, which may undermine the global-scale environmental benefits of national forest protection. Second, reforestation is often associated with land use intensification in agriculture and forestry, allowing for land sparing. Third, this intensification may partly result from a geographical redistribution of land use at the sub-national scale to better match land use with land suitability. These hypotheses were verified for Costa Rica’s forest transition. We also tested whether forest increased mainly in regions with a low ecological value and agriculture expanded in regions with a high ecological value. Intensification and land use redistribution accounted for 76% of land spared during the forest transition, with 32% of this spared area corresponding to net reforestation. Decreasing meat exports led to a contraction of pastures, freeing an area equivalent to 80% of the reforested area. The forest transition in Costa Rica was environmentally beneficial at the global scale, with the reforested area over 1989-2013 corresponding to 130% of the land use displaced abroad through imports of agricultural products. However, expansion of export-oriented cropland caused deforestation in the most ecologically valuable regions of Costa Rica. Moreover, wood extraction from forest plantations increased to produce the pallets needed to export fruits. This highlights the importance of a multi-scale analysis when evaluating causes and impacts of national-scale forest transitions.

  4. The role of communities in sustainable land and forest management: The case of Nyanga, Zvimba and Guruve districts of Zimbabwe

    PubMed Central

    Sagonda, Ruvimbo; Kaundikiza, Munyaradzi

    2016-01-01

    Forest benefit analysis is vital in ensuring sustainable community-based natural resources management. Forest depletion and degradation are key issues in rural Zimbabwe and strategies to enhance sustainable forest management are continually sought. This study was carried out to assess the impact of forests on communities from Nyanga, Guruve and Zvimba districts of Zimbabwe. It is based on a Big Lottery Fund project implemented by Progressio-UK and Environment Africa. It focuses on identifying replicable community forest and land management strategies and the level of benefits accruing to the community. Analysis of change was based on the Income and Food Security and Forest benefits, which also constitutes the tools used during the research. The study confirms the high rate of deforestation and the increased realisation by communities to initiate practical measures aimed at protecting and sustaining forest and land resources from which they derive economic and social benefits. The results highlight the value of community structures (Farmer Field Schools and Environmental Action Groups) as conduits for natural resource management. The interconnectivity among forests, agricultural systems and the integral role of people are recognised as key to climate change adaptation.

  5. Mitigating greenhouse gases: the importance of land base interactions between forests, agriculture, and residential development in the face of changes in bioenergy and carbon prices

    Treesearch

    Ralph Alig; Greg Latta; Darius Adams; Bruce McCarl

    2009-01-01

    The forest sector can contribute to atmospheric greenhouse gas reduction, while also providing other environmental, economic, and social benefits. Policy tools for climate change mitigation include carbon-related payment programs as well as laws and programs to impede the loss of agricultural and forest lands to development. Policy makers will base their expectations...

  6. The Cooperative Forest Ecosystem Research Program

    USGS Publications Warehouse

    ,

    2002-01-01

    Changes in priorities for forest management on federal and state lands in the Pacific Northwest have raised many questions about the best ways to manage young-forest stands, riparian areas, and forest landscapes. The Cooperative Forest Ecosystem Research (CFER) Program draws together scientists and managers from the U.S. Geological Survey, Bureau of Land Management, Oregon Department of Forestry, and Oregon State University to find science-based answers to these questions. Managers, researchers, and decisionmakers, working within the CFER program, are helping develop and disseminate the knowledge needed to carry out ecosystem-based management successfully in the Pacific Northwest.

  7. Coupled ecological-social dynamics in a forested landscape: spatial interactions and information flow.

    PubMed

    Satake, Akiko; Leslie, Heather M; Iwasa, Yoh; Levin, Simon A

    2007-06-21

    We develop an agent-based model for forest harvesting to study how interactions between neighboring land parcels and the degree of information flow among landowners influence harvesting patterns. We assume a forest is composed of a number of land parcels that are individually managed. Each parcel is either mature forested, just-harvested, or immature forested. The state transition of each parcel is described by a Markov chain that incorporates the successional dynamics of the forest ecosystem and landowners' decisions about harvesting. Landowners decide to cut trees based on the expected discounted utility of forested vs. harvested land. One landowner's decision to cut trees is assumed to cause the degradation of ecosystem services on the downstream forested parcels. We investigated two different scenarios: in a strongly-connected society, landowners are familiar with each other and have full information regarding the behavior of other landowners. In a weakly-connected society, landowners do not communicate and therefore need to make subjective predictions about the behavior of others without adequate information. Regardless of the type of society, we observed that the spatial interaction between management units caused a chain reaction of tree harvesting in the neighborhood even when healthy forested land provided greater utility than harvested land. The harvest rate was higher in a weakly-connected society than that in a strongly-connected society. If landowners employed a long-term perspective, the harvest rate declined, and a more robust forested landscape emerged. Our results highlight the importance of institutional arrangements that encourage a long-term perspective and increased information flow among landowners in order to achieve successful forest management.

  8. Application of Modis Data to Assess the Latest Forest Cover Changes of Sri Lanka

    NASA Astrophysics Data System (ADS)

    Perera, K.; Herath, S.; Apan, A.; Tateishi, R.

    2012-07-01

    Assessing forest cover of Sri Lanka is becoming important to lower the pressure on forest lands as well as man-elephant conflicts. Furthermore, the land access to north-east Sri Lanka after the end of 30 years long civil war has increased the need of regularly updated land cover information for proper planning. This study produced an assessment of the forest cover of Sri Lanka using two satellite data based maps within 23 years of time span. For the old forest cover map, the study used one of the first island-wide digital land cover classification produced by the main author in 1988. The old land cover classification was produced at 80 m spatial resolution, using Landsat MSS data. A previously published another study by the author has investigated the application feasibility of MODIS and Landsat MSS imagery for a selected sub-section of Sri Lanka to identify the forest cover changes. Through the light of these two studies, the assessment was conducted to investigate the application possibility of MODIS 250 m over a small island like Sri Lanka. The relation between the definition of forest in the study and spatial resolution of the used satellite data sets were considered since the 2012 map was based on MODIS data. The forest cover map of 1988 was interpolated into 250 m spatial resolution to integrate with the GIS data base. The results demonstrated the advantages as well as disadvantages of MODIS data in a study at this scale. The successful monitoring of forest is largely depending on the possibility to update the field conditions at regular basis. Freely available MODIS data provides a very valuable set of information of relatively large green patches on the ground at relatively real-time basis. Based on the changes of forest cover from 1988 to 2012, the study recommends the use of MODIS data as a resalable method to forest assessment and to identify hotspots to be re-investigated. It's noteworthy to mention the possibility of uncounted small isolated pockets of forest, or sub-pixel size forest patches when MODIS 250 m x 250 m data used in small regions.

  9. Candidate old-growth on national forest system administered lands in California since the initiation of national forest management

    Treesearch

    William F. Laudenslayer

    1985-01-01

    The following is a report on the status of Candidate Old-growth (hereafter identified as COG) on National Forest System administered lands in California in the past, a t present, and in the immediate fhture. These r e s u l t s are based on information that may be speculative and contain inconsistencies, and therefore must be treated with caution. COG on these lands...

  10. Forests of Vermont and New Hampshire 2012

    Treesearch

    Randall S. Morin; Chuck J. Barnett; Brett J. Butler; Susan J. Crocker; Grant M. Domke; Mark H. Hansen; Mark A. Hatfield; Jonathan Horton; Cassandra M. Kurtz; Tonya W. Lister; Patrick D. Miles; Mark D. Nelson; Ronald J. Piva; Sandy Wilmot; Richard H. Widmann; Christopher W. Woodall; Robert. Zaino

    2015-01-01

    The first full remeasurement of the annual inventory of the forests of Vermont and New Hampshire was completed in 2012 and covers nearly 9.5 million acres of forest land, with an average volume of nearly 2,300 cubic feet per acre. The data in this report are based on visits to 1,100 plots located across Vermont and 1,091 plots located across New Hampshire. Forest land...

  11. 75 FR 25882 - Notice of Proposed Withdrawal Extension and Opportunity for Public Meeting; Arizona

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-10

    ... National Forest System land from the mining laws for use as a base camp site for the Smithsonian..., 2010. ADDRESSES: Comments and meeting request should be sent to the Coronado National Forest Office... acres of National Forest System land located in Santa Cruz County, Arizona, from location and entry...

  12. Extracting Features of Acacia Plantation and Natural Forest in the Mountainous Region of Sarawak, Malaysia by ALOS/AVNIR2 Image

    NASA Astrophysics Data System (ADS)

    Fadaei, H.; Ishii, R.; Suzuki, R.; Kendawang, J.

    2013-12-01

    The remote sensing technique has provided useful information to detect spatio-temporal changes in the land cover of tropical forests. Land cover characteristics derived from satellite image can be applied to the estimation of ecosystem services and biodiversity over an extensive area, and such land cover information would provide valuable information to global and local people to understand the significance of the tropical ecosystem. This study was conducted in the Acacia plantations and natural forest situated in the mountainous region which has different ecological characteristic from that in flat and low land area in Sarawak, Malaysia. The main objective of this study is to compare extract the characteristic of them by analyzing the ALOS/AVNIR2 images and ground truthing obtained by the forest survey. We implemented a ground-based forest survey at Aacia plantations and natural forest in the mountainous region in Sarawak, Malaysia in June, 2013 and acquired the forest structure data (tree height, diameter at breast height (DBH), crown diameter, tree spacing) and spectral reflectance data at the three sample plots of Acacia plantation that has 10 x 10m area. As for the spectral reflectance data, we measured the spectral reflectance of the end members of forest such as leaves, stems, road surface, and forest floor by the spectro-radiometer. Such forest structure and spectral data were incorporated into the image analysis by support vector machine (SVM) and object-base/texture analysis. Consequently, land covers on the AVNIR2 image were classified into three forest types (natural forest, oil palm plantation and acacia mangium plantation), then the characteristic of each category was examined. We additionally used the tree age data of acacia plantation for the classification. A unique feature was found in vegetation spectral reflectance of Acacia plantations. The curve of the spectral reflectance shows two peaks around 0.3μm and 0.6 - 0.8μm that can be assumed to be corresponded to the reflectance from the bare land part (soil) and forest crown in the Acacia forest, respectively. In accordance with this spectral characteristic, we can estimate the proportional areas of the bare land and crown cover of the tree in the acacia plantation forest that will provide essential information for evaluating the forest ecosystem. We will define Bare land and Tree Crown Ratio Index (BTRI) that represent ratio of the areas of tree crown to areas of their access roads. Such information will delineate the characteristics of Acacia plantation and natural forest in mountainous region, and enable us to compare them with the plantation and forest in flat and low land.

  13. Land cover and forest formation distributions for St. Kitts, Nevis, St. Eustatius, Grenada and Barbados from decision tree classification of cloud-cleared satellite imagery

    USGS Publications Warehouse

    Helmer, E.H.; Kennaway, T.A.; Pedreros, D.H.; Clark, M.L.; Marcano-Vega, H.; Tieszen, L.L.; Ruzycki, T.R.; Schill, S.R.; Carrington, C.M.S.

    2008-01-01

    Satellite image-based mapping of tropical forests is vital to conservation planning. Standard methods for automated image classification, however, limit classification detail in complex tropical landscapes. In this study, we test an approach to Landsat image interpretation on four islands of the Lesser Antilles, including Grenada and St. Kitts, Nevis and St. Eustatius, testing a more detailed classification than earlier work in the latter three islands. Secondly, we estimate the extents of land cover and protected forest by formation for five islands and ask how land cover has changed over the second half of the 20th century. The image interpretation approach combines image mosaics and ancillary geographic data, classifying the resulting set of raster data with decision tree software. Cloud-free image mosaics for one or two seasons were created by applying regression tree normalization to scene dates that could fill cloudy areas in a base scene. Such mosaics are also known as cloud-filled, cloud-minimized or cloud-cleared imagery, mosaics, or composites. The approach accurately distinguished several classes that more standard methods would confuse; the seamless mosaics aided reference data collection; and the multiseason imagery allowed us to separate drought deciduous forests and woodlands from semi-deciduous ones. Cultivated land areas declined 60 to 100 percent from about 1945 to 2000 on several islands. Meanwhile, forest cover has increased 50 to 950%. This trend will likely continue where sugar cane cultivation has dominated. Like the island of Puerto Rico, most higher-elevation forest formations are protected in formal or informal reserves. Also similarly, lowland forests, which are drier forest types on these islands, are not well represented in reserves. Former cultivated lands in lowland areas could provide lands for new reserves of drier forest types. The land-use history of these islands may provide insight for planners in countries currently considering lowland forest clearing for agriculture. Copyright 2008 College of Arts and Sciences.

  14. Nationwide classification of forest types of India using remote sensing and GIS.

    PubMed

    Reddy, C Sudhakar; Jha, C S; Diwakar, P G; Dadhwal, V K

    2015-12-01

    India, a mega-diverse country, possesses a wide range of climate and vegetation types along with a varied topography. The present study has classified forest types of India based on multi-season IRS Resourcesat-2 Advanced Wide Field Sensor (AWiFS) data. The study has characterized 29 land use/land cover classes including 14 forest types and seven scrub types. Hybrid classification approach has been used for the classification of forest types. The classification of vegetation has been carried out based on the ecological rule bases followed by Champion and Seth's (1968) scheme of forest types in India. The present classification scheme has been compared with the available global and national level land cover products. The natural vegetation cover was estimated to be 29.36% of total geographical area of India. The predominant forest types of India are tropical dry deciduous and tropical moist deciduous. Of the total forest cover, tropical dry deciduous forests occupy an area of 2,17,713 km(2) (34.80%) followed by 2,07,649 km(2) (33.19%) under tropical moist deciduous forests, 48,295 km(2) (7.72%) under tropical semi-evergreen forests and 47,192 km(2) (7.54%) under tropical wet evergreen forests. The study has brought out a comprehensive vegetation cover and forest type maps based on inputs critical in defining the various categories of vegetation and forest types. This spatially explicit database will be highly useful for the studies related to changes in various forest types, carbon stocks, climate-vegetation modeling and biogeochemical cycles.

  15. Mapping Secondary Forest Succession on Abandoned Agricultural Land in the Polish Carpathians

    NASA Astrophysics Data System (ADS)

    Kolecka, N.; Kozak, J.; Kaim, D.; Dobosz, M.; Ginzler, Ch.; Psomas, A.

    2016-06-01

    Land abandonment and secondary forest succession have played a significant role in land cover changes and forest cover increase in mountain areas in Europe over the past several decades. Land abandonment can be easily observed in the field over small areas, but it is difficult to map over the large areas, e.g., with remote sensing, due to its subtle and spatially dispersed character. Our previous paper presented how the LiDAR (Light Detection and Ranging) and topographic data were used to detect secondary forest succession on abandoned land in one commune located in the Polish Carpathians by means of object-based image analysis (OBIA) and GIS (Kolecka et al., 2015). This paper proposes how the method can be applied to efficiently map secondary forest succession over the entire Polish Carpathians, incorporating spatial sampling strategy supported by various ancillary data. Here we discuss the methods of spatial sampling, its limitations and results in the context of future secondary forest succession modelling.

  16. Forest inventory with LiDAR and stereo DSM on Washington department of natural resources lands

    Treesearch

    Jacob L. Strunk; Peter J. Gould

    2015-01-01

    DNR’s forest inventory group has completed its first version of a new remote-sensing based forest inventory system covering 1.4 million acres of DNR forest lands. We use a combination of field plots, lidar, NAIP, and a NAIP-derived canopy surface DSM. Given that height drives many key inventory variables (e.g. height, volume, biomass, carbon), remote-sensing derived...

  17. Biophysical climate impacts of recent changes in global forest cover.

    PubMed

    Alkama, Ramdane; Cescatti, Alessandro

    2016-02-05

    Changes in forest cover affect the local climate by modulating the land-atmosphere fluxes of energy and water. The magnitude of this biophysical effect is still debated in the scientific community and currently ignored in climate treaties. Here we present an observation-driven assessment of the climate impacts of recent forest losses and gains, based on Earth observations of global forest cover and land surface temperatures. Our results show that forest losses amplify the diurnal temperature variation and increase the mean and maximum air temperature, with the largest signal in arid zones, followed by temperate, tropical, and boreal zones. In the decade 2003-2012, variations of forest cover generated a mean biophysical warming on land corresponding to about 18% of the global biogeochemical signal due to CO2 emission from land-use change. Copyright © 2016, American Association for the Advancement of Science.

  18. Integrating remotely sensed land cover observations and a biogeochemical model for estimating forest ecosystem carbon dynamics

    USGS Publications Warehouse

    Liu, J.; Liu, S.; Loveland, Thomas R.; Tieszen, L.L.

    2008-01-01

    Land cover change is one of the key driving forces for ecosystem carbon (C) dynamics. We present an approach for using sequential remotely sensed land cover observations and a biogeochemical model to estimate contemporary and future ecosystem carbon trends. We applied the General Ensemble Biogeochemical Modelling System (GEMS) for the Laurentian Plains and Hills ecoregion in the northeastern United States for the period of 1975-2025. The land cover changes, especially forest stand-replacing events, were detected on 30 randomly located 10-km by 10-km sample blocks, and were assimilated by GEMS for biogeochemical simulations. In GEMS, each unique combination of major controlling variables (including land cover change history) forms a geo-referenced simulation unit. For a forest simulation unit, a Monte Carlo process is used to determine forest type, forest age, forest biomass, and soil C, based on the Forest Inventory and Analysis (FIA) data and the U.S. General Soil Map (STATSGO) data. Ensemble simulations are performed for each simulation unit to incorporate input data uncertainty. Results show that on average forests of the Laurentian Plains and Hills ecoregion have been sequestrating 4.2 Tg C (1 teragram = 1012 gram) per year, including 1.9 Tg C removed from the ecosystem as the consequences of land cover change. ?? 2008 Elsevier B.V.

  19. Outlook on forest service lands

    Treesearch

    H. Ken Cordell; Floyd Thompson

    2002-01-01

    In the world, and in the United States there is growing concern about the future of natural land and water, including forests. A part of this concern is to assure a continued source of opportunity for outdoor recreation and forest-based tourism. In 1994, 12 countries assembled to conceptualize a set of indicators for monitoring the conservation and sustainable...

  20. Evidence supporting the need for a common soil monitoring protocol

    Treesearch

    Derrick A. Reeves; Mark D. Coleman; Deborah S. Page-Dumroese

    2013-01-01

    Many public land management agencies monitor forest soils for levels of disturbance related to management activities. Although several soil disturbance monitoring protocols based on visual observation have been developed to assess the amount and types of disturbance caused by forest management, no common method is currently used on National Forest lands in the United...

  1. China's Classification-Based Forest Management: Procedures, Problems, and Prospects

    NASA Astrophysics Data System (ADS)

    Dai, Limin; Zhao, Fuqiang; Shao, Guofan; Zhou, Li; Tang, Lina

    2009-06-01

    China’s new Classification-Based Forest Management (CFM) is a two-class system, including Commodity Forest (CoF) and Ecological Welfare Forest (EWF) lands, so named according to differences in their distinct functions and services. The purposes of CFM are to improve forestry economic systems, strengthen resource management in a market economy, ease the conflicts between wood demands and public welfare, and meet the diversified needs for forest services in China. The formative process of China’s CFM has involved a series of trials and revisions. China’s central government accelerated the reform of CFM in the year 2000 and completed the final version in 2003. CFM was implemented at the provincial level with the aid of subsidies from the central government. About a quarter of the forestland in China was approved as National EWF lands by the State Forestry Administration in 2006 and 2007. Logging is prohibited on National EWF lands, and their landowners or managers receive subsidies of about 70 RMB (US10) per hectare from the central government. CFM represents a new forestry strategy in China and its implementation inevitably faces challenges in promoting the understanding of forest ecological services, generalizing nationwide criteria for identifying EWF and CoF lands, setting up forest-specific compensation mechanisms for ecological benefits, enhancing the knowledge of administrators and the general public about CFM, and sustaining EWF lands under China’s current forestland tenure system. CFM does, however, offer a viable pathway toward sustainable forest management in China.

  2. Idaho forest carbon projections from 2017 to 2117 under forest disturbance and climate change scenarios

    NASA Astrophysics Data System (ADS)

    Hudak, A. T.; Crookston, N.; Kennedy, R. E.; Domke, G. M.; Fekety, P.; Falkowski, M. J.

    2017-12-01

    Commercial off-the-shelf lidar collections associated with tree measures in field plots allow aboveground biomass (AGB) estimation with high confidence. Predictive models developed from such datasets are used operationally to map AGB across lidar project areas. We use a random selection of these pixel-level AGB predictions as training for predicting AGB annually across Idaho and western Montana, primarily from Landsat time series imagery processed through LandTrendr. At both the landscape and regional scales, Random Forests is used for predictive AGB modeling. To project future carbon dynamics, we use Climate-FVS (Forest Vegetation Simulator), the tree growth engine used by foresters to inform forest planning decisions, under either constant or changing climate scenarios. Disturbance data compiled from LandTrendr (Kennedy et al. 2010) using TimeSync (Cohen et al. 2010) in forested lands of Idaho (n=509) and western Montana (n=288) are used to generate probabilities of disturbance (harvest, fire, or insect) by land ownership class (public, private) as well as the magnitude of disturbance. Our verification approach is to aggregate the regional, annual AGB predictions at the county level and compare them to annual county-level AGB summarized independently from systematic, field-based, annual inventories conducted by the US Forest Inventory and Analysis (FIA) Program nationally. This analysis shows that when federal lands are disturbed the magnitude is generally high and when other lands are disturbed the magnitudes are more moderate. The probability of disturbance in corporate lands is higher than in other lands but the magnitudes are generally lower. This is consistent with the much higher prevalence of fire and insects occurring on federal lands, and greater harvest activity on private lands. We found large forest carbon losses in drier southern Idaho, only partially offset by carbon gains in wetter northern Idaho, due to anticipated climate change. Public and private forest managers can use these forest carbon projections to 2117 to inform 2017 decisions on which tree species and seed sources to select for planting, and implement forest management strategies now that may seek to maximize forest carbon sequestration for greenhouse gas abatement a century from now.

  3. Greenhouse gas and air pollutant emissions from land and forest fire in Indonesia during 2015 based on satellite data

    NASA Astrophysics Data System (ADS)

    Pribadi, A.; Kurata, G.

    2017-01-01

    Land and forest fire still become a major problem in environmental management in Indonesia. In this study, we conducted quantitatively assessment of land and forest fire emissions in Indonesia during 2015. We applied methodology of emission inventory based on burned area, biomass density, combustion factor and emission factor for each land cover type using several satellite data such as MODIS burned area, Pantropical National Level Carbon Stock Dataset, as well as Vegetation Condition Index. The greenhouse gases emissions from land and forest fire in Indonesia during 2015 were (in Gg) 806,406 CO2, 8,002 CH4, 96 N2O, while pollutants emissions were (in Gg) 85,268 CO, 1,168 NOx, 340 SO2, 3,093 NMVOC, 1,041 NH3, 259 BC, 1,957 OC, 4,118 PM2.5 and 5,468 PM10. September was the peak of fire season that generate 58% (species average) of total emissions for this year. The largest contribution was from shrubland/savanna burning which account for 66% (species average) of the total emissions, while about 81% of the total emissions were generated from peatland fire. The results of this study emphasizethe importance of proper peatland management in Indonesia as land and forest fire countermeasures strategy.

  4. Forest cover loss and urban area expansion in the Conterminous Unites States in the first decade of the third millennium

    NASA Astrophysics Data System (ADS)

    Huo, L. Z.; Boschetti, L.

    2016-12-01

    Remote sensing has been successfully used for global mapping of changes in forest cover, but further analysis is needed to characterize those changes - and in particular to classify the total loss of forest loss (Gross Forest Cover Loss, GFCL) based on the cause (natural/human) and on the outcome of the change (regeneration to forest/transition to non-forest) (Kurtz et al., 2010). While natural forest disturbances (fires, insect outbreaks) and timber harvest generally involve a temporary change of land cover (vegetated to non-vegetated), they generally do not involve a change in land use, and it is expected that the forest cover loss is followed by recovery. Change of land use, such as the conversion of forest to agricultural or urban areas, is instead generally irreversible. The proper classification of forest cover loss is therefore necessary to properly model the long term effects of the disturbances on the carbon budget. The present study presents a spatial and temporal analysis of the forest cover loss due to urban expansion in the Conterminous United States. The Landsat-derived University of Maryland Global Forest Change product (Hansen et al, 2013) is used to identify all the areas of gross forest cover loss, which are subsequently classified into disturbance type (deforestation, stand-replacing natural disturbances, industrial forest clearcuts) using an object-oriented time series analysis (Huo and Boschetti, 2015). A further refinement of the classification is conducted to identify the areas of transition from forest land use to urban land use based on ancillary datasets such as the National Land Cover Database (Homer et al., 2015) and contextual image analysis techniques (analysis of object proximity, and detection of shapes). Results showed that over 4000 km2of forest were lost to urban area expansion in CONUS over the 2001 to 2010 period (1.8% of the gross forest cover loss). Most of the urban growth was concentrated in large urban areas: Atlanta, GA ranked first, followed by Houston, TX; Charlotte, NC; Jacksonville, FL; and Raleigh, NC. At the state level, the top 10 states with urban growth due to forest loss were GA, FL, TX, NC, SC, AL, LA, MS, VA and WA, which cumulatively accounted for 76 % of the total forest cover loss due to urban growth.

  5. Evaluating differences in forest fragmentation and restoration between western natural forests and southeastern plantation forests in the United States.

    PubMed

    Ren, Xinyu; Lv, Yingying; Li, Mingshi

    2017-03-01

    Changes in forest ecosystem structure and functions are considered some of the research issues in landscape ecology. In this study, advancing Forman's theory, we considered five spatially explicit processes associated with fragmentation, including perforation, dissection, subdivision, shrinkage, and attrition, and two processes associated with restoration, i.e., increment and expansion processes. Following this theory, a forest fragmentation and restoration process model that can detect the spatially explicit processes and ecological consequences of forest landscape change was developed and tested in the current analysis. Using the National Land Cover Databases (2001, 2006 and 2011), the forest fragmentation and restoration process model was applied to US western natural forests and southeastern plantation forests to quantify and classify forest patch losses into one of the four fragmentation processes (the dissection process was merged into the subdivision process) and to classify the newly gained forest patches based on the two restoration processes. At the same time, the spatio-temporal differences in fragmentation and restoration patterns and trends between natural forests and plantations were further compared. Then, through overlaying the forest fragmentation/restoration processes maps with targeting year land cover data and land ownership vectors, the results from forest fragmentation and the contributors to forest restoration in federal and nonfederal lands were identified. Results showed that, in natural forests, the forest change patches concentrated around the urban/forest, cultivated/forest, and shrubland/forest interfaces, while the patterns of plantation change patches were scattered sparsely and irregularly. The shrinkage process was the most common type in forest fragmentation, and the average size was the smallest. Expansion, the most common restoration process, was observed in both natural forests and plantations and often occurred around the previous expansion or covered the previous subdivision or shrinkage processes. The overall temporal fragmentation pattern of natural forests had a "perforation-subdivision/shrinkage-attrition" pathway, which corresponded to Forman's landscape fragmentation rule, while the plantation forests did not follow the rule strictly. The main land cover types resulted from forest fragmentation in natural forests and plantation forests were shrubland and herbaceous, mainly through subdivision and shrinkages process. The processes and effects of restoration of plantation forests were more diverse and efficient, compared to the natural forest, which were simpler with a lower regrowth rate. The fragmentation mostly occurred in nonfederal lands. In natural forests, forest fragmentation pattern differed in different land tenures, yet plantations remained the same in federal and nonfederal lands. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. 36 CFR 219.11 - Timber requirements based on the NFMA.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 2 2012-07-01 2012-07-01 false Timber requirements based on the NFMA. 219.11 Section 219.11 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE PLANNING National Forest System Land Management Planning § 219.11 Timber requirements based on the...

  7. 36 CFR 219.11 - Timber requirements based on the NFMA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 2 2014-07-01 2014-07-01 false Timber requirements based on the NFMA. 219.11 Section 219.11 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE PLANNING National Forest System Land Management Planning § 219.11 Timber requirements based on the...

  8. 36 CFR 219.11 - Timber requirements based on the NFMA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 2 2013-07-01 2013-07-01 false Timber requirements based on the NFMA. 219.11 Section 219.11 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE PLANNING National Forest System Land Management Planning § 219.11 Timber requirements based on the...

  9. 78 FR 7391 - Motorized Travel Management Plan, Tonto National Forest; Gila, Maricopa, Pinal, and Counties, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-01

    ... Federal lands. The regulations provide ``for a system of National Forest System (NFS) roads, NFS trails, and areas of NFS lands that are designated for motor vehicle use. Motor vehicle use off designated... travel and for administration, utilization, and protection of NFS lands (36 CFR 212.5(b)). Based on...

  10. Lake States natural resource managers' perspectives on forest land parcelization and its implications for public land management

    Treesearch

    Michael A. Kilgore; Stephanie A. Snyder

    2016-01-01

    Field-based public natural resource managers in the Lake States (MI, MN, WI) were surveyed for theirperspectives on various aspects of private forest land parcelization. This includes their perceptions ofrecent changes in parcelization activity, drivers and impacts, mitigation strategies, and ability to influenceparcelization. Their perspectives on the implications...

  11. Land Allocation in the Southeastern U.S. in Response to Climate Change Impacts on Forestry and Agriculture

    Treesearch

    Brian C. Murray; Robert C. Abt; David N. Wear; Peter J. Parks; Ian W. Hardie

    2001-01-01

    Forest and agriculture are the two dominant land uses in the Southeastern U.S., collectively accounting for almost 90 percent of the land base. Differences in climate change impacts on forest and agricultural productivity can lead to reallocations of land between the two sectors as landowners adjust to the changes in economic conditions. In this paper, we apply the...

  12. Using indigenous knowledge to link hyper-temporal land cover mapping with land use in the Venezuelan Amazon: "The Forest Pulse".

    PubMed

    Olivero, Jesús; Ferri, Francisco; Acevedo, Pelayo; Lobo, Jorge M; Fa, John E; Farfán, Miguel Á; Romero, David; Real, Raimundo

    2016-12-01

    Remote sensing and traditional ecological knowledge (TEK) can be combined to advance conservation of remote tropical regions, e.g. Amazonia, where intensive in situ surveys are often not possible. Integrating TEK into monitoring and management of these areas allows for community participation, as well as for offering novel insights into sustainable resource use. In this study, we developed a 250 m resolution land-cover map of the Western Guyana Shield (Venezuela) based on remote sensing, and used TEK to validate its relevance for indigenous livelihoods and land uses. We first employed a hyper-temporal remotely sensed vegetation index to derive a land classification system. During a 1 300 km, eight day fluvial expedition in roadless areas in the Amazonas State (Venezuela), we visited six indigenous communities who provided geo-referenced data on hunting, fishing and farming activities. We overlaid these TEK data onto the land classification map, to link land classes with indigenous use. We characterized land classes using patterns of greenness temporal change and topo-hydrological information, and proposed 12 land-cover types, grouped into five main landscapes: 1) water bodies; 2) open lands/forest edges; 3) evergreen forests; 4) submontane semideciduous forests, and 5) cloud forests. Each land cover class was identified with a pulsating profile describing temporal changes in greenness, hence we labelled our map as "The Forest Pulse". These greenness profiles showed a slightly increasing trend, for the period 2000 to 2009, in the land classes representing grassland and scrubland, and a slightly decreasing trend in the classes representing forests. This finding is consistent with a gain in carbon in grassland as a consequence of climate warming, and also with some loss of vegetation in the forests. Thus, our classification shows potential to assess future effects of climate change on landscape. Several classes were significantly connected with agriculture, fishing, overall hunting, and more specifically the hunting of primates, Mazama americana, Dasyprocta fuliginosa, and Tayassu pecari. Our results showed that TEK-based approaches can serve as a basis for validating the livelihood relevance of landscapes in high-value conservation areas, which can form the basis for furthering the management of natural resources in these regions.

  13. Production rates and costs of group-selection harvests with ground-based logging system

    Treesearch

    Chris B. LeDoux; Michael D. Erickson; Curt C. Hassler

    1993-01-01

    As increased demands are placed on forest land for timber production, wildlife, esthetics, recreation, hunting, fishing, and other uses, owners of woodlots and forest land are looking for different ways to harvest or treat the stands to accomplish their objectives. The large clearcut harvest blocks that had been the standard for years with the forest industry are not...

  14. Applying the 2012 Planning Rule to conserve species: A practitioner's reference

    Treesearch

    Gregory D. Hayward; Curtis H. Flather; Mary M. Rowland; Regis Terney; Kim Mellen-McLean; Karl D. Malcolm; Clinton McCarthy; Douglas A. Boyce

    2016-01-01

    The National Forest Management Act of 1976 (NFMA) directs managers of National Forest System (NFS) lands to "provide for diversity of plant and animal communities based on the suitability and capability of the specific land area in order to meet overall multiple-use objectives." The mandate is challenging and is embraced by the Forest Service. At the...

  15. Climate changes impact the surface albedo of a forest ecosystem based on MODIS satellite data

    NASA Astrophysics Data System (ADS)

    Zoran, M. A.; Nemuc, A. V.

    2007-10-01

    Surface albedo is one of the most important biophysical parameter responsible for energy balance control and the surface temperature and boundary-layer structure of the atmosphere. Forest land surface albedo is also highly variable temporally showing both diurnal as well as seasonal variations. In forest systems, albedo controls the microclimate conditions which affects ecosystem physical, physiological, and biogeochemical processes such as energy balance, evapotranspiration, photosynthesis. Due to anthropogenic and natural factors, land cover and land use changes result is the land surfaces albedo change. The main aim of this paper is to investigate the albedo patterns due to the impact of atmospheric pollution and climate variations of a forest ecosystem Branesti-Cernica, placed to the North-East of Bucharest city, Romania based on satellite Landsat ETM+, IKONOS and MODIS data and climate station observations. Our study focuses on 3 years of data (2003-2005), each of which had a different climatic regime. As the physical climate system is very sensitive to surface albedo, forest ecosystems could significantly feedback to the projected climate change modeling scenarios through albedo changes. The results of this research have a number of applications in weather forecasting, climate change, and forest ecosystem studies.

  16. Forest management applications of Landsat data in a geographic information system

    NASA Technical Reports Server (NTRS)

    Maw, K. D.; Brass, J. A.

    1982-01-01

    The utility of land-cover data resulting from Landsat MSS classification can be greatly enhanced by use in combination with ancillary data. A demonstration forest management applications data base was constructed for Santa Cruz County, California, to demonstrate geographic information system applications of classified Landsat data. The data base contained detailed soils, digital terrain, land ownership, jurisdictional boundaries, fire events, and generalized land-use data, all registered to a UTM grid base. Applications models were developed from problems typical of fire management and reforestation planning.

  17. Restoring Forests and Associated Ecosystem Services on Appalachian Coal Surface Mines

    NASA Astrophysics Data System (ADS)

    Zipper, Carl E.; Burger, James A.; Skousen, Jeffrey G.; Angel, Patrick N.; Barton, Christopher D.; Davis, Victor; Franklin, Jennifer A.

    2011-05-01

    Surface coal mining in Appalachia has caused extensive replacement of forest with non-forested land cover, much of which is unmanaged and unproductive. Although forested ecosystems are valued by society for both marketable products and ecosystem services, forests have not been restored on most Appalachian mined lands because traditional reclamation practices, encouraged by regulatory policies, created conditions poorly suited for reforestation. Reclamation scientists have studied productive forests growing on older mine sites, established forest vegetation experimentally on recent mines, and identified mine reclamation practices that encourage forest vegetation re-establishment. Based on these findings, they developed a Forestry Reclamation Approach (FRA) that can be employed by coal mining firms to restore forest vegetation. Scientists and mine regulators, working collaboratively, have communicated the FRA to the coal industry and to regulatory enforcement personnel. Today, the FRA is used routinely by many coal mining firms, and thousands of mined hectares have been reclaimed to restore productive mine soils and planted with native forest trees. Reclamation of coal mines using the FRA is expected to restore these lands' capabilities to provide forest-based ecosystem services, such as wood production, atmospheric carbon sequestration, wildlife habitat, watershed protection, and water quality protection to a greater extent than conventional reclamation practices.

  18. Fifty years dynamics of Russian forests: Impacts on the earth system

    NASA Astrophysics Data System (ADS)

    Shvidenko, Anatoly; Schepaschenko, Dmitry; Kraxner, Florian

    2015-04-01

    The paper presents a succinct history of Russian forests during the time period of 1960-2010 and reanalysis of their impacts on global carbon and nitrogen cycles. We present dynamics of land cover change (including major categories of forest land) and biometric characteristics of forests (species composition, age structure, growing stock volume etc.) based on reconciling all relevant information (data of forest and land inventories, official forest management statistics, multi-sensor remote sensing products, data of forest pathological monitoring etc.). Completeness and reliability of background information was different during the period of the study. Forest inventory data and official statistics were partially modified based on relevant auxiliary information and used for 1960-2000. The analysis for 2001-2010 was provided with a crucial use of multi-sensor remote sensing data. For this last period a hybrid forest mask was developed at resolution of 230m by integration of 8 remote sensing products and using geographical weighted regression and data of crowdsourcing. During the considered 50 years forested areas of Russia substantially increased by middle of 1990s and slightly declined (at about 5%) after. Indicators needed for assessment of carbon and nitrogen cycles of forest ecosystems were defined for the entire period (aggregated estimates by decades for 1960-2000 and yearly for 2001-2010) based on unified methodology with some peculiarities following from availability of information. Major results were obtained by landscape-ecosystem method that uses as comprehensive as possible empirical and semi-empirical information on ecosystems and landscapes in form of an Integrated Land Information System and complimentary combines pool- and flux-based methods. We discuss and quantify major drivers of forest cover change (socio-economic, environmental and climatic) including forest management (harvest, reforestation and afforestation), impacts of seasonal weather on carbon fluxes (Net Primary Production, Heterotrophic Respiration), disturbances (fire, outbreaks of insects and diseases), and industrial pressure (land change, air pollution, water and soil contamination). During the entire period Russian forests provided the net carbon sink in range from 350-700 Tg C yr-1 with inter-annual variability in limits of 10-15% for the entire country. The overall sink is a result of superposition of trends of major carbon fluxes (caused by removal of harvested wood and use of forest products; land cover change; impact of climatic trends; change of disturbance regimes) and inter-annual variation of seasonal weather. Major indicators of the nitrogen cycle are assessed and discussed in connection with the carbon cycle. We provide comparative analysis of other results published for the considered period taken into account successive improvements of information and methodology used for studying the major biogeochemical cycles.

  19. Estimating number and size of forest patches from FIA plot data

    Treesearch

    Mark D. Nelson; Andrew J. Lister; Mark H. Hansen

    2009-01-01

    Forest inventory and analysis (FIA) annual plot data provide for estimates of forest area, type, volume, growth, and other attributes. Estimates of forest landscape metrics, such as those describing abundance, size, and shape of forest patches, however, typically are not derived from FIA plot data but from satellite image-based land cover maps. Associating image-based...

  20. The forest resources of Vermont

    Treesearch

    Neal P. Kingsley

    1977-01-01

    A statistical and analytical report on the third forest survey of Vermont by the USDA Forest Service. Statistical findings are based on the remeasurement of 1/5-acre plots and 10-point cluster plots. This report discusses and analyzes trends in forest-land area, timber volume, annual growth, and timber removals. Timber-products output by forest industries, based upon a...

  1. Current challenges and realities for forest-based businesses adjacent to public lands in the United States

    Treesearch

    Emily J. Davis; Jesse Abrams; Eric M. White; Cassandra Moseley

    2018-01-01

    Through contracting and timber sales, the private sector is engaged in management of national forest lands and local community economies in the United States. But there is little recent research about current relationships between these lands and timber purchasers that could better inform future timber and biomass sale and business assistance policies and programs. We...

  2. The role of reforestation in carbon sequestration

    NASA Astrophysics Data System (ADS)

    Nave, L. E.; Walters, B. F.; Hofmeister, K.; Perry, C. H.; Mishra, U.; Domke, G. M.; Swanston, C.

    2017-12-01

    In the United States (U.S.), the maintenance of forest cover is a legal mandate for federally managed forest lands. Reforestation is one option for maintaining forest cover on managed or disturbed lands, and as a land use change can increase forest cover on previously non-forested lands, enhancing carbon (C)-based ecosystem services and functions such as the production of woody biomass for forest products and the mitigation of atmospheric CO2 pollution and climate change. Nonetheless, multiple assessments indicate that reforestation in the U.S. lags behind its potential, with continued ecosystem services and functions at risk if reforestation is not increased. In this context, there is need for multiple independent analyses that quantify the role of reforestation in C sequestration. Here, we report the findings of a large-scale data synthesis aimed at four objectives: 1) estimate C storage in major pools in forest and other land cover types; 2) quantify sources of variation in C pools; 3) compare the impacts of reforestation and afforestation on C pools; 4) assess whether results hold or diverge across ecoregions. Our data-driven analysis provides four key inferences regarding reforestation and other land use impacts on C sequestration. First, soils are the dominant C pool under all land cover types in the U.S., and spatial variation in soil C pool sizes has less to do with land cover than with other factors. Second, where historically cultivated lands are being reforested, topsoils are sequestering significant amounts of C, with the majority of reforested lands yet to reach sequestration capacity (relative to forested baseline). Third, the establishment of woody vegetation delivers immediate to multi-decadal C sequestration benefits in biomass and coarse woody debris pools, with two- to three-fold C sequestration benefits during the first several decades following planting. Fourth, opportunities to enhance C sequestration through reforestation vary among ecoregions, according to current levels of planting, typical forest growth rates, and past land uses (especially cultivation). Altogether, our results suggest that an immediate, but phased and spatially targeted approach to reforestation can enhance C sequestration in forest biomass and soils in the U.S. for decades to centuries to come.

  3. Mosquito Larval Habitats, Land Use, and Potential Malaria Risk in Northern Belize from Satellite Image Analyses

    NASA Technical Reports Server (NTRS)

    Pope, Kevin; Masuoka, Penny; Rejmankova, Eliska; Grieco, John; Johnson, Sarah; Roberts, Donald

    2004-01-01

    The distribution of Anopheles mosquito habitats and land use in northern Belize is examined with satellite data. -A land cover classification based on multispectral SPOT and multitemporal Radarsat images identified eleven land cover classes, including agricultural, forest, and marsh types. Two of the land cover types, Typha domingensis marsh and flooded forest, are Anopheles vestitipennis larval habitats. Eleocharis spp. marsh is the larval habitat for Anopheles albimanus. Geographic Information Systems (GIS) analyses of land cover demonstrate that the amount of T-ha domingensis in a marsh is positively correlated with the amount of agricultural land in the adjacent upland, and negatively correlated with the amount of adjacent forest. This finding is consistent with the hypothesis that nutrient (phosphorus) runoff from agricultural lands is causing an expansion of Typha domingensis in northern Belize. This expansion of Anopheles vestitipennis larval habitat may in turn cause an increase in malaria risk in the region.

  4. Impacts of Myanmar's Democratic Transition on its Land Cover Dynamics.

    NASA Astrophysics Data System (ADS)

    Biswas, S.

    2016-12-01

    Recently Myanmar transitioned from a closed economy, military government to market based economy and democracy. The impacts of the political and economic transition on its land cover can be described by characterizing the land cover dynamics during the transition period. Preliminary stratified sampling of forest conversions revealed that most changes from forest to non-forest are due to establishment of rubber plantations. Agricultural concessions are granted by the government to develop the agriculture sector and rubber is the most common plantation crop in Southern Myanmar. This study establishes a method to map and quantify the extent and age of rubber plantations in Thaton district of Myanmar using satellite remote sensing, GIS and ground data. The resultant rubber maps can be used to inform policy on land use planning, agriculture, forest and sustainable development.

  5. Chapter 3: Selecting materials for mine soil construction when establishing forests on Appalachian mined lands

    Treesearch

    Jeff Skousen; Carl Zipper; Jim Burger; Christopher Barton; Patrick. Angel

    2017-01-01

    The Forestry Reclamation Approach (FRA), a method for reclaiming coal-mined land to forest (Chapter 2, this volume), is based on research, knowledge, and experience of forest soil scientists and reclamation practitioners. Step 1 of the FRA is to create a suitable rooting medium for good tree growth that is no less than 4 feet deep and consists of topsoil, weathered...

  6. A stochastic Forest Fire Model for future land cover scenarios assessment

    NASA Astrophysics Data System (ADS)

    D'Andrea, M.; Fiorucci, P.; Holmes, T. P.

    2010-10-01

    Land cover is affected by many factors including economic development, climate and natural disturbances such as wildfires. The ability to evaluate how fire regimes may alter future vegetation, and how future vegetation may alter fire regimes, would assist forest managers in planning management actions to be carried out in the face of anticipated socio-economic and climatic change. In this paper, we present a method for calibrating a cellular automata wildfire regime simulation model with actual data on land cover and wildfire size-frequency. The method is based on the observation that many forest fire regimes, in different forest types and regions, exhibit power law frequency-area distributions. The standard Drossel-Schwabl cellular automata Forest Fire Model (DS-FFM) produces simulations which reproduce this observed pattern. However, the standard model is simplistic in that it considers land cover to be binary - each cell either contains a tree or it is empty - and the model overestimates the frequency of large fires relative to actual landscapes. Our new model, the Modified Forest Fire Model (MFFM), addresses this limitation by incorporating information on actual land use and differentiating among various types of flammable vegetation. The MFFM simulation model was tested on forest types with Mediterranean and sub-tropical fire regimes. The results showed that the MFFM was able to reproduce structural fire regime parameters for these two regions. Further, the model was used to forecast future land cover. Future research will extend this model to refine the forecasts of future land cover and fire regime scenarios under climate, land use and socio-economic change.

  7. Modelling past land use using archaeological and pollen data

    NASA Astrophysics Data System (ADS)

    Pirzamanbein, Behnaz; Lindström, johan; Poska, Anneli; Gaillard-Lemdahl, Marie-José

    2016-04-01

    Accurate maps of past land use are necessary for studying the impact of anthropogenic land-cover changes on climate and biodiversity. We develop a Bayesian hierarchical model to reconstruct the land use using Gaussian Markov random fields. The model uses two observations sets: 1) archaeological data, representing human settlements, urbanization and agricultural findings; and 2) pollen-based land estimates of the three land-cover types Coniferous forest, Broadleaved forest and Unforested/Open land. The pollen based estimates are obtained from the REVEALS model, based on pollen counts from lakes and bogs. Our developed model uses the sparse pollen-based estimations to reconstruct the spatial continuous cover of three land cover types. Using the open-land component and the archaeological data, the extent of land-use is reconstructed. The model is applied on three time periods - centred around 1900 CE, 1000 and, 4000 BCE over Sweden for which both pollen-based estimates and archaeological data are available. To estimate the model parameters and land use, a block updated Markov chain Monte Carlo (MCMC) algorithm is applied. Using the MCMC posterior samples uncertainties in land-use predictions are computed. Due to lack of good historic land use data, model results are evaluated by cross-validation. Keywords. Spatial reconstruction, Gaussian Markov random field, Fossil pollen records, Archaeological data, Human land-use, Prediction uncertainty

  8. [Spatial pattern of land surface dead combustible fuel load in Huzhong forest area in Great Xing'an Mountains].

    PubMed

    Liu, Zhi-Hua; Chang, Yu; Chen, Hong-Wei; Zhou, Rui; Jing, Guo-Zhi; Zhang, Hong-Xin; Zhang, Chang-Meng

    2008-03-01

    By using geo-statistics and based on time-lag classification standard, a comparative study was made on the land surface dead combustible fuels in Huzhong forest area in Great Xing'an Mountains. The results indicated that the first level land surface dead combustible fuel, i. e., 1 h time-lag dead fuel, presented stronger spatial auto-correlation, with an average of 762.35 g x m(-2) and contributing to 55.54% of the total load. Its determining factors were species composition and stand age. The second and third levels land surface dead combustible fuel, i. e., 10 h and 100 h time-lag dead fuels, had a sum of 610.26 g x m(-2), and presented weaker spatial auto-correlation than 1 h time-lag dead fuel. Their determining factor was the disturbance history of forest stand. The complexity and heterogeneity of the factors determining the quality and quantity of forest land surface dead combustible fuels were the main reasons for the relatively inaccurate interpolation. However, the utilization of field survey data coupled with geo-statistics could easily and accurately interpolate the spatial pattern of forest land surface dead combustible fuel loads, and indirectly provide a practical basis for forest management.

  9. Three Global Land Cover and Use Stage considering Environmental Condition and Economic Development

    NASA Astrophysics Data System (ADS)

    Lee, W. K.; Song, C.; Moon, J.; Ryu, D.

    2016-12-01

    The Mid-Latitude zone can be broadly defined as part of the hemisphere between around 30° - 60° latitude. This zone is a home to over more than 50% of the world population and encompasses about 36 countries throughout the principal regions which host most of the global problems related to development and poverty. Mid-Latitude region and its ecotone demands in-depth analysis, however, latitudinal approach has not been widely recognized, considering that many of natural resources and environment indicators, as well as social and economic indicators are based on administrative basis or by country and regional boundaries. This study sets the land cover change and use stage based on environmental condition and economic development. Because various land cover and use among the regions, form vegetated parts of East Asia and Mediterranean to deserted parts of Central Asia, the forest area was varied between countries. In addition, some nations such as North Korea, Afghanistan, Pakistan showed decreasing trends in forest area whereas some nations showed increasing trends in forest area. The economic capacity for environmental activities and policies for restoration were different among countries. By adopting the standard from IMF or World Bank, developing and developed counties were classified. Based on the classification, this study suggested the land cover and use stages as degradation, restoration, and sustainability. As the degradation stage, the nations which had decreasing forest area with less environmental restoration capacity based on economic size were selected. As the restoration stage, the nation which had increasing forest area or restoration capacity were selected. In the case of the sustainability, the nation which had enough restoration capacity with increasing forest area or small ratio in forest area decreasing were selected. In reviewing some of the past and current major environmental challenges that regions of Mid-Latitudes are facing, grouping by land cover and use stage provides environmental rationale of research, which enables better understanding on the function and interaction of ecosystem from various perspectives with preparing global climate change and sustainable management of natural resources. Keywords: Global land stage, Degradation, Restoration, Sustainability, Mid-Latitude

  10. Minnesota's forest resources in 2004

    Treesearch

    Patrick D. Miles; Gary J. Brand; Manfred E. Mielke

    2006-01-01

    This report presents forest statistics based on the five annual inventory panels measured from 2000 through 2004. Forest area is estimated at 16.2 million acres or 32 percent of the total land area in the State. Important pests in Minnesota forests include the forest tent caterpillar and spruce budworm.

  11. Soil nutrients and stoichiometric ratios as affected by land use and lithology at county scale in a karst area, southwest China.

    PubMed

    Wang, Miaomiao; Chen, Hongsong; Zhang, Wei; Wang, Kelin

    2018-04-01

    Soil carbon (C), nitrogen (N), and phosphorus (P) are the main soil nutrients required for plant development and their stoichiometric ratios are important indicators of ecosystem functions. However, there have been few studies on the effects of land use and lithology on soil nutrients and stoichiometric ratios, especially in karst areas with extremely fragile geology and intensive human disturbance. To evaluate the synergistic effect of land use and lithology, soil samples at depth of 0-15cm were collected from five land-use types (arable land, plantation forest, grassland, shrubland, and secondary forest) over three lithologies (karst dolomite and limestone and non-karst clasolite) in a typical karst area in southwest China. For natural succession, grassland, shrubland, and secondary forest corresponded to the early, middle, and late successional stage after agricultural abandonment, while from arable land to plantation forest can be treated as a manual reversion after agricultural abandonment. The results showed that, in dolomite, soil organic C (SOC) and total N (TN) increased continuously with natural succession and increased in plantation forest compared to arable land. Total P (TP) continued to decrease from arable land to grassland and then to shrubland. In limestone, SOC and TN did not follow the same pattern because SOC and TN were slightly higher in grassland than shrubland, while TN was slightly lower in plantation forest compared to arable land. TP was remarkably higher in arable land than the other land-use types. For clasolite, SOC was highest in grassland, while TN was not significantly different among land-use types. Compared to arable land, TP was lower in other types of land use. These soil nutrient characteristics led to various stoichiometric ratios under the five land-use types over different lithologies. Therefore, ecological restoration projects based on land use conversion should consider differences in regional lithology and human disturbance. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Representative landscapes in the forested area of Canada.

    PubMed

    Cardille, Jeffrey A; White, Joanne C; Wulder, Mike A; Holland, Tara

    2012-01-01

    Canada is a large nation with forested ecosystems that occupy over 60% of the national land base, and knowledge of the patterns of Canada's land cover is important to proper environmental management of this vast resource. To this end, a circa 2000 Landsat-derived land cover map of the forested ecosystems of Canada has created a new window into understanding the composition and configuration of land cover patterns in forested Canada. Strategies for summarizing such large expanses of land cover are increasingly important, as land managers work to study and preserve distinctive areas, as well as to identify representative examples of current land-cover and land-use assemblages. Meanwhile, the development of extremely efficient clustering algorithms has become increasingly important in the world of computer science, in which billions of pieces of information on the internet are continually sifted for meaning for a vast variety of applications. One recently developed clustering algorithm quickly groups large numbers of items of any type in a given data set while simultaneously selecting a representative-or "exemplar"-from each cluster. In this context, the availability of both advanced data processing methods and a nationally available set of landscape metrics presents an opportunity to identify sets of representative landscapes to better understand landscape pattern, variation, and distribution across the forested area of Canada. In this research, we first identify and provide context for a small, interpretable set of exemplar landscapes that objectively represent land cover in each of Canada's ten forested ecozones. Then, we demonstrate how this approach can be used to identify flagship and satellite long-term study areas inside and outside protected areas in the province of Ontario. These applications aid our understanding of Canada's forest while augmenting its management toolbox, and may signal a broad range of applications for this versatile approach.

  13. Representative Landscapes in the Forested Area of Canada

    NASA Astrophysics Data System (ADS)

    Cardille, Jeffrey A.; White, Joanne C.; Wulder, Mike A.; Holland, Tara

    2012-01-01

    Canada is a large nation with forested ecosystems that occupy over 60% of the national land base, and knowledge of the patterns of Canada's land cover is important to proper environmental management of this vast resource. To this end, a circa 2000 Landsat-derived land cover map of the forested ecosystems of Canada has created a new window into understanding the composition and configuration of land cover patterns in forested Canada. Strategies for summarizing such large expanses of land cover are increasingly important, as land managers work to study and preserve distinctive areas, as well as to identify representative examples of current land-cover and land-use assemblages. Meanwhile, the development of extremely efficient clustering algorithms has become increasingly important in the world of computer science, in which billions of pieces of information on the internet are continually sifted for meaning for a vast variety of applications. One recently developed clustering algorithm quickly groups large numbers of items of any type in a given data set while simultaneously selecting a representative—or "exemplar"—from each cluster. In this context, the availability of both advanced data processing methods and a nationally available set of landscape metrics presents an opportunity to identify sets of representative landscapes to better understand landscape pattern, variation, and distribution across the forested area of Canada. In this research, we first identify and provide context for a small, interpretable set of exemplar landscapes that objectively represent land cover in each of Canada's ten forested ecozones. Then, we demonstrate how this approach can be used to identify flagship and satellite long-term study areas inside and outside protected areas in the province of Ontario. These applications aid our understanding of Canada's forest while augmenting its management toolbox, and may signal a broad range of applications for this versatile approach.

  14. The forest resources of New Hampshire

    Treesearch

    Neil P. Kingsley

    1976-01-01

    A statistical and analytical report on the third forest survey of New Hampshire. Statistical findings are based on the remeasurement of 1/5-acre plots and new 10-point cluster plots. Trends in forest-land area, timber volume, annual growth, and timber removals are discussed; also timber-products output by forest industries, based upon a canvass of industries in 1973,...

  15. Landowner attitudes and perceptions of forest and wildlife management in rural northern Missouri

    Treesearch

    Brian E. Schweiss; John Dwyer

    2008-01-01

    Improving Missouri's forest lands depend on private landowners. Cluster analysis was used to combine nonindustrial private forest landowners with similar interests based on attitudinal information gathered from a mail questionnaire to forest landowners in Macon County, MO. Clusters were analyzed based on objective data gathered in the questionnaire. Seven types of...

  16. Measuring impacts of community forestry program through repeat photography and satellite remote sensing in the Dolakha district of Nepal.

    PubMed

    Niraula, Rabin Raj; Gilani, Hammad; Pokharel, Bharat Kumar; Qamer, Faisal Mueen

    2013-09-15

    During the 1990's community-based forest management gained momentum in Nepal. This study systematically evaluates the impacts that this had on land cover change and other associated aspects during the period 1990-2010 using repeat photography and satellite imagery in combination with interviews with community members. The results of the study clearly reflect the success of community-based forest management in the Dolakha district of the mid-hills of Nepal: during the study period, the rate of conversion of sparse forest into dense forest under community-based management was found to be between 1.13% and 3.39% per year. Similarly, the rate of conversion of non-forest area into forest was found to be between 1.11% and 1.96% per year. Community-based forest management has resulted in more efficient use of forest resources, contributed to a decline in the use of slash-and-burn agricultural practices, reduced the incidence of forest fires, spurred tree plantation, and encouraged the conservation and protection of trees on both public and private land. The resulting reclamation of forest in landside areas and river banks and the overall improvement in forest cover in the area has reduced flash floods and associated landslides. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Land-use systems and resilience of tropical rain forests in the Tehuantepec Isthmus, Mexico.

    PubMed

    García-Romero, Arturo; Oropeza-Orozco, Oralia; Galicia-Sarmiento, Leopoldo

    2004-12-01

    Land-cover types were analyzed for 1970, 1990 and 2000 as the bases for determining land-use systems and their influence on the resilience of tropical rain forests in the Tehuantepec Isthmus, Mexico. Deforestation (DR) and mean annual transformation rates were calculated from land-cover change data; thus, the classification of land-use change processes was determined according to their impact on resilience: a) Modification, including land-cover conservation and intensification, and b) Conversion, including disturbance and regeneration processes. Regeneration processes, from secondary vegetation under extensive use, cultivated vegetation under intensive use, and cultivated or induced vegetation under extensive use to mature or secondary vegetation, have high resilience capacity. In contrast, cattle-raising is characterized by rapid expansion, long-lasting change, and intense damages; thus, recent disturbance processes, which include the conversion to cattle-raising, provoke the downfall of the traditional agricultural system, and nullify the capacity of resilience of tropical rain forest. The land-use cover change processes reveal a) the existence of four land-use systems (forestry, extensive agriculture, extensive cattle-raising, and intensive uses) and b) a trend towards the replacement of agricultural and forestry systems by extensive cattle-raising, which was consolidated during 1990-2000 (DR of evergreen tropical rain forest = 4.6%). Only the forestry system, which is not subject to deforestation, but is affected by factors such as selective timber, extraction, firewood collection, grazing, or human-induced fire, is considered to have high resilience (2 years), compared to agriculture (2-10 years) or cattle-raising (nonresilient). It is concluded that the analysis of land-use systems is essential for understanding the implications of land-use cover dynamics on forest recovery and land degradation in tropical rain forests.

  18. Communications: Mosquito Habitats, Land Use, and Malaria Risk in Belize from Satellite Imagery

    NASA Technical Reports Server (NTRS)

    Pope, Kevin; Masuoka, Penny; Rejmankova, Eliska; Grieco, John; Johnson, Sarah; Roberts, Donald

    2004-01-01

    Satellite imagery of northern Belize is used to examine the distribution of land use and breeding habitats of the malaria vector the Anopheles mosquito. A land cover classification based on multispectral SPOT and multitemporal Radarsat images identified eleven land cover classes, including agricultural, forest, and marsh types. Two of the land cover types, Typha domingensis marsh and flooded forest, are Anopheles vestitipennis larval habitats, and one, Eleocharis spp. marsh, is the larval habitat for Anopheles albimanus. Geographic Information Systems (GIS) analyses of land cover demonstrate that the amount of Typha domingensis in a marsh is positively correlated with the amount of agricultural land in the adjacent upland, and negatively correlated with the amount of adjacent forest. This finding is consistent with the hypothesis that nutrient (phosphorus) runoff from agricultural lands is causing an expansion of Typha domingensis in northern Belize. Thus, land use induced expansion of Anopheles vestitipennis larval habitat is potentially increasing malaria risk in Belize, and in other regions where Anopheles vestitipennis is a major malaria vector.

  19. Hydrologic impacts of climate and land use changes over the Three-North region of China: implication for the forestation programs in arid and semiarid regions

    NASA Astrophysics Data System (ADS)

    Xie, X.; Liang, S.

    2013-12-01

    The Three-North region of China, including the northeastern, northern, and northwestern areas, covers an area of more than three million square kilometers. This region is featured for its arid and semiarid environments with annual rainfall less than 450 mm. During the past few decades, the Three-North region has experienced noticeable water-cycle variations owing to the climate and land use changes. Typically, several large-scale forestation programs such as the Three Norths Forest Shelterbelt Program began since late 1970s, have been implemented across this region in order to solve desertification and dust storm problems, and to combat the loss of water and soil. These programs raised debates, however, because their effectiveness does not likely achieve what was expected and they even imposed negative influences on the eco-hydrologic system in some areas. Currently most studies were based on in-situ measurements and individual catchments and primarily attributed the water-cycle variations to the forestation. In this study we attempt to evaluate the impact of combined climate and land use changes using remote sensing data and a sophisticated land surface model, i.e., the Three-Layer Variable Infiltration Capacity (VIC-3L). Four land use maps derived from Landsat TM images for 1990, 1995, 2000 and 2005 were used to detect the land use changes in the three-north regions, and leaf area index (LAI) from the Global Land Surface Satellite (GLASS) LAI product was employed to assess the land cover change and the effect of forestation programs. After model calibration and validation based on gauged streamflow and evapotranspiration from China FluxNet, a series of simulation scenarios were designed to examine the impacts of climate and land use changes on soil moisture, runoff and evapotranspiration and to identify each contribution to water fluxes. It was found that within the study area as a whole, LAI shows an increasing trend during 1980-2009 in response to the forestation programs. However, the hydrologic variables (i.e., the soil moisture, runoff and evapotranspiration) in northern and northwestern regions are more significantly affected by the precipitation and temperature than by the land use changes, although the impacts of land use change are uneven across the entire region. So, the forestation probably plays a modest role in the hydrologic system.

  20. Cadastre (forest maps) and spatial land uses planning, strategic tool for sustainable development

    NASA Astrophysics Data System (ADS)

    Drosos, Vasileios C.

    2014-08-01

    The rise in the living standards of the Greeks created, especially since 1970, along with other needs and the need for second or holiday home since 1990 after finding the first house on the outskirts of large urban centers. Trying to find land for the creation of new resorts or new type of permanent residences (maisonettes with or without garden, depending on the financial position of each) had the painful consequence of wasteful and uncontrolled use of land, without a program, without the fundamental rules of land planning and the final creation was usually unsightly buildings. The costs were to pay as usually the forest rural lands. The national spatial planning of land use requires that we know the existing land uses in this country, and based on that we can design and decide their land uses on the future in a rational way. On final practical level, this planning leads to mark the boundaries of specific areas of land that are permitted and may change uses. For this reason, one of the most valuable "tools" of that final marking the boundaries is also the forest maps. The paper aims the investigation to determine the modern views on the issues of Cadastre and Land Management with an ulterior view to placing the bases for creating a building plan of an immediate completion of forest maps. Sustainable development as a term denoting a policy of continued economic and social development that does not involve the destruction of the environment and natural resources, but rather guarantees their rational viability.

  1. Forest Service Resource Inventories: An Overview

    Treesearch

    USDA Forest Service

    1992-01-01

    Forest and related resource inventories are conducted by the US. Forest Service to provide the quantitative base necessary for making sound management, conservation, and stewardship decisions affecting these valuable resources. Inventory information has guided the management of 191 million acres (77.3 million ha) of publicly-owned National Forest land. Forest...

  2. Forest disturbances, deforestation and timber harvest patterns in the Conterminous United States

    NASA Astrophysics Data System (ADS)

    Boschetti, L.; Huo, L. Z.

    2016-12-01

    Current estimates of carbon-equivalent emissions report the contribution of deforestation as 12% of total anthropogenic carbon emissions (van der Werf et al., 2009), but accurate monitoring of forest carbon balance should discriminate between land use change related to forest natural disturbances, forest management and deforestation. The total change in forest cover (Gross Forest Cover Loss, GFCL) needs to be characterized based on the cause (natural/human) and on the outcome of the change (regeneration to forest/transition to non-forest)(Kurtz et al, 2010). We developed a multitemporal, object-oriented methodology to classify GFCL as either (a) deforestation, (b) fire and insect disturbances (c) forest management practices. The Landsat-derived University of Maryland Global Forest Change product (Hansen, 2013) is used to identify all the areas forest cover loss: those areas are subsequently converted to objects, and used to extract temporal profiles of spectral reflectances and spectral indices from the Landsat WELD dataset. Finally, the temporal profiles and descriptive parameters of shapes, textures, and spatial relationships of the objects are used in a rule-based classifier to identify the type of disturbance. To pathfind a global disturbance type classification, the methods are demonstrated by wall-to-wall classification of the forest cover loss in the conterminous United States for the 2002-2011 period. The results show that deforestation accounts for a small percentage (approximately 2%) of the GFCL in the CONUS, and are in agreement with the known patterns of logging activity, fire and insect damage. The time series of timber harvest clearcut is also in agreement with the national timber extraction statistics, showing reduced harvesting following the 2008 economic crisis. The results also highlight the different management practices on private and public lands: 36% of the US forests are publicly owned (federal, state and local institutions) but account only for 12% of the clearcuts, whereas private lands (64% of the total) account for 88% of the clearcut area. Conversely, stand replacing fire and insect disturbances affect primarily public lands (85% versus 15% on private lands).

  3. Suggestions for Forest Conservation Policy under Climate Change

    NASA Astrophysics Data System (ADS)

    Choe, H.; Thorne, J. H.; Lee, D. K.; Seo, C.

    2015-12-01

    Climate change and the destruction of natural habitats by land-use change are two main factors in decreasing terrestrial biodiversity. Studying land-use and climate change and their impact under different scenarios can help suggest policy directions for future events. This study explores the spatial results of different land use and climate models on the extent of species rich areas in South Korea. We built land use models of forest conversion and created four 2050 scenarios: (1) a loss trend following current levels, resulting in 15.5% lost; (2) similar loss, but with forest conservation in areas with suitable future climates; (3) a reduction of forest loss by 50%; and (4) a combination of preservation of forest climate refugia and overall reduction of loss by 50%. Forest climate refugia were identified through the use of species distribution models run on 1,031 forest plant species to project current and 2050 distributions. We calculated change in species richness under four climate projections, permitting an assessment of forest refugia zones. We then crossed the four land use models with the climate-driven change in species richness. Forest areas predominantly convert to agricultural areas, while climate-suitable extents for forest plants decline and move northward, especially to higher elevations. Scenario 2, that has the higher level of deforestation but protects future species rich areas, conserves nearly as much future biodiversity as scenario 3, which reduced deforestation rates by 50%. This points to the importance of including biogeographic climate dynamics in forest policy. Scenario 4 was the most effective at conserving forest biodiversity. We suggest conserving forest areas with suitable climates for biodiversity conservation and the establishment of monoculture plantations targeted to areas where species richness will decline based on our results.

  4. Accuracy Assessment of Satellite Derived Forest Cover Products in South and Southeast Asia

    NASA Astrophysics Data System (ADS)

    Gilani, H.; Xu, X.; Jain, A. K.

    2017-12-01

    South and Southeast Asia (SSEA) region occupies 16 % of worlds land area. It is home to over 50% of the world's population. The SSEA's countries are experiencing significant land-use and land-cover changes (LULCCs), primarily in agriculture, forest, and urban land. For this study, we compiled four existing global forest cover maps for year 2010 by Gong et al.(2015), Hansen et al. (2013), Sexton et al.(2013) and Shimada et al. (2014), which were all medium resolution (≤30 m) products based on Landsat and/or PALSAR satellite images. To evaluate the accuracy of these forest products, we used three types of information: (1) ground measurements, (2) high resolution satellite images and (3) forest cover maps produced at the national scale. The stratified random sampling technique was used to select a set of validation data points from the ground and high-resolution satellite images. Then the confusion matrix method was used to assess and rank the accuracy of the forest cover products for the entire SSEA region. We analyzed the spatial consistency of different forest cover maps, and further evaluated the consistency with terrain characteristics. Our study suggests that global forest cover mapping algorithms are trained and tested using limited ground measurement data. We found significant uncertainties in mountainous areas due to the topographical shadow effect and the dense tree canopies effects. The findings of this study will facilitate to improve our understanding of the forest cover dynamics and their impacts on the quantities and pathways of terrestrial carbon and nitrogen fluxes. Gong, P., et al. (2012). "Finer resolution observation and monitoring of global land cover: first mapping results with Landsat TM and ETM+ data." International Journal of Remote Sensing 34(7): 2607-2654. Hansen, M. C., et al. (2013). "High-Resolution Global Maps of 21st-Century Forest Cover Change." Science 342(6160): 850-853. Sexton, J. O., et al. (2013). "Global, 30-m resolution continuous fields of tree cover: Landsat-based rescaling of MODIS vegetation continuous fields with lidar-based estimates of error." International Journal of Digital Earth: 1-22. Shimada, M., et al. (2014). "New global forest/non-forest maps from ALOS PALSAR data (2007-2010)." Remote Sensing of Environment 155: 13-31.

  5. Degradation in carbon stocks near tropical forest edges.

    PubMed

    Chaplin-Kramer, Rebecca; Ramler, Ivan; Sharp, Richard; Haddad, Nick M; Gerber, James S; West, Paul C; Mandle, Lisa; Engstrom, Peder; Baccini, Alessandro; Sim, Sarah; Mueller, Carina; King, Henry

    2015-12-18

    Carbon stock estimates based on land cover type are critical for informing climate change assessment and landscape management, but field and theoretical evidence indicates that forest fragmentation reduces the amount of carbon stored at forest edges. Here, using remotely sensed pantropical biomass and land cover data sets, we estimate that biomass within the first 500 m of the forest edge is on average 25% lower than in forest interiors and that reductions of 10% extend to 1.5 km from the forest edge. These findings suggest that IPCC Tier 1 methods overestimate carbon stocks in tropical forests by nearly 10%. Proper accounting for degradation at forest edges will inform better landscape and forest management and policies, as well as the assessment of carbon stocks at landscape and national levels.

  6. Degradation in carbon stocks near tropical forest edges

    PubMed Central

    Chaplin-Kramer, Rebecca; Ramler, Ivan; Sharp, Richard; Haddad, Nick M.; Gerber, James S.; West, Paul C.; Mandle, Lisa; Engstrom, Peder; Baccini, Alessandro; Sim, Sarah; Mueller, Carina; King, Henry

    2015-01-01

    Carbon stock estimates based on land cover type are critical for informing climate change assessment and landscape management, but field and theoretical evidence indicates that forest fragmentation reduces the amount of carbon stored at forest edges. Here, using remotely sensed pantropical biomass and land cover data sets, we estimate that biomass within the first 500 m of the forest edge is on average 25% lower than in forest interiors and that reductions of 10% extend to 1.5 km from the forest edge. These findings suggest that IPCC Tier 1 methods overestimate carbon stocks in tropical forests by nearly 10%. Proper accounting for degradation at forest edges will inform better landscape and forest management and policies, as well as the assessment of carbon stocks at landscape and national levels. PMID:26679749

  7. Research strategies for increasing productivity of intensively managed forest plantations

    Treesearch

    Eric D. Vance; Douglas A. Maguire; Ronald S. Jr. Zalesny

    2010-01-01

    Intensive management practices increase productivity of forest plantations by reducing site, stand, and biological limitations to dry matter production and by maximizing the allocation of production to harvestable tree components. The resulting increase allows greater fiber production from a smaller land base and provides market incentives to keep these lands under...

  8. 7 CFR 701.157 - Private non-industrial forest land.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... a 2005 hurricane. To be eligible, a non-industrial private forest landowner must have suffered a... landowner in a designated disaster county due to a 2005 hurricane or related condition. The 35 percent loss shall be determined based on the value of the land before and after the hurricane event. (b) During the...

  9. 7 CFR 701.157 - Private non-industrial forest land.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... a 2005 hurricane. To be eligible, a non-industrial private forest landowner must have suffered a... landowner in a designated disaster county due to a 2005 hurricane or related condition. The 35 percent loss shall be determined based on the value of the land before and after the hurricane event. (b) During the...

  10. 7 CFR 701.157 - Private non-industrial forest land.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... a 2005 hurricane. To be eligible, a non-industrial private forest landowner must have suffered a... landowner in a designated disaster county due to a 2005 hurricane or related condition. The 35 percent loss shall be determined based on the value of the land before and after the hurricane event. (b) During the...

  11. 7 CFR 701.157 - Private non-industrial forest land.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... a 2005 hurricane. To be eligible, a non-industrial private forest landowner must have suffered a... landowner in a designated disaster county due to a 2005 hurricane or related condition. The 35 percent loss shall be determined based on the value of the land before and after the hurricane event. (b) During the...

  12. South Carolina, 2012 - forest inventory and analysis factsheet

    Treesearch

    Richard A. Harper; Byron Rominger

    2013-01-01

    South Carolina contains about 19.3 million acres of land area, less census water. The forest land area makes up 68 percent of the land area with 13.1 million acres. Commercial timberland area (land available for production of forest products) comprised >99 percent of the forest land area, or 13.0 million acres. The remaining 88,000 acres are reserved forest land...

  13. Modelling Associations between Public Understanding, Engagement and Forest Conditions in the Inland Northwest, USA

    PubMed Central

    Hartter, Joel; Stevens, Forrest R.; Hamilton, Lawrence C.; Congalton, Russell G.; Ducey, Mark J.; Oester, Paul T.

    2015-01-01

    Opinions about public lands and the actions of private non-industrial forest owners in the western United States play important roles in forested landscape management as both public and private forests face increasing risks from large wildfires, pests and disease. This work presents the responses from two surveys, a random-sample telephone survey of more than 1500 residents and a mail survey targeting owners of parcels with 10 or more acres of forest. These surveys were conducted in three counties (Wallowa, Union, and Baker) in northeast Oregon, USA. We analyze these survey data using structural equation models in order to assess how individual characteristics and understanding of forest management issues affect perceptions about forest conditions and risks associated with declining forest health on public lands. We test whether forest understanding is informed by background, beliefs, and experiences, and whether as an intervening variable it is associated with views about forest conditions on publicly managed forests. Individual background characteristics such as age, gender and county of residence have significant direct or indirect effects on our measurement of understanding. Controlling for background factors, we found that forest owners with higher self-assessed understanding, and more education about forest management, tend to hold more pessimistic views about forest conditions. Based on our results we argue that self-assessed understanding, interest in learning, and willingness to engage in extension activities together have leverage to affect perceptions about the risks posed by declining forest conditions on public lands, influence land owner actions, and affect support for public policies. These results also have broader implications for management of forested landscapes on public and private lands amidst changing demographics in rural communities across the Inland Northwest where migration may significantly alter the composition of forest owner goals, understanding, and support for various management actions. PMID:25671619

  14. Photo-based estimators for the Nevada photo-based inventory

    Treesearch

    Paul L. Patterson

    2012-01-01

    The U.S. Department of Agriculture, Forest Service, Forest Inventory and Analysis Program conducted the Nevada Photo-Based Inventory Pilot in an effort to improve precision in estimates of forest parameters, reduce field data collection costs on margin lands that are covered by slow growing woodland species, and address the potential of strategic-level inventory on...

  15. European Holocene landscape change: a comparison of pollen-based approaches to reconstructing land use shifts and forest decline

    NASA Astrophysics Data System (ADS)

    Woodbridge, Jessie; Roberts, Neil; Fyfe, Ralph; Gaillard, Marie-José; Trondman, Anna-Kari; Davis, Basil; Kaplan, Jed

    2016-04-01

    Europe's primaeval forests have been progressively cleared and fragmented since the first appearance of Neolithic farming activities around 6000 years ago. Understanding spatial and temporal changes in forest cover is valuable to researchers interested in past human-environment interactions. Here we present a comparison of reconstructed Holocene forest cover across Europe from three different transformed fossil pollen-based datasets, an extensive modern surface pollen data set, and modern forest cover from remote sensing. The REVEALS approach (Trondman et al., 2015) provides a quantified and validated reconstruction of vegetation incorporating plant productivity estimates, but is currently only available for a limited number of grid cells in mid-latitude and northern Europe for a limited number of time windows. The pseudobiomization (PBM) (Fyfe et al., 2015) and plant functional type (PFT) (Davis et al., 2015) based approaches provide continuous semi-quantitative records of land use change for temperate and Northern Europe spanning the Holocene, but do not provide truly quantified vegetation reconstructions. Estimated modern forest cover based on the various approaches ranges between ~29 and 54%. However, the Holocene estimates of vegetation change show broadly similar trends, with a forest maximum from ~8.2 to ~6 ka BP, and a decline in forest cover after 6 ka BP, accelerating after ~1.2 ka BP. The reconstructions, when broadly disaggregated into northern and mid-latitude Europe, confirm that mid-latitude forest cover has declined more than that in northern Europe over the last 6 ka. The continuous record provided by the PBM has been used to establish a 'half forest loss' date for each grid cell in temperate and northern Europe, which has identified that the timing of forest loss varied spatially with certain regions remaining forested for longer. References Davis BAS, Collins PM, Kaplan JO (2015) The age and post-glacial development of the modern European vegetation: a plant functional approach based on pollen data. Vegetation History and Archaeobotany. 24, 303-317. Fyfe RM, Woodbridge J and Roberts N (2015) From forest to farmland: pollen-inferred land cover change across Europe using the pseudobiomization approach. Global Change Biology 20, 1197-1212. Trondman A-K, Gaillard M-J, Sugita S et al. (2015) Pollen-based land-cover reconstructions for the study of past vegetation-climate interactions in NW Europe at 0.2 k, 0.5 k, 3 k and 6 k years before present. Global Change Biology. 21, 676-697.

  16. Minnesota's Forests 2008

    Treesearch

    Patrick D. Miles; David Heinzen; Manfred E. Mielke; Christopher W. Woodall; Brett J. Butler; Ron J. Piva; Dacia M. Meneguzzo; Charles H. Perry; Dale D. Gormanson; Charles J. Barnett

    2011-01-01

    The second full annual inventory of Minnesota's forests reports 17 million acres of forest land with an average volume of more than 1,000 cubic feet per acre. Forest land is dominated by the aspen forest type, which occupies nearly 30 percent of the total forest land area. Twenty-eight percent of forest land consists of sawtimber, 35 percent poletimber, 35 percent...

  17. Illinois' Forests 2005

    Treesearch

    Susan J. Crocker; Gary J. Brand; Brett J. Butler; David E. Haugen; Dick C. Little; Dacia M. Meneguzzo; Charles H. Perry; Ronald J. Piva; Barry T. Wilson; Christopher W. Woodall

    2009-01-01

    The first full, annualized inventory of Illinois' forests reports more than 4.5 million acres of forest land with an average of 459 trees per acre. Forest land is dominated by oak/hickory forest types, which occupy 65 percent of total forest land area. Seventy-two percent of forest land consists of sawtimber, 20 percent contains poletimber, and 8 percent contains...

  18. Vermont's Forests 2007

    Treesearch

    Randall S. Morin; Chuck J. Barnett; Gary J. Brand; Brett J. Butler; Robert De Geus; Mark H. Hansen; Mark A. Hatfield; Cassandra M. Kurtz; W. Keith Moser; Charles H. Perry; Ron Piva; Rachel Riemann; Richard Widmann; Sandy Wilmot; Chris W. Woodall

    2011-01-01

    The first full annual inventory of Vermont's forests reports more than 4.5 million acres of forest land with an average volume of more than 2,200 cubic feet per acre. Forest land is dominated by the maple/beech/birch forest-type group, which occupies 70 percent of total forest land area. Sixty-three percent of forest land consists of large-diameter trees, 27...

  19. New Hampshire's Forests 2007

    Treesearch

    Randall S. Morin; Chuck J. Barnett; Gary J. Brand; Brett J. Butler; Grant M. Domke; Susan Francher; Mark H. Hansen; Mark A. Hatfield; Cassandra M. Kurtz; W. Keith Moser; Charles H. Perry; Ron Piva; Rachel Riemann; Chris W. Woodall

    2011-01-01

    The first full annual inventory of New Hampshire's forests reports nearly 4.8 million acres of forest land with an average volume of nearly 2,200 cubic feet per acre. Forest land is dominated by the maple/beech/birch forest-type group, which occupies 53 percent of total forest land area. Fifty-seven percent of forest land consists of large-diameter trees, 32...

  20. Minnesota Forests 2013

    Treesearch

    Patrick D. Miles; Curtis L. VanderSchaaf; Charles Barnett; Brett J. Butler; Susan J. Crocker; Dale D. Gormanson; Cassandra M. Kurtz; Tonya W. Lister; William H. McWilliams; Randall S. Morin; Mark D. Nelson; Charles H. (Hobie) Perry; Rachel I. Riemann; James E. Smith; Brian F. Walters; Jim Westfall; Christopher W. Woodall

    2016-01-01

    The third full annual inventory of Minnesota forests reports 17.4 million acres of forest land with an average live tree volume of 1,096 cubic feet per acre. Forest land is dominated by the aspen forest type, which occupies 29 percent of the total forest land area. Twenty-eight percent of forest land consists of sawtimber, 35 percent poletimber, 36 percent sapling/...

  1. A Generalized Deforestation and Land-Use Change Scenario Generator for Use in Climate Modelling Studies

    PubMed Central

    Tompkins, Adrian Mark; Caporaso, Luca; Biondi, Riccardo; Bell, Jean Pierre

    2015-01-01

    A new deforestation and land-use change scenario generator model (FOREST-SAGE) is presented that is designed to interface directly with dynamic vegetation models used in latest generation earth system models. The model requires a regional-scale scenario for aggregate land-use change that may be time-dependent, provided by observational studies or by regional land-use change/economic models for future projections. These land-use categories of the observations/economic model are first translated into equivalent plant function types used by the particular vegetation model, and then FOREST-SAGE disaggregates the regional-scale scenario to the local grid-scale of the earth system model using a set of risk-rules based on factors such as proximity to transport networks, distance weighted population density, forest fragmentation and presence of protected areas and logging concessions. These rules presently focus on the conversion of forest to agriculture and pasture use, but could be generalized to other land use change conversions. After introducing the model, an evaluation of its performance is shown for the land-cover changes that have occurred in the Central African Basin from 2001–2010 using retrievals from MODerate Resolution Imaging Spectroradiometer Vegetation Continuous Field data. The model is able to broadly reproduce the spatial patterns of forest cover change observed by MODIS, and the use of the local-scale risk factors enables FOREST-SAGE to improve land use change patterns considerably relative to benchmark scenarios used in the latest Coupled Model Intercomparison Project integrations. The uncertainty to the various risk factors is investigated using an ensemble of investigations, and it is shown that the model is sensitive to the population density, forest fragmentation and reforestation factors specified. PMID:26394392

  2. Carbon changes in conterminous US forests associated with growth and major disturbances: 1992-2001

    Treesearch

    Daolan Zheng; Linda S. Heath; Mark J. Ducey; James E. Smith

    2011-01-01

    We estimated forest area and carbon changes in the conterminous United States using a remote sensing based land cover change map, forest fire data from the Monitoring Trends in Burn Severity program, and forest growth and harvest data from the USDA Forest Service, Forest Inventory and Analysis Program. Natural and human-associated disturbances reduced the forest...

  3. Impact of LUCC on streamflow based on the SWAT model over the Wei River basin on the Loess Plateau in China

    NASA Astrophysics Data System (ADS)

    Wang, Hong; Sun, Fubao; Xia, Jun; Liu, Wenbin

    2017-04-01

    Under the Grain for Green Project in China, vegetation recovery construction has been widely implemented on the Loess Plateau for the purpose of soil and water conservation. Now it is becoming controversial whether the recovery construction involving vegetation, particularly forest, is reducing the streamflow in the rivers of the Yellow River basin. In this study, we chose the Wei River, the largest branch of the Yellow River, with revegetated construction area as the study area. To do that, we apply the widely used Soil and Water Assessment Tool (SWAT) model for the upper and middle reaches of the Wei River basin. The SWAT model was forced with daily observed meteorological forcings (1960-2009) calibrated against daily streamflow for 1960-1969, validated for the period of 1970-1979, and used for analysis for 1980-2009. To investigate the impact of LUCC (land use and land cover change) on the streamflow, we firstly use two observed land use maps from 1980 and 2005 that are based on national land survey statistics merged with satellite observations. We found that the mean streamflow generated by using the 2005 land use map decreased in comparison with that using the 1980 one, with the same meteorological forcings. Of particular interest here is that the streamflow decreased on agricultural land but increased in forest areas. More specifically, the surface runoff, soil flow, and baseflow all decreased on agricultural land, while the soil flow and baseflow of forest areas increased. To investigate that, we then designed five scenarios: (S1) the present land use (1980) and (S2) 10 %, (S3) 20 %, (S4) 40 %, and (S5) 100 % of agricultural land that was converted into mixed forest. We found that the streamflow consistently increased with agricultural land converted into forest by about 7.4 mm per 10 %. Our modeling results suggest that forest recovery construction has a positive impact on both soil flow and baseflow by compensating for reduced surface runoff, which leads to a slight increase in the streamflow in the Wei River with the mixed landscapes on the Loess Plateau that include earth-rock mountain area.

  4. Will Passive Protection Save Congo Forests?

    PubMed

    Galford, Gillian L; Soares-Filho, Britaldo S; Sonter, Laura J; Laporte, Nadine

    2015-01-01

    Central Africa's tropical forests are among the world's largest carbon reserves. Historically, they have experienced low rates of deforestation. Pressures to clear land are increasing due to development of infrastructure and livelihoods, foreign investment in agriculture, and shifting land use management, particularly in the Democratic Republic of Congo (DRC). The DRC contains the greatest area of intact African forests. These store approximately 22 billion tons of carbon in aboveground live biomass, yet only 10% are protected. Can the status quo of passive protection - forest management that is low or nonexistent - ensure the preservation of this forest and its carbon? We have developed the SimCongo model to simulate changes in land cover and land use based on theorized policy scenarios from 2010 to 2050. Three scenarios were examined: the first (Historical Trends) assumes passive forest protection; the next (Conservation) posits active protection of forests and activation of the national REDD+ action plan, and the last (Agricultural Development) assumes increased agricultural activities in forested land with concomitant increased deforestation. SimCongo is a cellular automata model based on Bayesian statistical methods tailored for the DRC, built with the Dinamica-EGO platform. The model is parameterized and validated with deforestation observations from the past and runs the scenarios from 2010 through 2050 with a yearly time step. We estimate the Historical Trends trajectory will result in average emissions of 139 million t CO2 year-1 by the 2040s, a 15% increase over current emissions. The Conservation scenario would result in 58% less clearing than Historical Trends and would conserve carbon-dense forest and woodland savanna areas. The Agricultural Development scenario leads to emissions of 212 million t CO2 year-1 by the 2040s. These scenarios are heuristic examples of policy's influence on forest conservation and carbon storage. Our results suggest that 1) passive protection of the DRC's forest and woodland savanna is insufficient to reduce deforestation; and 2): enactment of a REDD+ plan or similar conservation measure is needed to actively protect Congo forests, their unique ecology, and their important role in the global carbon cycle.

  5. Will Passive Protection Save Congo Forests?

    PubMed Central

    Galford, Gillian L.; Soares-Filho, Britaldo S.; Sonter, Laura J.; Laporte, Nadine

    2015-01-01

    Central Africa’s tropical forests are among the world’s largest carbon reserves. Historically, they have experienced low rates of deforestation. Pressures to clear land are increasing due to development of infrastructure and livelihoods, foreign investment in agriculture, and shifting land use management, particularly in the Democratic Republic of Congo (DRC). The DRC contains the greatest area of intact African forests. These store approximately 22 billion tons of carbon in aboveground live biomass, yet only 10% are protected. Can the status quo of passive protection — forest management that is low or nonexistent — ensure the preservation of this forest and its carbon? We have developed the SimCongo model to simulate changes in land cover and land use based on theorized policy scenarios from 2010 to 2050. Three scenarios were examined: the first (Historical Trends) assumes passive forest protection; the next (Conservation) posits active protection of forests and activation of the national REDD+ action plan, and the last (Agricultural Development) assumes increased agricultural activities in forested land with concomitant increased deforestation. SimCongo is a cellular automata model based on Bayesian statistical methods tailored for the DRC, built with the Dinamica-EGO platform. The model is parameterized and validated with deforestation observations from the past and runs the scenarios from 2010 through 2050 with a yearly time step. We estimate the Historical Trends trajectory will result in average emissions of 139 million t CO2 year-1 by the 2040s, a 15% increase over current emissions. The Conservation scenario would result in 58% less clearing than Historical Trends and would conserve carbon-dense forest and woodland savanna areas. The Agricultural Development scenario leads to emissions of 212 million t CO2 year-1 by the 2040s. These scenarios are heuristic examples of policy’s influence on forest conservation and carbon storage. Our results suggest that 1) passive protection of the DRC’s forest and woodland savanna is insufficient to reduce deforestation; and 2): enactment of a REDD+ plan or similar conservation measure is needed to actively protect Congo forests, their unique ecology, and their important role in the global carbon cycle. PMID:26106897

  6. A multi-scale metrics approach to forest fragmentation for Strategic Environmental Impact Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Eunyoung, E-mail: eykim@kei.re.kr; Song, Wonkyong, E-mail: wksong79@gmail.com; Lee, Dongkun, E-mail: dklee7@snu.ac.kr

    Forests are becoming severely fragmented as a result of land development. South Korea has responded to changing community concerns about environmental issues. The nation has developed and is extending a broad range of tools for use in environmental management. Although legally mandated environmental compliance requirements in South Korea have been implemented to predict and evaluate the impacts of land-development projects, these legal instruments are often insufficient to assess the subsequent impact of development on the surrounding forests. It is especially difficult to examine impacts on multiple (e.g., regional and local) scales in detail. Forest configuration and size, including forest fragmentationmore » by land development, are considered on a regional scale. Moreover, forest structure and composition, including biodiversity, are considered on a local scale in the Environmental Impact Assessment process. Recently, the government amended the Environmental Impact Assessment Act, including the SEA, EIA, and small-scale EIA, to require an integrated approach. Therefore, the purpose of this study was to establish an impact assessment system that minimizes the impacts of land development using an approach that is integrated across multiple scales. This study focused on forest fragmentation due to residential development and road construction sites in selected Congestion Restraint Zones (CRZs) in the Greater Seoul Area of South Korea. Based on a review of multiple-scale impacts, this paper integrates models that assess the impacts of land development on forest ecosystems. The applicability of the integrated model for assessing impacts on forest ecosystems through the SEIA process is considered. On a regional scale, it is possible to evaluate the location and size of a land-development project by considering aspects of forest fragmentation, such as the stability of the forest structure and the degree of fragmentation. On a local scale, land-development projects should consider the distances at which impacts occur in the vicinity of the forest ecosystem, and these considerations should include the impacts on forest vegetation and bird species. Impacts can be mitigated by considering the distances at which these influences occur. In particular, this paper presents an integrated environmental impact assessment system to be applied in the SEIA process. The integrated assessment system permits the assessment of the cumulative impacts of land development on multiple scales. -- Highlights: • The model is to assess the impact of forest fragmentation across multiple scales. • The paper suggests the type of forest fragmentation on a regional scale. • The type can be used to evaluate the location and size of a land development. • The paper shows the influence distance of land development on a local scale. • The distance can be used to mitigate the impact at an EIA process.« less

  7. European Forest Cover During the Past 12,000 Years: A Palynological Reconstruction Based on Modern Analogs and Remote Sensing

    PubMed Central

    Zanon, Marco; Davis, Basil A. S.; Marquer, Laurent; Brewer, Simon; Kaplan, Jed O.

    2018-01-01

    Characterization of land cover change in the past is fundamental to understand the evolution and present state of the Earth system, the amount of carbon and nutrient stocks in terrestrial ecosystems, and the role played by land-atmosphere interactions in influencing climate. The estimation of land cover changes using palynology is a mature field, as thousands of sites in Europe have been investigated over the last century. Nonetheless, a quantitative land cover reconstruction at a continental scale has been largely missing. Here, we present a series of maps detailing the evolution of European forest cover during last 12,000 years. Our reconstructions are based on the Modern Analog Technique (MAT): a calibration dataset is built by coupling modern pollen samples with the corresponding satellite-based forest-cover data. Fossil reconstructions are then performed by assigning to every fossil sample the average forest cover of its closest modern analogs. The occurrence of fossil pollen assemblages with no counterparts in modern vegetation represents a known limit of analog-based methods. To lessen the influence of no-analog situations, pollen taxa were converted into plant functional types prior to running the MAT algorithm. We then interpolate site-specific reconstructions for each timeslice using a four-dimensional gridding procedure to create continuous gridded maps at a continental scale. The performance of the MAT is compared against methodologically independent forest-cover reconstructions produced using the REVEALS method. MAT and REVEALS estimates are most of the time in good agreement at a trend level, yet MAT regularly underestimates the occurrence of densely forested situations, requiring the application of a bias correction procedure. The calibrated MAT-based maps draw a coherent picture of the establishment of forests in Europe in the Early Holocene with the greatest forest-cover fractions reconstructed between ∼8,500 and 6,000 calibrated years BP. This forest maximum is followed by a general decline in all parts of the continent, likely as a result of anthropogenic deforestation. The continuous spatial and temporal nature of our reconstruction, its continental coverage, and gridded format make it suitable for climate, hydrological, and biogeochemical modeling, among other uses. PMID:29568303

  8. European Forest Cover During the Past 12,000 Years: A Palynological Reconstruction Based on Modern Analogs and Remote Sensing.

    PubMed

    Zanon, Marco; Davis, Basil A S; Marquer, Laurent; Brewer, Simon; Kaplan, Jed O

    2018-01-01

    Characterization of land cover change in the past is fundamental to understand the evolution and present state of the Earth system, the amount of carbon and nutrient stocks in terrestrial ecosystems, and the role played by land-atmosphere interactions in influencing climate. The estimation of land cover changes using palynology is a mature field, as thousands of sites in Europe have been investigated over the last century. Nonetheless, a quantitative land cover reconstruction at a continental scale has been largely missing. Here, we present a series of maps detailing the evolution of European forest cover during last 12,000 years. Our reconstructions are based on the Modern Analog Technique (MAT): a calibration dataset is built by coupling modern pollen samples with the corresponding satellite-based forest-cover data. Fossil reconstructions are then performed by assigning to every fossil sample the average forest cover of its closest modern analogs. The occurrence of fossil pollen assemblages with no counterparts in modern vegetation represents a known limit of analog-based methods. To lessen the influence of no-analog situations, pollen taxa were converted into plant functional types prior to running the MAT algorithm. We then interpolate site-specific reconstructions for each timeslice using a four-dimensional gridding procedure to create continuous gridded maps at a continental scale. The performance of the MAT is compared against methodologically independent forest-cover reconstructions produced using the REVEALS method. MAT and REVEALS estimates are most of the time in good agreement at a trend level, yet MAT regularly underestimates the occurrence of densely forested situations, requiring the application of a bias correction procedure. The calibrated MAT-based maps draw a coherent picture of the establishment of forests in Europe in the Early Holocene with the greatest forest-cover fractions reconstructed between ∼8,500 and 6,000 calibrated years BP. This forest maximum is followed by a general decline in all parts of the continent, likely as a result of anthropogenic deforestation. The continuous spatial and temporal nature of our reconstruction, its continental coverage, and gridded format make it suitable for climate, hydrological, and biogeochemical modeling, among other uses.

  9. Simulation of land use change and effect on potential deforestation using Markov Chain - Cellular Automata

    NASA Astrophysics Data System (ADS)

    Mujiono, Indra, T. L.; Harmantyo, D.; Rukmana, I. P.; Nadia, Z.

    2017-07-01

    The purpose of this study was to simulate land use change in 1996-2016 and its prediction in 2035 as well as its potential to deforestation. Both of these purposes were obtained through modeling analysis using Markov Chain Cellular Automata. This modeling method was considered important for understanding the causes and impacts. Based on the analysis, the land use change between 1996 to 2007 has caused forest loss (the region and non-region) covering an area of 62,012 ha. While in the period of 2007 to 2016, the change has lead to the east side of the slope grade of 0-15 percent and an altitude between 500-1000 meters above sea level. In this period, plantation area has increased by 50,822 ha, while the forest area has reduced from 80,038 ha. In a period of 20 years, North Bengkulu Regency has lost the forest area of 80,038 ha. The amount of intervention against forest suggested the potential for deforestation in this area. Simulation of land use change in 2035 did not indicate significant deforestation due to the limited land on physical factors such as slope and elevation. However, it should be noted that, in 2035, the area of conservation forest was reduced by 16,793 ha (29 %), while the areas of protected and production forest were reduced by 4,933 ha (19 %) and 2,114 ha (3 %), respectively. Land use change is a serious threat of deforestation, especially in forest areas in North Bengkulu Regency, where any decline in forest area means the addition of plantation area.

  10. Estimation and mapping of above-ground biomass of mangrove forests and their replacement land uses in the Philippines using Sentinel imagery

    NASA Astrophysics Data System (ADS)

    Castillo, Jose Alan A.; Apan, Armando A.; Maraseni, Tek N.; Salmo, Severino G.

    2017-12-01

    The recent launch of the Sentinel-1 (SAR) and Sentinel-2 (multispectral) missions offers a new opportunity for land-based biomass mapping and monitoring especially in the tropics where deforestation is highest. Yet, unlike in agriculture and inland land uses, the use of Sentinel imagery has not been evaluated for biomass retrieval in mangrove forest and the non-forest land uses that replaced mangroves. In this study, we evaluated the ability of Sentinel imagery for the retrieval and predictive mapping of above-ground biomass of mangroves and their replacement land uses. We used Sentinel SAR and multispectral imagery to develop biomass prediction models through the conventional linear regression and novel Machine Learning algorithms. We developed models each from SAR raw polarisation backscatter data, multispectral bands, vegetation indices, and canopy biophysical variables. The results show that the model based on biophysical variable Leaf Area Index (LAI) derived from Sentinel-2 was more accurate in predicting the overall above-ground biomass. In contrast, the model which utilised optical bands had the lowest accuracy. However, the SAR-based model was more accurate in predicting the biomass in the usually deficient to low vegetation cover non-forest replacement land uses such as abandoned aquaculture pond, cleared mangrove and abandoned salt pond. These models had 0.82-0.83 correlation/agreement of observed and predicted value, and root mean square error of 27.8-28.5 Mg ha-1. Among the Sentinel-2 multispectral bands, the red and red edge bands (bands 4, 5 and 7), combined with elevation data, were the best variable set combination for biomass prediction. The red edge-based Inverted Red-Edge Chlorophyll Index had the highest prediction accuracy among the vegetation indices. Overall, Sentinel-1 SAR and Sentinel-2 multispectral imagery can provide satisfactory results in the retrieval and predictive mapping of the above-ground biomass of mangroves and the replacement non-forest land uses, especially with the inclusion of elevation data. The study demonstrates encouraging results in biomass mapping of mangroves and other coastal land uses in the tropics using the freely accessible and relatively high-resolution Sentinel imagery.

  11. Comparing five modelling techniques for predicting forest characteristics

    Treesearch

    Gretchen G. Moisen; Tracey S. Frescino

    2002-01-01

    Broad-scale maps of forest characteristics are needed throughout the United States for a wide variety of forest land management applications. Inexpensive maps can be produced by modelling forest class and structure variables collected in nationwide forest inventories as functions of satellite-based information. But little work has been directed at comparing modelling...

  12. Using the FORE-SCE model to project land-cover change in the southeastern United States

    USGS Publications Warehouse

    Sohl, Terry; Sayler, Kristi L.

    2008-01-01

    A wide variety of ecological applications require spatially explicit current and projected land-use and land-cover data. The southeastern United States has experienced massive land-use change since European settlement and continues to experience extremely high rates of forest cutting, significant urban development, and changes in agricultural land use. Forest-cover patterns and structure are projected to change dramatically in the southeastern United States in the next 50 years due to population growth and demand for wood products [Wear, D.N., Greis, J.G. (Eds.), 2002. Southern Forest Resource Assessment. General Technical Report SRS-53. U.S. Department of Agriculture, Forest Service, Southern Research Station, Asheville, NC, 635 pp]. Along with our climate partners, we are examining the potential effects of southeastern U.S. land-cover change on regional climate. The U.S. Geological Survey (USGS) Land Cover Trends project is analyzing contemporary (1973-2000) land-cover change in the conterminous United States, providing ecoregion-by-ecoregion estimates of the rates of change, descriptive transition matrices, and changes in landscape metrics. The FORecasting SCEnarios of future land-cover (FORE-SCE) model used Land Cover Trends data and theoretical, statistical, and deterministic modeling techniques to project future land-cover change through 2050 for the southeastern United States. Prescriptions for future proportions of land cover for this application were provided by ecoregion-based extrapolations of historical change. Logistic regression was used to develop relationships between suspected drivers of land-cover change and land cover, resulting in the development of probability-of-occurrence surfaces for each unique land-cover type. Forest stand age was initially established with Forest Inventory and Analysis (FIA) data and tracked through model iterations. The spatial allocation procedure placed patches of new land cover on the landscape until the scenario prescriptions were met, using measured Land Cover Trends data to guide patch characteristics and the probability surfaces to guide placement. The approach provides an efficient method for extrapolating historical land-cover trends and is amenable to the incorporation of more detailed and focused studies for the establishment of scenario prescriptions.

  13. Balancing shifting cultivation and forest conservation: lessons from a "sustainable landscape" in southeastern Mexico.

    PubMed

    Dalle, Sarah Paule; Pulido, María T; de Blois, Sylvie

    2011-07-01

    Shifting cultivation is often perceived to be a threat to forests, but it is also central to the culture and livelihoods of millions of people worldwide. Balancing agriculture and forest conservation requires knowledge of how agricultural land uses evolve in landscapes with forest conservation initiatives. Based on a case study from Quintana Roo, Mexico, and remote sensing data, we investigated land use and land cover change (LUCC) in relation to accessibility (from main settlement and road) in search of evidence for agricultural expansion and/or intensification after the initiation of a community forestry program in 1986. Intensification was through a shortening of the fallow period. Defining the sampling space as a function of human needs and accessibility to agricultural resources was critical to ensure a user-centered perspective of the landscape. The composition of the accessible landscape changed substantially between 1976 and 1997. Over the 21-year period studied, the local population saw the accessible landscape transformed from a heterogeneous array of different successional stages including mature forests to a landscape dominated by young fallows. We detected a dynamic characterized by intensification of shifting cultivation in the most accessible areas with milpas being felled more and more from young fallows in spite of a preference for felling secondary forests. We argue that the resulting landscape provides a poorer resource base for sustaining agricultural livelihoods and discuss ways in which agricultural change could be better addressed through participatory land use planning. Balancing agricultural production and forest conservation will become even more important in a context of intense negotiations for carbon credits, an emerging market that is likely to drive future land changes worldwide.

  14. Indiana's Forests 2008

    Treesearch

    Christopher W. Woodall; Mark N. Webb; Barry T. Wilson; Jeff Settle; Ron J. Piva; Charles H. Perry; Dacia M. Meneguzzo; Susan J. Crocker; Brett J. Butler; Mark Hansen; Mark Hatfield; Gary Brand; Charles Barnett

    2011-01-01

    The second full annual inventory of Indiana's forests reports more than 4.75 million acres of forest land with an average volume of more than 2,000 cubic feet per acre. Forest land is dominated by the white oak/red oak/hickory forest type, which occupies nearly a third of the total forest land area. Seventy-six percent of forest land consists of sawtimber, 16...

  15. North Dakota's Forests 2010

    Treesearch

    David E. Haugen; Robert Harsel; Aaron Bergdahl; Tom Claeys; Christopher W. Woodall; Barry T. Wilson; Susan J. Crocker; Brett J. Butler; Cassandra M. Kurtz; Mark A. Hatfield; Charles H. Barnett; Grant Domke; Dan Kaisershot; W. Keith Moser; Andrew J. Lister; Dale D. Gormanson

    2013-01-01

    The second annual inventory of North Dakota's forests reports more than 772,000 acres of forest land with an average volume of more than 921 cubic feet per acre. Forest land is dominated by the bur oak forest type, which occupies more than a third of the total forest land area. The poletimber stand-size class represents 39 percent of forest land, followed by...

  16. Implications of land-use change on forest carbon stocks in the eastern United States

    NASA Astrophysics Data System (ADS)

    Puhlick, Joshua; Woodall, Christopher; Weiskittel, Aaron

    2017-02-01

    Given the substantial role that forests play in removing CO2 from the atmosphere, there has been a growing need to evaluate the carbon (C) implications of various forest management and land-use decisions. Although assessment of land-use change is central to national-level greenhouse gas monitoring guidelines, it is rarely incorporated into forest stand-level evaluations of C dynamics and trajectories. To better inform the assessment of forest stand C dynamics in the context of potential land-use change, we used a region-wide repeated forest inventory (n = 71 444 plots) across the eastern United States to assess forest land-use conversion and associated changes in forest C stocks. Specifically, the probability of forest area reduction between 2002-2006 and 2007-2012 on these plots was related to key driving factors such as proportion of the landscape in forest land use, distance to roads, and initial forest C. Additional factors influencing the actual reduction in forest area were then used to assess the risk of forest land-use conversion to agriculture, settlement, and water. Plots in forests along the Great Plains had the highest periodic (approximately 5 years) probability of land-use change (0.160 ± 0.075; mean ± SD) with forest conversion to agricultural uses accounting for 70.5% of the observed land-use change. Aboveground forest C stock change for plots with a reduction in forest area was -4.2 ± 17.7 Mg ha-1 (mean ± SD). The finding that poorly stocked stands and/or those with small diameter trees had the highest probability of conversion to non-forest land uses suggests that forest management strategies can maintain the US terrestrial C sink not only in terms of increased net forest growth but also retention of forest area to avoid conversion. This study highlights the importance of considering land-use change in planning and policy decisions that seek to maintain or enhance regional C sinks.

  17. Land use changes and its driving forces in hilly ecological restoration area based on gis and rs of northern china

    PubMed Central

    Gao, Peng; Niu, Xiang; Wang, Bing; Zheng, Yunlong

    2015-01-01

    Land use change is one of the important aspects of the regional ecological restoration research. With remote sensing (RS) image in 2003, 2007 and 2012, using geographic information system (GIS) technologies, the land use pattern changes in Yimeng Mountain ecological restoration area in China and its driving force factors were studied. Results showed that: (1) Cultivated land constituted the largest area during 10 years, and followed by forest land and grass land; cultivated land and unused land were reduced by 28.43% and 44.32%, whereas forest land, water area and land for water facilities and others were increased. (2) During 2003–2007, forest land change showed the largest, followed by unused land and grass land; however, during 2008–2012, water area and land for water facilities change showed the largest, followed by grass land and unused land. (3) Land use degree was above the average level, it was in the developing period during 2003–2007 and in the degenerating period during 2008–2012. (4) Ecological Restoration Projects can greatly change the micro topography, increase vegetation coverage, and then induce significant changes in the land use distribution, which were the main driving force factors of the land use pattern change in the ecological restoration area. PMID:26047160

  18. Land grants and the U.S. Forest Service

    Treesearch

    Carol Raish; Alice M. McSweeney

    2008-01-01

    The U.S. Forest Service (Forest Service) has a long, shared history with the land grants of northern New Mexico. During the land grant adjudication process after U.S. conquest, much common land from both Spanish and Mexican land grants was declared public domain, eventually becoming part of the northern and central New Mexico National Forests. These forests were...

  19. Creating Protected Areas on Public Lands: Is There Room for Additional Conservation?

    PubMed

    Arriagada, Rodrigo A; Echeverria, Cristian M; Moya, Danisa E

    2016-01-01

    Most evaluations of the effectiveness of PAs have relied on indirect estimates based on comparisons between protected and unprotected areas. Such methods can be biased when protection is not randomly assigned. We add to the growing literature on the impact of PAs by answering the following research questions: What is the impact of Chilean PAs on deforestation which occurred between 1986 and 2011? How do estimates of the impact of PAs vary when using only public land as control units? We show that the characteristics of the areas in which protected and unprotected lands are located differ significantly. To satisfactorily estimate the effects of PAs, we use matching methods to define adequate control groups, but not as in previous research. We construct control groups using separately non-protected private areas and non-protected public lands. We find that PAs avoid deforestation when using unprotected private lands as valid controls, however results show no impact when the control group is based only on unprotected public land. Different land management regimes, and higher levels of enforcement inside public lands may reduce the opportunity to add additional conservation benefits when the national systems for PAs are based on the protection of previously unprotected public lands. Given that not all PAs are established to avoid deforestation, results also admit the potential for future studies to include other outcomes including forest degradation (not just deforestation), biodiversity, wildlife, primary forests (not forests in general), among others.

  20. Creating Protected Areas on Public Lands: Is There Room for Additional Conservation?

    PubMed Central

    Arriagada, Rodrigo A.; Echeverria, Cristian M.; Moya, Danisa E.

    2016-01-01

    Most evaluations of the effectiveness of PAs have relied on indirect estimates based on comparisons between protected and unprotected areas. Such methods can be biased when protection is not randomly assigned. We add to the growing literature on the impact of PAs by answering the following research questions: What is the impact of Chilean PAs on deforestation which occurred between 1986 and 2011? How do estimates of the impact of PAs vary when using only public land as control units? We show that the characteristics of the areas in which protected and unprotected lands are located differ significantly. To satisfactorily estimate the effects of PAs, we use matching methods to define adequate control groups, but not as in previous research. We construct control groups using separately non-protected private areas and non-protected public lands. We find that PAs avoid deforestation when using unprotected private lands as valid controls, however results show no impact when the control group is based only on unprotected public land. Different land management regimes, and higher levels of enforcement inside public lands may reduce the opportunity to add additional conservation benefits when the national systems for PAs are based on the protection of previously unprotected public lands. Given that not all PAs are established to avoid deforestation, results also admit the potential for future studies to include other outcomes including forest degradation (not just deforestation), biodiversity, wildlife, primary forests (not forests in general), among others. PMID:26848856

  1. Forest habitat types of central Idaho

    Treesearch

    Robert Steele; Robert D. Pfister; Russell A. Ryker; Jay A. Kittams

    1981-01-01

    A land-classification system based upon potential natural vegetation is presented for the forests of central Idaho. It is based on reconnaissance sampling of about 800 stands. A hierarchical taxonomic classification of forest sites was developed using the habitat type concept. A total of eight climax series, 64 habitat types, and 55 additional phases of habitat types...

  2. Advancing the science of forest hydrology A challenge to agricultural and biological engineers

    Treesearch

    Devendra Amatya; Wayne Skaggs; Carl Trettin

    2009-01-01

    For more than a century, agricultural and biological engineers have provided major advances in science, engineering, and technology to increase food and fiber production to meet the demands of a rapidly growing global population. The land base for these technological advances has originated largely from forested lands, which have experienced dramatic declines over the...

  3. An International Perspective of Wildland Fire 2000

    Treesearch

    R. L. Bjornsen

    1987-01-01

    A steadily shrinking forest land base and the social demands of an expanding population will require utmost skill from land managers, if forest products are to meet the demands of 6 billion people in the year 2000. Developed nations have recognized fire's role, both as a tool and a destructive force. By contrast, developing nations have not instituted adequate...

  4. Habitat mapping and interpretation in New England

    Treesearch

    William B. Leak

    1982-01-01

    Recommendations are given on the classification of forest land in New England on the basis of physiographic region, climate (elevation, latitude), mineralogy, and habitat. A habitat map for the Bartlett Experimental Forest in New Hampshire is presented based on land form, vegetation, and soil materials. For each habitat or group of habitats, data are presented on stand...

  5. Applying Knowledge-Based Methods to Design and Implement an Air Quality Workshop

    Treesearch

    Daniel L. Schmoldt; David L. Peterson

    1991-01-01

    In response to protection needs in class I wilderness areas, forest land managers of the USDA Forest Service must provide input to regulatory agencies regarding air pollutant impacts on air quality-related values. Regional workshops have been convened for land managers and scientists to discuss the aspects and extent of wilderness protection needs. Previous experience...

  6. Image-based change estimation for land cover and land use monitoring

    Treesearch

    Jeremy Webb; C. Kenneth Brewer; Nicholas Daniels; Chris Maderia; Randy Hamilton; Mark Finco; Kevin A. Megown; Andrew J. Lister

    2012-01-01

    The Image-based Change Estimation (ICE) project resulted from the need to provide estimates and information for land cover and land use change over large areas. The procedure uses Forest Inventory and Analysis (FIA) plot locations interpreted using two different dates of imagery from the National Agriculture Imagery Program (NAIP). In order to determine a suitable...

  7. Land Cover Change in Colombia: Surprising Forest Recovery Trends between 2001 and 2010

    PubMed Central

    Sánchez-Cuervo, Ana María; Aide, T. Mitchell; Clark, Matthew L.; Etter, Andrés

    2012-01-01

    Background Monitoring land change at multiple spatial scales is essential for identifying hotspots of change, and for developing and implementing policies for conserving biodiversity and habitats. In the high diversity country of Colombia, these types of analyses are difficult because there is no consistent wall-to-wall, multi-temporal dataset for land-use and land-cover change. Methodology/Principal Findings To address this problem, we mapped annual land-use and land-cover from 2001 to 2010 in Colombia using MODIS (250 m) products coupled with reference data from high spatial resolution imagery (QuickBird) in Google Earth. We used QuickBird imagery to visually interpret percent cover of eight land cover classes used for classifier training and accuracy assessment. Based on these maps we evaluated land cover change at four spatial scales country, biome, ecoregion, and municipality. Of the 1,117 municipalities, 820 had a net gain in woody vegetation (28,092 km2) while 264 had a net loss (11,129 km2), which resulted in a net gain of 16,963 km2 in woody vegetation at the national scale. Woody regrowth mainly occurred in areas previously classified as mixed woody/plantation rather than agriculture/herbaceous. The majority of this gain occurred in the Moist Forest biome, within the montane forest ecoregions, while the greatest loss of woody vegetation occurred in the Llanos and Apure-Villavicencio ecoregions. Conclusions The unexpected forest recovery trend, particularly in the Andes, provides an opportunity to expand current protected areas and to promote habitat connectivity. Furthermore, ecoregions with intense land conversion (e.g. Northern Andean Páramo) and ecoregions under-represented in the protected area network (e.g. Llanos, Apure-Villavicencio Dry forest, and Magdalena-Urabá Moist forest ecoregions) should be considered for new protected areas. PMID:22952816

  8. Tipping Points towards Regional Forest or Urban Transition in Stressed Rural Areas: An Agent-based Modelling Application of Socio-Economic Shifts in Rural Vermont US

    NASA Astrophysics Data System (ADS)

    Tsai, Y.; Turnbull, S.; Zia, A.

    2015-12-01

    In rural areas where farming competes with urban development and environmental amenities, urban and forest transitions occur simultaneously at different locales with different rates due to the underlying socio-economic shifts. Here we develop an interactive land use transition agent-based model (ILUTABM) in which farmers' land use decisions are made contingent on expansion and location choices of urban businesses and urban residences, as well as farmers' perceived ecosystem services produced by their land holdings. The ILUTABM simulates heterogeneity in land use decisions at parcel levels by differentiating decision making processes for agricultural and urban landowners. Landowners are simulated to make land-use transition decisions as bounded rational agents that maximize their partial expected utility functions under different underlying socio-economic conditions given the category of a landowner and the spatial characteristics of the landowner's landholdings. The ILUTABM is parameterized by spatial data sets such as National Land Cover Database (NLCD), zoning, parcels, property prices, US census, farmers surveys, building/facility characteristics, soil, slope and elevation. We then apply the ILUTABM to the rural Vermont landscape, located in the Northeast Arm District of Lake Champlain and the downstream sub-watersheds of Missisquoi River, to generate phase transitions of rural land towards urban land near peri-urban areas and towards forest land near financially stressed farmlands during 2001-2051. Possible tipping point trajectories of rural land towards regional forest or urban transition are simulated under three socio-economic scenarios: business as usual (ILUTABM calibrated to 2011 NLCD), increased incentives for conservation easements, and increased incentives for attracting urban residences and businesses.

  9. Deforestation trend in North Sumatra over 1990-2015

    NASA Astrophysics Data System (ADS)

    Basyuni, M.; Sulistiyono, N.; Wati, R.; Hayati, R.

    2018-02-01

    Deforestation and forest degradation have been previously reported to contributing greenhouse gas emission, the primary driver of global warming. The present paper studies deforestation and reforestation trend in North Sumatra, Indonesia using land-use/land-cover change from 1990-2015. The land-use consists of three classes derived from forest land (primary and secondary dry land forest, primary and secondary swamp forest, primary and secondary mangrove forest). Non-Forest (shrub, oil palm plantation, forest plantation, settlement, barren land, swamp shrub, dry land farming, mixed dry land farming, paddy field, aquaculture, airport, transmigration, and mining), and water body (water and swamp). Results showed that from 33 regencies/city in North Sumatra, among them, 25 districts deforested, which was the highest deforestation rate in Labuhanbatu and South Labuhanbatu (2,238.08 and 1,652.55 ha/year, respectively), only one area reforested, and seven districts showed no deforestation or reforestation. During 25 years observed, the forest has been deforested 22.92%, while nonforest has been increased 11.33% of land-use. The significant increasing loss of North Sumatran forest implies conservation efforts and developing sustainable forest management.

  10. Long-term modeling of the forest-grassland ecotone in the French Alps: implications for land management and conservation.

    PubMed

    Carlson, Bradley Z; Renaud, Julien; Biron, Pierre Eymard; Choler, Philippe

    2014-07-01

    Understanding decadal-scale land-cover changes has the potential to inform current conservation policies. European mountain landscapes that include numerous protected areas provide a unique opportunity to weigh the long-term influences of land-use practices and climate on forest-grassland ecotone dynamics. Aerial photographs from four dates (1948, 1978, 1993, and 2009) were used to quantify the extent of forest and grassland cover at 5-m resolution across a 150-km2 area in a protected area of the southwestern French Alps. The study area included a grazed zone and a nongrazed zone that was abandoned during the 1970s. We estimated time series of a forestation index (FI) and analyzed the effects of elevation and grazing on FI using a hierarchical linear mixed effect model. Forest extent (composed primarily of mountain pine, Pinus uncinata) expanded from 50.6 km2 in 1948 to 85.5 km2 in 2009, i.e., a 23% increase in relative cover at the expense of grassland communities. Over the sixty-year period, the treeline rose by 118 m, from 1564 to 1682 m. Rapid forest expansion within the nongrazed zone followed the cessation of logging activities and was likely accelerated by climate warming during the 1980s. Within the grazed zone, the maintained presence of sheep did not fully counteract mountain pine expansion and led to highly contrasting rates of land-cover change based on the location of shepherds' cabins and water sources. Projections of FI for 2030 showed remnant patches of intensively used grasslands interspersed in a densely forested matrix. Our analysis of mountain land-cover dynamics provided strong evidence for forest encroachment into grassland habitat despite consistent grazing pressure. This pattern may be attributed to the disappearance of traditional land-use practices such as shrub burning and removal. Our findings prompt land managers to reconsider their initial conservation priority (i.e., the protection of a renowned mountain pine forest) and to implement proactive management strategies in order to preserve landscape heterogeneity and biological diversity. Projecting historical trends in the forest-grassland ecotone to 2030 provides stakeholders with a policy relevant tool for near-term land management.

  11. 43 CFR 3811.2-4 - Lands in national forests.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Lands Subject to Location and Purchase § 3811.2-4 Lands in national forests. For mining claims in national forests, see § 3811.1. ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Lands in national forests. 3811.2-4...

  12. 43 CFR 3811.2-4 - Lands in national forests.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Lands Subject to Location and Purchase § 3811.2-4 Lands in national forests. For mining claims in national forests, see § 3811.1. ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Lands in national forests. 3811.2-4...

  13. 43 CFR 3811.2-4 - Lands in national forests.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Lands Subject to Location and Purchase § 3811.2-4 Lands in national forests. For mining claims in national forests, see § 3811.1. ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Lands in national forests. 3811.2-4...

  14. 43 CFR 3811.2-4 - Lands in national forests.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Lands Subject to Location and Purchase § 3811.2-4 Lands in national forests. For mining claims in national forests, see § 3811.1. ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Lands in national forests. 3811.2-4...

  15. Forest cover change prediction using hybrid methodology of geoinformatics and Markov chain model: A case study on sub-Himalayan town Gangtok, India

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Anirban; Mondal, Arun; Mukherjee, Sandip; Khatua, Dipam; Ghosh, Subhajit; Mitra, Debasish; Ghosh, Tuhin

    2014-08-01

    In the Himalayan states of India, with increasing population and activities, large areas of forested land are being converted into other land-use features. There is a definite cause and effect relationship between changing practice for development and changes in land use. So, an estimation of land use dynamics and a futuristic trend pattern is essential. A combination of geospatial and statistical techniques were applied to assess the present and future land use/land cover scenario of Gangtok, the subHimalayan capital of Sikkim. Multi-temporal satellite imageries of the Landsat series were used to map the changes in land use of Gangtok from 1990 to 2010. Only three major land use classes (built-up area and bare land, step cultivated area, and forest) were considered as the most dynamic land use practices of Gangtok. The conventional supervised classification, and spectral indices-based thresholding using NDVI (Normalized Difference Vegetation Index) and SAVI (Soil Adjusted Vegetation Index) were applied along with the accuracy assessments. Markov modelling was applied for prediction of land use/land cover change and was validated. SAVI provides the most accurate estimate, i.e., the difference between predicted and actual data is minimal. Finally, a combination of Markov modelling and SAVI was used to predict the probable land-use scenario in Gangtok in 2020 AD, which indicted that more forest areas will be converted for step cultivation by the year 2020.

  16. Forest Carbon Accounting Considerations in US Bioenergy Policy

    Treesearch

    Reid A. Miner; Robert C. Abt; Jim L. Bowyer; Marilyn A. Buford; Robert W. Malmsheimer; Jay O' Laughlin; Elaine E. Oneil; Roger A. Sedjo; Kenneth E. Skog

    2014-01-01

    Four research-based insights are essential to understanding forest bioenergy and “carbon debts.” (1) As long as wood-producing land remains in forest, long-lived wood products and forest bioenergy reduce fossil fuel use and long-term carbon emission impacts. (2) Increased demand for wood can trigger investments that increase forest area and forest productivity and...

  17. Availability of forest and associated land resources in Illinois

    Treesearch

    John H. III Burde; David C. Baumgartner

    1978-01-01

    Describes the extent of forest land resources in Illinois and estimates their availability for timber and recreational uses using both conventional definitions of forest land and the broader concept of forest and associated land.

  18. A Multitemporal, Multisensor Approach to Mapping the Canadian Boreal Forest

    NASA Astrophysics Data System (ADS)

    Reith, Ernest

    The main anthropogenic source of CO2 emissions is the combustion of fossil fuels, while the clearing and burning of forests contribute significant amounts as well. Vegetation represents a major reservoir for terrestrial carbon stocks, and improving our ability to inventory vegetation will enhance our understanding of the impacts of land cover and climate change on carbon stocks and fluxes. These relationships may be an indication of a series of troubling biosphere-atmospheric feedback mechanisms that need to be better understood and modeled. Valuable land cover information can be provided to the global climate change modeling community using advanced remote sensing capabilities such as Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and Airborne Synthetic Aperture Radar (AIRSAR). Individually and synergistically, data were successfully used to characterize the complex nature of the Canadian boreal forest land cover types. The multiple endmember spectral mixture analysis process was applied against seasonal AVIRIS data to produce species-level vegetated land cover maps of two study sites in the Canadian boreal forest: Old Black Spruce (OBS) and Old Jack Pine (OJP). The highest overall accuracy was assessed to be at least 66% accurate to the available reference map, providing evidence that high-quality, species-level land cover mapping of the Canadian boreal forest is achievable at accuracy levels greater than other previous research efforts in the region. Backscatter information from multichannel, polarimetric SAR utilizing a binary decision tree-based classification technique methodology was moderately successfully applied to AIRSAR to produce maps of the boreal land cover types at both sites, with overall accuracies at least 59%. A process, centered around noise whitening and principal component analysis features of the minimum noise fraction transform, was implemented to leverage synergies contained within spatially coregistered multitemporal and multisensor AVIRIS and AIRSAR data sets to successfully produce high-accuracy boreal forest land cover maps. Overall land cover map accuracies of 78% and 72% were assessed for OJP and OBS sites, respectively, for either seasonal or multitemporal data sets. High individual land cover accuracies appeared to be independent of site, season, or multisensor combination in the minimum-noise fraction-based approach.

  19. Value of the Morgan-Monroe-Yellowwood State Forest Complex

    Treesearch

    William L. Hoover

    2013-01-01

    As publicly owned forest land, the Morgan-Monroe and Yellowwood State Forests (Indiana), referred to herein as the Morgan-Monroe Yellowwood Complex (MMYC), have many stakeholders with differing management expectations. The Hardwood Ecosystem Experiment (HEE) within the MMYC will significantly increase the science-based information available for forest management...

  20. Sap flow based transpiration estimates in species-rich secondary forests of different ages in central Panama during a wet-season drought

    NASA Astrophysics Data System (ADS)

    Bretfeld, M.; Ewers, B. E.; Hall, J. S.; Ogden, F. L.

    2015-12-01

    Many landscapes that were previously covered by mature tropical forests in central Panama today comprise of a mosaic of mature forest fragments, pastures and agricultural land, and regrowing secondary forests. An increasing demand for water due to urbanization and the expansion of the Panama Canal, along with a predicted transition into a dryer climatic period necessitate a better understanding regarding the effects of land use and land use history on hydrological processes. Such knowledge, including water storage, residence times, and fluxes is essential to develop effective land management strategies and propose incentives to alter land use practices to enhance hydrological services. To quantify transpiration rates at different stages of secondary forest succession, we measured sap flow in forests growing for 8, ~25, and 80+ years since last known land use in the 15 km2 "Agua Salud" study area, located in central Panama. In each forest, we selected a subset of at least 15 individuals, representing the local tree size distribution, and recorded data from heat-ratio sap flow sensors every 30 minutes starting in February 2015. All instrumented trees were identified to species and compared to local species distributions. Basal area in the three forest types was 9.1, 10.8, and 50.2 m2 ha-1 for 8, ~25, and 80+ year old forests, respectively. Average daily transpiration was highly correlated to forest age, with highest rates in the oldest forest (3.0 to 18.2 mm ha-1 day-1), followed by intermediate (1.2 to 6.7 mm ha-1 day-1) and youngest forests (0.2 to 2.7 mm ha-1 day-1), suggesting roughly a doubling in transpiration from 8 to ~25 year old forests, despite similar basal area, and again from ~25 to 80+ year old forests. Flow rates in individual trees generally reflected the dry-to-wet season transition but behaved differently in response to the unprecedentedly dry conditions during the first half of 2015 in central Panama.

  1. Spatial and Temporal Dynamics and Value of Nature-Based Recreation, Estimated via Social Media.

    PubMed

    Sonter, Laura J; Watson, Keri B; Wood, Spencer A; Ricketts, Taylor H

    2016-01-01

    Conserved lands provide multiple ecosystem services, including opportunities for nature-based recreation. Managing this service requires understanding the landscape attributes underpinning its provision, and how changes in land management affect its contribution to human wellbeing over time. However, evidence from both spatially explicit and temporally dynamic analyses is scarce, often due to data limitations. In this study, we investigated nature-based recreation within conserved lands in Vermont, USA. We used geotagged photographs uploaded to the photo-sharing website Flickr to quantify visits by in-state and out-of-state visitors, and we multiplied visits by mean trip expenditures to show that conserved lands contributed US $1.8 billion (US $0.18-20.2 at 95% confidence) to Vermont's tourism industry between 2007 and 2014. We found eight landscape attributes explained the pattern of visits to conserved lands; visits were higher in larger conserved lands, with less forest cover, greater trail density and more opportunities for snow sports. Some of these attributes differed from those found in other locations, but all aligned with our understanding of recreation in Vermont. We also found that using temporally static models to inform conservation decisions may have perverse outcomes for nature-based recreation. For example, static models suggest conserved land with less forest cover receive more visits, but temporally dynamic models suggest clearing forests decreases, rather than increases, visits to these sites. Our results illustrate the importance of understanding both the spatial and temporal dynamics of ecosystem services for conservation decision-making.

  2. Evaluating land-use and private forest management responses to a potential forest carbon offset sales program in western Oregon (USA)

    Treesearch

    Gregory S. Latta; Darius M. Adams; Kathleen P. Bell; Jeff Kline

    2016-01-01

    We describe the use of linked land-use and forest sector models to simulate the effects of carbon offset sales on private forest owners' land-use and forest management decisions inwestern Oregon (USA). Our work focuses on forest management decisions rather than afforestation, allows full forest sector price adjustment to land-use changes, and incorporates time-...

  3. The forest resources of West Virginia

    Treesearch

    James T. Bones

    1978-01-01

    A statistical and analytical report of the third forest survey of West Virginia by the Forest Service, U. S. Department of Agriculture. Findings are based on the remeasurement of 1/5-acre plots and new 10-point cluster plots. This report analyzes trends in forest land area, timber volume, annual growth, and timber removals. Timber- products output by forest industries...

  4. Land-use poverty traps identified in shifting cultivation systems shape long-term tropical forest cover

    PubMed Central

    Coomes, Oliver T.; Takasaki, Yoshito; Rhemtulla, Jeanine M.

    2011-01-01

    In this article we illustrate how fine-grained longitudinal analyses of land holding and land use among forest peasant households in an Amazonian village can enrich our understanding of the poverty/land cover nexus. We examine the dynamic links in shifting cultivation systems among asset poverty, land use, and land cover in a community where poverty is persistent and primary forests have been replaced over time—with community enclosure—by secondary forests (i.e., fallows), orchards, and crop land. Land cover change is assessed using aerial photographs/satellite imagery from 1965 to 2007. Household and plot level data are used to track land holding, portfolios, and use as well as land cover over the past 30 y, with particular attention to forest status (type and age). Our analyses find evidence for two important types of “land-use” poverty traps—a “subsistence crop” trap and a “short fallow” trap—and indicate that the initial conditions of land holding by forest peasants have long-term effects on future forest cover and household welfare. These findings suggest a new mechanism driving poverty traps: insufficient initial land holdings induce land use patterns that trap households in low agricultural productivity. Path dependency in the evolution of household land portfolios and land use strategies strongly influences not only the wellbeing of forest people but also the dynamics of tropical deforestation and secondary forest regrowth. PMID:21873179

  5. Forests on the Edge: A GIS-based Approach to Projecting Housing Development on Private Forests

    Treesearch

    Ron McRoberts; Mark Nelson; David Theobald; Mike Eley; Mike Dechter

    2006-01-01

    The private working land base of America’s forests, farms, and ranches is being converted at the rate of nearly 1,620 ha (4,000 acres) per day with tremendous economic, ecological, and social impacts. The United States Department of Agriculture (USDA) Forest Service is sponsoring the “Forests on the Edge” project to develop a better understanding of the contributions...

  6. Rural Land Use Change during 1986–2002 in Lijiang, China, Based on Remote Sensing and GIS Data

    PubMed Central

    Peng, Jian; Wu, Jiansheng; Yin, He; Li, Zhengguo; Chang, Qing; Mu, Tianlong

    2008-01-01

    As a local environmental issue with global importance, land use/land cover change (LUCC) has always been one of the key issues in geography and environmental studies with the expansion of regional case studies. While most of LUCC studies in China have focused on urban land use change, meanwhile, compared with the rapid change of urban land use in the coastal areas of eastern China, slow but distinct rural land use changes have also occurred in the mountainous areas of western China since the late 1980s. In this case through a study in Lijiang County of Yunnan Province, with the application of remote sensing data and geographic information system techniques, the process of rural land use change in mountain areas of western China was monitored through extensive statistical analysis of detailed regional data. The results showed significant increases in construction land, paddy field and dry land, and a decrease in dense forest land and waste grassland between 1986 and 2002. The conversions between dense forest land and sparse forest land, grassland, waste grassland and dry land were the primary processes of rural land use change. Sparse forest land had the highest rate of land use change, with glacier or snow-capped land the lowest; while human settlement and rural economic development were found to be the main driving forces of regional difference in the integrated land use change rate among the 24 towns of Lijiang County. Quantified through landscape metrics, spatial patterns of rural land use change were represented as an increase in landscape diversity and landscape fragmentation, and the regularization of patch shapes, suggesting the intensification of human disturbances and degradation of ecological quality in the rural landscape. PMID:27873983

  7. Rural Land Use Change during 1986-2002 in Lijiang, China, Based on Remote Sensing and GIS Data.

    PubMed

    Peng, Jian; Wu, Jiansheng; Yin, He; Li, Zhengguo; Chang, Qing; Mu, Tianlong

    2008-12-11

    As a local environmental issue with global importance, land use/land cover change (LUCC) has always been one of the key issues in geography and environmental studies with the expansion of regional case studies. While most of LUCC studies in China have focused on urban land use change, meanwhile, compared with the rapid change of urban land use in the coastal areas of eastern China, slow but distinct rural land use changes have also occurred in the mountainous areas of western China since the late 1980s. In this case through a study in Lijiang County of Yunnan Province, with the application of remote sensing data and geographic information system techniques, the process of rural land use change in mountain areas of western China was monitored through extensive statistical analysis of detailed regional data. The results showed significant increases in construction land, paddy field and dry land, and a decrease in dense forest land and waste grassland between 1986 and 2002. The conversions between dense forest land and sparse forest land, grassland, waste grassland and dry land were the primary processes of rural land use change. Sparse forest land had the highest rate of land use change, with glacier or snow-capped land the lowest; while human settlement and rural economic development were found to be the main driving forces of regional difference in the integrated land use change rate among the 24 towns of Lijiang County. Quantified through landscape metrics, spatial patterns of rural land use change were represented as an increase in landscape diversity and landscape fragmentation, and the regularization of patch shapes, suggesting the intensification of human disturbances and degradation of ecological quality in the rural landscape.

  8. Optimizing carbon storage and biodiversity protection in tropical agricultural landscapes.

    PubMed

    Gilroy, James J; Woodcock, Paul; Edwards, Felicity A; Wheeler, Charlotte; Medina Uribe, Claudia A; Haugaasen, Torbjørn; Edwards, David P

    2014-07-01

    With the rapidly expanding ecological footprint of agriculture, the design of farmed landscapes will play an increasingly important role for both carbon storage and biodiversity protection. Carbon and biodiversity can be enhanced by integrating natural habitats into agricultural lands, but a key question is whether benefits are maximized by including many small features throughout the landscape ('land-sharing' agriculture) or a few large contiguous blocks alongside intensive farmland ('land-sparing' agriculture). In this study, we are the first to integrate carbon storage alongside multi-taxa biodiversity assessments to compare land-sparing and land-sharing frameworks. We do so by sampling carbon stocks and biodiversity (birds and dung beetles) in landscapes containing agriculture and forest within the Colombian Chocó-Andes, a zone of high global conservation priority. We show that woodland fragments embedded within a matrix of cattle pasture hold less carbon per unit area than contiguous primary or advanced secondary forests (>15 years). Farmland sites also support less diverse bird and dung beetle communities than contiguous forests, even when farmland retains high levels of woodland habitat cover. Landscape simulations based on these data suggest that land-sparing strategies would be more beneficial for both carbon storage and biodiversity than land-sharing strategies across a range of production levels. Biodiversity benefits of land-sparing are predicted to be similar whether spared lands protect primary or advanced secondary forests, owing to the close similarity of bird and dung beetle communities between the two forest classes. Land-sparing schemes that encourage the protection and regeneration of natural forest blocks thus provide a synergy between carbon and biodiversity conservation, and represent a promising strategy for reducing the negative impacts of agriculture on tropical ecosystems. However, further studies examining a wider range of ecosystem services will be necessary to fully understand the links between land-allocation strategies and long-term ecosystem service provision. © 2014 John Wiley & Sons Ltd.

  9. The Study of Driving Forces of Land Use Transformation in the Pearl River Delta during 1990 to 2010※

    NASA Astrophysics Data System (ADS)

    Yang, Kun; Wang, Xiuming; Zhao, Peng; Liu, Xucheng; Zhang, Yuhuan

    2018-05-01

    Based on the land use data of the study area in 1990, 2000 and 2010, the paper tries to analyse the characteristic of land use and cover change (LUCC) in Pearl River Delta and its driving forces as well as the differences of driving forces among Shenzhen, Dongguan and Foshan by adopting the approaches of land use dynamic degree, the land use transition matrix and case studies. The results show that a large amount of farmland and forests have been converted to construction land in the study area, and the synthesize land use dynamic degrees of the study area are 2.3% and 6.2% during 1990-2000 and 2000-2010, respectively. The results also indicate that Zhuhai and Shenzhen have the highest land use dynamic degree among the nine cities of Pearl River Delta during 1990-2000, and Dongguan has the highest land use dynamic degree during 2000-2010. It can be inferred that the transitions from farmland and forest to construction land have been propelled by the local economic development and population growth, and the land use changes in forest and grassland have been driven by natural factors such as slope and elevation.

  10. 75 FR 52716 - Transfer of Land to Forest Service

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-27

    ... DEPARTMENT OF AGRICULTURE Forest Service Transfer of Land to Forest Service AGENCY: Forest Service... Forest Service, U.S. Department of Agriculture, respectively signed a land transfer agreement... from the Farm Service Agency to the Forest Service. This administrative transfer is authorized by...

  11. 76 FR 37826 - Public Land Order No. 7773; Emergency Withdrawal of Public and National Forest System Lands...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-28

    ...] Public Land Order No. 7773; Emergency Withdrawal of Public and National Forest System Lands, Coconino and... Forest System lands from location and entry under the 1872 Mining Law for a period of 6 months under the... described above aggregate approximately 1,010,776 acres public and National Forest System lands in Coconino...

  12. Ohio forests: 2006

    Treesearch

    Richard H. Widmann; Dan Balser; Charles Barnett; Brett J. Butler; Douglas M. Griffith; Tonya W. Lister; W. Keith Moser; Charles H. Perry; Rachel Riemann; Christopher W. Woodall

    2009-01-01

    This report summarizes annual forest inventories conducted in Ohio from 2001 to 2006 by the Northern Research Station's Forest Inventory and Analysis unit. Ohio's forest land covers 7.9 million acres or 30 percent of the State's land area, changing little in forest land area since 1991. Of this land, 5.8 million acres (73 percent) are held by family...

  13. 77 FR 50985 - National Advisory Committee for Implementation of the National Forest System Land Management...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-23

    ... National Forest System Land Management Planning Rule AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The National Advisory Committee for Implementation of the National Forest System Land... implementation of the National Forest System Land Management Rule. The meeting is open to the public. The purpose...

  14. Effects of climate, land management, and sulfur deposition on soil base cation supply in national forests of the southern Appalachian mountains

    Treesearch

    T.C. McDonnell; T.J. Sullivan; B.J. Cosby; W.A. Jackson; K.J. Elliott

    2013-01-01

    Forest soils having low exchangeable calcium (Ca) and other nutrient base cation (BC) reserves may induce nutrient deficiencies in acid-sensitive plants and impact commercially important tree species. Past and future depletion of soil BC in response to acidic sulfur (S) deposition, forest management, and climate change alter the health and productivity of forest trees...

  15. Ecosystem services of human-dominated watersheds and land use influences: a case study from the Dianchi Lake watershed in China.

    PubMed

    Hou, Ying; Li, Bo; Müller, Felix; Chen, Weiping

    2016-11-01

    Watersheds provide multiple ecosystem services. Ecosystem service assessment is a promising approach to investigate human-environment interaction at the watershed scale. The spatial characteristics of ecosystem services are closely related to land use statuses in human-dominated watersheds. This study aims to investigate the effects of land use on the spatial variations of ecosystem services at the Dianchi Lake watershed in Southwest China. We investigated the spatial variations of six ecosystem services-food supply, net primary productivity (NPP), habitat quality, evapotranspiration, water yield, and nitrogen retention. These services were selected based on their significance at the Dianchi Lake watershed and the availability of their data. The quantification of these services was based on modeling, value transference, and spatial analysis in combination with biophysical and socioeconomic data. Furthermore, we calculated the values of ecosystem services provided by different land use types and quantified the correlations between ecosystem service values and land use area proportions. The results show considerable spatial variations in the six ecosystem services associated with land use influences in the Dianchi Lake watershed. The cropland and forest land use types had predominantly positive influences on food productivity and NPP, respectively. The rural residential area and forest land use types reduced and enhanced habitat quality, respectively; these influences were identical to those of evapotranspiration. Urban area and rural residential area exerted significantly positive influences on water yield. In contrast, water yield was negatively correlated with forest area proportion. Finally, cropland and forest had significantly positive and negative influences, respectively, on nitrogen retention. Our study emphasizes the importance of consideration of the influences from land use composition and distribution on ecosystem services for managing the ecosystems of human-dominated watersheds.

  16. Land-Use Planning in the Chaco Plain (Burruyacú, Argentina): Part 2: Generating a Consensus Plan to Mitigate Land-Use Conflicts and Minimize Land Degradation

    NASA Astrophysics Data System (ADS)

    Recatalá Boix, Luis; Zinck, Joseph Alfred

    2008-08-01

    The Burruyacú district (Tucumán province, Northwest Argentina) has been traditionally an area with rural activities based on the exploitation of the Chaco forest for timber and livestock browsing. Since the 1960s, local institutions started promoting soybean due to favorable land conditions and good market prices. Soybean extension, as from the 1970s, has resulted in important reduction of the Chaco forest and also caused physical soil degradation, especially soil compaction and erosion. A land-use-planning exercise was carried out using the Land-Use Planning and Information System (LUPIS) as a spatial decision support system. LUPIS facilitates the generation of alternative land-use plans by adjusting the relative importance attributed by multiple stakeholders to preference and avoidance policies. The system leads to the allocation of competing land uses to land map units in accordance with their preferred resource requirements, conditional upon the resource base of the area and the stakeholders’ demands. After generating a land use plan for each stakeholder category identified in the study area, including commercial farmers, conservative/conventional farmers, and conservationists, a consensus plan was established to address the land-use conflicts between mechanized agriculture, traditional agriculture and forest conservation, and to mitigate soil degradation caused by extensive dry-farming. Although the planning exercise did not directly involve the stakeholders, the results are sufficiently practical and realistic to suggest that the approach could be extended to the entire Chaco plain region.

  17. The public water supply protection value of forests: A watershed-scale ecosystem services based upon total organic carbon

    USDA-ARS?s Scientific Manuscript database

    We developed a cost-based methodology to assess the value of forested watersheds to improve water quality in public water supplies. The developed methodology is applicable to other source watersheds to determine ecosystem services for water quality. We assess the value of forest land for source wate...

  18. Forest habitat types of eastern Idaho-western Wyoming

    Treesearch

    Robert Steele; Stephen V. Cooper; David M. Ondov; David W. Roberts; Robert D. Pfister

    1983-01-01

    A land-classification system based upon potential natural vegetation is presented for the forests of central Idaho. It is based on reconnaissance sampling of about 980 stands. A hierarchical taxonomic classification of forest sites was developed using the habitat type concept. A total of six climax series, 58 habitat types, and 24 additional phases of habitat types are...

  19. Coniferous forest habitat types of central and southern Utah

    Treesearch

    Andrew P. Youngblood; Ronald L. Mauk

    1985-01-01

    A land-classification system based upon potential natural vegetation is presented for the coniferous forests of central and southern Utah. It is based on reconnaissance sampling of about 720 stands. A hierarchical taxonomic classification of forest sites was developed using the habitat type concept. Seven climax series, 37 habitat types, and six additional phases of...

  20. Forest habitat types of Montana

    Treesearch

    Robert D. Pfister; Bernard L. Kovalchik; Stephen F. Arno; Richard C. Presby

    1977-01-01

    A land-classification system based upon potential natural vegetation is presented for the forests of Montana. It is based on an intensive 4-year study and reconnaissance sampling of about 1,500 stands. A hierarchical classification of forest sites was developed using the habitat type concept. A total of 9 climax series, 64 habitat types, and 37 additional phases of...

  1. Forest Statistics for Ohio--1979

    Treesearch

    Donald F. Dennis; Thomas W. Birch; Thomas W. Birch

    1981-01-01

    A statistical report on the third forest survey of Ohio conducted in 1978 and 1979. Statistical findings are based on data from remeasured and new 10-point variable radius plots. The current status of forest-land area, timber volume, and annual growth and removals is presented. Timber products output by timber industries, based on a 1978 updated canvass of...

  2. Forest statistics for New York--1980

    Treesearch

    Thomas J., Jr. Considine; Thomas S. Frieswyk; Thomas S. Frieswyk

    1982-01-01

    A statistical report on the third forest survey of New York conducted in 1978 and 1979. Statistical findings are based on data from remeasured and new 10-point variable-radius plots. The current status of forest-land area, timber volume, and annual growth and removals is presented. Timber products output by timber industries, based on a 1979 updated canvass of...

  3. Combining global land cover datasets to quantify agricultural expansion into forests in Latin America: Limitations and challenges

    PubMed Central

    Persson, U. Martin

    2017-01-01

    While we know that deforestation in the tropics is increasingly driven by commercial agriculture, most tropical countries still lack recent and spatially-explicit assessments of the relative importance of pasture and cropland expansion in causing forest loss. Here we present a spatially explicit quantification of the extent to which cultivated land and grassland expanded at the expense of forests across Latin America in 2001–2011, by combining two “state-of-the-art” global datasets (Global Forest Change forest loss and GlobeLand30-2010 land cover). We further evaluate some of the limitations and challenges in doing this. We find that this approach does capture some of the major patterns of land cover following deforestation, with GlobeLand30-2010’s Grassland class (which we interpret as pasture) being the most common land cover replacing forests across Latin America. However, our analysis also reveals some major limitations to combining these land cover datasets for quantifying pasture and cropland expansion into forest. First, a simple one-to-one translation between GlobeLand30-2010’s Cultivated land and Grassland classes into cropland and pasture respectively, should not be made without caution, as GlobeLand30-2010 defines its Cultivated land to include some pastures. Comparisons with the TerraClass dataset over the Brazilian Amazon and with previous literature indicates that Cultivated land in GlobeLand30-2010 includes notable amounts of pasture and other vegetation (e.g. in Paraguay and the Brazilian Amazon). This further suggests that the approach taken here generally leads to an underestimation (of up to ~60%) of the role of pasture in replacing forest. Second, a large share (~33%) of the Global Forest Change forest loss is found to still be forest according to GlobeLand30-2010 and our analysis suggests that the accuracy of the combined datasets, especially for areas with heterogeneous land cover and/or small-scale forest loss, is still too poor for deriving accurate quantifications of land cover following forest loss. PMID:28704510

  4. Combining global land cover datasets to quantify agricultural expansion into forests in Latin America: Limitations and challenges.

    PubMed

    Pendrill, Florence; Persson, U Martin

    2017-01-01

    While we know that deforestation in the tropics is increasingly driven by commercial agriculture, most tropical countries still lack recent and spatially-explicit assessments of the relative importance of pasture and cropland expansion in causing forest loss. Here we present a spatially explicit quantification of the extent to which cultivated land and grassland expanded at the expense of forests across Latin America in 2001-2011, by combining two "state-of-the-art" global datasets (Global Forest Change forest loss and GlobeLand30-2010 land cover). We further evaluate some of the limitations and challenges in doing this. We find that this approach does capture some of the major patterns of land cover following deforestation, with GlobeLand30-2010's Grassland class (which we interpret as pasture) being the most common land cover replacing forests across Latin America. However, our analysis also reveals some major limitations to combining these land cover datasets for quantifying pasture and cropland expansion into forest. First, a simple one-to-one translation between GlobeLand30-2010's Cultivated land and Grassland classes into cropland and pasture respectively, should not be made without caution, as GlobeLand30-2010 defines its Cultivated land to include some pastures. Comparisons with the TerraClass dataset over the Brazilian Amazon and with previous literature indicates that Cultivated land in GlobeLand30-2010 includes notable amounts of pasture and other vegetation (e.g. in Paraguay and the Brazilian Amazon). This further suggests that the approach taken here generally leads to an underestimation (of up to ~60%) of the role of pasture in replacing forest. Second, a large share (~33%) of the Global Forest Change forest loss is found to still be forest according to GlobeLand30-2010 and our analysis suggests that the accuracy of the combined datasets, especially for areas with heterogeneous land cover and/or small-scale forest loss, is still too poor for deriving accurate quantifications of land cover following forest loss.

  5. Missouri's forests 1999-2003 (Part A)

    Treesearch

    W. Keith Moser; Mark H. Hansen; Thomas B. Treiman; Earl C. Leatherberry; Ed Jepsen; Cassandra L. Olson; Charles H. Perry; Ronald J. Piva; Christopher W. Woodall; Gary J. Brand

    2007-01-01

    The first completed annual inventory of Missouri's forests reports more than 14.6 million acres of forest land. Softwood forests make up 4 percent of the total forest land area; oak/hickory forest types make up about three-fourths of the total hardwood forest land area. Missouri's forests have continued to increase in volume, with all-live tree volume on...

  6. Modeling hydrology and in-stream transport on drained forested lands in coastal Carolinas, U.S.A.

    Treesearch

    Devendra Amatya

    2005-01-01

    This study summarizes the successional development and testing of forest hydrologic models based on DRAINMOD that predicts the hydrology of low-gradient poorly drained watersheds as affected by land management and climatic variation. The field scale (DRAINLOB) and watershed-scale in-stream routing (DRAINWAT) models were successfully tested with water table and outflow...

  7. An accuracy assessment of forest disturbance mapping in the western Great Lakes

    Treesearch

    P.L. Zimmerman; I.W. Housman; C.H. Perry; R.A. Chastain; J.B. Webb; M.V. Finco

    2013-01-01

    The increasing availability of satellite imagery has spurred the production of thematic land cover maps based on satellite data. These maps are more valuable to the scientific community and land managers when the accuracy of their classifications has been assessed. Here, we assessed the accuracy of a map of forest disturbance in the watersheds of Lake Superior and Lake...

  8. Can forest management be used to sustain water-based ecosystem service in the face of climate change?

    Treesearch

    Chelcy Ford; Stephanie Laseter; Wayne Swank; James Vose

    2011-01-01

    Forested watersheds, an important provider of ecosystems services related to water supply, can have their structure, function, and resulting streamflow substantially altered by land use and land cover. Using a retrospective analysis and synthesis of long-term climate and streamflow data (75 years) from six watersheds differing in management histories we explored...

  9. Analysis of Land-Use Effects on Landscape Patterns and Biological Diversity in Pacific North Forests: 1972-1991

    NASA Technical Reports Server (NTRS)

    Wallin, David O.; Cohen, Warren B.; Bradshaw, G. A.; Spies, T. A.; Hansen, A.; Huff, M. H.; Lehmkuhl, J. F.; Raphael, M. G.; Ripple, W. J.

    1998-01-01

    While there is widespread recognition of the importance of preserving biological diversity there is considerable uncertainty about how to map current patterns of diversity and monitor changes through time. Ground-based approaches are impractical for examining regional patterns of biological diversity, for monitoring change, and they may actually overlook important higher-order phenomena. Thus, there is a critical need for innovative techniques to examine land-use effects on biological diversity at the landscape and regional scales. In this project, we have used satellite-based remote sensing to examine land-use effects on forest ecosystems in the Pacific NorthWest region (PNW) of the U.S.A. Rates and patterns of forest change throughout the region were quantified for the period from 1972 to 1993. This information was then used to map changes in the abundance and distribution of potential habitat for selected vertebrate species. The results of this project will be useful for identifying "keystone" stands that are important in maintaining habitat connectivity at the regional scale and for evaluating the impact of future land-use on vertebrate diversity throughout the region. The approaches developed here will also be useful in other forested regions throughout the world.

  10. Forests on the edge: housing development on America’s private forests.

    Treesearch

    Ronald E. McRoberts; Ralph J. Alig; Mark D. Nelson; David M. Theobald; Mike Eley; Mike Dechter; Mary. Carr

    2005-01-01

    The private working land base of America’s forests is being converted to developed uses, with implications for the condition and management of affected private forests and the watersheds in which they occur. The Forests on the Edge project seeks to improve understanding of the processes and thresholds associated with increases in housing density in private forests and...

  11. Development of LANDSAT Derived Forest Cover Information for Integration into Adirondack Park GIS

    NASA Technical Reports Server (NTRS)

    Curran, R. P.; Banta, J. S.

    1982-01-01

    Based upon observed changes in timber harvest practices partially attributable to forest biomass removable for energy supply purposes, the Adirondack Park Agency began in 1979 a multi-year project to implement a digital geographic information system (GIS). An initial developmental task was an inventory of forest cover information and analysis of forest resource change and availability. While developing the GIS, a pilot project was undertaken to evaluate the usefulness of LANDSAT derived land cover information for this purpose, and to explore the integration of LANDSAT data into the GIS. The prototype LANDSAT analysis project involved: (1) the use of both recent and historic data to derive land cover information for two dates; and (2) comparison of land cover over time to determine quantitative and geographic changes. The "recent data," 1978 full foliage data over portions of four LANDSAT scenes, was classified, using ground truth derived training samples in various forested and non-forested categories. Forested categories include the following: northern hardwoods, pine, spruce-fir, and pine plantation, while nonforested categories include wet-conifer, pasture, grassland, urban, exposed soil, agriculture, and water.

  12. FRAGMENTATION OF CONTINENTAL UNITES STATES FORESTS

    EPA Science Inventory

    We report a multiple-scale analysis of forest fragmentation based on 30-m land-cover maps for the conterminous United States. Each 0.09-ha unit of forest was classified according to fragmentation indices measured within the surrounding landscape, for five landscape sizes from 2....

  13. An assessment of multiflora rose in northern U.S. forests

    Treesearch

    Cassandra M. Kurtz; Mark H. Hansen

    2013-01-01

    This publication provides an overview of multiflora rose (Rosa multiflora) on forest land across the 24 states of the midwestern and northeastern United States based on an extensive systematic network of plots measured by the Forest Inventory and Analysis (FIA) program of the U.S. Forest Service, Northern Research Station (NRS).

  14. Forest Interpreter's Primer on Fire Management.

    ERIC Educational Resources Information Center

    Zelker, Thomas M.

    Specifically prepared for the use of Forest Service field-based interpreters of the management, protection, and use of forest and range resources and the associated human, cultural, and natural history found on these lands, this book is the second in a series of six primers on the multiple use of forest and range resources. Following an…

  15. 76 FR 5397 - Bureau of Land Management

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-31

    ... DEPARTMENT OF THE INTERIOR Bureau of Land Management DEPARTMENT OF AGRICULTURE Forest Service...; California AGENCY: Bureau of Land Management, Interior; and Forest Service, USDA. ACTION: Notice of public... Land Management (BLM) and U.S. Department of Agriculture, Forest Service (Forest Service) Santa Rosa...

  16. [Analysis of urban forest landscape pattern in Hefei].

    PubMed

    Wu, Zemin; Wu, Wenyou; Gao, Jian; Zhang, Shaojie

    2003-12-01

    Based on the theory and methodology of landscape ecology, the landscape pattern of the study area (17.6 km2) in the downtown of Hefei was analyzed by using the techniques of RS, GPS and GIS. The object was to provide a comprehensive method to study urban forest structure and its function in environmental improvement. The results showed that there were 5 major landscape elements, i.e., building and hard pavement surface, water, road, urban forest, and general green land in the area. The landscape matrix was building and pavement surface, occupied 73.13% of total land. Road was the typical corridor element in the city and occupied 6.89%. Green land occupied 11.44%, in which, urban forest patch occupied 9.18%. There were 408 urban forest patches, with an area of 161.16 hm2. The average area of the patch was 0.396 hm2, and the maximum area was 12 hm2. 48% of urban forest patch was identified as small scale patches with < 500 m2 of area, and only 8.6% of them was larger than 1 hm2. The number of general green land patch was 255, with an area of 39.74 hm2, which accounted for 2.26% of land area, and its average and maximum area was 0.1558 hm2 and 3.86 hm2, respectively. There were 147 water patches, with an area of 149.93 hm2, and occupied 8.54% of land, and the average and maximum area of the patch was 1.02 hm2 and 16 hm2, respectively. In the study area, both of the Shannon-Weiner landscape diversity index and evenness were low, only 0.928 and 0.576, respectively. In addition, the dominance of urban forest patch and general green land was 0.39 showing that the two landscape elements had a certain influence on the environment of the study area. The concept of interior habitat for forest was introduced in this paper, which was employed to make a scale class system of urban forest patch. The threshold area with interior habitat for urban forest patch was 9800 m2, and there was 31.69 hm2 of interior habitat of urban forest in total, which occupied 19.7% of the total area of urban forest patch. This situation was not favorable for providing more habitats to support species diversity. It's suggested that the concept of interior habitat could be employed to identify urban forest patch, and a scale system of small scale patch of urban forest-middle patch-large patch-extra large patch was build in the paper. Based on this system, the ratio of different scales of urban forest patch in the study area should be 2:2:2:3. The authors also suggested that larger pieces (1.5-3.0 hm2) of urban forest patch should be built, and more urban forests should be established in the northeastern part of the city in the future.

  17. Invasive plants found in Mississippi forests, 2009 forest inventory and analysis factsheet

    Treesearch

    Sonja N. Oswalt; Christopher M. Oswalt

    2011-01-01

    This science update provides information on nonnative invasive plants in Mississippi’s forest land based on an annual inventory conducted by the U.S. Department of Agriculture Forest Service, Forest Inventory and Analysis (FIA) program at the Southern Research Station in cooperation with the Mississippi Forestry Commission. These estimates and coverage maps will be...

  18. Forested land cover classification on the Cumberland Plateau, Jackson County, Alabama: a comparison of Landsat ETM+ and SPOT5 images

    Treesearch

    Yong Wang; Shanta Parajuli; Callie Schweitzer; Glendon Smalley; Dawn Lemke; Wubishet Tadesse; Xiongwen Chen

    2010-01-01

    Forest cover classifications focus on the overall growth form (physiognomy) of the community, dominant vegetation, and species composition of the existing forest. Accurately classifying the forest cover type is important for forest inventory and silviculture. We compared classification accuracy based on Landsat Enhanced Thematic Mapper Plus (Landsat ETM+) and Satellite...

  19. Delaware Forests 2013

    Treesearch

    Tonya W. Lister; Brett J. Butler; Susan J. Crocker; Cassandra M. Kurtz; Andrew J. Lister; William G. Luppold; William H. McWilliams; Patrick D. Miles; Randall S. Morin; Mark D. Nelson; Ronald J. Piva; Rachel I. Riemann; James E. Smith; James A. Westfall; Richard H. Widmann; Christopher W. Woodall

    2017-01-01

    This report summarizes the 2013 results of the annualized inventory of Delaware’s forests conducted by the U.S. Forest Service, Forest Inventory and Analysis program. Results are based on data collected from 389 plots located across the State. There are an estimated 362,000 acres of forest land in Delaware with a total live- tree volume of 936 million cubic feet. There...

  20. Land use/land cover change geo-informative Tupu of Nujiang River in Northwest Yunnan Province

    NASA Astrophysics Data System (ADS)

    Wang, Jin-liang; Yang, Yue-yuan; Huang, You-ju; Fu, Lei; Rao, Qing

    2008-10-01

    Land Use/Land Cover Change (LUCC) is the core components of global change researches. It is significant for understanding regional ecological environment and LUCC mechanism of large scale to develop the study of LUCC of regional level. Nujiang River is the upper reaches of a big river in the South Asia--Salween River. Nujiang River is a typical mountainous river which is 3200 kilometer long and its basin area is 32.5 × 105 square kilometer. It locates in the core of "Three Parallel Rivers" World Natural Heritage. It is one of international biodiversity conservation center of the world, the ecological fragile zone and key ecological construction area, as well as a remote undeveloped area with high diversity ethnic. With the rapidly development of society and economy, the land use and land cover changed in a great degree. The function of ecosystem has being degraded in some areas which will not only impact on the ecological construction of local area, but also on the ecological safety of lower reaches -- Salween River. Therefore it is necessary to carry out the research of LUCC of Nujiang River. Based on the theory and methods of geo-information Tupu, the "Spatial Pattern" and "Change Process" of land use of middle reach in Nujiang River from 1974 to 2004 had been studied in quantification and integration, so as to provide a case study in local area and mesoscale in time. Supported by the remote sensing and GIS technology, LUCC Tupu of 1974-2004 had been built and the characteristics of LUCC have been analyzed quantificationally. The results showed that the built-up land (Included in this category are cities, towns, villages, strip developments along highways, transportation, power, and communications facilities, and areas such as those occupied by mills, shopping centers, industrial and commercial complexes, and institutions that may, in some instances, be isolated from urban areas), agriculture land, shrubbery land, meadow & grassland, difficultly/unused land increased from 1974 to 2004, the increased area of shrubbery land was the greatest, while the area of forest, artificial forest, waters, glacier and snow covered land decreased. The biggest decreased area was forest land. The biggest LUCC was the transformation from forest land to shrubbery land, the transformation from forest land to rangeland and agriculture land was the second. The main area of LUCC located at Nujiang River valley, between 2200-3700m of the east slope in the Gaoligong Mountain and 2800-3900m of the west slope of the Biluo Snow Mountain. From the valley to peak of mountain, the main land use type was transited from built-up land, agricultures land, artificial forest land to natural forest, shrubbery and grass land. The natural forest was the main land in the past 30 years. The main driving forces were the increase of population of local area, the governmental policies (Conversion of Farmland to Forests and Grass Land Projects, etc.) and urbanization. In order to accelerate the sustainable development of society economy and the ecological environment protection in this ecological fragile zone, strict management should be adopted to adjust the behaviors of human beings. Finally, VCM (variable clumping method) curve had been used to analyses the internal spatial distribution difference of land-use/land cover which shown that the landscape fragmentation was increased, the number of patches was added, the distance between patches was diminished during the past thirty years (1974-2004).

  1. Comparison of U.S. Forest Land AreaEstimates From Forest Inventory and Analysis, National Resources Inventory, and Four Satellite Image-Derived Land Cover Data Sets

    Treesearch

    Mark D. Nelson; Ronald E. McRoberts; Veronica C. Lessard

    2005-01-01

    Our objective was to test one application of remote sensing technology for complementing forest resource assessments by comparing a variety of existing satellite image-derived land cover maps with national inventory-derived estimates of United States forest land area. National Resources Inventory (NRI) 1997 estimates of non-Federal forest land area differed by 7.5...

  2. Forest cover dynamics of shifting cultivation in the Democratic Republic of Congo: a remote sensing-based assessment for 2000-2010

    NASA Astrophysics Data System (ADS)

    Molinario, G.; Hansen, M. C.; Potapov, P. V.

    2015-09-01

    Shifting cultivation has traditionally been practiced in the Democratic Republic of Congo by carving agricultural fields out of primary and secondary forest, resulting in the rural complex: a characteristic land cover mosaic of roads, villages, active and fallow fields and secondary forest. Forest clearing has varying impacts depending on where it occurs relative to this area: whether inside it, along its primary forest interface, or in more isolated primary forest areas. The spatial contextualization of forest cover loss is therefore necessary to understand its impacts and plan its management. We characterized forest clearing using spatial models in a Geographical Information System, applying morphological image processing to the Forets d’Afrique Central Evaluee par Teledetection product. This process allowed us to create forest fragmentation maps for 2000, 2005 and 2010, classifying previously homogenous primary forest into separate patch, edge, perforated, fragmented and core forest subtypes. Subsequently we used spatial rules to map the established rural complex separately from isolated forest perforations, tracking the growth of these areas in time. Results confirm that the expansion of the rural complex and forest perforations has high variance throughout the country, with consequent differences in local impacts on forest ecology and habitat fragmentation. Between 2000 and 2010 the rural complex grew by 10.2% (46 182 ha), increasing from 11.9% to 13.1% of the total land area (1.2% change) while perforated forest grew by 74.4% (23 856 ha), from 0.8% to 1.5%. Core forest decreased by 3.8% (54 852 ha), from 38% to 36.6% of the 2010 land area. Of particular concern is the nearly doubling of perforated forest, a land dynamic that represents greater spatial intrusion of forest clearing within core forest areas and a move away from the established rural complex.

  3. 76 FR 24514 - Public Land Order No. 7764; Partial Revocation of Public Land Order No. 1479; Idaho

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-02

    ... acres of National Forest System land withdrawn on behalf of the United States Forest Service for Priest Lake Recreation Areas within the Kaniksu National Forest. The order also opens the land to disposition.... 1714, it is ordered as follows: 1. Public Land Order No. 1479, which withdrew National Forest System...

  4. Effects of Land Use Change on Evapotranspiration and Water Yield in the Great Lakes Region

    NASA Astrophysics Data System (ADS)

    Mao, D.; Cherkauer, K. A.

    2005-12-01

    Human activities have affected the exchange of energy and water between atmosphere and land surface through land use change. Conversion of large regions of pre-settlement forest and grassland to a majority cropland cover in the Great Lakes region has resulted in regional scale changes to hydrologic responses. Understanding the impact of historic land use change is important for management of future resources. Effects of land use change on the water and energy cycle of three Great Lakes states: Minnesota, Wisconsin, and Michigan, are analyzed using the Variable Infiltration Capacity (VIC) model. Land Data Assimilation System (LDAS) meteorological and soil data as well as pre-settlement and modern vegetation data taken from the USGS Land Use History of North American (LUHNA) were used as model input. Default vegetation input parameters were adjusted for the region based on a review of published studies. Results from a single grid cell vegetation sensitivity test show that on an average annual basis, forests transpire more than cropland and cropland more than grassland due to seasonal variations in Leaf Area Index (LAI) and stomatal resistances of vegetations. The hydrologic impact of region wide land use change was then analyzed by comparing simulations using both pre-settlement and current vegetation cover but the same meteorological forcings. Simulated changes resulting from land cover change vary with season and vegetation types. Reduction in forest cover increases water yield by decreasing evapotranspiration. Conversion between forest types resulted only in small differences in evaporation and water fluxes response. The most significant hydrologic changes were located in the southern part of the region where land use change has been primarily forest converted to cropland.

  5. Linking state-and-transition simulation and timber supply models for forest biomass production scenarios

    USGS Publications Warehouse

    Costanza, Jennifer; Abt, Robert C.; McKerrow, Alexa; Collazo, Jaime

    2015-01-01

    We linked state-and-transition simulation models (STSMs) with an economics-based timber supply model to examine landscape dynamics in North Carolina through 2050 for three scenarios of forest biomass production. Forest biomass could be an important source of renewable energy in the future, but there is currently much uncertainty about how biomass production would impact landscapes. In the southeastern US, if forests become important sources of biomass for bioenergy, we expect increased land-use change and forest management. STSMs are ideal for simulating these landscape changes, but the amounts of change will depend on drivers such as timber prices and demand for forest land, which are best captured with forest economic models. We first developed state-and-transition model pathways in the ST-Sim software platform for 49 vegetation and land-use types that incorporated each expected type of landscape change. Next, for the three biomass production scenarios, the SubRegional Timber Supply Model (SRTS) was used to determine the annual areas of thinning and harvest in five broad forest types, as well as annual areas converted among those forest types, agricultural, and urban lands. The SRTS output was used to define area targets for STSMs in ST-Sim under two scenarios of biomass production and one baseline, business-as-usual scenario. We show that ST-Sim output matched SRTS targets in most cases. Landscape dynamics results indicate that, compared with the baseline scenario, forest biomass production leads to more forest and, specifically, more intensively managed forest on the landscape by 2050. Thus, the STSMs, informed by forest economics models, provide important information about potential landscape effects of bioenergy production.

  6. Thematic accuracy assessment of the 2011 National Land Cover Database (NLCD)

    USGS Publications Warehouse

    Wickham, James; Stehman, Stephen V.; Gass, Leila; Dewitz, Jon; Sorenson, Daniel G.; Granneman, Brian J.; Poss, Richard V.; Baer, Lori Anne

    2017-01-01

    Accuracy assessment is a standard protocol of National Land Cover Database (NLCD) mapping. Here we report agreement statistics between map and reference labels for NLCD 2011, which includes land cover for ca. 2001, ca. 2006, and ca. 2011. The two main objectives were assessment of agreement between map and reference labels for the three, single-date NLCD land cover products at Level II and Level I of the classification hierarchy, and agreement for 17 land cover change reporting themes based on Level I classes (e.g., forest loss; forest gain; forest, no change) for three change periods (2001–2006, 2006–2011, and 2001–2011). The single-date overall accuracies were 82%, 83%, and 83% at Level II and 88%, 89%, and 89% at Level I for 2011, 2006, and 2001, respectively. Many class-specific user's accuracies met or exceeded a previously established nominal accuracy benchmark of 85%. Overall accuracies for 2006 and 2001 land cover components of NLCD 2011 were approximately 4% higher (at Level II and Level I) than the overall accuracies for the same components of NLCD 2006. The high Level I overall, user's, and producer's accuracies for the single-date eras in NLCD 2011 did not translate into high class-specific user's and producer's accuracies for many of the 17 change reporting themes. User's accuracies were high for the no change reporting themes, commonly exceeding 85%, but were typically much lower for the reporting themes that represented change. Only forest loss, forest gain, and urban gain had user's accuracies that exceeded 70%. Lower user's accuracies for the other change reporting themes may be attributable to the difficulty in determining the context of grass (e.g., open urban, grassland, agriculture) and between the components of the forest-shrubland-grassland gradient at either the mapping phase, reference label assignment phase, or both. NLCD 2011 user's accuracies for forest loss, forest gain, and urban gain compare favorably with results from other land cover change accuracy assessments.

  7. Forest Area in Nebraska, 1983

    Treesearch

    Thomas L. Castonguay

    1984-01-01

    The 1982 forest inventory of Nebraska showed that 1.5 percent of the total land area is forested. Commercial forest land accounted for 75 percent or 537,837 acres of the forest land and ponderosa pine is the major forest type. An important Nebraska resouce is the 262,230 acres of natural wooded strips.

  8. 75 FR 8645 - Public Meetings on the Development of the Forest Service Land Management Planning Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-25

    ... DEPARTMENT OF AGRICULTURE Forest Service Public Meetings on the Development of the Forest Service Land Management Planning Rule AGENCY: Forest Service, USDA. ACTION: Notice of meetings. SUMMARY: The USDA Forest Service is committed to developing a new Forest Service Land Management Planning Rule...

  9. Multitemporal analysis of forest fragmentation in Hindu Kush Himalaya-a case study from Khangchendzonga Biosphere Reserve, Sikkim, India.

    PubMed

    Sharma, Mohit; Areendran, G; Raj, Krishna; Sharma, Ankita; Joshi, P K

    2016-10-01

    Forests in the mountains are a treasure trove; harbour a large biodiversity; and provide fodder, firewood, timber and non-timber forest products; all of these are essential for human survival in the highest mountains on earth. The present paper attempts a spatiotemporal assessment of forest fragmentation and changes in land use land cover (LULC) pattern using multitemporal satellite data over a time span of around a decade (2000-2009), within the third highest protected area (PA) in the world. The fragmentation analysis using Landscape Fragmentation Tool (LFT) depicts a decrease in large core, edge and patches areas by 5.93, 3.64 and 0.66 %, respectively, while an increase in non-forest and perforated areas by 6.59 and 4.01 %, respectively. The land cover dynamics shows a decrease in open forest, alpine scrub, alpine meadows, snow and hill shadow areas by 2.81, 0.39, 8.18, 3.46 and 0.60 %, respectively, and there is an increase in dense forest and glacier area by 4.79 and 10.65 %, respectively. The change analysis shows a major transformation in areas from open forest to dense forest and from alpine meadows to alpine scrub. In order to quantify changes induced by forest fragmentation and to characterize composition and configuration of LULC mosaics, fragmentation indices were computed using Fragstats at class level, showing the signs of accelerated fragmentation. The outcome of the analysis revealed the effectiveness of geospatial tools coupled with landscape ecology in characterization and quantification of forest fragmentation and land cover changes. The present study provides a baseline database for sustainable conservation planning that will benefit the subsistence livelihoods in the region. Recommendations made based on the present analysis will help to recover forest and halt the pessimistic effects of fragmentation and land cover changes on biodiversity and ecosystem services in the region.

  10. Land cover and land use mapping of the iSimangaliso Wetland Park, South Africa: comparison of oblique and orthogonal random forest algorithms

    NASA Astrophysics Data System (ADS)

    Bassa, Zaakirah; Bob, Urmilla; Szantoi, Zoltan; Ismail, Riyad

    2016-01-01

    In recent years, the popularity of tree-based ensemble methods for land cover classification has increased significantly. Using WorldView-2 image data, we evaluate the potential of the oblique random forest algorithm (oRF) to classify a highly heterogeneous protected area. In contrast to the random forest (RF) algorithm, the oRF algorithm builds multivariate trees by learning the optimal split using a supervised model. The oRF binary algorithm is adapted to a multiclass land cover and land use application using both the "one-against-one" and "one-against-all" combination approaches. Results show that the oRF algorithms are capable of achieving high classification accuracies (>80%). However, there was no statistical difference in classification accuracies obtained by the oRF algorithms and the more popular RF algorithm. For all the algorithms, user accuracies (UAs) and producer accuracies (PAs) >80% were recorded for most of the classes. Both the RF and oRF algorithms poorly classified the indigenous forest class as indicated by the low UAs and PAs. Finally, the results from this study advocate and support the utility of the oRF algorithm for land cover and land use mapping of protected areas using WorldView-2 image data.

  11. Wisconsin's Forests 2009

    Treesearch

    Charles H. Perry; Vern A. Everson; Brett J. Butler; Susan J. Crocker; Sally E. Dahir; Andrea L. Diss-Torrance; Grant M Domke; Dale D. Gormanson; Sarah K. Herrick; Steven S. Hubbard; Terry R. Mace; Patrick D. Miles; Mark D. Nelson; Richard B. Rodeout; Luke T. Saunders; Kirk M. Stueve; Barry T. Wilson; Christopher W. Woodall

    2012-01-01

    The second full annual inventory of Wisconsin's forests reports more than 16.7 million acres of forest land with an average volume of more than 1,400 cubic feet per acre. Forest land is dominated by the oak/hickory forest-type group, which occupies slightly more than one quarter of the total forest land area; the maple/beech/birch forest-type group occupies an...

  12. Georgia's forests, 2004

    Treesearch

    Richard A. Harper; Nathan D. McClure; Tony G. Johnson; J. Frank Green; James K. Johnson; David B. Dickinson; James L. Chamerlain; KaDonna C. Randolph; Sonja N. Oswalt

    2009-01-01

    Between 1997 and 2004, the Forest Service, Forest Inventory and Analysis Program conducted the eighth inventory of Georgia forests. Forest land area remained stable at 24.8 million acres, and covered about two-thirds of the land area in Georgia. About 24.2 million acres of forest land was considered timberland and 92 percent of that was privately owned. Family forest...

  13. Forest fire danger index based on modifying Nesterov Index, fuel, and anthropogenic activities using MODIS TERRA, AQUA and TRMM satellite datasets

    NASA Astrophysics Data System (ADS)

    Suresh Babu, K. V.; Roy, Arijit; Ramachandra Prasad, P.

    2016-05-01

    Forest fire has been regarded as one of the major causes of degradation of Himalayan forests in Uttarakhand. Forest fires occur annually in more than 50% of forests in Uttarakhand state, mostly due to anthropogenic activities and spreads due to moisture conditions and type of forest fuels. Empirical drought indices such as Keetch-Byram drought index, the Nesterov index, Modified Nesterov index, the Zhdanko index which belongs to the cumulative type and the Angstrom Index which belongs to the daily type have been used throughout the world to assess the potential fire danger. In this study, the forest fire danger index has been developed from slightly modified Nesterov index, fuel and anthropogenic activities. Datasets such as MODIS TERRA Land Surface Temperature and emissivity (MOD11A1), MODIS AQUA Atmospheric profile product (MYD07) have been used to determine the dew point temperature and land surface temperature. Precipitation coefficient has been computed from Tropical Rainfall measuring Mission (TRMM) product (3B42RT). Nesterov index has been slightly modified according to the Indian context and computed using land surface temperature, dew point temperature and precipitation coefficient. Fuel type danger index has been derived from forest type map of ISRO based on historical fire location information and disturbance danger index has been derived from disturbance map of ISRO. Finally, forest fire danger index has been developed from the above mentioned indices and MODIS Thermal anomaly product (MOD14) has been used for validating the forest fire danger index.

  14. 75 FR 41886 - Public Land Order No. 7744; Withdrawal of National Forest System Land for Inyan Kara Area; WY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-19

    ... National Forest System land other than the mining laws (30 U.S.C. Ch. 2). 3. This withdrawal will expire 20... Order No. 7744; Withdrawal of National Forest System Land for Inyan Kara Area; WY AGENCY: Bureau of Land... Forest System land from location and entry under the United States mining laws for a period of 20 years...

  15. Improving estimates of forest disturbance by combining observations from Landsat time series with U.S. Forest Service Forest Inventory and Analysis data

    Treesearch

    Todd A. Schroeder; Sean P. Healey; Gretchen G. Moisen; Tracey S. Frescino; Warren B. Cohen; Chengquan Huang; Robert E. Kennedy; Zhiqiang Yang

    2014-01-01

    With earth's surface temperature and human population both on the rise a new emphasis has been placed on monitoring changes to forested ecosystems the world over. In the United States the U.S. Forest Service Forest Inventory and Analysis (FIA) program monitors the forested land base with field data collected over a permanent network of sample plots. Although these...

  16. [Effects of converting cultivated land into forest land on the characteristics of soil organic carbon in limestone mountain area in Ruichang, Jiangxi].

    PubMed

    Liu, Yuan-qiu; Wang, Fang; Ke, Guo-qing; Wang, Ying-ying; Guo, Shen-mao; Fan, Cheng-fang

    2011-04-01

    Taking the forest lands having been converted from cultivated land for 5 years in Ruichang City of Jiangxi Province as test objects, this paper studied the characteristics of soil organic carbon (SOC) under 4 different conversion models (forest-seedling integration, pure medicinal forest, bamboo-broadleaved mixed forest, and multi-species mixed forest). After the conversion from cultivated land into forestlands, the contents of SOC, microbial biomass carbon (MBC), and mineralizable carbon (PMC) in 0-20 cm soil layer increased by 24.4%, 29%, and 18.4%, respectively, compared with those under the conversion from cultivated land into wasteland (P < 0.05), which indicated that the conversion from cultivated land into forest lands significantly increased the SOC content and SOC storage. The SOC, MBC, and PMC contents in 0-10 cm soil layer were significantly higher than those in 10-20 cm soil layer (P < 0.01), and the differences between the soil layers of the four forest lands were higher than those of the wasteland. Among the 4 conversion models, forest-seedling integration had more obvious effects on SOC.

  17. Alterations in land uses based on amendments to the Brazilian Forest Law and their influences on water quality of a watershed.

    PubMed

    Rodrigues-Filho, J L; Degani, R M; Soares, F S; Periotto, N A; Blanco, F P; Abe, D S; Matsumura-Tundisi, T; Tundisi, J E; Tundisi, J G

    2015-01-01

    The amendments to the Forest Law proposed by the Brazilian government that allow partial substitution of forested areas by agricultural activities raised deep concern about the integrity of aquatic ecosystems. To assess the impacts of this alteration in land uses on the watershed, diffuse loads of total nitrogen (Nt) and total phosphorus (Pt) were estimated in Lobo Stream watershed, southeastern Brazil, based on export coefficients of the Model of Correlation between Land Use and Water Quality (MQUAL). Three scenarios were generated: scenario 1 (present scenario), with 30-meter-wide permanent preservation areas along the shore of water bodies and 50-meter-radius in springs; scenario 2, conservative, with 100-meter-wide permanent preservation areas along water bodies; and scenario 3, with the substitution of 20% of natural forest by agricultural activities. Results indicate that a suppression of 20% of forest cover would cause an increase in nutrient loads as well as in the trophic state of aquatic ecosystems of the watershed. This could result in losses of ecosystem services and compromise the quality of water and its supply for the basin. This study underlines the importance of forest cover for the maintenance of water quality in Lobo Stream watershed.

  18. Deforestation and reforestation analysis from land-use changes in North Sumatran Mangroves, 1990-2015

    NASA Astrophysics Data System (ADS)

    Basyuni, M.; Sulistiyono, N.

    2018-02-01

    Mangrove forest plays a critical role in the context of climate change in tropical and subtropical regions. The present study analyzed the deforestation and reforestation from land-use and land-cover changes from 1990, 2000, 2009 and 2015 in North Sumatran mangrove forest, Indonesia. The land-use/land-cover consists of thirteen classes namely, primary mangrove forest, secondary mangrove forest, shrub, swamp shrub, swamp, settlement, paddy field, oil palm plantation, aquaculture, dry land farming, mixed dry land farming, mining, and barren land. Results showed that primary mangrove forests significantly decreased 61.21% from 1990 to 2015, mostly deforestation was derived from 1990 to 2000 to be secondary mangrove forest and swamp shrub. During 25 years observed, no reforestation was noted in the primary mangrove forest. Similarly, secondary mangrove forest had been degraded from 56,128.75 ha in 1990 to only 35,768.48 ha in 2015. Drivers of deforestation found in secondary mangrove forests were aquaculture (43.32%), barren land (32.56%), swamp shrub (10.88%), and oil palm plantation (5.17%). On the other hand, reforested activity was occurred only 701.83 ha from 1990 to 2015, while the nonforest use has been increased. These data are likely to contribute towards coastal management planning, conservation, and rehabilitation of degraded mangrove forests.

  19. West Virginia's Forests 2008

    Treesearch

    Richard H. Widmann; Gregory W. Cook; Charles J. Barnett; Brett J. Butler; Douglas M. Griffith; Mark A. Hatfield; Cassandra M. Kurtz; Randall S. Morin; W. Keith Moser; Charles H. Perry; Ronald J. Piva; Rachel Riemann; Christopher W. Woodall

    2012-01-01

    The first full annual inventory of West Virginia's forests reports 12.0 million acres of forest land or 78 percent of the State's land area. The area of forest land has changed little since 2000. Of this land, 7.2 million acres (60 percent) are held by family forest owners. The current growing-stock inventory is 25 billion cubic feet--12 percent more than in...

  20. Map of forest ownership in the conterminous United States. [Scale 1:7,500,000].

    Treesearch

    Mark D. Nelson; Greg C. Liknes; Brett J. Butler

    2010-01-01

    This map depicts the spatial distribution of forest land across the conterminous United States, in 2007, differentiated into public vs. private forest land, and the percentage of corporate ownership of private forest land. Notable differences between eastern and western United States are evident on the map. Over two-thirds of western forest land is publicly owned, the...

  1. 36 CFR 228.42 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... defined: Acquired National Forest lands. National Forest System lands acquired under the Weeks Act of March 1, 1911 (36 Stat. 961), and National Forest System lands with Weeks Act status as provided in the... finding and demonstration of a suitable deposit of mineral material on acquired National Forest lands as...

  2. 36 CFR 228.42 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... defined: Acquired National Forest lands. National Forest System lands acquired under the Weeks Act of March 1, 1911 (36 Stat. 961), and National Forest System lands with Weeks Act status as provided in the... finding and demonstration of a suitable deposit of mineral material on acquired National Forest lands as...

  3. 36 CFR 228.42 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... defined: Acquired National Forest lands. National Forest System lands acquired under the Weeks Act of March 1, 1911 (36 Stat. 961), and National Forest System lands with Weeks Act status as provided in the... finding and demonstration of a suitable deposit of mineral material on acquired National Forest lands as...

  4. 36 CFR 228.42 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... defined: Acquired National Forest lands. National Forest System lands acquired under the Weeks Act of March 1, 1911 (36 Stat. 961), and National Forest System lands with Weeks Act status as provided in the... finding and demonstration of a suitable deposit of mineral material on acquired National Forest lands as...

  5. 36 CFR 292.22 - Land category assignments.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the following four land categories: (i) Farm/forest/grazing land. (ii) Mining land. (iii) Residential.... Lands assigned to the Commercial, Residential, or Mining category may be reclassified as farm/forest... 36 Parks, Forests, and Public Property 2 2013-07-01 2013-07-01 false Land category assignments...

  6. 36 CFR 292.22 - Land category assignments.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the following four land categories: (i) Farm/forest/grazing land. (ii) Mining land. (iii) Residential.... Lands assigned to the Commercial, Residential, or Mining category may be reclassified as farm/forest... 36 Parks, Forests, and Public Property 2 2011-07-01 2011-07-01 false Land category assignments...

  7. 36 CFR 292.22 - Land category assignments.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the following four land categories: (i) Farm/forest/grazing land. (ii) Mining land. (iii) Residential.... Lands assigned to the Commercial, Residential, or Mining category may be reclassified as farm/forest... 36 Parks, Forests, and Public Property 2 2012-07-01 2012-07-01 false Land category assignments...

  8. 36 CFR 292.22 - Land category assignments.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the following four land categories: (i) Farm/forest/grazing land. (ii) Mining land. (iii) Residential.... Lands assigned to the Commercial, Residential, or Mining category may be reclassified as farm/forest... 36 Parks, Forests, and Public Property 2 2014-07-01 2014-07-01 false Land category assignments...

  9. Outlook on a worldwide forest transition.

    PubMed

    Pagnutti, Chris; Bauch, Chris T; Anand, Madhur

    2013-01-01

    It is not clear whether a worldwide "forest transition" to net reforestation will ever occur, and the need to address the main driver--agriculture--is compelling. We present a mathematical model of land use dynamics based on the world food equation that explains historical trends in global land use on the millennial scale. The model predicts that a global forest transition only occurs under a small and very specific range of parameter values (and hence seems unlikely) but if it does occur, it would have to occur within the next 70 years. In our baseline scenario, global forest cover continues to decline until it stabilizes within the next two centuries at 22% of global land cover, and wild pasture at 1.4%. Under other scenarios the model predicts unanticipated dynamics wherein a forest transition may relapse, heralding a second era of deforestation; this brings into question national-level forest transitions observed in recent decades, and suggests we need to expand our lexicon of possibilities beyond the simple "forest transition/no forest transition" dichotomy. This research also underscores that the challenge of feeding a growing population while conserving natural habitat will likely continue for decades to come.

  10. 77 FR 2563 - Public Land Order No. 7787; Withdrawal of Public and National Forest System Lands in the Grand...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-18

    ... 35138] Public Land Order No. 7787; Withdrawal of Public and National Forest System Lands in the Grand...: This order withdraws approximately 1,006,545 acres of public and National Forest System lands from... National Forest, 800 South 6th Street, Williams, Arizona 86046, (928) 635-8367. Persons who use a...

  11. Spatial and Temporal Dynamics and Value of Nature-Based Recreation, Estimated via Social Media

    PubMed Central

    Watson, Keri B.; Wood, Spencer A.; Ricketts, Taylor H.

    2016-01-01

    Conserved lands provide multiple ecosystem services, including opportunities for nature-based recreation. Managing this service requires understanding the landscape attributes underpinning its provision, and how changes in land management affect its contribution to human wellbeing over time. However, evidence from both spatially explicit and temporally dynamic analyses is scarce, often due to data limitations. In this study, we investigated nature-based recreation within conserved lands in Vermont, USA. We used geotagged photographs uploaded to the photo-sharing website Flickr to quantify visits by in-state and out-of-state visitors, and we multiplied visits by mean trip expenditures to show that conserved lands contributed US $1.8 billion (US $0.18–20.2 at 95% confidence) to Vermont’s tourism industry between 2007 and 2014. We found eight landscape attributes explained the pattern of visits to conserved lands; visits were higher in larger conserved lands, with less forest cover, greater trail density and more opportunities for snow sports. Some of these attributes differed from those found in other locations, but all aligned with our understanding of recreation in Vermont. We also found that using temporally static models to inform conservation decisions may have perverse outcomes for nature-based recreation. For example, static models suggest conserved land with less forest cover receive more visits, but temporally dynamic models suggest clearing forests decreases, rather than increases, visits to these sites. Our results illustrate the importance of understanding both the spatial and temporal dynamics of ecosystem services for conservation decision-making. PMID:27611325

  12. 25 CFR 163.35 - Indian forest land assistance account.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 1 2012-04-01 2011-04-01 true Indian forest land assistance account. 163.35 Section 163.35 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER GENERAL FORESTRY REGULATIONS Forest Management and Operations § 163.35 Indian forest land assistance account. (a) At the...

  13. 25 CFR 163.35 - Indian forest land assistance account.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false Indian forest land assistance account. 163.35 Section 163.35 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER GENERAL FORESTRY REGULATIONS Forest Management and Operations § 163.35 Indian forest land assistance account. (a) At the...

  14. 25 CFR 163.35 - Indian forest land assistance account.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Indian forest land assistance account. 163.35 Section 163.35 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER GENERAL FORESTRY REGULATIONS Forest Management and Operations § 163.35 Indian forest land assistance account. (a) At the...

  15. 25 CFR 163.35 - Indian forest land assistance account.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 1 2013-04-01 2013-04-01 false Indian forest land assistance account. 163.35 Section 163.35 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER GENERAL FORESTRY REGULATIONS Forest Management and Operations § 163.35 Indian forest land assistance account. (a) At the...

  16. Mississippi's forests, 2006

    Treesearch

    Sonja N. Oswalt; Tony G. Johnson; John W. Coulston; Christopher M. Oswalt

    2009-01-01

    Forest land covers 19.6 million acres in Mississippi, or about 65 percent of the land area. The majority of forests are classed as timberland. One hundred and thirty-seven tree species were measured on Mississippi forests in the 2006 inventory. Thirty six percent of Mississippi's forest land is classified as loblolly-shortleaf pine forest, 27 percent is classified...

  17. Evaluating forest land development effects on private forestry in eastern Oregon.

    Treesearch

    Jeffrey D. Kline; David L. Azuma

    2007-01-01

    Research suggests that forest land development can reduce the productivity of remaining forest land because private forest owners reduce their investments in forest management. We developed empirical models describing forest stocking, thinning, harvest, and postharvest tree planting in eastern Oregon, as functions of stand and site characteristics, ownership, and...

  18. Forest Area in Kansas, 1981

    Treesearch

    Ronald L. Hackett

    1983-01-01

    The 1981 forest inventory of Kansas showed that 2.6 percent of the total land area is forested. Commercial forest land accounted for 89 percent or 1,207,900 acres of the forest land and oak-hickory is the major forest type. An important Kansas resource are the 150,000 acres of natural wooded strips.

  19. Spatial and Temporal Analysis of Industrial Forest Clearcuts in the Conterminous United States

    NASA Astrophysics Data System (ADS)

    Huo, L. Z.; Boschetti, L.

    2015-12-01

    Remote sensing has been widely used for mapping and characterizing changes in forest cover, but the available remote sensing forest change products are not discriminating between deforestation (permanent transition from forest to non forest) and industrial forest management (logging followed by regrowth, with no land cover/ land use class change) (Hansen et al, 2010). Current estimates of carbon-equivalent emissions report the contribution of deforestation as 12% of total anthropogenic carbon emissions (van der Werf et al., 2009), but accurate monitoring of forest carbon balance should discriminate between land use change related to forest natural disturbances, and forest management. The total change in forest cover (Gross Forest Cover Loss, GFLC) needs to be characterized based on the cause (natural/human) and on the outcome of the change (regeneration to forest/transition to non/forest)(Kurtz et al, 2010). This paper presents the methodology used to classify the forest loss detected by the University of Maryland Global Forest Change product (Hansen, 2013) into deforestation, disturbances (fires, insect outbreaks) and industrial forest clearcuts. The industrial forest clearcuts were subsequently analysed by converting the pixel based detections into objects, and applying patch level metrics (e.g. size, compactness, straightness of boundaries) and contextual measures. The analysis is stratified by region and by dominant forest specie, to highlight changes in the rate of forest resource utilization in the 2003-2013 period covered by the Maryland Forest Cover Change Product. References Hansen, M.C., Stehman, S.V., & Potapov, P.V. (2010). Reply to Wernick et al.: Global scale quantification of forest change. Proceedings of the National Academy of Sciences, 107, E148-E148 Hansen, M.C., Potapov, P.V., Moore, R et al., (2013), "High resolution Global Maps for the 21stCentury Forest Cover Change", Science 342: 850-853 Kurz, W.A. (2010). An ecosystem context for global gross forest cover loss estimates. Proceedings of the National Academy of Sciences, 107, 9025-9026 van der Werf, G.R., Morton, D.C., DeFries, R.S., Olivier, J.G., Kasibhatla, P.S., Jackson, R.B., Collatz, G.J., & Randerson, J. (2009). CO2 emissions from forest loss. Nature Geoscience, 2, 737-738

  20. Land changes and their driving forces in the Southeastern United States

    USGS Publications Warehouse

    Napton, Darrell E.; Auch, Roger F.; Headley, Rachel; Taylor, Janis

    2010-01-01

    The ecoregions of the Middle Atlantic Coastal Plain, Southeastern Plains, Piedmont, and Blue Ridge provide a continuum of land cover from the Atlantic Ocean to the highest mountains in the East. From 1973 to 2000, each ecoregion had a unique mosaic of land covers and land cover changes. The forests of the Blue Ridge Mountains provided amenity lands. The Piedmont forested area declined, while the developed area increased. The Southeastern Plains became a commercial forest region, and most agricultural lands that changed became forested. Forests in the Middle Atlantic Coastal Plain declined, and development related to recreation and retirement increased. The most important drivers of land conversion were associated with commercial forestry, competition between forest and agriculture, and economic and population growth. These and other drivers were modified by each ecoregion’s unique suitability and land use legacies with the result that the same drivers often produced different land changes in different ecoregions.

  1. Developing New Coastal Forest Restoration Products Based on Landsat, ASTER, and MODIS Data

    DTIC Science & Technology

    2010-06-01

    hydrology, wildfire, and conversion to non-forest land use. In some cases, such forest disturbance has led to forest loss or loss of regeneration capacity...classification of bald cypress and tupelo gum trees in Thematic Mapper imagery,” Photogrammetric Engineering and Remote Sensing, vol. 63, pp. 717–725, 1997. [14

  2. Integrating a process-based ecosystem model with Landsat imagery to assess impacts of forest disturbance on terrestrial carbon dynamics: Case studies in Alabama and Mississippi

    USDA-ARS?s Scientific Manuscript database

    Forest ecosystems in the southern United States are dramatically altered by three major 26 disturbances: timber harvesting, hurricane, and permanent land conversion. Understanding and quantifying effects of disturbance on forest carbon, nitrogen, and water cycles is critical for sustainable forest m...

  3. The forest resources of Maryland

    Treesearch

    Douglas S. Powell; Neal P. Kingsley

    1980-01-01

    The findings in this statistical and analytical report of the third forest survey of Maryland, completed in 1976, are based on remeasured 1/5 acre plots and both remeasured and new 10-point variable radius plots. The present status and trends in forest-land area, timber volume, and annual growth and removals are discussed. Timber products output by forest industries,...

  4. Risk of impaired condition of watersheds containing National Forest lands

    Treesearch

    Thomas C Brown; Pamela Froemke

    2010-01-01

    We assessed the risk of impaired condition of the nearly 3700 5th-level watersheds in the contiguous 48 states containing the national forests and grasslands that make up the U.S. Forest Service's National Forest System (NFS). The assessment was based on readily available, relatively consistent nationwide data sets for a series of indicators representing watershed...

  5. Forest restoration and forest communities: Have local communities benefited from forest service contracting of ecosystem management?

    Treesearch

    Cassandra Moseley; Yolanda E. Reyes

    2008-01-01

    Conservation-based development programs have sought to create economic opportunities for people negatively affected by biological diversity protection. The USDA Forest Service, for example, developed policies and programs to create contracting opportunities for local communities to restore public lands to replace jobs lost from reduced timber harvest. This article...

  6. Mapping land cover and estimating forest structure using satellite imagery and coarse resolution lidar in the Virgin Islands

    Treesearch

    T.A. Kennaway; E.H. Helmer; M.A. Lefsky; T.A. Brandeis; K.R. Sherill

    2008-01-01

    Current information on land cover, forest type and forest structure for the Virgin Islands is critical to land managers and researchers for accurate forest inventory and ecological monitoring. In this study, we use cloud free image mosaics of panchromatic sharpened Landsat ETM+ images and decision tree classification software to map land cover and forest type for the...

  7. Mapping land cover and estimating forest structure using satellite imagery and coarse resolution lidar in the Virgin Islands

    Treesearch

    Todd Kennaway; Eileen Helmer; Michael Lefsky; Thomas Brandeis; Kirk Sherrill

    2009-01-01

    Current information on land cover, forest type and forest structure for the Virgin Islands is critical to land managers and researachers for accurate forest inverntory and ecological monitoring. In this study, we use cloud free image mosaics of panchromatic sharpened Landsat ETM+ images and decision tree classification software to map land cover and forest type for the...

  8. Improving estimates of forest disturbance by combining observations from Landsat time series with U.S

    Treesearch

    Todd A. Schroeder; Sean P. Healey; Gretchen G. Moisen; Tracey S. Frescino; Warren B. Cohen; Chengquan Huang; Robert E. Kennedy; Zhiqiang Yang

    2014-01-01

    With earth's surface temperature and human population both on the rise a new emphasis has been placed on monitoring changes to forested ecosystems the world over. In the United States the U.S. Forest Service Forest Inventory and Analysis (FIA) program monitors the forested land base with field data collected over a permanent network of sample plots. Although these...

  9. Empirical analysis of the influence of forest extent on annual and seasonal surface temperatures for the Continental United States

    Treesearch

    James D. Wickham; Timothy G. Wade; Kurt H. Riitters

    2013-01-01

    Aim Because of the low albedo of forests and other biophysical factors, most scenario-based climate modelling studies indicate that removal of temperate forest will promote cooling, indicating that temperate forests are a source of heat relative to other classes of land cover. Our objective was to test the hypothesis that US temperate forests reduce...

  10. 36 CFR 230.32 - National program administration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 2 2012-07-01 2012-07-01 false National program... AGRICULTURE STATE AND PRIVATE FORESTRY ASSISTANCE Forest Land Enhancement Program § 230.32 National program... three geographic funding areas based on the criteria set out in the Forest Service Manual Chapter 3310...

  11. 36 CFR 230.32 - National program administration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 2 2014-07-01 2014-07-01 false National program... AGRICULTURE STATE AND PRIVATE FORESTRY ASSISTANCE Forest Land Enhancement Program § 230.32 National program... three geographic funding areas based on the criteria set out in the Forest Service Manual Chapter 3310...

  12. Carrot or stick? Modelling how landowner behavioural responses can cause incentive-based forest governance to backfire.

    PubMed

    Henderson, Kirsten A; Anand, Madhur; Bauch, Chris T

    2013-01-01

    Mitigating the negative impacts of declining worldwide forest cover remains a significant socio-ecological challenge, due to the dominant role of human decision-making. Here we use a Markov chain model of land-use dynamics to examine the impact of governance on forest cover in a region. Each land parcel can be either forested or barren (deforested), and landowners decide whether to deforest their parcel according to perceived value (utility). We focus on three governance strategies: yearly incentive for conservation, one-time penalty for deforestation and one-time incentive for reforestation. The incentive and penalty are incorporated into the expected utility of forested land, which decreases the net gain of deforestation. By analyzing the equilibrium and stability of the landscape dynamics, we observe four possible outcomes: a stationary-forested landscape, a stationary-deforested landscape, an unstable landscape fluctuating near the equilibrium, and a cyclic-forested landscape induced by synchronized deforestation. We find that the two incentive-based strategies often result in highly fluctuating forest cover over decadal time scales or longer, and in a few cases, reforestation incentives actually decrease the average forest cover. In contrast, a penalty for deforestation results in the stable persistence of forest cover (generally >30%). The idea that larger conservation incentives will always yield higher and more stable forest cover is not supported in our findings. The decision to deforest is influenced by more than a simple, "rational" cost-benefit analysis: social learning and myopic, stochastic decision-making also have important effects. We conclude that design of incentive programs may need to account for potential counter-productive long-term effects due to behavioural feedbacks.

  13. Carrot or Stick? Modelling How Landowner Behavioural Responses Can Cause Incentive-Based Forest Governance to Backfire

    PubMed Central

    Henderson, Kirsten A.; Anand, Madhur; Bauch, Chris T.

    2013-01-01

    Mitigating the negative impacts of declining worldwide forest cover remains a significant socio-ecological challenge, due to the dominant role of human decision-making. Here we use a Markov chain model of land-use dynamics to examine the impact of governance on forest cover in a region. Each land parcel can be either forested or barren (deforested), and landowners decide whether to deforest their parcel according to perceived value (utility). We focus on three governance strategies: yearly incentive for conservation, one-time penalty for deforestation and one-time incentive for reforestation. The incentive and penalty are incorporated into the expected utility of forested land, which decreases the net gain of deforestation. By analyzing the equilibrium and stability of the landscape dynamics, we observe four possible outcomes: a stationary-forested landscape, a stationary-deforested landscape, an unstable landscape fluctuating near the equilibrium, and a cyclic-forested landscape induced by synchronized deforestation. We find that the two incentive-based strategies often result in highly fluctuating forest cover over decadal time scales or longer, and in a few cases, reforestation incentives actually decrease the average forest cover. In contrast, a penalty for deforestation results in the stable persistence of forest cover (generally >30%). The idea that larger conservation incentives will always yield higher and more stable forest cover is not supported in our findings. The decision to deforest is influenced by more than a simple, “rational” cost-benefit analysis: social learning and myopic, stochastic decision-making also have important effects. We conclude that design of incentive programs may need to account for potential counter-productive long-term effects due to behavioural feedbacks. PMID:24204942

  14. Interfacing geographic information systems and remote sensing for rural land-use analysis

    NASA Technical Reports Server (NTRS)

    Nellis, M. Duane; Lulla, Kamlesh; Jensen, John

    1990-01-01

    Recent advances in computer-based geographic information systems (GISs) are briefly reviewed, with an emphasis on the incorporation of remote-sensing data in GISs for rural applications. Topics addressed include sampling procedures for rural land-use analyses; GIS-based mapping of agricultural land use and productivity; remote sensing of land use and agricultural, forest, rangeland, and water resources; monitoring the dynamics of irrigation agriculture; GIS methods for detecting changes in land use over time; and the development of land-use modeling strategies.

  15. Four decades of land-cover, land-use and hydroclimatology changes in the Itacaiúnas River watershed, southeastern Amazon.

    PubMed

    Souza-Filho, Pedro Walfir M; de Souza, Everaldo B; Silva Júnior, Renato O; Nascimento, Wilson R; Versiani de Mendonça, Breno R; Guimarães, José Tasso F; Dall'Agnol, Roberto; Siqueira, José Oswaldo

    2016-02-01

    Long-term human-induced impacts have significantly changed the Amazonian landscape. The most dramatic land cover and land use (LCLU) changes began in the early 1970s with the establishment of the Trans-Amazon Highway and large government projects associated with the expansion of agricultural settlement and cattle ranching, which cleared significant tropical forest cover in the areas of new and accelerated human development. Taking the changes in the LCLU over the past four decades as a basis, this study aims to determine the consequences of land cover (forest and savanna) and land use (pasturelands, mining and urban) changes on the hydroclimatology of the Itacaiúnas River watershed area of the located in the southeastern Amazon region. We analyzed a multi-decadal Landsat dataset from 1973, 1984, 1994, 2004 and 2013 and a 40-yr time series of water discharge from the Itacaiúnas River, as well as air temperature and relative humidity data over this drainage area for the same period. We employed standard Landsat image processing techniques in conjunction with a geographic object-based image analysis and multi-resolution classification approach. With the goal of detecting possible long-term trends, non-parametric Mann-Kendall test was applied, based on a Sen slope estimator on a 40-yr annual PREC, TMED and RH time series, considering the spatial average of the entire watershed. In the 1970s, the region was entirely covered by forest (99%) and savanna (∼0.3%). Four decades later, only ∼48% of the tropical forest remains, while pasturelands occupy approximately 50% of the watershed area. Moreover, in protected areas, nearly 97% of the tropical forest remains conserved, while the forest cover of non-protected areas is quite fragmented and, consequently, unevenly distributed, covering an area of only 30%. Based on observational data analysis, there is evidence that the conversion of forest cover to extensive and homogeneous pasturelands was accompanied by systematic modifications to the hydroclimatology cycle of the Itacaiúnas watershed, thus highlighting drier environmental conditions due to a rise in the region's air temperature, a decrease in the relative humidity, and an increase in river discharge. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Land use planning: a time-tested approach for addressing climate change

    Treesearch

    Rhonda Mazza; Jeff Kline; Jim.  Cathcart

    2009-01-01

    Oregon’s land use planning program has protected an estimated 1.2 million acres of forest and agricultural land from development since its inception in 1973. As a result, these resource lands continue to provide forest products and food as well as another unexpected benefit: carbon storage. By keeping forests as forests, land use planning capitalizes on the natural...

  17. Relationships Between Fire and Land Use Change in the Brazilian Amazon Based on Satellite Data

    NASA Astrophysics Data System (ADS)

    Fanin, T.; van der Werf, G.

    2014-12-01

    Fires are used as a tool in the process of deforestation. The relationship between fire and deforestation varies temporally and spatially according to the type of deforestation and climatic conditions. This study evaluates spatiotemporal variability between fire and deforestation over the 2002-2012 period in the Brazilian Legal Amazon (BLA). We based our study on four datasets: deforestation estimates from PRODES (Amazon Deforestation Monitoring Project) and forest cover loss from the Global Forest Change (GFC) project based on Landsat data, and burned area and land cover based on Moderate Resolution Imaging Spectroradiometer (MODIS) data. While GFC and PRODES supported similar findings on spatial and temporal dynamics, the Landsat-scale comparison also highlighted a number of differences. Both datasets show a decrease after 2004 in forest loss or deforestation extent mainly from decreasing clearing rates in evergreen broadleaf forest, mostly in the states of Mato Grosso and Rondonia. However, the drop is larger and more gradual in PRODES than in GFC, with the former having less than half the forest loss of the latter. GFC indicates anomalous high forest loss in the years 2007 and 2010 not seen in PRODES. Rescaling these forest dynamics datasets to 500-meter resolution, allowed for a comparison against the MODIS datasets. The burned area data indicates that the mismatch between PRODES and GFC is largely related to increased fire occurrence during these dry years, mainly in Para. In addition it indicates that the time interval between deforestation and fire differs according to land cover, which is important when estimating the atmospheric impact of forest loss. We found that evergreen broadleaf forests are burned shortly after deforestation due to slash and burn techniques, while croplands have longer intervals depending on the crop variety. As a final step, we used these insights to better quantify carbon emissions from this region.

  18. Kansas' Forests 2010

    Treesearch

    W. Keith Moser; Mark H. Hansen; Robert L. Atchison; Brett J. Butler; Susan J. Crocker; Grant Domke; Cassandra M. Kurtz; Andrew Lister; Patrick D. Miles; Mark D. Nelson; Ronald J. Piva; Christopher W. Woodall

    2013-01-01

    The second completed annual inventory of Kansas' forests reports 2.4 million acres of forest land, roughly 5 percent of the total land area in the State. Softwood forests account for 4.4 percent of the total timberland area. Oak/hickory forest types make up 55 percent of the total hardwood forest land area. Elm/ash/cottonwood accounts for more than 32 percent of...

  19. Nebraska's Forests 2010

    Treesearch

    Dacia M Meneguzzo; Susan J. Crocker; Mark D. Nelson; Charles J. Barnett; Brett J. Butler; Grant M. Domke; Mark H. Hansen; Mark A. Hatfield; Greg C. Liknes; Andrew J. Lister; Tonya W. Lister; Ronald J. Piva; Barry T. (Ty) Wilson; Christopher W. Woodall

    2012-01-01

    The second full annual inventory of Nebraska's forests reports more than 1.5 million acres of forest land and 39 tree species. Forest land is dominated by the elm/ash/cottonwood and oak/hickory forest types, which occupy nearly half of the total forest land area. The volume of growing stock on timberland currently totals 1.1 billion cubic feet. The average annual...

  20. Illinois' Forests 2010

    Treesearch

    Susan J. Crocker; Mark D. Nelson; Charles J. Barnett; Brett J. Butler; Grant M. Domke; Mark H. Hansen; Mark A. Hatfield; Tonya W. Lister; Dacia M. Meneguzzo; Ronald J. Piva; Barry T. Wilson; Christopher W. Woodall

    2013-01-01

    The second full annual inventory of Illinois' forests, completed in 2010, reports more than 4.8 million acres of forest land and 97 tree species. Forest land is dominated by oak/hickory and elm/ash/cottonwood forest-type groups, which occupy 93 percent of total forest land area. The volume of growing stock on timberland totals 7.2 billion cubic feet. The average...

  1. 25 CFR 163.10 - Management of Indian forest land.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false Management of Indian forest land. 163.10 Section 163.10 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER GENERAL FORESTRY REGULATIONS Forest Management and Operations § 163.10 Management of Indian forest land. (a) The Secretary shall...

  2. 25 CFR 163.10 - Management of Indian forest land.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Management of Indian forest land. 163.10 Section 163.10 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER GENERAL FORESTRY REGULATIONS Forest Management and Operations § 163.10 Management of Indian forest land. (a) The Secretary shall...

  3. 25 CFR 163.10 - Management of Indian forest land.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 1 2012-04-01 2011-04-01 true Management of Indian forest land. 163.10 Section 163.10 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER GENERAL FORESTRY REGULATIONS Forest Management and Operations § 163.10 Management of Indian forest land. (a) The Secretary shall...

  4. 25 CFR 163.10 - Management of Indian forest land.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 1 2013-04-01 2013-04-01 false Management of Indian forest land. 163.10 Section 163.10 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER GENERAL FORESTRY REGULATIONS Forest Management and Operations § 163.10 Management of Indian forest land. (a) The Secretary shall...

  5. Vegetation Analysis and Land Use Land Cover Classification of Forest in Uttara Kannada District India Through Geo-Informatics Approach

    NASA Astrophysics Data System (ADS)

    Koppad, A. G.; Janagoudar, B. S.

    2017-05-01

    The study was conducted in Uttara Kannada districts during the year 2012-2014. The study area lies between 13.92° N to 15.52° N latitude and 74.08° E to 75.09° E longitude with an area of 10,215 km2. The Indian satellite IRS P6 LISS-III imageries were used to classify the land use land cover classes with ground truth data collected with GPS through supervised classification in ERDAS software. The land use and land cover classes identified were dense forest, horticulture plantation, sparse forest, forest plantation, open land and agriculture land. The dense forest covered an area of 63.32 % (6468.70 sq km) followed by agriculture 12.88 % (1315.31 sq. km), sparse forest 10.59 % (1081.37 sq. km), open land 6.09 % (622.37 sq. km), horticulture plantation and least was forest plantation (1.07 %). Settlement, stony land and water body together cover about 4.26 percent of the area. The study indicated that the aspect and altitude influenced the forest types and vegetation pattern. The NDVI map was prepared which indicated that healthy vegetation is represented by high NDVI values between 0.1 and 1. The non-vegetated features such as water bodies, settlement, and stony land indicated less than 0.1 values. The decrease in forest area in some places was due to anthropogenic activities. The thematic map of land use land cover classes was prepared using Arc GIS Software.

  6. Summary estimates of forest resources on unreserved lands of the Ketchikan inventory unit, Tongass National Forest, southeast Alaska, 1998.

    Treesearch

    Willem W.S. van Hees

    2001-01-01

    Summary estimates are presented of forest resource area, timber volume, and growth and mortality of timber on unreserved national forest land in the Ketchikan inventory unit of the Tongass National Forest. Pacific Northwest Research Station, Forest Inventory and Analysis crews collected inventory data from 1995 to 1998. Productive forest land area (timberland) was...

  7. Summary estimates of forest resources on unreserved lands of the Chatham inventory unit, Tongass National Forest, southeast Alaska, 1998.

    Treesearch

    Willem W.S. van Hees

    2001-01-01

    Summary estimates are presented of forest resource area, timber volume, and growth and mortality of timber on unreserved national forest land in the Chatham inventory unit of the Tongass National Forest. Pacific Northwest Research Station, Forest Inventory and Analysis crews collected inventory data from 1995 to 2000. Productive forest land area (timberland) was...

  8. Summary estimates of forest resources on unreserved lands of the Stikine inventory unit, Tongass National Forest, southeast Alaska, 1998.

    Treesearch

    Willem W.S. van Hees

    2001-01-01

    Summary estimates are presented of forest resource area, timber volume, and growth and mortality of timber on unreserved national forest land in the Stikine inventory unit of the Tongass National Forest. Pacific Northwest Research Station, Forest Inventory and Analysis, crews collected inventory data from 1995 to 1998. Productive forest land area (timberland) was...

  9. Assessing the influence of historic net and gross land changes on the carbon fluxes of Europe.

    PubMed

    Fuchs, Richard; Schulp, Catharina J E; Hengeveld, Geerten M; Verburg, Peter H; Clevers, Jan G P W; Schelhaas, Mart-Jan; Herold, Martin

    2016-07-01

    Legacy effects of land cover/use on carbon fluxes require considering both present and past land cover/use change dynamics. To assess past land use dynamics, model-based reconstructions of historic land cover/use are needed. Most historic reconstructions consider only the net area difference between two time steps (net changes) instead of accounting for all area gains and losses (gross changes). Studies about the impact of gross and net land change accounting methods on the carbon balance are still lacking. In this study, we assessed historic changes in carbon in soils for five land cover/use types and of carbon in above-ground biomass of forests. The assessment focused on Europe for the period 1950 to 2010 with decadal time steps at 1-km spatial resolution using a bookkeeping approach. To assess the implications of gross land change data, we also used net land changes for comparison. Main contributors to carbon sequestration between 1950 and 2010 were afforestation and cropland abandonment leading to 14.6 PgC sequestered carbon (of which 7.6 PgC was in forest biomass). Sequestration was highest for old-growth forest areas. A sequestration dip was reached during the 1970s due to changes in forest management practices. Main contributors to carbon emissions were deforestation (1.7 PgC) and stable cropland areas on peaty soils (0.8 PgC). In total, net fluxes summed up to 203 TgC yr(-1) (98 TgC yr(-1) in forest biomass and 105 TgC yr(-1) in soils). For areas that were subject to land changes in both reconstructions (35% of total area), the differences in carbon fluxes were about 68%. Overall for Europe the difference between accounting for either gross or net land changes led to 7% difference (up to 11% per decade) in carbon fluxes with systematically higher fluxes for gross land change data. © 2015 John Wiley & Sons Ltd.

  10. Modeling the effect of land use change on hydrology of a forested watershed in coastal South Carolina.

    Treesearch

    Zhaohua Dai; Devendra M. Amatya; Ge Sun; Changsheng Li; Carl C. Trettin; Harbin Li

    2009-01-01

    Since hydrology is one of main factors controlling wetland functions, hydrologic models are useful for evaluating the effects of land use change on we land ecosystems. We evaluated two process-based hydrologic models with...

  11. Changing Forest Land Use in the Pacific Northwest and Implications for Ecosystem Processes (Invited)

    NASA Astrophysics Data System (ADS)

    Law, B. E.; Hudiburg, T. W.; Yang, Z.

    2013-12-01

    Human use of forests in the Pacific Northwest US has evolved from underburning for wildlife habitat, to clearing for subsistence living, and an emphasis on timber production. In Oregon, forests older than 200 years now occupy less than 1 percent of private land that accounts for half the forest area, and ranges from 15 to almost 60 percent of public lands depending on the ecoregion. The Northwest Forest Plan (NWFP) was implemented on public lands in 1993 as a region-wide forest management regime intended to conserve species at risk from extensive harvest of older forests. The result was an 82 percent reduction in harvest removals on public forest lands, and subsequently, public forestland became a carbon sink while private forest remained near carbon neutral. Currently, forest management on public lands in the PNW emphasizes widespread thinning of forests to reduce wildfire risk, and thinning and slash removal for bioenergy production. In addition, several states have set ambitious GHG reduction targets. These policies are being implemented even though many aspects have not been adequately assessed for the effects on forests. CLM4 simulations over Oregon show that by the year 2100, net carbon uptake increases by 32-68% depending on the climate and CO2 scenario, suggesting that enhanced productivity from a warmer climate and CO2 fertilization compensates for disturbance losses if business-as-usual management continues. Water cycle implications are also considered. Simulated repeat thinnings were applied in areas susceptible to fire to reduce mortality and fire emissions, and clearcut rotations were applied in productive forests to provide biomass for both wood products and bioenergy. CLM input to a Life Cycle Assessment, which tracks emissions off-site, shows that none of the scenarios reduce regional net CO2 emissions to the atmosphere by the end of the 21st century. Thinning dry forests to reduce potential fire emissions led to no net change in emissions from BAU management by 2100, while the management scenarios in mesic forests increased emissions, driving state-level emissions estimates. Mesic forests in the Coast Range and West Cascades have the potential to hold significantly more carbon (maximum observed live mass of 33 and 27 kg C/m^2 reached at ages 310 and 430, respectively) and can live 400 to 700 years. Climate mitigation will require place-based management, such as maintaining mature and old coastal rainforests for carbon sequestration, watershed protection, and biodiversity, and thinning some dry forests that are susceptible to mortality.

  12. Tennessee's forest land area was stable 1999-2005 but early successional forest area declined

    Treesearch

    Christopher M. Oswalt

    2008-01-01

    A new analysis of the most recent (2005) annualized moving average data for Tennessee indicates that the area of forest land in the State remained stable between 1999 and 2005. Although trends in forest land area vary from region to region within the State, Tennessee neither lost nor gained forest land between 1999 and 2005. However, Tennessee had more than 2.5 times...

  13. Looking back to move forward: collaborative planning to revise the Green Mountain and Finger Lakes National Forests land and resource management plans

    Treesearch

    Michael J. Dockry

    2015-01-01

    The United States Department of Agriculture Forest Service (Forest Service) manages 154 national forests and 20 grasslands in 44 states and Puerto Rico. National Forest Land and Resource Management Plans (forest plans) form the basis for land and resource management of national forests in the United States. For more than a decade the Forest Service has been attempting...

  14. Monitoring forest/non-forest land use conversion rates with annual inventory data

    Treesearch

    Francis A. Roesch; Paul C. Van Deusen

    2012-01-01

    The transitioning of land from forest to other uses is of increasing interest as urban areas expand and the world’s population continues to grow. Also of interest, but less recognized, is the transitioning of land from other uses into forest. In this paper, we show how rates of conversion from forest to non-forest and non-forest to forest can be estimated in the US...

  15. Representing anthropogenic gross land use change, wood harvest, and forest age dynamics in a global vegetation model ORCHIDEE-MICT v8.4.2

    NASA Astrophysics Data System (ADS)

    Yue, Chao; Ciais, Philippe; Luyssaert, Sebastiaan; Li, Wei; McGrath, Matthew J.; Chang, Jinfeng; Peng, Shushi

    2018-01-01

    Land use change (LUC) is among the main anthropogenic disturbances in the global carbon cycle. Here we present the model developments in a global dynamic vegetation model ORCHIDEE-MICT v8.4.2 for a more realistic representation of LUC processes. First, we included gross land use change (primarily shifting cultivation) and forest wood harvest in addition to net land use change. Second, we included sub-grid evenly aged land cohorts to represent secondary forests and to keep track of the transient stage of agricultural lands since LUC. Combination of these two features allows the simulation of shifting cultivation with a rotation length involving mainly secondary forests instead of primary ones. Furthermore, a set of decision rules regarding the land cohorts to be targeted in different LUC processes have been implemented. Idealized site-scale simulation has been performed for miombo woodlands in southern Africa assuming an annual land turnover rate of 5 % grid cell area between forest and cropland. The result shows that the model can correctly represent forest recovery and cohort aging arising from agricultural abandonment. Such a land turnover process, even though without a net change in land cover, yields carbon emissions largely due to the imbalance between the fast release from forest clearing and the slow uptake from agricultural abandonment. The simulation with sub-grid land cohorts gives lower emissions than without, mainly because the cleared secondary forests have a lower biomass carbon stock than the mature forests that are otherwise cleared when sub-grid land cohorts are not considered. Over the region of southern Africa, the model is able to account for changes in different forest cohort areas along with the historical changes in different LUC activities, including regrowth of old forests when LUC area decreases. Our developments provide possibilities to account for continental or global forest demographic change resulting from past anthropogenic and natural disturbances.

  16. Using interpreted large scale aerial photo data to enhance satellite-based mapping and explore forest land definitions

    Treesearch

    Tracey S. Frescino; Gretchen G. Moisen

    2009-01-01

    The Interior-West, Forest Inventory and Analysis (FIA), Nevada Photo-Based Inventory Pilot (NPIP), launched in 2004, involved acquisition, processing, and interpretation of large scale aerial photographs on a subset of FIA plots (both forest and nonforest) throughout the state of Nevada. Two objectives of the pilot were to use the interpreted photo data to enhance...

  17. Analyzing cloud base at local and regional scales to understand tropical montane cloud forest vulnerability to climate change

    Treesearch

    Ashley E. Van Beusekom; Grizelle Gonzalez; Martha A. Scholl

    2017-01-01

    The degree to which cloud immersion provides water in addition to rainfall, suppresses transpiration, and sustains tropical montane cloud forests (TMCFs) during rainless periods is not well understood. Climate and land use changes represent a threat to these forests if cloud base altitude rises as a result of regional warming or deforestation. To establish a baseline...

  18. 47 CFR 17.58 - Facilities to be located on land under the jurisdiction of the U.S. Forest Service or the Bureau...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... jurisdiction of the U.S. Forest Service or the Bureau of Land Management. 17.58 Section 17.58 Telecommunication... land under the jurisdiction of the U.S. Forest Service or the Bureau of Land Management. Any... the U.S. Forest Service or the Bureau of Land Management shall include a statement that the facilities...

  19. Using Resource Economics to Anticipate Forest Land Use Change in the U.S. Mid-Atlantic Region

    Treesearch

    Peter J. Parks; Ian W. Hardie; Cheryl A. Tedder; David N. Wear

    2000-01-01

    Demands for forest, farm, and developed land are evolving in the U.S. mid-Atlantic region. The demand for land in developed uses, as well as demands for various forest and farm products are changing in response to population growth, demographic shifts, and market forces. As demand factors change so do relative land values. Land area in future forest, farm, and...

  20. Elk responses to trail-based recreation on public forests

    Treesearch

    Michael J. Wisdom; Haiganoush K. Preisler; Leslie M. Naylor; Robert G. Anthony; Bruce K. Johnson; Mary M. Rowland

    2018-01-01

    Trail-based recreation is a popular use of public forests in the United States, and four types are common: allterrain vehicle (ATV) riding, mountain biking, hiking, and horseback riding. Effects on wildlife, however, are controversial and often a topic of land use debates. Accordingly, we studied trail-based recreation effects on elk (Cervus canadensis...

  1. A hybrid Land Cover Dataset for Russia: a new methodology for merging statistics, remote sensing and in-situ information

    NASA Astrophysics Data System (ADS)

    Schepaschenko, D.; McCallum, I.; Shvidenko, A.; Kraxner, F.; Fritz, S.

    2009-04-01

    There is a critical need for accurate land cover information for resource assessment, biophysical modeling, greenhouse gas studies, and for estimating possible terrestrial responses and feedbacks to climate change. However, practically all existing land cover datasets have quite a high level of uncertainty and suffer from a lack of important details that does not allow for relevant parameterization, e.g., data derived from different forest inventories. The objective of this study is to develop a methodology in order to create a hybrid land cover dataset at the level which would satisfy requirements of the verified terrestrial biota full greenhouse gas account (Shvidenko et al., 2008) for large regions i.e. Russia. Such requirements necessitate a detailed quantification of land classes (e.g., for forests - dominant species, age, growing stock, net primary production, etc.) with additional information on uncertainties of the major biometric and ecological parameters in the range of 10-20% and a confidence interval of around 0.9. The approach taken here allows the integration of different datasets to explore synergies and in particular the merging and harmonization of land and forest inventories, ecological monitoring, remote sensing data and in-situ information. The following datasets have been integrated: Remote sensing: Global Land Cover 2000 (Fritz et al., 2003), Vegetation Continuous Fields (Hansen et al., 2002), Vegetation Fire (Sukhinin, 2007), Regional land cover (Schmullius et al., 2005); GIS: Soil 1:2.5 Mio (Dokuchaev Soil Science Institute, 1996), Administrative Regions 1:2.5 Mio, Vegetation 1:4 Mio, Bioclimatic Zones 1:4 Mio (Stolbovoi & McCallum, 2002), Forest Enterprises 1:2.5 Mio, Rivers/Lakes and Roads/Railways 1:1 Mio (IIASA's data base); Inventories and statistics: State Land Account (FARSC RF, 2006), State Forest Account - SFA (FFS RF, 2003), Disturbances in forests (FFS RF, 2006). The resulting hybrid land cover dataset at 1-km resolution comprises the following classes: Forest (each grid links to the SFA database, which contains 86,613 records); Agriculture (5 classes, parameterized by 89 administrative units); Wetlands (8 classes, parameterized by 83 zone/region units); Open Woodland, Burnt area; Shrub/grassland (50 classes, parameterized by 300 zone/region units); Water; Unproductive area. This study has demonstrated the ability to produce a highly detailed (both spatially and thematically) land cover dataset over Russia. Future efforts include further validation of the hybrid land cover dataset for Russia, and its use for assessment of the terrestrial biota full greenhouse gas budget across Russia. The methodology proposed in this study could be applied at the global level. Results of such an undertaking would however be highly dependent upon the quality of the available ground data. The implementation of the hybrid land cover dataset was undertaken in a way that it can be regularly updated based on new ground data and remote sensing products (ie. MODIS).

  2. An enhanced forest classification scheme for modeling vegetation-climate interactions based on national forest inventory data

    NASA Astrophysics Data System (ADS)

    Majasalmi, Titta; Eisner, Stephanie; Astrup, Rasmus; Fridman, Jonas; Bright, Ryan M.

    2018-01-01

    Forest management affects the distribution of tree species and the age class of a forest, shaping its overall structure and functioning and in turn the surface-atmosphere exchanges of mass, energy, and momentum. In order to attribute climate effects to anthropogenic activities like forest management, good accounts of forest structure are necessary. Here, using Fennoscandia as a case study, we make use of Fennoscandic National Forest Inventory (NFI) data to systematically classify forest cover into groups of similar aboveground forest structure. An enhanced forest classification scheme and related lookup table (LUT) of key forest structural attributes (i.e., maximum growing season leaf area index (LAImax), basal-area-weighted mean tree height, tree crown length, and total stem volume) was developed, and the classification was applied for multisource NFI (MS-NFI) maps from Norway, Sweden, and Finland. To provide a complete surface representation, our product was integrated with the European Space Agency Climate Change Initiative Land Cover (ESA CCI LC) map of present day land cover (v.2.0.7). Comparison of the ESA LC and our enhanced LC products (https://doi.org/10.21350/7zZEy5w3) showed that forest extent notably (κ = 0.55, accuracy 0.64) differed between the two products. To demonstrate the potential of our enhanced LC product to improve the description of the maximum growing season LAI (LAImax) of managed forests in Fennoscandia, we compared our LAImax map with reference LAImax maps created using the ESA LC product (and related cross-walking table) and PFT-dependent LAImax values used in three leading land models. Comparison of the LAImax maps showed that our product provides a spatially more realistic description of LAImax in managed Fennoscandian forests compared to reference maps. This study presents an approach to account for the transient nature of forest structural attributes due to human intervention in different land models.

  3. Urban vacant land typology: A tool for managing urban vacant land

    Treesearch

    Gunwoo Kim; Patrick A. Miller; David J. Nowak

    2018-01-01

    A typology of urban vacant land was developed, using Roanoke, Virginia, as the study area. A comprehensive literature review, field measurements and observations, including photographs, and quantitative based approach to assessing vacant land forest structure and values (i-Tree Eco sampling) were utilized, along with aerial photo interpretation, and ground-truthing...

  4. Kansas forests 2005

    Treesearch

    W. Keith Moser; Mark H. Hansen; Robert L. Atchison; Gary J. Brand; Brett J. Butler; Susan J. Crocker; Dacia M. Meneguzzo; Mark D. Nelson; Charles H. Perry; William H. IV Reading; Barry T. Wilson; Christopher W. Woodall

    2008-01-01

    The first completed annual inventory of Kansas forests reports 2.1 million acres of forest land, roughly 4 percent of the total land area in the State. Softwood forests account for nearly 5 percent of the total timberland area. Oak/hickory forest types make up 56 percent of the total hardwood forest land area. Elm/ash/cottonwood accounts for more than 30 percent of the...

  5. 75 FR 19999 - Public Land Order No. 7739; Extension of Public Land Order No. 6776; Washington

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-16

    ...-Wenatchee National Forest, 215 Melody Lane, Wenatchee, Washington 98801, (509) 664-9262, or Charles R. Roy... Wenatchee National Forest. The United States Forest Service will continue to manage the lands to protect.... Public Land Order No. 6776 (55 FR 14422, (1990)) that withdrew 8,950 acres of National Forest System...

  6. Practicalities of methodologies in monitoring morest degradation in the tropics

    Treesearch

    Yoshiyuki Kiyono

    2013-01-01

    Conversion of natural forest to agricultural land is one of the most important forms of land-use change affecting both carbon stock and biodiversity. When the agricultural land contains trees, e.g. fallow-land forest of slash-and-burn agriculture, the conversion can be categorized into forest degradation when the forest definition covers such vegetation. One practical...

  7. Northwest Forest Plan--the first 10 years (1994-2003): socioeconomic monitoring of the Okanogan-Wenatchee National Forest and five local communities.

    Treesearch

    C. Dillingham; M.R. Poe; E. Grinspoon; C. Stuart; C. Moseley; R. Mazza; S. Charnley; L. Meierotto; E. Donoghue; N. Toth

    2008-01-01

    This report examines socioeconomic changes that occurred between 1990 and 2003 associated with implementation of the Northwest Forest Plan (the Plan) in and around lands managed by the Okanogan-Wenatchee National Forest in Washington state. Our findings are based on quantitative data from the U.S. census, the USDA Forest Service and other federal databases, historical...

  8. Alternative forest resource use - outdoor recreation and rural economics

    Treesearch

    Ellene Kebede; John Schelhas; Janet Haslerig

    2008-01-01

    Since the 1980s demand for outdoor recreation has been increasing in the United States. Growing income and change in lifestyles have been cited as factors contributing to the increase in demand. This period also coincided with a decline in timber prices and loss of income to forest land owners. Forest-based recreation has intensified as a part of forest management...

  9. Simulating historical disturbance regimes and stand structures in old-forest ponderosa pine/Douglas-fir forests

    Treesearch

    Mike Hillis; Vick Applegate; Steve Slaughter; Michael G. Harrington; Helen Smith

    2001-01-01

    Forest Service land managers, with the collaborative assistance from research, applied a disturbance based restoration strategy to rehabilitate a greatly-altered, high risk Northern Rocky Mountain old-forest ponderosa pine-Douglas-fir stand. Age-class structure and fire history for the site have been documented in two research papers (Arno and others 1995, 1997)....

  10. Wood products utilization : a call for reflection and innovation

    Treesearch

    John A. Youngquist; Thomas E. Hamilton

    1999-01-01

    It is hard to imagine a world without forests. Forests provide a wide range of benefits at the local, national, and global levels. Some of these benefits depend on leaving the forest alone or subjecting it to only minimal interference. Other benefits can only be realized by harvesting the forest for wood and other products. The shrinking land base and growing human...

  11. Long-term soil productivity: genesis of the concept and principles behind the program

    Treesearch

    Robert F. Powers

    2006-01-01

    The capacity of a forest site to capture carbon and convert it into biomass defines fundamental site productivity. In the United States, the National Forest Management Act (NFMA) of 1976 mandates that this capacity must be protected on federally managed lands. Responding to NFMA, the USDA Forest Service began a soil-based monitoring program for its managed forests....

  12. Measuring Forest Area Loss Over Time Using FIA Plots and Satellite Imagery

    Treesearch

    Michael L. Hoppus; Andrew J. Lister

    2005-01-01

    How accurately can FIA plots, scattered at 1 per 6,000 acres, identify often rare forest land loss, estimated at less than 1 percent per year in the Northeast? Here we explore this question mathematically, empirically, and by comparing FIA plot estimates of forest change with satellite image based maps of forest loss. The mathematical probability of exactly estimating...

  13. Long-term, high-spatial resolution carbon balance monitoring of the Amazonian frontier: Predisturbance and postdisturbance carbon emissions and uptake

    NASA Astrophysics Data System (ADS)

    Toomey, Michael; Roberts, Dar A.; Caviglia-Harris, Jill; Cochrane, Mark A.; Dewes, Candida F.; Harris, Daniel; Numata, Izaya; Sales, Marcio H.; Sills, Erin; Souza, Carlos M.

    2013-06-01

    We performed high-spatial and high-temporal resolution modeling of carbon stocks and fluxes in the state of Rondônia, Brazil for the period 1985-2009, using annual Landsat-derived land cover classifications and a modified bookkeeping modeling approach. According to these results, Rondônia contributed 3.5-4% of pantropical humid forest deforestation emissions over this period. Similar to well-known figures reported by the Brazilian Space Agency, we found a decline in deforestation rates since 2006. However, we estimate a lesser decrease, with deforestation rates continuing at levels similar to the early 2000s. Forest carbon stocks declined at an annual rate of 1.51%; emissions from postdisturbance land use nearly equaled those of the initial deforestation events. Carbon uptake by secondary forest was negligible due to limited spatial extent and high turnover rates. Net carbon emissions represented 93% of initial forest carbon stocks, due in part to repeated slash and pasture burnings and secondary forest clearing. We analyzed potential error incurred when spatially aggregating land cover by comparing results based on coarser-resolution (250 m) and full-resolution land cover products. At the coarser resolution, more than 90% of deforestation and secondary forest would be unresolvable, assuming that a 50% change threshold is necessary for detection. Therefore, we strongly suggest the use of Landsat-scale ( 30m) resolution carbon monitoring in tropical regions dominated by nonmechanized, smallholder land use change.

  14. Urban forests for sustainable urban development

    NASA Astrophysics Data System (ADS)

    Sundara, Denny M.; Hartono, Djoko M.; Suganda, Emirhadi; Haeruman, S. Herman J.

    2017-11-01

    This paper explores the development of the urban forest in East Jakarta. By 2030 Jakarta area has a target of 30% green area covering 19,845 hectares, including urban forest covering an area of 4,631 hectares. In 2015, the city forest is only 646 hectares, while the city requires 3,985 hectares of new land Urban forest growth from year to year showed a marked decrease with increasing land area awoke to commercial functions, environmental conditions encourage the development of the city to become unsustainable. This research aims to support sustainable urban development and ecological balance through the revitalization of green areas and urban development. Analytical methods for urban forest area is calculated based on the amount of CO2 that comes from people, vehicles, and industrial. Urban spatial analysis based on satellite image data, using a GIS program is an analysis tool to determine the distribution and growth patterns of green areas. This paper uses a dynamic system model to simulate the conditions of the region against intervention to be performed on potential areas for development of urban forests. The result is a model urban forest area is integrated with a social and economic function to encourage the development of sustainable cities.

  15. Modeling forest site productivity using mapped geospatial attributes within a South Carolina Landscape, USA

    DOE PAGES

    Parresol, B. R.; Scott, D. A.; Zarnoch, S. J.; ...

    2017-12-15

    Spatially explicit mapping of forest productivity is important to assess many forest management alternatives. We assessed the relationship between mapped variables and site index of forests ranging from southern pine plantations to natural hardwoods on a 74,000-ha landscape in South Carolina, USA. Mapped features used in the analysis were soil association, land use condition in 1951, depth to groundwater, slope and aspect. Basal area, species composition, age and height were the tree variables measured. Linear modelling identified that plot basal area, depth to groundwater, soils association and the interactions between depth to groundwater and forest group, and between land usemore » in 1951 and forest group were related to site index (SI) (R 2 =0.37), but this model had regression attenuation. We then used structural equation modeling to incorporate error-in-measurement corrections for basal area and groundwater to remove bias in the model. We validated this model using 89 independent observations and found the 95% confidence intervals for the slope and intercept of an observed vs. predicted site index error-corrected regression included zero and one, respectively, indicating a good fit. With error in measurement incorporated, only basal area, soil association, and the interaction between forest groups and land use were important predictors (R2 =0.57). Thus, we were able to develop an unbiased model of SI that could be applied to create a spatially explicit map based primarily on soils as modified by past (land use and forest type) and recent forest management (basal area).« less

  16. Modeling forest site productivity using mapped geospatial attributes within a South Carolina Landscape, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parresol, B. R.; Scott, D. A.; Zarnoch, S. J.

    Spatially explicit mapping of forest productivity is important to assess many forest management alternatives. We assessed the relationship between mapped variables and site index of forests ranging from southern pine plantations to natural hardwoods on a 74,000-ha landscape in South Carolina, USA. Mapped features used in the analysis were soil association, land use condition in 1951, depth to groundwater, slope and aspect. Basal area, species composition, age and height were the tree variables measured. Linear modelling identified that plot basal area, depth to groundwater, soils association and the interactions between depth to groundwater and forest group, and between land usemore » in 1951 and forest group were related to site index (SI) (R 2 =0.37), but this model had regression attenuation. We then used structural equation modeling to incorporate error-in-measurement corrections for basal area and groundwater to remove bias in the model. We validated this model using 89 independent observations and found the 95% confidence intervals for the slope and intercept of an observed vs. predicted site index error-corrected regression included zero and one, respectively, indicating a good fit. With error in measurement incorporated, only basal area, soil association, and the interaction between forest groups and land use were important predictors (R2 =0.57). Thus, we were able to develop an unbiased model of SI that could be applied to create a spatially explicit map based primarily on soils as modified by past (land use and forest type) and recent forest management (basal area).« less

  17. Indigenous systems of forest classification: understanding land use patterns and the role of NTFPs in shifting cultivators' subsistence economies.

    PubMed

    Delang, Claudio O

    2006-04-01

    This article discusses the system of classification of forest types used by the Pwo Karen in Thung Yai Naresuan Wildlife Sanctuary in western Thailand and the role of nontimber forest products (NTFPs), focusing on wild food plants, in Karen livelihoods. The article argues that the Pwo Karen have two methods of forest classification, closely related to their swidden farming practices. The first is used for forest land that has been, or can be, swiddened, and classifies forest types according to growth conditions. The second system is used for land that is not suitable for cultivation and looks at soil properties and slope. The article estimates the relative importance of each forest type in what concerns the collection of wild food plants. A total of 134 wild food plant species were recorded in December 2004. They account for some 80-90% of the amount of edible plants consumed by the Pwo Karen, and have a base value of Baht 11,505 per year, comparable to the cash incomes of many households. The article argues that the Pwo Karen reliance on NTFPs has influenced their land-use and forest management practices. However, by restricting the length of the fallow period, the Thai government has caused ecological changes that are challenging the ability of the Karen to remain subsistence oriented. By ignoring shifting cultivators' dependence on such products, the involvement of governments in forest management, especially through restrictions imposed on swidden farming practices, is likely to have a considerable impact on the livelihood strategies of these communities.

  18. Local versus landscape-scale effects of anthropogenic land-use on forest species richness

    NASA Astrophysics Data System (ADS)

    Buffa, G.; Del Vecchio, S.; Fantinato, E.; Milano, V.

    2018-01-01

    The study investigated the effects of human-induced landscape patterns on species richness in forests. For 80 plots of fixed size, we measured human disturbance (categorized as urban/industrial and agricultural land areas), at 'local' and 'landscape' scale (500 m and 2500 m radius from each plot, respectively), the distance from the forest edge, and the size and shape of the woody patch. By using GLM, we analyzed the effects of disturbance and patch-based measures on both total species richness and the richness of a group of specialist species (i.e. the 'ancient forest species'), representing more specific forest features. Patterns of local species richness were sensitive to the structure and composition of the surrounding landscape. Among the landscape components taken into account, urban/industrial land areas turned out as the most threatening factor for both total species richness and the richness of the ancient forest species. However, the best models evidenced a different intensity of the response to the same disturbance category as well as a different pool of significant variables for the two groups of species. The use of groups of species, such as the ancient forest species pool, that are functionally related and have similar ecological requirements, may represent an effective solution for monitoring forest dynamics under the effects of external factors. The approach of relating local assessment of species richness, and in particular of the ancient forest species pool, to land-use patterns may play an important role for the science-policy interface by supporting and strengthening conservation and regional planning decision making.

  19. Global, long-term Earth Science Data Records of forest cover, change, and fragmentation from Landsat: the Global Forest Cover Change Project

    NASA Astrophysics Data System (ADS)

    Sexton, J.; Huang, C.; Channan, S.; Feng, M.; Song, X.; Kim, D.; Song, D.; Vermote, E.; Masek, J.; Townshend, J. R.

    2013-12-01

    Monitoring, analysis, and management of forests require measurements of forest cover that are both spatio-temporally consistent and resolved globally at sub-hectare resolution. The Global Forest Cover Change project, a cooperation between the University of Maryland Global Land Cover Facility and NASA Goddard Space Flight Center, is providing the first long-term, sub-hectare, globally consistent data records of forest cover, change, and fragmentation in circa-1975, -1990, -2000, and -2005 epochs. These data are derived from the Global Land Survey collection of Landsat images in the respective epochs, atmospherically corrected to surface reflectance in 1990, 2000, and 2005 using the Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) implementation of the 6S radiative transfer algorithm, with ancillary information from MODIS Land products, ASTER Global Digital Elevation Model (GDEM), and climatological data layers. Forest cover and change were estimated by a novel continuous-field approach, which produced for the 2000 and 2005 epochs the world's first global, 30-m resolution database of tree cover. Surface reflectance estimates were validated against coincident MODIS measurements, the results of which have been corroborated by subsequent, independent validations against measurements from AERONET sites. Uncertainties in tree- and forest-cover values were estimated in each pixel as a compounding of within-sample uncertainty and accuracy relative to a sample of independent measurements from small-footprint lidar. Accuracy of forest cover and change estimates was further validated relative to expert-interpreted high-resolution imagery, from which unbiased estimates of forest cover and change have been produced at national and eco-regional scales. These first-of-kind Earth Science Data Records--surface reflectance in 1990, 2000, and 2005 and forest cover, change, and fragmentation in and between 1975, 1990, 2000, and 2005--are hosted at native, Landsat resolution for free public access at the Global Land Cover Facility website (www.landcover.org). Global mosaic of circa-2000, Landsat-based estimates of tree cover. Gaps due to clouds and/or snow in each scene were filled first with Landsat-based data from overlapping paths, and the remaining gaps were filled with data from the MODIS VCF Tree Cover layer in 2000.

  20. 76 FR 75900 - Notice of Application for Withdrawal Extension and Opportunity for Public Meeting; Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-05

    ... of National Forest System land in the Shoshone National Forest from mining in order to protect the... of National Forest System land in the Shoshone National Forest from location and entry under the... of Land Management, Interior. ACTION: Notice. SUMMARY: The United States Forest Service (USFS) has...

  1. Soil and water related forest ecosystem services and resilience of social ecological system in the Central Highlands of Ethiopia

    NASA Astrophysics Data System (ADS)

    Tekalign, Meron; Muys, Bart; Nyssen, Jan; Poesen, Jean

    2014-05-01

    In the central highlands of Ethiopia, deforestation and forest degradation are occurring and accelerating during the last century. The high population pressure is the most repeatedly mentioned reason. However, in the past 30 years researchers agreed that the absence of institutions, which could define the access rights to particular forest resources, is another underlying cause of forest depletion and loss. Changing forest areas into different land use types is affecting the biodiversity, which is manifested through not proper functioning of ecosystem services. Menagesha Suba forest, the focus of this study has been explored from various perspectives. However the social dimension and its interaction with the ecology have been addressed rarely. This research uses a combined theoretical framework of Ecosystem Services and that of Resilience thinking for understanding the complex social-ecological interactions in the forest and its influence on ecosystem services. For understanding the history and extent of land use land cover changes, in-depth literature review and a GIS and remote sensing analysis will be made. The effect of forest conversion into plantation and agricultural lands on soil and above ground carbon sequestration, fuel wood and timber products delivery will be analyzed with the accounting of the services on five land use types. The four ecosystem services to be considered are Supporting, Provisioning, Regulating, and Cultural services as set by the Millennium Ecosystem Assessment. A resilience based participatory framework approach will be used to analyze how the social and ecological systems responded towards the drivers of change that occurred in the past. The framework also will be applied to predict future uncertainties. Finally this study will focus on the possible interventions that could contribute to the sustainable management and conservation of the forest. An ecosystem services trade-off analysis and an environmental valuation of the water regulation and soil erosion control services will be made to propose solutions for increasing the social-ecological system resilience of Menagesha Suba forest.

  2. Methods used to parameterize the spatially-explicit components of a state-and-transition simulation model

    USGS Publications Warehouse

    Sleeter, Rachel; Acevedo, William; Soulard, Christopher E.; Sleeter, Benjamin M.

    2015-01-01

    Spatially-explicit state-and-transition simulation models of land use and land cover (LULC) increase our ability to assess regional landscape characteristics and associated carbon dynamics across multiple scenarios. By characterizing appropriate spatial attributes such as forest age and land-use distribution, a state-and-transition model can more effectively simulate the pattern and spread of LULC changes. This manuscript describes the methods and input parameters of the Land Use and Carbon Scenario Simulator (LUCAS), a customized state-and-transition simulation model utilized to assess the relative impacts of LULC on carbon stocks for the conterminous U.S. The methods and input parameters are spatially explicit and describe initial conditions (strata, state classes and forest age), spatial multipliers, and carbon stock density. Initial conditions were derived from harmonization of multi-temporal data characterizing changes in land use as well as land cover. Harmonization combines numerous national-level datasets through a cell-based data fusion process to generate maps of primary LULC categories. Forest age was parameterized using data from the North American Carbon Program and spatially-explicit maps showing the locations of past disturbances (i.e. wildfire and harvest). Spatial multipliers were developed to spatially constrain the location of future LULC transitions. Based on distance-decay theory, maps were generated to guide the placement of changes related to forest harvest, agricultural intensification/extensification, and urbanization. We analyze the spatially-explicit input parameters with a sensitivity analysis, by showing how LUCAS responds to variations in the model input. This manuscript uses Mediterranean California as a regional subset to highlight local to regional aspects of land change, which demonstrates the utility of LUCAS at many scales and applications.

  3. Vegetation Analysis and Land Use Land Cover Classification of Forest in Uttara Kannada District India Using Remote Sensign and GIS Techniques

    NASA Astrophysics Data System (ADS)

    Koppad, A. G.; Janagoudar, B. S.

    2017-10-01

    The study was conducted in Uttara Kannada districts during the year 2012-2014. The study area lies between 13.92° N to 15.52° N latitude and 74.08° E to 75.09° E longitude with an area of 10,215 km2. The Indian satellite IRS P6 LISS-III imageries were used to classify the land use land cover classes with ground truth data collected with GPS through supervised classification in ERDAS software. The land use and land cover classes identified were dense forest, horticulture plantation, sparse forest, forest plantation, open land and agriculture land. The dense forest covered an area of 63.32 % (6468.70 sq km) followed by agriculture 12.88 % (1315.31 sq. km), sparse forest 10.59 % (1081.37 sq. km), open land 6.09 % (622.37 sq. km), horticulture plantation and least was forest plantation (1.07 %). Settlement, stony land and water body together cover about 4.26 percent of the area. The study indicated that the aspect and altitude influenced the forest types and vegetation pattern. The NDVI map was prepared which indicated that healthy vegetation is represented by high NDVI values between 0.1 and 1. The non- vegetated features such as water bodies, settlement, and stony land indicated less than 0.1 values. The decrease in forest area in some places was due to anthropogenic activities. The thematic map of land use land cover classes was prepared using Arc GIS Software.

  4. Lessons from community-based payment for ecosystem service schemes: from forests to rangelands.

    PubMed

    Dougill, Andrew J; Stringer, Lindsay C; Leventon, Julia; Riddell, Mike; Rueff, Henri; Spracklen, Dominick V; Butt, Edward

    2012-11-19

    Climate finance investments and international policy are driving new community-based projects incorporating payments for ecosystem services (PES) to simultaneously store carbon and generate livelihood benefits. Most community-based PES (CB-PES) research focuses on forest areas. Rangelands, which store globally significant quantities of carbon and support many of the world's poor, have seen little CB-PES research attention, despite benefitting from several decades of community-based natural resource management (CBNRM) projects. Lessons from CBNRM suggest institutional considerations are vital in underpinning the design and implementation of successful community projects. This study uses documentary analysis to explore the institutional characteristics of three African community-based forest projects that seek to deliver carbon-storage and poverty-reduction benefits. Strong existing local institutions, clear land tenure, community control over land management decision-making and up-front, flexible payment schemes are found to be vital. Additionally, we undertake a global review of rangeland CBNRM literature and identify that alongside the lessons learned from forest projects, rangeland CB-PES project design requires specific consideration of project boundaries, benefit distribution, capacity building for community monitoring of carbon storage together with awareness-raising using decision-support tools to display the benefits of carbon-friendly land management. We highlight that institutional analyses must be undertaken alongside improved scientific studies of the carbon cycle to enable links to payment schemes, and for them to contribute to poverty alleviation in rangelands.

  5. Lessons from community-based payment for ecosystem service schemes: from forests to rangelands

    PubMed Central

    Dougill, Andrew J.; Stringer, Lindsay C.; Leventon, Julia; Riddell, Mike; Rueff, Henri; Spracklen, Dominick V.; Butt, Edward

    2012-01-01

    Climate finance investments and international policy are driving new community-based projects incorporating payments for ecosystem services (PES) to simultaneously store carbon and generate livelihood benefits. Most community-based PES (CB-PES) research focuses on forest areas. Rangelands, which store globally significant quantities of carbon and support many of the world's poor, have seen little CB-PES research attention, despite benefitting from several decades of community-based natural resource management (CBNRM) projects. Lessons from CBNRM suggest institutional considerations are vital in underpinning the design and implementation of successful community projects. This study uses documentary analysis to explore the institutional characteristics of three African community-based forest projects that seek to deliver carbon-storage and poverty-reduction benefits. Strong existing local institutions, clear land tenure, community control over land management decision-making and up-front, flexible payment schemes are found to be vital. Additionally, we undertake a global review of rangeland CBNRM literature and identify that alongside the lessons learned from forest projects, rangeland CB-PES project design requires specific consideration of project boundaries, benefit distribution, capacity building for community monitoring of carbon storage together with awareness-raising using decision-support tools to display the benefits of carbon-friendly land management. We highlight that institutional analyses must be undertaken alongside improved scientific studies of the carbon cycle to enable links to payment schemes, and for them to contribute to poverty alleviation in rangelands. PMID:23045714

  6. Potential land use adjustment for future climate change adaptation in revegetated regions.

    PubMed

    Peng, Shouzhang; Li, Zhi

    2018-05-22

    To adapt to future climate change, appropriate land use patterns are desired. Potential natural vegetation (PNV) emphasizing the dominant role of climate can provide a useful baseline to guide the potential land use adjustment. This work is particularly important for the revegetated regions with intensive human perturbation. However, it has received little attention. This study chose China's Loess Plateau, a typical revegetated region, as an example study area to generate the PNV patterns with high spatial resolution over 2071-2100 with a process-based dynamic vegetation model (LPJ-GUESS), and further investigated the potential land use adjustment through comparing the simulated and observed land use patterns. Compared with 1981-2010, the projected PNV over 2071-2100 would have less forest and more steppe because of drier climate. Subsequently, 25.3-55.0% of the observed forests and 79.3-91.9% of the observed grasslands in 2010 can be kept over 2071-2100, and the rest of the existing forested area and grassland were expected to be more suitable for steppes and forests, respectively. To meet the request of China's Grain for Green Project, 60.9-84.8% of the existing steep farmland could be converted to grassland and the other for forest. Our results highlight the importance in adjusting the existing vegetation pattern to adapt to climate change. The research approach is extendable and provides a framework to evaluate the sustainability of the existing land use pattern under future climate. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Appendix 2: Risk-based framework and risk case studies. Risk-based framework for evaluating changes in response thresholds and vulnerabilities.

    Treesearch

    Dennis S. Ojima; Louis R. Iverson; Brent L. Sohngen

    2012-01-01

    Alaskan forests cover one-third of the state’s 52 million ha of land (Parson et al. 2001), and are regionally and globally significant. Ninety percent of Alaskan forests are classified as boreal, representing 4 percent of the world’s boreal forests, and are located throughout interior and south-central Alaska (fig. A1-1). The remaining 10 percent of Alaskan forests are...

  8. Spatio-temporal analysis on land transformation in a forested tropical landscape in Jambi Province, Sumatra

    NASA Astrophysics Data System (ADS)

    Melati, Dian N.; Nengah Surati Jaya, I.; Pérez-Cruzado, César; Zuhdi, Muhammad; Fehrmann, Lutz; Magdon, Paul; Kleinn, Christoph

    2015-04-01

    Land use/land cover (LULC) in forested tropical landscapes is very dynamically developing. In particular, the pace of forest conversion in the tropics is a global concern as it directly impacts the global carbon cycle and biodiversity conservation. Expansion of agriculture is known to be among the major drivers of forest loss especially in the tropics. This is also the case in Jambi Province, Sumatra, Indonesia where it is the mainly expansion of tree crops that triggers deforestation: oil palm and rubber trees. Another transformation system in Jambi is the one from natural forest into jungle rubber, which is an agroforestry system where a certain density of forest trees accompanies the rubber tree crop, also for production of wood and non-wood forest products. The spatial distribution and the dynamics of these transformation systems and of the remaining forests are essential information for example for further research on ecosystem services and on the drivers of land transformation. In order to study land transformation, maps from the years 1990, 2000, 2011, and 2013 were utilized, derived from visual interpretation of Landsat images. From these maps, we analyze the land use/land cover change (LULCC) in the study region. It is found that secondary dryland forest (on mineral soils) and secondary swamp forest have been transformed largely into (temporary) shrub land, plantation forests, mixed dryland agriculture, bare lands and estate crops where the latter include the oil palm and rubber plantations. In addition, we present some analyses of the spatial pattern of land transformation to better understand the process of LULC fragmentation within the studied periods. Furthermore, the driving forces are analyzed.

  9. Optimizing classification performance in an object-based very-high-resolution land use-land cover urban application

    NASA Astrophysics Data System (ADS)

    Georganos, Stefanos; Grippa, Tais; Vanhuysse, Sabine; Lennert, Moritz; Shimoni, Michal; Wolff, Eléonore

    2017-10-01

    This study evaluates the impact of three Feature Selection (FS) algorithms in an Object Based Image Analysis (OBIA) framework for Very-High-Resolution (VHR) Land Use-Land Cover (LULC) classification. The three selected FS algorithms, Correlation Based Selection (CFS), Mean Decrease in Accuracy (MDA) and Random Forest (RF) based Recursive Feature Elimination (RFE), were tested on Support Vector Machine (SVM), K-Nearest Neighbor, and Random Forest (RF) classifiers. The results demonstrate that the accuracy of SVM and KNN classifiers are the most sensitive to FS. The RF appeared to be more robust to high dimensionality, although a significant increase in accuracy was found by using the RFE method. In terms of classification accuracy, SVM performed the best using FS, followed by RF and KNN. Finally, only a small number of features is needed to achieve the highest performance using each classifier. This study emphasizes the benefits of rigorous FS for maximizing performance, as well as for minimizing model complexity and interpretation.

  10. Regional differences of urbanization in the conterminous U.S. on upland forest land cover, 1973-2011

    USGS Publications Warehouse

    Auch, Roger F.; Drummond, Mark A.; Xian, George Z.; Sayler, Kristi L.; Acevedo, William; Taylor, Janis

    2016-01-01

    In this U.S. Geological Survey study of forest land cover across the conterminous U.S. (CONUS), specific proportions and rates of forest conversion to developed (urban) land were assessed on an ecoregional basis. The study period was divided into six time intervals between 1973 and 2011. Forest land cover was the source of 40% or more of the new urban land in 35 of the 84 ecoregions located within the CONUS. In 11 of these ecoregions this threshold exceeded in every time interval. When the percent of change, forest to urban, was compared to the percent of forest in each ecoregion, 58 ecoregions had a greater percent of change and, in six of those, change occurred in every time interval. Annual rates of forest to urban land cover change of 0.2% or higher occurred in 12 ecoregions at least once and in one ecoregion in all intervals. There were three ecoregions where the above conditions were met for nearly every time interval. Even though only a small number of the ecoregions were heavily impacted by forest loss to urban development within the CONUS, the ecosystem services provided by undeveloped forest land cover need to be quantified more completely to better inform future regional land management.

  11. The forest-land owners of West Virginia

    Treesearch

    Thomas W. Birch; Neal P. Kingsley

    1978-01-01

    There are an estimated 207,500 owners of private commercial forest land in West Virginia. They own an average of 49.8 acres each. However, fewer than 500 owners own 30 percent of the private commercial forest land. Corporations hold 25 percent of the privately owned commercial forest land in the State. Seventy-seven percent of the owners intend to harvest timber from...

  12. Forest-land clearing and wood recovery in Maryland

    Treesearch

    James T. Bones

    1980-01-01

    Changing land use often results in removal of the existing forest cover. During a resurvey of Maryland's timber resources, a study was conducted to measure the losses of wood fiber attributable to forest-land clearing. An estimated 107 million cubic feet of growing stock were destroyed on 164,000 acres of commercial forest land cleared between 1961 and 1972. For...

  13. Carbon benefits from protected areas in the conterminous United States

    Treesearch

    Daolan Zheng; Linda S. Heath; Mark J. Ducey

    2013-01-01

    Conversion of forests to other land cover or land use releases the carbon stored in the forests and reduces carbon sequestration potential of the land. The rate of forest conversion could be reduced by establishing protected areas for biological diversity and other conservation goals. The purpose of this study is to quantify the efficiency and potential of forest land...

  14. Integration of Remote Sensing Products with Ground-Based Measurements to Understand the Dynamics of Nepal's Forests and Plantation Sites

    NASA Astrophysics Data System (ADS)

    Gilani, H.; Jain, A. K.

    2016-12-01

    This study assembles information from three sources - remote sensing, terrestrial photography and ground-based inventory data, to understand the dynamics of Nepal's tropical and sub-tropical forests and plantation sites for the period 1990-2015. Our study focuses on following three specific district areas, which have conserved forests through social and agroforestry management practices: 1. Dolakha district: This site has been selected to study the impact of community-based forest management on land cover change using repeat photography and satellite imagery, in combination with interviews with community members. The study time period is during the period 1990-2010. We determined that satellite data with ground photographs can provide transparency for long term monitoring. The initial results also suggests that community-based forest management program in the mid-hills of Nepal was successful. 2. Chitwan district: Here we use high resolution remote sensing data and optimized community field inventories to evaluate potential application and operational feasibility of community level REDD+ measuring, reporting and verification (MRV) systems. The study uses temporal dynamics of land cover transitions, tree canopy size classes and biomass over a Kayar khola watershed REDD+ study area with community forest to evaluate satellite Image segmentation for land cover, linear regression model for above ground biomass (AGB), and estimation and monitoring field data for tree crowns and AGB. We study three specific years 2002, 2009, 2012. Using integration of WorldView-2 and airborne LiDAR data for tree species level. 3. Nuwakot district: This district was selected to study the impact of establishment of tree plantation on total barren/fallow. Over the last 40 year, this area has went through a drastic changes, from barren land to forest area with tree species consisting of Dalbergia sissoo, Leucaena leucocephala, Michelia champaca, etc. In 1994, this district area was registered and established to grow and process high quality trees shaded of Arabica coffee beans. Here we use temporal satellite images and repeat terrestrial and aerial photographs, along with plot level biomass to show impact of this positive transformation of the landscape on above and below ground carbon masses. The study time period is 1990-2015.

  15. Simulating forest landscape disturbances as coupled human and natural systems

    USGS Publications Warehouse

    Wimberly, Michael; Sohl, Terry L.; Liu, Zhihua; Lamsal, Aashis

    2015-01-01

    Anthropogenic disturbances resulting from human land use affect forest landscapes over a range of spatial and temporal scales, with diverse influences on vegetation patterns and dynamics. These processes fall within the scope of the coupled human and natural systems (CHANS) concept, which has emerged as an important framework for understanding the reciprocal interactions and feedbacks that connect human activities and ecosystem responses. Spatial simulation modeling of forest landscape change is an important technique for exploring the dynamics of CHANS over large areas and long time periods. Landscape models for simulating interactions between human activities and forest landscape dynamics can be grouped into two main categories. Forest landscape models (FLMs) focus on landscapes where forests are the dominant land cover and simulate succession and natural disturbances along with forest management activities. In contrast, land change models (LCMs) simulate mosaics of different land cover and land use classes that include forests in addition to other land uses such as developed areas and agricultural lands. There are also several examples of coupled models that combine elements of FLMs and LCMs. These integrated models are particularly useful for simulating human–natural interactions in landscapes where human settlement and agriculture are expanding into forested areas. Despite important differences in spatial scale and disciplinary scope, FLMs and LCMs have many commonalities in conceptual design and technical implementation that can facilitate continued integration. The ultimate goal will be to implement forest landscape disturbance modeling in a CHANS framework that recognizes the contextual effects of regional land use and other human activities on the forest ecosystem while capturing the reciprocal influences of forests and their disturbances on the broader land use mosaic.

  16. Implementing ecosystem management in public agencies: lessons from the U.S. Bureau of Land Management and the Forest Service.

    PubMed

    Koontz, Tomas M; Bodine, Jennifer

    2008-02-01

    Ecosystem management was formally adopted over a decade ago by many U.S. natural resource agencies, including the Forest Service and the Bureau of Land Management. This approach calls for management based on stakeholder collaboration; interagency cooperation; integration of scientific, social, and economic information; preservation of ecological processes; and adaptive management. Results of previous studies indicate differences in the extent to which particular components of ecosystem management would be implemented within the U.S. Forest Service and the Bureau of Land Management and suggest a number of barriers thought to impede implementation. Drawing on survey and interview data from agency personnel and stakeholders, we compared levels of ecosystem-management implementation in the Forest Service and Bureau of Land Management and identified the most important barriers to implementation. Agency personnel perceived similarly high levels of implementation on many ecosystem-management components, whereas stakeholders perceived lower levels. Agencies were most challenged by implementation of preservation of ecological processes, adaptive management, and integration of social and economic information, whereas the most significant barriers to implementation were political, cultural, and legal.

  17. Comparison of Ant Community Diversity and Functional Group Composition Associated to Land Use Change in a Seasonally Dry Oak Forest.

    PubMed

    Cuautle, M; Vergara, C H; Badano, E I

    2016-04-01

    Ants have been used to assess land use conversion, because they reflect environmental change, and their response to these changes have been useful in the identification of bioindicators. We evaluated ant diversity and composition associated to different land use change in a temperate forest (above 2000 m asl) in Mexico. The study was carried out in "Flor del Bosque" Park a vegetation mosaic of native Oak Forests and introduced Eucalyptus and grasslands. Species richness, dominance and diversity rarefaction curves, based on ant morphospecies and functional groups, were constructed and compared among the three vegetation types, for the rainy and the dry seasons of 2008-2009. Jaccard and Sorensen incidence-based indices were calculated to obtain similarity values among all the habitats. The Oak Forest was a rich dominant community, both in species and functional groups; the Eucalyptus plantation was diverse with low dominance. The most seasonality habitat was the grassland, with low species and high functional group diversity during the dry seasons, but the reverse pattern during the wet season. The Oak Forest was more similar to the Eucalyptus plantation than to the grassland, particularly during the dry season. Oak Forests are dominated by Cold Climate Specialists, specifically Prenolepis imparis (Say). The Eucalyptus and the grassland are characterized by generalized Myrmicinae, as Pheidole spp. and Monomorium ebenium (Forel). The conservation of the native Oak Forest is primordial for the maintenance of Cold Climate Specialist ant communities. The microclimatic conditions in this forest, probably, prevented the invasion by opportunistic species.

  18. 36 CFR 251.53 - Authorities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... use authorizations for National Forest System land under the authorities cited and for the types of... oil or gas products, where no Federal land besides National Forest System lands is required, and permits for the temporary use of additional National Forest System lands necessary for construction...

  19. 36 CFR 251.53 - Authorities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... use authorizations for National Forest System land under the authorities cited and for the types of... oil or gas products, where no Federal land besides National Forest System lands is required, and permits for the temporary use of additional National Forest System lands necessary for construction...

  20. 36 CFR 251.53 - Authorities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... use authorizations for National Forest System land under the authorities cited and for the types of... oil or gas products, where no Federal land besides National Forest System lands is required, and permits for the temporary use of additional National Forest System lands necessary for construction...

  1. 36 CFR 251.53 - Authorities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... use authorizations for National Forest System land under the authorities cited and for the types of... oil or gas products, where no Federal land besides National Forest System lands is required, and permits for the temporary use of additional National Forest System lands necessary for construction...

  2. Forest Resources of East Oklahoma, 2008

    Treesearch

    Richard A. Harper; Tony G. Johnson

    2012-01-01

    The Forest Inventory and Analysis Program conducted the seventh survey of east Oklahoma forests. This was the establishment of the annual plot methodology and closeout of the prism remeasurement plots. Forest land area remained stable at 5.7 million acres and covered almost 57 percent of the land area. About 5.1 million acres of forest land was considered timberland...

  3. Private forest owners of the Central Hardwood Forest

    Treesearch

    Thomas W. Birch

    1997-01-01

    A recently completed survey of woodland owners provides insight into the owners of private forest lands in the Central Hardwood Region. There is increasing parcelization of forested lands and an increase in the numbers of nonindustrial private forest-land owners. Over half of the private owners have harvested timber from their holdings at some time in the past, they...

  4. Characterizing Virginia's Private Forest Owners and Their Forest Lands

    Treesearch

    Thomas W. Birch; Sandra S. Hodge; Michael T. Thompson

    1998-01-01

    A recently completed forest inventory and two woodland owner surveys have given us insight about the owners of private forest lands in Virginia. There is increasing parcelization of forested lands and an increase in the number of nonindustrial private (NIPF) landowners in Virginia. More than half of the private owners have harvested timber from their holdings at some...

  5. Characterizing Virginia's private forest owners and their forest lands.

    Treesearch

    Thomas W. Birch; Sandra S. Hodge; Michael T. Thompson

    1998-01-01

    A recently completed forest inventory and two woodland owner surveys have given us insight about the owners of private forest lands in Virginia. There is increasing parcelization of forested lands and an increase in the number of nonindustrial private (NIPF) landowners in Virginia. More than half of the private owners have harvested timber from their holdings at some...

  6. Iowa's forest resources, 2005

    Treesearch

    Susan J. Crocker; Gary J. Brand; Aron Flickinger

    2007-01-01

    Report presents Iowa's annual inventory results for 2005. Estimates show that Iowa has more than 2.8 million acres of forest land. Total live-tree volume on forest land is 4.0 billion cubic feet. Ninety-eight percent of forest land is classified as timberland. Oak/hickory is the predominant forest-type group, representing 54 percent of timberland area. Growing-...

  7. Effects of parcelization and land divestiture on forest sustainability in simulated forest landscapes

    Treesearch

    Eric J. Gustafson; Craig Loehle

    2006-01-01

    Ownership parcelization of forest land and divestiture of industrial forest land is increasing throughout the U.S. This may affect (positively or negatively) the ability of forested landscapes to produce benefits that society values, such as fiber, biodiversity and recreation. We used a timber harvest simulator and neutral model landscapes to systematically study how...

  8. The forest-land owners of southern New England

    Treesearch

    Neal P. Kingsley

    1976-01-01

    A statistical-analytical report of a mail canvass of the owners of privately owned commercial forest land in the three Southern New England States-Connecticut, Massachusetts, and Rhode Island. The study was conducted in conjunction with the second forest survey of Southern New England by the USDA Forest Service. Trends in forest-land ownership and the attitudes and...

  9. Wisconsin's forests, 2004

    Treesearch

    Charles H. (Hobie) Perry; Vern A. Everson; Ian K. Brown; Jane Cummings-Carlson; Sally E. Dahir; Edward A. Jepsen; Joe Kovach; Michael D. Labissoniere; Terry R. Mace; Eunice A. Padley; Richard B. Rideout; Brett J. Butler; Susan J. Crocker; Greg C. Liknes; Randall S. Morin; Mark D. Nelson; Barry T. (Ty) Wilson; Christopher W. Woodall

    2008-01-01

    The first full, annualized inventory of Wisconsin's forests was completed in 2004 after 6,478 forested plots were visited. There are more than 16.0 million acres of forest land in the Wisconsin, nearly half of the State's land area; 15.8 million acres meet the definition of timberland. The total area of both forest land and timberland continues an upward...

  10. Using the Landsat data archive to assess long-term regional forest dynamics assessment in Eastern Europe, 1985-2012

    NASA Astrophysics Data System (ADS)

    Turubanova, S.; Potapov, P.; Krylov, A.; Tyukavina, A.; McCarty, J. L.; Radeloff, V. C.; Hansen, M. C.

    2015-04-01

    Dramatic political and economic changes in Eastern European countries following the dissolution of the "Eastern Bloc" and the collapse of the Soviet Union greatly affected land-cover and land-use trends. In particular, changes in forest cover dynamics may be attributed to the collapse of the planned economy, agricultural land abandonment, economy liberalization, and market conditions. However, changes in forest cover are hard to quantify given inconsistent forest statistics collected by different countries over the last 30 years. The objective of our research was to consistently quantify forest cover change across Eastern Europe from 1985 until 2012 using the complete Landsat data archive. We developed an algorithm for processing imagery from different Landsat platforms and sensors (TM and ETM+), aggregating these images into a common set of multi-temporal metrics, and mapping annual gross forest cover loss and decadal gross forest cover gain. Our results show that forest cover area increased from 1985 to 2012 by 4.7% across the region. Average annual gross forest cover loss was 0.41% of total forest cover area, with a statistically significant increase from 1985 to 2012. Most forest disturbance recovered fast, with only 12% of the areas of forest loss prior to 1995 not being recovered by 2012. Timber harvesting was the main cause of forest loss. Logging area declined after the collapse of socialism in the late 1980s, increased in the early 2000s, and decreased in most countries after 2007 due to the global economic crisis. By 2012, Central and Baltic Eastern European countries showed higher logging rates compared to their Western neighbours. Comparing our results with official forest cover and change estimates showed agreement in total forest area for year 2010, but with substantial disagreement between Landsat-based and official net forest cover area change. Landsat-based logging areas exhibit strong relationship with reported roundwood production at national scale. Our results allow national and sub-national level analysis of forest cover extent, change, and logging intensity and are available on-line as a baseline for further analyses of forest dynamics and its drivers.

  11. Expansion of oil palm and other cash crops causes an increase of the land surface temperature in the Jambi province in Indonesia

    NASA Astrophysics Data System (ADS)

    Sabajo, Clifton R.; le Maire, Guerric; June, Tania; Meijide, Ana; Roupsard, Olivier; Knohl, Alexander

    2017-10-01

    Indonesia is currently one of the regions with the highest transformation rate of land surface worldwide related to the expansion of oil palm plantations and other cash crops replacing forests on large scales. Land cover changes, which modify land surface properties, have a direct effect on the land surface temperature (LST), a key driver for many ecological functions. Despite the large historic land transformation in Indonesia toward oil palm and other cash crops and governmental plans for future expansion, this is the first study so far to quantify the impacts of land transformation on the LST in Indonesia. We analyze LST from the thermal band of a Landsat image and produce a high-resolution surface temperature map (30 m) for the lowlands of the Jambi province in Sumatra (Indonesia), a region which suffered large land transformation towards oil palm and other cash crops over the past decades. The comparison of LST, albedo, normalized differenced vegetation index (NDVI) and evapotranspiration (ET) between seven different land cover types (forest, urban areas, clear-cut land, young and mature oil palm plantations, acacia and rubber plantations) shows that forests have lower surface temperatures than the other land cover types, indicating a local warming effect after forest conversion. LST differences were up to 10.1 ± 2.6 °C (mean ± SD) between forest and clear-cut land. The differences in surface temperatures are explained by an evaporative cooling effect, which offsets the albedo warming effect. Our analysis of the LST trend of the past 16 years based on MODIS data shows that the average daytime surface temperature in the Jambi province increased by 1.05 °C, which followed the trend of observed land cover changes and exceeded the effects of climate warming. This study provides evidence that the expansion of oil palm plantations and other cash crops leads to changes in biophysical variables, warming the land surface and thus enhancing the increase of the air temperature because of climate change.

  12. Deterioration of soil fertility by land use changes in South Sumatra, Indonesia: from 1970 to 1990

    NASA Astrophysics Data System (ADS)

    Lumbanraja, Jamalam; Syam, Tamaluddin; Nishide, Hiroyo; Kabul Mahi, Ali; Utomo, Muhajir; Sarno; Kimura, Makoto

    1998-10-01

    We monitored the land use changes in a hilly area of West Lampung, South Sumatra, Indonesia, from 1970 to 1990. The main data sources were the land use maps produced in 1970, 1978, 1984 and 1990 covering the area of 27 km×27 km. Transmigration and the resultant effect of increased population were the major driving forces in land use changes. Fifty-seven per cent of the study area was covered with primary forests in 1970, but only 13% in 1990. Areas under plantations, which were absent in 1970, increased to 60% in 1990. In addition, the change from monoculture plantations (mostly coffee plantation) to mixed plantations was noticeable from 1984 to 1990. Total upland areas including upland areas under shifting cultivation and upland fields with crops and vegetables decreased from 21% in 1970 to 0·1% in 1990. Soil chemical properties (total organic C, total N, available P, total P, exchangeable cations, cation exchangeable capacity (CEC), etc.) were analysed for lands under different land use forms after deforestation in the study area. Soil samples (surface layers, 0-20 cm, and subsurface layers, 20-40 cm) were collected from three different locations, each comprised of four different land use systems: i.e. primary forests, secondary forests, coffee plantations and cultivated lands. The contents of total organic C, total N, available P, total P, exchangeable cations and CEC decreased significantly with land use change from primary forests to the other land use forms. Cultivated lands exhibited the lowest values. Although less remarkable than in the surface layers, the amounts of total organic C, total N, total P, exchangeable cations and CEC were also decreased by forest clearing in the subsurface layers.Based on the land use changes from 1978 in the study area and the deterioration of soil chemical properties by forest clearing, total decreases in the amounts of nutrients in the surface and subsurface layers were estimated. The land use changes were estimated to have decreased the total amounts of total organic C, total N, available P, total P, exchangeable cations and CEC by 2-9% in 1984 and by 2-15% in 1990 in the surface layers, and by 1-6%% in 1984 and by 2-9% in 1990 in the subsurface layers from the levels in 1978, respectively.

  13. Integrating a process-based ecosystem model with Landsat imagery to assess impacts of forest disturbance on terrestrial carbon dynamics: Case studies in Alabama and Mississippi

    DOE PAGES

    Chen, Guangsheng; Tian, Hanqin; Huang, Chengquan; ...

    2013-07-01

    Forest ecosystems in the southern United States are dramatically altered by three major disturbances: timber harvesting, hurricane, and permanent land conversion. Understanding and quantifying effects of disturbance on forest carbon, nitrogen, and water cycles is critical for sustainable forest management in this region. In this study, we introduced a process-based ecosystem model for simulating forest disturbance impacts on ecosystem carbon, nitrogen, and water cycles. Based on forest mortality data classified from Landsat TM/ETM + images, this model was then applied to estimate changes in carbon storage using Mississippi and Alabama as a case study. Mean annual forest mortality rate formore » these states was 2.37%. Due to frequent disturbance, over 50% of the forest land in the study region was less than 30 years old. Forest disturbance events caused a large carbon source (138.92 Tg C, 6.04 Tg C yr -1; 1 Tg = 10 12 g) for both states during 1984–2007, accounting for 2.89% (4.81% if disregard carbon storage changes in wood products) of the total forest carbon storage in this region. Large decreases and slow recovery of forest biomass were the main causes for carbon release. Forest disturbance could result in a carbon sink in few areas if wood product carbon was considered as a local carbon pool, indicating the importance of accounting for wood product carbon when assessing forest disturbance effects. The legacy effects of forest disturbance on ecosystem carbon storage could last over 50 years. Lastly, this study implies that understanding forest disturbance impacts on carbon dynamics is of critical importance for assessing regional carbon budgets.« less

  14. Quantifying pollen-vegetation relationships to reconstruct ancient forests using 19th-century forest composition and pollen data

    USGS Publications Warehouse

    Dawson, Andria; Paciorek, Christopher J.; McLachlan, Jason S.; Goring, Simon; Williams, John W.; Jackson, Stephen T.

    2016-01-01

    Mitigation of climate change and adaptation to its effects relies partly on how effectively land-atmosphere interactions can be quantified. Quantifying composition of past forest ecosystems can help understand processes governing forest dynamics in a changing world. Fossil pollen data provide information about past forest composition, but rigorous interpretation requires development of pollen-vegetation models (PVMs) that account for interspecific differences in pollen production and dispersal. Widespread and intensified land-use over the 19th and 20th centuries may have altered pollen-vegetation relationships. Here we use STEPPS, a Bayesian hierarchical spatial PVM, to estimate key process parameters and associated uncertainties in the pollen-vegetation relationship. We apply alternate dispersal kernels, and calibrate STEPPS using a newly developed Euro-American settlement-era calibration data set constructed from Public Land Survey data and fossil pollen samples matched to the settlement-era using expert elicitation. Models based on the inverse power-law dispersal kernel outperformed those based on the Gaussian dispersal kernel, indicating that pollen dispersal kernels are fat tailed. Pine and birch have the highest pollen productivities. Pollen productivity and dispersal estimates are generally consistent with previous understanding from modern data sets, although source area estimates are larger. Tests of model predictions demonstrate the ability of STEPPS to predict regional compositional patterns.

  15. Linear Subpixel Learning Algorithm for Land Cover Classification from WELD using High Performance Computing

    NASA Technical Reports Server (NTRS)

    Kumar, Uttam; Nemani, Ramakrishna R.; Ganguly, Sangram; Kalia, Subodh; Michaelis, Andrew

    2017-01-01

    In this work, we use a Fully Constrained Least Squares Subpixel Learning Algorithm to unmix global WELD (Web Enabled Landsat Data) to obtain fractions or abundances of substrate (S), vegetation (V) and dark objects (D) classes. Because of the sheer nature of data and compute needs, we leveraged the NASA Earth Exchange (NEX) high performance computing architecture to optimize and scale our algorithm for large-scale processing. Subsequently, the S-V-D abundance maps were characterized into 4 classes namely, forest, farmland, water and urban areas (with NPP-VIIRS-national polar orbiting partnership visible infrared imaging radiometer suite nighttime lights data) over California, USA using Random Forest classifier. Validation of these land cover maps with NLCD (National Land Cover Database) 2011 products and NAFD (North American Forest Dynamics) static forest cover maps showed that an overall classification accuracy of over 91 percent was achieved, which is a 6 percent improvement in unmixing based classification relative to per-pixel-based classification. As such, abundance maps continue to offer an useful alternative to high-spatial resolution data derived classification maps for forest inventory analysis, multi-class mapping for eco-climatic models and applications, fast multi-temporal trend analysis and for societal and policy-relevant applications needed at the watershed scale.

  16. Linear Subpixel Learning Algorithm for Land Cover Classification from WELD using High Performance Computing

    NASA Astrophysics Data System (ADS)

    Ganguly, S.; Kumar, U.; Nemani, R. R.; Kalia, S.; Michaelis, A.

    2017-12-01

    In this work, we use a Fully Constrained Least Squares Subpixel Learning Algorithm to unmix global WELD (Web Enabled Landsat Data) to obtain fractions or abundances of substrate (S), vegetation (V) and dark objects (D) classes. Because of the sheer nature of data and compute needs, we leveraged the NASA Earth Exchange (NEX) high performance computing architecture to optimize and scale our algorithm for large-scale processing. Subsequently, the S-V-D abundance maps were characterized into 4 classes namely, forest, farmland, water and urban areas (with NPP-VIIRS - national polar orbiting partnership visible infrared imaging radiometer suite nighttime lights data) over California, USA using Random Forest classifier. Validation of these land cover maps with NLCD (National Land Cover Database) 2011 products and NAFD (North American Forest Dynamics) static forest cover maps showed that an overall classification accuracy of over 91% was achieved, which is a 6% improvement in unmixing based classification relative to per-pixel based classification. As such, abundance maps continue to offer an useful alternative to high-spatial resolution data derived classification maps for forest inventory analysis, multi-class mapping for eco-climatic models and applications, fast multi-temporal trend analysis and for societal and policy-relevant applications needed at the watershed scale.

  17. Quantifying pollen-vegetation relationships to reconstruct ancient forests using 19th-century forest composition and pollen data

    NASA Astrophysics Data System (ADS)

    Dawson, Andria; Paciorek, Christopher J.; McLachlan, Jason S.; Goring, Simon; Williams, John W.; Jackson, Stephen T.

    2016-04-01

    Mitigation of climate change and adaptation to its effects relies partly on how effectively land-atmosphere interactions can be quantified. Quantifying composition of past forest ecosystems can help understand processes governing forest dynamics in a changing world. Fossil pollen data provide information about past forest composition, but rigorous interpretation requires development of pollen-vegetation models (PVMs) that account for interspecific differences in pollen production and dispersal. Widespread and intensified land-use over the 19th and 20th centuries may have altered pollen-vegetation relationships. Here we use STEPPS, a Bayesian hierarchical spatial PVM, to estimate key process parameters and associated uncertainties in the pollen-vegetation relationship. We apply alternate dispersal kernels, and calibrate STEPPS using a newly developed Euro-American settlement-era calibration data set constructed from Public Land Survey data and fossil pollen samples matched to the settlement-era using expert elicitation. Models based on the inverse power-law dispersal kernel outperformed those based on the Gaussian dispersal kernel, indicating that pollen dispersal kernels are fat tailed. Pine and birch have the highest pollen productivities. Pollen productivity and dispersal estimates are generally consistent with previous understanding from modern data sets, although source area estimates are larger. Tests of model predictions demonstrate the ability of STEPPS to predict regional compositional patterns.

  18. Multiple pathways of commodity crop expansion in tropical forest landscapes

    NASA Astrophysics Data System (ADS)

    Meyfroidt, Patrick; Carlson, Kimberly M.; Fagan, Matthew E.; Gutiérrez-Vélez, Victor H.; Macedo, Marcia N.; Curran, Lisa M.; DeFries, Ruth S.; Dyer, George A.; Gibbs, Holly K.; Lambin, Eric F.; Morton, Douglas C.; Robiglio, Valentina

    2014-07-01

    Commodity crop expansion, for both global and domestic urban markets, follows multiple land change pathways entailing direct and indirect deforestation, and results in various social and environmental impacts. Here we compare six published case studies of rapid commodity crop expansion within forested tropical regions. Across cases, between 1.7% and 89.5% of new commodity cropland was sourced from forestlands. Four main factors controlled pathways of commodity crop expansion: (i) the availability of suitable forestland, which is determined by forest area, agroecological or accessibility constraints, and land use policies, (ii) economic and technical characteristics of agricultural systems, (iii) differences in constraints and strategies between small-scale and large-scale actors, and (iv) variable costs and benefits of forest clearing. When remaining forests were unsuitable for agriculture and/or policies restricted forest encroachment, a larger share of commodity crop expansion occurred by conversion of existing agricultural lands, and land use displacement was smaller. Expansion strategies of large-scale actors emerge from context-specific balances between the search for suitable lands; transaction costs or conflicts associated with expanding into forests or other state-owned lands versus smallholder lands; net benefits of forest clearing; and greater access to infrastructure in already-cleared lands. We propose five hypotheses to be tested in further studies: (i) land availability mediates expansion pathways and the likelihood that land use is displaced to distant, rather than to local places; (ii) use of already-cleared lands is favored when commodity crops require access to infrastructure; (iii) in proportion to total agricultural expansion, large-scale actors generate more clearing of mature forests than smallholders; (iv) property rights and land tenure security influence the actors participating in commodity crop expansion, the form of land use displacement, and livelihood outcomes; (v) intensive commodity crops may fail to spare land when inducing displacement. We conclude that understanding pathways of commodity crop expansion is essential to improve land use governance.

  19. Airborne laser-guided imaging spectroscopy to map forest trait diversity and guide conservation.

    PubMed

    Asner, G P; Martin, R E; Knapp, D E; Tupayachi, R; Anderson, C B; Sinca, F; Vaughn, N R; Llactayo, W

    2017-01-27

    Functional biogeography may bridge a gap between field-based biodiversity information and satellite-based Earth system studies, thereby supporting conservation plans to protect more species and their contributions to ecosystem functioning. We used airborne laser-guided imaging spectroscopy with environmental modeling to derive large-scale, multivariate forest canopy functional trait maps of the Peruvian Andes-to-Amazon biodiversity hotspot. Seven mapped canopy traits revealed functional variation in a geospatial pattern explained by geology, topography, hydrology, and climate. Clustering of canopy traits yielded a map of forest beta functional diversity for land-use analysis. Up to 53% of each mapped, functionally distinct forest presents an opportunity for new conservation action. Mapping functional diversity advances our understanding of the biosphere to conserve more biodiversity in the face of land use and climate change. Copyright © 2017, American Association for the Advancement of Science.

  20. Culture and resource management: factors affecting forests

    Treesearch

    Marjorie C. Falanruw

    1992-01-01

    Efforts to manage Pacific Island forest resources are more likely to succeed if they are based on an understanding of the cultural framework of land use activities. This paper explores the relationship between agricultural systems, population density, culture, and use of forest resources on the islands of Yap. Agricultural intensification is related to population...

  1. A Bayesian approach to multisource forest area estimation

    Treesearch

    Andrew O. Finley

    2007-01-01

    In efforts such as land use change monitoring, carbon budgeting, and forecasting ecological conditions and timber supply, demand is increasing for regional and national data layers depicting forest cover. These data layers must permit small area estimates of forest and, most importantly, provide associated error estimates. This paper presents a model-based approach for...

  2. Uncertainty in countrywide forest biomass estimates.

    Treesearch

    C.E. Peterson; D. Turner

    1994-01-01

    Country-wide estimates of forest biomass are the major driver for estimating and understanding carbon pools and flux, a critical component of global change research. Important determinants in making these estimates include the areal extent of forested lands and their associated biomass. Estimates for these parameters may be derived from surface-based data, photo...

  3. Conceptualizing and measuring demand for recreation on national forests: a review and synthesis.

    Treesearch

    Brian E. Garber-Yonts

    2005-01-01

    This analysis examines the problem of measuring demand for recreation on national forests and other public lands. Current measures of recreation demand in Forest Service resource assessments and planning emphasize population-level participation rates and activity-based economic values for visitor days. Alternative measures and definitions of recreation demand are...

  4. Annual forest inventory estimates based on the moving average

    Treesearch

    Francis A. Roesch; James R. Steinman; Michael T. Thompson

    2002-01-01

    Three interpretations of the simple moving average estimator, as applied to the USDA Forest Service's annual forest inventory design, are presented. A corresponding approach to composite estimation over arbitrarily defined land areas and time intervals is given for each interpretation, under the assumption that the investigator is armed with only the spatial/...

  5. Effects of changing forest land definitions on forest inventory on the West Coast, USA

    Treesearch

    David L. Azuma; Andrew Gray

    2014-01-01

    A key function of forest inventory is to detect changes in the area of forest land over time, yet different definitions of forest land are used in different regions of the world. Changes in the definition of forest intended to improve international consistency can affect the ability to quantify true changes over time. The objective of this study was to evaluate the...

  6. Threats to private forest lands in the U.S.A.: a forests on the edge study

    Treesearch

    Mark H. Hatfield; Ronald E. McRoberts; Dacia M. Meneguzzo; Sara Comas

    2010-01-01

    The Forests on the Edge project, sponsored by the USDA Forest Service, uses geographic information systems to construct and analyze maps depicting threats to the contributions of America’s private forest lands. For this study, watersheds across the conterminous United States are evaluated with respect to the amount of their private forest land. Watersheds with at least...

  7. Roles for agroforestry in hardwood regeneration and natural-stand management

    Treesearch

    H. E. ' Gene' Garrett

    2003-01-01

    A convincing case can be made that current land-use patterns in the Central Hardwood region reflect a significant underutilization of our land-based resources. A land-use strategy is required that would allow landowners who are interested in converting marginal crop lands to forests, or unproductive woodlots to productive woodlots, to make the change without financial...

  8. 77 FR 46107 - Notice of Intent To Prepare an Environmental Impact Statement for the Proposed Husky 1-North Dry...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-02

    ...; reduced opportunity to implement Native American rights, treaties, and land uses; changes to visual... land use authorizations on leased lands. Decisions will be based on the EIS and any recommendations the...-lease within the Caribou-Targhee National Forest. The applicable land use plans have been reviewed...

  9. Spatial-temporal eco-environmental vulnerability assessment and its influential factors based on Landsat data

    NASA Astrophysics Data System (ADS)

    Anh, N. K.; Liou, Y. A.; Ming-Hsu, L.

    2016-12-01

    Regional land use/land cover (LULC) changes lead to various changes in ecological processes and, in turn, alter regional micro-climate. To understand eco-environmental responses to LULC changes, eco-environmental evaluation is thus required with aims to identify vulnerable regions and influential factors, so that practical measures for environmental protection and management may be proposed. The Thua Thien - Hue Province has been experiencing urbanization at a rapid rate in both population and physical size. The urban land, agricultural land, and aquaculture activities have been invasively into natural space and caused eco-environment deterioration by land desertification, soil erosion, shrinking forest resources,…etc. In this study, an assessment framework that is composed by 11 variables with 9 of them constructed from Landsat time series is proposed to serve as basis to examine eco-environmental vulnerability in the Thua Thien - Hue Province in years 1989, 2003, and 2014. An eco-environmental vulnerability map is assorted into six vulnerability levels consisting of potential, slight, light, medium, heavy, and very heavy vulnerabilities. Result shows that there is an increasing trend in eco-environmental vulnerability in general with expected evolving distributions in heavy and very heavy vulnerability levels, which mainly lying on developed land, bare land, semi bare land, agricultural land, and poor and recovery forests. In contrast, there is a significant decline in potential vulnerability level. The contributing factors of an upward trend in medium, heavy, and very heavy levels include: (i) a large natural forest converted to plantation forest and agriculture land; and (ii) significant expansion of developed land leading to difference in thermal signatures in urban areas as compared with those of the surrounding areas. It is concluded that anthropogenic processes with transformation on LULC has amplified the vulnerability of eco-environment in the study area.

  10. Fire performance in traditional silvicultural and fire and fire surrogate treatments in Sierran mixed-conifer forests: a brief summary

    Treesearch

    Jason J. Moghaddas; Scott L. Stephens

    2007-01-01

    Mixed conifer forests cover 7.9 million acres of California’s total land base. Forest structure in these forests has been influenced by harvest practices and silvicultural systems implemented since the beginning of the California Gold Rush in 1849. Today, the role of fire in coniferous forests, both in shaping past stand structure and its ability to shape future...

  11. Modern fire regime resembles historical fire regime in a ponderosa pine forest on Native American land

    Treesearch

    Amanda B. Stan; Peter Z. Fule; Kathryn B. Ireland; Jamie S. Sanderlin

    2014-01-01

    Forests on tribal lands in the western United States have seen the return of low-intensity surface fires for several decades longer than forests on non-tribal lands. We examined the surface fire regime in a ponderosa pinedominated (Pinus ponderosa) forest on the Hualapai tribal lands in the south-western United States. Using fire-scarred trees, we inferred temporal (...

  12. Changes in development near public forest lands in Oregon and Washington, 1974–2005: implications for management

    Treesearch

    David Azuma; Joel Thompson; Dale Weyermann

    2013-01-01

    Development owing to population increases over the last 30 years has greatly affected forested lands in the United States. To assess and compare increases in development, we counted changes in the number of structures on a systematic grid of photointerpreted points around public forest land in Washington and Oregon. Areas bordering public forest land are showing...

  13. A United States view on changes in land use and land values affecting sustainable forest management.

    Treesearch

    R.J. Alig

    2007-01-01

    With increasing opportunity costs of keeping land in forests because of increasing values for other land uses, such as for developed uses, forest ownership may become less attractive for some landowners and the return on investment less viable for both private and public landowners. This raises the question of what will become of the forests and the resources the...

  14. Where will they all live? The enduring puzzle of land use change.

    Treesearch

    Sally Duncan

    2000-01-01

    A concern among land managers is land use. Who is using the land? What is it being used for? Is the amount of farm and forest land lost to development really increasing? Research forester and economist Jeff Kline and research forester Ralph Alig at the PNW Research Station are conducting studies to answer questions about land development in western Oregon and...

  15. Integration of strategic inventory and monitoring programs for the forest lands, wood lands, range lands and agricultural lands of the United States

    Treesearch

    Raymond L. Czaplewski

    1999-01-01

    The United States Department of Agriculture uses the Forest Inventory and Analysis (FIA) program to monitor the nation's forests and wood lands, and the National Resources Inventory (NRI) program to monitor the nation's agricultural and range lands. Although their measurement methods and sampling frames are very different, both programs are developing annual...

  16. The Forest Types and Ages Cleared for Land Development in Puerto Rico.

    Treesearch

    Todd Kennaway; E. H. Helmer

    2007-01-01

    On the Caribbean island of Puerto Rico, forest, urban/built-up, and pasture lands have replaced most formerly cultivated lands. The extent and age distribution of each forest type that undergoes land development, however, is unknown. This study assembles a time series of four land cover maps for Puerto Rico. The time series includes two digitized paper maps of land...

  17. San Juan Bay Estuary watershed urban forest inventory

    Treesearch

    Thomas J. Brandeis; Francisco J. Escobedo; Christina L. Staudhammer; David J. Nowak; Wayne C. Zipperer

    2014-01-01

    We present information on the urban forests and land uses within the watershed of Puerto Rico’s 21 658-ha San Juan Bay Estuary based on urban forest inventories undertaken in 2001 and 2011. We found 2548 ha of mangrove and subtropical moist secondary forests covering 11.8 percent of the total watershed area in 2011. Red, black, and white mangroves (Rhizophora...

  18. Impact of ecological and socioeconomic determinants on the spread of tallow tree in southern forest lands

    Treesearch

    Yuan Tan; Joseph Z. Fan; Christopher M. Oswalt

    2010-01-01

    Based on USDA Forest Service Forest Inventory and Analysis (FIA) database, relationships between the presence of tallow tree and related driving variables including forest landscape metrics, stand and site conditions, as well as natural and anthropogenic disturbances were analyzed for the southern states infested by tallow trees. Of the 9,966 re-measured FIA plots in...

  19. Contribution of Near Real Time MODIS-Based Forest Disturbance Detection Products to a National Forest Threat Early Warning System

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph; Hargrove, William; Gasser, Gerald; Smoot, James; Kuper, Philip

    2011-01-01

    U.S. forests occupy approx. 751 million acres (approx. 1/3 of total land). These forests are exposed to multiple biotic and abiotic threats that collectively damage extensive acreages each year. Hazardous forest disturbances can threaten human life and property, bio-diversity and water supplies. Timely regional forest monitoring products are needed to aid forest management and decision making by the US Forest Service and its state and private partners. Daily MODIS data products provide a means to monitor regional forest disturbances on a weekly basis. In response, we began work in 2006 to develop a Near Real Time (NRT) forest monitoring capability, based on MODIS NDVI data, as part of a national forest threat early warning system (EWS)

  20. How much will afforestation of former cropland influence soil C stocks? A synthesis of paired sampling, chronosequence sampling and repeated sampling studies

    NASA Astrophysics Data System (ADS)

    Vesterdal, Lars; Hansen, K.; Stupak, I.; Don, Axel; Poeplau, C.; Leifeld, Jens; van Wesemael, Bas

    2010-05-01

    The need for documentation of land-use change effects on soil C is high on the agenda in most signatory countries to the Kyoto Protocol. Large land areas in Europe have experienced land-use change from cropland to forest since 1990 by direct afforestation as well as abandonment and regrowth of marginally productive cropland. Soil C dynamics following land-use change remain highly uncertain due to a limited number of available studies and due to influence of interacting factors such as land use history, soil type, and climate. Common approaches for estimation of potential soil C changes following land-use change are i) paired sampling of plots with a long legacy of different land uses, ii) chronosequence studies of land-use change, and lastly iii) repeated sampling of plots subject to changed land use. This paper will synthesize the quantitative effects of cropland afforestation on soil C sequestration based on all three approaches and will report on related work within Cost 639. Paired plots of forest and cropland were used to study the general differences between soil C stocks in the two land uses. At 27 sites in Denmark distributed among different regions and soil types forest floor and mineral soil were sampled in and around soil pits. Soil C stocks were higher in forest than cropland (mean difference 22 Mg C ha-1 to 1 m depth). This difference was caused solely by the presence of a forest floor in forests; mineral soil C stocks were similar (108 vs. 109 Mg C ha-1) in the two land uses regardless of soil type and the soil layers considered. The chronosequence approach was employed in the AFFOREST project for evaluation of C sequestration in biomass and soils following afforestation of cropland. Two oak (Quercus robur) and four Norway spruce (Picea abies) afforestation chronosequences (age range 1 to 90 years) were studied in Denmark, Sweden and the Netherlands. Forest floor and mineral soil (0-25 cm) C contents were as a minimum unchanged and in most cases there was net C sequestration (range 0-1.3 Mg C ha-1 yr-1). The allocation of sequestered soil C was quite different among chronosequences; forest floors consistently sequestered C (0.1-0.7 Mg C ha-1 yr-1) but there was no general pattern in mineral soil C sequestration. While the paired sampling and the chronosequence approaches both may be confounded by site factors other than the land use, repeated sampling of plots best addresses the pure land-use change effect. Repeated sampling after 18 years was done in a systematic 7x7 km grid to address soil C changes in 15 cropland plots that were converted to forest (7-22 years since afforestation). Consistent with the other two approaches, detectable soil C changes were confined to the forest floor component; forest floor C sequestration rates were 0.24 Mg C ha-1 yr-1 while no changes were detected for mineral soils. The three approaches to estimation of soil C sequestration indeed point to a common conclusion: The potential for soil C sequestration is mainly confined to the forest floor whereas notable C sequestration is less likely to occur in the mineral soil. However, more generalizable knowledge is badly needed for reporting of land-use change effects on mineral soil C pools. WG II of Cost 639 and the FP7 project GHG Europe is currently establishing a database of LUC studies. This database will be used to establish so-called Carbon Response Functions (CRF), i.e. simple models predicting the annual rate of change in soil C pools. These CRFs may serve as tools for syntheses of land-use change effects for Europe as well as for improved reporting of soil C dynamics following land-use change.

  1. Forest conservation and land development in Puerto Rico.

    Treesearch

    E.H. Helmer

    2004-01-01

    In the Caribbean island of Puerto Rico, rapid land-use changes over the past century have included recent landcover conversion to urban/built-up lands. Observations of this land development adjacent to reserves or replacing dense forest call into question how the changes relate to forests or reserved lands. Using existing maps, this study first summarizes island-wide...

  2. Michigan's forest resources in 2001

    Treesearch

    Earl C. Leatherberry; Gary J. Brand

    2003-01-01

    Results of the annual forest inventory of Michigan show an estimated 19.4 million acres of forest land in the State. The estimate of total all live tree volume on forest land is 29.8 billion cubic feet. Nearly 19 million acres of forest land in Michigan is classified as timberland. The estimagte of growing-stock volume on timberland is 27.2 billion cubic feet. All...

  3. A preview of West Virginia's forest resource

    Treesearch

    Joseph E. Barnard; Teresa M. Bowers

    1977-01-01

    Forest land occupies 75 percent of the total land area of West Virginia. Sixty percent of the forest land is classified in the oak-hickory forest type and only 6 percent in all the softwood forest types. Since 1961, growing-stock volume increased 24 percent. Yellow-poplar increased 39 percent in volume and is now the prevalent species in the State.

  4. Rehabilitation of fire-damaged forest lands in southwestern Maine

    Treesearch

    A. D. Nutting; James C. Rettie; Wayne G. Banks

    1949-01-01

    Recognizing that it can ill afford the loss of timber productivity on the large acreage of forest land burned over by the 1947 fires, the state of Maine requested assistance of the Northeastern Forest Experiment Station of the United States Forest Service in a program of research that would aid in the rehabilitation of the burned-over forest land.

  5. Georgia, 2011 - forest inventory and analysis factsheet

    Treesearch

    Richard A. Harper

    2012-01-01

    Georgia contains the largest area of forest cover in the South with 24.8 million acres, accounting for 67 percent of the State’s land area (table 1). The forest area has remained relatively stable over the last 50 years. Commercial timberland area (land available for production of forest products) comprises >98 percent of the total forest land area. The remaining...

  6. Summary and findings of the 2006 BLM Forest Lands Report

    Treesearch

    Tim Bottomley; Jim Menlove

    2009-01-01

    In 2006, the Bureau of Land Management (BLM) contracted with the Forest Service Forest Inventory and Analysis Program (FIA) to assist in the preparation of a report specific to all forest lands under the administration of the BLM. The BLM requested that the FIA provide information on the extent and general conditions of BLM- managed forests and woodlands, within...

  7. Disturbance Distance: Combining a process based ecosystem model and remote sensing data to map the vulnerability of U.S. forested ecosystems to potentially altered disturbance rates

    NASA Astrophysics Data System (ADS)

    Dolan, K. A.

    2015-12-01

    Disturbance plays a critical role in shaping the structure and function of forested ecosystems as well as the ecosystem services they provide, including but not limited to: carbon storage, biodiversity habitat, water quality and flow, and land atmosphere exchanges of energy and water. In addition, recent studies suggest that disturbance rates may increase in the future under altered climate and land use scenarios. Thus understanding how vulnerable forested ecosystems are to potential changes in disturbance rates is of high importance. This study calculated the theoretical threshold rate of disturbance for which forest ecosystems could no longer be sustained (λ*) across the Coterminous U.S. using an advanced process based ecosystem model (ED). Published rates of disturbance (λ) in 50 study sites were obtained from the North American Forest Disturbance (NAFD) program. Disturbance distance (λ* - λ) was calculated for each site by differencing the model based threshold under current climate conditions and average observed rates of disturbance over the last quarter century. Preliminary results confirm all sample forest sites have current average rates of disturbance below λ*, but there were interesting patterns in the recorded disturbance distances. In general western sites had much smaller disturbance distances, suggesting higher vulnerability to change, while eastern sites showed larger buffers. Ongoing work is being conducted to assess the vulnerability of these sites in the context of potential future changes by propagating scenarios of future climate and land-use change through the analysis.

  8. Change detection with heterogeneous data using ecoregional stratification, statistical summaries and a land allocation algorithm

    Treesearch

    Kathleen M. Bergen; Daniel G. Brown; James F. Rutherford; Eric J. Gustafson

    2005-01-01

    A ca. 1980 national-scale land-cover classification based on aerial photo interpretation was combined with 2000 AVHRR satellite imagery to derive land cover and land-cover change information for forest, urban, and agriculture categories over a seven-state region in the U.S. To derive useful land-cover change data using a heterogeneous dataset and to validate our...

  9. Recreation and protected land resources in the United States: a technical document supporting the Forest Service 2010 RPA Assessment

    Treesearch

    H. Ken Cordell; Carter J. Betz; Stanley J. Zarnoch

    2013-01-01

    This report provides an overview of the public and private land and water resources of the United States. Described is use of natural and developed land as recreation resources with an emphasis on nature-based recreation. Also described is land protection through conservation organizations and public funding programs, with an emphasis on protecting private land through...

  10. Development of Forest Drought Index and Forest Water Use Prediction in Gyeonggi Province, Korea Using High-Resolution Weather Research and Forecast Data and Localized JULES Land Surface Model

    NASA Astrophysics Data System (ADS)

    Lee, H.; Park, J.; Cho, S.; Lee, S. J.; Kim, H. S.

    2017-12-01

    Forest determines the amount of water available to low land ecosystems, which use the rest of water after evapotranspiration by forests. Substantial increase of drought, especially for seasonal drought, has occurred in Korea due to climate change, recently. To cope with this increasing crisis, it is necessary to predict the water use of forest. In our study, forest water use in the Gyeonggi Province in Korea was estimated using high-resolution (spatial and temporal) meteorological forecast data and localized Joint UK Land Environment Simulator (JULES) which is one of the widely used land surface models. The modeled estimation was used for developing forest drought index. The localization of the model was conducted by 1) refining the existing two tree plant functional types (coniferous and deciduous trees) into five (Quercus spp., other deciduous tree spp., Pinus spp., Larix spp., and other coniferous spp.), 2) correcting moderate resolution imaging spectroradiometer (MODIS) leaf area index (LAI) through data assimilation with in situ measured LAI, and 3) optimizing the unmeasured plant physiological parameters (e.g. leaf nitrogen contents, nitrogen distribution within canopy, light use efficiency) based on sensitivity analysis of model output values. The high-resolution (hourly and 810 × 810 m) National Center for AgroMeteorology-Land-Atmosphere Modeling Package (NCAM-LAMP) data were employed as meteorological input data in JULES. The plant functional types and soil texture of each grid cell in the same resolution with that of NCAM-LAMP was also used. The performance of the localized model in estimating forest water use was verified by comparison with the multi-year sapflow measurements and Eddy covariance data of Taehwa Mountain site. Our result can be used as referential information to estimate the forest water use change by the climate change. Moreover, the drought index can be used to foresee the drought condition and prepare to it.

  11. 36 CFR 254.31 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... a person who occupies or has improvements on National Forest System land under claim of title or.... Encroachments are improvements occupied or used on National Forest System land under claim of title or color of... fractions are small parcels of National Forest System lands interspersed with or adjacent to lands...

  12. 36 CFR 254.31 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... a person who occupies or has improvements on National Forest System land under claim of title or.... Encroachments are improvements occupied or used on National Forest System land under claim of title or color of... fractions are small parcels of National Forest System lands interspersed with or adjacent to lands...

  13. 36 CFR 254.31 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... a person who occupies or has improvements on National Forest System land under claim of title or.... Encroachments are improvements occupied or used on National Forest System land under claim of title or color of... fractions are small parcels of National Forest System lands interspersed with or adjacent to lands...

  14. 36 CFR 254.31 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... a person who occupies or has improvements on National Forest System land under claim of title or.... Encroachments are improvements occupied or used on National Forest System land under claim of title or color of... fractions are small parcels of National Forest System lands interspersed with or adjacent to lands...

  15. 36 CFR 254.31 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... a person who occupies or has improvements on National Forest System land under claim of title or.... Encroachments are improvements occupied or used on National Forest System land under claim of title or color of... fractions are small parcels of National Forest System lands interspersed with or adjacent to lands...

  16. Storylines of combined land use and climatic drivers and their hydrological impacts in an alpine catchment (Brixental/Austria)

    NASA Astrophysics Data System (ADS)

    Strasser, Ulrich; Förster, Kristian; Meissl, Gertraud; Marke, Thomas; Schermer, Markus; Stotten, Rike; Formayer, Herbert; Themessl, Matthias

    2017-04-01

    We present a numerical modelling experiment with storylines of coupled land use and climate evolution as input in the physically-based, distributed water balance model WaSiM. The aim is to quantify the effects of these two framing components on the future water cycle. The test site for the simulations is the catchment of the Brixentaler Ache in Tyrol/Austria (47.5°N, 322 km2). The climatic background is defined by simulations for the A1B and RCP 8.5 emission scenarios until 2050. These two climate projections were combined with three future land use developments for forest management, developed in an inter- and transdisciplinary assessment with local actors using plausible and consisent projections for forest management, policy, social cooperation, tourism and economy: (i) Ecological adaptation: The forest management consequently applies the political guidelines, and the forest cover is dominated by an ecological, place-adapted mixed cultivation with a harmonious age structure. (ii) Economical overexploitation and wildness: The increase in efficiency, cost reduction and short term results are in focus of the forest management. (iii) Withdrawal and wildness: Cultivation in general is decreasing, and the forest becomes vulnerable against natural hazards. A new module for snow-canopy interaction simulation, providing explicit rates of intercepted and sublimated snow from the trees and stems of the different forest stands, has been implemented in WaSiM. The new version of the model is used to model the coupled future climate/land use storylines for the Brixental. Results show the effects of climate change and land use on the water balance and streamflow in the catchment.

  17. Land use strategies to mitigate climate change in carbon dense temperate forests.

    PubMed

    Law, Beverly E; Hudiburg, Tara W; Berner, Logan T; Kent, Jeffrey J; Buotte, Polly C; Harmon, Mark E

    2018-04-03

    Strategies to mitigate carbon dioxide emissions through forestry activities have been proposed, but ecosystem process-based integration of climate change, enhanced CO 2 , disturbance from fire, and management actions at regional scales are extremely limited. Here, we examine the relative merits of afforestation, reforestation, management changes, and harvest residue bioenergy use in the Pacific Northwest. This region represents some of the highest carbon density forests in the world, which can store carbon in trees for 800 y or more. Oregon's net ecosystem carbon balance (NECB) was equivalent to 72% of total emissions in 2011-2015. By 2100, simulations show increased net carbon uptake with little change in wildfires. Reforestation, afforestation, lengthened harvest cycles on private lands, and restricting harvest on public lands increase NECB 56% by 2100, with the latter two actions contributing the most. Resultant cobenefits included water availability and biodiversity, primarily from increased forest area, age, and species diversity. Converting 127,000 ha of irrigated grass crops to native forests could decrease irrigation demand by 233 billion m 3 ⋅y -1 Utilizing harvest residues for bioenergy production instead of leaving them in forests to decompose increased emissions in the short-term (50 y), reducing mitigation effectiveness. Increasing forest carbon on public lands reduced emissions compared with storage in wood products because the residence time is more than twice that of wood products. Hence, temperate forests with high carbon densities and lower vulnerability to mortality have substantial potential for reducing forest sector emissions. Our analysis framework provides a template for assessments in other temperate regions. Copyright © 2018 the Author(s). Published by PNAS.

  18. Land use strategies to mitigate climate change in carbon dense temperate forests

    PubMed Central

    Hudiburg, Tara W.; Berner, Logan T.; Kent, Jeffrey J.; Buotte, Polly C.; Harmon, Mark E.

    2018-01-01

    Strategies to mitigate carbon dioxide emissions through forestry activities have been proposed, but ecosystem process-based integration of climate change, enhanced CO2, disturbance from fire, and management actions at regional scales are extremely limited. Here, we examine the relative merits of afforestation, reforestation, management changes, and harvest residue bioenergy use in the Pacific Northwest. This region represents some of the highest carbon density forests in the world, which can store carbon in trees for 800 y or more. Oregon’s net ecosystem carbon balance (NECB) was equivalent to 72% of total emissions in 2011–2015. By 2100, simulations show increased net carbon uptake with little change in wildfires. Reforestation, afforestation, lengthened harvest cycles on private lands, and restricting harvest on public lands increase NECB 56% by 2100, with the latter two actions contributing the most. Resultant cobenefits included water availability and biodiversity, primarily from increased forest area, age, and species diversity. Converting 127,000 ha of irrigated grass crops to native forests could decrease irrigation demand by 233 billion m3⋅y−1. Utilizing harvest residues for bioenergy production instead of leaving them in forests to decompose increased emissions in the short-term (50 y), reducing mitigation effectiveness. Increasing forest carbon on public lands reduced emissions compared with storage in wood products because the residence time is more than twice that of wood products. Hence, temperate forests with high carbon densities and lower vulnerability to mortality have substantial potential for reducing forest sector emissions. Our analysis framework provides a template for assessments in other temperate regions. PMID:29555758

  19. 78 FR 13316 - National Forest System Land Management Planning Directives

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-27

    ... responsibilities. It should be used in conjunction with the FSH. FSH 1909.12--Land Management Planning Handbook... management planning. Forest Service Handbook 1909.15, section 31.12 (57 FR 43208; September 18, 1992... DEPARTMENT OF AGRICULTURE Forest Service RIN 0596-AD06 National Forest System Land Management...

  20. 78 FR 23219 - National Advisory Committee for Implementation of the National Forest System Land Management...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-18

    ... National Forest System Land Management Planning Rule AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The National Advisory Committee for Implementation of the National Forest System Land... Federal Advisory Committee Act. The purpose of the committee is to provide advice and recommendations on...

  1. 76 FR 81911 - National Advisory Committee for Implementation of the National Forest System Land Management...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-29

    ... National Forest System Land Management Planning Rule AGENCY: USDA Forest Service. ACTION: Notice of intent... intends to establish the National Advisory Committee for Implementation of the National Forest System Land... (FACA), the Committee is being established to provide advice and recommendations on the implementation...

  2. 78 FR 9883 - National Advisory Committee for Implementation of the National Forest System Land Management...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-12

    ... National Forest System Land Management Planning Rule AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The National Advisory Committee for Implementation of the National Forest System Land... Advisory Committee Act. The purpose of the committee is to provide advice and recommendations on the...

  3. 78 FR 34034 - National Advisory Committee for Implementation of the National Forest System Land Management...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-06

    ... National Forest System Land Management Planning Rule AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The National Advisory Committee for Implementation of the National Forest System Land... purpose of the Committee is to provide advice and recommendations on the implementation of the National...

  4. A biomass representative land cover classification for the Democratic Republic of Congo derived from the Forets D'Afrique Central Evaluee par Teledetection (FACET) data set

    NASA Astrophysics Data System (ADS)

    Molinario, G.; Hansen, M.; Potapov, P.; Altstatt, A. L.; Justice, C. O.

    2012-12-01

    The FACET forest cover and forest cover loss 2000-2005-2010 data set has been produced by South Dakota State University, the University of Maryland and the Kinshasa-based Observatoire Satellital des Forets D'Afrique Central (OSFAC) with funding from the USAID Central African Regional Program for the Environment (CARPE). The product is now available or being finalized for the DRC, the ROC and Gabon with plans to complete all Congo Basin countries. While FACET provides unprecedented synoptic detail in the extent of Congo Basin forest and the forest cover loss, additional information is required to stratify land cover into types indicative of biomass content. Analysis of the FACET patterns of deforestation, more detailed remote sensing analysis of biophysical attributes within the FACET land cover classes and GIS-derived classes of degradation obtained through variable distance buffers based on relevant literature and ground truth data are combined with the existing FACET classes to produce a ranking of land cover from low biomass to high biomass for the Democratic Republic of Congo. The resulting classification can be used in all Reduced Emissions from Degradation and Deforestation (REDD) pre-inventory phases when baseline forest cover needs to be known and the location and amount of forest biomass inventory plots needs to be designed. FACET cover loss classes were kept in the classification and can provide the Monitoring, Reporting and Verification tools needed for REDD projects. The project will be demonstrated for the Maringa Lopori Wamba Landscape of the DRC where this work was funded by the African Wildlife Foundation to support the design of a REDD pilot project.

  5. Image-based change estimation (ICE): monitoring land use, land cover and agent of change information for all lands

    Treesearch

    Kevin Megown; Andy Lister; Paul Patterson; Tracey Frescino; Dennis Jacobs; Jeremy Webb; Nicholas Daniels; Mark Finco

    2015-01-01

    The Image-based Change Estimation (ICE) protocols have been designed to respond to several Agency and Department information requirements. These include provisions set forth by the 2014 Farm Bill, the Forest Service Action Plan and Strategic Plan, the 2012 Planning Rule, and the 2015 Planning Directives. ICE outputs support the information needs by providing estimates...

  6. Spatiotemporal Change Detection Using Landsat Imagery: the Case Study of Karacabey Flooded Forest, Bursa, Turkey

    NASA Astrophysics Data System (ADS)

    Akay, A. E.; Gencal, B.; Taş, İ.

    2017-11-01

    This short paper aims to detect spatiotemporal detection of land use/land cover change within Karacabey Flooded Forest region. Change detection analysis applied to Landsat 5 TM images representing July 2000 and a Landsat 8 OLI representing June 2017. Various image processing tools were implemented using ERDAS 9.2, ArcGIS 10.4.1, and ENVI programs to conduct spatiotemporal change detection over these two images such as band selection, corrections, subset, classification, recoding, accuracy assessment, and change detection analysis. Image classification revealed that there are five significant land use/land cover types, including forest, flooded forest, swamp, water, and other lands (i.e. agriculture, sand, roads, settlement, and open areas). The results indicated that there was increase in flooded forest, water, and other lands, while the cover of forest and swamp decreased.

  7. United States Forest Disturbance Trends Observed Using Landsat Time Series

    NASA Technical Reports Server (NTRS)

    Masek, Jeffrey G.; Goward, Samuel N.; Kennedy, Robert E.; Cohen, Warren B.; Moisen, Gretchen G.; Schleeweis, Karen; Huang, Chengquan

    2013-01-01

    Disturbance events strongly affect the composition, structure, and function of forest ecosystems; however, existing U.S. land management inventories were not designed to monitor disturbance. To begin addressing this gap, the North American Forest Dynamics (NAFD) project has examined a geographic sample of 50 Landsat satellite image time series to assess trends in forest disturbance across the conterminous United States for 1985-2005. The geographic sample design used a probability-based scheme to encompass major forest types and maximize geographic dispersion. For each sample location disturbance was identified in the Landsat series using the Vegetation Change Tracker (VCT) algorithm. The NAFD analysis indicates that, on average, 2.77 Mha/yr of forests were disturbed annually, representing 1.09%/yr of US forestland. These satellite-based national disturbance rates estimates tend to be lower than those derived from land management inventories, reflecting both methodological and definitional differences. In particular the VCT approach used with a biennial time step has limited sensitivity to low-intensity disturbances. Unlike prior satellite studies, our biennial forest disturbance rates vary by nearly a factor of two between high and low years. High western US disturbance rates were associated with active fire years and insect activity, while variability in the east is more strongly related to harvest rates in managed forests. We note that generating a geographic sample based on representing forest type and variability may be problematic since the spatial pattern of disturbance does not necessarily correlate with forest type. We also find that the prevalence of diffuse, non-stand clearing disturbance in US forests makes the application of a biennial geographic sample problematic. Future satellite-based studies of disturbance at regional and national scales should focus on wall-to-wall analyses with annual time step for improved accuracy.

  8. Land use structures fish assemblages in reservoirs of the Tennessee River

    USGS Publications Warehouse

    Miranda, Leandro E.; Bies, J. M.; Hann, D. A.

    2015-01-01

    Inputs of nutrients, sediments and detritus from catchments can promote selected components of reservoir fish assemblages, while hindering others. However, investigations linking these catchment subsidies to fish assemblages have generally focussed on one or a handful of species. Considering this paucity of community-level awareness, we sought to explore the association between land use and fish assemblage composition in reservoirs. To this end, we compared fish assemblages in reservoirs of two sub-basins of the Tennessee River representing differing intensities of agricultural development, and hypothesised that fish assemblage structure indicated by species percentage composition would differ among reservoirs in the two sub-basins. Using multivariate statistical analysis, we documented inter-basin differences in land use, reservoir productivity and fish assemblages, but no differences in reservoir morphometry or water regime. Basins were separated along a gradient of forested and non-forested catchment land cover, which was directly related to total nitrogen, total phosphorous and chlorophyll-a concentrations. Considering the extensive body of knowledge linking land use to aquatic systems, it is reasonable to postulate a hierarchical model in which productivity has direct links to terrestrial inputs, and fish assemblages have direct links to both land use and productivity. We observed a shift from an invertivore-based fish assemblage in forested catchments to a detritivore-based fish assemblage in agricultural catchments that may be a widespread pattern among reservoirs and other aquatic ecosystems.

  9. A novel assessment of the role of land-use and land-cover change in the global carbon cycle, using a new Dynamic Global Vegetation Model version of the CABLE land surface model

    NASA Astrophysics Data System (ADS)

    Haverd, Vanessa; Smith, Benjamin; Nieradzik, Lars; Briggs, Peter; Canadell, Josep

    2017-04-01

    In recent decades, terrestrial ecosystems have sequestered around 1.2 PgC y-1, an amount equivalent to 20% of fossil-fuel emissions. This land carbon flux is the net result of the impact of changing climate and CO2 on ecosystem productivity (CO2-climate driven land sink ) and deforestation, harvest and secondary forest regrowth (the land-use change (LUC) flux). The future trajectory of the land carbon flux is highly dependent upon the contributions of these processes to the net flux. However their contributions are highly uncertain, in part because the CO2-climate driven land sink and LUC components are often estimated independently, when in fact they are coupled. We provide a novel assessment of global land carbon fluxes (1800-2015) that integrates land-use effects with the effects of changing climate and CO2 on ecosystem productivity. For this, we use a new land-use enabled Dynamic Global Vegetation Model (DGVM) version of the CABLE land surface model, suitable for use in attributing changes in terrestrial carbon balance, and in predicting changes in vegetation cover and associated effects on land-atmosphere exchange. In this model, land-use-change is driven by prescribed gross land-use transitions and harvest areas, which are converted to changes in land-use area and transfer of carbon between pools (soil, litter, biomass, harvested wood products and cleared wood pools). A novel aspect is the treatment of secondary woody vegetation via the coupling between the land-use module and the POP (Populations Order Physiology) module for woody demography and disturbance-mediated landscape heterogeneity. Land-use transitions to and from secondary forest tiles modify the patch age distribution within secondary-vegetated tiles, in turn affecting biomass accumulation and turnover rates and hence the magnitude of the secondary forest sink. The resulting secondary forest patch age distribution also influences the magnitude of the secondary forest harvest and clearance fluxes, with oldest patches (high biomass) being preferentially harvested, and youngest patches (low biomass) being preferentially cleared. Our results, which agree well with the net land flux derived from the global carbon budget, are used for a process-attribution of the land carbon sink. Use of multiple constraints provides confidence in our process-attribution: we use observation-based data sets to evaluate predictions of global spatial distributions of vegetation cover, evaporation, gross primary production, biomass and soil carbon; interannual variability of the global terrestrial carbon sink; forest allometric relations and age-effects on net primary production.

  10. South Dakota's forests 2005

    Treesearch

    Ronald J. Piva; W. Keith Moser; Douglas D. Haugan; Gregory J. Josten; Gary J. Brand; Brett J. Butler; Susan J. Crocker; Mark H. Hansen; Dacia M. Meneguzzo; Charles H. Perry; Christopher W. Woodall

    2009-01-01

    The first completed annual inventory of South Dakota's forests reports almost 1.7 million acres of forest land. Softwood forests make up 74 percent of the total forest land area; the ponderosa pine forest type by itself accounts for 69 percent of the total.

  11. South Dakota's Forests 2010

    Treesearch

    Ronald J. Piva; Brian F. Walters; Douglas D. Haugan; Gregory J. Josten; Brett J. Butler; Susan J. Crocker; Grant M. Domke; Mark A. Hatfield; Cassandra M. Kurtz; Andrew J. Lister; Tonya W. Lister; W. Keith Moser; Mark D. Nelson; Christopher W. Woodall

    2013-01-01

    The second completed annual inventory of South Dakota's forests reports 1.9 million acres of forest land. Softwood forests make up 68 percent of the total forest land area, with the ponderosa pine forest type by itself accounting for 60 percent of the total.

  12. Reaching a forest land per capita milestone in the United States

    Treesearch

    C.W. Woodall; P.D. Miles

    2008-01-01

    During April 2007, forest land per capita in the United States dropped below 1 ha. This is the result of a rather static area of forest land in the United States for the past 100 years combined with population growth. The US now joins the ranks of most countries (77%) having forest land per capita below 1 ha. The combination of an increasing human population with...

  13. Modelling land use/cover changes with markov-cellular automata in Komering Watershed, South Sumatera

    NASA Astrophysics Data System (ADS)

    Kusratmoko, E.; Albertus, S. D. Y.; Supriatna

    2017-01-01

    This research has a purpose to study and develop a model that can representing and simulating spatial distribution pattern of land use change in Komering watershed. The Komering watershed is one of nine sub Musi river basin and is located in the southern part of Sumatra island that has an area of 8060,62 km2. Land use change simulations, achieved through Markov-cellular automata (CA) methodologies. Slope, elevation, distance from road, distance from river, distance from capital sub-district, distance from settlement area area were driving factors that used in this research. Land use prediction result in 2030 also shows decrease of forest acreage up to -3.37%, agricultural land decreased up to -2.13%, and open land decreased up to -0.13%. On the other hand settlement area increased up to 0.07%, and plantation land increased up to 5.56%. Based on the predictive result, land use unconformity percentage to RTRW in Komering watershed is 18.62 % and land use conformity is 58.27%. Based on the results of the scenario, where forest in protected areas and agriculture land are maintained, shows increase the land use conformity amounted to 60.41 % and reduce unconformity that occur in Komering watershed to 17.23 %.

  14. Modelling and analyzing the watershed dynamics using Cellular Automata (CA)-Markov model - A geo-information based approach

    NASA Astrophysics Data System (ADS)

    Behera, Mukunda D.; Borate, Santosh N.; Panda, Sudhindra N.; Behera, Priti R.; Roy, Partha S.

    2012-08-01

    Improper practices of land use and land cover (LULC) including deforestation, expansion of agriculture and infrastructure development are deteriorating watershed conditions. Here, we have utilized remote sensing and GIS tools to study LULC dynamics using Cellular Automata (CA)-Markov model and predicted the future LULC scenario, in terms of magnitude and direction, based on past trend in a hydrological unit, Choudwar watershed, India. By analyzing the LULC pattern during 1972, 1990, 1999 and 2005 using satellite-derived maps, we observed that the biophysical and socio-economic drivers including residential/industrial development, road-rail and settlement proximity have influenced the spatial pattern of the watershed LULC, leading to an accretive linear growth of agricultural and settlement areas. The annual rate of increase from 1972 to 2004 in agriculture land, settlement was observed to be 181.96, 9.89 ha/year, respectively, while decrease in forest, wetland and marshy land were 91.22, 27.56 and 39.52 ha/year, respectively. Transition probability and transition area matrix derived using inputs of (i) residential/industrial development and (ii) proximity to transportation network as the major causes. The predicted LULC scenario for the year 2014, with reasonably good accuracy would provide useful inputs to the LULC planners for effective management of the watershed. The study is a maiden attempt that revealed agricultural expansion is the main driving force for loss of forest, wetland and marshy land in the Choudwar watershed and has the potential to continue in future. The forest in lower slopes has been converted to agricultural land and may soon take a call on forests occurring on higher slopes. Our study utilizes three time period changes to better account for the trend and the modelling exercise; thereby advocates for better agricultural practices with additional energy subsidy to arrest further forest loss and LULC alternations.

  15. Temporal Changes in Forest Contexts at Multiple Extents: Three Decades of Fragmentation in the Gran Chaco (1979-2010), Central Argentina.

    PubMed

    Frate, Ludovico; Acosta, Alicia T R; Cabido, Marcelo; Hoyos, Laura; Carranza, Maria Laura

    2015-01-01

    The context in which a forest exists strongly influences its function and sustainability. Unveiling the multi-scale nature of forest fragmentation context is crucial to understand how human activities affect the spatial patterns of forests across a range of scales. However, this issue remains almost unexplored in subtropical ecosystems. In this study, we analyzed temporal changes (1979-2010) in forest contexts in the Argentinean dry Chaco at multiple extents. We classified forests over the last three decades based on forest context amount (Pf) and structural connectivity (Pff), which were measured using a moving window approach fixed at eight different extents (from local, ~ 6 ha, to regional, ~ 8300 ha). Specific multi-scale forest context profiles (for the years 1979 and 2010) were defined by projecting Pf vs. Pff mean values and were compared across spatial extents. The distributions of Pf across scales were described by scalograms and their shapes over time were compared. The amount of agricultural land and rangelands across the scales were also analyzed. The dry Chaco has undergone an intensive process of fragmentation, resulting in a shift from landscapes dominated by forests with gaps of rangelands to landscapes where small forest patches are embedded in agricultural lands. Multi-scale fragmentation analysis depicted landscapes in which local exploitation, which perforates forest cover, occurs alongside extensive forest clearings, reducing forests to small and isolated patches surrounded by agricultural lands. In addition, the temporal diminution of Pf's variability along with the increment of the mean slope of the Pf 's scalograms, indicate a simplification of the spatial pattern of forest over time. The observed changes have most likely been the result of the interplay between human activities and environmental constraints, which have shaped the spatial patterns of forests across scales. Based on our results, strategies for the conservation and sustainable management of the dry Chaco should take into account both the context of each habitat location and the scales over which a forest pattern might be preserved, altered or restored.

  16. Temporal Changes in Forest Contexts at Multiple Extents: Three Decades of Fragmentation in the Gran Chaco (1979-2010), Central Argentina

    PubMed Central

    Frate, Ludovico; Acosta, Alicia T. R.; Cabido, Marcelo; Hoyos, Laura; Carranza, Maria Laura

    2015-01-01

    The context in which a forest exists strongly influences its function and sustainability. Unveiling the multi-scale nature of forest fragmentation context is crucial to understand how human activities affect the spatial patterns of forests across a range of scales. However, this issue remains almost unexplored in subtropical ecosystems. In this study, we analyzed temporal changes (1979–2010) in forest contexts in the Argentinean dry Chaco at multiple extents. We classified forests over the last three decades based on forest context amount (P f) and structural connectivity (P ff), which were measured using a moving window approach fixed at eight different extents (from local, ~ 6 ha, to regional, ~ 8300 ha). Specific multi-scale forest context profiles (for the years 1979 and 2010) were defined by projecting P f vs. P ff mean values and were compared across spatial extents. The distributions of P f across scales were described by scalograms and their shapes over time were compared. The amount of agricultural land and rangelands across the scales were also analyzed. The dry Chaco has undergone an intensive process of fragmentation, resulting in a shift from landscapes dominated by forests with gaps of rangelands to landscapes where small forest patches are embedded in agricultural lands. Multi-scale fragmentation analysis depicted landscapes in which local exploitation, which perforates forest cover, occurs alongside extensive forest clearings, reducing forests to small and isolated patches surrounded by agricultural lands. In addition, the temporal diminution of P f’s variability along with the increment of the mean slope of the P f ‘s scalograms, indicate a simplification of the spatial pattern of forest over time. The observed changes have most likely been the result of the interplay between human activities and environmental constraints, which have shaped the spatial patterns of forests across scales. Based on our results, strategies for the conservation and sustainable management of the dry Chaco should take into account both the context of each habitat location and the scales over which a forest pattern might be preserved, altered or restored. PMID:26630387

  17. 36 CFR 251.82 - Appealable decisions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Appeal of Decisions Relating to Occupancy and Use of National Forest System Lands § 251.82 Appealable... National Forest System lands, including but not limited to: (1) Permits for ingress and egress to intermingled and adjacent private lands across National Forest System lands, 36 CFR 212.8 and 212.10. (2...

  18. 36 CFR 251.82 - Appealable decisions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Appeal of Decisions Relating to Occupancy and Use of National Forest System Lands § 251.82 Appealable... National Forest System lands, including but not limited to: (1) Permits for ingress and egress to intermingled and adjacent private lands across National Forest System lands, 36 CFR 212.8 and 212.10. (2...

  19. 36 CFR 251.82 - Appealable decisions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Appeal of Decisions Relating to Occupancy and Use of National Forest System Lands § 251.82 Appealable... National Forest System lands, including but not limited to: (1) Permits for ingress and egress to intermingled and adjacent private lands across National Forest System lands, 36 CFR 212.8 and 212.10. (2...

  20. Responding to climate change in national forests: a guidebook for developing adaptation options

    Treesearch

    David L. Peterson; Connie I. Millar; Linda A. Joyce; Michael J. Furniss; Jessica E. Halofsky; Ronald P. Neilson; Toni Lyn Morelli

    2011-01-01

    This guidebook contains science-based principles, processes, and tools necessary to assist with developing adaptation options for national forest lands. The adaptation process is based on partnerships between local resource managers and scientists who work collaboratively to understand potential climate change effects, identify important resource issues, and develop...

  1. Mapping forest structure and composition from low-density LiDAR for informed forest, fuel, and fire management at Eglin Air Force Base, Florida, USA

    Treesearch

    Andrew T. Hudak; Benjamin C. Bright; Scott M. Pokswinski; E. Louise Loudermilk; Joseph J. O' Brien; Benjamin S. Hornsby; Carine Klauberg; Carlos A. Silva

    2016-01-01

    Eglin Air Force Base (AFB) in Florida, in the United States, conserves a large reservoir of native longleaf pine (Pinus palustris Mill.) stands that land managers maintain by using frequent fires. We predicted tree density, basal area, and dominant tree species from 195 forest inventory plots, low-density airborne LiDAR, and Landsat data available across the entirety...

  2. Surface water data and geographic relation to Tertiary age intrusions and hydrothermal alteration in the Grand Mesa, Uncompahgre, and Gunnison National Forests (GMUG) and intervening Bureau of Land Management (BLM) lands

    USGS Publications Warehouse

    Bove, Dana J.; Knepper, Daniel H.

    2000-01-01

    This data set covering the western part of Colorado includes water quality data from eight different sources (points), nine U.S. Geological Survey Digital Raster Graph (DRG) files for topographic bases, a compilation of Tertiary age intrusions (polygons and lines), and two geotiff files showing areas of hydrothermally altered rock. These data were compiled for use with an ongoing mineral resource assessment of theGrand Mesa, Uncompahgre, and Gunnison National Forests (GMUG) and intervening Bureau of Land Management(BLM) lands. This compilation was assembled to give federal land managers a preliminary view of water within sub-basinal areas, and to show possible relationships to Tertiary age intrusion and areas of hydrothermal alteration.

  3. Use of Multi-Year MODIS Phenological Data Products to Detect and Monitor Forest Disturbances at Regional and National Scales

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph; Hargrove, William W.; Gasser, Jerry; Smoot, James; Ross, Kenton

    2010-01-01

    This presentation discusses an effort to use select MODIS phenological products for forest disturbance monitoring at the regional and CONUS scales. Forests occur on 1/3 of the U.S. land base and include regionally prevalent forest disturbances that can threaten forest sustainability. Regional and CONUS forest disturbance monitoring is needed for a national forest threat early warning system being developed by the USDA Forest Service with help from NASA, ORNL, and USGS. MODIS NDVI phenology products are being used to develop forest disturbance monitoring capabilities of this EWS.

  4. High-biomass forests of the Pacific Northwest: who manages them and how much is protected?

    PubMed

    Krankina, Olga N; DellaSala, Dominick A; Leonard, Jessica; Yatskov, Mikhail

    2014-07-01

    To examine ownership and protection status of forests with high-biomass stores (>200 Mg/ha) in the Pacific Northwest (PNW) region of the United States, we used the latest versions of publicly available datasets. Overlay, aggregation, and GIS-based computation of forest area in broad biomass classes in the PNW showed that the National Forests contained the largest area of high-biomass forests (48.4 % of regional total), but the area of high-biomass forest on private lands was important as well (22.8 %). Between 2000 and 2008, the loss of high-biomass forests to fire on the National Forests was 7.6 % (236,000 ha), while the loss of high-biomass forest to logging on private lands (364,000 ha) exceeded the losses to fire across all ownerships. Many remaining high-biomass forest stands are vulnerable to future harvest as only 20 % are strictly protected from logging, while 26 % are not protected at all. The level of protection for high-biomass forests varies by state, for example, 31 % of all high-biomass federal forests in Washington are in high-protection status compared to only 9 % in Oregon. Across the conterminous US, high-biomass forest covers <3 % of all forest land and the PNW region holds 56.8 % of this area or 5.87 million ha. Forests with high-biomass stores are important to document and monitor as they are scarce, often threatened by harvest and development, and their disturbance including timber harvest results in net C losses to the atmosphere that can take a new generation of trees many decades or centuries to offset.

  5. Unexpectedly large impact of forest management and grazing on global vegetation biomass

    PubMed Central

    Erb, K.-H.; Bais, A.L.S.; Carvalhais, N.; Fetzel, T.; Gingrich, S.; Haberl, H.; Lauk, C.; Niedertscheider, M.; Pongratz, J.; Thurner, M.; Luyssaert, S.

    2017-01-01

    Carbon stocks in vegetation play a key role in the climate system1–4, but their magnitude and patterns, their uncertainties, and the impact of land use on them remain poorly quantified. Based on a consistent integration of state-of-the art datasets, we show that vegetation currently stores ~450 PgC. In the hypothetical absence of land use, potential vegetation would store ~916 PgC, under current climate. This difference singles out the massive effect land use has on biomass stocks. Deforestation and other land-cover changes are responsible for 53-58% of the difference between current and potential biomass stocks. Land management effects, i.e. land-use induced biomass stock changes within the same land cover, contribute 42-47% but are underappreciated in the current literature. Avoiding deforestation hence is necessary but not sufficient for climate-change mitigation. Our results imply that trade-offs exist between conserving carbon stocks on managed land and raising the contribution of biomass to raw material and energy supply for climate change mitigation. Efforts to raise biomass stocks are currently only verifiable in temperate forests, where potentials are limited. In contrast, large uncertainties hamper verification in the tropical forest where the largest potentials are located, pointing to challenges for the upcoming stocktaking exercises under the Paris agreement. PMID:29258288

  6. Minnesota's forest resources in 2002

    Treesearch

    Patrick D. Miles; Gary J. Brand; Manfred E. Mielke

    2003-01-01

    Results of the combined 1999, 2000, 2001, and 2002 annual forest inventories of Minesota show that 16.3 million acres or 32 percent of the total land area is forested. The estimate of total all live tree volume on forest land is 17.6 billion cubic feet or approximately 1,080 cubic feet per acre. Just over 15.0 million acres of forest land in Minnesota is classified...

  7. Minnesota's forest resources in 2001

    Treesearch

    Patrick D. Miles; Manfred E. Mielke; Gary J. Brand

    2003-01-01

    Results of the combined 1999, 2000, and 2001 annual forest inventories of Minnesota show that 16.3 million acres or 32 percent of the total land area is forested. The estimate of total all live tree volume on forest land is 17.4 billion cubic feet or approximately 1,068 cubic feet per acre. Nearly 15.0 million acres of forest land in Minnesota are classified as...

  8. Society's choices: land use changes, forest fragmentation, and conservation.

    Treesearch

    Jonathan Thompson

    2006-01-01

    Changing patterns of land use are at the heart of many environmental concerns regarding U.S. forest lands. Of all the human impacts to forests, development is one of the most significant because of the severity and permanency of the change. Concern about the effects of development on America’s forests has risen sharply since the 1990s, when the conversion of forest...

  9. Landscape level reforestation priorities for forest breeding landbirds in the Mississippi Alluvial Valley

    USGS Publications Warehouse

    Twedt, D.J.; Uihlein, W.B.; Fredrickson, L.H.; King, S.L.; Kaminski, R.M.

    2005-01-01

    Thousands of ha of cleared wetlands are being reforested annually in the Mississippi Alluvial Valley (MAV). Despite the expansive and long-term impacts of reforestation on the biological communities of the MAV, there is generally a lack of landscape level planning in its implementation. To address this deficiency we used raster-based digital data to assess the value of forest restoration to migratory landbirds for each ha within the MAV. Raster themes were developed that reflected distance from 3 existing forest cover parameters: (1) extant forest, (2) contiguous forest patches between 1,012 and 40,000 ha, and (3) forest cores with contiguous area 1 km from an agricultural, urban, or pastoral edge. Two additional raster themes were developed that combined information on the proportion of forest cover and average size of forest patches, respectively, within landscapes of 50,000, 100,000, 150,000, and 200,000 ha. Data from these 5 themes were amalgamated into a single raster using a weighting system that gave increased emphasis to existing forest cores, larger forest patches, and moderately forested landscapes while deemphasizing reforestation near small or isolated forest fragments and within largely agricultural landscapes. This amalgamated raster was then modified by the geographic location of historical forest cover and the current extent of public land ownership to assign a reforestation priority score to each ha in the MAV. However, because reforestation is not required on areas with extant forest cover and because restoration is unlikely on areas of open water and urban communities, these lands were not assigned a reforestation priority score. These spatially explicit reforestation priority scores were used to simulate reforestation of 368,000 ha (5%) of the highest priority lands in the MAV. Targeting restoration to these high priority areas resulted in a 54% increase in forest core - an area of forest core that exceeded the area of simulated reforestation. Bird Conservation Regions, developed within the framework of the Partners in Flight: Mississippi Alluvial Valley Bird Conservation Plan, encompassed a large proportion (circa 70%) of the area with highest priority for reforestation. Similarly, lands with high reforestation priority often were enrolled in the Wetland Reserve Program.

  10. 25 CFR 163.32 - Forest development.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... activities undertaken to improve the sustainable productivity of commercial Indian forest land. The program... productivity of commercial forest land with emphasis on accomplishing on-the-ground projects. Forest...

  11. Legacy effects of land-use modulate tree growth responses to climate extremes.

    PubMed

    Mausolf, Katharina; Härdtle, Werner; Jansen, Kirstin; Delory, Benjamin M; Hertel, Dietrich; Leuschner, Christoph; Temperton, Vicky M; von Oheimb, Goddert; Fichtner, Andreas

    2018-05-10

    Climate change can impact forest ecosystem processes via individual tree and community responses. While the importance of land-use legacies in modulating these processes have been increasingly recognised, evidence of former land-use mediated climate-growth relationships remain rare. We analysed how differences in former land-use (i.e. forest continuity) affect the growth response of European beech to climate extremes. Here, using dendrochronological and fine root data, we show that ancient forests (forests with a long forest continuity) and recent forests (forests afforested on former farmland) clearly differ with regard to climate-growth relationships. We found that sensitivity to climatic extremes was lower for trees growing in ancient forests, as reflected by significantly lower growth reductions during adverse climatic conditions. Fine root morphology also differed significantly between the former land-use types: on average, trees with high specific root length (SRL) and specific root area (SRA) and low root tissue density (RTD) were associated with recent forests, whereas the opposite traits were characteristic of ancient forests. Moreover, we found that trees of ancient forests hold a larger fine root system than trees of recent forests. Our results demonstrate that land-use legacy-mediated modifications in the size and morphology of the fine root system act as a mechanism in regulating drought resistance of beech, emphasising the need to consider the 'ecological memory' of forests when assessing or predicting the sensitivity of forest ecosystems to global environmental change.

  12. Effects of local land-use on riparian vegetation, water quality, and the functional organization of macroinvertebrate assemblages.

    PubMed

    Fierro, Pablo; Bertrán, Carlos; Tapia, Jaime; Hauenstein, Enrique; Peña-Cortés, Fernando; Vergara, Carolina; Cerna, Cindy; Vargas-Chacoff, Luis

    2017-12-31

    Land-use change is a principal factor affecting riparian vegetation and river biodiversity. In Chile, land-use change has drastically intensified over the last decade, with native forests converted to exotic forest plantations and agricultural land. However, the effects thereof on aquatic ecosystems are not well understood. Closing this knowledge gap first requires understanding how human perturbations affect riparian and stream biota. Identified biological indicators could then be applied to determine the health of fluvial ecosystems. Therefore, this study investigated the effects of land-use change on the health of riparian and aquatic ecosystems by assessing riparian vegetation, water quality, benthic macroinvertebrate assemblages, and functional feeding groups. Twenty-one sites in catchment areas with different land-uses (i.e. pristine forests, native forests, exotic forest plantations, and agricultural land) were selected and sampled during the 2010 to 2012 dry seasons. Riparian vegetation quality was highest in pristine forests. Per the modified Macroinvertebrate Family Biotic Index for Chilean species, the best conditions existed in native forests and the worst in agricultural catchments. Water quality and macroinvertebrate assemblages significantly varied across land-use areas, with forest plantations and agricultural land having high nutrient concentrations, conductivity, suspended solids, and apparent color. Macroinvertebrate assemblage diversity was lowest for agricultural and exotic forest plantation catchments, with notable non-insect representation. Collector-gatherers were the most abundant functional feeding group, suggesting importance independent of land-use. Land-use areas showed no significant differences in functional feeding groups. In conclusion, anthropogenic land-use changes were detectable through riparian quality, water quality, and macroinvertebrate assemblages, but not through functional feeding groups. These data, particularly the riparian vegetation and macroinvertebrate assemblage parameters, could be applied towards the conservation and management of riparian ecosystems through land-use change studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Estimation of late twentieth century land-cover change in California

    USGS Publications Warehouse

    Sleeter, Benjamin M.; Wilson, Tamara S.; Soulard, Christopher E.; Liu, Jinxun

    2011-01-01

    We present the first comprehensive multi-temporal analysis of land-cover change for California across its major ecological regions and primary land-cover types. Recently completed satellite-based estimates of land-cover and land-use change information for large portions of the United States allow for consistent measurement and comparison across heterogeneous landscapes. Landsat data were employed within a pure-panel stratified one-stage cluster sample to estimate and characterize land-cover change for 1973–2000. Results indicate anthropogenic and natural disturbances, such as forest cutting and fire, were the dominant changes, followed by large fluctuations between agriculture and rangelands. Contrary to common perception, agriculture remained relatively stable over the 27-year period with an estimated loss of 1.0% of agricultural land. The largest net declines occurred in the grasslands/shrubs class at 5,131 km2 and forest class at 4,722 km2. Developed lands increased by 37.6%, composing an estimated 4.2% of the state’s land cover by 2000.

  14. Analyzing Land Use Changes in the Metropolitan Jilin City of Northeastern China Using Remote Sensing and GIS.

    PubMed

    Hu, Dan; Yang, Guodong; Wu, Qiong; Li, Hongqing; Liu, Xusheng; Niu, Xuefeng; Wang, Zhiheng; Wang, Qiong

    2008-09-03

    Remote sensing and GIS have been widely employed to study temporal and spatial urban land use changes in southern and southeastern China. However, few studies have been conducted in northeastern regions. This study analyzed land use change and spatial patterns of urban expansion in the metropolitan area of Jilin City, located on the extension of Changbai Mountain, based on aerial photos from 1989 and 2005 Spot images. The results indicated that urban land and transportation land increased dramatically (by 94.04% and 211.20%, respectively); isolated industrial and mining land decreased moderately (by 29.54%); rural residential land increased moderately (by 26.48%); dry land and paddy fields increased slightly (by 15.68% and 11.78%, respectively); forest and orchards decreased slightly (by 5.27% and 4.61%, respectively); grasslands and unused land decreased dramatically (by 99.12% and 86.04%, respectively). Sloped dry land (more than 4 degrees) was mainly distributed on the land below 10 degrees with an east, southeastern and south sunny direction aspect, and most sloped dry land transformed to forest was located on an east aspect lower than 12 degrees, while forest changed to dry land were mainly distributed on east and south aspects lower than 10 degrees. A spatial dependency analysis of land use change showed that the increased urban land was a logarithmic function of distance to the Songhua River. This study also provided some data with spatial details about the uneven land development in the upstream areas of Songhua River basin.

  15. The timber resources of Pennsylvania. A report on the forest survey made by the U.S. Forest Service

    Treesearch

    Roland H. Ferguson; Roland H. Ferguson

    This is a report on the timber resources of Pennsylvania. It is based on the findings of a survey made by the Forest Service, U.S. Department of Agriculture as part of a nationwide forest appraisal. The survey data show--as of January 1955--the area and condition of the forest land and the volume and quality of the standing timber. They also include, for the year 1954...

  16. Impacts of forest and land management on biodiversity and carbon

    Treesearch

    Valerie Kapos; Werner A. Kurz; Toby Gardner; Joice Ferreira; Manuel Guariguata; Lian Pin Koh; Stephanie Mansourian; John A. Parrotta; Nokea Sasaki; Christine B. Schmitt; Jos Barlow; Markku Kanninen; Kimiko Okabe; Yude Pan; Ian D. Thompson; Nathalie van Vliet

    2012-01-01

    Changes in the management of forest and non-forest land can contribute significantly to reducing emissions from deforestation and forest degradation. Such changes can include both forest management actions - such as improving the protection and restoration of existing forests, introducing ecologically responsible logging practices and regenerating forest on degraded...

  17. Ecological classification systems for the Wayne National Forest, southeastern Ohio

    Treesearch

    David M. Hix; Jeffrey N. Pearcy

    1997-01-01

    The importance of basing land management decisions upon an ecosystem perspective is becoming widely accepted. It is frequently regarded as insufficient to simply manage stands or forest cover types without considering the ecological relationships of the forest vegetation to the other components of the ecosystems, such as soils and physiography. In order to implement...

  18. North Carolina, 2011 forest inventory and analysis factsheet

    Treesearch

    Mark J. Brown; Barry D. New

    2013-01-01

    Forest Inventory and Analysis (FIA) factsheets are produced periodically to keep the public updated on the extent and condition of forest lands in each State. Estimates in the factsheets are based upon data collected from thousands of sample plots distributed across the landscape in a systematic manner. In North Carolina, this process is a collaborative effort between...

  19. 76 FR 65681 - Black Hills National Forest, Mystic Ranger District, South Dakota, Calumet Project Area

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-24

    ... acres of pine stands using a variety of methods to treat MPB infested stands, reduce the overall density... actions proposed are in direct response to management direction provided by the Black Hills National Forest Land and Resource Management Plan (Forest Plan). The site specific actions are designed, based on...

  20. Hardwood timber resources of the Douglas-fir subregion.

    Treesearch

    Melvin E. Metcalf

    1965-01-01

    The statistics on hardwood timber volume and type area presented here are being made available in response to the increasing interest in this resource in western Oregon and western Washington. These estimates are based on data obtained by the U.S. Forest Service in the course of timber inventories carried out by National Forest Administration on National Forest lands...

  1. Development of a Methodology for Predicting Forest Area for Large-Area Resource Monitoring

    Treesearch

    William H. Cooke

    2001-01-01

    The U.S. Department of Agriculture, Forest Service, Southcm Research Station, appointed a remote-sensing team to develop an image-processing methodology for mapping forest lands over large geographic areds. The team has presented a repeatable methodology, which is based on regression modeling of Advanced Very High Resolution Radiometer (AVHRR) and Landsat Thematic...

  2. Opportunities for conservation-based development of nontimber forest products in the Pacific Northwest.

    Treesearch

    Bettina von Hagen; Roger D. Fight

    1999-01-01

    Declines in timber harvests on public lands and new market opportunities have rekindled an interest in nontimber forest products. Such products as edible mushrooms, medicinal plants, and floral and holiday greens provide alternative sources of revenue and employment for rural communities. This paper describes and analyzes the contribution of the nontimber forest...

  3. Fragmentation of Continental United States Forests

    Treesearch

    Kurt H. Riitters; James D. Wickham; Robert V. O' Neill; K. Bruce Jones; Elizabeth R. Smith; John W. Coulston; Timothy G. Wade; Jonathan H. Smith

    2002-01-01

    We report a multiple-scale analysis of forest fragmentation based on 30-m (0.09 ha pixel-1) land- cover maps for the conterminous United States. Each 0.09-ha unit of forest was classified according to fragmentation indexes measured within the surrounding landscape, for five landscape sizes including 2.25, 7.29, 65.61, 590.49, and 5314.41 ha....

  4. An alternate property tax program requiring a forest management plan and scheduled harvesting

    Treesearch

    D.F. Dennis; P.E. Sendak

    1991-01-01

    Vermont's Use Value Appraisal property tax program, designed to address problems such as tax inequity and forced development caused by taxing agricultural and forest land based on speculative values, requires a forest management plan and scheduled harvests. A probit analysis of enrollment provides evidence of the program's success in attracting large parcels...

  5. Global-scale patterns of forest fragmentation

    Treesearch

    Kurt H. Riitters; James D. Wickham; R. O' Neill; B. Jones; E. Smith

    2000-01-01

    We report an analysis of forest fragmentation based on 1-km resolution land-cover maps for the globe. Measurements in analysis windows from 81 km 2 (9 x 9 pixels, "small" scale) to 59,049 km 2 (243 x 243 pixels, "large" scale) were used to characterize the fragmentation around each forested pixel. We identified six categories of fragmentation (...

  6. Seeing the bigger picture: multi-partner spruce restoration in the central and southern Appalachian mountains

    Treesearch

    Jack Tribble; Thomas Minney; Catherine Johnson; Ken. Sturm

    2010-01-01

    Habitat-based ecosystem partnerships are necessary for implementing strategic forest restoration plans. Overwhelming environmental threats such as climate change and invasive pests and pathogens could have traumatic and devastating effects to our native forests. Additionally, past land-use history has left existing forests isolated, fragmented and in some cases...

  7. Interim definitions for old growth Douglas-fir and mixed-conifer forests in the Pacific Northwest and California.

    Treesearch

    J.F. Franklin; F. Hall; W. Laudenslayer; C. Maser; J. Nunan; J. Poppino; C.J. Ralph; T. Spies

    1986-01-01

    Interim definitions of old-growth forests are provided to guide efforts in land-management planning until comprehensive definitions based on research that is currently underway can be formulated. The basic criteria for identifying old-growth Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) and mixed-conifer forests in western Washington and...

  8. Florida, 2011-forest inventory and analysis factsheet

    Treesearch

    Mark J. Brown; Jarek Nowak

    2013-01-01

    Forest Inventory and Analysis (FIA) factsheets are produced periodically to keep the public up to date on the extent and condition of the forest lands in each State. The forestrelated estimates in the factsheets are based upon data collected from thousands of sample plots distributed across the landscape in a systematic manner. The total number of these plots is...

  9. Land Covers Classification Based on Random Forest Method Using Features from Full-Waveform LIDAR Data

    NASA Astrophysics Data System (ADS)

    Ma, L.; Zhou, M.; Li, C.

    2017-09-01

    In this study, a Random Forest (RF) based land covers classification method is presented to predict the types of land covers in Miyun area. The returned full-waveforms which were acquired by a LiteMapper 5600 airborne LiDAR system were processed, including waveform filtering, waveform decomposition and features extraction. The commonly used features that were distance, intensity, Full Width at Half Maximum (FWHM), skewness and kurtosis were extracted. These waveform features were used as attributes of training data for generating the RF prediction model. The RF prediction model was applied to predict the types of land covers in Miyun area as trees, buildings, farmland and ground. The classification results of these four types of land covers were obtained according to the ground truth information acquired from CCD image data of the same region. The RF classification results were compared with that of SVM method and show better results. The RF classification accuracy reached 89.73% and the classification Kappa was 0.8631.

  10. A long-term perspective on deforestation rates in the Brazilian Amazon

    NASA Astrophysics Data System (ADS)

    Velasco Gomez, M. D.; Beuchle, R.; Shimabukuro, Y.; Grecchi, R.; Simonetti, D.; Eva, H. D.; Achard, F.

    2015-04-01

    Monitoring tropical forest cover is central to biodiversity preservation, terrestrial carbon stocks, essential ecosystem and climate functions, and ultimately, sustainable economic development. The Amazon forest is the Earth's largest rainforest, and despite intensive studies on current deforestation rates, relatively little is known as to how these compare to historic (pre 1985) deforestation rates. We quantified land cover change between 1975 and 2014 in the so-called Arc of Deforestation of the Brazilian Amazon, covering the southern stretch of the Amazon forest and part of the Cerrado biome. We applied a consistent method that made use of data from Landsat sensors: Multispectral Scanner (MSS), Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+) and Operational Land Imager (OLI). We acquired suitable images from the US Geological Survey (USGS) for five epochs: 1975, 1990, 2000, 2010, and 2014. We then performed land cover analysis for each epoch using a systematic sample of 156 sites, each one covering 10 km x 10 km, located at the confluence point of integer degree latitudes and longitudes. An object-based classification of the images was performed with five land cover classes: tree cover, tree cover mosaic, other wooded land, other land cover, and water. The automatic classification results were corrected by visual interpretation, and, when available, by comparison with higher resolution imagery. Our results show a decrease of forest cover of 24.2% in the last 40 years in the Brazilian Arc of Deforestation, with an average yearly net forest cover change rate of -0.71% for the 39 years considered.

  11. Reserved and roadless forests

    Treesearch

    David Azuma; James Menlove; Andrew Gray

    2009-01-01

    Some 74 million acres of forest land, or 10 percent of all U.S. forest land, are permanently reserved from wood product utilization through statute or administrative designation. A large part of these lands is in wilderness areas, national parks, and national monuments. Although the primary reason for protecting many of the areas is not preservation of forest...

  12. 32 CFR 644.409 - Procedures for Interchange of National Forest Lands.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Procedures for Interchange of National Forest... Interests § 644.409 Procedures for Interchange of National Forest Lands. (a) General. The interchange of national forest lands is accomplished in three steps: first, agreement must be reached between the two...

  13. 78 FR 68811 - National Advisory Committee for Implementation of the National Forest System Land Management...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-15

    ... National Forest System Land Management Planning Rule AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The National Advisory Committee for Implementation of the National Forest System Land... (FACA) (Pub. L. 92-463). The purpose of the Committee is to provide advice and recommendations on the...

  14. 78 FR 46565 - National Advisory Committee for Implementation of the National Forest System Land Management...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-01

    ... National Forest System Land Management Planning Rule AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The National Advisory Committee for Implementation of the National Forest System Land... Committee Act (FACA) (Pub. L. 92-463). The purpose of the Committee is to provide advice and recommendations...

  15. Effects of contemporary land-use and land-cover change on the carbon balance of terrestrial ecosystems in the United States

    USGS Publications Warehouse

    Sleeter, Benjamin M.; Liu, Jinxun; Daniel, Colin; Rayfield, Bronwyn; Sherba, Jason; Hawbaker, Todd J.; Zhu, Zhiliang; Selmants, Paul; Loveland, Thomas R.

    2018-01-01

    Changes in land use and land cover (LULC) can have profound effects on terrestrial carbon dynamics, yet their effects on the global carbon budget remain uncertain. While land change impacts on ecosystem carbon dynamics have been the focus of numerous studies, few efforts have been based on observational data incorporating multiple ecosystem types spanning large geographic areas over long time horizons. In this study we use a variety of synoptic-scale remote sensing data to estimate the effect of LULC changes associated with urbanization, agricultural expansion and contraction, forest harvest, and wildfire on the carbon balance of terrestrial ecosystems (forest, grasslands, shrublands, and agriculture) in the conterminous United States (i.e. excluding Alaska and Hawaii) between 1973 and 2010. We estimate large net declines in the area of agriculture and forest, along with relatively small increases in grasslands and shrublands. The largest net change in any class was an estimated gain of 114 865 km2 of developed lands, an average rate of 3282 km2 yr−1. On average, US ecosystems sequestered carbon at an annual rate of 254 Tg C yr−1. In forest lands, the net sink declined by 35% over the study period, largely a result of land-use legacy, increasing disturbances, and reductions in forest area due to land use conversion. Uncertainty in LULC change data contributed to a ~16% margin of error in the annual carbon sink estimate prior to 1985 (approximately ±40 Tg C yr−1). Improvements in LULC and disturbance mapping starting in the mid-1980s reduced this uncertainty by ~50% after 1985. We conclude that changes in LULC are a critical component to understanding ecosystem carbon dynamics, and continued improvements in detection, quantification, and attribution of change have the potential to significantly reduce current uncertainties.

  16. Effects of contemporary land-use and land-cover change on the carbon balance of terrestrial ecosystems in the United States

    NASA Astrophysics Data System (ADS)

    Sleeter, Benjamin M.; Liu, Jinxun; Daniel, Colin; Rayfield, Bronwyn; Sherba, Jason; Hawbaker, Todd J.; Zhu, Zhiliang; Selmants, Paul C.; Loveland, Thomas R.

    2018-04-01

    Changes in land use and land cover (LULC) can have profound effects on terrestrial carbon dynamics, yet their effects on the global carbon budget remain uncertain. While land change impacts on ecosystem carbon dynamics have been the focus of numerous studies, few efforts have been based on observational data incorporating multiple ecosystem types spanning large geographic areas over long time horizons. In this study we use a variety of synoptic-scale remote sensing data to estimate the effect of LULC changes associated with urbanization, agricultural expansion and contraction, forest harvest, and wildfire on the carbon balance of terrestrial ecosystems (forest, grasslands, shrublands, and agriculture) in the conterminous United States (i.e. excluding Alaska and Hawaii) between 1973 and 2010. We estimate large net declines in the area of agriculture and forest, along with relatively small increases in grasslands and shrublands. The largest net change in any class was an estimated gain of 114 865 km2 of developed lands, an average rate of 3282 km2 yr‑1. On average, US ecosystems sequestered carbon at an annual rate of 254 Tg C yr‑1. In forest lands, the net sink declined by 35% over the study period, largely a result of land-use legacy, increasing disturbances, and reductions in forest area due to land use conversion. Uncertainty in LULC change data contributed to a ~16% margin of error in the annual carbon sink estimate prior to 1985 (approximately ±40 Tg C yr‑1). Improvements in LULC and disturbance mapping starting in the mid-1980s reduced this uncertainty by ~50% after 1985. We conclude that changes in LULC are a critical component to understanding ecosystem carbon dynamics, and continued improvements in detection, quantification, and attribution of change have the potential to significantly reduce current uncertainties.

  17. The use of forests for the purpose of tourism: the case of Belek Tourism Center in Turkey.

    PubMed

    Kuvan, Yalçin

    2005-05-01

    The main aim of this article is to examine and review the usage of forests for the purpose of tourism in Turkey with the case study of Antalya-Belek. The use and conversion of forest lands is central to tourism development. Land use change is responsible for the majority of the negative environmental impacts of tourism on natural resources. Worldwide, forests and coastal zones are converted for the construction of tourist facilities. The rapid emergence of mass tourism development in Turkey, encouraged without considering protection and sustainable use of natural and cultural resources, has resulted in serious problems in forest areas. This paper is particularly concerned with land use change in forests (or deforestation) created by the allocation of forest lands to build tourist facilities. In Belek, a tourism center located in Antalya province's coastal areas and the fastest growing destination of the country, all tourist facilities have been established in forest lands under the status of conservation forest. Today, the Belek Conservation Forest is under severe pressure from tourism.

  18. Taxation of forest and associated land in Illinois.

    Treesearch

    David C. Baumgartner; Ronald I. Beazley

    1979-01-01

    Analyzes the operation and impact of the property tax on forest and associated land in Illinois and evaluates the potential of adjustments in the tax as an incentive to better management of forest and associated land.

  19. Earth observation data for assessment of nationwide land cover and long-term deforestation in Afghanistan

    NASA Astrophysics Data System (ADS)

    Sudhakar Reddy, C.; Saranya, K. R. L.

    2017-08-01

    This study has generated a national level spatial database of land cover and changes in forest cover of Afghanistan for the 1975-1990, 1990-2005 and 2005-2014 periods. Using these results we have analysed the annual deforestation rates, spatial changes in forests, forest types and fragmentation classes over a period of 1975 to 2014 in Afghanistan. The land cover map of 2014 provides distribution of forest (dry evergreen, moist temperate, dry temperate, pine, sub alpine) and non-forest (grassland, scrub, agriculture, wetlands, barren land, snow and settlements) in Afghanistan. The largest land cover, barren land, contributes to 56% of geographical area of country. Forest is distributed mostly in eastern Afghanistan and constitutes an area of 1.02% of geographical area in 2014. The annual deforestation rate in Afghanistan's forests for the period from 1975 to 1990 estimated as 0.06% which was declined significantly from 2005 to 2014. The predominant forest type in Afghanistan is moist temperate which shows loss of 80 km2 of area during the last four decades of the study period. At national level, the percentage of large core forest area was calculated as 52.20% in 2014.

  20. Capacity of US Forests to Maintain Existing Carbon Sequestration will be affected by Changes in Forest Disturbances and to a greater extent, the Economic and Societal Influences on Forest Management and Land Use

    NASA Astrophysics Data System (ADS)

    Joyce, L. A.; Running, S. W.; Breshears, D. D.; Dale, V.; Malmsheimer, R. W.; Sampson, N.; Sohngen, B.; Woodall, C. W.

    2012-12-01

    Increasingly the value of US forest carbon dynamics and carbon sequestration is being recognized in discussions of adaptation and mitigation to climate change. Past exploitation of forestlands in the United States for timber, fuelwood, and conversion to agriculture resulted in large swings in forestland area and terrestrial carbon dynamics. The National Climate Assessment explored the implications of current and future stressors, including climate change, to the future of forest carbon dynamics in the United States. While U.S forests and associated harvested wood products sequestered roughly 13 percent of all carbon dioxide emitted in the United States in 2010, the capacity of forests to maintain this amount of carbon sequestration will be affected by the effects of climate change on forest disturbances, tree growth and mortality, changes in species composition, and to a greater extent, the economic and societal influences on forest management and forestland use. Carbon mitigation through forest management includes three strategies: 1) land management to increase forest area (afforestation) and/or avoid deforestation; 2) carbon management in existing forests; and 3) use of wood in place of materials that require more carbon emissions to produce, in place of fossil fuels to produce energy or in wood products for carbon storage. A significant financial incentive facing many private forest owners is the value of their forest lands for conversion to urban or developed uses. In addition, consequences of large scale die-off and wildfire disturbance events from climate change pose major challenges to forestland area and forest management with potential impacts occurring up to regional scales for timber, flooding and erosion risks, other changes in water budgets, and biogeochemical changes including carbon storage. Options for carbon management on existing forests include practices that increase forest growth such as fertilization, irrigation, switch to fast-growing planting stock and shorter rotations, and weed, disease, and insect control, and increasing the interval between harvests or decreasing harvest intensity. Economic drivers will affect future carbon cycle of forests such as shifts in forest age class structure in response to markets, land-use changes such as urbanization, and forest type changes. Future changes in forestland objectives include the potential for bioenergy based on forestland resources, which is as large as 504 million acres of timberland and 91 million acres of other forest land out of the 751 million acres of U.S. forestland. Implications of forest product use for bioenergy depend on the context of specific locations such as feedstock type and prior management, land conditions, transport and storage logistics, conversion processes used to produce energy, distribution and use. Markets for energy from biomass appear to be ready to grow in response to energy pricing, policy and demand, although recent increases in the supply of natural gas have reduced urgency for new biomass projects. Beyond use in the forest industry and some residences, biopower is not a large-scale enterprise in the United States. Societal choices about forest policy will also affect the carbon cycles on public and private forestland.

  1. Implications of rural-urban migration for conservation of the Atlantic Forest and urban growth in Misiones, Argentina (1970-2030).

    PubMed

    Izquierdo, Andrea E; Grau, Héctor R; Aide, T Mitchell

    2011-05-01

    Global trends of increasing rural-urban migration and population urbanization could provide opportunities for nature conservation, particularly in regions where deforestation is driven by subsistence agriculture. We analyzed the role of rural population as a driver of deforestation and its contribution to urban population growth from 1970 to the present in the Atlantic Forest of Argentina, a global conservation priority. We created future land-use-cover scenarios based on human demographic parameters and the relationship between rural population and land-cover change between 1970 and 2006. In 2006, native forest covered 50% of the province, but by 2030 all scenarios predicted a decrease that ranged from 18 to 39% forest cover. Between 1970 and 2001, rural migrants represented 20% of urban population growth and are expected to represent less than 10% by 2030. This modeling approach shows how rural-urban migration and land-use planning can favor nature conservation with little impact on urban areas.

  2. Changes in the non-Federal land base involving forestry in western Oregon, 1961-94.

    Treesearch

    Daolan Zheng; Ralph J. Alig

    1999-01-01

    Temporal and spatial analyses of land use changes on non-Federal lands in western Oregon between 1961 and 1994 were conducted. Two distinct changes in the region were a loss of forest lands and an increase in urban areas. Neither the rates of change over time nor the spatial distribution of land converted to urban use was evenly distributed in the region. The influence...

  3. Land-cover change in the conterminous United States from 1973 to 2000

    USGS Publications Warehouse

    Sleeter, Benjamin M.; Sohl, Terry L.; Loveland, Thomas R.; Auch, Roger F.; Acevedo, William; Drummond, Mark A.; Sayler, Kristi L.; Stehman, Stephen V.

    2013-01-01

    Land-cover change in the conterminous United States was quantified by interpreting change from satellite imagery for a sample stratified by 84 ecoregions. Gross and net changes between 11 land-cover classes were estimated for 5 dates of Landsat imagery (1973, 1980, 1986, 1992, and 2000). An estimated 673,000 km2(8.6%) of the United States’ land area experienced a change in land cover at least one time during the study period. Forest cover experienced the largest net decline of any class with 97,000 km2 lost between 1973 and 2000. The large decline in forest cover was prominent in the two regions with the highest percent of overall change, the Marine West Coast Forests (24.5% of the region experienced a change in at least one time period) and the Eastern Temperate Forests (11.4% of the region with at least one change). Agriculture declined by approximately 90,000 km2 with the largest annual net loss of 12,000 km2 yr−1 occurring between 1986 and 1992. Developed area increased by 33% and with the rate of conversion to developed accelerating rate over time. The time interval with the highest annual rate of change of 47,000 km2 yr−1 (0.6% per year) was 1986–1992. This national synthesis documents a spatially and temporally dynamic era of land change between 1973 and 2000. These results quantify land change based on a nationally consistent monitoring protocol and contribute fundamental estimates critical to developing understanding of the causes and consequences of land change in the conterminous United States.

  4. Impacts of traditional land use practices on soil organic carbon and nitrogen pools of mountain ecosystems in Nepal

    NASA Astrophysics Data System (ADS)

    Giri, Anjana; Katzensteiner, Klaus

    2010-05-01

    Crop production, animal husbandry and forestry are three closely interlinked components of land use systems in the mountains of Nepal. Forests are the major source of fuel wood, construction materials, fodder and litter. The latter is used as a bedding material for livestock and forms an important component of farmyard manure. In addition forest grazing by cattle is a common practice. Excessive extraction of biomass from the forest leads to a decline of soil organic matter and nutrient contents. On the landscape scale these negative effects will partly be compensated by positive effects on soil organic matter and nutrient stocks of arable soils. The experimental data base for a quantification of such effects at the scale of communities is however poor, in particular for Nepal. Understanding the impact of subsistence farming on ecosystems is imperative in order to recommend successful and sustainable land management practices. The aim of our study is to quantify effects of land use on carbon and nitrogen pools and fluxes for mountain communities in Nepal. Results of a case study in the buffer zone area of the Sagarmatha National Park are presented. The potential vegetation comprises mixed forests of Quercus semicarpifolia, Rhododendron arboreum and Tsuga dumosa. Carbon and nitrogen stocks in soil and vegetation were quantified for three different land use types, namely: forest with low human impact, forests with high human impact and agricultural land. The scale of disturbance of the forests has been classified by visual estimation considering the percentage of litter raked, number of lopped trees, and grazing intensity assessed by signs of trampling and the number of trails. After stratification of the community area, 20 plots of 10 m radius were established (17 forest plots, 3 plots for arable land) where biometric data of the vegetation were determined and sub-samples were taken for chemical analyses. Organic layers (litter remaining after litter raking) and soil samples were collected (volumetric sampling of geometric horizons down to 1 m depth). Fluxes of carbon and nitrogen from the forests were accounted by combining results of sub samples of biomass extracted by local people during the field survey and information on amounts and source areas provided by the farmers. Also the amount of carbon and nutrients applied with farmyard manure and the extraction by harvest was determined for the arable land. First estimates of carbon and nitrogen cycling at the community level and on impacts on soil status will be presented.

  5. Land cover's refined classification based on multi source of remote sensing information fusion: a case study of national geographic conditions census in China

    NASA Astrophysics Data System (ADS)

    Cheng, Tao; Zhang, Jialong; Zheng, Xinyan; Yuan, Rujin

    2018-03-01

    The project of The First National Geographic Conditions Census developed by Chinese government has designed the data acquisition content and indexes, and has built corresponding classification system mainly based on the natural property of material. However, the unified standard for land cover classification system has not been formed; the production always needs converting to meet the actual needs. Therefore, it proposed a refined classification method based on multi source of remote sensing information fusion. It takes the third-level classes of forest land and grassland for example, and has collected the thematic data of Vegetation Map of China (1:1,000,000), attempts to develop refined classification utilizing raster spatial analysis model. Study area is selected, and refined classification is achieved by using the proposed method. The results show that land cover within study area is divided principally among 20 classes, from subtropical broad-leaved forest (31131) to grass-forb community type of low coverage grassland (41192); what's more, after 30 years in the study area, climatic factors, developmental rhythm characteristics and vegetation ecological geographical characteristics have not changed fundamentally, only part of the original vegetation types have changed in spatial distribution range or land cover types. Research shows that refined classification for the third-level classes of forest land and grassland could make the results take on both the natural attributes of the original and plant community ecology characteristics, which could meet the needs of some industry application, and has certain practical significance for promoting the product of The First National Geographic Conditions Census.

  6. Using NASA Remote Sensing Data to Reduce Uncertainty of Land-use Transitions in Global Carbon-Climate Models

    NASA Astrophysics Data System (ADS)

    Chini, L. P.; Hurtt, G. C.; Frolking, S. E.; Sahajpal, R.; Potapov, P.; Hansen, M.; Fisk, J.

    2016-12-01

    For the 5th IPCC Assessment almost all Earth System Models (ESMs) incorporated new gridded products of land-use and land-use change that were harmonized to ensure a continuous transition from historical to future data in a consistent format for all models. However, these Land-Use Harmonization (LUH) data products are estimates, constrained with data where available, and with modeling assumptions, and the remaining challenge is to quantify, and reduce, the uncertainty in these products. At the same time, satellite remote sensing of the terrestrial biosphere has also evolved. Global-scale land cover extent and change monitoring is now possible given systematically acquired earth observation data sets, advanced characterization algorithms and data intensive computing capabilities. Here we consider: how can satellite remote sensing products be used to generate (and reduce uncertainty in) new gridded maps of land-use transitions for use in coupled carbon-climate simulations? As part of the international effort to develop the next generation of land-use datasets (LUH2), new NASA remote-sensing-based maps of global forest extent and change (Hansen et al. 2013) were used as both an added constraint and diagnostic in the LUH process. Harmonizing this remote sensing data with the LUH data was a major computational challenge involving 143 billion 30m Landsat pixels, and the simulation of over 20 billion LUH unknowns. Our approach involved first harmonizing the definitions of forest loss between the observed and simulated data for the years 2000-2012. Next, new spatial patterns of historical wood harvest were calculated to match the observed forest loss transitions while simultaneously meeting all other constraints of the model, and ensuring consistency throughout the historical time-period. After reconciling definitions and developing new wood harvest patterns the LUH2 global forest loss for the period 2000-2012 was reduced from over 8.3 million km2 to 1.78 million km2 (compared with the remote-sensing-based forest loss of 2.03 million km2). Next steps are to evaluate the ability of these land-use transitions to improve the representation of land-use-related climate forcings in ESM experiments, and to then build upon the LUH framework to incorporate additional remote-sensing data constraints.

  7. Satellite-based prediction of rainfall interception by tropical forest stands of a human-dominated landscape in Central Sulawesi, Indonesia

    NASA Astrophysics Data System (ADS)

    Nieschulze, Jens; Erasmi, Stefan; Dietz, Johannes; Hölscher, Dirk

    2009-01-01

    SummaryRainforest conversion to other land use types drastically alters the hydrological cycle in which changes in rainfall interception contribute significantly to the observed differences. However, little is known about the effects of more gradual changes in forest structure and at regional scales. We studied land use types ranging from natural forest over selectively-logged forest to cacao agroforest in a lower montane region in Central Sulawesi, Indonesia, and tested the suitability of high-resolution optical satellite imagery for modeling observed interception patterns. Investigated characteristics indicating canopy structure were mean and standard deviation of reflectance values, local maxima, and self-similarity measures based on the grey level co-occurrence matrix and geostatistical variogram analysis. Previously studied and published rainfall interception data comprised twelve plots and median values per land use type ranged from 30% in natural forest to 18% in cacao agroforests. A linear regression model with local maxima, mean contrast and normalized digital vegetation index (NDVI) as regressors was able to explain more than 84% ( Radj2) of the variation encountered in the data. Other investigated characteristics did not prove significant in the regression analysis. The model yielded stable results with respect to cross-validation and also produced realistic values and spatial patterns when applied at the landscape level (783.6 ha). High values of interception were rare and localized in natural forest stands distant to villages, whereas low interception characterized the intensively used sites close to settlements. We conclude that forest use intensity significantly reduced rainfall interception and satellite image analysis can successfully be applied for its regional prediction, and most forest in the study region has already been subject to human-induced structural changes.

  8. The Importance of Seedlings Quality in Timber and Bio-energy Production on marginal lands

    NASA Astrophysics Data System (ADS)

    Fragkiskakis, Nikitas; Kiourtsis, Fotios; Keramitzis, Dimitrios; Papatheodorou, Ioannis; Georgiadou, Margarita; Repmann, Frank; Gerwin, Werner

    2017-04-01

    One of the main issues that the forest sector is facing is to achieve a balance between the demand for biomass &wood production and the need to preserve the sustainability and biodiversity of forest ecosystems. The purposes of the new approaches are to ensure more efficient management of ecosystems and implement intensive forestry that will increase biomass production & timber yields. To achieve this, we need to determine the macroeconomic potential of the various options available, including the use of biotechnology and genetics. The success of the forests plantations capacity may be solved through forest certification, based on: a) Stabilization of the forests and soils structure. b) Hierarchy of biomass production in the forest's management process. c) Οrganization and implementation of effective plantation on marginal lands. d) Maintenance or increase of forest productivity by introducing new items as and when they are required. It is important to evaluate of the influence of factors such as the quality of soils of plantation areas, the utilization of the genetic resources and the management of forest operations with the environmental economic criteria such as net present value of benefits (NPV) and the corresponding flow annuities (EACF).The existing evaluations studies showed that the quality of the plantation areas has the most influence and through validated quality seed production can generate an increase in the NPV up to 73%. The importance of seedlings quality in timber and bio-energy production on marginal lands based on the literature it is estimated according to the heredity of the characteristics of the wood structure (except shrinkage). This clearly indicate that seedlings with the appropriate morphological characteristics can significantly improve the growth performance and help to support the development of biomass plantations oriented in tailor-made timber and bio-energy production.

  9. A Tale of Two Forest Carbon Assessments in the Eastern United States: Forest Use Versus Cover as a Metric of Change

    Treesearch

    C. W. Woodall; B. F. Walters; M. B. Russell; J. W. Coulston; G. M. Domke; A. W. D' Amato; P. A. Sowers

    2016-01-01

    The dynamics of land-use practices (for example, forest versus settlements) is often a major driver of changes in terrestrial carbon (C). As the management and conservation of forest land uses are considered a means of reducing future atmospheric CO2 concentrations, the monitoring of forest C stocks and stock change by categories of land-use...

  10. Forest Fuels Management in Europe

    Treesearch

    Gavriil Xanthopoulos; David Caballero; Miguel Galante; Daniel Alexandrian; Eric Rigolot; Raffaella Marzano

    2006-01-01

    Current fuel management practices vary considerably between European countries. Topography, forest and forest fuel characteristics, size and compartmentalization of forests, forest management practices, land uses, land ownership, size of properties, legislation, and, of course, tradition, are reasons for these differences.Firebreak construction,...

  11. No signs of soil organic matter accumulation and of changes in nutrient (N-P) limitation during tropical secondary forest succession in the wet tropics of Southwest Costa Rica

    NASA Astrophysics Data System (ADS)

    Wanek, Wolfgang; Oberdorfer, Sarah; Oberleitner, Florian; Hietz, Peter; Dullinger, Stefan; Zehetner, Franz

    2017-04-01

    Secondary forests comprise large tracts of the tropical land area, due to ongoing changes in land-use, including selective logging and agricultural land abandonment. Recent meta-analyses demonstrated that temperature and precipitation are key drivers of forest ecosystem recovery, particularly of soil organic carbon (SOC) build-up, where losses of SOC after deforestation and cultivation (and its recovery after abandonment) were largest in the wet tropical lowlands. However, wet lowland tropical chronosequences are strongly underrepresented (<10% of all data with MAP >4000 mm) and the large variance in this group may be explained by soil type and soil nutrients. Moreover strong effects of (and changes in) nutrient limitation, with an intermittent change from P to N limitation of plant production in young tropical secondary forests, have been identified in a few studies. For this study we established a tropical secondary forest chronosequence, identifying old pastures (>40 years), young to old secondary forests (1-55 years) and old-growth forests based on aerial photographs and satellite images dating from the 1960s to the 2010s in SW Costa Rica, a region where mean annual temperature is 27°C and mean annual precipitation between 5000 and 6000 mm. Soil samples were taken incrementally to 45 cm depth, sieved and soils and roots collected and analysed. Bulk density decreased and SOC content increased from pastures to secondary forests and old-growth forests, with the net effect on soil C stocks (between 63 and 92 Mg ha-1 (0-45 cm)) being neutral. SOC stocks were generally high, due to high fine root densities and associated high root inputs to mineral soils in pastures and forests. SOC showed relatively slow turnover times, based on root and soil delta13C values, with turnover times of 120 and 210 years in topsoils and subsoils, indicating strong stabilization of SOM due to mineral binding and high aggregate stability (>80%). At the same time we found no change in soil N and P availability, but high microbial N:P ratios and very low Olsen P, indicating P limitation across the whole chronosequence due to strong chemical soil weathering and P fixation to Fe and Al oxides. In contrast we found an intermittent decrease in soil pH and in base saturation from pastures to young secondary forests and later increases towards old-growth forests. This dip in base saturation is most likely related to the high demand for base cations during rapid biomass build-up (particularly Ca-rich wood) during early secondary succession which is later counterbalanced by cation pumping by deep rooting trees from cation-rich deep soil layers and redistribution to the topsoils through litterfall and root turnover. The presented results on SOM and nutrient dynamics will be set in relation to aboveground biomass recovery at the same sites, and compared to other forest chronosequences in the tropics, to better understand climate and nutrient effects on the recovery of tropical forests after abandonment of agricultural land.

  12. Soil carbon and nitrogen in 28-year-old land uses in reclaimed coalmine soils of Ohio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shrestha, R.K.; Lal, R.

    2007-11-15

    Carbon (C) and nitrogen (N) play an important role in the restoration of ecosystem function of reclaimed mine soils (RMSs). Postreclamation land use in RMSs affects soil C and N pools and fluxes. We compared the effects of 28-yr-old postreclamation land uses (forest, hay, and pasture) on selected chemical properties of soil, and C and N pools in reference to undisturbed forest and moderately disturbed agricultural land use in southeastern Ohio. The electrical conductivity was higher in RMSs under hay than that in pasture and forest land uses. The RMSs under pasture, hay, and forest had moderately acidic, neutral tomore » slightly alkaline, and slightly alkaline pH, respectively. In the 0- to 5-cm soil depth, soil organic C(SOC) was higher in RMSs under pasture by 99% and under hay by 52% over that under forest. Similarly, total nitrogen (TN) was higher in RMSs under pasture by 98% and under hay by 43% over that under forest. Aggregate-associated SOC concentration in the 0- to 5-cm depth decreased in the order of RMSs under hay > RMSs under pasture > RMSs under forest. The SOC pools in the 0- to 30-cm depth decreased in the order of RMSs under hay = RMSs under pasture > RMSs under forest = undisturbed forest = agriculture land use. Nitrogen pools followed a similar trend. Hay land use has a better potential for improving soil quality in RMSs by enhancing chemical properties and SOC and TN pools than forest or pasture land uses.« less

  13. Microscale photo interpretation of forest and nonforest land classes

    NASA Technical Reports Server (NTRS)

    Aldrich, R. C.; Greentree, W. J.

    1972-01-01

    Remote sensing of forest and nonforest land classes are discussed, using microscale photointerpretation. Results include: (1.) Microscale IR color photography can be interpreted within reasonable limits of error to estimate forest area. (2.) Forest interpretation is best on winter photography with 97 percent or better accuracy. (3.) Broad forest types can be classified on microscale photography. (4.) Active agricultural land is classified most accurately on early summer photography. (5.) Six percent of all nonforest observations were misclassified as forest.

  14. Nebraska's forests, 2005

    Treesearch

    Dacia M. Meneguzzo; Brett J. Butler; Susan J. Crocker; David E. Haugen; W. Keith Moser; Charles H. Perry; Barry T. Wilson; Christopher W. Woodall

    2008-01-01

    Results of the first annual inventory of Nebraska's forests (2001-05) show an estimated 1.24 million acres of forest land; 1.17 million acres meet the definition of timberland. Softwood forest types account for one-third of all forest land area, with ponderosa pine being the most prevalent type. Hardwood forest types comprise 58 percent of Nebraska's forest...

  15. Managing Carbon on Federal Public Lands: Opportunities and Challenges in Southwestern Colorado.

    PubMed

    Dilling, Lisa; Kelsey, Katharine C; Fernandez, Daniel P; Huang, Yin D; Milford, Jana B; Neff, Jason C

    2016-08-01

    Federal lands in the United States have been identified as important areas where forests could be managed to enhance carbon storage and help mitigate climate change. However, there has been little work examining the context for decision making for carbon in a multiple-use public land environment, and how science can support decision making. This case study of the San Juan National Forest and the Bureau of Land Management Tres Rios Field Office in southwestern Colorado examines whether land managers in these offices have adequate tools, information, and management flexibility to practice effective carbon stewardship. To understand how carbon was distributed on the management landscape we added a newly developed carbon map for the SJNF-TRFO area based on Landsat TM texture information (Kelsey and Neff in Remote Sens 6:6407-6422. doi: 10.3390/rs6076407 , 2014). We estimate that only about 22 % of the aboveground carbon in the SJNF-TRFO is in areas designated for active management, whereas about 38 % is in areas with limited management opportunities, and 29 % is in areas where natural processes should dominate. To project the effects of forest management actions on carbon storage, staff of the SJNF are expected to use the Forest Vegetation Simulator (FVS) and extensions. While identifying FVS as the best tool generally available for this purpose, the users and developers we interviewed highlighted the limitations of applying an empirically based model over long time horizons. Future research to improve information on carbon storage should focus on locations and types of vegetation where carbon management is feasible and aligns with other management priorities.

  16. Managing Carbon on Federal Public Lands: Opportunities and Challenges in Southwestern Colorado

    NASA Astrophysics Data System (ADS)

    Dilling, Lisa; Kelsey, Katharine C.; Fernandez, Daniel P.; Huang, Yin D.; Milford, Jana B.; Neff, Jason C.

    2016-08-01

    Federal lands in the United States have been identified as important areas where forests could be managed to enhance carbon storage and help mitigate climate change. However, there has been little work examining the context for decision making for carbon in a multiple-use public land environment, and how science can support decision making. This case study of the San Juan National Forest and the Bureau of Land Management Tres Rios Field Office in southwestern Colorado examines whether land managers in these offices have adequate tools, information, and management flexibility to practice effective carbon stewardship. To understand how carbon was distributed on the management landscape we added a newly developed carbon map for the SJNF-TRFO area based on Landsat TM texture information (Kelsey and Neff in Remote Sens 6:6407-6422. doi: 10.3390/rs6076407, 2014). We estimate that only about 22 % of the aboveground carbon in the SJNF-TRFO is in areas designated for active management, whereas about 38 % is in areas with limited management opportunities, and 29 % is in areas where natural processes should dominate. To project the effects of forest management actions on carbon storage, staff of the SJNF are expected to use the Forest Vegetation Simulator (FVS) and extensions. While identifying FVS as the best tool generally available for this purpose, the users and developers we interviewed highlighted the limitations of applying an empirically based model over long time horizons. Future research to improve information on carbon storage should focus on locations and types of vegetation where carbon management is feasible and aligns with other management priorities.

  17. [Impact of Land Utilization Pattern on Distributing Characters of Labile Organic Carbon in Soil Aggregates in Jinyun Mountain].

    PubMed

    Li, Rui; Jiang, Chang-sheng; Hao, Qing-ju

    2015-09-01

    Four land utilization patterns were selected for this study in Jinyun mountain, including subtropical evergreen broad-leaved forest (abbreviation: forest), sloping farmland, orchard and abandoned land. Soil samples were taken every 10 cm in the depth of 60 cm soil and proportions of large macroaggregates (> 2 mm), small macroaggregates (0. 25-2 mm), microaggregates (0. 053 - 0. 25 mm) and silt + clay (<0. 053 mm) were obtained by wet sieving method to measure the content of organic carbon and labile organic carbon in each aggregate fraction and analyze impacts of land uses on organic carbon and labile organic carbon of soil aggregates. LOC content of four soil aggregates were significantly reduced with the increase of soil depth; in layers of 0-60 cm soil depth, our results showed that LOC contents of forest and abandoned land were higher than orchard and sloping farmland. Reserves of labile organic carbon were estimated by the same soil quality, it revealed that forest (3. 68 Mg.hm-2) > abandoned land (1. 73 Mg.hm-2) > orchard (1. 43 Mg.hm-2) >sloping farmland (0.54 Mg.hm-2) in large macroaggregates, abandoned land (7.77, 5. 01 Mg.hm-2) > forest (4. 96, 2.71 Mg.hm-2) > orchard (3. 33, 21. 10 Mg.hm-2) > sloping farmland (1. 68, 1. 35 Mg.hm-2) in small macroaggregates and microaggregates, and abandoned land(4. 32 Mg.hm-2) > orchard(4. 00 Mg.hm-2) > forest(3. 22 Mg.hm-2) > sloping farmland (2.37 Mg.hm-2) in silt + clay, forest and abandoned land were higher than orchard and sloping farmland in other three soil aggregates except silt + clay. It was observed that the level of organic carbon and labile organic carbon were decreased when bringing forest under cultivation to orchard or farmland, and augments on organic carbon and labile organic carbon were found after exchanging farmland to abandoned land. The most reverses of forest and abandoned land emerged in small macroaggregates, orchard and sloping farmland were in microaggregates. That was, during the transformations of land utilization pattern, soil aggregates with bigger size were easier to accumulate or lose labile organic carbon. Allocation ratios of labile organic carbon to soil organic carbon under four land uses were decreased as the soil depth added. Allocation ratios of orchard and sloping farmland were a bit higher than forest and abandoned land, which indicated that organic carbon of forest and abandoned land were more steady and available for soil as a carbon sink, meanwhile, the forest and abandoned land would avoid more CO2 diffusing to the atmosphere from the decomposition of soil organic carbon.

  18. 78 FR 51741 - Notice of Application for Withdrawal and Opportunity for Public Meeting; California

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-21

    ... approximately 541 acres of National Forest System lands in the Shasta-Trinity National Forest for a period of 20..., Shasta-Trinity National Forest Headquarters, 530-226-2500 during regular business hours, 8 a.m. to 4:30 p... County, California. The above-described lands being National Forest System lands, the Secretary shall...

  19. Impacts of all terrain vehicles (ATV) on National Forest lands and grasslands [Abstract

    Treesearch

    Randy B. Foltz; Kristina A. Yanosek

    2005-01-01

    The US Forest Service has identified unmanaged all terrain vehicle (ATV) use as a threat to forested lands and grasslands. Some undesirable impacts include severely eroded soils, usercreated unplanned roads, disrupted wetland ecosystems, as well as general habitat destruction and degraded water quality throughout forested lands. More insight on how ATV use affects...

  20. Land Use, Recreation, and Wildlife Habitats: GIS Applications Using FIA Plot Data

    Treesearch

    Victor A. Rudis

    2001-01-01

    Spatial contexts govern whether and how land is used. Forest surveys inventory land uses from sampled plots and provide common forest resource summaries with limited information about associated nearby uses, or the landscape context. I used the USDA Forest Service's Forest Inventory and Analysis program of the South-Central States survey region (Alabama, Arkansas...

  1. Development effects on private forest management: a critical look at the evidence.

    Treesearch

    J.D. Kline

    2007-01-01

    The timber production and ecological effects of forest land development are influenced by both the rate and spatial distribution of forest land development, and how remaining undeveloped forest lands are managed. Regarding effects on management, research conducted in the U.S. South and in Oregon suggests that development can reduce the intensity with which landowners...

  2. Land use history, environment, and tree composition in a tropical forest

    Treesearch

    Jill Thompson; Nicholas Brokaw; Jess K. Zimmerman; Robert B. Waide; Edwin M. III Everham; D. Jean Lodge; Charlotte M. Taylor; Diana Garcia-Montiel; Marcheterre Fluet

    2002-01-01

    The effects of historical land use on tropical forest must be examined to understand present forest characteristics and to plan conservation strategies. We compared the effects of past land use, topography, soil type, and other environmental variables on tree species composition in a subtropical wet forest in the Luquillo Mountains, Puerto Rico. The study involved...

  3. The forest-land owners of New York

    Treesearch

    Thomas W. Birch

    1983-01-01

    Information about the attitudes and objectives of the private forest-land owners is essential to understanding New York's forest resources. Ninety-four percent of New York's 15.4 million acres of commercial forest land is in 506,500 private ownerships. Eighty-nine percent of these ownerships are individual and joint ownerships. A majority, 66 percent of these...

  4. Land cover changes assessment using object-based image analysis in the Binah River watershed (Togo and Benin)

    NASA Astrophysics Data System (ADS)

    Badjana, Hèou Maléki; Helmschrot, Jörg; Selsam, Peter; Wala, Kpérkouma; Flügel, Wolfgang-Albert; Afouda, Abel; Akpagana, Koffi

    2015-10-01

    In this study, land cover changes between 1972 and 2013 were investigated in the Binah River watershed (North of Togo and Benin) using remote sensing and geographic information system technologies. Multitemporal satellite images—Landsat MSS (1972), TM (1987), and OLI-TIRS (2013)—were processed using object-based image analysis and post-classification comparison methods including landscape metrics and changes trajectories analysis. Land cover maps referring to five main land cover classes, namely, agricultural land, forest land, savannah, settlements, and water bodies, were produced for each acquisition date. The overall accuracies were 76.64% (1972), 83.52% (1987), and 88.84% (2013) with respective Kappa statistics of 0.69, 0.78, and 0.86. The assessment of the spatiotemporal pattern of land cover changes indicates that savannah, the main vegetation type, has undergone the most dominant change, decreasing from 67% of the basin area in 1972 to 56% in 1987 and 33% in 2013. At the same time, agricultural land has significantly increased from 15% in 1972 to 24% in 1987 and 43% in 2013, while some proportions of agricultural land were converted to savannah relating to fallow agriculture. In total, more than 55% of the landscape experienced changes between 1972 and 2013. These changes are primarily due to human activities and population growth. In addition, agricultural activities significantly contributed to the increase in the number of patches, degree of division, and splitting index of forest and savannah vegetations and the decrease in their effective mesh sizes. These results indicate further fragmentation of forest and savannah vegetations between 1972 and 2013. Further research is needed to quantitatively evaluate the influences of individual factors of human activities and to separate these from the impacts of climate change-driven disturbances.

  5. Carbon emissions from agricultural expansion and intensification in the Chaco.

    PubMed

    Baumann, Matthias; Gasparri, Ignacio; Piquer-Rodríguez, María; Gavier Pizarro, Gregorio; Griffiths, Patrick; Hostert, Patrick; Kuemmerle, Tobias

    2017-05-01

    Carbon emissions from land-use changes in tropical dry forest systems are poorly understood, although they are likely globally significant. The South American Chaco has recently emerged as a hot spot of agricultural expansion and intensification, as cattle ranching and soybean cultivation expand into forests, and as soybean cultivation replaces grazing lands. Still, our knowledge of the rates and spatial patterns of these land-use changes and how they affected carbon emissions remains partial. We used the Landsat satellite image archive to reconstruct land-use change over the past 30 years and applied a carbon bookkeeping model to quantify how these changes affected carbon budgets. Between 1985 and 2013, more than 142 000 km 2 of the Chaco's forests, equaling 20% of all forest, was replaced by croplands (38.9%) or grazing lands (61.1%). Of those grazing lands that existed in 1985, about 40% were subsequently converted to cropland. These land-use changes resulted in substantial carbon emissions, totaling 824 Tg C between 1985 and 2013, and 46.2 Tg C for 2013 alone. The majority of these emissions came from forest-to-grazing-land conversions (68%), but post-deforestation land-use change triggered an additional 52.6 Tg C. Although tropical dry forests are less carbon-dense than moist tropical forests, carbon emissions from land-use change in the Chaco were similar in magnitude to those from other major tropical deforestation frontiers. Our study thus highlights the urgent need for an improved monitoring of the often overlooked tropical dry forests and savannas, and more broadly speaking the value of the Landsat image archive for quantifying carbon fluxes from land change. © 2016 John Wiley & Sons Ltd.

  6. 77 FR 42695 - Arapaho and Roosevelt National Forests and Pawnee National Grassland; Boulder and Gilpin County...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-20

    ... Heading to read: The project area includes 615 acres of National Forest System (NFS) lands and 435 acres of private lands. The Forest Service only maintains jurisdiction over NFS lands; however, to fulfill...

  7. Assessment of land use change in the coterminous United States and Alaska for global assessment of forest loss conducted by the food and agricultural organization of the United Nations

    Treesearch

    Tanushree Biswas; Mike Walterman; Paul Maus; Kevin A. Megown; Sean P. Healey; Kenneth Brewer

    2012-01-01

    The Food and Agricultural Organization (FAO) of the United Nations conducted a global assessment for forest change in 2010 using satellite imagery from 1990, 2000, and 2005. The U.S. Forest Service was responsible for assessing forest change in the United States. A polygon-based, stratified sampling design developed by FAO was used to assess change in forest area...

  8. The National Visitor Use Monitoring methodology and final results for round 1

    Treesearch

    S.J. Zarnoch; E.M. White; D.B.K. English; Susan M. Kocis; Ross Arnold

    2011-01-01

    A nationwide, systematic monitoring process has been developed to provide improved estimates of recreation visitation on National Forest System lands. Methodology is presented to provide estimates of site visits and national forest visits based on an onsite sampling design of site-days and last-exiting recreationists. Stratification of the site days, based on site type...

  9. Faustmann and the forestry tradition of outcome-based performance measures

    Treesearch

    Peter J. Ince

    1999-01-01

    The concept of land expectation value developed by Martin Faustmann may serve as a paradigm for outcome-based performance measures in public forest management if the concept of forest equity value is broadened to include social and environmental benefits and costs, and sustainability. However, anticipation and accurate evaluation of all benefits and costs appears to...

  10. No herbicide residues found in smoke from prescribed fires

    Treesearch

    Charles K. McMahon; Parshall B. Bush

    1992-01-01

    Some concerns have been expressed by workers conducting prescribed burns on forest lands treated with herbicides.The major concern has based on speculation that hazardous levels of airborne herbicide residues may be present in the smoke near breathing zones of forest workers. Much of this speculation is based on fire hazard caution statements found on product labels...

  11. Postfire management in forested public lands of the western USA

    USGS Publications Warehouse

    Beschta, R.L.; Rhodes, J.J.; Kauffman, J.B.; Gresswell, Robert E.; Minshall, G.W.; Frissell, C.A.; Perry, D.A.; Hauer, R.

    2004-01-01

    Forest ecosystems in the western United States evolved over many millennia in response to disturbances such as wildfires. Land use and management practices have altered these ecosystems, however, including fire regimes in some areas. Forest ecosystems are especially vulnerable to postfire management practices because such practices may influence forest dynamics and aquatic systems for decades to centuries. Thus, there is an increasing need to evaluate the effect of postfire treatments from the perspective of ecosystem recovery. We examined, via the published literature and our collective experience, the ecological effects of some common postfire treatments. Based on this examination, promising postfire restoration measures include retention of large trees, rehabilitation of firelines and roads, and, in some cases, planting of native species. The following practices are generally inconsistent with efforts to restore ecosystem functions after fire: seeding exotic species, livestock grazing, placement of physical structures in and near stream channels, ground-based postfire logging, removal of large trees, and road construction. Practices that adversely affect soil integrity, persistence or recovery of native species, riparian functions, or water quality generally impede ecological recovery after fire. Although research provides a basis for evaluating the efficacy of postfire treatments, there is a continuing need to increase our understanding of the effects of such treatments within the context of societal and ecological goals for forested public lands of the western United States.

  12. Assessing effects of mitigation strategies for global climate change with an intertemporal model of the U.S. forest and agriculture sectors.

    Treesearch

    Ralph J. Alig; Darius M. Adams; Bruce McCarl; J.M. Callaway; Steven Winnett

    1997-01-01

    A model of product and land markets in U.S. forest and agricultural sectors is used to examine the private forest management, land use, and market implications of carbon sequestration policies implemented in a "least social cost" fashion. Results suggest: policy-induced land use changes may generate compensating land use shifts through markets: land use...

  13. 76 FR 62694 - Appeal of Decisions Relating to Occupancy or Use of National Forest System Lands and Resources

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-11

    ... System (NFS) lands and resources. The appeal process for decisions related to occupancy or use of NFS... of certain types of Forest Service decisions affecting their occupancy or use of NFS lands or... use NFS lands and resources to appeal certain Forest Service decisions with regard to the issuance...

  14. [Effects of land use change on landscape pattern vulnerability in Yinchuan Basin, Northwest China].

    PubMed

    Ren, Zhi-yuan; Zhang, Han

    2016-01-01

    Landscape pattern vulnerability reflects the instability and sensitivity of ecological system to external disturbances and helps to understand the status and trend of ecological environment. This paper used landscape sensitivity index and landscape adaptability index to construct the landscape pattern vulnerability index of Yinchuan Basin, and got the distribution of the landscape pattern vulnerability in 2001 and 2013. Our study explored the effect of the land use degree composite index, the integrated land use dynamic degree, the importance index of land use change and various types of land transfer on landscape pattern vulnerability. Results showed that the land use degree composite index was mainly caused by the increase of the arable land, forest and the construction land. The higher proportion of the arable land or forest, the lower the vulnerability was, and the construction land had the opposite effect. With the increase of integrated land use dynamic degree, the construction land significantly increased the vulnerability, followed by grassland, and the forest significantly decreased the vulnerability, followed by the arable land. As the importance index of land use change increasing, the arable land could significantly decrease the vulnerability, followed by the forest, the grassland had a weaker trend with no obvious pattern, and the construction land significantly increased the vulnerability. When the arable land, forest and the grassland were the maintypes of land use transfer, the increasing proportion of the construction land increased the vulnerability. When the construction land was the main type of land use transfer, the grassland and forest improved the vulnerability and the arable land had the opposite effect. Changes in the number of land use types influenced the spatial structure of land use to a certain extent, which could offer a reference on using and developing the land resources scientifically. The ternary diagram could reflect the impact of various types of and use change on the landscape vulnerability, which diagram enriched the content of the research on the land use and change.

  15. Forest dynamics in the U.S. indicate disproportionate attrition in western forests, rural areas and public lands

    PubMed Central

    2017-01-01

    Forests are experiencing significant changes; studying geographic patterns in forests is critical in understanding the impact of forest dynamics to biodiversity, soil erosion, water chemistry and climate. Few studies have examined forest geographic pattern changes other than fragmentation; however, other spatial processes of forest dynamics are of equal importance. Here, we study forest attrition, the complete removal of forest patches, that can result in complete habitat loss, severe decline of population sizes and species richness, and shifts of local and regional environmental conditions. We aim to develop a simple yet insightful proximity-based spatial indicator capturing forest attrition that is independent of spatial scale and boundaries with worldwide application potential. Using this proximity indicator, we evaluate forest attrition across ecoregions, land ownership and urbanization stratifications across continental United States of America. Nationally, the total forest cover loss was approximately 90,400 km2, roughly the size of the state of Maine, constituting a decline of 2.96%. Examining the spatial arrangement of this change the average FAD was 3674m in 1992 and increased by 514m or 14.0% in 2001. Simulations of forest cover loss indicate only a 10m FAD increase suggesting that the observed FAD increase was more than an order of magnitude higher than expected. Furthermore, forest attrition is considerably higher in the western United States, in rural areas and in public lands. Our mathematical model (R2 = 0.93) supports estimation of attrition for a given forest cover. The FAD metric quantifies forest attrition across spatial scales and geographic boundaries and assesses unambiguously changes over time. The metric is applicable to any landscape and offers a new complementary insight on forest landscape patterns from local to global scales, improving future exploration of drivers and repercussions of forest cover changes and supporting more informative management of forest carbon, changing climate and species biodiversity. PMID:28225787

  16. Forest dynamics in the U.S. indicate disproportionate attrition in western forests, rural areas and public lands.

    PubMed

    Yang, Sheng; Mountrakis, Giorgos

    2017-01-01

    Forests are experiencing significant changes; studying geographic patterns in forests is critical in understanding the impact of forest dynamics to biodiversity, soil erosion, water chemistry and climate. Few studies have examined forest geographic pattern changes other than fragmentation; however, other spatial processes of forest dynamics are of equal importance. Here, we study forest attrition, the complete removal of forest patches, that can result in complete habitat loss, severe decline of population sizes and species richness, and shifts of local and regional environmental conditions. We aim to develop a simple yet insightful proximity-based spatial indicator capturing forest attrition that is independent of spatial scale and boundaries with worldwide application potential. Using this proximity indicator, we evaluate forest attrition across ecoregions, land ownership and urbanization stratifications across continental United States of America. Nationally, the total forest cover loss was approximately 90,400 km2, roughly the size of the state of Maine, constituting a decline of 2.96%. Examining the spatial arrangement of this change the average FAD was 3674m in 1992 and increased by 514m or 14.0% in 2001. Simulations of forest cover loss indicate only a 10m FAD increase suggesting that the observed FAD increase was more than an order of magnitude higher than expected. Furthermore, forest attrition is considerably higher in the western United States, in rural areas and in public lands. Our mathematical model (R2 = 0.93) supports estimation of attrition for a given forest cover. The FAD metric quantifies forest attrition across spatial scales and geographic boundaries and assesses unambiguously changes over time. The metric is applicable to any landscape and offers a new complementary insight on forest landscape patterns from local to global scales, improving future exploration of drivers and repercussions of forest cover changes and supporting more informative management of forest carbon, changing climate and species biodiversity.

  17. Forest edge burning in the Brazilian Amazon promoted by escaping fires from managed pastures

    NASA Astrophysics Data System (ADS)

    Cano-Crespo, Ana; Oliveira, Paulo J. C.; Boit, Alice; Cardoso, Manoel; Thonicke, Kirsten

    2015-10-01

    Understanding to what extent different land uses influence fire occurrence in the Amazonian forest is particularly relevant for its conservation. We evaluate the relationship between forest fires and different anthropogenic activities linked to a variety of land uses in the Brazilian states of Mato Grosso, Pará, and Rondônia. We combine the new high-resolution (30 m) TerraClass land use database with Moderate Resolution Imaging Spectroradiometer burned area data for 2008 and the extreme dry year of 2010. Excluding the non-forest class, most of the burned area was found in pastures, primary and secondary forests, and agricultural lands across all three states, while only around 1% of the total was located in deforested areas. The trend in burned area did not follow the declining deforestation rates from 2001 to 2010, and the spatial overlap between deforested and burned areas was only 8% on average. This supports the claim of deforestation being disconnected from burning since 2005. Forest degradation showed an even lower correlation with burned area. We found that fires used in managing pastoral and agricultural lands that escape into the neighboring forests largely contribute to forest fires. Such escaping fires are responsible for up to 52% of the burned forest edges adjacent to burned pastures and up to 22% of the burned forest edges adjacent to burned agricultural fields, respectively. Our findings call for the development of control and monitoring plans to prevent fires from escaping from managed lands into forests to support effective land use and ecosystem management.

  18. Carbon budget of tropical forests in Southeast Asia and the effects of deforestation: an approach using a process-based model and field measurements

    NASA Astrophysics Data System (ADS)

    Adachi, M.; Ito, A.; Ishida, A.; Kadir, W. R.; Ladpala, P.; Yamagata, Y.

    2011-09-01

    More reliable estimates of the carbon (C) stock within forest ecosystems and C emission induced by deforestation are urgently needed to mitigate the effects of emissions on climate change. A process-based terrestrial biogeochemical model (VISIT) was applied to tropical primary forests of two types (a seasonal dry forest in Thailand and a rainforest in Malaysia) and one agro-forest (an oil palm plantation in Malaysia) to estimate the C budget of tropical ecosystems in Southeast Asia, including the impacts of land-use conversion. The observed aboveground biomass in the seasonal dry tropical forest in Thailand (226.3 t C ha-1) and the rainforest in Malaysia (201.5 t C ha-1) indicate that tropical forests of Southeast Asia are among the most C-abundant ecosystems in the world. The model simulation results in rainforests were consistent with field data, except for the NEP, however, the VISIT model tended to underestimate C budget and stock in the seasonal dry tropical forest. The gross primary production (GPP) based on field observations ranged from 32.0 to 39.6 t C ha-1 yr-1 in the two primary forests, whereas the model slightly underestimated GPP (26.5-34.5 t C ha-1 yr-1). The VISIT model appropriately captured the impacts of disturbances such as deforestation and land-use conversions on the C budget. Results of sensitivity analysis showed that the proportion of remaining residual debris was a key parameter determining the soil C budget after the deforestation event. According to the model simulation, the total C stock (total biomass and soil C) of the oil palm plantation was about 35% of the rainforest's C stock at 30 yr following initiation of the plantation. However, there were few field data of C budget and stock, especially in oil palm plantation. The C budget of each ecosystem must be evaluated over the long term using both the model simulations and observations to understand the effects of climate and land-use conversion on C budgets in tropical forest ecosystems.

  19. Research on Land Ecological Condition Investigation and Monitoring Technology

    NASA Astrophysics Data System (ADS)

    Lv, Chunyan; Guo, Xudong; Chen, Yuqi

    2017-04-01

    The ecological status of land reflects the relationship between land use and environmental factors. At present, land ecological situation in China is worrying. According to the second national land survey data, there are about 149 million acres of arable land located in forests and grasslands area in Northeast and Northwest of China, Within the limits of the highest flood level, at steep slope above 25 degrees; about 50 million acres of arable land has been in heavy pollution; grassland degradation is still serious. Protected natural forests accounted for only 6% of the land area, and forest quality is low. Overall, the ecological problem has been eased, but the local ecological destruction intensified, natural ecosystem in degradation. It is urgent to find out the situation of land ecology in the whole country and key regions as soon as possible. The government attaches great importance to ecological environment investigation and monitoring. Various industries and departments from different angles carry out related work, most of it about a single ecological problem, the lack of a comprehensive surveying and assessment of land ecological status of the region. This paper established the monitoring index system of land ecological condition, including Land use type area and distribution, quality of cultivated land, vegetation status and ecological service, arable land potential and risk, a total of 21 indicators. Based on the second national land use survey data, annual land use change data and high resolution remote sensing data, using the methods of sample monitoring, field investigation and statistical analysis to obtain the information of each index, this paper established the land ecological condition investigation and monitoring technology and method system. It has been improved, through the application to Beijing-Tianjin-Hebei Urban Agglomeration, the northern agro-pastoral ecological fragile zone, and 6 counties (cities).

  20. A Pilot Sampling Design for Estimating Outdoor Recreation Site Visits on the National Forests

    Treesearch

    Stanley J. Zarnoch; S.M. Kocis; H. Ken Cordell; D.B.K. English

    2002-01-01

    A pilot sampling design is described for estimating site visits to National Forest System lands. The three-stage sampling design consisted of national forest ranger districts, site days within ranger districts, and last-exiting recreation visitors within site days. Stratification was used at both the primary and secondary stages. Ranger districts were stratified based...

  1. Forecasting poductivity in forest fire suppression operations: A methodological approach based on suppression difficulty analysis and documented experience

    Treesearch

    Francisco Rodríguez y Silva; Armando González-Cabán

    2013-01-01

    The abandonment of land, the high energy load generated and accumulated by vegetation covers, climate change and interface scenarios in Mediterranean forest ecosystems are demanding serious attention to forest fire conditions. This is particularly true when dealing with the budget requirements for undertaking protection programs related to the state of current and...

  2. Forest health restoration in south-central Alaska: a problem analysis.

    Treesearch

    Darrell W. Ross; Gary E. Daterman; Jerry L. Boughton; Thomas M. Quigley

    2001-01-01

    A spruce beetle outbreak of unprecedented size and intensity killed most of the spruce trees on millions of acres of forest land in south-central Alaska in the 1990s. The tree mortality is affecting every component of the ecosystem, including the socioeconomic culture dependent on the resources of these vast forests. Based on information obtained through workshops and...

  3. Estimating erosion risks associated with logging and forest roads in northwestern California

    Treesearch

    Raymond M. Rice; Jack Lewis

    1991-01-01

    Abstract - Erosion resulting from logging and road building has long been a concern to forest managers and the general public. An objective methodology was developed to estimate erosion risk on forest roads and in harvest areas on private land in northwestern California. It was based on 260 plots sampled from the area harvested under 415 Timber Harvest Plans...

  4. Comparison of forest area data in the Chesapeake Bay Watershed

    Treesearch

    Tonya W. Lister; Andrew J. Lister

    2012-01-01

    The Chesapeake Bay, the largest estuary in the United States, has been designated by executive order as a national treasure. There is much interest in monitoring the status and trends in forest area within the bay, especially since maintaining forest cover is key to bay restoration efforts. The Chesapeake Bay Land Cover Data Series (CBLCD), a Landsat-based, multi-...

  5. Historic resource production from USDA Forest Service northern and intermountain region lands.

    Treesearch

    David Calkin

    1999-01-01

    This paper presents long-term resource production from National Forests in the Northern and Intermountain Regions, Regions 1 and 4, respectively. A historical data series of timber harvest and grazing levels on National Forests and lumber production and prices for these regions is developed. Significant trends within the data set are examined. A simple model based on...

  6. Climate-induced changes in vulnerability to biological threats in the southern United States

    Treesearch

    Rabiu Olatinwo; Qinfeng Guo; Songlin Fei; William Otrosina; Kier Klepzig; Douglas Streett

    2014-01-01

    Forest land managers face the challenges of preparing their forests for the impacts of climate change. However, climate change adds a new dimension to the task of developing and testing science-based management options to deal with the effects of stressors on forest ecosystems in the southern United States. The large spatial scale and complex interactions make...

  7. Development of forest regeneration imputation models using permanent plots in Oregon and Washington

    Treesearch

    Karin Kralicek; Andrew Sánchez Meador; Leah Rathbun

    2015-01-01

    Imputation models were developed and tested to estimate tree regeneration on Forest Service land in Oregon and Washington. The models were based on Forest Inventory and Analysis and Pacific Northwest Regional NFS Monitoring data. The data was processed into sets of tables containing estimates of regeneration by broad plant associations and spanning a large variety in...

  8. Ash, the emerald ash borer, and private forest land management

    Treesearch

    Tom Crowe

    2010-01-01

    Forest management through emerald ash borer (EAB) will be a dynamic process that will change based on the best information available at the time. Management decisions will depend on the anticipated time of EAB arrival; the diameter and number of ash present in the forest stand; the diameter and number of other desirable and undesirable species present in the stand (...

  9. Exploring an Ecologically Sustainable Scheme for Landscape Restoration of Abandoned Mine Land: Scenario-Based Simulation Integrated Linear Programming and CLUE-S Model

    PubMed Central

    Zhang, Liping; Zhang, Shiwen; Huang, Yajie; Cao, Meng; Huang, Yuanfang; Zhang, Hongyan

    2016-01-01

    Understanding abandoned mine land (AML) changes during land reclamation is crucial for reusing damaged land resources and formulating sound ecological restoration policies. This study combines the linear programming (LP) model and the CLUE-S model to simulate land-use dynamics in the Mentougou District (Beijing, China) from 2007 to 2020 under three reclamation scenarios, that is, the planning scenario based on the general land-use plan in study area (scenario 1), maximal comprehensive benefits (scenario 2), and maximal ecosystem service value (scenario 3). Nine landscape-scale graph metrics were then selected to describe the landscape characteristics. The results show that the coupled model presented can simulate the dynamics of AML effectively and the spatially explicit transformations of AML were different. New cultivated land dominates in scenario 1, while construction land and forest land account for major percentages in scenarios 2 and 3, respectively. Scenario 3 has an advantage in most of the selected indices as the patches combined most closely. To conclude, reclaiming AML by transformation into more forest can reduce the variability and maintain the stability of the landscape ecological system in study area. These findings contribute to better mapping AML dynamics and providing policy support for the management of AML. PMID:27023575

  10. Exploring an Ecologically Sustainable Scheme for Landscape Restoration of Abandoned Mine Land: Scenario-Based Simulation Integrated Linear Programming and CLUE-S Model.

    PubMed

    Zhang, Liping; Zhang, Shiwen; Huang, Yajie; Cao, Meng; Huang, Yuanfang; Zhang, Hongyan

    2016-03-24

    Understanding abandoned mine land (AML) changes during land reclamation is crucial for reusing damaged land resources and formulating sound ecological restoration policies. This study combines the linear programming (LP) model and the CLUE-S model to simulate land-use dynamics in the Mentougou District (Beijing, China) from 2007 to 2020 under three reclamation scenarios, that is, the planning scenario based on the general land-use plan in study area (scenario 1), maximal comprehensive benefits (scenario 2), and maximal ecosystem service value (scenario 3). Nine landscape-scale graph metrics were then selected to describe the landscape characteristics. The results show that the coupled model presented can simulate the dynamics of AML effectively and the spatially explicit transformations of AML were different. New cultivated land dominates in scenario 1, while construction land and forest land account for major percentages in scenarios 2 and 3, respectively. Scenario 3 has an advantage in most of the selected indices as the patches combined most closely. To conclude, reclaiming AML by transformation into more forest can reduce the variability and maintain the stability of the landscape ecological system in study area. These findings contribute to better mapping AML dynamics and providing policy support for the management of AML.

  11. New York Forests, 2012

    Treesearch

    Richard H. Widmann; Sloane Crawford; Cassandra M. Kurtz; Mark D. Nelson; Patrick D. Miles; Randall S. Morin; Rachel. Riemann

    2015-01-01

    This report summarizes the second annual inventory of New York's forests, conducted in 2008-2012. New York's forests cover 19.0 million acres; 15.9 million acres are classified as timberland and 3.1 million acres as reserved and other forest land. Forest land is dominated by the maple/beech/birch forest-type group that occupies more than half of the forest...

  12. Application of genetic algorithm to land use optimization for non-point source pollution control based on CLUE-S and SWAT

    NASA Astrophysics Data System (ADS)

    Wang, Qingrui; Liu, Ruimin; Men, Cong; Guo, Lijia

    2018-05-01

    The genetic algorithm (GA) was combined with the Conversion of Land Use and its Effect at Small regional extent (CLUE-S) model to obtain an optimized land use pattern for controlling non-point source (NPS) pollution. The performance of the combination was evaluated. The effect of the optimized land use pattern on the NPS pollution control was estimated by the Soil and Water Assessment Tool (SWAT) model and an assistant map was drawn to support the land use plan for the future. The Xiangxi River watershed was selected as the study area. Two scenarios were used to simulate the land use change. Under the historical trend scenario (Markov chain prediction), the forest area decreased by 2035.06 ha, and was mainly converted into paddy and dryland area. In contrast, under the optimized scenario (genetic algorithm (GA) prediction), up to 3370 ha of dryland area was converted into forest area. Spatially, the conversion of paddy and dryland into forest occurred mainly in the northwest and southeast of the watershed, where the slope land occupied a large proportion. The organic and inorganic phosphorus loads decreased by 3.6% and 3.7%, respectively, in the optimized scenario compared to those in the historical trend scenario. GA showed a better performance in optimized land use prediction. A comparison of the land use patterns in 2010 under the real situation and in 2020 under the optimized situation showed that Shennongjia and Shuiyuesi should convert 1201.76 ha and 1115.33 ha of dryland into forest areas, respectively, which represented the greatest changes in all regions in the watershed. The results of this study indicated that GA and the CLUE-S model can be used to optimize the land use patterns in the future and that SWAT can be used to evaluate the effect of land use optimization on non-point source pollution control. These methods may provide support for land use plan of an area.

  13. Using forest inventory data to assess use restrictions on private timberland in Illinois. Forest Service resource bulletin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leatherberry, E.C.

    1993-01-01

    About half of the Nation's 731 million acres of forest land is privately owned. Traditionally, most private forest land was open for public uses, especially hunting. Today, however, keep out' or no trespassing' signs are seen increasingly throughout the countryside. The situation concerns policymakers and administrators because private lands are important recreational and aesthetic resources. Private landowners close their land to public use for many reasons. Generally, liability concerns, property damage, reasons for owning land, landowner attitudes about hunting or other consumptive uses, and landowners' intent to lease or charge a fee for access.

  14. Land-use change in Missouri, 1959-1972.

    Treesearch

    Pamela J. Jakes; John S. Jr. Spencer; Burton L. Essex

    1978-01-01

    Missouri's third Forest Survey showed an 11% decline in commercial forest area between 1959 and 1972. Most of this land was converted to nonforest uses, primarily pasture. Of the land that remained classified as commercial forest, 75% underwent little or no treatment between surveys.

  15. Illinois's Forest Resources in 2002.

    Treesearch

    Earl C. Leatherberry; Gary J Brand; Dick C Little

    2004-01-01

    Results of the 2002 annual inventory of Illinois shows an estimated 4.3 million acres of forest land. The estimate of total volume of all live trees on forest land is 7.5 billion cubic feet. Nearly 4.1 million acres of forest land are classified as timberland. The estimate of growing-stock volume on timberland is 6.3 billion cubic feet. All live aboveground tree...

  16. Forest Area in Michigan Counties, 1966

    Treesearch

    Arnold J. Ostrom

    1967-01-01

    In 1966, Michigan had 19.4 million acres of forest land. Almost half of the 18.9 million acres classified as commercial forest land was in Upper Michigan. Since 1955 commercial forest land has increased from 2.4 million to 2.8 million acres in Southern Lower Michigan, and decreased from 7.7 million to 7.0 million acres in Northern Lower Michigan.

  17. 32 CFR 644.408 - Interchange of national forest and military and civil works lands.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Interchange of national forest and military and... Property and Easement Interests § 644.408 Interchange of national forest and military and civil works lands. 16 U.S.C. 505a, 505b authorizes the Secretary of Agriculture, with respect to national forest lands...

  18. Implications of land-use change on forest carbon stocks in the eastern United States

    Treesearch

    Joshua Puhlick; Christopher Woodall; Aaron Weiskittel

    2017-01-01

    Given the substantial role that forests play in removing CO2 from the atmosphere, there has been a growing need to evaluate the carbon (C) implications of various forest management and land-use decisions. Although assessment of land-use change is central to national-level greenhouse gas monitoring guidelines, it is rarely incorporated into forest...

  19. A preview of Vermont's forest resource

    Treesearch

    Joseph E. Barnard; Teresa M. Bowers

    1974-01-01

    Forest land occupies 75 percent of the total land area in Vermont. Nearly one-half of this forest land is the beech-birch-maple forest type. The inventory data show volume increasing but at a lower rate than in neighboring states. This is due to large losses from cull and mortality. Total growing-stock volume is now 4.7 billion cubic feet.

  20. Inventory of oaks on California's national forest lands

    Treesearch

    Thomas Gaman; Kevin Casey

    2002-01-01

    California has 18+ million acres of land owned by the USDA Forest Service. This is almost 20 percent of the area of the state. From 1994-2000 the Region 5 Remote Sensing Lab collected forest, vegetation and fuels inventory data from thousands of permanent monitoring plots established on diverse sites on Forest Service lands throughout the region. The plots are...

Top